Ali, Nasar A. (2014) Thermomechanical processing of 34CrNiMo6 steel for Large Scale Forging. PhD thesis, University of Sheffield.
Abstract
This work simulated the thermo-mechanical processing of large-scale forging product made of 34CrNiMo6 steel to evaluate the effect of different processing condition parameters and cooling rates on the variation of microstructure and the final mechanical properties. Through this investigation we tried to achieve the required mechanical properties for deep sea applications, which were a minimum Charpy impact value of 38J at temperature of -20 °C according to ABS specifications and a minimum surface hardness of 302 HB according to First Subsea specification design.
Initially, a series of single and multi-hit plane strain compression tests were performed to evaluate the hot-deformed microstructure in thermo-mechanical processing, with particular attention paid to the effect of austenitising temperature and deformation conditions of temperature, strain and strain rate.
The exponential law, power law and hyperbolic sine law types of Zener–Hollomon equations were utilised to calculate the hot activation energy of deformation (Qdef). In addition the constitutive equations were used for modelling and generalising the DRV and DRX flow curves of 34CrNiMo6 steel, using the method proposed by Avrami. Secondly, a heat treatment process using different austenitising temperatures and different cooling rates was also investigated to achieve the required aims, in which many tests were performed through controlling the temperatures, soaking times, and cooling rates to study the effect of the heat treatment parameters on the grain size and transformation behaviour of austenite.
Additionally, to attempt to refine the austenite grain size and to increase the austenite phase percentage within the microstructure, multiple heat treatment paths were also used. A double normalizing, double quenching, and single tempered process were used in all possible combinations to investigate their influence on the final microstructure in an attempt to identify the most effective heat treatment cycle with an effective sequence for the heat treatment operations.
Metadata
Supervisors: | Wynne, Bradley |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Materials Science and Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.628590 |
Depositing User: | Mr Nasar A. Ali |
Date Deposited: | 05 Nov 2014 14:33 |
Last Modified: | 03 Oct 2016 11:18 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:7102 |
Download
Phd Thesis
Filename: Nasar Ali Thesis.pdf
Description: Phd Thesis
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.