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Abstract 

 
This thesis examines Artificial Neural Networks (ANNs) for rainfall-runoff modelling. A 

simple ANN was first developed to predict floods in the city of Rome, located in the 

Tiber River basin. A rigorous comparison of the ensemble ANN and the conceptual 

TEVERE model were undertaken for two recent flood events in 2005 and 2008. Both 

models performed well but the conceptual model was better at overall hydrograph 

prediction while the ANN performed better for the initial part of the event at longer lead 

times.  

 

Further experimentation with the ANN model was then undertaken to try to improve the 

model performance. Additional upstream stations and rainfall inputs were added 

including hourly totals, effective rainfall and cumulative rainfall. Different methods of 

normalisation and different ANN training algorithms were also implemented along with 

four alternative methods for combining the ensemble ANN predictions. The results 

showed that the ANN was able to extrapolate to the 2008 event. 

 

Finally, Empirical Mode Decomposition was applied to the ANN to examine whether 

this method has value for ANN rainfall-runoff modelling. At the same time the impact of 

the random initialisation of the weights of the ANN was investigated for the Potomac 

River and Clark Fork River catchments in the USA. The EMD was shown to be a 

valuable tool in detecting signal properties but application to ANN rainfall-runoff 

modelling was dependent on the nature of the dataset. Overall uncertainty from the 

random initialisation of weights varied by catchment where uncertainties were shown to 

be very large at high stream flows.  

 

Finally, a suite of redundant and non-redundant model performance measures were 

applied consistently to all models. The value of applying a range of redundant and non-

redundant measures, as well as benchmark-based methods was demonstrated.  
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Chapter 1 

Introduction 
 

1.1 Background and Context to the Research 

There have been many large flood events that have affected a number of different 

areas around the world, e.g. Central America in 1998; China in 2002 and 2004; Central 

Europe in 2006; East Africa in 2006; eastern Australia in 2008; Pakistan 2010 (and 

again very recently this year); Brazil, China, Philippines, Nigeria and north eastern USA 

in 2011 (Scaruffi, 2011; Wikipedia, 2011). Figure 1.1 provides a compilation of statistics 

illustrating the magnitude of human and economic losses from events that have 

occurred between 1980 and 2008. The top 10 flooding disasters in terms of human 

lives affected and the overall costs are also reported, where it is evident that China has 

been heavily impacted. In the developed world, Italy, Germany and USA also appear in 

the top ten list for economic damages incurred. 

 

The effect of climate change in relation to flooding is still unknown but it is thought that 

the frequency and intensity of extreme events will most likely increase, where extreme 

precipitation events have already been observed (IPCC, 2007). An increased flood risk 

in some catchments is also thought to be a likely scenario due to these more intense 

precipitation events that are predicted to occur. Flood risk is comprised of the flood 

hazard, the exposure to the hazard and the vulnerability of those exposed (Plate, 2002; 

Kron, 2003). It is possible to develop strategies that mitigate the risk using both 

structural and/or non-structural flood protection measures, which are intended to 

reduce flood frequencies. Structural flood protection measures (e.g. dams, drainage 

channels, etc.) can be very effective but are not always possible in areas of dense 

population, e.g. a city centre. For this reason, it is crucial to have timely and accurate 

flood warnings in order for operational measures to be put into action and to minimise 

risk to human life and infrastructure damage. Civil protection agencies usually employ a 

flood warning system that is based on expert knowledge and a physical, conceptual or 

empirical hydrological model (or a combination of these approaches). Over the last two 

decades, empirical approaches of a more data-driven or machine learning nature have 

been reported in the rainfall-runoff literature. These data-driven methods are often 

comprised of one or more tools from the field of Artificial or Computational Intelligence. 

Examples include Artificial Neural Networks (ANNs), fuzzy logic, support vector 

machines and M5 model trees as well hybrids or combinations of these approaches.  
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Figure 1.1: Statistics on flooding. Taken from Prevention Web (2011). 
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Data-driven methods offer an alternative approach to more traditional conceptual and 

physically-based hydrological models as they are not built using knowledge of the 

underlying physical processes. Instead these techniques use the data to induce 

relationships. ANNs, for example, use an input-output training set to learn the 

relationships from the data. Once the relationship is learned, the model is deterministic 

and can be used to make forecasts from input data. There are many other advantages 

of ANNs, which include fast development times, rapid computation times and the ability 

to generalise to datasets not seen before (Abrahart et al., 2008). Within the area of 

rainfall-runoff modelling and hydrology more generally, there are hundreds of papers in 

the academic literature on the application of ANNs (Maier et al., 2010; Abrahart et al., 

2010). However, ANNs also have disadvantages where the major one is the black box 

nature of this method. Although this is true of most empirical models and therefore not 

entirely a disadvantage of ANNs alone (ASCE, 2000a), it has still meant that 

hydrologists have been reluctant to use ANNs operationally. In fact there are very few 

examples of the operational use of ANNs in hydrology as reviewed recently by 

Macdonald and See (2010). Kneale et al. (1999) developed a user-friendly ANN flood 

forecasting model, which was integrated with telemetered flow and rainfall data for the 

North East office of the UK Environment Agency but the system was never used 

operationally. The chief hydrologist preferred the conceptual River Flow Forecasting 

System and therefore never properly tested the ANN system (See, 2007, personal 

communication). 

 

The starting point for this research began through a collaboration between the 

University of Leeds (Prof Mike Kirkby and Dr Linda See) and La Sapienza University in 

Rome, Italy (Prof Fabrizio Savi). Prof Savi was interested in comparing his conceptual 

model with an ANN model. A rigorous comparison would also allow for an assessment 

of the operational ability of an ANN, particularly at lead times that are meaningful for 

civil protection agencies. Prof Savi had developed a conceptual model for forecasting 

floods in the lower Tiber River Basin (subsequently published in Calvo and Salvi, 2009) 

as this area has been subject to large and frequent flooding. In particular, large areas 

of these floodplains were inundated in 1937 (when some districts of Rome were also 

flooded), 1965, 1976, 1992 and more recently in 2005 and 2008 (Natale and Savi, 

2004, 2007; Frosini, 1977, Calvo et al., 2007). Natale and Savi (2007) have shown that 

floods with a return period of just under 200 years will result in overtopping of the river 

banks and flooding of the northern outskirts of Rome. Risk mitigation strategies can be 

developed using both structural and non-structural flood protection measures to reduce 

the possible flood damage. Although structural flood protection measures are usually 

very effective, they are not always applicable, especially in historical urban areas such 
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as Rome or in the lower Tiber valley which is densely settled. For this reason, the 

performance and quality of existing flood warning services must be significantly 

improved through the development of a real-time operational flood forecasting system. 

Although such a system does exist for the city of Rome (Todini, 1999), Prof Savi had 

reservations about the ability and the actual use of the model (Savi, 2007, personal 

communication).  

 

The Tiber River has been the subject of studies in the past, but these have mainly been 

concerned with the upper part of the basin and not the lower part that covers the city of 

Rome. Moramarco et al. (2006) applied an extended Muskingum forecasting model, 

including lateral inflow contributions, to forecast stage at two gauged river reaches with 

a lead time of 3.8 hours. The authors concluded that their model can forecast the stage 

hydrograph with good accuracy when the rating curve at the upstream end is known 

and lateral inflow occurs in situations where the ratio between the drainage area and 

the upstream contributing area is small. In another study, Bonafé et al. (1994) applied 

an ANN to predict daily discharge using precipitation from 26 rain gauges, mean 

temperature from 13 stations, and mean discharge upstream of the Corbara reservoir. 

This model was compared to results obtained from the application of the ARX 

(autoregressive with exogenous input) rainfall-runoff model and a model of persistence. 

The authors found that the ANN outperformed the other two models, with a Root Mean 

Squared Error (RMSE) at least 10% smaller than the other two. Tayfur and Moramarco 

(2007) developed an ANN model for the upper Tiber River basin to predict hourly 

discharge. They trained a feedforward network with backpropagation on 6 events 

recorded at three cross sections of the river to predict flow at 4, 8 and 12 hours ahead. 

They found that the model performed well, especially at a lead time of 8 hours. 

Calenda et al. (2000) analysed the effect of the precipitation forecast on the real time 

forecasting of hourly discharges at Ponte Nuovo, by coupling two forecast precipitation 

models with a lumped rainfall-runoff model. Lead times of 24 hours were forecast but 

the peak discharge was underestimated by the model. Another study was undertaken 

by Corradini et al. (2004), who developed a real-time hourly forecasting system at 

Santa Lucia using a conceptual, semi-distributed rainfall-runoff model. The model 

simulates the transformation of the effective rainfall into direct runoff by means of the 

classical Clark translation-routing procedure, while infiltration is schematised by means 

of two different conceptual models. The values of the parameters of the infiltration 

models are estimated online via an adaptive calibration, whereas the values of the 

parameters of the Clark model were estimated offline and did not change during the 

forecasting. The model does not include forecasts of rainfall, i.e. they assume zero 

rainfall in the time interval between the forecast start and the forecast lead time. All of 
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these cited examples show that some relevant work has already been undertaken in 

this area, but the majority applies to the Upper Tiber basin. 

 

The thesis essentially has three main components in addition to the two literature 

reviews that provide the necessary context and justification for the research. The first 

component involves the development of an ANN model for the Tiber River basin. The 

ANN was then compared to the TEVERE conceptual model of Calvo and Savi (2009) 

as originally conceived by Prof Savi in 2007. This rigorous comparison represents a 

real test for ANNs, which is in contrast to what often appears in the academic literature, 

e.g. comparison with a linear regression model or comparison with other data-driven 

models such as ARMA models (e.g. Wu and Chau, 2010). If ANNs are ever to be used 

operationally, their strengths and weaknesses must be clearly understood. Much of the 

literature is filled with „hype‟ and overselling as highlighted by Abrahart et al. (2010) in 

their review of ANNs in hydrology.  

 

The second component of the thesis follows from the first, i.e. the ANN performed 

reasonably well in comparison to the conceptual model. However, with a lack of 

rigorous scientific guidelines on ANN model development, which has been highlighted 

in the literature on a number of occasions (ASCE, 2000a, b; Maier and Dandy, 2000; 

Dawson and Wilby, 2001; Maier et al., 2010), the ANN model developed as part of the 

conceptual model comparison exercise was simple, based on trial and error and the 

use of a sparse historical data record. The second component is an attempt to improve 

the model in a number of different ways. The first set of experiments involves adding 

more data in the form of information from additional upstream stations and rainfall data 

to see whether this improved the model. With more data, however, the training of the 

NN was severely impeded. Therefore, attempts were made to build a more 

parsimonious model using correlation as a way of choosing the model inputs. 

Experiments were then undertaken to see whether a difference term might improve the 

model as some limited success with differencing was found by Abrahart and See 

(2000). Different types of rainfall inputs were used including total rainfall, effective 

rainfall and cumulative rainfall. Moreover, different methods of normalisation of the 

inputs and different training algorithms were also used in a range of experiments. The 

idea was to determine if an empirical pattern would emerge that might provide useful 

advice for future development of ANN models. Finally, some experimentation was 

undertaken with ensemble modelling. It was suggested by Anctil (2007) that an ANN 

should be trained multiple times, e.g. 50, and then an average taken of the outputs in 

an ensemble approach in order to minimise the effect of the random initialisation of the 

weights of the ANN. Experimentation was undertaken with a persistence-based 
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performance measure and the Akaike Information Criterion (AIC) to combine the 

ensemble. 

 

Another major issue addressed in this thesis is pre-processing. There has been a 

recent trend to decompose ANNs using wavelet analysis (e.g. Rao and Krishna, 2009; 

Kisi, 2008; 2009; 2010; Adamowski, 2010). The effect of this decomposition is to 

extract key components of the time series, which are clearer signals that can be used 

to better predict the stream flow. In this research, another type of pre-processing 

method is used, called Empirical Mode Decomposition (EMD), which has not been 

applied to ANN rainfall-runoff modelling before. The effect of this pre-processing 

method is critically evaluated in conjunction with another issue, i.e. the random 

initialisation of the ANN weights. Although 50 runs were averaged to compensate for 

this effect, plotting the individual ANN ensemble members reveals just how much 

spread there is in model prediction, particularly at the peaks of flood events. This 

variation is not reported in the literature. The analysis undertaken in this third 

component of the thesis therefore highlights an important issue about ANN modelling 

that needs further attention. 

 

Finally, an issue that runs through all three components is the use of performance 

measures for ANN model evaluation. There is a reasonable literature on performance 

measures in hydrology (e.g. Green and Stephenson, 1986; Legates and McCabe, 

1999; Dawson et al., 2007) yet there is also little guidance on which measures to 

choose. In the ANN rainfall-runoff modelling literature, there is little attention paid to the 

choice of measures. Although Dawson et al. (2007) advocate the use of many 

measures together, they provide little further guidance to help the ANN modeller. Thus, 

a review was undertaken of the measures commonly used as well as other measures 

that have potential for ANN rainfall-runoff modelling. A subset of these measures was 

then chosen for application and critical evaluation throughout the thesis. 

 

1.2 Aims and Objectives 

The overall aim of this research is to examine a number of issues related to the use of 

ANNs for rainfall-runoff modelling and flood forecasting, in particular the need to 

rigorously compare ANNs with conceptual/physical models; the use of different 

performance measures for model evaluation; the problems associated with training 

ANNs using different starting initialisations; and the use of ensemble methods, all of 

which have been identified as ongoing issues from a review of the literature. The 

overall aim of this research will be achieved through the following objectives: 
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1. To review and critically evaluate the academic literature on ANN rainfall-runoff 

modelling, which is provided in Chapter 2. 

2. To review and evaluate the performance measures which are used to evaluate 

model performance, choosing a subset for use in this research. This is the 

subject of Chapter 3. 

3. To develop an ANN rainfall-runoff model of the Tiber River basin and compare 

this with the conceptual TEVERE model. The experiments and the results are 

described in Chapter 4. 

4. To undertake a series of different experiments to improve the basic ANN 

rainfall-runoff model developed in Chapter 4 including a brief look at ensemble 

methods. This is the subject of Chapter 5. 

5. To apply a pre-processing method called Empirical Mode Decomposition (EMD) 

to ANN rainfall-runoff modelling and examine the impact of the random weight 

initialisation of ANNs on the model outcomes. The methods and experiments 

are applied to two rivers in the USA, which is presented in Chapter 6. 

6. To highlight the limitations of the study and to make recommendations for 

further research, which follow the conclusions presented in Chapter 7. 

 

The value of this thesis derives from a) a rigorous comparison of a conceptual model 

with an ANN to evaluate the usefulness of ANNs for operational flood forecasting, 

something which should be reported more often in the literature; b) a critical 

examination of performance measures, which are not reported with any consistency in 

the ANN rainfall-runoff modelling literature; c) the application of a novel pre-processing 

technique called Empirical Mode Decomposition to ANN rainfall-runoff modelling, which 

has not been tried before; and d) an examination of the impact of the random 

initialisation of the weights of an ANN, another area where little research has been 

undertaken to date.  

 

1.3 Thesis Structure 

Chapter 2 provides a literature review on NNs and hydrological modelling in order to 

provide the scientific context for this research. The chapter begins with an overview of 

hydrological modelling more generally and then focuses on ANNs as an empirical 

approach. The main issues with ANN model development are highlighted and the main 

advantages and disadvantages of ANNs for hydrological modelling are then discussed. 

A review of the literature is then presented as a historical summary, a set of main 

themes, which have appeared over the last decade with examples of applications, and 

areas where further research has been recommended. The research undertaken in this 

thesis is then placed within this broader literature, justifying the research questions that 
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have been tackled. One of the areas for investigation is in model performance 

measures. Chapter 3 therefore provides an overview of the main model evaluation 

measures that have been used in hydrological modelling and in ANN rainfall-runoff 

modelling. Other measures of potential relevance that have not been used in ANN 

rainfall-runoff modelling are also discussed. Finally, a suite of measures is chosen for 

application throughout the rest of the thesis.  

 

Three substantive modelling chapters then follow. Chapters 4 and 5 are concerned with 

ANN modelling of the Tiber River basin while Chapter 6 considers the Potomac River 

and the Clark Fork River basin in the USA. Chapter 4 provides an overview of the Tiber 

River Basin and focuses on flooding in the city of Rome. The conceptual TEVERE 

model is then presented, which has been used to predict the very large historical floods 

that occurred in 2005 and 2008. The development of an ANN model to predict both of 

these flood events is also described. The motivations behind the chapter are to see 

whether a simple ANN model can be developed that has performance similar or better 

than the conceptual model, as comparisons with conceptual models are not as 

common as they should be in the ANN rainfall-runoff literature. This comparison 

provides a true test of the skill of an ANN for operational flood forecasting. Chapter 5 

outlines more than 60 experiments where attempts are made to improve the simple 

ANN developed in Chapter 4 through the addition of different inputs (i.e. upstream 

stations and rainfall), different normalisation techniques, different training algorithms 

and different methods to combine the ensemble of ANN models that is produced when 

developing an ANN. During the course of this research, it was observed that there is a 

large variation in model predictions from the ANN ensemble members, particularly 

when predicting the flood events and especially the peaks. This is function of the 

random initialisation of the weights, which is barely considered in ANN rainfall-runoff 

modelling. This motivated further investigation of this topic, which is addressed in 

Chapter 6. In addition, a pre-processing method referred to as Empirical Mode 

Decomposition (EMD) is used. Pre-processing methods, in particular, wavelets, are 

starting to be used much more frequently in ANN rainfall-runoff and other ANN 

hydrological modelling studies (e.g. Rao and Krishna, 2009; Kisi (2008; 2009; 2010); 

Adamowski (2010). EMD has not been used before in ANN rainfall-runoff modelling so 

this research provided an ideal opportunity to apply and critically examine this 

technique for stream flow forecasting. To use EMD and to also determine whether the 

random initialisation of weights is also an issue when modelling other catchments, two 

rivers in the USA with very long time series were chosen, i.e. the Potomac River and 

the Clark Fork River. These data were freely available for downloading from the US 

Geological Survey website. Although the error measures chosen in Chapter 3 are 
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applied consistently throughout the thesis, a very critical examination of them is 

provided in Chapter 6.  

 

The thesis concludes in Chapter 7, where a summary of the main results is provided, 

which are related directly back to the aims and objectives that appear in section 1.2 of 

this introductory chapter. Chapter 7 also highlights the problems that were encountered 

and the limitations of the research, and then makes suggestions for areas of further 

study in the future.  

 

1.4 Summary 

The context for this research has been presented in this chapter along with the overall 

aims and objectives. In the next chapter, a literature review of ANNs is provided which 

covers the basic theory behind this technique, as well as the advantages and 

disadvantages for hydrological modelling. The considerable body of literature is then 

reported under a series of main themes that have emerged over the last two decades. 
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Chapter 2  

Artificial Neural Networks for Hydrological Modelling 
 

2.1 Introduction 

There has been a great deal of interest in the use of artificial neural networks (ANNs) in 

hydrology over the last two decades. The purpose of this chapter is to review the 

application of ANNs within hydrological modelling, in particular with respect to river flow 

forecasting (or rainfall-runoff modelling). This chapter begins with a very brief overview 

of hydrological modelling in general and places ANNs within the typology of modelling 

approaches used. This is followed by an overview of ANNs in terms of definitions, 

origin, structure, model development, and advantages and disadvantages. This chapter 

concludes with a review of the major themes that have emerged from the ANN river 

flow forecasting literature and how the research in this thesis fits within this context.  

 

2.2 Approaches to Hydrological Modelling 

Hydrological modelling attempts to represent processes within the hydrological cycle in 

a simplified manner. These models are used to improve understanding of the 

processes which underlie the system as well as to make forecasts of the future, e.g. 

flood events, occurrence of rainfall, river levels, snow melt, evaporation and sediment 

concentration or volume. The reader is referred to Anderson and Burt (1985) for a 

range of hydrological modelling application areas.  

 

All models are simplifications of reality and there are many different ways to represent 

it. Therefore, one can find different approaches to modelling within hydrology. A 

number of authors (Wilby, 1997; Anderson and Burt, 1985; ASCE, 2000a) have 

characterised hydrological modelling approaches into three main types: process-based; 

conceptual; and empirical or data-driven (which includes statistical). Wheater et al. 

(1993) add a fourth type that is a hybrid of the conceptual and statistical types. Each of 

the three main types is now briefly reviewed. 

  

2.2.1 Physically-based or Deterministic Models 

Physically-based models (Wilby, 1997), also referred to as deterministic models 

(Anderson and Burt, 1985), represent the physical characteristics of the catchment. 

The SHE (European Hydrological System) model is the most famous physically-based 

model. It has been applied to a range of areas including flood forecasting, examining 

the effects of land use change and ground water modelling (Abbott et al., 1986a, b). 

Other examples of physically-based models include the Institute of Hydrology 
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Distributed Model (IHDM) (Beven et al., 1987) and the WATFLOOD model (Kouwen, 

1988).  

 

Like global circulation models of the climate, physically-based models represent a 

catchment as a three dimensional grid. They use the fundamental laws of the 

conservation of energy and mass to model water movements on the surface and 

through the unsaturated and saturated zones to the river. A flood hydrograph is then 

dynamically built from the model runoff (Wood and Connell, 1985). These models 

incorporate as full an understanding of the catchment processes as possible. Thus, 

when conditions change, the models can be used to evaluate the impact on runoff or 

other catchment properties (Anderson and Burt, 1985). Although these models are the 

most complex and accurate of the three model types, they require a large amount of 

data and processing time, which is not always available for all catchments. These 

models therefore have more value for planning than use in real-time forecasting. For 

these reasons, other more practical approaches to hydrological modelling have been 

developed. 

  

2.2.2 Conceptual or Lumped Models 

The second type of approach is referred to as a conceptual, lumped conceptual or 

geomorphology-based model (Wilby, 1997; Wood and Connell, 1985; ASCE, 2000a); 

these are viewed as the most successful model types for rainfall-runoff simulation and 

flood modelling. These models still have a physical basis but they are structured in 

such a way as to represent a stream network and the surrounding catchment. These 

models attempt to represent the main dynamics in the catchment but are characterised 

by parsimony and computational efficiency (Kavetski et al., 2006), requiring calibration 

of between 8 to 20 parameters (Blackie and Eeles, 1985). Conceptual models are 

therefore less demanding compared to physically-based models but require more 

information than empirical data-driven models. TOPMODEL (Beven and Kirkby, 1997) 

is a classic example of a simple yet powerful conceptual model. TOPMODEL has been 

used in numerous applications covering a range of catchment sizes and geographical 

areas, and continues to be used in research to the present day (e.g. Gallart et al. 2008; 

Peng et al., 2009; Vincendon et al., 2010; Buytaert and Beven, 2011). Like physically-

based models, conceptual models can also be used to examine changes to the 

catchment, e.g. from land use (Beskow et al., 2011). Other examples of successful 

conceptual models include the Tank model (Tingsanchali and Gautam, 2000), the 

United States National Weather Service River Forecasting Model (Wood and Connell, 

1985) and the SWAT (Soil and Water Assessment tool) model (Arnold et al., 1998; 

Arnold and Fohrer, 2005).  
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2.2.3 Empirical, Data-driven or Black Box Models 

This approach, as the name suggests, tries to find an empirical relationship between a 

set of inputs (e.g. historical data such as rainfall and temperature) and a set of outputs 

(e.g. runoff). Statistical approaches are also included in this category. These models do 

not use physical equations, catchment characteristics or other physical parameters 

(Wilby, 1997; ASCE, 2000a; Anderson and Burt, 1985). One major advantage of this 

approach is that these models are generally very fast to run and much faster to develop 

than physically-based or conceptual models. This makes them particularly useful for 

real-time forecasting. A disadvantage is that they are static, i.e. they cannot take 

change into account, e.g. changes in land use. However, there are approaches to 

update the models when new data become available (Wood and Connell, 1985). Unit 

hydrographs are a classic empirical model (Dooge, 1959), which capture the 

relationship between rainfall and catchment response. Another example is time series 

models such as ARMA (Auto-Regressive Moving Average) models (Box and Jenkens, 

1970), which are used frequently as a type of empirical model to capture the rainfall-

runoff relationship (see e.g. Salas and Obeysekera, 1982; Lin and Lee, 1994). 

 
ANNs are classified as an empirical, data-driven or black box model. Data are fed into 

the model, a relationship is learned between the inputs and the outputs, and the model 

is then used to produce a forecast. ANNs do not require any understanding of the 

physical processes underlying the system. However, some hydrological knowledge is a 

prerequisite as it guides which kinds of inputs to choose (i.e. rainfall, previous flows, 

water levels, etc.) and which outputs to forecast (i.e. runoff, stream flows, hydraulic 

conductivities, etc.). This is a modelling type that does not always appeal to 

hydrologists who prefer the core of the model to be a dynamic, physically-based, 

representation of the processes involved. However, some research reported has used 

sensitivity analysis to determine the most significant inputs to the network (Abrahart et 

al., 2001; Sudheer, 2005). This allows one to gain a better understanding of what is 

happening in the model. Other research has looked at opening up the black box to see 

whether structures within the ANN have hydrological meaning (Wilby et al., 2003; Jain 

et al., 2004a). Thus, research is underway to interpret ANNs in a physical way. The 

increasing volume of research on ANNs in hydrology over the last decade alone 

indicates that ANNs are gaining more and more interest as an empirical hydrological 

model (see section 2.5). In the next section, an overview of the main concepts behind 

ANNs is provided.  

 
2.3 Overview of Artificial Neural Networks (ANNs) 

There is no universal definition of an ANN in the literature. Zurada (1992) expresses an 

ANN in a very abstract way as a physical cell-based system that can collect and use 
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knowledge. Nigrin (1993) refers to an ANN as a circuit of simple neurons that function 

similar to neurons in the brain. Haykin (1994) emphasises the parallel and distributed 

nature of an ANN, which emulates the brain through a learning process, with 

information stored in the synaptic weights that connect the neurons. Finally, the ASCE 

(2000a) adds the idea of adaptation and generalisation to the definition of an ANN 

since a trained ANN should be able to make predictions using data it has not seen 

before. This ability to adapt or generalise is one of the most important features of an 

ANN. 

 

The original concept of an ANN was developed in 1943 by Warren McCulloch and 

Walter Pitts, who proposed the conceptualisation of human brain function based on a 

network of interconnected cells (McCulloch and Pitts, 1943). In 1951, Minsky and 

Edmonds built the first neural network machine, which was used to follow the progress 

of a rat through a maze where the neural machine played the role of the rat. The 

experiments showed that the rat was able to start thinking and that even when one of 

the physical neurons failed, the system still worked (Simpson, 1990). In 1962, 

Rosenblatt developed the perceptron, which was a simple arrangement of 

interconnected artificial neurons in a single layer, along with a learning algorithm 

(Russell and Norvig, 1995). ANN research then entered a dark phase that lasted 

almost 20 years. By the late sixties, it became clear that the perceptrons of Rosenblatt 

could not represent very complex functions, which was demonstrated in a key 

publication by Minksy and Papert (1969). It was not until the mid-eighties that the main 

obstacle to ANNs was overcome, i.e. an extra layer was added to the perceptron 

(henceforth called a multi-layer perceptron - MLP) and an efficient algorithm for 

learning was developed called backpropagation (BP) (Rumelhart et al., 1986). It has 

now been proven mathematically that an MLP can approximate any function from a 

one finite dimensional space to another up to any desired degree of accuracy. This is 

referred to as universal approximation (Hornik et al., 1989). This means that ANNs 

should theoretically be applicable to any hydrological modelling problem. Before 

considering how ANNs are developed and applied, the next section will first outline the 

structure or architecture of ANNs. 

 

2.3.1 Structure of ANNs 

ANN structures are described in a number of classic textbooks and papers, e.g. Bishop 

(1995), Schalkoff (1997) and ASCE (2000a). An ANN is comprised of a series of 

information processing elements referred to as nodes or neurons. Information is 

passed between nodes through connections. Weights are then associated with each 

connection, which represents the magnitude or strength of that connection. Within the 
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node is a nonlinear transformation function, called an activation function, which is 

applied to the input signals coming into the node to produce an output signal. The 

simplest function usually applied is the sigmoid function (see e.g. ASCE, 2000a; Minns 

and Hall, 1996; Raman and Sunilkumar, 1995; Dawson and Wilby, 2001). The nodes or 

neurons are then arranged into a series of layers: an input layer; one or more hidden 

layers; and one output layer (Figure 2.1). A weight matrix W, a bias vector b, and an 

activation or transfer function f is associated with each hidden layer (Schalkoff, 1997). 

 

 

Figure 2.1: Two layer network in abbreviated notation.2 

 

The input layer is where external information is received and provided to the network 

(e.g. antecedent rainfall or runoff) while the output layer produces the forecast (e.g. the 

river level in 12 hours time). Each node is connected with all other nodes of the 

previous and the next layer. The representation of nodes in each layer and the 

interconnections are more clearly shown in Figure 2.2. This is an example of a 

feedforward network, i.e. the information flows in a forward direction through the 

network and there are no feedback effects. 

 

The output of each node is obtained by computing the value of the activation function 

with respect to the product of the input vector and the weight vector, minus the value of 

the bias associated with that node. It is possible to express the forward processing 

through the network as a single equation. A network with one hidden layer and  

outputs would have the following functional form: 
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where  is the number of inputs,  is the number of nodes in the hidden layer,  is the 

activation function of the hidden layer nodes, and  and   are the weights. The indices 

 and  correspond to the output node and hidden layer nodes, respectively. However, 

ANNs are rarely expressed in this manner as the equation is not interpretable.  

 

 

Figure 2.2: Schematic of a multi-layer ANN 3 

 

2.3.2 Training an ANN 

Once the network structure is set, the ANN is then trained. The process of training or 

learning is used to find the values of the weights  that minimise the error between the 

inputs and the outputs in the training data set: 

 

  (2.2) 

 

where  is the sum of the errors squared between the targets, t, and the ANN 

response, , for  observations in the input-output dataset. 

 

The training procedure iteratively adjusts the weights of each node until a stopping 

condition is reached. The initial weights are first randomly selected. During a single 

training run, the algorithm may fall into a local minimum on the error surface (see 

Figure 2.3) so it is advisable to train the network several times. Minimising the sum of 

the errors squared is the most commonly used objective function. This assumes that 

model errors are normally distributed with mean zero and unknown variance 

(Velásquez et al., 2006). 
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To achieve an acceptable level of generalisation by the ANN, the data set is usually 

divided into three subsets: 

 

 A training data set: this is the data set used to train the ANN or which allows 

the ANN to learn the relationships in the data. 

 A cross training or validation data set: this is the portion of the overall data 

set that is reserved to help stop the training process. Otherwise the ANN may 

overfit the data and lose the ability to generalise to an unseen data set.  

 A testing data set: this portion of the data is used to test the network on an 

unseen or independent data set not used during the training process. It is on 

this data set that the performance of the network is measured.  

 

 

Figure 2.3: Local and global minima of errors 4 

 

The goal of ANN training is to produce a network with small errors in the training 

dataset, but which will also performs well on the testing dataset (Foresee and Hagan, 

1997). There are two general kinds of training algorithm:  

 

 Supervised:  the target or known output is available and the network finds the 

best set of weights by minimising the error between the output and the target. 

