Hassen, Fadoua (2017) Multistage Packet-Switching Fabrics for Data Center Networks. PhD thesis, University of Leeds.
Abstract
Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume.
A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery.
For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity.
Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals.
The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ)
NoC fabric. The design merges assets of the output queuing, and
NoCs to provide high throughput, and smooth latency variations.
An approximate analytical model of the switch performance is also proposed.
To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC
(MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure.
Metadata
Supervisors: | Mhamdi, Lotfi |
---|---|
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Integrated Information Systems (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.715066 |
Depositing User: | Fadoua Fadoua HASSEN |
Date Deposited: | 26 Jun 2017 10:40 |
Last Modified: | 18 Feb 2020 12:48 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:17620 |
Download
Final eThesis - complete (pdf)
Filename: thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.