White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Spin Transport in Lateral Spin Valves

Batley, Joseph Thomas (2015) Spin Transport in Lateral Spin Valves. PhD thesis, University of Leeds.

JTB_Thesis.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (10Mb) | Preview


This thesis outlines the construction of an ultra-high-vacuum angle-deposition system, developed specifically for the fabrication of lateral spin valves (LSVs). The thesis then proceeds to answer two important questions: what causes the loss of spin accumulation at low temperatures seen in LSVs? and how do spin currents interact in multi-terminal circuits? Through a double-dose electron beam lithography and angle-deposition technique, Cu/Py LSVs are fabricated and shown to have transparent contacts. By means of a DC injection method, the nonlocal voltage is measured as a function of injection current, magnetic field and temperature, enabling contributions from heat and spin currents to be isolated. The spin diffusion length is obtained from LSVs fabricated with Cu containing magnetic impurities $<$1 ppm and $\sim$4 ppm. Temperature dependent charge and spin transport measurements provide evidence linking the presence of the Kondo effect in Cu to the suppression of the spin diffusion length below 30 K. The spin-flip probability for magnetic impurities is found to be 34\%, orders of magnitude larger than other scattering mechanisms. This is extended to explain similar observations in the spin accumulation. These measurements establish the dominant role of Kondo scattering in spin-relaxation, even in low concentrations of order 1 ppm. Finally, a new multi-terminal LSV (MTLSV) is fabricated and the interaction between two spin currents is investigated. Fan-out and fan-in measurements are performed, demonstrating that spin currents separate and combine at junctions in a circuit with magnitudes dictated by the spin resistance of the conduction channels. It is also shown that two spin currents of opposite polarity will cancel out. Whether Kirchhoff's law holds for spin currents is discussed and this chapter helps lay the ground work for spin current based circuits and computation.

Item Type: Thesis (PhD)
Keywords: Spin transport, spintronics, lateral spin valves, Kondo
Academic Units: The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds)
Identification Number/EthosID: uk.bl.ethos.680926
Depositing User: Dr J T Batley
Date Deposited: 23 Mar 2016 12:09
Last Modified: 25 Jul 2018 09:52
URI: http://etheses.whiterose.ac.uk/id/eprint/12176

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)