 Unsupervised:  only the input data set is given to the network, which then tries 

to find clusters of similar inputs without any previous knowledge. 

 

Some of the most commonly used supervised training algorithms are: 
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• Back-propagation: Developed originally by Rumelhart et al. (1986), this algorithm 

updates the ANN weights and biases based on the negative of the gradient. At each 

iteration, the following equation is applied: 

 

   (2.3) 

 

where  is a vector of weights and biases at iteration ,  is the gradient, and  is 

the learning rate. This equation is applied through successive iterations in which the 

error function is reduced until a stopping condition has been reached. The 

momentum factor ( ) and the learning rate ( ) determine how much each 

connection weight is adjusted. The first parameter is used to speed up the training of 

the network, and it prevents possible oscillations in the weights. The second one 

helps the network to avoid becoming trapped in a local minimum instead of finding a 

global minimum (ASCE, 2000a) (Figure 2.3). If the learning rate is large, the steps 

taken are bigger and the training proceeds faster. However, too large a learning rate 

may result in instability. In addition, the network performance is influenced by the 

number of training samples used in each step before the weights are updated (Maier 

and Dandy, 1998b). The weight update equation for the connection weight between 

nodes i and j is given by the following equation: 

 

    (2.4) 

 

where  and  are the weight increments between node  and  

during the th and (  -1)th epoch.  

 

• Conjugate gradient descent: Unlike backpropagation, this algorithm propagates 

the error in a direction orthogonal to the previous step instead of proceeding along 

the direction of the error gradient. Thus, the equation for updating the weight vector, 

, can be written as a function of the learning rate, , the weight vector at 

the previous time step, , and the gradient vector,  (Fletcher and Reeves, 

1964). If  is used to identify the direction vector at the nth iteration of 

backpropagation, then equation (2.3)  could be rewritten as (Haykin, 1994): 

 

  (2.4) 

 

The initial point is equal to zero, and thus the direction vector is equal to the 

negative gradient vector . Every subsequent direction vector is calculated from 
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the current gradient and the previous direction vectors as: 

 

  (2.5) 

 

where  represents a time-dependent parameter, defined by Fletcher and 

Reeves (1964) as: 

 

 
    (2.6) 

 

• Radial Basis Function: Radial basis functions, , have the general form: 

 

 (2.8) 

 

where  is the center, and ij is the width of the Gaussian 

function. The centre is chosen from the training set, or using a technique of 

clustering. The input training dataset is divided into groups where the mean of each 

group becomes the centre (ASCE, 2000a). The main difference between the RBF 

network and backpropagation lies in the nonlinearities related to the hidden nodes. 

Once the basis functions ( ) in the hidden layer have been found, the network only 

needs to learn the weights associated with the output layer. The output  of an RBF 

network is computed as follows: 

 

 (2.7) 

 

where  is the connection weight between the hidden neuron and the output 

neuron,  is the bias, and  is the input vector. 

  

• Cascade correlation algorithm: developed by Fahlman and Lebiere (1990), it 

adds hidden nodes to the network one at a time and trains only the output weights. 

This algorithm adjusts the weights to maximise the overall correlation between the 

hidden node values and the residual error: 

 

 (2.9) 
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where  is the output of the new hidden node for observation ,  is the average 

output over all observations,   is the error for output node  on observation , 

and  is the average error of the ANN over the training dataset. 

 

 Levenberg-Marquardt (LM): The Levenberg-Marquardt algorithm (Levenberg, 

1944; Marquardt, 1963) is used to improve the training speed while avoiding the 

Hessian matrix. If  the objective function of the ANN is the sum of squares, then the 

Hessian matrix can be  written as 

 

   (2.10) 

 

and the gradient can be determined as 

 

  (2.11) 

 

where  is the Jacobian matrix that contains the first derivatives of the errors of the 

ANN with respect to the weights and biases of the network while e is a vector 

containing the ANN errors. Adopting the Jacobian matrix is much easier than using 

the Hessian matrix because it can be calculated through standard backpropagation 

(Hagan and Menhaj, 1994). The Levenberg-Marquardt algorithm approximates the 

Hessian matrix as follows: 

 

    (2.12) 

 

When µ is greater than zero, equation 2.12 becomes gradient descent with a 

decreased step size. Thus, µ is decreased after each iteration and results in a 

reduction in the objective function. 

 

• Bayesian Regularization (BR): BR is an ANN algorithm that updates the weights 

and bias values using the LM algorithm as a basis. It minimises the squared errors 

and ANN weights, and then determines a suitable combination of the two in order 

to produce a network with good capability of generalisation. To do this, BR adds an 

additional term, i.e. the sum of squares of the network weights, , to the error 

function, F (Foresee and Hagan, 1997). This approach improves the generalisation 

capability of the network (Doan and Liong, 2004) and it does not require a 

validation data set (Doan and Liong, 2004; Hirschen and Schafer, 2006). Using the 

Bayesian framework developed by MacKay (1992a, b), the optimal weight decay 
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coefficients can be determined which prevent overfitting of the data in ANN training. 

To do this, the BR adds an additional term to equation (2.3) to yield: 

 

  (2.13) 

 

where EW is the sum of squares of the network weights, and α and β are 

parameters which are optimised using the Bayesian framework of MacKay (1992a, 

b). This approach improves the generalisation capability of the network. The 

weights and biases of the ANN are assumed to be random following a Gaussian 

distribution of unknown variance (Doan and Liong, 2004).  

 

2.3.3 Types of ANN  

The feedforward ANN or MLP is the most commonly used type of ANN (Gallant, 1993). 

This also holds true in hydrology. Maier et al. (2010) reviewed 210 papers published 

between 1999 and 2007 that used ANNs in hydrological modelling. They found that 

178 out of 210 papers (or roughly 85%) used an MLP. Other types of ANNs include 

Radial Basis Function Networks (RBFNs), Recurrent Neural Networks (RNNs) and 

Self-Organizing Maps (SOMs) (Bishop, 1995). RBFNs have architectures that are 

similar to MLPs. The RBFN differs in the form of the activation function in the hidden 

layer nodes, which are of a radial basis or Gaussian form. The parameters of the radial 

basis functions are usually determined first followed by the weights during the training 

process. When large training datasets are available, RBFNs can be particularly good 

models to use (Achela et al., 2009; Shamseldin, et al., 2007). Based on the review by 

Maier et al. (2010), RBFNs have not been used that frequently for hydrological 

modelling, i.e. less than 20 out of 210 papers (or less than 10%) over the period 1999 

to 2007.  

 

Another type of network involves modification of feedforward networks to allow for 

feedbacks between layers or RNNs. The main success in applying this network has 

been in handwriting recognition applications (Graves et al., 2009). Different learning 

algorithms have had to be developed for this type of network (Schmidhuber, 1989; 

Williams and Zipser, 1994). However, the uptake of RNNs was similar to RBFNs for 

hydrological modelling, i.e. less than 20 times over the period between 1999 and 2007 

(Maier et al., 2010).  

 

A Self Organizing Map (SOM) is a slightly different type of ANN, which was first 

introduced by Kohonen (1984). SOMs use an unsupervised classification method used 

to cluster data into similar types. Therefore, only an input data vector is required. These 
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ANNs are also used for data compression and for visualisation of relationships in the 

data (Sharma et al., 2007; Vesanto, 1999). However, it is also possible to use SOMs in 

predictive mode, e.g. Corne et al. (1999) and the SOLO (Self-Organising Linear 

Output) map developed by Hsu et al. (2002), which simultaneously classifies the input 

data and makes a prediction. In their simplest form, SOMs are composed of a single 

two dimensional layer of input neurons of vector w. The training algorithm randomly 

selects an input vector x and finds the best matching or winning neuron based on the 

Euclidean distance between the two vectors x and w. Then all of the nodes near the 

winning node (or in a specified neighbourhood) have their weight vectors updated. The 

next set of input data are then presented to the SOM until a stopping condition is 

satisfied, e.g. a minimum error is reached (Kohonen, 1984). A disadvantage of the 

SOM is that there is no clear methodology for the selection of the number of nodes (or 

clusters) or the values of the learning parameters, e.g. the size of the neighbourhood. 

Based on the review by Maier et al. (2010), SOMs were used only 10 times during the 

period 1999 to 2007, making them even less popular than the RBFNs and RNNs for 

hydrological modelling.  

 
2.3.4 Development of an ANN  

There is currently very little guidance in the literature on how to develop an optimal 

ANN for a given application. A number of papers have appeared that attempt to provide 

some guidance or results from empirical experiments that help to make decisions 

regarding model development (Dawson and Willby, 1998; Maier and Dandy, 1998a, b; 

Maier and Dandy, 2000; ASCE, 2000a, b; Dawson and Wilby, 2001). These decisions 

include things like the choice of model architecture, the number of hidden layers, the 

number of hidden nodes, the choice of input variables, the choice of activation 

functions, the choice of training algorithm, and which performance measures to use, 

the latter of which is dealt with in Chapter 3.  

 

The architecture of an ANN is often selected via trial and error as there is no currently 

established methodology (ASCE, 2000a; Dawson and Wilby, 2001). Once the type of 

network is chosen, the number of hidden layers and the number of nodes in each 

hidden layer must be determined. However, there are no fixed rules so experimentation 

is therefore often by trial and error. There are, however, some heuristics in the 

literature. For example, Hecht-Nielsen (1987) suggested the following upper limit for 

the number of hidden layers to ensure that the network is able to approximate any 

continuous function: 

 

  (2.4) 
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where  is number of hidden layers and  is the number of inputs. Rogers and 

Dowla (1994) suggested a second relationship to avoid overfitting as follows: 

 

 
(2.5) 

 

where  is the number of observations in the training dataset.  

 

Depending upon which training algorithm is chosen, a number of parameters need to 

be specified, e.g. the learning rate and momentum. The literature reveals that authors 

have chosen these parameters using trial and error. For example, 0.1 was used as the 

learning rate by Smith and Eli (1995), Maier and Dandy (1999) and Thirumalaiah and 

Deo (1998a, b) while values of 0.01 to 0.0005 were employed by Tayfur and 

Moramarco (2007). High values of momentum (i.e. 0.6 or >1) were chosen by Maier 

and Dandy (1998; 2000) while lower values of 0.2 were chosen by Thirumalaiah and 

Deo (1998a, b). Many papers do not even report these parameters as they are deemed 

to be specific to an application. 

 

Another important decision to make is in the choice of the input variables. The majority 

of ANN studies have used previous values of river levels or flows and rainfall (e.g. 

Zealand et al., 1999; See and Openshaw, 1999; Doan and Liong, 2004; Aqil et al., 

2007). Total rainfall is normally used although some papers have used effective rainfall 

in place of total rainfall (e.g. Sajikumar and Thandaveswara, 1999; Jain and 

Srinivasulu, 2006). Effective rainfall is total precipitation minus losses, which is what 

actually produces the runoff. However, the problem with effective rainfall is that it is 

difficult to estimate because it depends on the antecedent moisture conditions of the 

basin, which changes over time. This would explain why it has not been used very 

often in ANN rainall-runoff modelling. 

 

Other variables that have been used include temperature (Nayebi et al., 2006); 

evapotranspiration (Anctil and Rat, 2005); moving average antecedent precipitation 

(Abrahart, 2001); and soil moisture (Karunanithi et al., 1994). The proper choice of 

input variables is very important for the efficiency of the ANN (Maier et al. 2010). If too 

many inputs are included and they are not independent, this increases the size of the 

network so training will take longer. There is also a greater likelihood of overfitting the 

training data because the ratio of connection weights to training data increases. 

Methods for choosing the input variables include trial and error, correlation analysis of 

the variables (Kumar and Minocha, 2001, Olsson et al., 2004; Sudheer and Jain, 



23 

 

2004), sensitivity analysis (Liong et al., 2000), the time of concentration to determine 

the amount of antecedent precipitation (Jain, 2005), the F-statistical method 

(Furundzic, 1998), pruning algorithms (Furundzic, 1998; Maier and Dandy, 2000), 

Average Mutual Information (Abebe and Price, 2004), genetic algorithms (Bowden et 

al., 2005a, b; Anctil et al., 2006), Partial Mutual Information (Bowden et al., 2005a, b) 

and SOMs (Bowden et al., 2005a, b; Toth, 2009). Although many different methods 

exist, trial and error and correlation analysis are used most frequently (Chaipimonplin, 

2010). 

 

Despite the fact that guidance in ANN model development is clearly lacking, ANNs 

have a series of characteristics that make them very useful for hydrological modelling. 

The next section summarises the advantages and disadvantages associated with 

ANNs. 

 

2.4 Advantages and Disadvantages of ANNs for Hydrological Modelling 

ANNs owe their information processing capability to their distributed and parallel nature 

as well as their ability to learn from the data and generalise to situations not seen 

previously. It is the collective power of the network that allows for the implementation of 

a surprising number of complex tasks with great efficiency (Reilly and Cooper, 1990). 

Below is a list of the characteristics or properties of ANNs with reference to 

hydrological modelling. Some of these characteristics are advantages while others are 

limitations.  

 

1. Non-linearity: Most hydrological problems are non-linear. The interconnection 

between the neurons in an ANN generates non-linear data processing structures 

that are distributed across the network. This feature allows intrinsically non-linear 

processes to be modelled, such as the transformation of rainfall into runoff. For 

example, Abrahart and See (2007a) showed that ANNs can be used to emulate 

the outputs of the Xinanjiang Rainfall-Runoff Model, which is a simple non-linear 

model.  

 

2. Ability to model input/output relationships: ANNs do not need an explicit 

mathematical equation to specify the relationship between the inputs and the 

outputs. Thus in situations where the processes are not fully understood, ANNs 

can be used to develop simple models of hydrological value. 

 

3. Adaptability: One criticism that is often levelled at ANNs is their static nature.  

However, ANNs are technically adaptable to change, i.e. capable of adjusting their 
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weights, as new data become available. This feature makes them particularly 

useful in the treatment of non-stationary processes, where learning strategies can 

be designed in real-time so that the model learns continuously. There is some 

limited research ongoing into dynamic ANNs (e.g. Coulibaly and Baldwin, 2008) 

but it remains an important area of investigation. However, most studies do not 

explicitly consider non-stationarity or adaptability.   

 

4. Rapid construction: The process of constructing an ANN is very fast relative to 

conceptual and physically-based models. However, it does require making choices 

such as which input variables to choose, the architecture of the network, the 

training algorithm, how much to lag the data to account for travel times, etc. 

Moreover, the absence of clear guidance on ANN construction and the lack of 

concrete procedures for determining an optimum network render it a somewhat 

subjective process at times. Trial and error is often the most commonly used 

method, which can never be totally exhaustive.  

 

5. Computationally efficient: This property is related to the previous one, i.e. once 

the ANN is trained, it is very fast to run and computationally very efficient (ASCE, 

2000a). This also refers to the fact that many of the training algorithms are 

computationally efficient or improvements have been made through research, e.g. 

the development of second order methods, which are improvements over first 

order methods such as backpropagation in terms of training time (Ampazis and 

Perantonis, 2002).  

 

6. Less sensitive to noise in the data: Since ANNs are models of a distributed 

nature, they technically have a greater ability to handle noise in the input data 

(Karunanithi et al., 1994; Thirumalaiah and Deo 1998a, b; Zealand et al., 1999, 

ASCE, 2000a). However, to have an effective ANN that handles the problem of 

noise, a large amount of data is required to train the network. Thus success relies 

on the quality and quantity of the data set.  

 

7. Modularity: ANNs can be integrated easily into modular architectures to very 

efficiently solve specific subtasks of the overall problem to which they are best 

suited in a plug and play type of approach. These sub-tasks may include 

procedures for pattern recognition, functional approximation, etc. An example is 

the embedding of an ANN within an expert or decision support system 

(Bhattacharya et al., 2003). 

 



25 

 

8. Black box nature: The main disadvantage of ANNs is in their black box nature, 

which makes them less preferable to physically-based and conceptual models, 

especially for real-time applications. All the major reviews (ASCE 2000b; Maier 

and Dandy, 2000; Dawson and Wilby, 2001; Maier et al., 2010; Abrahart et al., 

2010) have acknowledged that trying to open up the black box and find physical 

meaning in ANNs is an area of research that needs more attention. Some 

preliminary studies have begun to address this issue (e.g. Wilby et al., 2003; 

Sudheer and Jain, 2004), but it continues to be an area where further research is 

needed.  

 

Many of these advantages have been exploited through the application of ANNs in 

hydrology, and rainfall-runoff modelling in particular, while the disadvantages remain 

areas for further research. In the final section, a review of the main themes and 

applications that have emerged during the past two decades is provided. 

 

2.5 Use of ANNs in Hydrology 

This section is organised into three main parts. The first examines the early years when 

ANN papers first started to appear on rainfall-runoff modelling and river flow 

forecasting. The second section is thematic and discusses the main areas where 

research is currently focussed while the third highlights areas where further research is 

needed. This latter section is based heavily on a series of recent review papers that 

already make a clear and convincing research agenda for this field (Maier et al., 2010; 

Abrahart et al. 2010). 

 

2.5.1 Early research into ANN rainfall-runoff modelling 

ANN research papers began to appear in the scientific literature around the middle of 

the nineties. One of the first papers to emerge was by Smith and Eli (1995), who used 

a simple three layer ANN to predict runoff based on simulated rainfall patterns in a 

synthetic catchment. Although they described their results as “outstanding”, there were 

actually some problems with peak and time to peak predictions. However, they were 

encouraged by the results and concluded their paper with a research question 

regarding whether the configuration of the network and the network weights could have 

some relation to the physics of rainfall-runoff. Thus, the disadvantage of an ANN as a 

black box was recognised from the outset of research in this area. At the same time 

another paper appeared by Hsu et al. (1995) who developed an ANN for the Leaf River 

Basin in Mississippi, USA. The ANN was compared to an ARMAX model (ARMA model 

with eXogenous inputs) and the conceptual SAC-SMA (SACramento Soil Moisture 

Accounting) model. Although the ANN outperformed the other two models, the authors 
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were quick to point out that ANNs should not be considered as replacements to 

conceptual models as they are not physically-based. In Italy, Lorrai and Sechi (1995) 

used an MLP to model rainfall-runoff using rainfall data and temperature for 30 years in 

the Araxisi catchment in Sardinia. Raman and Sunikumar (1995) applied an MLP and 

an ARMA model to predict monthly inflows to two study reservoirs. Another pivotal 

paper by Minns and Halls (1996) involved the development of an ANN to predict 

synthetic rainfall-runoff data. They showed that the use of two hidden layers in an ANN 

only produces slightly better results than a one hidden layer ANN, and therefore drew 

attention to some of the decision making involved in ANN model development.  

 

The latter half of the nineties saw a number of other studies appear in the literature, 

which could be classified as case studies or as proof-of-concept demonstrators. They 

generally involved the application of an ANN to a specific catchment, and the ANNs 

either performed as well as or outperformed other empirical or conceptual models. For 

example, Dawson and Wilby (1998) used an ANN to forecast flows of the Amber and 

Mole Rivers in the UK for a lead time of 6 hours, which was found to be comparable in 

performance to an existing flood forecasting system in operation. This period also saw 

different networks being used, e.g. a RBFN by Mason et al. (1996), a temporal 

backpropagation network (TBP-NN) by Sajikumar and Thandaveswara (1999), and a 

SOM by See and Openshaw (1999). Moreover, the issue of lead times was considered, 

e.g. Campolo et al. (1999) examined the effect of ANN predictions as the lead time 

increased from 1 hour ahead to 5 hours, noting the decrease in performance with 

increasing forecasting horizon. Golob et al. (1998) used an MLP to predict natural 

water inflow 2, 4 and 6 hours ahead for the Soca River basin. Papers also started to 

appear that highlighted the lack of guidance available in developing an ANN model, i.e. 

the guidelines by Dawson and Wilby (1998) specifically for rainfall-runoff modelling, 

and the empirical modelling by Maier and Dandy (1998a, b) to try and establish some 

patterns for model development, albeit in the context of water quality. These studies all 

highlighted the potential opportunities for this „new‟ technology in a very positive way. 

This is very much in line with the enthusiasm that accompanies „Innovators‟ in the 

Revised Technological Adoption Life Cycle (Moore, 1991), a framework used by 

Abrahart et al. (2010) to analyse the current position of ANN technology in hydrological 

modelling. 

 

In the year 2000, two key reviews appeared by the American Society of Civil Engineers 

Task Force (ASCE 2000a, b) and Maier and Dandy (2000), which targeted broader 

areas of hydrology. This was followed shortly afterwards with an additional paper by 

Dawson and Wilby (2001), who reviewed the state of the art in ANN rainfall-runoff 
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modelling. All three reviews (ASCE, 2000a; Maier and Dandy, 2000; Dawson and 

Wilby, 2001) provide an introduction to ANNs and then highlight the main issues 

surrounding model development such as selection of input variables, optimal division of 

the input data, data pre-processing methods, etc. The reviews by Maier and Dandy 

(2000) and Dawson and Wilby (2001) also attempted to provide some guidance on 

model development in the form of steps that should be followed. Maier and Dandy 

(2000) reviewed 43 papers while Dawson and Wilby (2001) reviewed 50 papers. Both 

commented on the lack of rigour in many studies, i.e. many of the decisions were made 

in an ad hoc manner, e.g. choice of appropriate model inputs, and the description of 

the decisions made was either lacking or poorly described. Dawson and Wilby (2001) 

highlighted the need for more objective model development methods. The second 

paper (ASCE, 2000b) reviewed applications of ANNs in hydrology, including a section 

on rainfall-runoff modelling. The review concluded that ANNs can perform as well as 

existing hydrological models but it also emphasised the lack of an established 

methodology for model design and implementation. Also, they drew attention to the fact 

that ANNs are very data intensive.  

 

All three reviews then made recommendations about where future research efforts 

should be directed. The ASCE (2000b) review ended with five research questions 

including whether ANNs can be related to physical processes; whether an optimal 

training dataset can be identified; whether the training process can be made more 

adaptive; whether ANNs can improve on time series analysis, which also relates to 

whether the weights have physical meaning; and whether NNs are good extrapolators, 

i.e. how well can they perform in situations such as an extreme flood event? The 

review by Maier and Dandy (2000) and Dawson and Wilby (2001) both mentioned the 

need to extract knowledge from the connection weights, highlighting the importance of 

opening up the black box. The review by Maier and Dandy (2000) also argued for the 

need to develop guidelines that assist in the development of ANN models and when 

ANNs should be used over alternative approaches. In addition they mentioned 

incorporation of uncertainty into ANN models, while Dawson and Wilby (2001) 

suggested that rigorous inter-comparison studies are needed, and that error measures 

should be developed that penalise overly complex models.  

 

2.5.2 Major Themes in ANN Rainfall-runoff Modelling 

This section reviews the research that has taken place over the last decade in the area 

of ANN rainfall-runoff modelling. During this period, a series of key research themes 

emerged, as described in the sub-sections that follow. 
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Theme 1: Continuation of Demonstration and Proof of Concept Studies  

Although the reviews by ASCE (2000a, b), Maier and Dandy (2000) and Dawson and 

Wilby (2001) provided a good set of research questions to address, many papers 

continued to appear which could be classed as demonstration or proof of concept 

studies (e.g. Rajurkar et al., 2002; 2004; Birikundavyi et al., 2002; Phien and Kha, 

2003; Riad et al., 2004; Pan and Wang, 2005; Khan and Coulibaly, 2006; Sahoo and 

Ray, 2006; Kisi and Cigizoglu, 2007; Kisi, 2008a; Yazdani et al., 2009; Wu and Chau, 

2010; Araujo et al., 2011). Some of this research has involved trying out different types 

of ANNs (e.g. Bayesian ANNs (Khan and Coulibaly, 2006), RBFs (Sahoo and Ray, 

2006) and RNNs (Pan and Wang, 2005)) but these papers mainly serve to provide the 

same general conclusions as early ANN papers, i.e. that ANNs perform similarly or 

better than the models against which they were compared. However, there was a 

definite decrease in the number of these types of papers by 2011, which reflects the 

fact that simple ANN applications are no longer sufficiently advanced to warrant 

publication in a peer reviewed journal.  

 

Theme 2: Application of Soft Computing Approaches 

Soft computing refers to the integration of different artificial intelligence approaches, i.e. 

ANNs, fuzzy logic, genetic algorithms (GAs), etc., which work together in a synergistic 

fashion to produce a better result than individual techniques on their own (Zadeh, 1994; 

See and Openshaw, 1999). There has been a growing trend in applying neuro-fuzzy 

and neuro-genetic approaches to rainfall-runoff modelling over the last decade. 

 

The review by Maier and Dandy (2000) suggested that neuro-fuzzy solutions are one 

potential area for further research, and a reasonable amount of work has been reported 

in the literature. Neuro-fuzzy solutions use the learning capability of ANNs to generate 

the rules of a fuzzy model and optimise the parameters (Jang et al., 1997). The 

solutions are also theoretically interpretable. The main type of neuro-fuzzy model used 

is the Adaptive Neuro-Fuzzy Inference System (ANFIS) (Jang, 1993). One of the 

reasons it has been chosen is most likely due to its availability in the fuzzy logic toolbox 

of the Matlab software (Mathworks, 1994-2011). Papers that have applied ANFIS over 

the last decade for a range of catchments include: Gautam and Holz (2001); Nayak et 

al. (2004, 2005); Chau et al. (2005); Chen et al. (2006); Keskin et al. (2006); Aqil et al. 

(2007); El-Shafie et al. (2007); Firat (2008), Firat and Güngör (2007, 2008); Zounemat-

Kermani and Teshnehlab (2008); Dastorani et al. (2009); Keskin and Taylan (2009); 

Mukerji et al. (2009); Pramanik and Panda (2009). As with the proof of concept 

applications, the results reported in these studies are positive. However, there are also 

examples of where ANFIS was not the best performing model when compared with 
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other ANNs such as a RBFN (e.g. Singh and Deo, 2007). Other types of fuzzy 

applications in which fuzzy logic was directly integrated into an ANN include the work 

by Nayak et al. (2007), a Counter Propagation Neural-Fuzzy Network (Nie and Linkens, 

1994; Chang and Chen, 2001; Chang et al., 2001, 2008) and the dynamic neuro-fuzzy 

modelling system of Hong and White (2009), which learns online as the forecasting 

task takes place. The dynamic system outperformed a regular ANN and an ANFIS 

fuzzy model in forecasting flows at Waikoropupu Springs in New Zealand. 

Unfortunately all the papers have one thing in common: they do not attempt to interpret 

the rules or fuzzy sets in a physical way, despite the fact that Maier and Dandy (2000) 

originally envisaged the use of neuro-fuzzy models in this way. In this sense neuro-

fuzzy models are as black box as regular ANNs.  

 

Neuro-genetic approaches combine the optimisation ability of genetic and evolutionary 

algorithms with ANNs (Kitano, 1992). Genetic approaches are already commonly used 

in conceptual model calibration (Nicklow et al., 2010). Normally an ANN model 

structure is chosen and an iterative learning algorithm is used to adjust the connection 

weights. Neuro-genetic approaches can be used to find the weights of an ANN or they 

could be used to evolve the whole structure, e.g. determine the number of hidden 

nodes, the number of inputs, etc. A number of studies have used a GA to determine 

the starting weights and then trained the ANN further with more conventional ANN 

training algorithms such as backpropagation or conjugate gradient descent (Whitley et 

al., 1990; Shamseldin and O‟Connor, 2001; Jain and Srinivasulu, 2004a; Parasuraman 

and Elshorbagy, 2007; Chen and Chang, 2009; Mukerji et al., 2009; Sedki et al. 2009). 

As with ANFIS, these studies reported improved performance with the ANNs optimised 

by a GA compared to ANNs with random initialisation. 

 

Another approach that has been used is the application of evolutionary techniques to 

optimise the entire network. Examples of ANN rainfall-runoff models bred for the River 

Ouse in England were undertaken by Dawson et al. (2006b), Abrahart et al. (2007b, c) 

and Heppenstall et al. (2008). All of these studies used the Symbiotic Adaptive 

NeuroEvolution (SANE) algorithm (Potter, 1997; Moriarty and Miikkulainen, 1998), in 

which partial ANN solutions are evolved that cooperate together to breed the best 

overall ANN. Some of the advantages of using this approach were flexibility in 

changing the objective function and good performance when compared to ANNs 

trained in the conventional way.  

 

Other examples of using a GA have been to determine the optimal training set 

(Bowden et al., 2002; Kamp & Savenije, 2006) and to find a set of optimal inputs 
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(Bowden et al., 2005a), both of which were raised as areas that need further research 

(ASCE 2000b; Maier and Dandy, 2000).  

 

Finally Chidthong et al. (2009) built a neuro-fuzzy-genetic system in which the ANN 

was used to find the parameters of a fuzzy model, where the fuzzy rules were then 

further optimised by a GA. They tested their model to predict floods in Thailand and 

Japan. The neuro-fuzzy-genetic system outperformed the neuro-genetic model and 

provided the best peak prediction while the ANFIS model also performed well.  

 

Theme 3: Modularisation and Ensemble Modelling 

In both modularisation and ensemble modelling in the context of ANNs, multiple 

networks are developed and then combined. The difference between these two 

approaches revolves around the presence of redundancy (Sharkey, 1999). In 

ensemble modelling, redundant networks (or those which do the exact same modelling 

task) are developed while in modularisation, NNs are developed on different 

components of a system, which are then combined or fused together.  

 

Modularisation has been used in a number of ANN rainfall-runoff modelling studies 

(e.g. Zhang and Govindaraju, 2000a, b). Minns and Hall (1996) observed that ANNs 

cannot predict both low and high flow events satisfactorily because different parts of 

the hydrograph are dominated by different processes. To resolve this problem 

modularisation was used, i.e. the input-output dataset was split into groups and then 

each group or sub-set of the data was trained using a separate ANN (Solomatine et al., 

2008). For example, See and Openshaw (1999) used a SOM to first classify river level 

data into events, e.g. low river levels, the rising limb of the hydrograph, the falling limb, 

etc. and they then trained individual ANNs to predict these events separately, 

combining them at the very end. A similar exercise was undertaken by Abrahart and 

See (2000) and Jain and Srinivasulu (2006) in which the hydrograph was decomposed 

into parts and modelled separately. These approaches have also been referred to as 

Modular Neural Networks (MNN) in the literature (Wang et al., 2006). Wang et al. 

(2006) compared three MNNs: a Threshold-based ANN (TANN), a Cluster-based ANN 

(CANN) and a Periodic ANN (PANN) to predict flows of the Yellow River, China, 

against a classical ANN. For the TANN, the data were divided by thresholds and a 

separate ANN was built on the subsets while the data were divided into groups for the 

CANN using fuzzy c-means. Finally the data were divided by seasons for training the 

PANN. The results showed that the PANN performed better than the other modular and 

non-modular approaches.  
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Another example of modularisation is the use of ANNs to predict conceptual errors in a 

physically-based model (Toth and Brath, 2002; Abebe and Price, 2004). The ANN acts 

as one module of a larger system. Toth and Brath (2002) developed an ANN to update 

the predictions of a conceptual model and have also used ANNs to predict the 

precipitation that was then fed into a conceptual model. Another example is the 

combination of statistical models with ANNs, e.g. using an autoregressive model to 

predict flow and an ANN to predict the AR model errors and vice versa (e.g. Xiong and 

O„Connor; 2002;  Anctil et al., 2003). 

