Konstantinou-Rizos, Sotiris (2014) Darboux transformations, discrete integrable systems and related Yang-Baxter maps. PhD thesis, University of Leeds.
Abstract
Darboux transformations constitute a very important tool in the theory of integrable systems. They map trivial solutions of integrable partial differential equations to non-trivial ones and they link the former to discrete integrable systems. On the other hand, they can be used to construct Yang-Baxter maps which can be restricted to completely integrable maps (in the Liouville sense) on invariant leaves.
In this thesis we study the Darboux transformations related to particular Lax operators of NLS type which are invariant under the action of the so-called reduction group. Specifically, we study the cases of: 1) the nonlinear Schrödinger equation (with no reduction), 2) the derivative nonlinear Schrödinger equation, where the corresponding Lax operator is invariant under the action of the Z₂-reduction group and 3) a deformation of the derivative nonlinear Schrödinger equation, associated to a Lax operator invariant under the action of the dihedral reduction group. These reduction groups correspond to recent classification results of automorphic Lie algebras.
We derive Darboux matrices for all the above cases and we use them to construct novel discrete integrable systems together with their Lax representations. For these systems of difference equations, we discuss the initial value problem and, moreover, we consider their integrable reductions. Furthermore, the derivation of the Darboux matrices gives rise to many interesting objects, such as Bäcklund transformations for the corresponding partial differential equations as well as symmetries and conservation laws of their associated systems of difference equations.
Moreover, we employ these Darboux matrices to construct six-dimensional Yang-Baxter maps for all the afore-mentioned cases. These maps can be restricted to four-dimensional Yang-Baxter maps on invariant leaves, which are completely integrable; we also consider their vector generalisations.
Finally, we consider the Grassmann extensions of the Yang-Baxter maps corresponding to the nonlinear Schrödinger equation and the derivative nonlinear Schrödinger equation. These constitute the first examples of Yang-Baxter maps with noncommutative variables in the literature.
Metadata
Supervisors: | Mikhailov, A. |
---|---|
Keywords: | Darboux transformations, discrete integrable systems, Yang-Baxter maps, integrability, NLS type equations, Grassmann extensions |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.635379 |
Depositing User: | Dr Sotiris Konstantinou-Rizos |
Date Deposited: | 11 Feb 2015 10:17 |
Last Modified: | 25 Nov 2015 13:47 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:7141 |
Download
Final eThesis - complete (pdf)
Filename: PhD_thesis-Konstantinou-Rizos.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.