Parsons, Daniel R. (2003) Flow separation in meander bends. PhD thesis, University of Sheffield.
Abstract
Most investigations of river meanders have concentrated on classical bends that have
a helical flow structure through the pool, which is carried through into the entrance
of the next bend. However, it is known that flow separation can occur at the outer
bank before the bend apex or at the inner bank after the apex and that this results in
the breakdown of the classical flow model. Although some of the controls and the
implications of flow separation are now known, the frequency of occurrence, threedimensional
(3-D) flow structure, sediment dynamics, controls on separation
presence, and full geomorphological implications are poorly understood.
This thesis uses a combination of fieldwork and 3-D numerical flow modelling
(computational fluid dynamics, CFD) to investigate meander bends where flow
separation and recirculation zones are present. An initial reconnaissance survey of
over 600 bends revealed that flow separation is common, being present in
approximately 50% of bends. The survey also identified high bend angles of tum
and the high angles of flow impingement onto the outer bank as important controls
on the presence of separation. Investigations in a 22 bend sub-set indicated that
expansions in channel width, breaks in bank-line curvature and the angle of inflow,
as governed by upstream planform, were important in generating flow separation.
Detailed fieldwork combined with validated and verified time-averaged CFD
modelling in three bends with separation zones enabled identification and
examination of the 3-D flow fields. The simulations reveal that the flow structure in
bends with separation differs considerably from the classical flow model, with the
helical motion found in classical bends being very intense in the bend entrance but
dissipating at or just after the bend apex. The turbulent flow structures produced by
the shear layer between the downstream and recirculating flow are also investigated
in the field bends and attempts at modelling transient flow structures with large eddy
simulation (LES) in a simple open channel flow expansion are detailed.
The geomorphological, sedimentological, and ecological implications of both the
time-averaged and the transient flow structures within the bends are examined and
discussed.
Metadata
Keywords: | Hydrology & limnology |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Social Sciences (Sheffield) > Geography (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.275084 |
Depositing User: | EThOS Import Sheffield |
Date Deposited: | 22 Nov 2016 11:18 |
Last Modified: | 22 Nov 2016 11:18 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:14757 |
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.