 

It is also possible to take an ensemble modelling approach and train many instances of 

an ANN on the input-output dataset and then combine these through data fusion (e.g. 

See and Abrahart, 2001; Abrahart and See, 2002). Alternatively, different model types 

have also been combined. See and Openshaw (2001) integrated an ANN, a fuzzy logic 

model, an ARMA model and persistence to create a better overall forecast, while 

Coulibaly et al. (2005) combined a conceptual model, an ANN and a nearest neighbour 

model, which were first developed to solve the same problem. The models were then 

weighted and combined to obtain a better result than using any of the individual 

models. Ensemble models and modularisation both represent interesting areas for 

further research in ANN rainfall-runoff modelling However, they are much more 

intensive in terms of development. 

 

Theme 4: Pre-processing 

It is recommended that the input and output variables are standardised before the 

network is trained. This is often a linear standardisation between the ranges 0.1 to 0.9 

or 0.2 to 0.8 (Maier and Dandy, 2000). Unlike statistical models, the data provided to 

the network do not need to be normally distributed. There are some early examples of 

where the data have been pre-processed in a statistical manner, e.g. differencing of the 

data (See and Openshaw, 2000; Abrahart and See, 2002) or use of moving averages 

(Shamseldin, 1997; Wu et al., 2009, Chaipimonplin et al., 2010). However, the most 

recent trend in data pre-processing has been in the application of wavelet analysis. 

Wavelet analysis decomposes a time series into scale independent sub-components or 

wavelets (Nason and Von Sachs, 1999). The decomposed time series are then 

provided as inputs to the ANN and recombined to produce a final forecast. The trend in 

this theme is somewhat similar that of theme 1, i.e. the pre-processing technique was 

applied and the main conclusions showed that the use of wavelets outperformed the 

use of ANNs without this pre-processing operation. For example, Rao and Krishna 

(2009) also found that wavelet analysis with ANNs was better than pure ANN models in 

simulating daily streamflow and monthly groundwater levels. The same findings are 
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echoed in Anctil and Tape (2004), Kisi (2008; 2009; 2010), Adamowski (2010), Zhou et 

al. (2008), Nourani et al. (2009), Rahanam and Noury (2009), Partal (2009) and Wang 

et al. (2009) for simulating stream flows. Another technique that has appeared even 

more recently in ANN rainfall-runoff modelling is singular spectrum analysis (SSA), 

which decomposes the input time series based on a number of components (e.g. 

trends, periodicities and noise). Wu et al. (2009) found that the SSA enhanced the ANN 

performance better than wavelets when forecasting the daily discharge of two 

tributaries of the Yangtze River. SSA in combination with an ANN also performed better 

when compared to a modular ANN (Wu and Chau, 2011). 

 
Theme 5: Opening up the Black Box 

All three review papers (ASCE, 2000b; Maier and Dandy, 2000; Dawson and Wilby, 

2001) argued that further research is needed in opening up the black box of the ANN, 

i.e. to find physical interpretations or meaning in the hidden nodes or weights of the 

ANN. Rule extraction was the basis for early work in this area (including that outside of 

hydrology) to try to understand ANN behaviour (Andrews et al. 1995; Benitez et al. 

1997; Kingston et al., 2006). Saliency analysis (Abrahart et al., 1999) and sensitivity 

analysis (Sudheer, 2005) also provided insights into what network inputs were 

important and how they affected the behaviour of the network. However, the real first 

attempt at directly examining the behaviour of the hidden nodes was undertaken by 

Wilby et al. (2003), who developed ANNs for the Test River Basin in the UK. The ANNs 

were trained to learn the outputs from a calibrated conceptual model. The outputs from 

the hidden nodes were then plotted against the components of the conceptual model. 

The results showed that two of the hidden nodes appeared to be capturing baseflow 

and quickflow when antecedent precipitation and evaporation were included as inputs, 

while a third hidden node appeared to have some relation to the soil moisture deficit. 

Similar work followed (Jain et al., 2004b; Sudheer and Jain, 2004; See et al., 2008). 

The study by Jain et al. (2004b) for the Kentucky River and See et al. (2008) for the 

Ouse River, UK, both found differentiation of hidden nodes by process, i.e. baseflow, 

quickflow and infiltration, implying a consistent pattern across catchments. Sudheer 

and Jain (2004) plotted raw hidden unit outputs against discharge and found that the 

hidden nodes appeared to correspond to the generation of low, medium and high flows, 

respectively, for the Narmada River in India. These reported studies show that some 

progress has been made during the last decade but there is quite clearly a great deal 

of work still to be done, especially if ANN methods are to become more accepted by 

hydrologists in the future, particularly for operational forecasting. 

 

Theme 6: Input Variable Selection 

Input variable section (as discussed in section 2.3) is one of the decisions that must be 
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made as part of the development of an ANN. Not all papers report this information 

systematically. However, trial and error or an ad hoc approach is one of the mostly 

commonly used ways to determine the inputs. This method involves providing the NN 

with different sets of input variables (e.g. previous flows, rainfall) that are perceived to 

have a relationship with the outputs (e.g. runoff). Maier et al. (2010) determined that 37 

out of 210 papers published between 1999 and 2007 used an ad hoc approach. 

Evidence of the continuing use of this approach can be seen in discharge forecasting 

on the Huaihe River in China (Li et al., 2009) and by Partal (2009) in the development 

of different river flow forecasting models. The main problem with this method is that 

many different combinations must be tried to ensure that an acceptable set of inputs is 

found.  

 

Although not used often, sensitivity analysis is another method that allows input 

variables that have little or no effect on the outputs to be removed. An example is the 

work by Sudheer (2005), who used this approach to show the effect of different inputs 

on the shape of the hydrograph when modeling runoff on the River Narmada in India. A 

related approach is referred to as saliency analysis, where a network is first trained and 

then one input variable is removed at a time, with an analysis of the output after each 

removal to determine which inputs had little effect on the overall results. Abrahart et al. 

(2001) applied this approach in developing an ANN rainfall-runoff model and found that 

it was possible to gain useful knowledge about a number of relevant inputs including 

previous flow values, rainfall, seasonality, etc. 

 

One of the more frequently used methods is correlation analysis, which was used in 60 

out of 210 papers reviewed by Maier et al. (2010). The method provides a way of 

drastically reducing the number of inputs by eliminating those variables with less than a 

certain correlation value with the output. Examples of work that have used this 

approach include Dawson et al. (2006a), Kim et al. (2009) and Jia et al. (2009). The 

problems with this approach are that: (i) it assumes a linear relationship between the 

variables, where most hydrological problems are non-linear; (ii) it is unclear which 

threshold to use to determine whether variables should be included or not; and (iii) it 

does not take variable independence into account. One method of dealing with the 

non-linearity and independence of input variables is through the use of Partial Mutual 

Information (PMI) (Sharma, 2000; Sharma et al., 2000). Although in the context of 

water quality, Bowden et al. (2005a, b) used the PMI in ANN modelling of the River 

Murray in South Australia. There is evidence that the PMI is starting to be used, e.g. 

Hejazi and Cai (2009) and Corzo et al. (2009). Hejazi and Cai (2009) noted improved 

performance when using the PMI over other input determination methods while 
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modeling reservoir release in California, while Corzo et al. (2009) used the PMI to 

select the input variables for an ANN that was used to replace both process-based 

models and the routing component for the River Meuse catchment. However, the PMI 

was the only method used so no comparisons with other methods were provided.  

 

Pruning algorithms have also been employed as a method for determining the inputs. 

Pruning removes unimportant or weak connections between nodes as well as the 

nodes themselves (Bishop, 1995). The concept behind this algorithm is to start with a 

fully connected network and to then remove the least significant connections between 

the inputs and outputs. Abrahart et al. (1999) found that pruning algorithms reduced the 

total number of connections between 10%-43% whilst retaining good model 

performance in the development of ANN rainfall-runoff models. Corani and Guariso 

(2005a) used pruning algorithms to initially reduce the number of inputs by 30 to 40% 

before training again with an ANN for two catchments in Italy. The authors found that 

the ANNs trained on the smaller number of inputs generalised better than ANNs 

developed using all the initial inputs. It is surprising that so few examples exist given 

the potential of this technique. This may be due to the fact that pruning software is not 

as readily available as ANN software.  

 

Another method that has potential is a GA, but once again, there are very few 

examples, e.g. Anctil et al. (2006), who used a GA to determine which rain gauges to 

include in an ANN rainfall-runoff model. Input determination is clearly an area where 

methods of optimization will prove valuable.  

 

Theme 7: Other Research 

There have also been a number of isolated studies covering a range of topics. Two 

particular issues of interest that fall outside of the other themes are discussed below.  

 

The first issue is to do with the extrapolation issue. The ASCE (2000b) review asked 

whether ANNs are good extrapolators. The question is relevant to ANNs as a rainfall-

runoff model may be developed over a range of flows and then an extreme event may 

come along that is larger than any event seen before. Some research has been 

undertaken to look at this issue. Imrie et al. (2000) modified the Cascade Correlation 

training algorithm to use a cubic polynomial function in the output layer, so that the 

ANN could extrapolate outside the range of the training data. Cigizoglu (2003) used an 

autoregressive model to generate a synthetic time series and used these as inputs to 

the ANN, thereby improving its ability to reproduce extreme flows more effectively than 
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training with the observed data. Problems with extrapolation are, however, a function of 

all empirical models (ASCE, 2000b).  

 

Another area of research has been to incorporate physical parameters into the ANN or 

add hydrological knowledge explicitly into the development of the model, which is 

somewhat different to the research undertaken in theme 5. For example, Zhang and 

Govindaraju (2003) developed an ANN that takes the basin geomorphology into 

account. The weights between the input nodes and the hidden nodes were equal to the 

coefficients used in a unit hydrograph, which was an attempt to relate these 

connections to the number of rivers that connect to the main channel. Pan and Wang 

(2005) similarly associated the weights of the ANN with Markov parameters of the unit 

hydrograph. Jain and Indurthy (2003) considered the time of concentration of the basin 

to determine the number of variables of antecedent rainfall that would go into the 

model. Jain and Srinivasulu (2004a) developed an ANN that could incorporate 

conceptual elements by modelling the process of infiltration through the Green-Ampt 

equation, and by modelling the soil moisture content, evaporation and flow using 

conceptual techniques. They also estimated the effective rainfall at each time interval 

to use as a model input to the ANN. Effective rather than total rainfall was also 

incorporated in previous studies by Sajikumar and Thandaveswara (1999).  

 

The final area to be discussed in this section is the research that has been undertaken 

on uncertainty. This area is very important yet there is surprisingly little work, which 

may simply reflect the complexity of this subject area. A recent example is the work by 

Srivastav et al. (2007), who proposed an approach to determine uncertainty in ANN 

hydrological models. They used a bootstrapping procedure (resampling with 

replacement) in which 300 networks were trained to calculate uncertainty bands. They 

concluded that using performance measures alone does not provide model confidence. 

Han et al. (2007) proposed two approaches for measuring uncertainty in ANN rainall-

runoff modelling. The first method considers the distance between the training data and 

the predictions. The second method involved looking at responses to see whether the 

ANN performed in a hydrologically sound way. More recently, Alvisi and Franchini 

(2011) proposed an ANN rainfall-runoff model with fuzzy weights and biases. The 

forecast is not deterministic but provides a range or interval of prediction at each time 

step.  

 

Uncertainty is a subject that has been dealt with more extensively in more tradiational 

hydrological modelling. In particular Montanari (2011) has provided a comprehensive 

overview of the uncertainty, recognising two main types, i.e. global, which refers to the 
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overall uncertainty between the observations and the model output, and individual, 

which refers to the individual sources of uncertainty. Examples include model structural 

uncertainty, input uncertainty, etc. A very useful table of the most commonly used 

uncertainty methods and the type of uncertainty estimates is provided in Montanari 

(2011) and is reproduced in Figure 2.4. 

 

 Figure 2.4: Methods and tyes of uncertainty. Taken from: Montanari (2011, p.464). 5 

 

ANNs fall under „Machine learning‟ where the type of uncertainty estimated is usually 

global. However, other types of uncertainty estimates are possible. A salient point was 

also raised by Montanari (2011). He stressed the need to explain the methodology very 

clearly for whatever approach is used to evaluate uncertainty so that the results are 

understandable to the scientific community.  

 

2.5.3 Future Research Areas in ANN Rainfall-Runoff Modelling 

In the year 2010, two more reviews appeared. Maier et al. (2010) examined 210 papers 

published between 1999 and 2007 in the area of water resources. The ANN model 

development process was then divided into components, e.g. input variable selection 

methods, data division methods, type of ANN, type of training algorithm, etc. and the 

papers were systematically analysed to determine which types of methods were used 

in model development. This allowed the reviewers to look at the most commonly used 

methods and where improvements could be made. Abrahart et al. (2010) took a 

different approach. They analysed the number of papers that were published each year 

in a number of hydrological fields, which clearly showed an increasing number over the 

last two decades. Roughly 400 papers were published on rainfall-runoff modelling 

linked to some aspect of ANNs. The authors considered the reasons why ANNs have 
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not been accepted widely in the hydrological modelling community, using the Revised 

Technological Adoption Life Cycle (RTALC) (Moore, 1991) as a framework to show 

how technologies evolve. They argue that the next major challenge is to move ANNs 

from Innovators to Early Adopters, and after reviewing the main themes in the literature 

that have emerged over the last two decades, provided a series of recommendations 

for how to move to the Early Adopter stage. The main areas of relevance to rainfall-

runoff modelling that were highlighted by both reviews include: 

 

 Input variable selection: The main methods used to date have generally been trial 

and error and linear correlation. More research is needed into non-linear 

approaches that take variable independence into account like that of Sharma et al. 

(2000), Sharma et al. (2000), May et al. (2008) and Fernando et al. (2009). 

 

 Rigorous inter-comparison studies: There are currently too many studies that 

report the results in isolation, e.g. a network of a particular type functioned well on a 

specific catchment with a particular set of network parameters and a specific 

dataset. Instead, rigorous inter-comparison studies like the Distributed Model 

Intercomparison Project (DIMP) (Smith et al., 2004) or the LUCHEM (Land Use 

Change on Hydrology by Ensemble Modeling) study (Breuer et al., 2009) need to 

be established. Then it will be possible to develop the type of “collective 

intelligence” on ANN modelling referred to by Abrahart et al. (2010, p.327). 

 

 Finding physical meaning in ANNs: The black box nature of ANNs is a 

problematic issue when it comes to acceptance of the methodology within the 

hydrological community.  More research needs to be undertaken in this area. 

 

The above listed areas have not been dealt with specifically in this thesis. However, 

there were two other suggested areas for further research, which are relevant to the 

thesis: 

 

 Incorporation of uncertainty: As mentioned in theme #7, there has been little 

reporting of uncertainty in ANN rainfall-runoff modelling. Parameter uncertainty is 

explicitly addressed in the thesis through the calculation of confidence intervals 

around model predictions using the QR-based additive error model, which is 

undertaken in Chapter 5. The uncertainty surrounding ANN weight initialisation is 

also examined in detail in Chapter 6.  
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 Further research into hybrid and ensemble methods: More research is needed 

in developing hybrid and ensemble methods in hydrological modelling as they hold 

a great deal of promise in the future. Ensemble methods are dealt with in this thesis 

in Chapters 5 and 6.  

 

Two other areas were examined in this thesis. The first is the need to compare ANNs 

with more physically-based models, which is an issue that was raised in the review by 

Dawson and Wilby (2001). Although there are a number of examples in the literature 

(as mentioned in relation to the different themes), the majority of papers do not 

compare ANNs with physically-based or conceptual models. Many studies have used 

other types of ANNs for comparison or other empirical models. If ANNs are to become 

more accepted in the traditional hydrological community, a more rigorous comparison 

with conceptual and physically-based models must be undertaken. 

  

Finally, an area that has been discussed in the broader hydrological literature is the 

evaluation of hydrological measures, i.e. which performance measures to use in order 

to evaluate a model (e.g. ASCE, 1993; Legates and McCabe, 1999; Dawson et al., 

2007). However, it is an area that has not been extensively dealt with in the ANN 

rainfall-runoff modelling literature. This thesis will review the performance measures 

available (Chapter 3) and apply a comprehensive set to the models developed 

(Chapters 4 to 6). 

 

2.6 Summary 

This chapter has provided an overview of the literature on ANNs with particular 

emphasis on rainfall-runoff modelling. ANNs were first placed within the typology of 

hydrological modelling methods followed by an introduction to the basics of this 

technology. This included advantages of ANNs for hydrological modelling as well as 

the disadvantages. A review of the ANN rainfall-runoff literature was then presented in 

the form of core themes followed by recommendations for further research, most of 

which were derived from recent review papers on ANNs in hydrological modelling 

(Maier et al., 2010; Abrahart et al., 2010). Uncertainty and ensemble modelling were 

two areas suggested for further research and are addressed in this research. Two 

additional areas dealt with in the thesis are: a) a greater emphasis on comparison with 

more physically-based or conceptual models; and b) a critical look at the performance 

measures used to evaluate ANN models, which are reviewed in the next chapter. 
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Chapter 3  

Performance Measures for Model Evaluation  
 

3.1 Introduction 

The performance of hydrological models is commonly assessed by computing a 

number of measures of performance or goodness-of-fit statistics. This also holds true 

for ANN rainfall-runoff models. Several performance criteria are described in the 

literature along with their merits and shortcomings (Legates and McCabe, 1999; 

Jachner et al., 2007; Dawson et al., 2007; Reusser et al., 2009). Many authors argue 

that it is important to apply a number of indices, which should be chosen according to 

the particular needs of each individual application (Dawson et al., 2007). Moreover, it is 

suggested that the adopted criteria should not be redundant (Gupta et al., 1998; 

Reusser et al., 2009) and should be sensitive to different types of errors (e.g. errors in 

peak prediction, errors in timing of the hydrograph prediction, etc.). However, often only 

redundant indices, which are linked to each other such as the coefficient of 

determination, the sum of errors squared and the normalised root mean squared error, 

are applied. Moreover, the „best‟ model is usually selected by comparing the values of 

the performance criteria and sorting the models according to their score without a 

comparison with a benchmark model and a formal assessment of the significance of 

the differences, even though these good practices are recognised in the forecasting 

and hydrological literature (e.g. Makridakis et al., 1998; Siebert, 2001; Brath et al., 

2002; Hyndman and Koehler, 2006; Schaefli and Gupta, 2007; Moussa, 2010). 

 

This chapter provides an overview of a range of measures available and how they are 

computed. These measures can be characterised by those which are absolute (i.e. 

expressed in the units of the output variable, e.g. metres) or relative (i.e. dimensionless 

or expressed as a percentage). The relative measures can be further broken down into 

those which use a reference or benchmark model for comparison (Hyndman and 

Koelher, 2006), e.g. comparison to the mean. In addition, two measures from 

economics will be reviewed that may have potential merits for assessing model 

performance in hydrology. From this review, a set of measures has been chosen that 

will be used in subsequent chapters of the thesis. In the equations used throughout this 

chapter,  is the observed series,  is the model forecast series,  is the mean of the 

observed series,  is the mean of the forecast series and  is the naïve forecast. 

 

3.2 Absolute Performance Measures 

Absolute metrics provide an idea of the absolute differences between observed and 
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modeled values in the original units of measurement. One of the most commonly 

calculated measures is the Mean Absolute Error (MAE): 

 

 
(3.1) 

 

The MAE has no upper limit where 0 indicates a perfect fit between the observed and 

predicted values. Examples of papers that have used the MAE to assess ANN rainfall-

runoff model performance include those by Cannas et al. (2006) and Dawson et al. 

(2006b). 

 

Since the absolute value of the deviations is used in the MAE, a related measure that 

takes the sign of the deviations into account is the Mean Error (ME), calculated as: 

 

 
(3.2) 

 

Similar to the MAE, the ME has no upper limit and 0 indicates a perfect fit. Since the 

ME assigns equal weights to small and high values, this measure can be used to 

determine possible biases since it is a signed metric. However, a low value of ME may 

also indicate a situation where the over and under predictions have effectively 

cancelled each other out and therefore this measure should be used in conjunction with 

others. Many papers in the past have used a variation of this performance measure, 

i.e. the square of the deviations (e.g. Karunanithi et al., 1994; Raman and Sunilkumar, 

1995; Cigizoglu, 2005; Sahoo and Ray, 2006; Sahoo et al., 2006; Leahy et al., 2008; 

Partal, 2009). 

 

The MdAE (Median of the Absolute Errors) is simply the median of the absolute 

deviations between the observed and predicted values and provides information on the 

distribution of the deviations: 

 

 (3.3) 

 

This measure does not appear to have been used in previous research involving ANNs 

and rainfall-runoff modeling with the exception of Napolitano et al. (2011). 

 

Another commonly reported absolute error measure is the Root Mean Squared Error 

(RMSE): 
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(3.4) 

 

As with the MAE and the ME, the RMSE has no upper limit and 0 indicates a perfect fit. 

As the differences between the observed and predicted values are squared, this 

measure penalises prediction errors in high flow events compared to low flows, as high 

flows are generally where the greatest error in model prediction occurs. The RMSE 

tends to be slightly larger than the MAE where the magnitude of this difference can be 

used to indicate the extent of outliers in the data (Legates and McCabe, 1999). Many 

studies can be found that have utilised this measure in assessing ANN rainfall-runoff 

models (e.g. Smith and Eli, 1995; Dawson and Wilby, 1998; Campolo et al., 1999; 

Dawson et al., 2000; Corani and Guariso, 2005b; Kumar et al., 2005; Cannas et al., 

2006; Dawson et al., 2006b; Sahoo and Ray, 2006; Sahoo et al., 2006; Chidthong et 

al., 2009; Hejazi and Cai, 2009; Remesan et al., 2009). To allow for comparison of 

RMSE across different variables or between different catchments, it is possible to 

normalise this measure by dividing it by the mean of the observed values over the 

modelling time period as implemented, e.g. by Jain and Srinivasulu (2004a, b). 

 

A variation of the RMSE is the Fourth Root Mean Quadrupled Error (R4MS4E):  

 

 

(3.5) 

 

Similar to the RMSE, it places even higher weight on the largest deviations and 

therefore penalises models even more than the RMSE for errors in high flow events. 

This measure was used by Cannas et al. (2006) as one of several measures for the 

evaluation of different data-driven forecasting models of monthly flows in Sardinia. A 

similar measure was used by Abrahart and See (2000) in comparing ANN rainfall-

runoff models for the Ouse and Wye Rivers in the UK. 

 

A less often reported metric is the Peak Difference (PDIFF): 

 

 (3.6) 

 

which calculates the highest value predicted in the model and subtracts that from the 

highest value recorded in the observed dataset. Unlike the other measures it does not 

attempt to represent the overall level of agreement between the observed and 

predicted data nor does it consider the temporal relationships between the highest 
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values. For example, if the dataset is continuous, then the maximum values might be 

calculated from different flood events. If a single event is being considered, then this 

measure has potentially more value. However, this measure does indicate whether the 

model is producing values similar to what is seen in the observed data set. A number of 

NN rainfall-runoff models have been evaluated using this measure (e.g. Chang and 

Hwang, 1999; Kerh and Lee, 2006; Chaipimonplin et al., 2010). 

 

3.3 Relative Performance Measures 

Relative errors (also known as percentage metrics) introduce a scale check, 

accounting for the fact that a difference of two, for example, has a much larger impact if 

the observed value is two rather than 100 (Dawson et al., 2007; Villarini et al., 2008). 

Four relative measures that correspond directly to the first four absolute measures are 

the Mean Absolute Percentage Error (MAPE), the Mean Percentage Error (MPE), the 

MdAPE (the Median Absolute Percentage Error), and the Root Mean Squared 

Percentage Error (RMSPE), which are calculated as follows: 

 

 
(3.7) 

 
(3.8) 

 
(3.9) 

 

(3.10) 

 

In addition to these relative measures, another commonly reported measure is the 

'Coefficient of Determination' or R-squared (Pearson, 1896):  

 

 
(3.11) 

 

The indicates how much variance is explained by the model. A value of 0 indicates 

no explanation while 1 is a perfect fit. A number of problems have been identified with 

this measure as outlined by Legates and McCabe (1999), e.g. high values of goodness 

of fit can result even when the model is flawed, it is insensitive to the means and 

variances in the data, and it is very sensitive to outliers. Despite these issues, the  

has been used by a number of authors in evaluating their ANN rainfall-runoff models 

(e.g. Lorrai and Sechi, 1995; Campolo et al., 1999; Dawson and Wilby, 1999; Corani 
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and Guariso, 2005b; Kumar et al., 2005; Cannas et al., 2006; Dawson et al., 2006b; 

Kerh and Lee, 2006; Hung et al., 2009; Mukerji et al., 2009). 

  

An improvement over the  statistic and one that has been used very commonly in 

hydrology (Legates and McCabe, 1999) is the Coefficient of Efficiency (CE) developed 

by Nash and Sutcliffe (1970): 

 

 
(3.12) 

 

The CE generally ranges from 0 to 1 (perfect fit) although negative values are possible. 

A value of 0 indicates that the model is no better than simply forecasting the mean 

value. The CE has been commonly reported as a measure used to evaluate ANN 

rainfall-runoff models (e.g. Minns and Hall, 1996; Chang and Hwang, 1999; Dawson et 

al., 2006a; Kerh and Lee, 2006; Leahy et al., 2008; Yang and Chen, 2009). 

 

Despite the popularity of CE, Beran (1999) argues that there are better baselines 

against which model performance should be compared such as persistence or 

seasonal averages. An example is the Coefficient of Persistence or the Persistence 

Index (PI) as outlined in the paper by Kitanidis and Bras (1980):  

 

 
(3.13) 

 

The PI has strong similarities to the CE but instead of the observed mean, the last 

observed record (or the naïve forecast) is used for the purposes of model comparison. 

If the PI is 0, then the forecasting method performs as well as the naïve forecast. If the 

PI is greater than 0 up to a value of 1 (perfect fit), then the forecasting method performs 

better than the naïve model. The higher the value of the PI, the better the model is 

compared to the naïve forecast. However, if the PI is less than 0, then the forecasting 

method performs worse than the naïve forecast. There are not many examples of the 

use of PI although the Hydrotest system of Dawson et al. (2007) automatically 

calculates this measure. Anctil et al. (2006) used this index to evaluate ANN rainfall-

runoff models with differing numbers of rain gauge inputs. 

 

It is also possible to add persistence to the MAE and MdAE measures resulting in: 
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(3.14) 

 

 
(3.15) 

  

The final measure reviewed in this section is the geometric reliability index (GRI), which 

measures the accuracy of the simulation within a multiplicative factor (Leggett and 

Williams, 1981): 

 

 

(3.16) 

 

If the GRI is the value assumed by the index, the observed values fall between 1/GRI 

and GRI times the corresponding predicted values (Jachner et al., 2007). The GRI 

measures how wide a cone would be in order to contain the data (Figure 3.1), where 

small errors would be expected (in absolute terms) for small values, and bigger errors 

when the absolute value increases.  

 

 

Figure 3.1: Visualisation of the GRI cones around the best fit line 6 

 

There is no evidence that this measure has been used in the evaluation of ANN 

rainfall-runoff models with the exception of Napolitano et al. (2011). 
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3.4 Two Error Measures from Economics 

It is also possible to apply formal tests to assess whether two models have equal 

accuracy, e.g. an ANN compared to a conceptual model or another type of data-driven 

model. There are two statistical tools which allow for this type of testing that are well-

known in econometrics, but have not yet been utilised in hydrology (Laio and Tamea, 

2007). These are the sign test (Lehmann, 1975) and the Diebold-Mariano test (Diebold 

and Mariano, 1995). The details of these tests are provided below. 

 

Let M1 and M2 denote two models to be compared. Two tests are considered to 

assess if M1 outperforms M2 or vice versa. Both tests are based on the concept of 

loss-differential: 

 

 (3.17) 

 

where   is a function, which is commonly assumed to be  or . The 

“equal accuracy” null hypothesis is equivalent to the null hypothesis that the population 

mean of the loss-differential series is 0. The first test is a classical finite sample sign 

test (Lehmann, 1975). Assuming that the loss-differential series is independent and 

identically distributed ( ), the number of positive loss-differential observations in a 

sample of size  has the binomial distribution with parameters  and 0.5 under the null 

hypothesis (Diebold and Mariano, 1995). The sign test statistic is therefore: 

 

 
(3.18) 

 

where  if , and otherwise is equal to 0. Note that S2 is insensitive 

to the choice of . In large samples, the Studentized version of the sign-test statistic is 

asymptotically standard normal: 

 

 
(3.19) 

 

A negative value for the  statistic smaller than the standard normal threshold 

 indicates that the forecast generated by the M1 model is closer to the 

observed value than the forecast generated by the M2 model more often than expected 

by random chance, and it can be concluded that the M1 model generates a more 

accurate forecast than the M2 model, with a 95% confidence level in a two-sided test. 

Since loss-differential is commonly serially correlated, the sign test could give biased 
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results. To avoid this problem, the sign test is performed on subsamples selected by 

taking loss-differential values separated by a given number of time steps 

. As the resulting samples are serially 

independent, a test with size  can be obtained by performing  tests, each of size 

, on each of the  loss differential sequences and rejecting the null hypothesis if 

the null is rejected for any of the  samples, exploiting the Bonferroni inequality 

(Diebold and Mariano, 1995).  

 

The second test, named the Diebold-Mariano test (Diebold and Mariano, 1995), is 

based on the asymptotic distribution of the sample mean loss-differential, . It explicitly 

accounts for possible autocorrelation of the loss-differential series. The test statistic is: 

 

 
(3.20) 

 

where  is an estimate of the spectral density of the loss-differential  at zero 

frequency. As  can be deduced from the Fourier transform of the autocorrelation 

function, it provides a correction for possible serial correlation of loss-differential. 

Further details on the estimation of  can be found in Diebold and Mariano (1995). 

The  test statistic is asymptotically standard Gaussian. A non-zero value of  

indicates that the accuracy of the two simulations can be distinguished statistically. 

Namely, a negative value for  that exceeds the critical threshold would indicate that 

the first model (M1) generates a more accurate forecast than the second model (M2) 

 

3.5 Choosing a Set of Measures for Assessing Model Performance 

Table 3.1 summarises the performance measures chosen in evaluating the models in 

this research. There is redundancy between some of the measures, which is 

intentional. The use of redundant indices will provide a mutual validation of the results 

as well as stressing the importance of using non-redundant indices. Absolute and 

relative metrics are complemented with the values corresponding to a naïve forecast to 

highlight the coherence with the results, which implies a direct comparison with 

benchmark models. 
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Table 3.1: Summary of performance measures selected for use in the research 

Measure Acronym Lower Limit Upper Limit No error 

Mean error ME   0 

Mean absolute error MAE 0  0 

Median absolute error MdAE 0  0 

Root mean squared error RMSE 0  0 

Peak difference PDIFF   0 

Mean percentage error MPE   0 

Mean absolute percentage error MAPE 0  0 

Median absolute percentage error MdAPE 0  0 

Root mean square percentage error RMSPE 0  0 

Coefficient of efficiency CE  1 1 

Persistence index PI  1 1 

PI based on MAE PI.MAE  1 1 

PI based on MdAE PI.MdAE  1 1 

Geometric reliability index GRI 1  1 

Sign test S2 - - - 

Diebold-Mariano Test S1 - - - 

 

Four absolute metrics have been chosen: ME, MAE, MdAE and RMSE, which will 

provide an idea of the absolute differences between observed and modeled values in 

their original unit measures. In particular, since the ME is a signed metric, it can be 

used to determine possible biases. MAE, MdAE and RMSE, on the other hand, are 

non-negative metrics. Unlike RMSE, the MAE and MdAE are not weighted towards 

higher or lower magnitude events. The MdAE was chosen as it is less affected by 

skewed error distributions than the MAE. The R4MS4E is similar enough in nature to 

the RMSE so will not be used further in the thesis. PDIFF has flaws for continuous 

modelling and will therefore only be applied to single event modelling. 

