Llanses Martínez, Montserrat ORCID: https://orcid.org/0000-0002-5600-9181 (2023) Dissecting Extracellular Matrix Internalisation Mechanisms using Functional Genomics. PhD thesis, University of Sheffield.
Abstract
Breast and ovarian malignancies account for one third of female cancers. The role of the stroma in supporting invasive growth in breast cancer has become clear. Breast cancer cells interact and respond to the cues from the surrounding extracellular matrix (ECM). Integrins are main cell adhesion receptors and key players in invasive migration by linking the ECM to the actin cytoskeleton. In addition, integrins mediate distinctive biochemical and biomechanical signals to support cancer invasion. The role of matrix proteases in promoting ECM degradation and cancer dissemination has been extensively studied; however, cancer cells possess additional means to support those processes, such as integrin-mediated ECM endocytosis and consequent degradation in the lysosomes. Internalisation of the extracellular matrix is upregulated in invasive breast cancer. Nonetheless, the mechanisms by which cancer cells regulate this process are poorly understood. We developed a high throughput pH sensitive system to detect ECM uptake. Here, we show that MDA-MB-231 breast cancer cells converge in macropinocytosis to internalise diverse ECM components and we confirm that this process is modulated by PAK1. To unravel which ECM components breast cancer cells internalise in a complex environment (namely, cell derived matrices), we performed mass spectrometry. Proteomic analysis identified Annexin A6, Collagen VI, Tenascin C and fibronectin, among other matrisome proteins, to be internalised by invasive breast cancer cells. Following ECM endocytosis, ECM is targeted for lysosomal degradation. To unravel the molecular mechanisms behind this process, we performed a trafficking screen and identified the AP3 complex, VAMP7, Arf1 and ARFGEF2. Our results suggest that the AP3 complex may regulate ECM-integrin delivery to lysosomes.
To gain more insight on the signalling pathways governing macropinocytosis in breast cancer cells, we performed a kinase and phosphatase screen that unravelled MAP3K1 and PPP2R1A, a subunit of protein phosphatase 2A (PP2A) as relevant regulators of ECM endocytosis. Furthermore, our data suggests that p38 mitogen-activated protein kinase (MAPK) activation upon binding to the ECM is required for ECM macropinocytosis. Outstandingly, inhibiting p38 MAPK led to profound changes in the ability of breast cancer cells to migrate in cell derived matrices. Previous work from the Rainero lab focused on characterising the receptors involved in ECM internalisation; α2β1 integrin was identified as the main regulator of ECM uptake in MDA-MB-231 cells. In particular, α2β1 integrin has been shown to activate p38 MAPK pathway. Taken together, we hypothesise that binding of ECM to α2β1 integrin results in the activation of PAK1 and MAP3K1, which in turn leads to ECM endocytosis. p38 MAPK activity may induce changes in actin polymerisation via PPP2R1A and/or focal adhesion turnover, which consequently promotes ECM macropinocytosis and invasive migration.
Metadata
Supervisors: | Rainero, Elena and Bard, Frederic |
---|---|
Related URLs: | |
Keywords: | Extracellular matrix; Cell migration; Integrin; Cell trafficking; Macropinocytosis; RNAi screen |
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Biomedical Science (Sheffield) The University of Sheffield > Faculty of Science (Sheffield) |
Academic unit: | School of Biosciences |
Identification Number/EthosID: | uk.bl.ethos.885447 |
Depositing User: | Montserrat Llanses Martínez |
Date Deposited: | 10 Jul 2023 10:02 |
Last Modified: | 01 Aug 2023 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:33147 |
Download
Final eThesis - complete (pdf)
Filename: LLANSES MARTINEZ, Montserrat_180225446.pdf
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 International License
Related datasets
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.