Al-Baidhani, Ahmed (2019) Simultaneous Wireless Information and Power Transfer Based on Generalized Triangular Decomposition. PhD thesis, University of Sheffield.
Abstract
The rapidly growing number of wireless devices has raised the need for designing self-sustained wireless systems. Simultaneous wireless information and power transfer (SWIPT) has been advocated as a promising solution. Various approaches have emerged to design wireless systems that enable SWIPT. In this thesis, we propose a novel approach for spatial switching (SS) based SWIPT using the generalized triangular decomposition (GTD) for point-to-point multiple-input-multiple-output (MIMO) systems. The GTD structure allows the transmitter to use the highest gain subchannels jointly for energy and information transmissions and these joint transmissions can be separated at the receiver. We first derive the optimal GTD structure to attain optimal performance in SS based SWIPT systems. This structure is then extended to design three novel transceivers where each transceiver achieves a certain objective and meets specific constraints. The first transceiver focuses on minimizing the total transmitted power while satisfying the energy harvesting and data rate constraints at the receiver. The second transceiver targets the data rate maximization while meeting a certain amount of energy at the receiver. The third transceiver considers the energy harvesting maximization and guarantees to satisfy the required data rate constraint. The proposed transceivers are designed assuming two transmitted power constraints at the transmitter; the instantaneous total transmit power and the limited transmit power per subchannel. For each designed transceiver, optimal and/or suboptimal solutions are developed to obtain joint power allocation and subchannel assignment under a linear energy harvesting model. Additionally, a novel extension to the SS based SWIPT system is proposed considering a non-linear energy harvesting model. Thereafter, the case of maximizing the energy harvesting for a given data rate and instantaneous total transmitted power constraints is studied. A solution is developed that obtains jointly the optimal power allocation and the subchannel assignment alongside the optimal and/or suboptimal split ratios at the energy harvesters. The theoretical and simulation results show that our novel proposed GTD designs for both linear and non-linear energy harvesting models outperform the state-of-the-art singular value decomposition (SVD) based SWIPT designs.
Metadata
Supervisors: | Benaissa, Mohammed |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.794210 |
Depositing User: | Mr Ahmed Albaidhani |
Date Deposited: | 18 Dec 2019 12:53 |
Last Modified: | 25 Mar 2021 16:51 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:25544 |
Download
SWIPT_Based_on_GTD_Final
Filename: SWIPT_Based_on_GTD_Final.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.