CHU, YI (2013) Application of Reinforcement Learning on Medium Access Control for Wireless Sensor Networks. PhD thesis, University of York.
Abstract
This thesis investigates the application of Reinforcement Learning (RL) on Medium Access Control (MAC) for Wireless Sensor Networks (WSNs). RL is applied as an intelligent slot selection strategy to Framed ALOHA, along with analytical and experimental performance evaluation. Informed Receiving (IR) and ping packets are applied to multi-hop WSNs to avoid idle listening and overhearing, thereby further improving the energy efficiency.
The low computational complexity and signalling overheads of the ALOHA schemes meet the design requirement of energy constraint WSNs, but suffer collisions from the random access strategy. RL is applied to solve this problem and to achieve perfect scheduling. Results show that the RL scheme achieves over 0.9 Erlangs maximum throughput in single-hop networks. For multi-hop WSNs, IR and ping packets are applied to appropriately switch the relay nodes between active and sleep state, to reserve as much energy as possible while ensuring no information loss.
The RL algorithms require certain time to converge to steady state to achieve the optimum performance. The convergence behaviour is investigated in this thesis. A Markov model is proposed to describe a learning process, and the model produces the proof of the convergence of the learning process and the estimated convergence time. The channel performance before convergence is also evaluated.
Metadata
Supervisors: | Mitchell, Paul and Grace, David |
---|---|
Awarding institution: | University of York |
Academic Units: | The University of York > School of Physics, Engineering and Technology (York) |
Academic unit: | Electronics |
Identification Number/EthosID: | uk.bl.ethos.589206 |
Depositing User: | Mr YI CHU |
Date Deposited: | 16 Dec 2013 14:35 |
Last Modified: | 21 Mar 2024 14:36 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:4795 |
Download
thesis corrected
Filename: thesis corrected.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.