Dervilis, Nikolaos (2013) A machine learning approach to Structural Health Monitoring with a view towards wind turbines. PhD thesis, University of Sheffield.
Abstract
The work of this thesis is centred around Structural Health Monitoring (SHM) and
is divided into three main parts.
The thesis starts by exploring di�erent architectures of auto-association. These are
evaluated in order to demonstrate the ability of nonlinear auto-association of neural
networks with one nonlinear hidden layer as it is of great interest in terms of reduced
computational complexity. It is shown that linear PCA lacks performance for novelty
detection. The novel key study which is revealed ampli�es that single hidden layer
auto-associators are not performing in a similar fashion to PCA.
The second part of this study concerns formulating pattern recognition algorithms for
SHM purposes which could be used in the wind energy sector as SHM regarding this
research �eld is still in an embryonic level compared to civil and aerospace engineering.
The purpose of this part is to investigate the e�ectiveness and performance of such
methods in structural damage detection. Experimental measurements such as high
frequency responses functions (FRFs) were extracted from a 9m WT blade throughout
a full-scale continuous fatigue test. A preliminary analysis of a model regression of
virtual SCADA data from an o�shore wind farm is also proposed using Gaussian
processes and neural network regression techniques.
The third part of this work introduces robust multivariate statistical methods into
SHM by inclusively revealing how the in
uence of environmental and operational
variation a�ects features that are sensitive to damage. The algorithms that are
described are the Minimum Covariance Determinant Estimator (MCD) and the Minimum Volume Enclosing Ellipsoid (MVEE). These robust outlier methods are
inclusive and in turn there is no need to pre-determine an undamaged condition
data set, o�ering an important advantage over other multivariate methodologies.
Two real life experimental applications to the Z24 bridge and to an aircraft wing
are analysed. Furthermore, with the usage of the robust measures, the data variable
correlation reveals linear or nonlinear connections.
Metadata
Supervisors: | Worden, Keith |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Mechanical Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.589182 |
Depositing User: | Mr Nikolaos Dervilis |
Date Deposited: | 09 Dec 2013 11:56 |
Last Modified: | 03 Oct 2016 11:03 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:4741 |
Download
thesis_ND
Filename: thesis_ND.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.