
Evolutionary Computation Techniques for
Intrusion Detection in Mobile Ad Hoc Networks

Sevil Sen

PhD Thesis

University of York

Department of Computer Science

March 2010

To my family..

3

Abstract

Mobile ad hoc networks (MANETs) are one of the fastest growing areas of research.
By providing communications in the absence of a fixed infrastructure MANETs are
an attractive technology for many applications. However, this flexibility introduces
new security threats. Furthermore the traditional way of protecting networks is not
directy applicable to MANETs. Many conventional security solutions are ineffective
and inefficient for the highly dynamic and resource-constrained environments where
MANET use might be expected.

Since prevention techniques are never enough, intrusion detection systems (IDSs), which
monitor system activities and detect intrusions, are generally used to complement other
security mechanisms. How to detect intrusions effectively and efficiently on this highly
dynamic, distributed and resource-constrained environment is a challenging research
problem. In the presence of these complicating factors humans are not particularly
adept at making good design choices. That is the reason we propose to use techniques
from artificial intelligence to help with this task.

We investigate the use of evolutionary computation techniques for synthesising intrusion
detection programs on MANETs. We evolve programs to detect the following attacks
against MANETs: ad hoc flooding, route disruption, and dropping attacks. The
performance of evolved programs is evaluated on simulated networks. The results
are also compared with hand-coded programs. A good IDS on MANETs should also
consider the resource constraints of the MANET environments. Power is one of the
critical resources. Therefore we apply multi-objective optimization techniques (MOO)
to discover trade-offs between intrusion detection ability and energy consumption of
programs, and optimise these objectives simultaneously.

We also investigate a suitable IDS architecture for MANETs in this thesis. Different
programs are evolved for two architectures: local and cooperative detection in neigh-
bourhood. Optimal trade-offs between intrusion detection ability and resource usage
(energy, bandwidth) of evolved programs are also discovered using MOO techniques.

5

Contents

1 Introduction 21

1.1 Mobile Ad Hoc Networks (MANETs) . 21

1.2 Intrusion Detection in MANETs . 22

1.3 Thesis Hypothesis . 23

1.4 Thesis Overview . 25

2 Security in Mobile Ad Hoc Networks 27

2.1 Mobile Ad Hoc Networks . 27

2.2 Vulnerabilities of MANETs . 29

2.3 Attacks on MANETs . 30

2.3.1 Adversary Model . 31

2.3.2 Attacks . 33

3 Intrusion Detection in Mobile Ad Hoc Networks 39

3.1 Intrusion Detection Systems (IDS) . 39

3.1.1 Taxonomy of Intrusion Detection Systems 40

3.1.2 Future Research on IDS . 42

3.2 Intrusion Detection Issues in MANETs . 43

3.3 Proposed Intrusion Detection Systems in MANETs 45

3.3.1 Distributed and Cooperative IDS [106][107] 48

3.3.2 Cooperative IDS using Cross-Feature Analysis in MANETs [42][43] 49

3.3.3 Zone-Based IDS [89] . 51

3.3.4 General Cooperative Intrusion Detection Architecture [87] 53

3.3.5 Intrusion Detection Using Multiple Sensors [49] 54

3.3.6 Specification-Based IDS for AODV [90] 56

3.3.7 DEMEM: Distributed Evidence-Driven Message Exchanging In-
trusion Detection Model [92] . 57

3.3.8 Case-Based Agents for Packet-Level Intrusion Detection [34] . . . 59

3.3.9 An IDS Architecture with Stationary Secure Database [83] 60

3.3.10 An IDS Model Integrating Different Techniques [44] 61

3.3.11 A Modular IDS Architecture [75] 62

3.4 Detection of Misbehaving Nodes . 63

3.4.1 Watchdog and Pathrater [62] . 63

3.4.2 Nodes Bearing Grudges [21] . 66

7

3.4.3 LiPaD: Lightweight Packet Drop Detection for Ad Hoc Networks
[15] . 67

3.4.4 Intrusion Detection and Response for MANET [72] 68
3.5 Discussion of Applicability of Proposed IDSs to MANETs 73
3.6 Future Research . 74
3.7 Conclusion . 76

4 Evolution of An Intrusion Detection System in MANETs 77

4.1 Threat Model . 77
4.1.1 Ad-Hoc On Demand Routing Protocol (AODV) 77
4.1.2 Attacks on AODV . 79

4.2 Introduction to Evolutionary Computation 81
4.2.1 Genetic Programming . 84
4.2.2 Grammatical Evolution . 86
4.2.3 Related Work . 89
4.2.4 Why Evolutionary Computation? 90

4.3 Evolving Intrusion Detection Rules . 91
4.3.1 Feature Selection . 92
4.3.2 Application of Genetic Programming to Intrusion Detection in

MANETs . 94
4.3.3 Application of Grammatical Evolution to Intrusion Detection in

MANETs . 95

5 Performance Evaluation of Evolutionary Computation on Intrusion De-

tection 99

5.1 Simulation Model . 99
5.2 The Performance of Grammatical Evolution 100

5.2.1 Variations in Route Disruption Attack 104
5.3 The Performance of Genetic Programming 105
5.4 The Performance of Manual Detection . 107
5.5 The Evaluation of GP and GE on Intrusion Detection 109

