Hevia Fajardo, Mario Alejandro ORCID: https://orcid.org/0000-0003-3529-0434 (2023) Runtime Analysis of Success-Based Parameter Control Mechanisms for Evolutionary Algorithms on Multimodal Problems. PhD thesis, University of Sheffield.
Abstract
Evolutionary algorithms are simple general-purpose optimisers often used to solve complex engineering and design problems. They mimic the process of natural evolution: they use a population of possible solutions to a problem that evolves by mutating and recombining solutions, identifying increasingly better solutions over time. Evolutionary algorithms have been applied to a broad range of problems in various disciplines with remarkable success. However, the reasons behind their success are often elusive: their performance often depends crucially, and unpredictably, on their parameter settings. It is, furthermore, well known that there are no globally good parameters, that is, the correct parameters for one problem may differ substantially to the parameters needed for another, making it harder to translate previous successfully implemented parameters to new problems. Therefore, understanding how to properly select the parameters is an important but challenging task. This is commonly known as the parameter selection problem.
A promising solution to this problem is the use of automated dynamic parameter selection schemes (parameter control) that allow evolutionary algorithms to identify and continuously track optimal parameters throughout the course of evolution without human intervention. In recent years the study of parameter control mechanisms in evolutionary algorithms has emerged as a very fruitful research area. However, most existing runtime analyses focus on simple problems with benign characteristics, for which fixed parameter settings already run efficiently and only moderate performance gains were shown. The aim of this thesis is to
understand how parameter control mechanisms can be used on more complex and challenging problems with many local optima (multimodal problems) to speed up optimisation.
We use advanced methods from the analysis of algorithms and probability theory to evaluate the performance of evolutionary algorithms, estimating the expected time until an algorithm finds satisfactory solutions for illustrative and relevant optimisation problems as a vital stepping stone towards designing more efficient evolutionary algorithms. We first analyse current parameter control mechanisms on multimodal problems to understand their strengths and weaknesses. Subsequently we use this knowledge to design parameter control mechanisms that mitigate the weaknesses of current mechanisms while maintaining their strengths. Finally, we show with theoretical and empirical analyses that these enhanced parameter control mechanisms are able to outperform the best fixed parameter settings on multimodal optimisation.
Metadata
Download
Final eThesis - complete (pdf)
Filename: Thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial ShareAlike 4.0 International License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.