Willis, Katherine Elizabeth (2019) Mechanisms of strain localisation in the lithosphere. PhD thesis, University of Leeds.
Abstract
This thesis examines the development of shear-zone localisation in the continental lithosphere. I use non-Newtonian, viscous models to examine the controls on strain localisation with depth and on the development of horizontal shear-zones in regions away from strength contrasts. I show how the vertical extent of strain localisation is principally controlled by lithology and geothermal gradient, and how the horizontal extent of localisation is a consequence of strain-weakening and the geometry of strength contrasts.
I explore how strain localisation develops from an initial isolated weak inclusion. The progress of strain localisation follows a power-law growth that is strongly non-linear. When applied to the rheological laws for common lithospheric minerals, the temperature and stress-dependence provide a direct means of predicting the depth below which localisation does not occur. I apply the calculations to four major continental strike-slip zones and find observations from seismic data agree with the calculations. Localisation to the base of the lithosphere is not supported by the calculations or the geophysical data.
I use a model configured to resemble the India-Asia convergence that includes an isolated weak region within the Tibetan Plateau area and, in selected experiments,strong regions representing the Tarim and Sichuan Basins. I rotate a strong India region into a weaker Asia and observe the evolving strain. Shear zones develop adjacent and propagate outwards from the weak region. Where the Basins are present then high strain- rate zones develop adjacent to them and the overall distribution of strain within the model is altered. A high strain-weakening component enables shear-zones to localise. Micro-plate models assume the pre-existence of such high strain regions but I show how a continuum model can initiate and grow localised deformation within a region of generally diffuse deformation.
Metadata
Supervisors: | Houseman, Greg and Wright, Tim and Hooper, Andy |
---|---|
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Institute of Geophysics and Tectonics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.798042 |
Depositing User: | Miss Katherine Willis |
Date Deposited: | 10 Feb 2020 13:42 |
Last Modified: | 11 Mar 2020 10:54 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:25954 |
Download
Final eThesis - complete (pdf)
Filename: Willis_KE_EarthEnvironment_PhD_2019.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.