Wang, Yuan (2015) Circuit Clustering for Cluster-based FPGAs Using Novel Multiobjective Genetic Algorithms. PhD thesis, University of York.
Abstract
Circuit clustering is one of the most crucial steps in a post-synthesis FPGA CAD flow. It attempts to efficiently fit synthesised logic functions into FPGA logic clusters. On a FPGA, different clusterings result in different circuit mappings, which affect FPGA utilisation, routability and timing, and therefore impact the circuit performance. This research proposes the use of a Multi Objective Genetic Algorithm (MOGA) as a methodology to solve the cluster-based FPGA circuit clustering problem.
Four alternative approaches based on MOGA methods are proposed in this research: RVPack is inspired by the stochastic feature that exists in Evolutionary Algorithms (EAs). GGAPack, GGAPack2, DBPack and HYPack, T-HYPack (Timing-driven HYPack) are then proposed and developed, which are fully customised MOGA-based circuit clustering methods. GGAPack clusters a circuit using a top-down perspective, and DBPack uses a new bottom-up perspective. HYPack combines GGAPack and HYPack -- a hybrid method. According to experimental results, a few conclusions are drawn: It is possible to improve the performance of the greedy algorithm based circuit clustering methods by incorporating randomness. The performance of MOGA based top-down clustering is poor; however, using MOGA to cluster a circuit from a bottom-up perspective can produce better solutions. T-HYPack clustered circuit has the best timing performance compared with state-of-the-art methods. The experimental results also reflect a wider potential for using GAs to solve FPGA circuit mapping problems.
Metadata
Supervisors: | Tyrrell, Andy and Trefzer, Martin Albrecht |
---|---|
Awarding institution: | University of York |
Academic Units: | The University of York > School of Physics, Engineering and Technology (York) |
Academic unit: | Electronics |
Identification Number/EthosID: | uk.bl.ethos.680610 |
Depositing User: | Mr Yuan Wang |
Date Deposited: | 29 Feb 2016 11:45 |
Last Modified: | 21 Mar 2024 14:47 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:11830 |
Download
thesis280116
Filename: thesis280116.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.