Zhu, Jingxuan (2015) MBE growth, fabrication, and electrical characterisation of terahertz frequency quantum cascade lasers. PhD thesis, University of Leeds.
Abstract
The terahertz (THz) range in the electromagnetic radiation spectrum lies between the high-frequency edge of the microwave band and the long-wavelength edge of the far-infrared band. THz technology is important for both scientific and commercial applications so the production of coherent, high power sources operating at room temperature is of great interest. Quantum cascade lasers (QCLs) are unipolar emitters operating from THz to infrared range. Molecular beam epitaxy (MBE) is the main technique for the growth of THz QCLs, offering precise control of layer thickness and composition under ultra-high vacuum conditions.
The output power, maximum operating temperature, threshold and dynamic range are essential parameters in THz QCL performances. Since high power in THz QCLs is a desirable performance in particular to areas such as imaging and remote sensing. The threshold and dynamic ranges are influenced by the injector doping levels determining the losses. Moreover, the interface roughness affects the electrical and optical properties of semiconductor devices, which can be improved by misorientation of (100) GaAs substrates.
This thesis reviews the development of THz QCLs, investigates MBE growth, fabrication and electrical characterisation process, and the enhancement of THz QCL performances. Chapter 1 summarizes the development and application of THz technology, different THz sources, as well as the development of THz QCLs. Chapter 2 outlines the MBE system, and investigates the calibration methods, the growth process, and growth reproducibility. Chapter 3 explains the fabrication techniques, electrical characterisation of THz QCLs, and the factors that influence the device performance. Chapter 4 investigates the enhancement in THz QCL power performance; whilst Chapter 5 probes the injector doping effects and background impurity level influences on BTC and hybrid THz QCL performance. In Chapter 6, the effects and possible significance of misorientation on THz QCLs are discussed. Chapter 7 concludes the thesis and suggests future directions.
Metadata
Supervisors: | Linfield, Edmund and Davies, Giles and Cunningham, John |
---|---|
Keywords: | THz, QCL, MBE growth, fabrication, high power |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Microwaves and Photonics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.677293 |
Depositing User: | Ms Jingxuan Zhu |
Date Deposited: | 05 Jan 2016 13:26 |
Last Modified: | 26 Apr 2016 15:44 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:11459 |
Download
Final eThesis - complete (pdf)
Filename: Thesis_Jingxuan Zhu.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.