5.5.1 The Testbed . 110
5.5.2 The Design of Experiments . 111

6 Trade-offs in Intrusion Detection in MANETs 115

6.1 Introduction . 115
6.1.1 Power Simulation . 117

6.2 Multi-Objective Evolutionary Computation 118
6.2.1 Strength Pareto Evolutionary Algorithm (SPEA2) 119

8

6.3 Analysis of Power Consumption of Evolved Programs 121
6.4 Discovering Trade-offs in Intrusion Detection Programs 123

6.4.1 Experiment 1: Attack-specific Intrusion Detection Programs 124
6.4.2 Experiment 2: Multi-attack Intrusion Detection Programs 125

7 Distributed and Cooperative Intrusion Detection on MANETs 129

7.1 Introduction . 129
7.2 Intrusion Detection Architectures in MANETs 131

7.2.1 Cooperative Detection in Neighbourhood by GE 131
7.2.2 Cooperative Detection in Neighbourhood by GP 134
7.2.3 Investigating the Resource Usage of Cooperative Detection Programs135

8 Conclusion 145

8.1 Summary of Experimentation . 145
8.2 Thesis Contributions . 148
8.3 Future Research . 150

References 153

9

10

List of Figures

2.1 Communication between Nodes on MANETs 28
2.2 Forge Reply Attack . 35
2.3 Wormhole Attack . 37

3.1 Zone-Based IDS Architecture in MANETs 51
3.2 IDS Hierarchy with Two-Level Clusters 54
3.3 IDS Architecture

(a) One-hop Clustered Network (b) Two-hop Clustered Network 55

4.1 An Example GP Tree of Depth 3 . 85
4.2 Mutation Operator on Genetic Programming 85
4.3 Crossover Operator on Genetic Programming 86
4.4 Crossover Operator on Grammatical Evolution 89

5.1 Route Request Packets on Simulated Networks 103
5.2 GE: Relation Between Classification Accuracy and Number of Generations104
5.3 The Performance of Evolved Programs on Route Disruption Attack 105
5.4 GP: Relation Between Classification Accuracy and Number of Generations106
5.5 The Performance of Manual Detection of Ad Hoc Flooding Attack on

Different Threshold Values . 108
5.6 A GP Tree and Corresponding C statement 110

6.1 An Example of Pareto Front . 119
6.2 Trade-offs Between Detection Rate and False Positive Rate for Attacks

Ad Hoc Flooding and Route Disruption 121
6.3 Classification Accuracy and Energy Consumption of the Optimal Evolved

Programs . 122
6.4 Simplified Schema of Experiments . 124
6.5 Coplots for Programs Evolved for Detection of Ad Hoc Flooding Attack

with Three Objectives . 125
6.6 Coplots for Programs Evolved for Detection of Both Attacks Together

with Three Objectives . 126

7.1 Union of the Non-dominated Solutions from Each Run 139
7.2 Fitness vs. Percentage of Neighbour Nodes in Cooperation 140
7.3 Energy Consumption vs. Percentage of Neighbour Nodes in Cooperation . 140
7.4 Fitness vs. Energy Consumption . 141

11

12

List of Tables

2.1 Some Attacks on the Protocol Stack . 31

3.1 Survey Features . 47

3.2 The Performance of RIPPER and SVM-Light Algorithms on AODV . . . 49

3.3 The Performance of The IDS Technique using Cross-Feature Analysis in
MANETs . 51

3.4 The Performance of Specification-Based and Anomaly-Based Detection . . 62

3.5 Outline of the Proposed IDSs on MANETs 64

3.6 Summary of the Reviewed IDSs on MANETs 72

4.1 BNF Grammar for a Symbolic Regression Problem 87

4.2 The Features . 92

4.3 The GP Parameter Settings . 94

4.4 The BNF Grammar Used for the Problem 96

4.5 The GE Tableau for Detecting Known Attacks on MANETs 97

5.1 The Parameters of Network Simulation . 100

5.2 The Performance of GE on a Network with Medium Mobility/Traffic . . . 101

5.3 The Performance of GE on Simulated Networks 102

5.4 The Intrusion Detection Programs –Best Individuals– Evolved by GE . . 104

5.5 The Performance of GP on Simulated Networks 106

5.6 The Performance of Manual Detection on Simulated Networks 109

5.7 The Parameters and Their Ranges . 112

5.8 The Approximate Optimal Parameters for Each Algorithm with Simple
Approach . 113

5.9 The Approximate Optimal Parameters for Each Algorithm with Steady-
State Approach . 113

5.10 The Performance of Programs Evolved with Approximate Optimal Pa-
rameters on Simulated Networks . 114

6.1 Example Microcontrollers in Wireless Networks [76] 116

6.2 The Main Steps of SPEA2 Algorithm . 120

6.3 The Performance of Some Programs for Detection of Both Attacks Together127

6.4 Example Programs Evolved by MOEC for Each Attack 127

7.1 The BNF Grammar Used for Cooperative Detection in Neighbourhood . . 132

13

7.2 Comparison of Local and Cooperative Intrusion Detection Programs
Evolved by GE for Detection of Ad Hoc Flooding Attack 134

7.3 The Programs –Best Individuals– Evolved by GE for Detection of Ad Hoc
Flooding Attack . 134

7.4 The GP Parameter Settings . 135
7.5 Comparison of Local and Cooperative Intrusion Detection Programs

Evolved by GP for Detection of Ad Hoc Flooding Attack 136
7.6 Fixed Costs in the Power Model . 137
7.7 The Performance of Some Cooperative Programs Evolved by MOEC . . . 142
7.8 Example Programs Evolved by MOEC for Detection of Ad Hoc Flooding

Attack Cooperatively . 142

14

Preface

“Idle reader: thou mayest believe me without any oath that I would this book, as it is
the child of my brain, were the fairest, gayest, and cleverest that could be imagined.
But I could not counteract Nature’s law that everything shall beget its like; and what,
then, could this sterile, ill-tilled wit of mine beget but the story of a dry, shrivelled,
whimsical offspring, full of thoughts of all sorts and such as never came into any other
imagination–just what might be begotten in a prison, where every misery is lodged and
every doleful sound makes its dwelling?...”