 

The relative error measures chosen include: MPE, MAPE, MdAPE and RMSPE, which 

provide a direct correspondence to the first four absolute metrics (Equations 3.1 to 3.4), 

and the same comments apply to these measures as above. Indices of relative 

differences, which compare the errors from the selected model with respect to those 

from a benchmark or reference model, have also been chosen. The first two error 

measures are CE and PI. Both use different benchmark models for comparison, i.e. the 

mean and persistence. Since both CE and PI are based on squared errors, two further 

measures are added: PI.MAE and PI.MdAE to account for relative errors that equally 

weight large and small observations. The values of these similarity measures are upper 

bounded to one and allow for an easy comparison between formal and naïve 

approaches. 

 

Finally, in the situation where more than one model type is being compared, and the 

data are of sufficient length, then the sign test and the Diebold-Mariano test will also be 

applied. 
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In addition, the GRI (Leggett and Williams, 1981) is chosen because it has not been 

used to evaluate ANN rainfall-runoff models before.  

 

3.6 Summary 

This chapter provided a review of the performance measures commonly used to 

evaluate ANNs and other types of hydrological model. From these measures, fourteen 

were chosen to evaluate single models and two additional measures originating from 

economics, were chosen when comparing the difference between results from two 

competing models. Some of the measures are redundant but these have been chosen 

to see whether they provide a consistent message when applied to these models. In 

Chapters 4 to 6, these measures are systematically applied and compared for fitness of 

purpose. Visualisation (or graphical comparison) is also used as an additional aid in 

model evaluation as recommended by Green and Stephenson (1986).  
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Chapter 4  

Comparison of a Conceptual and ANN Rainfall-Runoff 
Model of the Tiber River 
 

4.1 Introduction 

The starting point for this research is an exploration into the capability of ANNs for 

rainfall-runoff modelling in a large catchment. To provide a real test of the skill of the 

ANN, the results from this model are compared to the results from a conceptual model. 

As highlighted at the end of Chapter 2, this is not an exercise that is carried out very 

frequently, with most researchers choosing linear regression, time series models or 

other data-driven models for comparison. This chapter will begin with a description of 

the characteristics of the River Tiber catchment, the data available for modelling and 

the main flood events that have occurred recently in Rome. The chapter then presents 

the conceptual TEVERE model followed by the development of an ANN model at the 

same site. Both models were then run to predict the 2005 and 2008 flood events in 

Rome at the Ripetta gauging station. The results of these initial experiments are 

provided, along with a comparison of the two models. 

 

4.2 The Tiber River Basin 

The Tiber River is the third longest river in Italy. It has a catchment area of 

approximately 17,000 km2 covering around 5% of the country as shown in Figure 4.1. 

The Tiber has a length of around 400 km and rises in Emilia Romagna on Mount 

Fumaiolo at 1268 m above sea level, with a discharge of 10 m3/s. The average 

discharge of the river is approximately 300 m3/s. The Tiber flows from the Apennines 

through Rome and then into the Tyrrhenian Sea. The average basin elevation is 524 m. 

The main tributaries on the western side are: the Cerfone, Nestore, Paglia and Treia 

Rivers. On the eastern side, are the Rivers Chiascio, Nera, Farfa and Aniene.  

 

The entire catchment covers 5 regions of Italy as shown in Table 4.1, with negligible 

areas in two other regions. The catchment can be subdivided into 3 ungauged areas 

(marked as 5, 7 and 8 in Figure 4.1) and 6 gauged areas (marked 1-4, 6 and 9 in 

Figure 4.1). The total ungauged area is approximately 2,750 km2; Kottegoda et al. 

(2004) found that this area can be considered as a homogeneous rainfall region. In the 

basin there are 334 municipalities and a total population of 4.5 million inhabitants, with 

80% living in the province of Rome. 
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Figure 4.1: The Tiber River Basin 7 

 

Table 4.1: The percentage area of the Tiber River Basin in each region in Italy 2 
 

Regions in the Tiber Basin Percentage Area  

Emilia Romagna 0.16 % 

Toscana 7 % 

Umbria 47% 

Marche 1.2 % 

Abruzzo 3.6 % 

Lazio 41% 

Vatican City 0.005 % 

 

 
During the mid-twentieth century, the Corbara dam (Calenda et al., 2009) was built a 

few kilometres upstream of the Paglia River inlet, which is located approximately 150 

km north of Rome as shown in Figure 4.1. Along the Tiber there are many dams with 

reservoirs (such as the Montedoglio, Chiascio or Alviano reservoirs), but Corbara is 

considered to be the most important because of its size and capacity. The dam can be 

used to reduce the peak discharge that occurs downstream in Rome by approximately 

300 m3/s as the dam has an active storage capacity of 135x106 m3 (Calenda et al., 

2009). According to Natale and Savi (2007), this translates to just less than 10% of the 

peak discharge with a 200 year return period. The travel time of the flood wave from 

the Corbara dam to the centre of Rome (at the Ripetta gauging station) is between 24 
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and 30 hours. 

 

Figure 4.2: A photo of Corbara dam taken in 2005. Source: G. Napolitano8 

 
4.2.1 Catchment Geology 

Four main geomorphological areas can be identified in the catchment: (a) the 

carbonate Apennine ridge in the eastern and southern area; (b) the Graben of the 

Tiber, with its deposits of marine and continental sediments in the middle part of the 

basin; (c) the volcanic mountains of Vulsini, Cimini, Sabatini and Albani, which occupy 

the south western part of the area; and (d) Terrigenous deposits in flysch facies in the 

upper part of the catchment (Autorità di bacino del fiume Tevere, 2006). A more 

detailed presentation of the geology of the basin is provided in Figure 4.3. 

 

Figure 4.3: Geomorphological map of the Tiber River Basin (Source: Autorità di bacino del 
Fiume Tevere, 2006) 9 
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4.2.2 Land Use 

A map showing the land use of the basin is provided in Figure 4.4. Approximately 50% 

of the area of the basin is used for agriculture, 35% is covered by forests, and only 8% 

are meadows and pasturelands. Vegetation plays an important role in the defence 

against erosion of the soil surface. This involves a reduction in sediment transport in 

the streams, decreasing the runoff, and increasing the concentration time of each sub-

basin. 

 

Figure 4.4: Land use map of the Tiber River basin (Source: Autorità di bacino del Fiume Tevere, 
2006). 10 

 
4.2.3 Climate 

The rainfall, which is almost uniform throughout the basin, is characterised by two 

maxima, the first in November and a secondary one in February. The minimum occurs 

in the summer, usually in July. The distribution of the average annual rainfall is strongly 

influenced by the orography (as shown Figure 4.5). On the basis of continuous 

measurements over a period of 50 years, the average annual rainfall has been 

calculated as 1,050 mm (Autorità di Bacino del Fiume Tevere, 2006). In the case of the 

Tiber catchment, the rainfall from 1 to 4 days before the flood peak (Bersani and 

Bencivenga, 2001) or until 6 days before the peak (Palmieri et al., 2001; Remedia et 

al., 1998) are considered as determinants of the saturation of the land and the state of 

the river. 

 



53 

 

 

Figure 4.5: Average rainfall map over 50 years of available records (Source: Autorità di Bacino 
del Fiume Tevere, 2006). 11 

 

 

4.2.4 Catchment Hydrology 

The Tiber catchment is characterised by the presence of several seasonal streams. 

This element, plus erosion and solid transport, can cause noticeable variations in the 

discharge of the River Tiber. In order to control for this effect, several such structures 

have been built over the past few decades including nine dams, four weirs and twelve 

bottom sills and drop structures (Autorità di bacino del fiume Tevere, 2006). 

 

The gauging station for further consideration is located at Ripetta in Rome in order to 

examine how the construction of the Corbara dam, which began operation in 1965 

(Natale and Savi, 2007), may have influenced the annual maximum flow at this station. 

Figure 4.6 shows the annual maximum discharge at Ripetta from 1921 to 2008. The 

red line highlights the year when the Corbara dam was first in operation.  
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Figure 4.6: Annual maximum discharge at Ripetta gauging station in Rome. 12 

In order to see if the dam has changed the behaviour of the Tiber River, a series of 

different statistical inhomogeneity tests have been applied including the Run Test 

(Wald and Wolfowitz, 1940), the Kendall test (Kendall, 1975), the Pearson test 

(Plackett, 1983) and the Cox Stuart test (Cox and Stuart, 1955). The main purpose of 

these tests is to evaluate if there has been some change in the trend of the series. 

Table 4.2 shows the results of these tests. 

Table 4.2: Results of Moment Tests (sample size 87) at a significance level of 5%3 

Moment Tests Null hypothesis 
Reference 

interval/value 
z 

Is the null 
hypothesis 

true? 

Run test 
The elements of the 

sequence are mutually 
independent 

[-1.96 ÷ 1.96] -0.11 YES 

Kendall 
The elements of the 

sequence are mutually 
independent 

[-1.96 ÷ 1.96] -0.10 YES 

Pearson  
The samples are an 

independent series of 
records 

1.99 2.84 NO 

Cox-Stuart 
The series does not have 

a trend 
[13÷25] 11 NO 

 

These tests provide an answer regarding the homogeneity or inhomogeneity of the 

time series. However, if the sample is not homogeneous, then the test cannot explain 

the reason for that inhomogeneity, which can only be the result of subjective 

considerations. The rejection of the null hypothesis of the Pearson test seems to 

highlight a slight downward trend, noted by Kendall's test and the Cox-Stuart test at 5% 

significance. In fact, it is well known that the second half of the twentieth century was a 

period of relative calm for the Tiber River (Calenda et al., 2009). 

 

To test whether the dam has effectively changed the behaviour of the river, the series 

http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Statistical_independence
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of records was divided into two sub-samples: the first with discharge data until 1964 

and the second with the data between 1964 until 2008. To detect differences between 

the mean of the two samples, the T test (parametric) and the Mann-Whitney test (non-

parametric) have been applied. In addition, to evaluate the difference in the variance, 

two parametric tests, i.e. the 2 test and the F test, were used. The results are shown in 

Table 4.3 and indicate that there are significant differences between the series before 

and after the year 1964.  

 

Table 4.3: Moment tests between the series until 1963 (sample size 43) and from 1964 to 2008 
(sample size 44) 4 

MOMENT 
TESTS 

Significance Null hypothesis 
Reference 

interval/value 
Z 

Is the null 
hyp true? 

T- test  5% The means are equals [-1.66 ÷2.55] 2.55 NO 

Mann-Whitney  5% 
The samples are from 
the same population 

[-1.96 ÷ 1.96] -2.61 NO 

χ
2 
test  5% 

The variances are 
equals 

[26.79 ÷ 62.99] 41.39 YES 

F- test  10% 
The variances are 

equals 
1.664 1.039 YES 

 

The skewness of each sample was also evaluated and is listed in Table 4.4, which 

shows a marked difference in the asymmetry before and after 1964. The sample with 

measurements before 1964 is highly asymmetrical, which could be a result of the big 

floods that occurred in 1937 and 1947, while the asymmetry in the sample of data after 

1964 drops almost to zero. 

 

Table 4.4: Skewness value for the series until 1963 (sample size 43) and from 1964 to 2008 
(sample size 44) 5 

 

4.2.5 Flooding in the City of Rome 

The Tiber River flows for over 60 km through the urban area of Rome, passing through 

10 town districts out of 19. A population of 1.4 million live in those areas (Autorità di 

bacino del fiume Tevere, 2006). In particular, Rome and the surrounding areas have 

been affected by flooding over many centuries. Even though the city centre is quite 

safe from flooding due to the concrete walls (Muraglioni) that were built along the river 

in the 20th century (Natale and Savi, 2007), there is still a high possibility that water 

could overflow the banks around the Milvio bridge (Natale and Savi, 2006) (Figure 4.7). 

Two more recent events (in 2005 and 2008) are described in more detail in the 

sections that follow. 

Statistic parameter 
Samples 1921-1962 

Size=43 
Samples 1963 -2008 

Size=44 

Skewness 0.978 0.06 
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Figure 4.7: Map of the city centre of Rome. Source: Natale and Savi (2007). 13 

 

4.2.5.1 The 2005 Event 

Between 25 November and 9 December 2005, there was a period of persistent rainfall 

in the Tiber basin, in particular on 25-26 November, 29-30 November, 2-3 December, 

5-6 December and 9 December. The cumulative precipitation and the hourly intensity 

of the rainfall was not particularly high so the main cause of flooding was from: (a) 

diffuse precipitation covering large spatial and temporal scales within the catchment; 

and (b) a high degree of soil saturation. As a result, the Corbara reservoir was used to 

store the flow coming from the upper part of the catchment in order to reduce the 

effects downstream of the dam. Figure 4.8 shows the observed discharge hydrographs: 

(a) flowing into the reservoir; (b) released from the Corbara dam; and (c) at the Ripetta 

gauging station between 26 and 30 November 2005. The main effect of this flooding 

event was the inundation of the river at Orte, Ponte Felice and at the inlet of the Tiber 

in the Tyrrhenian Sea (Figure 4.1). In addition, two ships sank along the Tiber in Rome, 

the power supply in Idroscalo di Ostia was interrupted, and an area in Fiumicino 

municipality (Passo della Sentinella) was evacuated. The observed peak discharge in 

Rome was about 1400 m3/s. 
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Figure 4.8: Observed discharge hydrographs flowing into the reservoir (in red), released from 
Corbara dam (blue), and at Ripetta gauging station (green) for the flood event that occurred in 
November 2005. 14 

 

 

4.2.5.2 The 2008 Flood Event 

Figure 4.9 shows the 2008 event in terms of precipitation recorded at a number of 

gauging stations. This event was characterised by 3 distinct periods of persistent 

rainfall (5-7 December, 10-13 December and 15-16 December 2008). The cumulative 

precipitation over 6 consecutive days was between 150 to 190 mm over most parts of 

the basin. The water level at Ripetta rose from 7 m to 11.30 m between 10 and 11 

December. At the same time the Corbara reservoir stored most of the rainfall from the 

central part of the basin. Through the use of floodplains, the rise in the water level at 

Ripetta was slowed down. The peak (of 12.55 m) was recorded at Ripetta on 13 

December 2008. This flood event was about the same magnitude as that which 

occurred in February 1986 (12.40 m at Ripetta), February 1976 (12.72 m at Ripetta), 

September 1965 (12.65 m at Ripetta) and December 1964 (12.46 m at Ripetta). The 

major effects of this flooding event were the inundation of the urban areas of the 

Aniene River. In addition, two boats were cast off their moorings, obstructing 

Sant‟Angelo bridge in the centre of Rome. This called for the urgent intervention of the 

Civil Protection Authority and firemen. Both boats were destroyed by controlled 

explosions, thus enabling the smooth flow of water down the river.  
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Figure 4.9: Rainfall during the 2008 flooding event for all stations in the middle part of the Tiber 
basin at a recording interval of 30 minutes. Source: Centro Funzionale Regione Umbria (2009). 
15 

4.3 The Conceptual Tevere Flood Forecasting (TFF) Model 

The TFF (Tevere Flood Forecasting) model was developed by Calvo and Savi (2009) 

for real time forecasting by modifying the TEVERE model originally developed by 

Natale and Savi (2007). The TFF is composed of three sub-models: (i) the TFF BASIN 

model, which is a conceptual, semi-distributed hydrologic model that transforms rainfall 

into hourly runoff from the sub-basins of the Tiber River; (ii) the TFF RIVER model, 

which simulates the propagation of the flood wave from Corbara dam to the Tyrrhenian 

sea; and (iii) a module for the online calibration and adaptation of the values of the 

model parameters. 

 

A schematic of the TFF BASIN model is shown in Figure 4.10. Rainfall intensity  is 

comprised of surface runoff  and the infiltration rate  (Figure 4.10a). The infiltration 

rate is calculated through application of the mass balance equation to a certain known 

volume of soil of unit area, considered as a conceptual reservoir (Figure 4.10b):  is the 

water level in the reservoir and  is the subsurface flow. The fraction  of the 

subsurface runoff contributes to the surface runoff, while the remaining fraction 

 is considered lost in deep percolation; the variables  and  depend on  

according to the relationships shown in Figures 4.10c and d respectively. The surface 

runoff is computed as: . Separate convolution of the two runoff 

components  and , via surface and subsurface Gamma Instantaneous Unit 

Hydrographs (IUH), where ,  and ,  are the parameters of the two 

IUHs representing surface and subsurface flow, gives the channelised flow . The 

model therefore includes the 13 parameters as shown in Figure 4.10: , , , 
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, , , , , , , , , .  

 

 

Figure 4.10: An outline of the TFF BASIN model (Source: Napolitano et al., 2009). 16 

 

The TFF RIVER model simulates the propagation of the flood wave along 8 reaches 

over which the hydrographic network is divided, including the two short channels 

around Isola Tibertina, an island in the centre of Rome, and those of Fiumara Grande 

and Canale Fiumicino (Figure 4.1). For each reach, the 1D, free surface, gradually 

varied flow equations were integrated (Cunge et al., 1980). The model simulates flow 

through hydraulic singularities (i.e. bridges, dams, sills and drop structures) along the 

river by imposing internal boundary conditions, i.e. rating curves, and takes into 

account the inflows from tributaries. The model parameters (Manning roughness 

coefficients, discharge coefficients at bridges and dams, minor loss coefficients at 

nodes) were calibrated offline by simulating historical flood events.  

 

During real time forecasting, the values of the TFF RIVER model parameters are held 

constant, whereas the values of the TFF BASIN model parameters are calibrated 

online at each time step. The values of the model parameters for the 41 ungauged sub-

basins were estimated through a regional analysis on the basis of hydrological 

similarity by performing a preliminary offline calibration. Recordings of hourly rainfall 

and discharge were collected for 70 floods on 12 gauged sub-basins located upstream 
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and downstream of Corbara dam. These events were simulated and used to calibrate 

the TFF BASIN model. The values of the model parameters were calibrated by means 

of a genetic algorithm as proposed by Wang (1991; 1997). 

 

In order to estimate the parameters of the rainfall-runoff model for the 41 ungauged 

sub-basins, the resulting values of ksur that correlated well with the time of 

concentration tc, were computed according to the Giandotti (1934) formula:  

 

 
(4.1) 

 

where  [km2] is the surface of the sub-basin,  [km] is the length of the main water 

course, and  [m] is the difference between the mean sub-basin elevation and the 

outlet elevation. The values of the other three parameters ( , ,  of the 

Gamma Instantaneous Unit Hydrograph (IUH) did not correlate to any morphological 

parameter and were characterised by their mean values and standard deviation.  

 

The remaining nine parameters ( , , , , , , , , ), all of which refer to 

the subsurface flow, were linearly correlated to the value of the SCS Curve Number, 

 (SCS, 1985). For each sub-basin, the values of  varied for different storms due 

to the variations of the antecedent soil water content. To take into account these 

variations for each of the nine parameters , two linear correlations were performed. 

The first provides an estimation of the mean value of the parameter and can be 

expressed as: 

 

 (4.2) 

 

where  is the mean value of the generic parameter of the subsurface flow model 

shown in Figure 4.10 ( , , , , , , , , ), and  is the  value in 

normal soil moisture conditions before the storm, which is obtained from maps of soil 

type and soil use (SCS, 1985). The ratio between the value of the parameter for the 

storm  and the average value  was then correlated with the ratio 

 as follows: 

 

 (4.3) 
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where  is the value of  for a given storm. 

 

In the real-time flood forecasting procedure, to reduce the number of parameters, the 

values of the ratio  were kept constant over the three zones 5, 7 and 8 

shown in Figure 4.1. The total number of parameters that require online calibration was 

therefore reduced to 3. During a flood event, these three parameters are calibrated 

online by minimising the objective function, which is the sum of the squares of the 

differences between observed and computed water surface elevations in a moving 

window of 18 hours. For a more detailed explanation of the model, see the paper by 

Calvo and Savi (2009).  

 

Observed hourly discharge hydrographs were available at four stream gauging 

stations: Corbara dam, Paglia River at Orvieto, Nera River at San Liberato dam and the 

Aniene River at Lunghezza (Figure 4.1). The TFF BASIN model was used to calculate 

the contribution of the tributaries of the sub-basins found in zones 5, 7 and 8 (shown in 

Figure 4.1). 

 

The full TFF model was used to predict the 2005 and 2008 floods. Confidence intervals 

of the forecasted values were estimated by means of a Monte Carlo procedure as 

outlined in Calvo and Savi (2009). 

 

4.4 An ANN Model of the Tiber River 

Some ANN modelling of the Tiber River has already been reported in the literature but 

previous work has been confined to modelling of the upper Tiber and not the lower part 

of the river as in this research study. For example, Bonafé et al. (1994) applied a 

feedforward ANN consisting of three layers with three hidden nodes determined by trial 

and error. The data available covered a period of 4 years from 1/08/1988 to 31/12/1992 

including daily precipitation from 26 rain gauge stations, daily mean temperature from 

13 thermographic stations, and daily mean discharge at the section of Monte Molino 

(just upstream of the Corbara reservoir). For training the network, data from 4/08/1988 

to 31/12/1991 were employed, and 1992 was then used to validate the performance of 

the network. The results obtained with the ANN were compared with those obtained 

from applying the ARX rainfall-runoff model (an autoregressive with exogenous 

variables model) and the persistence hypothesis to the same catchment and the same 

data set. The overall conclusion of the authors, based on the efficiency of each model, 

was that the ANN provided highly accurate runoff reconstructions; the performance 

was much better compared with the other applied models. The ANN RMSE value was 

at least 10% smaller than the ARX and the persistence models. In 2007, Tayfur and 
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Moramarco applied a feedforward ANN trained with backpropagation. The model was 

trained using 6 events recorded at three cross sections. The model was applied to a 4-

h, 8-h and 12-h lead time. The ANN provided a good performance, especially for an 8-h 

lead time. Tayfur and Moramarco (2007) found that the ANN was able to predict storm 

events in situations where the travel time of the flood wave is less than the lead time of 

the prediction. However, neither of these studies compared the ANNs to a conceptual 

or physically-based model. 

 

In this research, an ANN of the Tiber River was developed to predict the water levels at 

Ripetta using recordings of hourly water stage from Ripetta and Orte stream gauging 

stations between 1993 and 2007. The network consisted of 12 lagged inputs from each 

station, one hidden layer with 10 nodes and 1 output, i.e. the levels at Ripetta station 

with a lead time of 12 or 18 hours as shown in Figure 4.11.  

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.11: A schematic of the ANN for the River Tiber 17 

 

The configuration of the network, in particular the number of hidden nodes, was 

determined through trial and error. This consisted of trying networks with a range of 

hidden nodes and then choosing the best performing one. The network was trained 

with backpropagation and Bayesian Regularisation algorithms. The training was 

undertaken 50 times and the results were averaged in order to minimise any variability 

that could be a function of the random initialisation of the weights (Anctil, 2007). This 

procedure also means that a validation data set is not required for stopping, i.e. 

termination of the learning process to avoid overfitting of the data. Therefore, more 

data could be utilised in the training process. Flood events were extracted from the 
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historical records while data from 2005 and 2008 were used for independent testing of 

the network.  

 

4.5 Results 

Both the TFF and ANN models were compared in terms of their ability to predict the 

flood events that occurred in 2005 and 2008. In the forecasting procedure, both models 

use observed discharge, without additional rainfall forecasting; the TFF model assumes 

zero rainfall during the lead time (Corradini et al., 2004). Table 4.5 summarises the 

statistical characteristics of the observed and computed time series from each model. 

Since the forecasted time series of the TFF is smaller than the ANN, two different 

statistics are reported in Table 4.5: the first one is computed for the duration of the TFF 

forecasting, the second one (in parenthesis) is for the duration of the ANN forecasting. 

The overall statistics are similar for both models at a forecasting horizon of 12 hours. 

However, for a lead time of 18 hours (i.e. LT=18 h), the ANN statistics agree with the 

observed ones better than the TFF model.  

 

Table 4.5: Descriptive statistics for the observed and computed water levels for the TFF and 
ANN models 6 

Stats 
Event Observed Computed TFF Computed ANN 

2005 LT =12 h  LT =18 h LT =12 h LT =18 h 

Mean 
 
 
 
 

2005 

11.48 m 
(10.90 m) 

11.48 
 

11.41 m 
 

11.56 m 
(10.92 m) 

11.23 m 
(10.54 m) 

Min 
10.59 m 
(7.17 m) 

10.48 
 

9.96 m 
 

10.86 m 
(7.81 m) 

10.14 m 
(6.76 m) 

Max 11.80 m 11.88 m 12.02 m 11.88 m 11.61 m 

Std dev 
0.27 m 

(1.04 m) 
0. 32 m 

 
0.62 m 

 
0.31 m 

(1.06 m) 
0.37 m 

(1. 10 m) 

Skewness 
-1.36 

(-1.98) 
-1.63 

 
-1.60 

 
-1.19 
-1.45 

-1.75 
(-1.47) 

Mean 
 
 
 
 

2008 

11.24 m 
(10.63 m) 

10.96 m 
 

10.55 m 
 

10.93 m 
(10.41 m) 

10.70 m 
(10.23 m) 

Min 
8.50 m 

(6.82 m) 
8.45 m 

 
7.00 m 

 
8.31 m 

(6.69 m) 
8.22 m 

(6.87 m) 

Max 13.16 m 13.16 m 13.08 m 13.15 m 13.22 m 

Std dev 
1.49 m 

(1.96 m) 
1.57 m 

 
1.80 m 

 
1.55 m 

(1.91 m) 
1.50 m  

(1.81 m) 

Skewness 
-0.35 

(-0.46) 
-0.26 

 
-0.18 

 
-0.36 

(-0.39) 
-0.11 

(-0.23) 

 

Tables 4.6 and 4.7 provide the computed performance measures outlined in Chapter 3 

for the two models and two lead times. Unfortunately the times series was too short 

and not independent so the sign test and Diebold-Mariano test to compare the two 

models could not be applied. The PDIFF was employed as these are single flood 

events and not a continuous record.  

 

Starting with the flood event in 2005 (Table 4.6) and a lead time of 12 hours, the 
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absolute error measures indicate good performance for both the TFF and ANN models 

with an average error of less than 30 cm. However, the ANN model shows worse 

performance than the conceptual model with the exception of the ME. As this is a 

signed statistic, the over- and under-predictions may simply be cancelling each other 

out as mentioned in Chapter 3. The difference in peak prediction is similar for both 

models. In terms of the relative measures, a consistent message can be found, i.e. the 

ANN outperforms the conceptual model in terms of the MPE but is worse in the MAPE, 

MdAPE and RMSPE. The measures relating to benchmark models show very high 

values of CE, which denotes a very good performance according to Shamseldin (1997) 

and Dawson et al. (2007). The PI also indicates that the model is considerably better 

than a naïve forecast. However, the other PI similarity measures (PI.MAE and 

PI.MdAE) are lower than 1 for both models but higher for the conceptual TFF model. 

The PI.MdAE for the ANN indicates that it is only slightly better than an MdAE naïve 

forecast. The GRI indicates a very small cone around the line of best fit and provides 

little to help differentiate between the performance of the two models. This may be due 

to the small number of data points in the forecasts. Overall, both models perform well 

for a lead time of 12 hours but the conceptual model is better based on an examination 

of these measures. 

 

Table 4.6: Statistical error measures comparing observed and computed water levels for the 
event in 2005. The ME, MAE, MdAE, RMSE and PDIFF are in metres. The remaining relative 
measures are dimensionless. 7 

Parameters 
TFF ANN 

LT =12 h LT =18 h LT =12 h LT =18 h 

ME 0.09 0.18 -0.01 0.32 

MAE 0.12  0.26  0.30  0.36  

MdAE 0.13 0.26 0.28 0.26 

RMSE 0.14  0.37  0.35  0.45 

PDIFF -0.08  -0.22  -0.08  0.19  

MPE 0.39 1.71 -0.11 3.0 

MAPE 2.20 3.55 3.33 3.13 

MdAPE 1.12 2.20 2.70 2.47 

RMSPE 3.58 5.30 4.39 4.98 

CE 0.96 0.94 0.93 0.93 

PI 0.96 0.87 0.88 0.80 

PI.MAE 0.68 0.63 0.46 0.50 

PI.MdAE 0.63 0.39 0.03 0.13 

GRI 1.00 1.00 1.00 1.00 

 

At a lead time of 18 hours, the difference between the conceptual model and the ANN 

is less pronounced. In terms of the absolute measures, the conceptual model shows 

better performance but similar values for the MdAE. This time the peak difference is 

also underestimated in the conceptual model but overestimated by the ANN, which is a 

preferred result from a forecasting point of view. The relative measures show a mixed 

result, i.e. the conceptual model performs better in terms of the MPE and MdAPE but 
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not in terms of the MAPE. The CE is very similar at this lead time, which continues to 

highlight the fact that the mean is not the best benchmark model to use. The PI is still 

high in both models indicating better forecasting ability than a naïve model. The other 

PI-based similarity measures also show the same degradation as at a lead time of 12 

hours. The same comments apply to the GRI. 

 

Table 4.7 contains the same set of statistics for both models and lead times but for the 

2008 flood event this time. It should be noted that the 2008 flood event is an event 

higher than that which appeared in the training dataset. It is therefore expected that the 

ANN might perform much worse than the conceptual model. Interestingly, this is not the 

case. Considering a lead time of 12 hours, the absolute measures indicate pretty 

similar performances for both models with a better performance in the RMSE for the 

ANN, i.e. the measure which is biased towards higher flow events. The PDIFF is also 

very good for both models with a slightly better performance by the ANN. The PDIFF 

does not, however, indicate anything about time to peak, which is discussed in the next 

section on visual inspection of the hydrographs. 

 

Table 4.7: Statistical error measures comparing observed and computed water levels for the 
event in 2008. The ME, MAE, MdAE, RMSE and PDIFF are in metres. The remaining relative 
measures are dimensionless. 8 

Parameters 
TFF ANN 

LT =12 h LT =18 h LT =12 h LT =18 h 

ME 0.24 0.11 0.27 0.26 

MAE 0.42  0.74  0.39  0.58  

MdAE 0.30 1.03 0.43 0.44 

RMSE 0.62  1.01  0.48  0.76  

PDIFF 0.04  0.08  0.01  -0.06  

MPE 2.06 0.37 2.05 1.89 

MAPE 4.11 5.18 5.32 5.83 

MdAPE 3.25 5.89 4.56 4.55 

RMSPE 6.69 12.71 6.43 7.50 

CE 0.74 0.17 0.90 0.85 

PI 0.81 0.61 0.87 0.82 

PI.MAE 0.60 0.34 0.48 0.58 

PI.MdAE 0.52 0.05 0.32 0.51 

GRI 1.00 1.00 1.00 1.00 

 

The relative measures indicate similar performance in terms of the MPE but a superior 

performance by the conceptual model in the remaining relative measures. In terms of 

benchmark measures, the CE is much higher for the ANN and the PI is higher. 

