Rudd-Orthner, Richard N (2022) Artificial intelligence methods for security and cyber security systems. PhD thesis, University of Sheffield.
Abstract
This research is in threat analysis and countermeasures employing Artificial Intelligence (AI) methods within the civilian domain, where safety and mission-critical aspects are essential. AI has challenges of repeatable determinism and decision explanation. This research proposed methods for dense and convolutional networks that provided repeatable determinism. In dense networks, the proposed alternative method had an equal performance with more structured learnt weights. The proposed method also had earlier learning and higher accuracy in the Convolutional networks. When demonstrated in colour image classification, the accuracy improved in the first epoch to 67%, from 29% in the existing scheme. Examined in transferred learning with the Fast Sign Gradient Method (FSGM) as an analytical method to control distortion of dissimilarity, a finding was that the proposed method had more significant retention of the learnt model, with 31% accuracy instead of 9%. The research also proposed a threat analysis method with set-mappings and first principle analytical steps applied to a Symbolic AI method using an algebraic expert system with virtualized neurons. The neural expert system method demonstrated the infilling of parameters by calculating beamwidths with variations in the uncertainty of the antenna type. When combined with a proposed formula extraction method, it provides the potential for machine learning of new rules as a Neuro-Symbolic AI method. The proposed method uses extra weights allocated to neuron input value ranges as activation strengths. The method simplifies the learnt representation reducing model depth, thus with less significant dropout potential. Finally, an image classification method for emitter identification is proposed with a synthetic dataset generation method and shows the accurate identification between fourteen radar emission modes with high ambiguity between them (and achieved 99.8% accuracy). That method would be a mechanism to recognize non-threat civil radars aimed at threat alert when deviations from those civilian emitters are detected.
Metadata
Supervisors: | Mihaylova, Lyudmila and Konstantopoulos, George |
---|---|
Keywords: | Artificial Intelligence, Cyber Secure Systems, Threat Analysis, Neuro Symbolic AI |
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Automatic Control and Systems Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.868587 |
Depositing User: | Mr Richard N Rudd-Orthner |
Date Deposited: | 06 Dec 2022 11:30 |
Last Modified: | 01 Feb 2023 10:54 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:31644 |
Download
Final eThesis - complete (pdf)
Filename: Dissertation 53 Final.pdf
Description: PhD Dissertation
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 International License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.