Miguel de Cervantes

15

Acknowledgements

Firstly I would like to thank my supervisor, John A. Clark for all his support and
advice throughout. I would also like to thank Daniel Kudenko and Pascal Bouvry for
their valuable feedback. Thanks to Juan for all the help and his friendship.

I would like to thank David for his great company and friendship. I would like to thank
Kamran and Yow Tzu for their support and friendship. Thanks to Simon, Chen Hao,
Saman, Shaheen, and Arturo for their help. I would also like to thanks to Paul and all
my office mates who I enjoyed sharing an office with.

I would like to thank Hacettepe University who have supported this research.

I would like to thank my parents Seher and Şendoğan, my sister Filiz, and my brother
Tolga for all their love and support throughout my life. Huge thanks to Erdem who has
always been there for me along the way.

17

Declaration

The work presented in this thesis has been drawn from research undertaken between
October 2006 and March 2010 at the Department of Computer Science, University of
York. Much of the work has been published elsewhere as follows :

• S. Sen, J.A. Clark, J.E. Tapiador. Security Threats in Mobile Ad Hoc Networks,
Security of Self-Organizing Networks: MANET, WSN, WMN, VANET, Chapter
5, Auerbach Publications, CRC Press, USA, 2010 (to appear).

• S. Sen, J.A. Clark, J.E. Tapiador. Power-Aware Intrusion Detection on Mobile Ad
Hoc Networks, In Proceedings of Ad Hoc Networks (AdhocNets’09), LNICST 28,
pp. 224-239, Springer, 2009.

• S. Sen, J.A. Clark. A Grammatical Evolution Approach to Intrusion Detection on
Mobile Ad Hoc Networks, In Proceedings of ACM Wireless Security (WiSec’09),
pp. 95-102, ACM, 2009.

• S. Sen, J.A. Clark, Intrusion Detection in Mobile Ad Hoc Networks, Guide to
Wireless Ad Hoc Networks, Chapter 17, pp. 1-28, 2009.

• S. Sen, J.A. Clark. Evolving Intrusion Detection Rules on Mobile Ad Hoc Net-
works, In Proceedings of Pacific Rim International Conferences on Artificial Intel-
ligence (PRICAI’08), LNAI 5351, pp. 1053-1058, Springer, 2008.

• J.A. Clark, J. Murdoch, J.A. McDermid, S. Sen, H.R. Chivers, O. Worthington,
P. Rohatgi. Threat Modelling for Mobile Ad Hoc and Sensor Networks, In Pro-
ceedings of Annual Conference of ITA, 2007.

I declare that the work in this thesis is original work I undertook between the dates of
registration for the Degree of Doctor of Philosophy at the University of York.

I was primary author for all work reported in this thesis and in the papers above. Advice
is provided by my supervisor, John A. Clark, and also by Juan Tapiador. For the final
paper I was a contributing author.

19

Chapter 1

Introduction

1.1 Mobile Ad Hoc Networks (MANETs)

Mobile ad hoc networks (MANETs) are one of the fastest growing areas of research.
This new type of self-organizing network combines wireless communication with a high
degree node mobility. They do not have any fixed infrastructure such as base stations
or centralized management points as in conventional networks. The nodes cooperate
with each other to provide basic functionality such as routing in a network, independent
of any fixed infrastructure or centralized management. This flexibility makes them
attractive for many applications. They are especially suited to military applications
where the network topology may change rapidly to reflect a force’s operational move-
ments, and disaster recovery operations where the existing/fixed infrastructure may be
non-operational due to a natural disaster, war, and the like. Virtual conferences, where
setting up a network infrastructure is a time consuming high-cost task, are another
promising area of use.

MANETs have different properties than conventional networks and present new vulner-
abilities. They also share the vulnerabilities of wired networks, such as eavesdropping,
denial of service, spoofing and the like; these are simply accentuated by the ad hoc
context [58]. First of all, the use of wireless links make them susceptible to many attacks
such as active interference and eavesdropping. Unlike wired networks, attackers do not
need physical access to the network to carry out these attacks. Secondly, the dynamic
topology of MANETs makes it harder to differentiate normal behaviour of the network
from anomalous behaviour. Another vulnerability is the use of cooperative algorithms
to meet the basic network functions. Routing algorithms for MANETs usually assume
that nodes are cooperative and non-malicious. Hence a malicious node can easily
become an important routing agent and disrupt network operations by disobeying the
protocol specifications. Resource-constraints are a further vulnerability. Devices on
MANETs can vary from laptops to handheld devices (e.g. PDAs, mobile phones) and
may exhibit a wide range of computing and storage capabilities. They are also generally
dependent on battery power to provide mobility. This has led to the emergence of new
attacks targeting this aspect.

