Mulla, Mohmed Ashraf (2018) High Volume Fraction Polymer Nanoparticles as Inkjet Ink Model Suspensions: from Synthesis to Rheological and Printing Characterisation. PhD thesis, University of Leeds.
Abstract
Inkjet technology, a printing technique in which the digitally controlled drop formation affords accurate deposition at speed, is of great advantage for material preparation in several fields, such as printed biomaterials or electronics. However, there is a need to better understand the underlying fluid behaviour of colloidal dispersions, particularly when the solids content within the ink is increased, a highly desirable and cost-saving trait for industrial applications. More specifically, this applies to the speed and material diversity which can be attained, compared to conventional printing methods. Further, extensional deformation of colloidal particle dispersions has received little attention in the literature, despite the clear need to better understand the fluid response under these conditions. This holds particular relevance for inkjet printing, where the focus is to increase the material diversity.
To this end, high solids content sub 100 nm monodisperse model poly( methyl methacrylate) polymer particles have been prepared. These particle dispersions are normally prepared via complex polymerisation routes, requiring several sequential steps. However, research presented herein reports how a more straight forward chain transfer mediated emulsion polymerisation process is quite capable of preparing particle dispersions with these hard to attain properties. The developed method is a new route for high solids content latex preparation, and was fully explored and tuned to prepare particles in the 40-70 nm size range.
The particle dispersion shear rheology was then examined from a theoretical perspective. Moreover, the stability of particle dispersions at extremely high effective volume fractions is also explored, with the implications upon the shear rheology and jetting behaviour examined. Finally, extensional viscosity of the particle dispersions was determined using a bespoke microfluidic cross slot device. The jetting behaviour was then observed using a drop on demand micro-fab set-up.
Metadata
Supervisors: | Cayre, Olivier |
---|---|
Keywords: | Inkjet printing, shear rheology, extensional rheology, elongational rheology, nanoparticles, high volume fraction particle synthesis |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering (Leeds) The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical and Process Engineering (Leeds) The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical and Process Engineering (Leeds) > Institute of Particle Science and Engineering (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.745608 |
Depositing User: | Mr Mohmed Ashraf Mulla |
Date Deposited: | 25 Jun 2018 12:27 |
Last Modified: | 11 Jul 2021 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:20756 |
Download
Final eThesis - complete (pdf)
Filename: thesis.pdf
Description: Final thesis
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.