Delaine-Smith, Robin M. (2013) Mechanical and physical guidance of osteogenic differentiation and matrix production. PhD thesis, University of Sheffield.
Abstract
Summary
Tissue engineering and regenerative medicine strategies until now have mostly relied
on static culture using chemical stimulation to induce cell differentiation. However,
these strategies neglect the dynamic environment in which cells reside in the body
where they are surrounded by a chemically and physically well-defined threedimensional
(3D) topography. Not only does this environment control cellular
differentiation, but its structure also determines the mechanical function of that
tissue. Alongside physical cues, external mechanical forces play an essential role in
the homeostasis of many tissues, particularly bone. In order to develop tissue
engineered constructs that are suitable for implantation, it may be important to
incorporate these essential cues into pre-culture methods and in order to do this, a
better understanding of the cellular responses is required.
The main aim of this research was to understand how physical and mechanical cues
affect cell behaviour, differentiation and matrix production, with particular emphasis
on osteogenesis and collagen organisation. In order to achieve this, electrospun
scaffolds were fabricated with controllable fibre orientation for studies involving
fibroblast matrix organisation, and the affect on the differentiation of osteoprogenitor
cells. Short bouts of tensile loading were conducted using a previously established
bioreactor model for conditioning collagen-producing cells. A simple rocking
platform method for subjecting cells to fluid-flow was also investigated for its
potential to enhance osteogenesis and collagen organisation. This system was further
used to study the role of the primary cilium for the mechanotransduction of bone
cells. The overall goal was to understand how to manipulate cell differentiation and
matrix production in order to develop a more suitable construct with correct tissue
structure in a rapid manner.
Monitoring of the major structural matrix protein collagen was achieved using the
minimally-invasive technique of second harmonic generation, which was optimised.
Electrospun scaffolds with a random architecture caused cells to deposit matrix in a
similar random manner, however highly aligned scaffolds caused deposited collagen
to orientate in the fibre direction giving superior tensile properties. Further to this,
random fibres appeared to be more favourable for the differentiation of
osteoprogenitor cells than highly aligned substrates.
9
Short bouts of tensile stimulation of collagen producing cells on 3D substrates
caused an increase in collagen deposition. Another stimulation method, a simple
rocking platform, created oscillatory fluid shear stress (FSS) suitable for stimulation
of osteogenic cells and enhanced collagen organisation. Further to this, human
dermal fibroblasts could be induced to form a mineralised matrix when cultured in
osteogenic media, which was further enhanced with FSS.
It was also demonstrated that this simple rocking system could be used to test a wide
variety of loading parameters. Finally, rocking was used to examine the role of the
primary cilium in the load-induced mineral deposition response of bone cells. When
mature bone cells were subjected to FSS, primary cilia shortened in length and
removal of primary cilia resulted in loss of the load-induced matrix response
suggesting that primary cilia are mechanosensors in bone cells.
Metadata
Supervisors: | Reilly, Gwendolen C. and MacNeil, Sheila |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Materials Science and Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.570149 |
Depositing User: | Mr Robin M. Delaine-Smith |
Date Deposited: | 22 Apr 2013 14:22 |
Last Modified: | 19 Dec 2023 14:52 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:3691 |
Download
Final eThesis - complete (pdf)
Filename: Robin_D.S._PhD_Thesis_online_copy.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.