21

To summarize, the flexibility provided by the open broadcast medium and the
cooperativeness of the mobile devices (which have generally different resource and
computational capacities, and run usually on battery power) introduce new security
risks for MANETs. As part of rational risk management we must be able to identify
these risks and take appropriate action. In some cases, we may prevent these risks
cost-effectively. In other cases we may have to accept that vulnerabilities exist and
seek to take appropriate action when we believe someone is attacking us. That’s
why intrusion detection systems (IDSs) which monitor system activities and detect
anomalies, are usually used to complement other security mechanisms. Intrusion
detection on MANETs is the main focus of this research.

1.2 Intrusion Detection in MANETs

Intrusion is any set of actions that attempts to compromise the integrity, confidentiality,
or availability of a resource [29] and an intrusion detection system (IDS) is a system
for the detection of such intrusions. It detects possible violations of a security policy
by monitoring system activities and responding to those that are apparently intrusive.
Since prevention techniques cannot be sufficient and new intrusions continually emerge,
IDS is an indispensable part of a security system. IDS detects possible violations of a
security policy by monitoring system activities and response. If we detect an attack
once it comes into the network, a response can be initiated to prevent or minimize the
damage to the system.

The specific features of MANETs present a challenge for security solutions. Even though
there have been many approaches proposed for intrusion detection for wired networks
in the literature, they do not find simple application to MANETs. The traditional
way of detecting attacks at the traffic concentration points is no longer suitable for
this distributed environment. Furthermore many existing solutions for conventional
networks are ineffective and inefficient for this-resource constrained environment. There
are new issues that should be taken into account while designing an IDS for MANETs.
The dynamic nature of MANETs, the lack of central points, and their highly constrained
nodes are the main challenges which make applying existing solutions impractical.
Consequently researchers have been working on developing new IDSs for MANETs and
adapting existing ones for the last decade.

There are three main intrusion detection techniques employed in the literature:

22

anomaly-based, misuse-based, and specification based. All intrusion techniques have
their own strengths and weaknesses. That is the reason researhers often employ different
techniques together for an effective intrusion detection. One of the most commonly
proposed intrusion detection techniques in MANETs is specification-based intrusion
detection, where intrusions are detected as runtime violations of the specifications of
routing protocols. This technique has been applied to a variety of routing protocols in
MANETs. However it cannot detect DoS (denial of service) attacks. Anomaly-based
techniques profile the symptoms of normal behaviours of the system and detect
intrusions as deviations from the normal behaviour patterns. Various researchers have
sought to apply anomaly-based approaches to MANETs. The biggest challenge is
defining normal behaviour in this technique. Normal behaviour can change over time
and IDS systems need to adapt accordingly, otherwise the system may exhibit a high
false positive rate. On the other hand, it is capable of detecting unknown attacks.
This is important in a new environment such as MANETs where new attacks and new
vulnerabilities of systems could be announced constantly. Misuse-based IDS compares
known attack signatures with current system activities. The drawback of this approach
is that it cannot detect new attacks. Although this technique has been preferred by
many commercial IDSs in the literature due to its efficiency and its low false positive
rate, there has been little research on signatures of new attacks against MANETs. Few
misuse-based IDSs have been proposed so far for MANETs. In this thesis this issue
has been addressed by using techniques from artificial intelligence to find intrusion
detection rules automatically.

1.3 Thesis Hypothesis

MANETs are a new type of distributed network whose properties are complex and
ill-understood. Humans might not be the best choice to design an IDS for this new
environment. Accordingly we propose to investigate the use of artificial intelligence
based learning techniques to explore this design space more efficiently than a human
could.

Evolutionary computation has already showed considerable promise for creating IDS
components for conventional networks, but has seen very little application in the
MANET domain. Accordingly, we propose to investigate its potential in the new area.
The main hypothesis of this research is given as follows:

Hypothesis 1 : Evolutionary Computation will be able to discover complex

23

properties of mobile ad hoc networks and evolve intrusion detection programs
suitable for this new environment. Programs evolved using Genetic Program-
ming and Grammatical Evolution techniques will be able to detect specific
routing attacks on mobile ad hoc networks (namely ad hoc flooding, route
disruption, and dropping attacks) effectively.

Efficiency is as important as effectiveness for intrusion detection in mobile networks.
Resource-constrained nodes on MANETs require different trade-offs to be made between
intrusion detection ability of programs and their resource usage. Humans are not partic-
ularly adept at selecting good choices when complex trade-offs have to be made. In this
research a multi-objective evolutionary algorithm, which allows us to optimize multiple
objectives simultaneously, is employed to detect programs both effectively (i.e. detect
intrusions without a high false positive rate) but also efficiently (i.e is power-aware).
Furthermore a suitable intrusion detection architecture for MANETs is investigated.
Distributed and cooperative intrusion detection programs which take into account their
resource usage (energy, bandwidth) beside their intrusion detection ability are evolved
by using multi-objective evolutionary computation. The second hypothesis of this thesis
is given below:

Hypothesis 2 : Multi Objective Evolutionary Computation will allow us to
discover trade-offs between functional (intrusion detection ability) and non-
functional (power and bandwidth usage) properties of MANET intrusion de-
tection programs.

