Rogers, Brendan James (2018) Arrangement and structure of α-actinins in striated muscle. PhD thesis, University of Leeds.
Abstract
The smallest contractile unit within striated muscle cells are called sarcomeres. The boundary regions between sarcomeres are called Z-discs, which contain over 30 different proteins, organised within a narrow ~100 nm wide structure. Standard fluorescence microscopy approaches do not reveal the arrangement of Z-disc proteins, as the width of the Z-disc is below the resolution limit (~250 nm). The arrangement of the actin filaments and the cross-linking proteins α-actinin in the Z-discs are well characterised by electron microscopy (EM) studies, however other Z-disc proteins are not. With the development of super-resolution fluorescence microscopy techniques, it is now possible to obtain Z-disc protein localisation information. Here, dSTORM (direct Stochastic Optical Reconstruction Microscopy) was used, to investigate the arrangement of α–actinins in Z-discs of cardiomyocytes, and then the arrangement of the N-terminal ends of the giant protein titin in the Z-discs. Affimers were generated to bind α–actinin 2 and the N-terminal titin domains (Z1/Z2), to use as binders in dSTORM. Affimers are small (~12 kDa) non-antibody binding proteins, about 1/10th the size of antibodies, that can be selected to bind to a specific protein. The localisation data of dSTORM using the Affimer binders showed the same regular arrangement of α-actinins observed in EM studies. The use of dSTORM with Affimers also suggests the titin Z1/Z2 domains do not only localise at the edges of the Z-discs but arranged throughout the Z-disc with regular spacing (~25 nm) in the transverse plane of the Z-discs.
Also, three mutations located in the actin binding domain of α-actinin 2 associated to hypertrophic cardiomyocytes (G111V, A119T and M228T) were characterised by in vitro co-sedimentation assays with actin. The mutants G111V and A119T did not show a significant difference in binding affinity to actin compared to the wild-type. The co-sedimentation assays did however suggest the mutation M228T significantly increases the binding affinity of α–actinin 2.
Metadata
Supervisors: | Peckham, Michelle |
---|---|
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.767251 |
Depositing User: | Mr Brendan Rogers |
Date Deposited: | 04 Mar 2019 15:25 |
Last Modified: | 11 Apr 2020 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:22905 |
Download
Final eThesis - complete (pdf)
Filename: Rogers_B_Biological_Sciences_PhD_2018.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.