Ruan, Hang (2016) Efficient Robust Adaptive Beamforming Algorithms for Sensor Arrays. PhD thesis, University of York.
Abstract
Sensor array processing techniques have been an important research area in recent years.
By using a sensor array of a certain configuration, we can improve the parameter estimation
accuracy from the observation data in the presence of interference and noise. In this
thesis, we focus on sensor array processing techniques that use antenna arrays for beamforming,
which is the key task in wireless communications, radar and sonar systems.
Firstly, we propose a low-complexity robust adaptive beamforming (RAB) technique
which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch
Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance
matrix of the input data and the interference-plus-noise covariance (INC) matrix
by using the Oracle Approximating Shrinkage (OAS) method. Secondly, we present
cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms.
The proposed algorithms are based on the exploitation of the cross-correlation
between the array observation data and the output of the beamformer. Thirdly, we propose
distributed beamforming techniques that are based on wireless relay systems. Algorithms
that combine relay selections and SINR maximization or Minimum Mean-Square-
Error (MMSE) consensus are developed, assuming the relay systems are under total relay
transmit power constraint. Lastly, we look into the research area of robust distributed
beamforming (RDB) and develop a novel RDB approach based on the exploitation of
the cross-correlation between the received data at the relays and the destination and a
subspace projection method to estimate the channel errors, namely, the cross-correlation
and subspace projection (CCSP) RDB technique, which efficiently maximizes the output
SINR and minimizes the channel errors. Simulation results show that the proposed
techniques outperform existing techniques in various performance metrics.
Metadata
Supervisors: | de Lamare, Rodrigo C. |
---|---|
Awarding institution: | University of York |
Academic Units: | The University of York > School of Physics, Engineering and Technology (York) |
Academic unit: | Electronics |
Identification Number/EthosID: | uk.bl.ethos.706067 |
Depositing User: | Unnamed user #13932 |
Date Deposited: | 07 Mar 2017 16:02 |
Last Modified: | 21 Mar 2024 14:54 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:15891 |
Download
Examined Thesis (PDF)
Filename: Thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.