As stated earlier different characteristics of MANETs should be considered while design-
ing a suitable intrusion detection system for these new type of networks. The approach
proposed in this research takes into account the specific nature of MANETs as follows:

• dynamic topology : features reflecting different mobility level of networks have been
considered while designing an intrusion detection system for MANETs.

• limited resources: trade-offs between intrusion detection ability and energy usage of
evolved programs are discovered. (Power is the critical resource in mobile nodes.)

• lack of concentration points: distributed and cooperative intrusion detection pro-
grams are evolved in order to detect network attacks more effectively. Furthermore
they do so in a resource-efficient way (i.e. with limited bandwidth and energy con-
sumption).

24

1.4 Thesis Overview

The remainder of the thesis is organized as follows.

Chapter 2 introduces mobile ad hoc networks and their specific characteristics. This
new networking is by its very nature more vulnerable to attacks than wired networks.
Furthermore, existing security solutions proposed for conventional networks are not
effective and efficient for this new environment. Researchers have been working on new
solutions or adapting existings ones to MANETs. However we must understand the
vulnerabilities and the attacks against MANETs in order to propose suitable security
solutions for them. This is the main aim of this chapter. The specific vulnerabilities
of MANETs are described and a detailed classification of the attacks/attackers against
these complex distributed systems is presented.

Chapter 3 starts with an introduction to intrusion detection. Intrusion detection
in MANETs is the main focus of this thesis and is a complex and difficult task.
This is mainly due to the dynamic nature of MANETs, their highly constrained
nodes, and the lack of central monitoring points. This chapter outlines issues of in-
trusion detection for MANETs and reviews the main solutions proposed in the literature.

This thesis investigates the use of evolutionary computation techniques to develop in-
trusion detection in MANETs. Chapter 4 introduces evolutionary computation and two
evolutionary computation techniques employed in this research: genetic programming
and grammatical evolution. Why these techniques are chosen in this research is also
discussed. The specific attacks targetted by our work (ad hoc flooding, route disruption,
dropping) are described and the overall approach to using evolutionary computation is
defined.

Chapter 5 presents the evaluation results. The ability of evolved programs using genetic
programming and grammatical evolution to detect known attacks is shown on simulated
networks with varying mobility traffic patterns. The results are also compared with
hand-coded programs. Moreover the two techniques are compared fairly using a design
of experiments methodology and the comparison results are presented in this chapter.

Power is a significant constraint for many MANET nodes. Therefore the efficiency of
evolved programs are as important as their effectiveness. Since power is one of the
most critical resources in MANETs, the work decribed in Chapter 6 aims to evolve
intrusion detection programs optimizing their energy usage as well. In order to discover

25

trade-offs between classification accuracy and energy consumption of evolved programs,
a multi-objective evolutionary technique is employed. The technique is also introduced.

MANETs do not have concentration points as in wired networks where we can
monitor the network traffic. The network data is distributed to all nodes. Therefore
a distributed and cooperative intrusion detection architecture would appear to be
worthy of serious consideration for MANETs. The research presented in Chapter
7 investigates this idea. An architecture cooperative detection in neighbourhood and
how to choose monitoring nodes in this architecture in terms of energy and band-
width usage are investigated. Chapters 6 and 7 provide evidence to support hypothesis 2.

Chapter 8 concludes the thesis. The suitability of the proposed approach to MANETs
is discussed and the thesis hypotheses are evaluated.

26

Chapter 2

Security in Mobile Ad Hoc

Networks

This chapter starts with an introduction to a new type of networking, mobile ad
hoc networks (MANETs). In order to develop suitable security solutions for this
new environment, we must first understand how MANETs can be attacked. This
chapter provides a comprehensive survey of attacks against a specific type of target,
namely the routing protocols used by MANETs. The security issues specific to
this environment are introduced in Section 2.2 and a detailed classification of the at-
tacks and attackers against these complex distributed systems is presented in Section 2.3.

2.1 Mobile Ad Hoc Networks

A mobile ad hoc network (MANET) is a self-configuring network of mobile nodes
connected by wireless links. MANETs do not have any fixed and pre-established
infrastructure such as centralized management or base stations in wireless networks.
The union of nodes forms an arbitrary network topology. However the network topology
changes frequently because the nodes can move, leave, and join the network randomly
due to mobility.

Conventional networks use dedicated nodes to carry out basic functions like packet
forwarding, routing, and network management. In ad hoc networks these are carried
out collaboratively by all available nodes. Nodes on MANETs use multi-hop commu-
nication: nodes that are within each other’s radio range can communicate directly
via wireless links, while those that are far apart must rely on intermediate nodes to
act as routers to relay messages. So every node acts both as router and host in MANETs.

Mobile nodes can move, leave, and join the network and routes need to be updated
frequently due to the dynamic network topology. For example, node S can communicate
with node D by using the shortest path S-A-B-D as shown in Figure 2.1 (the dashed

27

lines show the direct links between the nodes). If node A moves out of node S’s range,
he has to find an alternative route to node D (S-C-E-B-D). A routing protocol in such
a network is responsible for finding routes and providing communication between end
points through cooperating intermediate nodes.