However, when the PI.MAE and PI.MdAE are considered, the ANN performs worse. 

The values are higher, however, for this event compared to the 2005 event. Finally the 

same comments are relevant to the GRI as outlined for the 2005 event. 

 

For a lead time of 18 hours, the ANN shows superior performance in all of the absolute 
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measures except for the ME. The PDIFF is slightly underestimated by the ANN but 

both models perform well according to this measure. The relative measures again 

indicate a mixed performance with the conceptual model doing better on some 

measures and vice versa. The CE for the conceptual model is very poor while it is good 

for the ANN. If this was the only measure used to evaluate the models, then the picture 

of model performance would not be correct. This highlights the danger of using only 

one measure. The ANN performs better in terms of all the PI-based measurements and 

the PI.MdAE indicates the conceptual model is similar to the use of the naïve MdAE. 

The GRI remains consistently at 1.0 and therefore provides no differentiation between 

models.  

 

In general, the evaluation of the model performance based on these error measures is 

positive. It indicates that these models are able to forecast the level at lead times of 12 

and 18 hours with reasonable accuracy, which is a useful length of time for 

implementing civil protection measures. However, for the longer lead time, the ANN 

model seems to outperform the conceptual model although not in all evaluation 

measures. This analysis highlights the danger of using only one measure to evaluate 

model performance such as the CE. It also shows that models do not perform 

consistently well across the measures, and appropriate measures should therefore be 

chosen to highlight the desired skill of a model.  

 

As mentioned at the end of Chapter 3, visual inspection of the hydrographs is also 

undertaken to complement the quantitative analysis via performance measures. 

Figures 4.12 and 4.13 show the envelope of the forecasted water levels computed by 

the TFF model for a lead time of 12 and 18 hours, respectively, at Ripetta gauging 

station in Rome for the 2005 event. The 90% confidence intervals of the forecasted 

water levels are also provided in Figure 4.12. Moreover, in both of these figures, the 

average rainfall hyetograph over the medium-lower Tiber basin (zones 5, 7 and 8 in 

Figure 4.1) is shown.  

 

The conceptual model accurately forecasts the observed hydrograph once the event 

has progressed to 18 hours beyond the start of the event, where the first 18 hours are 

required for calibration. Confidence intervals of the forecast levels are about 30 cm 

wide (Figure 4.12). If a greater lead time is considered, i.e. 18 hours (Figure 4.13), the 

model performances decay essentially in the forecasting of the rising limb of the 

hydrograph. This is mainly due to the assumption of zero rainfall in the forecasting 

period, which means that the contributions of the rainfall that occurred at the end of 26 

November (Figure 4.13) in the forecasting of the water levels observed at the beginning 
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of the flood (27 November) are ignored. 

 

 

Figure 4.12: Comparison between the observed and 12h forecasted water levels from the TFF 
model for the November 2005 flood. Source: Napolitano et al. (2009). 18 

 
 

 
Figure 4.13: Comparison between the observed and forecasted water levels with two different 
lead times from the TFF model for the November 2005 flood. Source: Napolitano et al. (2009). 
19 

 

The results of the ANN model are shown in Figure 4.14 for lead times of 12 and 18 

hours. The ANN model is able to forecast the rising limb of the hydrograph accurately 

but it forecasts both the observed peaks slightly early. For a lead time of 18 hours, the 

results degrade slightly. The rising limb shows a delay in prediction and the peak is 

slightly underpredicted. However, the general shape of the hydrograph is reproduced 

satisfactorily for real world applications.  

 



68 

 

 
 
Figure 4.14: Comparison between observed and forecasted water levels with different lead 
times from the ANN model for the November 2005 flood. Source: Napolitano et al. (2009). 20 

 

Figures 4.15, 4.16 and 4.17 refer to the 2008 flood. In Figures 4.15 and 4.16 the 

forecasted water level hydrographs computed by means of the TFF model are 

compared with the observed one. In Figure 4.15 (LT=12 hours), the 90% confidence 

intervals of the forecasted water levels (about 0.5 m wide) are also shown. The TFF 

model fails to forecast the rising limb of the hydrograph but correctly forecasts the 

peak. The same occurs with an increase in the lead time (Figure 4.16). In this case the 

effects of the assumption of zero rainfall during the lead time clearly emerge: at the 

beginning of the forecasting, i.e. the heavy rainfalls which occurred in the first 12 hours 

of 11 December, are not considered by the model and so the rising limb of the 

hydrograph at Ripetta is significantly underestimated. The same occurs for the second 

peak on 16 December. 

 

 

Figure 4.15: Comparison between the observed and 12h forecasted water levels for the TFF 
model for the December 2008 flood. Source: Napolitano et al. (2009). 21 
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Figure 4.16: Comparison between the observed and forecasted water levels with different lead 
times for the TFF model for the December 2008 flood. Source: Napolitano et al. (2009). 22 

 

The forecasted water levels computed for different lead times by means of the ANN 

model are compared with the observed one in Figure 4.17. In this figure, two results 

computed with LT=12 hours are reported. The first one (which is plotted as a grey line 

labelled as „computed (LT=12 hours ) wt‟) excludes the 2008 flood from the training 

period, which is the most relevant flood in the period where continuous recordings are 

available (1993-2008). In this case the ANN model significantly underestimates the 

maximum water levels by more than 0.60 m. This is unsurprising as the ANN model 

has not seen such a large event before. This also highlights the problem with the use of 

the PDIFF measure which indicates a better performance than that shown by the 

graphs. 

 
 

Figure 4.17: Comparison between observed and forecasted water levels with different lead 
times for the ANN model for the December 2008 flood. Source: Napolitano et al. (2009). 23 

 

The second line (labelled as „computed (LT=12 hours)‟) includes the 2008 event. This is 

not a true test of the ANN since the 2008 event is no longer in the independent dataset. 

However, it was merely to see the effect on the result. In this case, the model 

performance increases significantly, although there are still problems in predicting the 



70 

 

later part of the first event. Model performances degrade slightly if the longer lead time 

is considered, but the ANN is generally able to produce acceptable results for real 

world applications. 

 

4.6 Summary 

This chapter has compared a simple ANN model of the Tiber River basin at Ripetta in 

the city of Rome with a conceptual model developed for the same area. Both the 

conceptual TFF and ANN models were found to provide good model performance for a 

lead time of 12 hours. Although the TFF model demonstrates more accurate 

forecasting of the peak, it requires a calibration window of 18 hours so cannot predict 

the rising limb of the hydrograph. Moreover, the assumption of zero rainfall in the lead 

time may cause an underestimation in the rising limb of the hydrograph and a rapid 

decay of the model performance as the lead time increases.  

 

The ANN model is simpler to construct and train and allows reliable forecasting for a 

longer lead time of 18 hours, albeit with a slight degradation in performance. The main 

drawback of the ANN model results in the limited duration of the training period 

(continuous recordings of hourly water levels are available in the last 16 years only) so 

that only a few relevant floods are included. As a consequence the model may fail in 

forecasting extreme floods. However, both models proved to be reliable for real world 

applications. Given the cheap nature of computing power, it would be possible to run 

the ANN and TFF model together. Running in parallel, the models provide a complete 

hydrograph as well as giving forecasters additional confidence from two forecasts of 

the peak. This is an operational issue, and as mentioned in Chapter 2, there is 

currently a reluctance to use black box ANN models for real-time flood prediction. This 

may, however, change in the future. 

 

It is clear that performance measures should only be used with visual inspection of 

model performance in predicting the hydrographs. Moreover, a range of performance 

measures should be used to gain a better idea of model performance. PDIFF is not 

necessarily a good measure as it does not indicate time to peak so will not be used 

further in this research. The use of CE either produced very optimistic results regarding 

model performance or very poor ones so should definitely be used in combination with 

other measures. The GRI was not informative so will also not be used further in 

modelling of the Tiber River. The models did not perform consistently across all 

measures but it was possible to gain on overall picture of model performance by using 

a suite of measures.  
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The ANN model developed in this chapter was simple. It included only two stations as 

inputs and no rainfall. In the next chapter, a series of experiments are devised to add 

more complexity to the ANN model. Ensemble modelling is also considered as multiple 

ANNs are trained when using the Bayesian Regularisation algorithm.  
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Chapter 5  

Further ANN Model Experimentation  
 
 

5.1 Introduction 

An initial ANN model was presented in Chapter 4 and compared to the conceptual 

TEVERE model in predicting two recent flood events 12 and 18 hours ahead, which 

affected the city of Rome in 2005 and 2008. The ANN model performed reasonably 

well in comparison to the conceptual model but the conceptual model was better able 

to predict the overall shape of the hydrograph for both events.  

 

This chapter considers ways in which the ANN model can be improved through a 

number of different experiments such as the addition of more inputs, lengthening the 

time series, pre-processing of the data, and methods for handling the ensemble, which 

arises through the need to train the ANN several times to account for the random 

initialisation of the weights. The first eight experiments are presented for the 2008 flood 

event since this is the event that requires the ANN to extrapolate outside the range of 

data on which it was trained. This also provides a true test of whether the ANN is useful 

for real-time forecasting in this catchment. The latter experiments are presented for 

both 2005 and 2008 since the idea is to determine the effect of model decisions on 

more than one event and therefore whether some generalisation of the results can be 

made. A lead time of 12 hours is used consistently in these experiments. The 

calculation of confidence limits around the model predictions concludes this chapter.  

 

5.2 Adding Additional Upstream Stations and Rainfall to the ANN Model 

The initial ANN developed in Chapter 4 used a limited number of upstream stations and 

no rainfall data. Thus the ANN acted more as a routing model than a true rainfall-runoff 

model. These first set of three experiments attempts to improve the ANN through the 

addition of more upstream stations and rainfall data. In the first experiment ANNs are 

trained using hourly water levels from gauging stations at Ripetta, Lunghezza, Alviano, 

Ponte Felice and Orte using data between 2005 and 2008, excluding the 2008 event. 

The network consisted of 12 lagged inputs from each of these stations, one hidden 

layer with 10 nodes and 1 output, i.e. the levels at Ripetta station with a lead time of 12 

hours. The lag times for the inputs were determined by the average travel times 

between the upstream stations and Ripetta, which are listed in Table 5.1. As with the 

initial ANN developed in Chapter 4, the configuration of the network, in particular the 

number of hidden nodes, was determined through trial and error. Similarly, the network 

was trained with a Bayesian Regularization algorithm 50 times, and the results were 
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averaged to minimise any variability that could be a function of the random initialisation 

of the weights (Anctil, 2007). No validation dataset was therefore required, which is 

beneficial in this modelling exercise as the amount of historical data available at all of 

the stations was limited and more data could then be utilised for training. 

 

Table 5.1: Travel times between Ripetta and upstream stations 9 

Station Travel time 

Lunghezza 6 hours 

Alviano 20 hours 

Ponte Felice 12 hours 

Orte 12 hours 

Area 5 18 hours 

 

Further experiments were then undertaken through the addition of rainfall inputs. In the 

second experiment, hourly rainfall was added from area 5 (Figure 4.1) as a driver to the 

ANN model. Four stations were averaged at Castel Cellesi, Poggio Mirteto, Ponte 

Felice and Monte Fiascone. The travel time from area 5 to Ripetta is 18 hours (Table 

5.1). 

 

In the third experiment, effective rainfall was added, i.e. rainfall that actually reaches 

the river. Few other studies have tried this with the exception of Sajikumar and 

Thandaveswara (1999) and Jain and Srinivasulu (2004a). Sajikumar and 

Thandaveswara (1999) used only effective rainfall as in input since the paper was 

concerned with a comparison of different kinds of ANN and the effect of the length of 

the training dataset. Thus, no conclusions could be drawn on the use of effective 

rainfall vs total rainfall. Jain and Srinivasulu (2004a), on the other hand, compared an 

ANN developed using total rainfall with what they referred to as a gray box ANN that 

used effective rainfall and other conceptual model inputs. The gray box model 

outperformed the ANN using total rainfall. Therefore, some success with this type of 

rainfall input has been reported in the literature. 

 

The effective rainfall in this study was calculated using the TFF BASIN model (see 

section 4.3). As with the modelling undertaken in Chapter 4, the same error measures 

were calculated for each experiment except for PDIFF and GRI as explained in section 

4.6. A summary of experiments 1 to 3 is provided in Table 5.2. 

 

Table 5.2: An outline of three experiments to test the effect of additional inputs to the ANN 10 

Expt Inputs Output 

1 Ripetta (t), Lunghezza (t to t-5), Alviano (t to t-19), Ponte 
Felice (t to t-11) and Orte (t to t-11) 

Water level at Ripetta 12 
hours ahead for the 2008 

flood event 
2 Above + Hourly rainfall average from area 5 (t to t-17) 

3 Above + Effective rainfall from area 5 (t to t-17) 
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The results of the three experiments in terms of the performance measures are 

provided in Table 5.3. The results from Chapter 4 for the ANN are provided as a 

reference. The first thing to note is the grey shading in the table, which indicates the 

experiment with the best result according to individual performance measures. It is 

clear that adding rainfall improves the model, which is logical since rainfall is a driver of 

runoff. The model with total rainfall outperformed on all performance measures with the 

exception of the MPE. Experiment #3, which involved adding effective rainfall, did not 

produce a better result than using total rainfall unlike that found by Jain and Srinivasulu 

(2004a). Experiment #1, which involved adding more upstream stations, also showed 

improvements over the simple model developed in Chapter 4. This is also unsurprising 

as additional information was provided to the network to aid in modelling the flood wave 

at Ripetta. 

Table 5.3: Performance measures for Expts #1 to 3. Grey shading denotes the best performing 
model. 11 

Type of 
Measure 

Performance 
Measure 

Expt #1 
No rainfall 

 

Expt #2 
Total 
rainfall 

Expt #3 
Effective 

rainfall 

Results 
from 

Chapter 4 

 
Absolute 

ME 0.074 0.012 -0.294 0.27 

MAE 0.361 0.286 0.587 0.39 

MdAE 0.251 0.172 0.440 0.43 

RMSE 0.495 0.422 0.766 0.48 

 
 
 
 

Relative 

MPE 0.131 -0.352 -3.660 2.05 

MAPE 4.439 3.230 6.323 5.32 

MdAPE 3.420 2.034 4.253 4.56 

RMSPE 5.860 5.530 8.892 6.43 

CE 0.941 0.954 0.822 0.90 

PI 0.721 0.881 0.828 0.87 

PI.MAE 0.452 0.656 0.583 0.48 

PI.MdAE 0.449 0.626 0.582 0.32 

 
 

Visual inspection of the hydrographs was then undertaken, which are provided in 

Figures 5.1 and 5.2. Figure 5.1 shows the observed and predicted values for the 2008 

flood event for Experiment #1 while Experiments #2 and #3 are shown in Figures 5.2 a 

and b respectively. The model prediction is shown as an average of the 50 ANN model 

runs (as a blue line) but the individual model runs are also plotted as thin black lines. 

This reveals some interesting behaviour. Firstly it is surprising how wide the model 

predictions are at the peaks, implying that weight initialisation is having a much more 

profound effect than originally anticipated. Moreover, when hourly rainfall is used as an 

input to the model (Figure 5.2a), the 50 runs show an even wider spread than that 

shown in Figure 5.1, where no rainfall was used. The results continue to be even more 

pronounced when effective rainfall was used in place of hourly rainfall (Figure 5.2b). 

This means that the ANN is very sensitive to the rainfall pattern. In fact, both the hourly 

and effective rainfall are characterised by an impulsive pattern (plotted at the top of 
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Figures 5.2 a and b), which appears to be having a noticeable effect on the different 

ANNs across the 50 runs. However, once the 50 runs are averaged, the ANN still 

outperforms models without rainfall. Looking at predictions, however, reveals that the 

addition of effective is resulting in a good prediction, although somewhat oscillatory. It 

predicts the hydrograph slightly early and then overpredicts the peak. The shape, in 

general, is reasonably predicted. Visual inspection, therefore, confirms the findings of 

Jain and Srinivasulu (2004a).  

 

Figure 5.1: 2008 flood event computed without rainfall (Expt #1) where the red line is the 
observed and the blue is the mean of the 50 simulations, shown in black. 24 

 

  

Figure 5.2: The 2008 flood event computed with (a) hourly rainfall (Expt #2) and (b) effective 
rainfall (Expt #3), where the red line is the observed and the blue is the mean of the 50 
individual simulations, which are shown in black. Observed rainfall is shown in grey at the top of 
(a) and effective rainfall is shown at the top of (b). 25 

 

In the next set of experiments, correlation coefficients are used to create a more 

parsimonious model.  

(a) (b) 
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5.3 Creating a More Parsimonious Model  

Correlation coefficients were calculated between Ripetta at t+12 hours and the 

upstream stations. The highest correlations were those with the gauging station at 

Orte. The correlations between Ripetta and other stations varied from about 0.4 to 0.7. 

In addition, average rainfall from areas 5 to 7 was used. Therefore two experiments 

were tried as set out in Table 5.4, one with many upstream stations and one with only 

Orte. Trying to find a more parsimonious model has the advantage of reducing the 

training time significantly. The data set for training consisted of 4 years of data (2004-

2007) while the output was once again the water level at Ripetta gauging station 12 

hours ahead for the 2008 flood.  

 

Table 5.4: An outline of two experiments to test parsimony 12 

Expt Inputs Output 

4 Alviano (t to t-19), Ponte Felice (t to t-11), Lunghezza (t to 
t-5), Average rainfall from areas 5 to 7 (t to t-17), Ripetta 
(t) 

Water level at Ripetta 12 
hours ahead for the 2008 
flood event 5 Orte (t to t-11), Average rainfall from areas 5 to 7 (t to t-

17), Ripetta (t) 

 

Table 5.5 contains the performance measures for Experiments #4 and 5 with the grey 

shading indicating the best performing model based on different performance 

measures. The absolute and relative measures consistently indicate that Experiment 

#4 is better with the exception of RMSE and its counterpart RMSPE while the 

benchmark measures, however, indicate superior performance by the model in 

Experiment #5. Thus based on the quantitative assessment, it is difficult to say whether 

the parsimonious model is better than the non-parsimonious one because of the 

contradiction between the non-redundant measures. A visual inspection is therefore a 

necessity. 

 
Table 5.5: Performance measures for Expts #4 and 5. Grey shading denotes the best 
performing model. 13 

Type of 
Measure 

Performance 
Measure 

Expt #4 
 

 

Expt #5 
 

Absolute 

ME 0.193 0.405 

MAE 0.538 0.584 

MdAE 0.371 0.447 

RMSE 0.743 0.717 

 
 
 
 

Relative 

MPE 1.740 3.585 

MAPE 5.745 5.958 

MdAPE 4.094 5.439 

RMSPE 7.781 7.029 

CE 0.892 0.893 

PI 0.661 0.720 

PI.MAE 0.402 0.408 

PI.MdAE 0.314 0.296 
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Figure 5.3 shows that Experiment #4 with more inputs has a broader range of 

predictions across the 50 runs than the more parsimonious model. This may simply be 

because the ANN has much more information to handle, which is propagated through 

the random initialisation of the ANN weights. The average predictions are generally 

similar although the model with the full inputs is slightly better on the rising limb of the 

event.   

 
 

Figure 5.3: The results for (a) Expt#4 and (b) Expt #5 for a lead time of 12 hours for 2008 flood 
event. The red line is the observed, the blue is the average of the 50 simulations, which are 
shown in black, and observed rainfall is shown at the top of each figure in grey. 26 

 

The results from this analysis are somewhat inconclusive. For this reason, the more 

parsimonious model (with shorter training times) is used in later experiments. 

 

5.4 Adding a Difference Term 

Another method was tried, which deals specifically with stationarity. Each station was 

lagged by its travel time (tt) and then an additional input was used, i.e. the 12 hour 

difference (or DELTA) between the level at time t and t-12 for each station. Two 

experiments were run to test out this configuration and are listed in Table 5.6.  

 

Table 5.6: An outline of two experiments in which DELTA inputs were used 14 

Expt Inputs Output 

6 
Alviano (delta 12), Ponte Felice (delta 12), Lunghezza 
(delta 12), Average rainfall, Ripetta (delta 12) 

Water level at Ripetta 12 
hours ahead for the 2008 
flood event 7 Orte (delta 12), Average rainfall, Ripetta (delta 12) 

 

The results of the two experiments in terms of the performance measures are provided 

in Table 5.7. The grey shading clearly shows that the model in Experiment #6 

outperforms the one in Experiment #7, i.e. the less parsimonious model on the majority 

of performance measures with the exception of the RMSPE and the PI. However, if 

(a) (b) 



78 

 

these experiments are compared to Experiments #4 and #5, the DELTA terms have not 

improved the model performance. Instead these ANN models show worsening 

performance. Figure 5.4 confirms this result. The average of the 50 runs for both 

models is now underpredicting the observed peak.  

 
Table 5.7: Performance measures for Expts #6 and #7. Grey shading denotes the best 
performing model. 15 

Type of 
Measure 

Performance 
Measure 

Expt #6 
 

Expt #7 

 
Absolute 

ME 0.451 0.638 

MAE 0.601 0.711 

MdAE 0.399 0.532 

RMSE 0.857 0.890 

 
 
 
 

Relative 

MPE 4.163 5.909 

MAPE 6.243 6.943 

MdAPE 4.609 6.417 

RMSPE 8.317 8.160 

CE 0.856 0.836 

PI 0.550 0.570 

PI.MAE 0.332 0.280 

PI.MdAE 0.260 0.163 

 

 

 
 

Figure 5.4: Results for a) Expt #6 and b) Expt #7 for the 2008 flood event. The red line is the 
observed and the blue is the mean of the 50 simulations, which are shown individually in black. 
Observed hourly rainfall is shown in grey at the top of both figures. 27 

 
 
5.5 Lengthening the Times Series 

Additional data were obtained for the period between 1993 and 2008. As the dataset 

was too long for the ANN to handle, flood events were chosen from the series using the 

criteria that events must exceed 7m. Two days of data before the peak and three days 

after were also extracted. In addition, cumulative rainfall was used instead of hourly or 

effective rainfall. It was thought that the smoothing effect of a cumulative rainfall series 
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might reduce the range of predictions across the 50 runs at the peaks. Only one 

experiment is reported (Table 5.8) using the upstream station with the highest 

correlation with Ripetta.  

 

Table 5.8: An outline of one experiment in which cumulative rainfall was used 16 

Expt Inputs Output 

8 Orte (t to t-11), Cumulative average rainfall, Ripetta (t) 
Water level at Ripetta 12 
hours ahead for the 2008 
flood event 

 

The performance measures for this experiment are listed in Table 5.9 and the results 

for the 2008 flood event are shown in Figure 5.5. The results are much improved 

compared to Expts #4 to 7. The ANN forecasts are good on the rising limb of the 

hydrograph although the peaks are still underpredicted. Thus, effective rainfall in 

combination with all the upstream station appears to produces the best model overall. 

Table 5.9: Performance measures for Expt #8 17 

Type of 
Measure 

Performance 
Measure 

Expt #8 
 

 
Absolute 

ME 0.162 

MAE 0.296 

MdAE 0.275 

RMSE 0.366 

 
 
 
 

Relative 

MPE 1.632 

MAPE 3.611 

MdAPE 3.401 

RMSPE 4.367 

CE 0.968 

PI 0.885 

PI.MAE 0.601 

PI.MdAE 0.426 

 

 
 

Figure 5.5: Results for Expt #8 for the 2008 flood event. The red line is the observed and the 
blue is the mean of the 50 simulations, which are shown individually in black. Cumulative rainfall 
is shown in grey at the top of the figure. 28 
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In the next section, the method of normalisation of the input data is the subject of 

further experimentation.  

 
5.6 Changing the Method of Normalisation 

In this set of experiments the focus is to use a continuous dataset rather than individual 

events. Therefore, a shorter time period of 2004 to 2008 is selected to examine the 

effect of changes to the method of normalisation. Moreover, the ANN is trained 100 

times instead of 50. Normalisation, as explained in Chapter 2, is a simple method of 

pre-processing. Two of the most commonly used methods are the mean and standard 

deviation (hereafter referred to as MapStd), and the minimum and maximum (or 

MapMinMax). For the pre-processing method that uses the mean and standard 

deviation, the inputs are pre-processed so that the input signals have a mean of 0 and 

a standard deviation of 1 as follows: 

 

 
(5.1) 

 

for  =1,..,  , where  are the inputs,  are the normalized network input signals,  

and  are, respectively, an estimation of the mean and the standard deviation of 

the input variables. The output signals are then unnormalised as follows: 

 

 (5.2) 

 

for  =1,.., , where  are the unnormalised outputs,  are the normalised network 

outputs, and  and  are estimates of the mean and standard deviation of the 

outputs variables, respectively.  

 

For the MapMinMax method, the inputs are scaled to the range [-1; 1] as follows: 

 

 

 

(5.3) 

where  and  are the minimum and the maximum values of the input 

vectors, respectively. The output is then post-processed as: 

 

 

 

(5.4) 

where  and  are the minimum and the maximum values of the 

unnormalised output, respectively. However, this was modified in this particular set of 
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experiments to scale the inputs to the range [-0.95; 0.05]. The reason for this was to 

determine whether forcing the ANN to train within a narrower range might lead to better 

extrapolation to extreme events like that seen in 2008. Table 5.10 lists the eight 

experiments that are used to examine the effects of the normalisation method. This 

time the impact on the 2005 event is also included in the experiments. 

 

 

Table 5.10: An outline of eight experiments in which two methods of normalisation were 
examined 18 

Expt Inputs Output Method of 
Normalisation 

9 Orte (t to t-11), Ripetta(t), No rainfall 
Ripetta at 

t+12, 2005 
event 

MapMinMax 

10 Orte (t to t-11), Ripetta(t), No rainfall MapStd 

11 Orte (t to t-11), Ripetta(t), Cumulative average rainfall MapMinMax 

12 Orte (t to t-11), Ripetta(t), Cumulative average rainfall MapStd 

13 Orte (t to t-11), Ripetta(t), No rainfall 
Ripetta at 

t+12, 2008 
event 

MapMinMax 

14 Orte (t to t-11), Ripetta(t), No rainfall MapStd 

15 Orte (t to t-11), Ripetta(t), Cumulative average rainfall MapMinMax 

16 Orte (t to t-11), Ripetta(t), Cumulative average rainfall MapStd 

 

 

Considering first the 2005 event, the flood hydrographs are provided in Figure 5.6 and 

the performance measures are provided in Table 5.11. 
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Figure 5.6: Results for a) Expts #9 and 10 and b) Expts #11 and 12 for the 2005 flood event. 
The red line is the observed, the dotted black line is the MapStd method and the light blue filled 
in area is the MapMinMax method. 29 
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Table 5.11: Performance measures for Expts #9 to 12 for the 2005 flood event. Grey shading 
denotes the best performing model overall while bold denotes the best performance between 
pairs of experiments, i.e. between Expts # 9 and #10, and between Expts # 11 and #12. 19 

  Without rainfall With rainfall 

Type of 
Measure 

Performance 
Measure 

Expt #9 
MapMinMax 

Expt #10 
MapStd 

Expt #11 
MapMinMax 

Expt #12 
MapStd 

 
Absolute 

ME 0.089 0.089 0.087 0.014 

MAE 0.312 0.311 0.365 0.333 

MdAE 0.288 0.288 0.308 0.250 

RMSE 0.383 0.381 0.440 0.431 

 
 
 
 

Relative 

MPE 0.363 0.354 0.219 -0.728 

MAPE 4.069 4.059 4.637 4.375 

MdAPE 3.478 3.562 3.895 3.042 

RMSPE 5.216 5.201 5.824 5.976 

CE 0.960 0.961 0.947 0.950 

PI 0.796 0.799 0.730 0.741 

PI.MAE 0.529 0.531 0.449 0.498 

PI.MdAE 0.456 0.456 0.419 0.528 

 

Looking at Figure 5.6a, which considers the two normalisation methods when no 

rainfall is used as an input to the ANN, there is almost no difference in the predictions. 

The rising limbs of the hydrographs are predicted well but the peaks are slightly 

underpredicted. Figure 5.6b compares the same two normalisation methods but with 

rainfall added to the ANN. This time the MapStd method outperforms the MapMinMax 

method and slightly overpredicts the peaks while the MapMinMax methods leads to an 

underprediction. This is confirmed when examining the performance measures in Table 

5.11. When no rainfall is used (Experiments #9 and #10), the boldface shows that the 

MapStd method (Experiment #10) performs better. However, the numbers are virtually 

identical between experiments so there is very little difference between the two 

methods. When considering the addition of rainfall (Experiments #11 and #12), the 

MapStd method outperforms the MapMinMax method across the majority of 

performance measures with the exception of MPE and RMSPE. Moreover, if the grey 

shading is examined, which indicates the model that performs best across all four 

experiments, the MapStd method with no rainfall (Experiment #10) would be chosen. 

Yet the hydrographs would suggest that Experiment #12 is the best as the peaks are 

slightly overestimated, which is better from an operational flood forecasting 

perspective. Thus both quantitative measures and visual inspection of the hydrograph 

are once again necessary. 

 

Turning to the 2008 flood event, the hydrographs are provided in Figure 5.7 and the 

performance measures are listed in Table 5.12.  
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Figure 5.7: Results for a) Expts #13 and 14 and b) Expts #15 and 16 for the 2008 flood event. 
The red line is the observed, the dotted blue line is the MapStd method and the light blue filled 
in area is the MapMinMax method. 30 

 

Once again, the MapStd method and MapMinMax methods are very similar when no 

rainfall is added to the ANN. A clear underprediction of the peak can also be seen. 

When adding rainfall, the MapMinMax method now outperforms the MapStd method 

although both still considerably underpredict the peak. The performance measures in 

Table 5.12 confirm these results. Without rainfall, the MapMinMax method appears to 

outperform the MapStd method but the numbers are very similar across both 

experiments. With rainfall, the MapMinMax method clealy outperforms the MapStd 

method across all performance measures. 

