Sulaiman, Norasiah Binti (2017) Controls on the Geometry and Evolution of Deep-water Fold Thrust Belt of the NW Borneo. PhD thesis, University of Leeds.
Abstract
The key driving mechanisms for establishing deep-water fold-thrust belt are either lithospheric stress or gravity-driven associated with margin instability or a combination of both. Despite long academic interest, we still lack of detailed understanding of the interaction between the deformation mechanisms (gravity- and tectonic-driven). The results of an evaluation of the interaction between the deformation mechanisms, with focused attention upon the NW Borneo deep-water fold-thrust belt, are reported. A methodology integrating a detailed structural analysis of the deep-water fold-thrust belt from the available subsurface data and equivalent onshore outcrop is utilized in this study.
Detailed structural analysis of 2D seismic profiles is used to present a basin-scale seismic-stratigraphic framework and detailed description of the general appearance of the deformational style along the deltaic system. Sub-seismic scale investigation of well-exposed outcrops onshore NW Sabah is used to extract information on onshore tectonic deformation, making it possible to evaluate the differences of structural architecture related to different deformation mechanisms. The result has led to an improved understanding of the regional-scale structural geometry along the NW Borneo margin.
Regional scale cross-sections are used to demonstrate a regional-scale analysis of the NW Borneo margin that includes structural restoration. The results allow an assessment of the relative timing of deformation, the domain interaction and the possible processes and parameters that control deformation. This has led to an improved insight relating to the kinematic nature of the allochthon and the interaction between the deformation mechanisms. Structural restorations are also used to evaluate of areas of compressionally and extensionally dominated systems, in order to verify the main proses responsible for the margin evolution.
This study illustrates outcrop-scale to seismic-scale analysis and quantitative measurements combined with seismic interpretations, with the aim to identify the interaction between gravity-and tectonic-driven deformation, and their controls on the geometry and evolution of deep-water fold-thrust systems. Additionally, the margin evolution and the implications on NW Borneo are evaluated.
Metadata
Supervisors: | Paton, Douglas and Collier, Richard |
---|---|
Keywords: | deep-water fold-thrust belt,NW Borneo,gravity-and tectonic-driven deformation |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Institute of Geophysics and Tectonics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.729460 |
Depositing User: | Norasiah Sulaiman |
Date Deposited: | 01 Dec 2017 12:57 |
Last Modified: | 01 Nov 2024 01:05 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:18877 |
Download
Final eThesis - complete (pdf)
Filename: Sulaiman_NB_ Earth and Environment_PhD_2017.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.