A variety of new protocols have been developed for finding/updating routes and gener-
ally providing communication between end points, but no proposed protocol has been
accepted as standard yet. There are two kinds of routing protocols on MANETs: proac-
tive and reactive protocols. Proactive routing protocols such as OLSR [46] use periodic
exchange of control messages between nodes to build up a routing table. In contrast,
reactive routing protocols such as AODV [73] and DSR [47] discover routes when they
are needed. There are also hybrid approaches which combine both proactive and reactive
approaches. For example, ZRP uses a proactive approach for communication with neigh-
bouring nodes, while it uses a reactive approach for communication with other nodes
[35]. These new routing protocols, based on cooperation between nodes, are vulnerable
to new forms of attacks. Unfortunately, many proposed routing protocols for MANETs
do not consider security, but there are some secure routing protocols proposed in the lit-
erature. They take into account active attacks that aim at intentionally tampering with
the execution of routing protocols, but do not address passive attacks and selfishness
[65].

S

A

B

C E

D

Figure 2.1: Communication between Nodes on MANETs

MANETs of various forms have emerged in recent years, supporting the increasing
usage of mobile devices such as PDAs, mobile phones, and laptops. Since these devices
are getting smaller, cheaper and more powerful, they are becoming increasingly popular.
Moreover, the flexibility of MANETs makes them attractive for many applications
such as military applications, where the network topology may change rapidly to
reflect a force’s operational movements, and disaster recovery operations, where the
existing/fixed infrastructure may be non-operational. The ad hoc self-organisation also
makes them suitable for virtual conferences, where setting up a traditional network
infrastructure is a time consuming, high-cost task. The main applications of MANETs

28

are military applications in which aircrafts, tanks and moving personnel and the like
can communicate at peace or in war time.

2.2 Vulnerabilities of MANETs

If we are to develop security solutions for MANETs we must first have a comprehensive
understanding of their possible vulnerabilities and security risks. They share the
vulnerabilities of wired networks, such as eavesdropping, denial of service, spoofing
and the like, which are accentuated by the ad hoc context [58]. They have further
vulnerabilities, such as those that take advantage of the cooperative nature of routing
algorithms. These vulnerabilities of MANETs are summarized below.

Wireless Links: First of all, the use of wireless links makes the network susceptible to
attacks such as eavesdropping and active interference. Unlike wired networks, attackers
do not need physical access to the network to carry out these attacks. Furthermore
wireless networks typically have lower bandwidths than wired networks. Attackers
can exploit this feature, consuming network bandwidth with ease to prevent normal
communication among nodes. However some solutions to protect the radio interface
from attacks such as eavesdropping and jamming attacks have been proposed in the
literature: spread spectrum communication, frequency hopping, and the like [45].

Dynamic Topology : MANET nodes can leave and join the network, and move in-
dependently. As a result the network topology can change frequently. It is hard
to differentiate normal behaviour of the network from anomalous behaviour in this
dynamic environment. For example, a node sending disruptive routing information can
be a malicious node, or else simply be using outdated information in good faith, or a
node who does not collaborate with other nodes can be a malicious node or a failed
node unable to perform due to power failure or other environmental factors. Moreover
mobility of nodes means that we cannot assume nodes, especially critical ones (servers,
etc.), are secured in locked cabinets as in wired networks. Nodes with inadequate
physical protection may often be at risk of being captured and compromised.

Cooperativeness: Routing algorithms for MANETs usually assume that nodes are
cooperative and non-malicious. As a result, a malicious attacker can easily become an
important routing agent and disrupt network operations by disobeying the protocol
specifications. For example, a node can pose as a neighbour to other nodes and
participate in collective decision-making mechanisms, possibly affecting networking

29

significantly.

Lack of a Clear Line of Defence: MANETs do not have a clear line of defence; attacks
can come from all directions [106]. The boundary that separates the inside network
from the outside world is not very clear on MANETs. For example, there is no well
defined place where we can deploy our traffic monitoring and access control mechanisms.
Whereas all traffic goes through switches, routers, or gateways in wired networks,
network information in MANETs is distributed across nodes that can only see the
packets sent and received in their transmission range. Unlike wired networks, attackers
do not need to gain physical access to the network to exploit some kinds of attacks such
as passive eavesdropping and active interference (these require only radio contact) [106].

Limited Resources: Resource constraints are a further vulnerability. There can be a
variety of devices on MANETs, ranging from laptops to handheld devices such as PDAs
and mobile phones. These will generally have different computing and storage capacities
that can be the focus of new attacks. For example, mobile nodes generally run on
battery power. This has led to emergence of innovative attacks targeting this aspect,
e.g. “Sleep Deprivation Torture [86]”. Furthermore, the introduction of more security
features into the network increases the computation, communication and management
load [102]. This is a challenge for networks that are already resource-constrained.

2.3 Attacks on MANETs

At the highest level, the security goals of MANETs are not that different from other
networks: most typically authentication, confidentiality, integrity, availability, and
non-repudiation. Authentication is the verification of claims about the identity of a
source of information. Confidentiality means that only authorized people or systems
can read or execute protected data or programs. It should be noted that the sensitivity
of information in MANETs may decay much more rapidly than in other information
systems. For example, yesterday’s troop location will typically be less sensitive
than today’s. Integrity means that the information is not modified or corrupted by
unauthorized users or by the environment. Availability refers to the ability of the
network to provide services as required. Denial of Service (DoS) attacks have become
one of the most worrying problems for network managers. In a military environment, a
successful DoS attack is extremely dangerous, and the engineering of such attacks is a
valid modern war-goal. Lastly, non-repudiation ensures that committed actions cannot
be denied. In MANETs security goals of a system can change in different modes (e.g.