 

Table 5.12: Performance measures for Expts #13 to 16 for the 2008 flood event. Grey shading 
denotes the best performing model overall while bold denotes best performance between pairs 
of experiments, i.e. between Expts #13 and #14, and between Expts #15 and #16. 20 

  Without rainfall With rainfall 

Type of 
Measure 

Performance 
Measure 

Expt #13 
MapMinMax 

Expt #14 
MapStd 

Expt #15 
MapMinMax 

Expt #16 
MapStd 

 
Absolute 

ME 0.208 0.219 0.371 0.644 

MAE 0.367 0.376 0.476 0.732 

MdAE 0.269 0.270 0.187 0.368 

RMSE 0.488 0.504 0.709 1.087 

 
 
 
 

Relative 

MPE 1.712 1.790 3.647 5.980 

MAPE 4.103 4.172 5.246 7.429 

MdAPE 3.787 3.751 2.824 4.997 

RMSPE 5.106 5.178 7.420 10.075 

CE 0.942 0.939 0.818 0.715 

PI 0.808 0.795 0.404 0.047 

PI.MAE 0.543 0.531 0.276 0.088 

PI.MdAE 0.485 0.482 0.584 0.295 
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Therefore, the results show that MapStd is better for the 2005 event (although only 

marginally so) and that the MapMinMax method is better for the 2008 event (although 

peak predictions were very poor). This is most likely a result of the [-0.95; 0.05] range 

chosen over which to normalise. Instead of helping the ANN extrapolate, the narrow 

range had an adverse impact on model performance, in particular in peak prediction. 

Moreover, the two different normalisation methods do not perform consistently across 

events so it is not so straightforward to make a recommendation about which 

normalisation method to use. However, as the MapMinMax method performed better 

for the 2008 event, this method will continue to be used throughout the rest of the 

thesis. The 2008 event is outside of the range of the training data. Perhaps in that 

situation the MapMinMax works better as a normalisation method.  

 

5.7 Experimentation with Different Training Algorithms  

In this set of experiments, different training algorithms were used. Up to now, all 

experiments used Bayesian Regularisation. In addition, the Levenberg-Marquardt 

backpropagation and the BFGS quasi-Newton backpropagation algorithms were also 

employed. A set of twelve different experiments is outlined in Table 5.13. Experiments 

continue to use the more parsimonious form of the model, i.e. inclusion of only the 

upstream gauging station Orte and rainfall. Moreover, Experiments #20 to #22 and 

Experiments #26 to #28 include the 2005 and 2008 flood events in the training dataset. 

This is not a true test of the ANN as the independent data must not be in the training 

data. However, it is merely to see the effect on the results, i.e. does seeing these 

events (and their peaks) make a significant difference to the results? 

 
Table 5.13: An outline of twelve experiments in which different training algorithms were used 21 

Expt Inputs Output Training Method 

17 
Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall 

 
Ripetta at t+12, 

2005 event 
 

BR 

18 BFGS 

19 LM 

20 Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall, 2005 and 2008 in the 
training data set 

BR 

21 BFGS 

22 LM 

23 
Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall 

 
 

Ripetta at t+12 
2008 event 

BR 

24 BFGS 

25 LM 

26 Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall, 2005 and 2008 in the 
training data set 

BR 

27 BFGS 

28 LM 
Note: Expt#17 is the same as Expt #11; Expt #23 is the same as Expt#23 
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Table 5.14 contains the performance measures for the six experiments pertaining to 

the 2005 flood event and Figure 5.8 contains the flood hydrographs. Using the 

quantitative performance measures from Table 5.14, Experiment #17, which uses the 

BR algorithm, performs the worst overall with some measures favouring Experiment 

#18 (BFGS algorithm) and others better in Experiment #19 (LM algorithm). When 

adding the 2005 and 2008 flood events in the training dataset, the LM performs best 

overall. However, looking at the absolute differences between the measures reveals 

very little difference between them.  

 

Table 5.14: Performance measures for Expts #17 to 22 for the 2005 flood event. Grey shading 
denotes the best performing model. 22 

Performance 
Measure 

Orte, Ripetta and Rainfall Orte, Ripetta, Rainfall and 
2005/2008 events in the calibration 

Expt #17 
BR 

Expt #18 
BFGS 

Expt #19 
LM 

Expt #20 
BR 

Expt #21 
BFGS 

Expt #22 
LM 

ME 0.087 0.078 0.086 0.051 0.044 0.052 

MAE 0.365 0.356 0.356 0.346 0.346 0.339 

MdAE 0.308 0.290 0.307 0.307 0.300 0.304 

RMSE 0.440 0.429 0.424 0.416 0.417 0.403 

MPE 0.219 0.116 0.197 -0.105 -0.225 -0.109 

MAPE 4.637 4.545 4.534 4.470 4.481 4.387 

MdAPE 3.895 3.653 3.778 3.738 3.705 3.697 

RMSPE 5.824 5.765 5.683 5.687 5.719 5.541 

CE 0.947 0.950 0.951 0.953 0.953 0.956 

PI 0.730 0.744 0.750 0.759 0.758 0.775 

PI.MAE 0.449 0.463 0.463 0.478 0.478 0.488 

PI.MdAE 0.419 0.452 0.420 0.421 0.434 0.426 

 

Figure 5.8 shows a reasonably similar performance between the different algorithms 

and in the experiments where the 2005 and 2008 flood events have been added. The 

timing of the rising limb is very good but there are still issues with underprediction of 

the peak in the event. Looking at the individual members of the ensemble, the variation 

in prediction does increase at the peak across the ensemble but there is a generally a 

small band of variation around the rest of the hydrograph.  
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Figure 5.8: Results for a) Expts #17; b) Expt #18; c) Expt #19; d) Expt #20; e) Expt #21; and f) 
Expt #22 for the 2005 flood event. The red line is the observed and the blue line is the average 
of the predictions, shown individually in black. Cumulative rainfall is plotted on the top of each 
graph. 31 
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The same is repeated in Table 5.15 and Figure 5.9 for the 2008 flood event. This time 

the BFGS algorithm performs better compared to the BR and LM in most performance 

measures for the case where the 2005 and 2008 flood events have not been included 

in the training data set. When they have been included, then the BR algorithm 

generally outperforms the others.  

 

Table 5.15: Performance measures for Expts #23 to 28 for the 2008 flood event. Grey shading 
denotes the best performing model. 23 

Performance 
Measure 

Orte and Rainfall Orte+rainfall 2008+2005 in calibration 

Expt #23 
BR 

Expt #24 
BFGS 

Expt #25 
LM 

Expt #26 
BR 

Expt #27 
BFGS 

Expt #28 
LM 

ME 0.371 0.309 0.347 0.389 0.426 0.417 

MAE 0.476 0.430 0.459 0.519 0.527 0.521 

MdAE 0.187 0.246 0.228 0.250 0.249 0.241 

RMSE 0.709 0.601 0.693 0.765 0.789 0.783 

MPE 3.647 2.764 3.096 3.413 3.809 3.712 

MAPE 5.246 4.633 4.808 5.402 5.409 5.349 

MdAPE 2.824 3.449 3.192 3.726 3.335 3.474 

RMSPE 7.420 5.864 6.451 7.152 7.254 7.182 

CE 0.818 0.913 0.884 0.859 0.850 0.852 

PI 0.404 0.708 0.613 0.528 0.498 0.505 

PI.MAE 0.276 0.464 0.428 0.353 0.343 0.351 

PI.MdAE 0.584 0.529 0.564 0.522 0.523 0.538 

 

Examining the hydrographs in Figure 5.9 reveals a much wider amount of variation 

amongst the ensemble members for the 2008 flood event. This is even more evident 

when the 2005 and 2008 flood events were included for the BFGS algorithm but less 

so for the BR and LM algorithms. Looking purely at the hydrographs, the best 

performing experiment is #25 if the basis of judgement is the rising limb and the peak 

prediction before rapidly decreasing and missing the rest of the event. It the basis of 

judgement is the volume of the hydrograph, then BR in Experiment #23 would be the 

best one. The quantitative measures and the visual inspection are therefore quite 

different in this example. Moreover, there is currently no generalisable pattern 

regarding the best algorithm to use. Thus, a greater impact on the results would most 

likely come from better inputs to the ANN than changing the algorithm per se.  
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Figure 5.9: Results for a) Expts #23; b) Expt #24; c) Expt #25; d) Expt #26; e) Expt #27; f) Expt 
#28 for the 2008 flood event. The red line is the observed and the blue line is the average of the 
predictions. Cumulative rainfall is plotted on the top of each graph. 32 
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5.8 Exploring PI as an Alternative Method to Combine the Ensemble 

Up to this point, the ANN ensemble model runs (of either 50 or 100) have simply been 

averaged in each experiment as this is one valid way to combine the ensemble 

members. However, there are many other methods available to combine the ensemble 

including the use of ANNs (e.g. See and Abrahart, 2001). In this set of experiments the 

PI performance measure was used with a threshold of 0.65 to choose the best ANN 

models from the ensemble. These chosen ANN runs were then further averaged to 

create a single ANN prediction per experiment. This approach has been taken in a 

series of experiments as listed in Table 5.16. 

 

Table 5.16: An outline of twelve experiments in which the best simulations were chosen using a 
PI threshold 24 

Expt Inputs Output Training Method 

29 
Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall 

 
Ripetta at t+12, 

2005 event 
 

BR 

30 BFGS 

31 LM 

32 Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall, 2005 and 2008 in the 
training data set 

BR 

33 BFGS 

34 LM 

35 
Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall 

 
 

Ripetta at t+12 
2008 event 

BR 

36 BFGS 

37 LM 

38 Orte  (t to t-11), Ripetta(t), Cumulative 
average rainfall, 2005 and 2008 in the 
training data set 

BR 

39 BFGS 

40 LM 

 

Figure 5.10 contains the hydrographs for the 2005 flood event while Table 5.17 

contains the corresponding performance measures. Examination of Figure 5.10 shows 

that there is very little difference between the experiments except that when the 2005 

and 2008 flood events are included in the training, the three training algorithms 

produced almost identical results.  

 

  
 
Figure 5.10: (a) Expts # 29 to 31 and b) Expts #32 to 34 for the 2005 flood event where the red 
line is the observed, the dotted blue line is the LM algorithm, the light blue line is the BR 
algorithm and the gray line is the BFGS algorithm. 33 

 

(a) (b) 
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The performance measures in Table 5.17 confirm this result. For Experiments #29 to 

#31, the BFGS algorithm provides the best overall result while for Experiments #32 to 

#34, the LM algorithm performed best overall. However, the performance measures are 

quite similar across the different algorithms for both sets of experiments with and 

without the inclusion of 2005 and 2008 in the training dataset. This is perhaps not 

surprising because the final extra row of Table 5.17 shows the number of runs with PI 

greater than 0.65. This shows that most of the runs were kept using this criterion for 

selection.  

 

Table 5.17: Performance measures for Expts #29 to 34 for the 2005 flood event. Grey shading 
denotes the best performing model while bold denotes best performance between triplets of 
experiments, i.e. between Expts #29 to #31, and between Expts #32 and #34. 25 

Performance 
Measure 

Orte, Ripetta and Rainfall Orte, Ripetta, Rainfall and 
2005/2008 events in the calibration 

Expt #29 
BR 

Expt #30 
BFGS 

Expt #31 
LM 

Expt #32 
BR 

Expt #33 
BFGS 

Expt #34 
LM 

ME 0.088 0.078 0.104 0.051 0.044 0.052 

MAE 0.363 0.355 0.371 0.346 0.346 0.339 

MdAE 0.310 0.289 0.314 0.307 0.299 0.304 

RMSE 0.436 0.427 0.465 0.416 0.417 0.402 

MPE 0.246 0.123 0.463 -0.105 -0.224 -0.103 

MAPE 4.606 4.532 4.698 4.470 4.475 4.383 

MdAPE 3.889 3.673 3.665 3.738 3.700 3.688 

RMSPE 5.769 5.737 6.014 5.687 5.711 5.533 

CE 0.948 0.951 0.941 0.953 0.953 0.956 

PI 0.736 0.747 0.699 0.759 0.759 0.775 

PI.MAE 0.452 0.464 0.440 0.478 0.478 0.489 

PI.MdAE 0.415 0.455 0.408 0.421 0.436 0.426 

Number of 
runs with  
PI > 0.65 

91/100 94/100 97/100 100/100 97/100 99/100 

 

The results for the experiments concerned with modelling the 2008 event appear in 

Figure 5.11 and Table 5.18.  

 

  
 
Figure 5.11 a) Expts # 35 to 37 and b) Expts #38 to 40 for the 2008 flood event where the red 
line is the observed, the dotted blue line is the LM algorithm, the light blue line is the BR 
algorithm and the gray line is the BFGS algorithm. 34 

 

(a) (b) 
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Regardless of whether the 2005 and 2008 events are used in the training dataset, the 

results for the peak event in 2008 are the same, i.e. an underprediction. In fact there is 

little to differentiate Figure 5.11a from Figure 5.11b based on an examination of the 

hydrographs alone. 

 

The quantitative measures in Table 5.18 indicate that for Experiments #35 to #37, the 

BR outperforms the other two training algorithms although the values are quite similar 

across experiments. For Experiments #38 to #40 where the 2005 and 2008 flood 

events were included in the training data, the result is much more mixed even across 

redundant measures. Moreover, looking at the number of runs with a PI greater than 

0.65, the number of runs included is generally less than 50% for Experiments #35 to 

#37 and less than 25% for Experiments #38 to #40. This indicates that the forecasting 

problem is obviously much harder for the 2008 flood event and the impact of the 

random initialisation of the weights is larger. Comparing the results to Table 5.15 where 

all the runs were included in the average, the results are actually much improved. This 

implies that in more difficult non-linear problems, the effect of weight initialisation will be 

larger and a simple averaging across the whole ensemble is not recommended.  

 

Table 5.18: Performance measures for Expts #35 to 40 for the 2008 flood event. Grey shading 
denotes the best performing model while bold denotes best performance between triplets of 
experiments, i.e. between Expts #35 to #37, and between Expts #38 and #40. 26 

Performance 
Measure 

Orte, Ripetta and Rainfall Orte, Ripetta, Rainfall and 
2005/2008 events in the calibration 

Expt #35 
BR 

Expt #36 
BFGS 

Expt #37 
LM 

Expt #38 
BR 

Expt #39 
BFGS 

Expt #40 
LM 

ME 0.118 0.167 0.147 0.137 0.133 0.101 

MAE 0.275 0.295 0.291 0.275 0.282 0.282 

MdAE 0.206 0.219 0.223 0.210 0.181 0.187 

RMSE 0.356 0.387 0.378 0.369 0.399 0.384 

MPE 1.066 1.515 1.308 1.224 1.150 0.806 

MAPE 3.366 3.453 3.436 3.299 3.276 3.311 

MdAPE 2.656 2.750 2.737 2.593 2.353 2.396 

RMSPE 4.323 4.360 4.328 4.374 4.357 4.317 

CE 0.969 0.964 0.965 0.967 0.962 0.964 

PI 0.898 0.879 0.885 0.890 0.871 0.881 

PI.MAE 0.658 0.633 0.638 0.657 0.649 0.649 

PI.MdAE 0.605 0.581 0.573 0.597 0.653 0.642 

Number of 
runs with  
PI > 0.65 

45/100 43/100 61/100 25/100 26/100 21/100 

 

5.9 Ensemble Modelling using the Akaike Information Criterion  

In this final section, two different methods were employed to combine the ensemble 

ANN models based on the Akaike Information Criterion (AIC), which was developed by 

Hirotsugu Akaike (Akaike, 1973). This criterion is a tool for statistical model selection 

(Panchal et al., 2010). The AIC is calculated as follows: 
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(5.5) 

 

where the  is the residual sum of squares,  is the number of samples in the data 

and  is the number of free parameters for each model considered. For a small sample 

size ( ), Sagiura (1978) proposed the following expression for the evaluation of 

the AIC: 

 

 

(5.6) 

The AIC has two important characteristics. The first is that the AIC will equate to a 

maximum likelihood solution if the number of parameters in the model is fixed; the 

second is that if the model is performed with several numbers of parameters, the AIC 

can be used to select the model that fits the best but with the smallest number of 

parameters (Zhao et al., 2008). In order to compare models, the Delta AIC ( ) can be 

calculated as follows: 

 

 

 

(5.7) 

where the  is the AIC value of the th model and  is the minimum value of all 

AIC values. The smallest value of the AIC and the Delta AIC correspond to the best 

model while the largest values represent the worst model. The Delta AIC is then used 

to calculate the weights ( ) of each model as follows: 

  

 

 

(5.8) 

where  and  represents the probability that the model performs better 

compared with all other ensemble members (Burnham and Anderson, 2002). In 

ensemble modelling, the model predictions can be weighted by  and linearly 

summed to create a single model prediction. Zhao et al. (2008) proposed a modified 

Delta AIC, which is expressed as:  

 

 

 

(5.9) 

where  is a constant that measures the diversity of the model output in the training 

dataset: 
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(5.10) 

and  is defined as: 

 

 

(5.11) 

where  is the number of samples in the training dataset. From this, the modified 

Akaike weights ( ) can be calculated as follows: 

 

 

 

(5.12) 

 

Table 5.19 outlines 24 experiments that are undertaken to compare the effect of using 

the AIC and modified AIC to combine the ANN ensembles relative to the average. The 

experiments consider two variations of input variables, three training methods and two 

flood events, each of which use the AIC and modified AIC to combine the ANN 

ensemble. 

 
Table 5.19: Twenty-four experiments with the AIC and the modified AIC for ensemble 
combination 27 

Expt Inputs Training 
Method 

Output Ensemble 
Combination 

41 

Orte  (t to t-11), Ripetta(t), 
Cumulative average rainfall 

BR 

 
Ripetta at 

t+12, 2005 
event 

 

AIC 

42 Modified AIC 

43 
BFGS 

AIC 

44 Modified AIC 

45 
LM 

AIC 

46 Modified AIC 

47 

Orte  (t to t-11), Ripetta(t), 
Cumulative average rainfall, 2005 
and 2008 in the training data set 

BR 
AIC 

48 Modified AIC 

49 
BFGS 

AIC 

50 Modified AIC 

51 
LM 

AIC 

52 Modified AIC 

53 

Orte  (t to t-11), Ripetta(t), 
Cumulative average rainfall 

BR 

Ripetta at t+12 
2008 event 

AIC 

54 Modified AIC 

55 
BFGS 

AIC 

56 Modified AIC 

57 
LM 

AIC 

58 Modified AIC 

59 

Orte  (t to t-11), Ripetta(t), 
Cumulative average rainfall, 2005 
and 2008 in the training data set 

BR 
AIC 

60 Modified AIC 

61 
BFGS 

AIC 

62 Modified AIC 

63 
LM 

AIC 

64 Modified AIC 
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Table 5.20 contains the performance measures for the first 6 experiments to predict the 

2005 flood event using Orte, Ripetta and rainfall only as inputs while Table 5.21 

contains the second 6 experiments in which the 2005 and 2008 flood events were 

included in the training data set. The corresponding hydrographs for all of these 

experiments are provided in Figure 5.12. Overall, the modified AIC generally 

outperforms the pure AIC. Secondly the LM algorithm performs better overall although 

this is truer for the set of experiments that include the 2005 and 2008 flood events in 

the training data set. However, if these experiments are compared to the ensemble 

combination via averaging and the PI threshold, the experiments using AIC and 

modified AIC are generally worse for this event. 

 

Table 5.20: Performance measures for Expts #41 to 46 for the 2005 flood event for inputs of 
Orte and rainfall only. Grey shading denotes the best performing model overall while bold 
denotes the best performance between pairs of experiments, i.e. between Expts #41 and #42, 
Expts #43 and #44 and between Expts #45 and #46. 28 

Type of 
Measure 

Performance 
Measure 

BR BFGS LM 

Expt #41 
AIC 

Expt #42 
Modified 

AIC 

Expt #43 
AIC 

 

Expt #44 
Modified 

AIC 

Expt #45 
AIC 

 

Expt 46 
Modified 

AIC 

Absolute 

ME 0.060 0.091 -0.023 0.080 0.056 0.088 

MAE 0.364 0.365 0.380 0.357 0.403 0.355 

MdAE 0.317 0.313 0.331 0.294 0.322 0.310 

RMSE 0.444 0.440 0.487 0.429 0.520 0.423 

Relative 

MPE -0.066 0.266 -0.939 0.141 -0.137 0.217 

MAPE 4.673 4.632 4.748 4.553 5.054 4.524 

MdAPE 3.881 3.881 3.750 3.704 4.012 3.810 

RMSPE 5.962 5.813 6.174 5.766 6.581 5.669 

CE 0.947 0.947 0.936 0.950 0.927 0.952 

PI 0.726 0.731 0.671 0.744 0.625 0.752 

PI.MAE 0.450 0.449 0.426 0.461 0.392 0.464 

PI.MdAE 0.401 0.409 0.375 0.446 0.393 0.416 

 

Table 5.21: Performance measures for Expts #47 to 52 for the 2005 flood event for for 
Orte+rainfall 2008+2005 in calibration. Grey shading denotes the best performing model overall 
while bold denotes the best performance between pairs of experiments, i.e. between Expts #47 
and #48, Expts #49 and #50 and between Expts #51 and #52. 29 

Type of 
Measure 

Performance 
Measure 

BR BFGS LM 

Expt #47 
AIC 

Expt #48 
Modified 

AIC 

Expt #49 
AIC 

 

Expt #50 
Modified 

AIC 

Expt #51 
AIC 

 

Expt #52 
Modified 

AIC 

Absolute 

ME 0.049 0.053 0.035 0.045 0.031 0.053 

MAE 0.362 0.345 0.365 0.344 0.373 0.337 

MdAE 0.305 0.304 0.300 0.297 0.294 0.303 

RMSE 0.452 0.414 0.465 0.413 0.472 0.400 

Relative 

MPE -0.108 -0.082 -0.332 -0.215 -0.383 -0.090 

MAPE 4.625 4.457 4.719 4.454 4.828 4.367 

MdAPE 3.743 3.661 3.776 3.638 3.630 3.710 

RMSPE 5.883 5.662 6.301 5.676 6.384 5.506 

CE 0.945 0.954 0.941 0.954 0.940 0.957 

PI 0.717 0.762 0.699 0.763 0.691 0.778 

PI.MAE 0.454 0.480 0.449 0.481 0.437 0.491 

PI.MdAE 0.424 0.427 0.433 0.439 0.445 0.429 

 



95 

 

Figure 5.12 shows relatively similar predictions across all the different experiments. 

Thus there is little to differentiate the hydrograph predictions by either training algorithm 

or input data for the 2005 flood event. 

 

  

  

  
 
Figure 5.12: Results for a) Expts #41 and #42; b) Expts #43 and #44; c) Expts #45 and 46; d) 
Expts #47 and #48; e) Expts #49 and #50; and f) Expts #51 and #52 for the 2008 flood event 
where the red line is the observed, the black solid line is the weighted average AIC and the 
dotted blue line is the weighted average modified AIC. 35 
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The same performance measures and flood hydrographs are available in Table 5.22, 

Table 5.23 and Figure 5.13 for prediction of the 2008 flood event. This time the 

performance measures indicate the opposite, i.e. the original AIC generally 

outperforms the modified AIC across all the experiments. This is also very apparent 

from Figure 5.13 where the peak prediction is much worse for the modified AIC.  

 
Table 5.22: Performance measures for Expts #53 to 58 for the 2008 flood event for inputs of 
Orte and rainfall only. Grey shading denotes the best performing model overall while bold 
denotes the best performance between pairs of experiments, i.e. between Expts #53 and #54, 
Expts #55 and #56 and between Expts #57 and #58. 30 

Type of 
Measure 

Performance 
Measure 

BR BFGS LM 

Expt #53 
AIC 

Expt #54 
Modified 

AIC 

Expt #55 
AIC 

 

Expt #56 
Modified 

AIC 

Expt #57 
AIC 

 

Exp t#58 
Modified 

AIC 

Absolute 

ME 0.046 0.346 0.139 0.367 -0.044 0.330 

MAE 0.305 0.482 0.315 0.484 0.375 0.451 

MdAE 0.182 0.284 0.181 0.261 0.213 0.264 

RMSE 0.421 0.666 0.476 0.692 0.519 0.628 

Relative 

MPE 0.157 3.090 1.253 3.300 -0.711 2.958 

MAPE 3.567 5.153 3.509 5.106 4.330 4.811 

MdAPE 2.402 4.084 2.304 3.649 2.625 3.690 

RMSPE 4.774 6.456 4.842 6.562 5.892 6.058 

CE 0.957 0.893 0.945 0.884 0.935 0.905 

PI 0.857 0.642 0.817 0.614 0.783 0.682 

PI.MAE 0.619 0.400 0.608 0.397 0.533 0.438 

PI.MdAE 0.651 0.455 0.653 0.501 0.591 0.494 

 

 
Table 5.23: Performance measures for Expts #59 to 64 for the 2008 flood event for inputs 
Orte+rainfall 2008+2005 in the calibration. Grey shading denotes the best performing model 
overall while bold denotes the best performance between pairs of experiments, i.e. between 
Expts #59 and #60, Expts #61 and #62 and between Expts #63 and #64. 31 

Type of 
Measure 

Performance 
Measure 

BR BFGS LM 

Expt #59 
AIC 

Expt #60 
Modified 

AIC 

Expt #61 
AIC 

 

Expt #62 
Modified 

AIC 

Expt #63 
AIC 

 

Expt #64 
Modified 

AIC 

Absolute 

ME 0.130 0.465 0.064 0.521 0.041 0.274 

MAE 0.337 0.588 0.341 0.616 0.334 0.515 

MdAE 0.229 0.249 0.185 0.250 0.197 0.239 

RMSE 0.461 0.900 0.493 0.950 0.465 0.815 

Relative 

MPE 1.118 4.090 0.303 4.684 0.171 2.477 

MAPE 3.904 5.989 3.824 6.203 3.797 5.315 

MdAPE 2.848 3.714 2.509 3.406 2.489 3.416 

RMSPE 5.042 8.198 5.114 8.586 4.978 7.489 

CE 0.949 0.805 0.941 0.782 0.948 0.840 

PI 0.829 0.347 0.804 0.272 0.825 0.464 

PI.MAE 0.581 0.268 0.576 0.232 0.584 0.358 

PI.MdAE 0.562 0.523 0.645 0.520 0.623 0.542 
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Figure 5.13: Results for a) Expts #53 and #54; b) Expts #55 and #56; c) Expts #57 and 58; d) 
Expts #59 and #60; e) Expts #61 and #62; and f) Expts #63 and #64 for the 2008 flood event 
where the red line is the observed, the black solid line is the weighted average AIC and the 
dotted blue line is the weighted average modified AIC. 36 

 

Comparing the results to Table 5.15 (i.e. pure averaging of the ensemble), the results 

for the AIC are better overall. However, comparing the results with the PI threshold 

approach (Table 5.18), the results are more mixed. In the experiments where the 2005 

and 2008 floods were not used in the training data, some of the absolute and relative 

measures indicate better performance for the PI while others indicate better 

performance for the AI, indicating some contradictions between these redundant 

measures. The benchmark based measures, however, indicate better performance 

when using PI to select the model runs. For the experiments where the 2005 and 2008 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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flood events were included in the training dataset, the PI approach is generally better 

than the AIC. 

 

5.10 Calculation of the Confidence Limits of the Predictions 

Although a number of different ANN have been evaluated as part of this research, no 

confidence limits were calculated other than by Savi for the conceptual TEVERE model 

in Chapter 4. In order to examine the uncertainty of the model predictions, the 

statistical behaviour of the forecast error of Experment #17 to Experiment #28 has 

been analysed and modelled. First the Normal Quantile Transformation (NQT) was 

applied to the model forecasts and errors (i.e. observations minus the forecast) to 

check the applicability of the NQT-based methodology suggested by Montanari and 

Brath (2004) and further developed by Montanari and Grossi (2008). To illustrate a 

valid example for all the distributions analysed, Figure 5.14 shows the NQT of 

Experiment #18, where it is evident that the NQT effectively transforms the marginal 

distributions into Gaussian distributions, but the joint distribution is not elliptic. This 

result is expected as the marginal transformations do not transform the structure of 

dependence of the data. Since the joint density of the NQT variables is far from the 

elliptical shape (evident from the contour plot in Figure 5.14), the application of linear 

regression related to the Gaussian framework is deemed unsuitable for these data, as 

results returned could be biased.  

 

Figure 5.14 NQT applied to Expt #18. The figure shows the empirical joint histogram and the 
isolines of the joint Gaussian density function with a correlation parameter equal to the empirical 
correlation computed on the data. At the top and right are the histograms of the NQT variables 
and the corresponding standard Gaussian density functions (dashed lines). 37 
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Alternative methods can be applied instead of linear regression in the NQT transformed 

space. A simple alternative is Quantile Regression (QR; Koenker and Bassett, 1978), 

which is a flexible technique to define the conditional quantiles without making any 

assumptions about the marginal and joint distributions of the data. The QR algorithm 

can identify the band containing a certain percentage of the corresponding error for 

each value of the water level forecast. The data do not require transformation and the 

approach is non-parametric. The QR was employed to determine the 90% confidence 

band around the „best‟ forecast, where best is defined through the AIC weighting 

technique described in section 5.9. 

 

Figure 5.15 contains the scatterplot of the errors versus the model forecast for 

Experiment #18. The blue lines are the 5% and 95% conditional percentiles for each 

value of the forecast. It shows that about 90% of the error values fall within this band. 

The shape is a result of a spline with 25 degrees of freedom. Even though more refined 

algorithms are available choosing the degrees of freedom, a simple trade-off between 

parsimony and accuracy was adopted. As QR is a data-driven approach, it is flexible 

but there is loss in terms of extrapolation ability. Figure 5.15 shows that the upper limit 

follows the diagonal pattern that characterises the errors for high forecast values. The 

typical diagonal stripes shown by the data are an artefact resulting from the error 

definition (observation minus forecast). The spread of values in Figure 5.15 does not 

describe a genuine joint distribution of two quantities stochastically correlated, but it is 

influenced by the functional relationship between the forecasts and the errors.  

 

This aforementioned behaviour results in an upper bound to the upper confidence limit 

of the forecast, which is clearly shown in Figure 5.16, where the observed are plotted 

against the forecasted levels. From Figure 5.16 it is evident that the forecast is upper 

bounded by the maximum observed level. The extrapolation of the upper bound 

requires a parametric model, and could be achieved by replacing the splines with 

parametric models such as low-order polynomials, which introduce minimal statistical 

assumptions, or by the NQT approach, introducing the strong assumption of a bivariate 

Gaussian distribution of the data. In this context, the QR approach based on a B-spline 

was applied to keep the procedure data-driven and coherent with an ANN approach, 

which avoids statistical hypotheses), and to account for the fact that the dependence 

structure of the clouds in Figures 5.15.and 5.16 is influenced by the artefact related to 

the error definition. The results are summarised in Figures 5.17 and 5.18. 
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Figure 5.15: Quantile Regression with a spline of 25 degrees of freedom applied to Expt #18 for 
the error plotted againt the forecasted water levels38 

 

 

Figure 5.16: Quantile Regression with a spline of 25 degrees of freedom for Expt #18 for the 
observed versus forecast water levels 39 
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The confidence bands are plotted in Figures 5.17 for the 2005 flood event and Figures 

5.18 for the 2008 flood event where the individual graphs correspond to Experiments 

#29 to #40. Figures 5.17 (a-f) show that reasonably similar bands are associated with 

the different algorithms and the experiments, where the 2005 and 2008 flood events 

have been added. Looking at Figure 5.18, where the 2008 event is presented, the 

behaviour of the confidence band is similar to the 2005 event. For middle level values. 

the bands describe the non-parametric patterns provided by QR. For high level values, 

especially for the 2008 event, the upper bound is bounded and constant. This is 

expected in light of the behaviour described in Figures 5.15 and 5.16. For high level 

forecasts, there is a range of values where the upper limit is constant and equal to the 

observed maximum and the error varies linearly with the level. For the 2008 event, the 

upper bound corresponds to a range of forecast values larger than that of 2005 (where 

the figures are not shown here). Thus the lack of extrapolation that characterises QR is 

more evident.  

