Meah, Lianne (2018) Decision-Making and Action Selection in Honeybees: a Theoretical and Experimental Study. PhD thesis, University of Sheffield.
Abstract
Decision-making is an integral part of everyday life for animals of all species. Some decisions are rapid and based on sensory input alone, others rely on factors such as context and internal motivation. The possibilities for the experimental investigation of choice behaviour in mammals, especially in humans, are seemingly endless. However, neuroscience has struggled to define the neural circuitry behind decision-making processes due to the complex structure of the mammalian brain.
For this work we turn to the honeybee for inspiration. With a brain composed of approximately one million neurons and sized at a tiny 1mm3, it may be assumed that such an insect produces mere `programmed' behaviours, yet, the honeybee exhibits a rich, elaborate behavioural repertoire and a large capacity for learning in a variety of different paradigms. Indeed, the honeybee has been identified as a powerful model for decision-making.
Sequential sampling models, originating in psychology, have been used to explain rapid decision-making behaviours. Such models assume that noisy sensory evidence is integrated over time until a threshold is reached, whereby a decision is made. These models have proven popular because they are able to fit biological data and are furthermore supported by neural evidence. Additionally, they explain the speed-accuracy trade-off, a behavioural phenomenon also demonstrated in bees.
For this work we examine honeybee choice behaviour in different levels of satiation, and show that hungry bees are faster and less accurate than partially satiated bees in a simple choice task. We suggest that differences in choice behaviour may be attributed to a simple mechanism which alters the level of the decision threshold according to how satiated the bee is. We further speculate that the honeybee olfactory system may be a drift-diffusion channel, and develop a simple computational model, based on honeybee neurobiology, with simulations that match behavioural results.
Metadata
Supervisors: | Marshall, James and Barron, Andrew and Vasilaki, Eleni |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Computer Science (Sheffield) The University of Sheffield > Faculty of Science (Sheffield) > Computer Science (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.739882 |
Depositing User: | Lianne Meah |
Date Deposited: | 09 Apr 2018 08:46 |
Last Modified: | 12 Oct 2018 09:54 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:19925 |
Download
LianneMeahThesis
Filename: LianneMeahThesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.