Kolo, Isa (2019) Computational Gradient Elasticity and Gradient Plasticity with Adaptive Splines. PhD thesis, University of Sheffield.
Abstract
Classical continuum mechanics theories are largely insufficient in capturing size effects observed in many engineering materials: metals, composites, rocks etc. This
is attributed to the absence of a length scale that accounts for microstructural effects inherent in these materials. Enriching the classical theories with an internal length scale solves this problem. One way of doing this, in a theoretically sound manner, is introducing higher order gradient terms in the constitutive relations. In elasticity, introducing a length scale removes the singularity observed at crack tips using the classical theory. In plasticity, it eliminates the spurious mesh sensitivity observed in softening and localisation problems by defining the width of the localisation zone thereby maintaining a well-posed boundary value problem. However, this comes at the cost of more demanding solution techniques.
Higher-order continuity is usually required for solving gradient-enhanced continuum theories, a requirement difficult to meet using traditional finite elements. Hermitian finite elements, mixed methods and meshless methods have been developed to meet this requirement, however these methods have their drawbacks in terms of efficiency, robustness or implementational convenience. Isogeometric analysis, which exploits spline-based shape functions, naturally incorporates higher-order continuity, in addition to capturing the exact geometry and expediting the design-through-analysis process. Despite its potentials, it is yet to be fully explored for gradient-enhanced continua. Hence, this thesis develops an isogeometric analysis framework for gradient
elasticity and gradient plasticity.
The linearity of the gradient elasticity formulation has enabled an operator-split approach so that instead of solving the fourth-order partial differential equation monolithically, a set of two partial differential equations is solved in a staggered manner. A detailed convergence analysis is carried out for the original system and the split set using NURBS and T-splines. Suboptimal convergence rates in the monolithic approach and the limitations of the staggered approach are substantiated.
Another advantage of the spline-based approach adopted in this work is the ease with which different orders of interpolation can be achieved. This is useful for consistency, and relevant in gradient plasticity where the local (explicit formulation) or nonlocal (implicit formulation) effective plastic strain needs to be discretised in addition to the displacements. Using different orders of interpolation, both formulations
are explored in the second-order and a fourth-order implicit gradient formulation is proposed. Results, corroborated by dispersion analysis, show that all considered models give good regularisation with mesh-independent results. Compared with finite element approaches that use Hermitian shape functions for the plastic multiplier or mixed finite element approaches, isogeometric analysis has the distinct advantage that
no interpolation of derivatives is required.
In localisation problems, numerical accuracy requires the finite element size employed in simulations to be smaller than the internal length scale. Fine meshes are also
needed close to regions of geometrical singularities or high gradients. Maintaining a fine mesh globally can incur high computational cost especially when considering large
structures. To achieve this efficiently, selective refinement of the mesh is therefore required. In this context, splines need to be adapted to make them analysis-suitable. Thus, an adaptive isogeometric analysis framework is also developed for gradient elasticity and gradient plasticity. The proposed scheme does not require the mesh size to be smaller than the length scale, even during analysis, until a localisation band develops upon which adaptive refinement is performed. Refinement is based on a multi-level mesh with truncated hierarchical basis functions interacting through an inter-level subdivision operator. Through Bezier extraction, truncation of the bases is simplified by way of matrix multiplication, and an element-wise standard finite element data structure is maintained.
In sum, a robust computational framework for engineering analysis is established, combining the flexibility, exact geometry representation, and expedited design-through analysis of isogeometric analysis, size-effect capabilities and mesh-objective results of gradient-enhanced continua, the standard convenient data structure of finite element
analysis and the improved efficiency of adaptive hierarchical refinement.
Metadata
Supervisors: | de Borst, Rene and Askes, Harm |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Civil and Structural Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.770226 |
Depositing User: | Isa Kolo |
Date Deposited: | 01 Apr 2019 09:22 |
Last Modified: | 25 Sep 2019 20:07 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:23215 |
Download
ThesisFinal_IsaKolo
Filename: ThesisFinal_IsaKolo.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.