Han, Sooji (2020) Context-Aware Message-Level Rumour Detection with Weak Supervision. PhD thesis, University of Sheffield.
Abstract
Social media has become the main source of all sorts of information beyond a communication medium. Its intrinsic nature can allow a continuous and massive flow of misinformation to make a severe impact worldwide. In particular, rumours emerge unexpectedly and spread quickly. It is challenging to track down their origins and stop their propagation. One of the most ideal solutions to this is to identify rumour-mongering messages as early as possible, which is commonly referred to as "Early Rumour Detection (ERD)". This dissertation focuses on researching ERD on social media by exploiting weak supervision and contextual information. Weak supervision is a branch of ML where noisy and less precise sources (e.g. data patterns) are leveraged to learn limited high-quality labelled data (Ratner et al., 2017). This is intended to reduce the cost and increase the efficiency of the hand-labelling of large-scale data. This thesis aims to study whether identifying rumours before they go viral is possible and develop an architecture for ERD at individual post level. To this end, it first explores major bottlenecks of current ERD. It also uncovers a research gap between system design and its applications in the real world, which have received less attention from the research community of ERD. One bottleneck is limited labelled data. Weakly supervised methods to augment limited labelled training data for ERD are introduced. The other bottleneck is enormous amounts of noisy data. A framework unifying burst detection based on temporal signals and burst summarisation is investigated to identify potential rumours (i.e. input to rumour detection models) by filtering out uninformative messages. Finally, a novel method which jointly learns rumour sources and their contexts (i.e. conversational threads) for ERD is proposed. An extensive evaluation setting for ERD systems is also introduced.
Metadata
Supervisors: | Ciravegna, Fabio and Lanfranchi, Vitaveska |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Computer Science (Sheffield) The University of Sheffield > Faculty of Science (Sheffield) > Computer Science (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.811332 |
Depositing User: | Ms Sooji Han |
Date Deposited: | 13 Jul 2020 08:09 |
Last Modified: | 01 Sep 2020 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:27302 |
Download
shan_finalcopy
Filename: shan_finalcopy.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.