Bullivant, Chad Quentin (2010) Spectroscopy, Electrochemistry and Photochemistry of Phenylazonaphthalene Dyes. PhD thesis, University of York.
Abstract
The spectroscopy, electrochemistry and photochemistry of seven 2-(4-R-phenylazo)naphthalene-4,8-disulfonate dyes (R-Span dyes), were studied to report on their structure and reactivity in water. The dyes differ in their structure by only the R substituent attached to the phenyl ring, representing a range of electron-donating and electron-withdrawing substituents; most studies were carried out on OH-Span.
A combination of UV/Visible, NMR, Raman and IR spectroscopy together with DFT calculations has shown that the dyes are planar in their stable trans-isomer form. The spectra were found to be sensitive to the R substituent and generally they show good correlations with Hammett σp substituent constants. The structures of OH-Span (pKa = 7.98) and NH2-Span (pKa = 2.88) are pH dependent, and none of the dyes show aggregation at ≤ 3 * 10^-2 mol dm^-3.
Spectroelectrochemistry and controlled potential electrolysis studies showed that OH-Span undergoes an irreversible four electron reduction process, where detailed product analysis showed that naphthyl and phenyl fragments of the dye are produced due to azo bond scission; similar results were observed for the other R-Span dyes. Dyes containing electron-donating R substituents are more resistant to reduction, whereas dyes containing electron-withdrawing R substituents are more resistant to oxidation.
The stability of the R-Span dyes was assessed by reaction with photoinitiator generated 2-hydroxy-2-propyl radicals to study reductive fading. Time-resolved studies were carried out on OH-Span:photoinitiator solutions and rate constants for electron transfer to produce the dye radical anion and subsequent disproportionation were found to be 6.00 * 10^9 and 5.00 * 10^8 dm^3 mol^-1 s^-1, respectively. The detailed product analysis identified the naphthyl fragment of the dye, which was also observed for other R-Span dyes, indicating that the reduction mechanism occurs via disproportionation resulting in azo bond scission.
The R-Span dyes show trans to cis photoisomerisation, and NH2-, OH-, OMe- and NHAc-Span showed complete cis to trans thermal back reactions within ca. 30 ms, 35 μs, 11 days and 1 day, respectively.
Metadata
Supervisors: | Moore, John N and Lindsay Smith, John R |
---|---|
Awarding institution: | University of York |
Academic Units: | The University of York > Chemistry (York) |
Identification Number/EthosID: | uk.bl.ethos.533497 |
Depositing User: | Mr Chad Quentin Bullivant |
Date Deposited: | 20 Sep 2010 11:33 |
Last Modified: | 08 Sep 2016 12:19 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:1018 |
Download
C_Q_Bullivant_PhD_thesis
Filename: C_Q_Bullivant_PhD_thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.