 
Finally, it is worth pointing out that the upper bound of the confidence bands should not 

interpreted as a lack of uncertainty. On the contrary, they reflect the lack of information 

(i.e. the complete ignorance and uncertainty) concerning the phenomenon under study 

when non-parametric techniques are used. While the parametric methods try to 

advance hypotheses on the behaviour of the process beyond the observed range, the 

nonparametric results reflect the attitude described by the Greek term Epoché (ἐποχή, 

epokhē := "suspension"), which describes the theoretical moment where all judgments 

about the existence of the external world, and consequently all actions in the world, are 

suspended. Thus, the upper bounds represent the place where the non-parametric 

methods suspend their explanatory activity and communicate their inability to provide 

any piece of information about the unknown (unobserved) phenomenology of the 

studied process. 
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Figure 5.17: Confidence intervals (90%) shown in gray for a) to c) Expts # 29 to #31 and d) to f) 
Expts #32 to #34 for the 2005 flood event where the red line is the observed and the black line 
is the average of the simulations determined by the PI threshold method. 40 
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Figure 5.18: Confidence intervals (90%) shown in gray for a) to c) Expts # 35 to #37 and d) to f) 
Expts #38 to #40 for the 2008 flood event where the red line is the observed and the black line 
is the simulations determined by the AIC. 41 

 

5.11 Discussion 

A number of different experiments were undertaken with the overall aim of improving 

the ANN model developed in Chapter 4. The first set of experiments were focussed on 

model predictions for the 2008 event, as this event was much harder to predict than the 

2005 event, and the peak is outside the range of data encountered in the training data 

set. Therefore, part of the experiments were designed to see whether the ANN could 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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extrapolate to a more extreme event. The first set of experiments involved adding more 

upstream stations and rainfall. Both clearly improved the model performance in terms 

of evaluation measures and a visual inspection of the hydrograph. The addition of 

rainfall resulted in a prediction that oscillated much more around the hydrograph. 

Moreover, an examination of the 50 ensemble members showed a greater spread of 

predictions indicating that rainfall increased the impact of the random initialisation of 

the weights of the NN. The effective rainfall created even a greater oscillation but 

looking at the hydrograph, the model overpredicted the peak (which is better from an 

operational point of view) compared to the hourly rainfall, where evidence of 

underprediction can be seen. Thus it is clear from these experiments that the NN can 

extrapolate and predict events outside the range previously seen in training. This 

relates directly back to the literature review (Chapter 2) in which extrapolation was 

raised by the ASCE (2000b) review and the subject of a few research studies 

discussed in the theme „Other Research‟. These sets of experiments also highlighted 

how much variation there is between ensemble members, especially at the peaks. 

These observations led to further investigation of the impact of the random initialisation 

of the weights in Chapter 6. 

 

Other experiments considered the development of a more parsimonious model; 

accounting for nonstationarity by adding a difference term to the inputs; and adding 

more data from the time series including cumulative rainfall. These were attempts to 

simplify the ANN and consider the effects of other types of inputs and more data. It 

showed that it is possible to create a more parsimonious model but there are tradeoffs 

in performance. The addition of cumulative rainfall did reduce the oscillations observed 

with hourly and effective rainfall. However, the best results were still obtained by 

adding rainfall and more upstream stations to the model. 

 

The next set of experiments worked with the parsimonious model and considered the 

2005 and 2008 flood events. The idea was to examine the impact of methods of 

normalisation and training algorithms on the model results. With such little guidance 

available on model development from the literature on ANN rainfall-runoff modelling 

(Maier and Dandy, 2000; Dawson and Wilby, 2001), these experiments were attempts 

to look for generalisable patterns in normalisation and training algorithms. For the 2005 

flood event, normalisation using the mean and standard deviation outperformed 

normalisation using the minimum and maximum. However, the difference between the 

two methods in terms of performance measures and the hydrographs was very small. 

The opposite was found for the 2008 flood event. Thus the latter method appeared to 
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work better when predicting more extreme events than those contained in the training 

dataset. For the training algorithms, there was no discernible pattern.  

 

The final sets of experiments considered the method used to combine the ensemble. 

Averaging was used in all previous experiments. Three other methods were examined: 

use of a PI threshold to select the best models before averaging; AIC; and a modified 

AIC after Zhao et al. (2008) whereby the models were weighted and linearly combined. 

For the 2005 flood event, the average and PI approaches were similar, mostly because 

the number of ensemble members chosen using this method was the majority of 

members. The AIC showed an improvement over the average and PI approaches but 

only on some of the performance measures. For the 2008 event, the PI showed an 

improvement over the average. This more complex event outside the range of the 

training data clearly benefited from a more refined method of ensemble combination. 

The AIC also resulted in improvements compared to a pure average, but the results 

were more mixed when compared to the PI. Thus, in general, the average works very 

well. Using the PI or AIC will, however, improve the results. The modified AIC 

performed better than the AIC for the 2005 flood event but not for the 2008 event. Thus 

the results do not entirely support the findings of Zhao et al. (2008). Confidence limits 

were then calculated around the model predictions for Experiments #29 to #40, 

illustrating some of the problems that surround the calculation of uncertainty for non-

parametric methods such as ANNs. 

 

5.12 Summary 

This chapter considered ways in which the ANN model developed in Chapter 4 could 

be improved. The experiments undertaken in the chapter showed that the addition of 

upstream stations and rainfall did result in an ANN model that could better predict the 

peak of the 2008 event, indicating an ability to extrapolate. This provides further 

evidence to existing studies dealing with this issue as reviewed in Chapter 2.  

 

An interesting observation made during these experiments is the large degree to which 

the ensemble members differ in their predictions, particularly at the peak of flood 

events. The averaging of the members results in good predictions but the variation 

between ensemble members are clearly the result of a random initialisation of the 

weights of the ANN prior to training. Thus in the next chapter, this issue is investigated 

in more detail.  
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Chapter 6  

Investigation of ANN Initialisation and Ensemble 
Methods using Empirical Mode Decomposition (EMD) 
 

6.1 Introduction 

It was clearly shown in Chapter 5 that 100 random initialisations of an ANN when using 

Bayesian Regularisation can produce quite different results, particularly in forecasting 

flood events. This chapter further explores the impact of random weight initialisation on 

1-day ahead hindcasts for two rivers in the USA. At the same time, a pre-processing 

technique called Empirical Mode Decomposition (EMD; Huang et al., 1998) is used 

with the ensemble ANN approach. EMD decomposes a time series into its intrinsic 

components, which are generally more regular than the original time series. Each 

component is then modelled individually and finally combined to reconstruct the series 

in the original space. Other decomposition methods have been used, e.g. Wang et al. 

(2006) used classical decomposition and hybrid ANNs to model daily discharge time 

series while Adamowski and Sun (2010) applied wavelet decomposition as a pre-

processing operation and then used ANNs to carry out an ensemble forecast. Wavelet 

analysis was discussed as part of theme four in the ANN rainfall-runoff modelling 

literature (section 2.4.5). EMD has not been used before in ANN rainfall runoff-

modelling although it has been used to decompose times series of crude oil spot prices 

(Yu et al., 2008). The authors then modelled the resulting components using ARIMA 

models and ANNs, which produced a better result than modelling the original time 

series using either of the two methods alone. The data driven nature of EMD is 

compatible with the nonparametric nature of ANNs. Hence their combination provides a 

very flexible modelling strategy.  

 

In this chapter, different catchments were chosen rather than the Tiber River to see 

whether similar issues arise with random weight initialisation. Moreover, long, time 

series were available for experimentation in these different catchments, which was 

required for application of the EMD. The concepts underlying EMD are first introduced 

in Section 6.2 while section 6.3 describes the catchments and datasets used in this 

modelling exercise. Section 6.4 outlines the experiments undertaken while the results 

are presented in sections 6.5 and 6.6 for the Potomac and Clark Fork Rivers, 

respectively. A discussion of the main findings is provided in section 6.7 and is followed 

by a summary in section 6.8.  

 

6.2 Empirical Mode Decomposition (EMD) 

EMD is an adaptive method for signal analysis introduced by Huang et al. (1998) and is 
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designed specifically for application to nonlinear and nonstationary data. Combined 

with Hilbert spectral analyisis (HSA), EMD produces the so-called Hilbert-Huang 

transform (HHT), which represents a new a posteriori and data-driven paradigm for 

analysing data (Huang and Wu, 2008). HHT acts similarly to wavelets but the basis 

function is not fixed a priori, it accounts for nonlinearity, and its theoretical basis is not 

mathematical, but empirical. 

 

The EMD algorithm decomposes a time series  into a set of band limited and 

orthogonal functions , called intrinsic mode functions (IMFs) and a 

remaining part  called the „residue‟, which represents a monotonic pattern, and can 

be considered as the overall trend of the original series. The summation of the IMFs 

and residue returns the original series, with unavoidable but generally negligible 

numerical errors: 

 

 

(6.1) 

An important feature of the IMFs is that their Hilbert transform is consistent with 

physically meaningful definitions of instantaneous frequency and amplitude, providing a 

more physically meaningful time-frequency-energy description of a time series (Huang 

and Wu, 2008). This property (denoted as adaptivity) plays a fundamental role in the 

analysis of nonlinear and nonstationary data, as only the adaptation to the local 

variations of the data can fully account for the physics of the underlying processes. As 

discussed by Huang et al. (1998), the use of a predetermined basis to fit all the 

phenomena causes a „harmonic distortion‟ in the Fourier analysis of nonlinear 

processes. An easy way to generate the necessary adaptive basis is to derive the 

basis from the data. Moreover, as a nonlinear system does not admit an explanation by 

superposition, and any linear expansion for a nonlinear system, such as that shown in 

Equation 6.1, does not make physical sense, it is worth pointing out that the aim of the 

HHT is not to provide a physically meaningful linear expansion but individual 

components in the linear system, which can have physical meaning related to the full 

nonlinear system. In this sense, HTT is able to capture important features of 

nonstationary and nonlinear signals such as Lorenz, Rössler and other nonlinear 

chaotic systems (Huang et al., 1998; Kijewski-Correa and Kareem, 2007; Lee and 

Ouarda, 2011b). 

 

Each IMF is a time series that satisfies the following two characteristics: (1) the number 

of extrema (i.e. the number of maxima and minima) and the number of zeros crossing 

differs at most by one; and (2) at any point, the mean values of the envelopes defined 

by the smooth curves passing through all the local maxima and all the local minima, 
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respectively, is zero. The IMFs are defined by an iterative process called „sifting‟, which 

is the core of the EMD algorithm. It serves to eliminate riding waves, and to make the 

wave-profiles more symmetric. The sifting procedure can be summarised as follows 

(Huang et al., 1998; Flandrin et al., 2004; Yang et al., 2010): 

 

1. Identify all extrema of the signal  (i.e., local minima and maxima); 

2. Interpolate between the minima (and the maxima) by means of cubic splines or 

more refined methods (Pegram et al., 2008), producing a lower and upper 

envelope,  and , respectively; 

3. Compute the average of the envelopes ;  

4. Extract the detail ; if  is equal to zero or smaller then a 

fixed threshold,  is retained as the first IMF and labeled as ; otherwise, 

steps 1-3 are repeated treating  as data, and so forth until  fulfills the 

properties of an IMF (number of zero crossings, and zero mean); 

5. Take the difference : the procedure finishes if the number of 

extrema of  is not larger than two; otherwise, treat  as the new  

and repeat steps 1-4 to define the next IMF. 

 

Since the procedure is data-driven and relatively new, there are some drawbacks to the 

method. For example, the use of a spline to determine the envelope of extrema is not 

the only method available (Pegram et al., 2008) and can be affected by serious 

problems of fitting near the ends of the signal. The stopping criterion in step 4 is also 

somewhat subjective. However, Huang and Wu (2008) have described these and other 

issues, which they have tackled and partially solved. Therefore, despite these 

limitations, EMD and HHT have been applied successfully in several fields (Huang and 

Shen, 2005; Huang and Attoh-Okine, 2005; Huang and Wu, 2008) as they provide a 

better representation of the local behaviour of the data compared to the Fourier and 

wavelet transforms. Moreover, it has been shown that IMFs can have physical meaning 

(e.g., Coughlin and Tung, 2004; Zhen-Shan and Xian, 2007). 

 

Despite the growing interest in HHT and EMD in economics (Huang et al., 2003; Zhang 

et al., 2008, 2009) and geophysical and climatic studies (Franzke, 2009; Crockett and 

Gillmore, 2010; Fauchereau et al., 2008; Jackson and Mound, 2010; Kataoka et al., 

2009; Solé et al., 2009), there are only a few hydrological applications to date. Sinclair 

and Pegram (2005) applied a two-dimensional EMD to separate high and low 

frequency components of radar measured rainfall fields in order to assess the temporal 

persistence of the low frequency components. Pegram et al. (2008) suggested using 

cubic splines instead of rational splines as one way of improving the EMD procedure 
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described earlier, where the potential benefits were demonstrated on three series of 

annual rainfall totals from three different locations around the world. Huang et al. 

(2009) studied daily time series of flow from two French rivers (Seine and Wimereux) 

and showed that both rivers are likely to be influenced by the same maritime climate 

regime of Northern France through the analysis of the correlation among the large 

scale IMF modes. Franceschini and Tsai (2010) applied the HHT method to analyze 

four time series in the Niagara River: flow, water temperature, and incoming 

concentrations of two polycyclic aromatic hydrocarbons (fluoranthene and chrysene). 

Lee and Ouarda (2010) used EMD to extract nonstationary oscillations of scaled 

precipitation and the North Atlantic Oscillation index. In order to perform long-term 

forecasts, Lee and Ouarda (2010) modelled the most important components with a 

nonstationary oscillation resampling technique, the sum of unselected components by 

k-nearest neighbour resampling or autoregressive models, and the EMD residual by 

trend fitting techniques. Lee and Ouarda (2011b) applied the same modelling strategy 

to forecast global surface temperature anomalies, which were also analysed by Lee 

and Ouarda (2011a) to separate the driving climatic signals from noise. 

 

 

Such an approach represents a generalisation of the “divide and conquer” approach 

used by Yu et al. (2008) and Yang et al. (2010) to forecast crude oil price time series 

and climatic time series, respectively. In particular, Yu et al. (2008) modeled each IMF 

with ANNs and ARIMA models, and then compared the ensemble and non-ensemble 

approaches, concluding that the EMD-ANN was more accurate than the other 

competitors in terms of the root mean squared error (RMSE) of 1-day ahead forecasts. 

Yang et al. (2010) modeled each component with ANNs and reached similar 

conclusions for lead times of 1 to 6 steps in the future, using Pearson‟s product 

moment correlation coefficient as a measure of performance. A hybrid EMD-ANN 

approach was also used by Hui and Xinxia (2010) to model a 40-year monthly runoff 

sequence from a hydrological station in Handan City (China), but no details were 

provided of the ANN structure and no statistical tests or indices were used to assess 

the model performance. 

 

6.3 Catchments and Data Availability 

Datasets from two different catchments were used in this study. The first dataset 

consists of 115 years of mean daily stream flow (in m3/s) from the Potomac River at 

Point of Rocks, Maryland, USA (US Geological Survey 303 station ID 01638500), with 

a drainage area of 24,996 km2. This dataset is one of the longest US discharge time 

series available. The Jennings Randolph Dam, completed in 1981, controls less than 

2% of the catchment (Villarini et al., 2009) and therefore has a relatively small impact 
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on the low flow of the Potomac River. Low flows were also affected slightly by the 

Stony River Reservoir from 1913 to July 1981, the by Savage River Reservoir since 

December 1950, and extensively at times by hydroelectric plants. Moreover, despite 

near-total deforestation in the late 19th and early 20th centuries related to agricultural 

practices (e.g., Bonan, 1999), the Potomac River at Point of Rocks provides one of the 

most natural annual peak records for a river of its size in the USA (Villarini et al., 2009). 

The annual peak record for the 20th century was studied by Villarini et al. (2009), who 

did not find evidence of non-stationarity. However, mean daily stream flow series 

convey more information and are more complex signals than the series of annual 

peaks.  

 

The second dataset consists of 80 years of mean daily stream flow (in m3/s) from the 

Clark Fork River below Missoula, Montana, USA (US Geological Survey station ID 

12353000), with a drainage area of 23,317 km2. Clark Fork is the largest river by 

volume in Montana. Based on the USGS quality control protocols, the quality of the 

records is classified as good (the difference between the data and the actual stream 

flow is within 5%) except for estimated daily discharge, which is fair (the difference 

between the data and the actual stream flow is within 8%). Diversions for irrigation of 

about 951 km2 occur upstream from the station.  

 

Table 6.1 contains summary statistics for the dataset as a whole (1 October 1895 to 30 

September 2009 for the Potomac and 1 October 1929 to 30 September 2009 for Clark 

Fork), for the training datasets (1 October 1895 to 30 September 1979 for the Potomac 

and 1 October 1929 to 30 September 1989 for Clark River) and for the testing datasets 

(1 October 1979 to 30 September 2009 for the Potomac and 1 October 1989 to 30 

September 2009 for Clark River) separately. 

 

For the Potomac River, the average discharge and the quantiles with probability P ≤ 0.9 

in the training dataset are slightly shifted compared to those of the testing dataset, 

probably owing to the effects of the Stony River Dam and Jennings Randolph Dam, 

operating until and since 1981, respectively. For Clark River, the average discharge 

and the quantiles with probability 0.1 ≤ P ≤ 0.9 in the training dataset are slightly higher 

compared to those of the testing period. 
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Table 6.1: Summary statistics (in m3/s) for the Potomac and Clark Fork Rivers. The symbol xP, 
with p={0.1,0.25,0.5,0.75,0.9}, denotes the quantile with nonexceedance probability P. 32 

Statistic Potomac River Clark Fork River 

Full set Training Testing Full set Training Testing 

Min 15.3 15.3 20.4 16.4 16.4 19.1 

x0.1 48.1 46.1 51.2 45.8 46.1 45.6 

x0.25 73.9 73.9 79.5 58.3 59.4 56.6 

x0.50 152.8 152.3 161.9 78.1 79.8 73.3 

x0.75 311.3 302.8 322.6 147.7 148.8 144.6 

x0.90 585.8 574.5 622.6 373.6 384.9 339.6 

Max 12282.2 12282.2 8150.4 1531.0 1471.6 1531.0 

Mean 269.2 264.9 281.0 150.2 153.5 140.3 

Std Dev 384.8 386.1 381.0 177.2 182.3 160.6 

 

6.4 Experimental Set Up 

The Potomac River data cover the period 1 Oct 1895 to 30 Sep 2009. Daily data from 1 

Oct 1895 to 30 Sep 1979 (85 years, ≈ 74% of the records) were used for training, while 

the remaining 30 years were used for testing (≈ 26% of the records). A three-layer 

feedforward ANN with a logistic activation function was chosen, where the input layer 

takes the previous 5 days as inputs, the hidden layer contains 5 nodes, and the output 

layer predicts the flow 1-day ahead. This architecture was chosen by trial and error and 

is coherent with those selected by e.g. Cannas et al. (2006), Wang et al. (2006) and 

Adamowski and Sun (2010) for other daily stream flow series. Other more complex 

structures were tried but no definitive improvements were found. This was further 

complicated by which performance index was chosen to determine improvements and 

the effect of the random initialisation of the weights. As the ratio of the number of input 

variables and the number of network weights is far larger than 50, ANNs should not be 

prone to either underfitting or overfitting if their training is not stopped appropriately 

(Amari et al., 1997; Wang et al., 2006). Therefore, training was stopped when the 

training error reached a sufficiently small value or when changes in the training error 

remained small. If these conditions were not fulfilled, the training was stopped after 

1000 epochs. 

 

Similar remarks hold for the Clark Fork River data, which span from 1 Oct 1929 to 30 

Sep 2009. The first 60 years (75% of the records from 1 Oct 1929 to 30 Sep 1989) 

were used for training, whereas the remaining period (20 years from 1 Oct 1989 to 30 

Sep 2009) was used for testing. For these data, the trials made little difference and 

therefore to be consistent, the same architecture was used for the Potomac River data 

to examine and compare the impact of the signal structure discussed in the following 

sections. 

 

The same strategy was applied to model each EMD component for the EMD-ANN and 

both datasets; however, for the EMD-ANN, at each forecasting step, it was necessary 
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to update the previous five days of all IMFs moving from the training set to the 

validation set. Since the decomposition was originally performed on the training set, the 

IMFs of the validation set must be computed. A possible strategy is to repeat the 

decomposition of the training set including the new observations that become 

progressively available. Such an approach is not efficient for two reasons. First, the 

EMD algorithm is affected by problems of fitting near the ends of the signal; therefore, 

the IMF values corresponding to the new observations which are progressively added 

at the end of the signal are not reliable. Second, the number  of the IMFs is related to 

the sample size  according to the approximate relation , as EMD acts as 

a dyadic filter bank (e.g. Flandrin et al., 2004; Wu and Huang, 2004). For instance, the 

number of components for the Potomac training set is 14 (  = 14.9), where the 

last component is the residual trend. To apply the 14 fitted ANNs to the testing set, 14 

new IMF values are needed for each observation progressively added in the testing 

period. These 14 values can only be obtained by decomposing a series with size . 

Hence, to avoid the above-mentioned problems, EMD was applied to the last 85 years 

of stream flows, and used the last 30 years of each component as the basis to test the 

EMD-ANN approach. In this manner, the required number of IMFs is obtained (i.e. 14) 

for each observation of the testing set and avoids the problem whereby the IMF values 

are affected by end effects of the EMD method (Yang et al., 2010); nevertheless, the 

resulting IMF values used to forecast the stream flow of a generic day  in the testing 

period are computed using information from future stream flow values, which would not 

be available on day  in a forecasting exercise. The testing stage has therefore been 

configured as a hindcast experiment rather than a real forecast. 

 

It should be noted that, in the EMD-ANN approach, the hindcasts of each component at 

each time step are compounded to obtain the hindcasts of the original stream flows by 

a simple summation, as this procedure is consistent with the underlying idea of EMD. 

Yu et al. (2008) suggest that the components can be combined using an adaptive 

linear ANN; however, experimentation showed that this approach does not provide 

significant improvements and introduces further complexity. Finally, to assess the 

impact of the ANN parameter uncertainty, the ANN and EMD-ANN were trained 100 

times with different initial weights randomly generated by a uniform distribution defined 

on the range [−0.5, 0.5], which is in agreement with the guidelines suggested by 

Haykin (1999, pp. 182-184). The EMD analysis and ANN modeling were performed in 

R (R Development Core Team, 2009) using the freely available packages EMD (Kim 

and Oh, 2008) and nnet (Venables and Ripley, 2002). 
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6.5 Potomac River Results 

6.5.1 Preliminary Analysis 

Figure 1 shows the 14 components given by the EMD for the training dataset along 

with the ANN values resulting from the training procedure (based on the minimisation 

of the RMSE), with a fixed set of initial weights. On the right are scatterplots of the 

values of the EMD components versus the corresponding ANN fitted values. Figure 6.1 

shows that the ANNs provide an excellent fit to components 3-14, whereas the errors 

are more evident for components 1-3, which are characterised by higher mean 

frequencies.  

 

Figure 6.1: On the left are the EMD components extracted from the mean daily discharge time 
series of the Potomac River spanning from 1895 to 1979 (training set; black lines), along with 1-
day ahead hindcasts obtained by the fitted ANNs (dashed gray line). On the right are scatter 
plots of observations versus ANN modeled hindcasts. The 1:1 gray lines denote a perfect fit. 
Source: Napolitano et al. (2011). 42 
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Figure 6.2 shows the mean period  of each IMF versus the number of IMFs in a 

loglinear plane: the points are aligned along a straight line with slope  ≈ 1.98, fulfilling 

the relationship . This confirms that the EMD acts as a dyadic filter bank (  = 2 ≈ 

1.98), as for white noise (Wu and Huang, 2004), fractional Gaussian noise (Flandrin et 

al., 2004) and turbulence time series (Huang et al., 2008). The seventh component 

appears to represent the annual cycle as the mean period is ≈ 304 days. The plot of 

the energies and cumulated energies in Figure 6.2 points out that about 80% of the 

energy (variability) is explained by the first four IMFs, whose mean periods are smaller 

than 44 days. Moreover, a peak of energy is given by the seventh component. To 

summarise, the time series is dominated by intra-monthly and annual dynamics, 

whereas processes at the other scales (between monthly and annual, and interannual) 

contribute only marginally to the overall energy of the stream flow process. 

 

 

Figure 6.2: On the left is the scaling relationship between the number of IMFs and the 
corresponding mean periods for the components shown in Figure 6.1. On the right is the non-
dimensional energy (gray) and cumulative energy (black) for each IMF shown in Figure 6.1. 
Source: Napolitano et al. (2011). 43 
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Figure 6.3 shows the 1-day ahead hindcasts of each EMD component for the testing 

set (1980-2009). Similar to the training dataset, the ANNs perform very well for 

components 3-14, whereas the errors for components 1-3 are comparable to that 

obtained in the training period.  

 

 

Figure 6.3: Mean daily discharge time series of the Potomac River spanning from 1980 to 2009 
for the test data set. Source: Napolitano et al. (2011). 44 
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Figures 6.4a-b show the discharge observed during the testing period along with ANN 

hindcasts and EMD-ANN values obtained by summing up the modeled components 

shown in Figure 6.3. Figures 6.4c-d show the scatter plots of the final ANN and EMD-

ANN hindcasts versus the observed stream flow of the test period for one example of a 

training run. 

 

Figure 6.4: The Potomac River discharge time series of the test period along with 1-day ahead 
hindcasts obtained by (a) a simple ANN and (b) the EMD–ANN model. Scatterplots of the 
observed discharge vs hindcasts computed by (c) the ANN and (d) the EMD–ANN. Source: 
Napolitano et al. (2011). 45 

 

6.5.2 Analysis of the Weight Initialisation Uncertainty 

Figures 6.5a-b focus on one example year and show the records and the 

corresponding 1-day ahead hindcasts given by 100 ANN and EMD-ANN training runs 

with different randomly generated initial weights. These plots illustrate that the ANN 

seems to be slightly biased for small stream flows, whereas the EMD-ANN shows a 

larger uncertainty than the ANN for high values. This behaviour is better highlighted in 

Figures 6.5c-f, which show the time series of the difference between hindcasts and 

observations (Figures 6.5c-d), and the series of the differences of the minimum and 

maximum hindcast at each time step  for  = 1, ...,100 

(Figures e-f). 
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Figure 6.5: Potomac River mean daily discharge from October 2008 to September 2009, and 
100 1-day ahead hindcast series from (a) the ANN and (b) the EMD-ANN obtained from 100 
sets of initial random weights. Figures (c) and (d) contain the time series of the differences 

 corresponding to the time series in (a) and (b). Figures (e) and (f) contain the time 

series of the differences, = which point out the 

variability of the hindcast at each time step. Figures (g) and (h) are the time series of  = 
. Source: Napolitano et al. (2011). 46 

 

As expected, the highest absolute uncertainty corresponds to the discharge around the 

peaks, where the process dynamics evolve quickly and the models experience difficulty 

in following the changing patterns. Figures 6.5g-h represent the values of 

, which illustrates the weight of the parameter uncertainty relative to the 

magnitude of the observations. As can be expected, for small values, the uncertainty 

can be very high, as small differences from small observations can result in high 

percentage differences. However, for discharge around the peaks (the most interesting 

for flood forecasting), the ANN parameter uncertainty may generate a variability whose 

width can reach 25-50% of the recorded values. This point was further investigated by 

computing  values corresponding to the observations above three thresholds 

defined as the 20th, 50th and 80th percentiles of the records. For all thresholds, the 
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mean value of  is ≈ 15% for the ANN, and ≈ 35% for the EMD-ANN, whereas the 

maximum values may reach ≈ 1500% (ANN, all thresholds), ≈ 4000% (EMD-ANN, 20th 

percentile), and ≈ 1000% (EMD-ANN, 80th percentile). 

 

6.5.3 Performance Analysis 

The performance measures are provided in Figure 6.6. The first row of boxplots refers 

to the absolute measures (ME, MAE, MdAE, and RMSE). As the ME is a sign measure 

allowing both negative and positive values, it shows that the ANN produces hindcasts 

strongly biased compared to the EMD-ANN, which in turn is comparable with the naïve 

hindcasts. This behaviour can be ascribed to the bias that characterises the small 

values produced by the ANN (Figure 6.5). Focusing on absolute errors (MAE and 

MdAE), contrasting results are obtained. As these metrics do not average out positive 

and negative values, they highlight the overall errors. The MAE indicates that the ANN 

performs better than the EMD-ANN, and both are better than the naïve hindcasts, 

whereas the MdAE leads to opposite conclusions. The MdAE values are smaller than 

the MAE, meaning that absolute errors are highly skewed. Thus, the two boxplots for 

MdAE and MAE show that the EMD-ANN performs better than the ANN with respect to 

small errors (which usually refer to small stream flows), whereas the opposite occurs 

when the focus is on middle sized errors. Recalling that the RMSE emphasises high 

errors, and these are likely related to stream flow peaks (and their neighbours), the 

boxplot for RMSE shows that the EMD-ANN is more accurate than the ANN near peak 

discharge. Note also that the models perform better than naïve hindcasts for mid to 

high errors (MAE, RMSE), and worse than the naïve hindcasts for small errors (MdAE). 

As small (high) errors usually refer to small (high) stream flows, it can be deduced that 

the naïve hindcast is acceptable for calm (base flow) periods, whereas it is 

outperformed by models during the rising and recession limbs. This result is not 

surprising; however, it can be highlighted only by analysing the behaviour of these 

different metrics.  

 

The MPE and MdAPE are coherent with their absolute counterparts (ME, MdAE), 

whereas the MAPE shows that the ANN and EMD-ANN are outperformed by the naïve 

hindcast. A similar behaviour is shown by the RMSPE, which, in addition, highlights a 

switch between the ANN and EMD-ANN. In terms of percentage measures, the models 

are invariably outperformed by the naïve hindcast. However, this behaviour should not 

lead to erroneous conclusions. As shown by the absolute metrics, the naïve hindcast 

performs better than model for small errors, which tend to occur for periods with 

smaller stream flows. In these periods the small but systematic errors given by the 

ANN and EMD-ANN result in very high percentage errors (see also Figures 6.5g-h), 
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which strongly contribute to the final values of the percentage metrics. The widely used 

CE shows values between 0.8 and 0.9, which denotes a fairly good performance 

according to Shamseldin (1997) and Dawson et al. (2007). The high values of CE 

should not lead to overoptimistic conclusions, as the index adopts the overall mean as 

a reference model, which provides very poor hindcasts. Moreover, as seasonality is a 

dominant component, models able to reproduce this property tend to exhibit high CE 

values. More reliable similarity measures seem to be PI, PI.MAE and PI.MdAE, which 

involve the naïve hindcast as a reference. PI values are almost all smaller than ≈ 0.5, 

PI.MAE values do not exceed ≈ 0.3, whereas PI.MAE are negative, denoting that the 

models are systematically worse than the naïve hindcast. 

