Liao, Mingduo (2022) Channel Estimation for Massive MIMO Systems. PhD thesis, University of York.
Abstract
Massive multiple input multiple output (MIMO) systems can significantly improve the channel
capacity by deploying multiple antennas at the transmitter and receiver. Massive MIMO
is considered as one of key technologies of the next generation of wireless communication
systems. However, with the increase of the number of antennas at the base station, a large
number of unknown channel parameters need to be dealt with, which makes the channel
estimation a challenging problem. Hence, the research on the channel estimation for massive
MIMO is of great importance to the development of the next generation of communication
systems. The wireless multipath channel exhibits sparse characteristics, but the traditional
channel estimation techniques do not make use of the sparsity. The channel estimation
based on compressive sensing (CS) can make full use of the channel sparsity, while use
fewer pilot symbols. In this work, CS channel estimation methods are proposed for massive
MIMO systems in complex environments operating in multipath channels with static and
time-varying parameters. Firstly, a CS channel estimation algorithm for massive MIMO
systems with Orthogonal Frequency Division Multiplexing (OFDM) is proposed. By exploiting
the spatially common sparsity in the virtual angular domain of the massive MIMO
channels, a dichotomous-coordinate-decent-joint-sparse-recovery (DCD-JSR) algorithm is
proposed. More specifically, by considering the channel is static over several OFDM symbols
and exhibits common sparsity in the virtual angular domain, the DCD-JSR algorithm can
jointly estimate multiple sparse channels with low computational complexity. The simulation
results have shown that, compared to existing channel estimation algorithms such as the
distributed-sparsity-adaptive-matching-pursuit (DSAMP) algorithm, the proposed DCD-JSR
algorithm has significantly lower computational complexity and better performance. Secondly, these results have been extended to the case of multipath channels with time-varying
parameters. This has been achieved by employing the basis expansion model to approximate
the time variation of the channel, thus the modified DCD-JSR algorithm can estimate the
channel in a massive MIMO OFDM system operating over frequency selective and highly
mobile wireless channels. Simulation results have shown that, compared to the DCD-JSR
algorithm designed for time-invariant channels, the modified DCD-JSR algorithm provides
significantly better estimation performance in fast time-varying channels.
Metadata
Supervisors: | Yuriy, Zakharov |
---|---|
Keywords: | massive MIMO, virtual angular domain, OFDM, compressive sensing |
Awarding institution: | University of York |
Academic Units: | The University of York > School of Physics, Engineering and Technology (York) |
Academic unit: | Electronic Engineering |
Identification Number/EthosID: | uk.bl.ethos.878228 |
Depositing User: | Mr Mingduo Liao |
Date Deposited: | 24 Apr 2023 09:02 |
Last Modified: | 21 Mar 2024 16:12 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:32641 |
Download
Examined Thesis (PDF)
Filename: Mingduo_204036480_thesis_corrected.pdf
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 International License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.