Alsharif, Rabab (2019) Dynamic Interactions of a Double-stage Photovoltaic Power Converter: Modelling and Control. PhD thesis, University of Sheffield.
Abstract
Photovoltaic (PV) systems are a promising renewable source to achieve green energy targets and be part of the electricity generation. Lots of efforts have been devoted to increase the penetration level of PV systems and its share in the generated electricity. Power quality is one of the challenges that impact the penetration level of PV systems. It is important to ensure high power quality from PV systems to allow more installations to the grid. So, PV power quality issues have to be addressed properly.
It was reported that the poor power quality of the PV systems might be caused by many reasons such as the large amount of PV power fluctuation, the low level of current from the PV system, and large populations of PV inverters. In addition to the aforementioned reasons, recently it was suggested that perturb and observe (P&O) controller is another source of harmonics which result in a deprived PV power quality. This newly reported problem is based on experimental observations without full understanding of the generation mechanism of these harmonics in the PV system, the relation between the P&O controller design and the generated harmonics, and the effect of these harmonics on the rest of the system. Thus, in-depth analysis of the harmonics in PV systems due to P&O controller and a solution to eliminate these harmonics are demanded.
Therefore, in this research an investigation is carried out to explore P&O related harmonics in a double-stage grid-connected PV system. First, regarding the P&O related harmonics full explanation of how harmonics are generated due to the perturbing nature of the P&O controller is provided, a modelling approach is suggested to identify the frequency and the amplitude of the variations in the DC bus due to the P&O controller, the effect of different factors (e.g. weather conditions, system parameters, system operating point, and P&O architecture) on the induced harmonics are investigated. Secondly, regarding the effect of the P&O related harmonics on the rest of the system an intense simulation analysis is provided to explore the possible effect of the P&O related harmonics on increasing the interaction between the system power stages. This can help to set system design recommendations and guidelines such as sizing the dc-link capacitance and designing the system controllers. Finally, a novel mitigation solution is proposed to supress the P&O related harmonics. That can help to reduce the dynamic interaction between system power stages and improve the power quality of the PV system.
Metadata
Supervisors: | Odavic, Milijana and Atallah, Kais |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield) The University of Sheffield > Faculty of Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.778791 |
Depositing User: | Dr Rabab Alsharif |
Date Deposited: | 28 May 2019 09:04 |
Last Modified: | 01 Jun 2020 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:24061 |
Download
pdf file
Description: pdf file
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.