30

peace time, transition to war, and war time of a military network).

The characteristics of MANETs make them susceptible to many new attacks. At the
top level attacks can be classified according to network protocol stacks. Table 2.1 gives
a few examples of attacks at each layer. Some type of attacks could occur in any layer
of the network protocol stack, e.g. jamming at physical layer, hello flood at network
layer, and SYN flood at transport layer are all DoS attacks. Because new routing
protocols introduce new forms of attacks on MANETs, we mainly focus on network
layer (routing) attacks in this chapter.

Layer Attacks

Application data corruption, viruses and worms

Transport TCP/UDP SYN flood

Routing hello flood, blackhole

Data Link monitoring, traffic analysis

Physical eavesdropping, active interference

Table 2.1: Some Attacks on the Protocol Stack

2.3.1 Adversary Model

Attackers against a network can be classified into two groups: insider and outsider
attackers. Whereas an outsider attacker is not a legitimate user of the network, an
insider attacker is an authorized node and a part of the routing mechanism on MANETs.
Routing algorithms are typically distributed and cooperative in nature and affect the
whole system. While an insider MANET node can disrupt the network communications
intentionally, there might be other reasons for its apparent misbehaviours. A node
can be failed, unable to perform its function for some reason, such as running out of
battery, or collisions in the network. The threat of failed nodes is particularly serious
if they are needed as part of an emergency/secure route [103]. Their failure can even
result in partitioning of the network, preventing some nodes from communicating with
other nodes in the network. A selfish node can also misbehave to preserve its resources.
Selfish nodes avail themselves of the services of the other nodes, but do not reciprocate.
This research focuses on the attacks carried out by malicious nodes who intentionally
aim to disrupt the network communication.

The misuse goals of attackers should also be considered in threat modelling. In routing
attacks attackers do not follow the specifications of routing protocols and aim to disrupt

31

the network communication in the following ways:

• Route Disruption: modifying existing routes, creating routing loops, and causing
packets to be forwarded along a route that is not optimal, non-existent, or otherwise
erroneous.

• Node Isolation: isolating a node or some nodes(s) from communicating with other
nodes in the network, partitioning the network, etc.

• Resource Consumption: decreasing network performance, consuming network
bandwidth or node resources, etc.

Ning et al. consider each of these goals in their research which analyses insider attacks
against AODV [67]. Achieving these goals depends on the capabilities of the adversary.
The main factors affecting the performance of an attack are identified below.

Computational power : This clearly affects the ability of an attacker to compromise
a network. Such power need not be localised to the attached network –eavesdropped
traffic can be relayed back to high performance super-computing networks for analysis.

Deployment capability : Adversary distribution may range form a single node to a per-
vasive carpet of smart counter-dust, with a consequent variation in attack capabilities
[26]. This sort of distinction may affect the ability to eavesdrop, to jam a network
effectively, and to escape destruction (e.g. a single powerful jammer can easily be taken
out, distributed jamming is harder to extinguish).

Location control : The location of adversary nodes has may have a clear impact on what
the adversary can do. An adversary may be restricted to placing attack nodes at the
geographical boundary of an enemy network (but may otherwise choose the precise
locations), may plant specific nodes (e.g. nodes left behind in territory about to be
vacated), or may have the ability post facto to create a pervasive carpet of smart dust
(where arbitrary degrees of pervasiveness may be achieved).

Mobility : Mobility generally brings an increase in power. (A mobile node can always
remain stationary.) On the other hand, mobility may prevent an attacker from
continually targeting one specific victim. For example, a node on the move might not
receive all falsified routing packets initiated by the attacker. In [89] this phenomenon is
defined as being a “partial victim”. Moreover they have stated that even if it reduces the
damage caused by the attacker, it makes detection more difficult since the symptoms of
an attack and those arising due to the dynamic nature of the network are difficult to

32

distinguish. In conclusion, the impact of mobility on detection is a complex matter.

Degree of physical access (including node capture ability and ability to carry out
physical deconstruction).

Given the agile nature of MANETs determining an applicable adversary model is diffi-
cult. However, systems can be evaluated against a range of representative threat models.

2.3.2 Attacks

We can classify attacks as passive or active at the top level.

Passive attacks: In a passive attack an unauthorized node monitors and aims to
find out information about the network. The attackers do not otherwise need to
communicate with the network. Hence they do not disrupt communications or cause
any direct damage to the network. However, they can be used to get information for fu-
ture harmful attacks. Examples of passive attacks are eavesdropping and traffic analysis.

Eavesdropping Attacks, also known as disclosure attacks, are passive attacks by external
or internal nodes. The attacker can analyse broadcast messages to reveal some useful
information about the network. Solutions protecting the radio interface from attacks
such as eavesdropping (and jamming) attacks have been proposed in the literature, e.g.
spread spectrum communication and frequency hopping [45].

Traffic Analysis is not necessarily an entirely passive activity. It is perfectly feasible
to engage in protocols, or seek to provoke communication between nodes. Attackers
may employ techniques such as RF direction finding, traffic rate analysis, and time-
correlation monitoring. For example, by timing analysis it can be revealed that two
packets in and out of an explicit forwarding node at time t and t+ε are likely to be
from the same packet flow [54]. Traffic analysis in ad hoc networks may reveal:

• the existence and location of nodes;

• the communications network topology;

• the roles played by nodes;

• the current sources and destination of communications; and

33

• the current location of specific individuals or functions (e.g. if the commander
issues a daily briefing at 10am, traffic analysis may reveal a source geographic
location).

