Waller, Rachel (2014) Characterisation of the transcriptomic and proteomic profile of astrocytes in multiple sclerosis. PhD thesis, University of Sheffield.
Abstract
Multiple sclerosis (MS) is a chronic, neuroinflammatory demyelinating disease of the central nervous system (CNS). Typical white matter lesions (WML) in MS are surrounded by areas of non-demyelinated normal appearing white matter (NAWM) with complex subtle pathology, including blood brain barrier (BBB) dysfunction, axonal damage and glial activation. Astrocytes, the most abundant cell type within the CNS, are known to support neuronal function, maintain homeostasis within the CNS and regulate neurotransmission. Yet conversely, can promote an inflammatory response, inhibit myelin repair and support the production of autoreactive T cells in MS. This thesis aimed to investigate the transcriptomic and proteomic profile of astrocytes in MS NAWM to determine whether specific astroglial changes exist, which may contribute/prevent disease progression in MS.
Initial data presented in this thesis demonstrated a change in astrocyte phenotype within different pathological regions of the CNS in MS, as observed by the distinct immunoprofile of a variety of known astrocyte markers. Being able to isolate cell types from human tissue is fundamental in beginning to define a particular cell’s role in disease pathogenesis. An immuno-laser capture microdissection (LCM) method was developed to enable the isolation of glial cells from human post mortem (PM) CNS tissue. In the current study glial fibrillary acidic protein (GFAP) positive astrocytes were isolated from MS NAWM and control WM via immuno-LCM and microarray analysis completed to compare their transcriptome. Significantly differentially expressed genes were associated with the immune response, cell signaling, cytoskeletal changes and regulation of homeostasis which relate to the distinct roles of astrocytes. Interestingly, from the top 20 significant differentially upregulated genes, six of them were related to the regulation of iron homeostasis and oxidative stress, including metallothionein I-II (MT-I+II), ferritin light chain (FTL) and transferrin (TF). Subsequent transcriptomic and proteomic investigations were carried out on candidate genes using polymerase chain reaction, immunohistochemistry, western blotting and mass spectrometry to investigate the neuroprotective role of astrocytes in regulating iron homeostasis and oxidative stress in MS NAWM.
Evidence presented in this thesis demonstrates the importance of astrocytes in the pathogenesis of MS. The results indicate that further investigations into the protective roles of astrocytes in regulating iron and oxidative stress in MS NAWM are warranted
Metadata
Supervisors: | Simpson, Julie and Wharton, Stephen and Ince, Paul |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Medicine (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.605465 |
Depositing User: | Miss Rachel Waller |
Date Deposited: | 16 May 2014 12:24 |
Last Modified: | 04 Jan 2024 16:49 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:6142 |
Downloads
Final eThesis - complete (pdf)
Filename: R.Waller Volume 1.pdf
Description: R.Waller Vol I
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Final eThesis - complete (pdf)
Filename: R.Waller Volume 2_Redacted.pdf
Description: R.Waller Vol II
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.