White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Automated Vehicle Detection and Classification using Acoustic and Seismic Signals

Evans, Naoko (2010) Automated Vehicle Detection and Classification using Acoustic and Seismic Signals. PhD thesis, University of York.

[img]
Preview
Text
Thesis_NE502.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (9Mb)

Abstract

ecurity threats to important infrastructure cause problems to not only those who live nearby but also in a much wider sense. It is therefore desirable to consider the use of automated systems capable of detection and identification of potential threats. This thesis describes an investigation into acoustic and seismic methods for achieving such a system specifically for commercial road vehicles. Accurate algorithms have been developed for recognition of moving vehicles using fusion of acoustic and seismic signals. It has been found that seismic signals are less susceptible to interfering signals, making them optimal for detection of vehicles. Their much narrower bandwidth also increases processing efficiency and speed. Thus, the algorithm developed utilises firstly only seismic signals to detect vehicle presence, and then employs both acoustic and seismic signals for classifying type of the vehicle. The detection algorithm is purely time domain and uses seismic Log Energy together with a modification of Time Domain Signal Coding. The best detection accuracy obtained was 97.71 % with Support Vector Machine and 99.02 % with Learning Vector Quantisation Neural Networks. The classification algorithm to distinguish between trucks and cars utilises three relatively simple time domain methods: Zero-Crossing Rate, Log Energy and Autocorrelation of seismic signals; combined with LPC coefficients collected from acoustic signals. Classification with either SVM or LVQ reached 93.30 % or 80.80 % respectively. This study therefore has demonstrated it is possible to detect an approaching vehicle and classify its type by using acoustic and seismic signal processing.

Item Type: Thesis (PhD)
Keywords: Vehicle Recognition, Detection, Classification, Signal Processig, Acoustic, Seismic, Machine Learning
Academic Units: The University of York > Electronics (York)
Depositing User: Mrs Naoko Evans
Date Deposited: 18 Jan 2012 09:09
Last Modified: 08 Aug 2013 08:45
URI: http://etheses.whiterose.ac.uk/id/eprint/1151

Actions (repository staff only: login required)