Lovedee-Turner, Michael (2019) Three-Dimensional Geometry Inference of Convex and Non-Convex Rooms using Spatial Room Impulse Responses. PhD thesis, University of York.
Abstract
This thesis presents research focused on the problem of geometry inference for both convex- and non-convex-shaped rooms, through the analysis of spatial room impulse responses. Current geometry inference methods are only applicable to convex-shaped rooms, requiring between 6--78 discretely spaced measurement positions, and are only accurate under certain conditions, such as a first-order reflection for each boundary being identifiable across all, or some subset of, these measurements. This thesis proposes that by using compact microphone arrays capable of capturing spatiotemporal information, boundary locations, and hence room shape for both convex and non-convex cases, can be inferred, using only a sufficient number of measurement positions to ensure each boundary has a first-order reflection attributable to, and identifiable in, at least one measurement. To support this, three research areas are explored. Firstly, the accuracy of direction-of-arrival estimation for reflections in binaural room impulse responses is explored, using a state-of-the-art methodology based on binaural model fronted neural networks. This establishes whether a two-microphone array can produce accurate enough direction-of-arrival estimates for geometry inference. Secondly, a spherical microphone array based spatiotemporal decomposition workflow for analysing reflections in room impulse responses is explored. This establishes that simultaneously arriving reflections can be individually detected, relaxing constraints on measurement positions. Finally, a geometry inference method applicable to both convex and more complex non-convex shaped rooms is proposed. Therefore, this research expands the possible scenarios in which geometry inference can be successfully applied at a level of accuracy comparable to existing work, through the use of commonly used compact microphone arrays. Based on these results, future improvements to this approach are presented and discussed in detail.
Metadata
Supervisors: | Murphy, Damian |
---|---|
Related URLs: | |
Awarding institution: | University of York |
Academic Units: | The University of York > School of Physics, Engineering and Technology (York) |
Academic unit: | Electronic Engineering |
Identification Number/EthosID: | uk.bl.ethos.805491 |
Depositing User: | Mr M Lovedee-Turner |
Date Deposited: | 22 May 2020 17:32 |
Last Modified: | 21 Mar 2024 15:41 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:26618 |
Download
Examined Thesis (PDF)
Filename: Lovedee-Turner_201050868_PhDThesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.