Pershin, Anton (2020) Assessment and control of transition to turbulence in plane Couette flow. PhD thesis, University of Leeds.
Abstract
Transition to turbulence in shear flows is a puzzling problem regarding the motion of fluids flowing, for example, through the pipe (pipe flow), as in oil pipelines or blood vessels, or confined between two counter-moving walls (plane Couette flow). In this kind of flows, the initially laminar (ordered and layered) state of fluid motion is linearly stable, but turbulent (disordered and swirling) flows can also be observed if a suitable perturbation is imposed. This thesis concerns the assessment of transitional properties of such flows in the uncontrolled and controlled environments allowing for the quantitative comparisons of control strategies aimed at suppressing or trigerring transition to turbulence. Efficient finite-amplitude perturbations typically take the form of small patches of turbulence embedded in the laminar flow and called turbulent spots. Using direct numerical simulations, the nonlinear dynamics of turbulent spots, modelled as exact solutions, is investigated in the transitional regime of plane Couette flow and a detailed map of dynamics encompassing the main features found in transitional shear flows (self-sustained cycles, front propagation and spot splitting) is built. The map represents a quantitative assessment of transient dynamics of turbulent spots as a dependence of the relaminarisation time, i.e. the time it takes for a finite-amplitude perturbation, added to the laminar flow, to decay, on the Reynolds number and the width of a localised perturbation. By applying a simple passive control strategy, sinusoidal wall oscillations, the change in the spot dynamics with respect to the amplitude and frequency of the wall oscillations is assessed by the re-evaluation of the relaminarisation time for few selected localised initial conditions. Finally, a probabilistic protocol for the assessment of transition to turbulence and its control is suggested. The protocol is based on the calculation of the laminarisation probability, i.e. the probability that a random perturbation decays as a function of its energy. It is used to assess the robustness of the laminar flow to finite-amplitude perturbations in transitional plane Couette flow in a small computational domain in the absence of control and under the action of sinusoidal wall oscillations. The protocol is expected to be useful for
a wide range of nonlinear systems exhibiting finite-amplitude instability.
Metadata
Supervisors: | Beaume, Cedric and Tobias, Steven |
---|---|
Keywords: | Transition to turbulence, shear flows, pattern formation |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.811220 |
Depositing User: | Mr Anton Pershin |
Date Deposited: | 17 Jul 2020 16:55 |
Last Modified: | 11 Sep 2020 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:27171 |
Download
Final eThesis - complete (pdf)
Filename: Pershin_A_Mathematics_PhD_2020.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.