Dixon, Laura (2017) Characterisation of gene regulation in mycobacteria. PhD thesis, University of Sheffield.
Abstract
This study focuses on the characterisation of gene regulation in mycobacteria in response to various signals within the cell. The regulatory mechanisms explored include two types of protein regulators (cAMP-receptor proteins (CRPs) and CsoR) and an RNA-based method of regulation (a member of the ydaO-type riboswitch). The signals concerned are copper and the small nucleotide molecules cyclic AMP and cyclic di-AMP. The study focuses primarily on the regulation of rpfA, which encodes a resuscitation promoting factor that is involved in resuscitation of Mycobacterium tuberculosis from dormancy. The main findings of the study are as follows. A copper-sensitive repressor protein from M. tuberculosis, CsoR, was purified and shown to bind to the rpfA gene. The presence of copper caused the release of the DNA:protein complex and kinetic parameters of the interactions were determined. Two mycobacterial CRP proteins, Rv3676 from Mycobacterium tuberculosis and Msmeg_6189 from Mycobacterium smegmatis, were purified and their interaction with the rpfA or sdh1 promoters were characterised. The effect of cyclic AMP binding on the interaction with DNA was assessed and thermodynamic and kinetic parameters of the interaction between the CRP proteins and cyclic AMP was studied. Comparisons were made with the well characterised E. coli CRP protein and the two mycobacterial proteins. Finally, a putative ydaO-type riboswitch present in the 5’ untranslated region of rpfA messenger RNA was shown to play a role in regulation of the gene in a Mycobacterium marinum salt stress model. In vitro evidence was gathered to suggest the riboswitch is able to bind cyclic di-AMP and pApA, which favours a shift to a specific structural confirmation. Mutation of G168C/G169C residues in the riboswitch abolished this effect.
Metadata
Supervisors: | Green, Jeff |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Molecular Biology and Biotechnology (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.737856 |
Depositing User: | Dr Laura Dixon |
Date Deposited: | 26 Mar 2018 09:48 |
Last Modified: | 12 Oct 2018 09:52 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:19594 |
Download
Filename: Final thesis Laura Dixon.pdf
Description: pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.