Glancy, Jonathan P (2016) How Self-Organisation Can Guide Evolution. PhD thesis, University of Sheffield.
Abstract
Self-organisation and natural selection are fundamental in shaping the natural world. Substantial progress in understanding how these two forces interact as biological systems evolve has been made through the study of abstract models, for example by evolving boolean networks on computers. Further progress may be made by identifying a model system in which the interaction between self-organisation and selection can be investigated empirically. To this end, we investigate how the self-organising thermoregulatory huddling behaviours displayed by rodents might influence natural selection of the genetic components of metabolism. By applying a simple evolutionary algorithm to a simplistic description of self-organising thermoregulation huddling, we arrive at a clear albeit counterintuitive prediction: Animals able to huddle together in cold environments should evolve an increased thermal conductance at a faster rate than animals reared in isolation. According to the model, within-lifetime adaptation (self organising huddling) is able to guide the evolution of complementary between-lifetime adaptation (natural selection of thermoregulatory genes). Confirmation of these predictions in future experiments would constitute strong evidence of a mechanism by which self-organisation can guide natural selection.
Metadata
Supervisors: | Wilson, Stuart P and Gross, Roderich and Stone, James V |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Psychology (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.707471 |
Depositing User: | Mr Jonathan P Glancy |
Date Deposited: | 13 Apr 2017 13:13 |
Last Modified: | 01 May 2022 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:16806 |
Download
Main
Filename: Main.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.