Taurozzi, Alberto (2016) Genetic and Epigenetic Profiling of Human Prostate Cancer Cell-Subsets. PhD thesis, University of York.
Abstract
Perturbation of androgen signalling drives progression of human prostate cancer (CaP) to castration-resistant prostate cancer (CRPC). Additionally, CaP is initiated and maintained by cancer stem cells (CSC)s which are analogous to normal prostate stem cells (SC)s. This study presents a qPCR assay to detect androgen receptor gene amplification (GAAR), which is the most common mechanism of castration resistance (>30%). Also, the epigenetic regulation and function of two SC-silenced genes with tumour-suppressive activity (Latexin (LXN) and Retinoic Acid Receptor Responder 1 (RARRES1)) were interrogated using micro-ChIP, transcriptional profiling and mass spectrometry.
Traditionally, GAAR is detected using FISH which is labour-intensive and semi-quantitative, limiting clinical applicability. The mechanism of action of LXN or RARRES1 in CaP is unknown, and epigenetic regulation by DNA methylation has been ruled-out in primary CaP.
The qPCR assay can detect GAAR in minor cell populations (~1%) within a heterogeneous sample and also quantifies X chromosome aneuploidy (XCA) - a predictor of poor-prognosis in CaP. GAAR and XCA were detected in near-patient xenografts derived from CRPC-tissue indicating that these abnormalities are present in cells capable of in vivo tumour-reconstitution.
Micro-ChIP analysis of fractionated primary CaP cultures identified bivalent chromatin at LXN and RARRES1 promoters. Transcriptomic profiling failed to reveal significant changes in gene expression after transduction with LXN or RARRES1. However, an interactome for LXN and RARRES1 was successfully generated in PC3 cells. Additionally, confocal microscopy of mVenus-tagged LXN revealed a pan-cellular distribution which is reflected in the interactome.
Screening for GAAR and XCA, using a high-throughput qPCR assay, could facilitate a targeted-medicine strategy in the treatment of CaP and CRPC. Further investigation of the LXN and RARRES1 interactomes may identify their mechanism(s) of action and the micro-ChIP assay could be used to identify epigenetic-inducers of LXN and RARRES1 which could provide a CSC-targeted strategy for CaP treatment.
Metadata
Supervisors: | Maitland, Norman J |
---|---|
Awarding institution: | University of York |
Academic Units: | The University of York > Biology (York) |
Identification Number/EthosID: | uk.bl.ethos.714417 |
Depositing User: | Mr Alberto Taurozzi |
Date Deposited: | 06 Jun 2017 11:21 |
Last Modified: | 24 Jul 2018 15:22 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:17511 |
Download
Examined Thesis (PDF)
Filename: Alberto John Taurozzi Thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.