 

Figure 6.6: Box-plots of the performance measure for the Potomac River. Each box-plot 
summarises the 100 values of each criterion computed on the ANN and the EMD–ANN series. 
The gray lines in the boxplots for ME, MAE, MdAE, RMSE, MPE, MAPE, MdAPE, RMSPE, and 
GRI refer to the reference value corresponding to the naïve hindcast. The gray lines in the 
boxplot labeled „Performance tests‟ refer to the 0.05th and 99.5th percentiles of the standard 
normal distribution, which define the 99% confidence interval of the test statistics under the null 
hypothesis for two-sided tests. Source: Napolitano et al. (2011). 47 

 

It should be noted that these similarity measures provide a piece of information similar 

to the corresponding absolute measures (RMSE, MAE and MdAE). For example, both 

the PI.MdAE and MdAE plots show that ANN and EMD-ANN perform worse than the 

naïve hindcasts. The plot of MdAE reveals information about the absolute difference 

between the models and the naïve hindcast, whereas the PI.MdAE quantifies the 
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relative difference (or similarity). The GRI index shows that the naïve hindcast yields 

errors within [≈ 1/1.25, ≈ 1.25] times the observed values, whereas the errors produced 

by the ANN and EMD-ANN fall within a wider range: [≈ 1/1.30, ≈ 1.30] times the 

observed values (on average). 

 

Finally, the sign test and the Diebold-Mariano test were applied to assess the 

significance of the differences between the ANN and EMD-ANN. The Diebold-Mariano 

test was applied by using absolute and squared errors (denoted as DB.1 and DB.2). 

The test statistics were computed for the loss differential sequences resulting from all 

possible 100 * (100 − 1)/2 combinations of ANN and EMD-ANN series. The Ljung-Box 

test applied to loss-differential sub-samples confirms that these series are serially 

uncorrelated, allowing a proper computation of the sign test statistic. The box-plots 

show that sign test statistic (Sign), DB.1, and DB.2 fall outside the two-sided 99% 

critical region [−2.58, 2.58] (denoted by grey lines 82%, 56%, and 54% of times, 

respectively). Hence, the differences between the ANN and EMD-ANN models should 

be considered significant. However, the negative values of DB.1 denote that the ANN 

performs significantly better than the EMD-ANN, whereas the DB.2 values suggest 

opposite conclusions. Since DB.1 relies on absolute errors, while DB.2 on squared 

errors, this result is coherent with the MAE and RMSE. 

 

6.6 Clark Fork River Results 

6.6.1 Preliminary Analysis 

For the Clark Fork River training data, the decomposition returns 13 components (12 

IMFs plus the residual trend), which is smaller than that expected from the dyadic filter. 

Figure 6.7 shows that the mean period ω increases with the number of IMFs following 

approximately the relationship  with  ≈ 2.02. This confirms that the EMD acts as 

a dyadic filter bank also for this example. Similar to the Potomac River data, the 

seventh component appears to represent the annual cycle as the mean period is ≈ 359 

days. However, unlike the Potomac River, the plot of the energies and cumulated 

energies in Figure 6.7 indicates that ≈ 80% of the energy is explained by three IMFs (5, 

6 and 7), whose mean periods are ≈ 120, ≈ 211, ≈ 359 days, respectively. Therefore, 

the Clark Fork River time series is dominated by dynamics acting between seasonal 

and annual scales. 

 

As the high frequency components are the most difficult to model properly, they 

represent the main source of error in the modelling stage (as is shown in the previous 

section for the Potomac River). However, if they contribute a small amount of energy 

(i.e. a small amplitude) to the overall signal (as in the case of the Clark Fork River), 
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corresponding modelling errors are expected to be small.  

 

 

Figure 6.7: On the left is the scaling relationship between the number of IMFs and the 
corresponding mean periods for the components of the Clark Fork River time series. On the 
right is the non-dimensional energy (gray) and cumulative energy (black) for each IMF. Source: 
Napolitano et al. (2011). 48 

 

 

Figure 6.8 confirms this statement, showing that the agreement of the ANN and EMD-

ANN hindcasts with the discharge observed during the testing period for the Clark Fork 

River is generally better than the Potomac River results, assuming the same model 

architecture. Therefore, the structure of the signal plays a key role for the modelling 

results, and EMD can help to point out in advance possible difficulties which can arise 

in the modelling stage. 
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Figure 6.8: The Clark Fork River discharge time series of the test period along with 1-day ahead 
hindcasts obtained by (a) a simple ANN and (b) the EMD–ANN model. Scatterplots of the 
observed discharge vs hindcasts computed by (c) the ANN and (d) the EMD–ANN. Source: 
Napolitano et al. (2011). 49 

 

6.6.2 Analysis of Weight Initialisation Uncertainty 

Figure 6.9 corresponds to Figure 6.5. In particular, Figures 6.9e-h point out that the 

absolute and percentage width of the error bands related to the random initialisation of 

the weights, for the ANN is generally smaller than that of the EMD-ANN for both peak 

and calm periods. As expected, the highest absolute uncertainty corresponds to the 

discharge around the peaks. However, in terms of percentage, the variability is very 

small (less than 5%) for the ANN and ≈ 10−25% for the EMD-ANN around the main 

peak. As for the Potomac River, this point was further investigated by computing  

values corresponding to the observations above three thresholds defined as the 20th, 

50th and 80th percentiles of the records. For all thresholds, the mean value of  is 

≈ 3% for the ANN, and ≈ 17% for the EMD-ANN, whereas the maximum values may 

reach ≈ 115% (ANN, all thresholds), ≈ 1000% (EMD-ANN, all thresholds). 
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Figure 6.9: The Clark Fork River mean daily discharge from October 2008 to September 2009, 
and 100 1-day ahead hindcast series from (a) the ANN and (b) the EMD-ANN obtained from 
100 sets of initial random weights. Figures (c) and (d) contain the time series of the differences 

 corresponding to the time series in (a) and (b). Figures (e) and (f) contain the time 

series of the differences, = which point out the 

variability of the hindcast at each time step. Figures (g) and (h) are the time series of  = 
. Source: Napolitano et al. (2011). 50 

 

6.6.3 Performance Analysis  

The performance measures are displayed in Figure 6.10. The ME shows that the EMD-

ANN tends to produce hindcasts more biased than the ANN. Therefore, in this case, 

the EMD-ANN gives small values that are more biased than the corresponding ANN 

values. On the contrary, the MAE, MdAE and RMSE indicate that the EMD-ANN 

outperforms the ANN. As for the Potomac River data, the MdAE values are smaller 

than the MAE, meaning that the absolute errors are skewed. Thus, the three box-pots 

for MdAE, MAE and RMSE show that the EMD-ANN performs better than the ANN with 

respect to small errors (which usually refer to small stream flows), middle sized errors 

and high errors (which are likely related to stream flow peaks and their neighbours). 
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Both models outperform the naïve hindcasts in terms of MdAE, MAE and RMSE. All 

percentage indices (MPE, MAPE, MdAPE and RMSPE) are coherent with their 

absolute counterparts. For the Clark Fork River data, the bias corresponding to small 

values is generally small resulting in small percentage errors (see also Figures 6.9g-h). 

This confirms the good performance of the models across the whole range of discharge 

values. 

 

 

Figure 6.10: Box-plots of the performance measure for the Clark Fork River. Each box-plot 
summarises the 100 values of each criterion computed on the ANN and the EMD–ANN series. 
The gray lines in the boxplots for ME, MAE, MdAE, RMSE, MPE, MAPE, MdAPE, RMSPE, and 
GRI refer to the reference value corresponding to the naïve hindcast. The gray lines in the 
boxplot labeled „Performance tests‟ refer to the 0.05th and 99.5th percentiles of the standard 
normal distribution, which define the 99% confidence interval of the test statistics under the null 
hypothesis for two-sided tests. Source: Napolitano et al. (2011). 51 

 

The CE shows values greater than 0.99, which denotes a good performance according 

to Shamseldin (1997) and Dawson et al. (2007). As for the Potomac River, the high 

values of CE only denote that the models strongly outperform the overall mean as a 

reference model. When a more representative naïve option is assumed (as for PI, 

PI.MAE and PI.MdAE), the similarity measures do not exceed the value 0.6. As 

previously mentioned, these similarity measures provide a piece of information similar 



125 

 

to the corresponding absolute measures (RMSE, MAE and MdAE). The GRI index 

shows that the naïve hindcast yields errors within [≈ 1/1.09, ≈ 1.09] times the observed 

values, whereas the errors produced by the ANN and EMD-ANN fall within a smaller 

range: [≈ 1/1.07, ≈ 1.07] and [≈ 1/1.05, ≈ 1.05] times the observed values (on average), 

respectively. Finally, the sign test and the Diebold-Mariano test were applied following 

the same approach as for the Potomac River. The box-plots show that all the test 

statistics fall outside the two-sided 99% critical region [−2.58, 2.58] (denoted by grey 

lines) 11% (Sign), 1% (DB.1), and 1% (DB.2) of times, respectively. Hence, the 

differences between the ANN and EMD-ANN models should be considered statistically 

significant. The positive values of the test statistics indicate that EMD-ANN performs 

significantly better than the ANN. This result is coherent with the MAE, MdAE and 

RMSE as well as the corresponding similarity measures. 

 

6.7 Discussion 

These experiments have compared the one day-ahead hindcast performance of two 

modelling strategies: a multilayer perceptron feedforward ANN and an ensemble 

counterpart deduced by decomposing the signal via the EMD technique. The analysis 

quantified the output uncertainty corresponding to the random initialisation. A number 

of redundant and non-redundant measures of performance, and formal tests were 

applied to assess the statistical significance of the differences between the considered 

models was used as set out in Chapter 3. The analyses were carried out on two long 

daily stream flow series with good quality data, and free from evident abrupt changes 

and trends, to emphasise the differences of the models on real but well-behaved data.  

 

The preliminary analyses of the signal components obtained by EMD show that some 

intrinsic modes are characterised by physical meaningful mean periods. The energy of 

each component allows for a better understanding of the contribution of each extracted 

mode to the overall signal and to help foresee possible difficulties and potential 

solutions to a certain extent in the modelling stage. In particular, as the high-frequency 

components are generally difficult to model, if they exhibit high energy, larger output 

errors can be expected than those related to signals that are dominated by mid-low 

frequency modes. Therefore, the results further point to EMD as a valuable tool for 

detecting signal properties and can be useful in improving the modelling. 

 

The analysis of the output uncertainty caused by the random initialisation of the ANN 

weights shows that this source of variability can exhibit significant width, depending on 

the overall model performance. When the model closely fits the data, the mean values 

of the uncertainty width can be negligible (≈ 3% of the observed discharge, on average, 
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for the ANN and Clark Fork River data) or not (≈ 15 − 35% of the observed discharge, 

on average, for the ANN and Potomac River data, and EMD-ANN), whereas the 

maximum values are always very large (from ≈ 100% to ≈ 4000%). In general, attempts 

to merge EMD and ANN in ensemble models produced a greater output uncertainty in 

the estimates at the mid to high stream flow values (values above different thresholds), 

which is expected and can be ascribed to the propagation of the modelling error 

throughout the IMF components. 

 

A further observation can be made about the weight initialisation. The initialisation of 

weights is essentially related to the mathematical nature of ANNs. In this context, 

Giustolisi and Laucelli (2005) and Giustolisi and Simeone (2006) proposed an 

optimisation approach, which considers the weights as a decision variable and aims at 

finding the optimal set of parameter values. Focusing on the nature of real-world data 

Wang et al. (2006) argued that attempts at choosing the best ANN model is not very 

sound for a number of different reasons, namely: (1) in real-world cases, the testing set 

is not observed yet and it is not certain whether the best model for the training and/or 

validation datasets is also the best one for the testing set; (2) even though the training 

dataset is large, it cannot take possible future changes (such as climatic or 

anthropogenic) into account; (3) the chosen model is the best one according to some 

performance metric or criterion, where different criteria can give different model scores. 

Therefore, as far as point estimates/forecasts are concerned, a possible strategy to 

overcome the weight uncertainty is the model averaging suggested by Wang et al. 

(2006), who trained 10 models, took the five best ones, and then took their average as 

the final output. On the other hand, the uncertainty related to the different final 

configurations of the weights should be accounted for in a comprehensive assessment 

of the overall uncertainty. In this case, the errors resulting from fitting several ANNs 

with different initial weights can be used to build an error model, such as the parametric 

meta-Gaussian error model suggested by Montanari and Brath (2004), or resorting to 

techniques that treat the weights and biases of ANNs as fuzzy numbers rather than 

crisp numbers (Alvisi and Franchini, 2011). The rationale of these approaches is partly 

related to the final scope, which moves progressively from a point estimation to an 

interval estimation. These issues are beyond the scope of this research. Instead, this 

research has shown the possible magnitude of the error resulting from the random 

initialisation, highlighting its relation to signal properties. 

 

The study of the model performance shows that the larger uncertainty of the EMD-ANN 

can result in smaller bias and better hindcast performance. For the Potomac River 

data, the ensemble approach provided less biased results for low flows. However, 
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focusing on the overall model accuracy, the performance scores provided contrasting 

results that depend on the chosen performance measure. In general, measures based 

on signed errors and squared errors tend to favour the EMD-ANN, whereas indices 

based on absolute errors indicate that the ANN models are better. These contrasting 

results reflect the intrinsic difficulties in modelling a signal with highly energetic high 

frequency components. For the Clark Fork River stream flow signal, which is 

dominated by mid-low frequency modes, the EMD-ANN exhibited a significant 

improvement with respect to the ANN. As the EMD-ANN is much more complex than 

the ANN, this result could be expected; however, the Potomac case study shows that a 

more complex model can fail to improve the results. The EMD analysis helped to 

recognise that the nature of the data plays a key role in the propagation of error. The 

EMD-ANN outperforms the ANN when the error of the high-frequency modes is small 

(Clark Fork River data), whereas it can be outperformed when the error of the high-

frequency modes is large. Therefore, the success of an ensemble approach over a 

non-ensemble depends to some extent on the properties of the high frequency 

components of the signal. 

 

The results show that non-redundant indices can provide discordant results (as for 

Potomac River data), whereas the redundant measures can support each other and 

further illustrate that the use of other non-redundant indices is necessary for a fair 

model assessment. Therefore, the application of several appropriate measures and the 

comparison with simple benchmark models should become standard practice for a fair 

model assessment. In particular, the relationships between absolute metrics, deviance 

measures and similarity measures must be taken into account to avoid the use of 

criteria which appear to be different, but provide similar information. 

 

6.8 Summary 

This chapter explicitly considered the impact of random weight initialisation on the 

results of the ANN. This is an important issue as there has been little research done on 

this topic. Moreover, many papers simply report the results from one optimal ANN 

chosen through trial and error without considering the effect of weight initialisation. The 

chapter showed that the impact can be large. The chapter also investigated a pre-

processing technique called empirical mode decomposition, which has not been 

applied to ANN rainfall-runoff modelling before. EMD provides a good method for initial 

investigation of a time series. However, model performance is a function of the error in 

the high-frequency modes. When this error was small, the EMD-ANN outperformed the 

ANN while the opposite was true when the error was large. Thus, this technique must 

be used with particular knowledge of the properties of the specific time series and 
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catchment being modelled.  Moreover, the EMD-ANN generally resulted in a greater 

output uncertainty in the medium to high flow predictions. Finally, the suite of 

performance measures outlined in Chapter 3 was systematically applied to the two 

catchments. The results showed that the use of redundant indices help to support each 

other in providing the same message but non-redundant indices can show conflicting 

results. Therefore, it is imperative to apply several measures to each modelling 

exercise including comparison with benchmark models in order to fully understand the 

model performance. The next chapter concludes the thesis and provides 

recommendations for further research. 
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Chapter 7  

Conclusions and Recommendations for Further 
Research 
 

 
7.1 Introduction 

This chapter summarises the findings of the research in relation to the aims and 

objectives as set out in section 1.2 in order to show how they have been achieved. The 

contributions of the research are also highlighted in this first section. The second 

section contains a discussion of the limitations of the research and any problems 

encountered during the study. A set of recommendations in the form of a short 

research agenda for ANN rainfall-runoff research comprises the final section of this 

chapter and of the thesis.  

 

7.2 Summary of the Research Findings 

The overall aim of this thesis was to examine a number of issues related to ANN 

rainfall-runoff modelling that have been identified from a review of the literature, in 

particular the need to rigorously compare ANNs with conceptual/physical models; the 

use of different performance measures for model evaluation; the problems associated 

with training ANNs using different random weight initialisations; and the use of 

ensemble methods, all of which have been identified as ongoing issues from a review 

of the literature. Below are the objectives of the research as stated in section 1.2. 

Following each objective is a description of how the objective has been achieved and 

the significance of the research findings. 

 

Objective 1: To review and critically evaluate the academic literature on ANN 

rainfall-runoff modelling 

A comprehensive review of ANNs was undertaken in Chapter 2. The first part of the 

chapter placed ANNs in the schema of approaches to hydrological modelling. A brief 

history and definitions were then provided. This was followed by on overview of ANN 

structures and model development. This section clearly highlighted the general lack of 

guidance that exists, where most aspects of model development are undertaken via 

trial and error or based on heuristics from the literature. The advantages and 

disadvantages were then provided as a critique of this method, where the 

disadvantages drive some of the research happening in this area. Finally, the existing 

body of literature was reviewed starting with the initial phase of activity in ANN rainfall-

runoff modelling. Since the appearance of the first paper around 1985, there have been 

hundreds of papers published on this topic. For this reason, the research review was 
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divided into the main themes that emerged from the literature review. An indication of 

the volume of research in this area is also clear from the review papers that have 

appeared around the year 2000 and more recently in 2010. From these review papers, 

the areas that were recommended for further research were summarised. From this 

list, two key areas relevant to this research were discussed, i.e. the need for 

considerations of uncertainty and further research into ensemble methods. Both of 

these concepts were then considered within objectives 4 and 5. 

 

Two other important areas were flagged. These were not part of any individual theme 

but based on observations from the research reviewed. The first was a greater need to 

compare ANNs with conceptual and/or physically-based models. This is the only way 

that hydrologists will be convinced that ANNs are a viable technology for the 

operational environment. This is far from currently established and ANNs may actually 

not end up being the most appropriate tool. However, research in this direction is still 

required. Secondly, there was no consistent pattern in the application of performance 

measures to evaluate ANN rainfall-runoff models. This has been further elaborated in 

Objectives 2 and 6. 

 

Objective 2: To review and evaluate the measures that are used to evaluate 

model performance, choosing a subset for use in the research 

An overview of the most commonly used performance measures was provided in 

Chapter 3. These were cateogorised into absolute, relative and those based on 

benchmark models. From this set of measures, a subset was chosen including five 

absolute measures (ME, MAE, MdAE, RMSE and PDIFF), four relative measures, 

which correspond to the first four absolute measures (MPE, MPAE, MPdAE and 

RMSPE) and five benchmark measures (CE, PI, PI.MAE, PI.MdAE and GRI). Two 

further measures were introduced for comparing two different models against one 

another, which are used in economics but have not been applied in hydrology before. 

These are the sign test and the Diebold-Mariano test. The list chosen was intended to 

be comprehensive as well as including both redundant and non-redundant measures. 

The idea was to see whether there is consistency of message between measures, 

consistency of measures between models, and to determine the general utility of the 

measures. The results of the application of these different measures highlighted 

situations in which the performance measures were in complete agreement, situations 

in which the absolute and relative measures agreed but the benchmark-based 

measures did not, and situations where no discernible pattern was revealed when 

comparing sets of experiments. Therefore, the application of several appropriate 

measures and the comparison with simple benchmark models should become standard 
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practice for a fair model assessment. Moreover, visual inspection of the hydrograph 

proved to be valuable in some instances where the situation based on the evaluation 

measures alone was not incisive. 

 

Objective 3: To develop an ANN rainfall-runoff model of the Tiber River basin and 

compare this with the conceptual TEVERE model 

Prior to development of the ANN model, an overview of the Tiber River basin was 

provided including geology, land use, climate, etc. The flood events in 2005 and 2008 

that affected the city of Rome, and were predicted by both the ANN and conceptual 

model, were described in detail. An ANN model was then built to predict these two 

flood events at Ripetta gauging station in Rome using historical water level data at 

Ripetta and one upstream station at Orte for a lead time of 12 and 18 hours. No rainfall 

was used in the model. Trial and error was used to find the optimal configuration 

resulting in 10 hidden nodes. Bayesian Regularisation was used to train the ANN 

because this algorithm does not require a validation dataset to avoid overtraining. It 

also has the advantage that more data can be used for both training and testing, which 

was necessary due to the small amount of data available for development of the ANN. 

This is primarily because flood events were extracted from the historical record and this 

greatly reduced the amount of data available. The networks were trained 50 times 

according to guidance provided by Anctil (2007) to compensate for variations in model 

predictions caused by the random initialisation of the weights. The conceptual model of 

Calvo and Savi (2009) was also described, which was then specifically run to predict 

the 2005 and 2008 events for the same lead times of 12 and 18 hours.  

 

The two models were then compared using the suite of performance measures chosen 

as part of Objective 2 with the exception of the sign and Diebold-Mariano tests. 

Unfortunately the length of the model predictions was too short and they were not 

independent so the tests were inapplicable. Visual inspection of the hydrographs was 

also undertaken. Overall both models generally performed well. At a lead time of 12 

hours, the conceptual model was superior. This is reflected in the suite of performance 

measures applied. Examination of the hydrographs showed excellent correspondence 

by the conceptual model. For the ANN, the prediction of the rising limb was late but the 

rest of the hydrograph was predicted well. At a lead time of 18 hours, the conceptual 

model was late in predicting the rising limb while the ANN produced a better result on 

the rising limb (although also slightly late) but then the rest of the hydrograph was not 

predicted as well as the conceptual model.  

 

Although the conceptual model outperformed the ANN, there are two major issues with 
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the model: a) the lack of forecasted rainfall resulted in a late prediction for the 2008 

event; b) the model requires 18 hours for calibration so the first 18 hours of any flood 

event will not be predicted. This conceptual model can therefore only be used on 

catchments with very long lead times. The ANN is able to predict the first 18 hours so 

one could see an obvious synergy between the use of the two models together. 

Moreover, the ANN did not use any rainfall in this first main experiment and it had 

obvious issues with predicting the latter part of the hydrograph. It is therefore clear that 

improvements are possible but after the research undertaken in this chapter, one could 

only recommend the conceptual model or a combination of the conceptual and ANN 

model working together. 

 

Objective 4: To undertake a series of different experiments to improve the basic 

ANN rainfall-runoff model developed as part of Objective 3 and briefly examine 

methods of ensemble combination 

This objective was addressed in Chapter 5 in which different experiments were 

undertaken with the overall aim of improving the ANN model developed in Chapter 4. 

The first set of experiments were designed to see whether the model could extrapolate 

to the 2008 event, which was harder to predict than the 2005 event because an event 

of such a magnitude was not present in the training dataset. The experiments involved 

adding more upstream stations and rainfall. Both clearly improved the model 

performance in terms of both the quantitative evaluation measures and a visual 

inspection of the hydrograph. Thus, the objective was achieved and the ANN was able 

to better predict the 2008 event. During the course of these experiments, the large 

degree of variation between ensemble members in their predictions, especially at the 

peaks, was observed. As a result, the impact of the random initialisation of the ANN 

weights was further investigated in Objective 5. 

 

The second part of the objective concerns methods of ensemble combination. A simple 

average was employed as originally suggested by Anctil (2007), who also used BR to 

train ANNs in a hydrological context. This second part of Objective 4 was acheived 

through the application of three different methods of ensemble combination: use of a PI 

threshold to select the best models before averaging; the AIC; and a modified AIC after 

Zhao et al. (2008). In the case of the AIC and modified AIC, the ensemble members 

were weighted and then linearly combined. The results showed that the average 

generally worked well. However, for the 2008 flood event, both the PI and AIC-based 

ensemble combination worked better. Thus, a more refined ensemble combination 

method is recommended.   
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Objective 5: To apply a pre-processing method called Empirical Mode 

Decomposition (EMD) to ANN rainfall-runoff modelling and examine the impact 

of random weight initialisation on the ANN model outcomes 

Empirical Mode Decomposition (EMD) is a method of decomposing a time series 

(Huang et al., 1998) where the individual signals can then be modelled separately and 

recombined to create a single prediction. This method has not been applied before to 

ANN rainfall-runoff modelling so the application undertaken in this thesis and now 

published in Napolitano et al. (2011) represents a significant scientific contribution to 

the literature on ANN rainfall-runoff modelling. The experiments undertaken as part of 

achieving this objective involved the comparison of one day ahead hindcasts of an 

ANN and an ensemble counterpart produced by decomposing the signal via the EMD 

technique. The methods were applied to two rivers with long time series in the USA: 

the Potomac River and the Clark Fork River. The EMD was first used to analyse the 

time series of each river. The analysis demonstrated that EMD can be used as a 

valuable tool for detecting signal properties, which can be used to improve the 

modelling. 

 

The output uncertainty caused by the random initialisation of the ANN weights was 

shown to be large at the highest values (from ≈ 100% to ≈ 4000%) and then varied 

depending upon the dataset, e.g. 3% of the observed discharge, on average, for the 

ANN and Clark Fork River data or (≈ 15% to 35% of the observed discharge, on 

average, for the ANN and Potomac River data, and EMD-ANN). In general, attempts to 

merge the EMD and ANN in ensemble models produced a greater output uncertainty in 

the estimates at the mid to high stream flow values (values above different thresholds), 

which is expected and can be ascribed to the propagation of the modelling error 

throughout the IMF components. 

 

Objective 6: To highlight the limitations of the study and to make 

recommendations for further research 

The limitations and recommendations for further research are outlined in the next 

section, which comprises a short research agenda for the future. This section also 

concludes the thesis.  

 

Thus, the six objectives set out in section 1.2 were achieved. In general the research 

demonstrated that ANN models can be built that have good performance from an 

operational perspective although a complementary approach with the conceptual 

model would be more beneficial than using one model alone. The research also 

highlighted the importance of the random initialisation of the weights and the need to 



134 

 

use a suite a performance measures to provide a comprehensive model evaluation. 

Finally EMD was shown to be a technique that has a great deal of potential for ANN 

rainfall-runoff modelling. 

 

7.3 Limitations and Problems Encountered During the Research 

One major limitation of this study regarded the data available for modelling on the River 

Tiber. Although there is theoretically a large network of rain gauges and rainfall 

stations, not all of the data for the stations were available and some stations did not 

record hourly data. When station data were available, the records were incredibly 

messy. This required reformatting and cleaning of the data (as there was inconsistency 

between stations) and filling in missing records when possible. Issues with the data 

were another reason why experiments with a more parsimonious model were 

undertaken. It is clear that adding more upstream stations often improved the ANN. 

However, to have complete records at all stations for the same event was quite rare. 

Thus, the use of more stations meant less data for training and testing because of 

missing data. ANNs require a considerable amount of data. Conceptual models have a 

definite advantage over data-driven models when the available data are sparse. This 

was another reason for using the long time series for the Potomac River and Clark Fork 

River to continue experimentation in Chapter 6 on EMD and the random weight 

initialisation issue. However, it was also good to examine these issues on different 

catchments to consider how transferable the conclusions are to different areas. 

 

A second problem was lack of access to the conceptual TEVERE model due to the 

unfortunate death of Prof Savi part way through this research. This meant that further 

experimentation with the conceptual model beyond what appears in Chapter 4 was not 

possible. For example, plans to couple an ANN rainfall forecasting model with the 

TEVERE model had to be abandoned. Other plans to couple elements of the 

conceptual model like that undertaken by Corzo et al. (2009) or examine the hidden 

nodes of an ANN using a conceptual model (e.g. Wilby et al., 2003) were simply not 

possible. Thus, a shift in the research direction was taken partway through the PhD. 

 

7.4 Recommendations for Further Research 

A number of areas for further research can be recommended from this research study. 

These include the following: 

  

1. Research is required that specifically addresses the operational capability of ANNs. 

The literature is full of examples of how ANNs outperform existing models (see 

Chapter 2) but the movement from academic study to operation is not going to 



135 

 

happen unless individuals or organisations are brave enough to really test out this 

technology. The development and maintenance of real-time flood forecasting 

systems cost an immense amount of money. The development of an ANN flood 

forecasting system would be a very small investment in comparison.  

 

There are a number of ways that could be suggested for encouraging this 

technology transfer. The first is that ANNs need to be part of mainstream 

hydrological modelling education, embedded in undergraduate and postgraduate 

courses. If there is sufficient understanding of how these tools work and what they 

can and cannot do, then when students who took these courses go onto work in 

civil protection agencies, they may be more inclined to try alternative approaches. 

Secondly, agencies that fund research need to be lobbied in order to add ANN 

modelling to their research agendas. Finally, research should also consider ANNs 

as complementary rather than competitive approaches to traditional hydrological 

modelling as suggested in section 7.2 under the Objective 3 summary. As ANNs 

have a fast computation time and a low burden of operation, they would happily sit 

alongside a conceptual model. When forecasters have more than one piece of 

evidence on which to make operational decisions, it should then be much easier to 

convince decision makers to act at higher levels. However, this requires ANN 

rainfall-runoff researchers to be much more proactive in trying to transfer the 

technology to the operational environment. However, many express little interest in 

this (See, 2008, personal communication) as evidenced by a recent survey of 

operational ANN applications in the water resources industry (Macdonald and See, 

2010). 

 

2. More research is needed to examine EMD as both a diagnostic tool to better 

understand a time series (or a particular catchment) and as a modelling tool to be 

used in combination with ANNs. As this was the first attempt at applying EMD to 

ANN rainfall-runoff modelling, there are many further developments possible in this 

field. 

 
3. More research needs to be undertaken in methods of uncertainty for ANN models. 

Although some methods are available, more explicit guidance must be developed 

to help ANN rainfall-runoff modellers to calculate and report uncertainty as standard 

practice.  

 
4. The impact of the random initialisation of weights of the ANN needs further 

investigation. The majority of studies in the literature do not take this into account, 

reporting only the best single model produced. As models are often only tested on 
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a small dataset to evaluate model performance, the single instance of an ANN 

cannot really be trusted given the range of model predictions that were observed 

across the ensemble members, especially at the peak of a flood event. Studies that 

look at the sensitivity of ANN models to multiple independent datasets and 

compare these to ensemble model performance should be undertaken. This will 

require catchments with long time series or could be undertaken using synthetically 

generated datasets with different properties and distributions. This research should 

consider the effect on the performance measures as well as the resulting 

uncertainty in the model predictions. 

 
5. A suite of performance measures should be used to assess model performance 

including absolute, relative and benchmark-based models. The PDIFF was not a 

very useful error measure so a better measure should be devised, e.g. difference 

between the model prediction at the highest observed point of the peak or at a level 

that triggers an operational event. Visual inspection of the hydrograph proved 

crucial in some experiments and should always be part of the performance 

evaluation. More operational measures could also be devised that better evaluate 

the usefulness of ANN methods for an operational environment rather than global 

measures that only provide some idea of overall goodness-of-fit. Some research 

that attempts to standardise practice in this area is therefore recommended.  
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