Active Attacks: These attacks cause unauthorised state changes in the network such
as denial of service, modification of packets, and the like. These attacks are generally
launched by users or nodes with authorisation to operate within the network. We
classify active attacks into four groups: dropping, modification, fabrication, and tim-
ing attacks. It should be noted that an attack can be classified into more than one group.

Dropping Attacks: Malicious or selfish nodes deliberately drop all packets that are
not destined for them. While malicious nodes aim to disrupt the network connection,
selfish nodes aim to preserve their resources. Dropping attacks can prevent end-to-end
communications between nodes if the dropping node is at a critical point. It might
also reduce the network performance by causing data packets to be retransmitted, new
routes to the destination to be discovered, and the like.

Unfortunately most routing protocols (DSR is an exception [103]) have no mecha-
nism to detect whether data packets have been forwarded or not by intermediate
nodes. However, attacks against a node can be detected by his neighbouring nodes
through passive acknowledgement or hop-by-hop acknowledgement at the data link layer.

An attacker can choose to drop only some packets to avoid being detected; this is
called a selective dropping attack. Besides data packets or route discovery packets,
an attacker can also drop route error packets, causing the source node to be unaware
of failed links (thus interfering with the discovery of alternative routes to the destination).

Modification Attacks: Insider attackers modify packets to disrupt the network. For
example, in the sinkhole attack the attacker tries to attract nearly all traffic from
a particular area through a compromised node by making the compromised node
attractive to other nodes. It is especially effective in routing protocols that use
advertised information such as remaining energy and nearest node to the destination in
the route discovery process. A sinkhole attack can be used as a basis for further attacks
like dropping and selective forwarding attacks. A black hole attack is like a sinkhole
attack that attracts traffic through itself and uses it as the basis for further attacks.
The goal is to prevent packets being forwarded to the destination. If the black hole is a
virtual node or a node outside the network, it is hard to detect [22].

34

Fabrication Attacks: Here the attacker forges network packets. In [67], fabrication
attacks are classified into “active forge” in which attackers send faked messages without
receiving any related message and “forge reply” in which the attacker sends fake route
reply messages in response to related legitimate route request messages.

In the forge reply attack, the attacker forges a Route Reply (RREP) message after
receiving a Route Request message. The reply message contains falsified routing
information showing that the node has a fresh route to the destination node on AODV
in order to suppress real routes to the destination. It causes route disruption by causing
messages to be sent to a non-existent node or putting the attacker itself into the route
between two endpoints of a communication channel if the insider attacker has genuinely
a route to the destination. Figure 2.2 shows an example of a forge reply attack defined
in [67]. The best route (with minimum hops) from node S to node D is S-I1-I2-D.
Malicious node M forges a Route Reply message to the source node S through node
I1. The message claims to come from the destination node D with higher destination
sequence number to suppress the existing route. The faked message results in the
updating of the route entry to the destination node in the routing tables of node S and
I1. Node I1 forwards data packets to the malicious node instead of node I2 since node
M seems to have a fresh route to node D, so the new route becomes S-I1-M-I2-D (it is
not the optimal route).

faked RREP

A

B
E

D

FC

S
I1 I2

M

Figure 2.2: Forge Reply Attack

Attackers can initiate frequent packets to cause denial of service (DoS). Example DoS
attacks that exploit MANETs’ features are sleep deprivation torture attacks, routing
table overflow attacks, ad hoc flooding attacks, rushing attacks, and the like. The
sleep deprivation torture attack consumes a node’s battery power and so disables the
node. It does so by persistently making service requests of one form or another. This

35

attack was introduced by Stajano et al. [86] who emphasized that it is more powerful
than better known DoS attacks such as CPU exhaustion, since most mobile nodes are
run on battery power. The ad hoc flooding attack, introduced in [104], is another DoS
attack against on-demand protocols, in which nodes send Route Request messages
when they need a route. The attacker exploits this property of Route Discovery by
broadcasting many Route Request messages for a destination node that is not in the
network. Another attack at the Route Discovery phase is the routing table overflow
attack. Here the attacker sends a lot of route advertisements for nodes that do not
exist. Since proactive protocols update routing information periodically before it is
needed, this attack, which results in overflowing the victim nodes’ routing tables and
preventing new routes from being created, is more effective in proactive protocols than
in reactive protocols [101].

Another interesting fabrication attack on MANETs is the routing cache poisoning attack
[101]. A node can update its table with the routing information in the packets that it
hears, even if it is not on the route of the packets. The attacker can make use of this
property to poison the routes to a victim node by sending spoofed routing information
packets, causing neighbouring nodes to update their tables erroneously.

Timing Attacks: An attacker attracts other nodes by causing itself to appear closer
to those nodes than it really is. DoS attacks, rushing attacks, and hello flood attacks
use this technique. Rushing attacks [41] occur during the Route Discovery phase. In
all existing on-demand protocols, a node needing a route broadcasts Route Request
messages and each node forwards only the first arriving Route Request in order to limit
the overhead of message flooding. So, if the Route Request forwarded by the attacker
arrives first at the destination, routes including the attacker will be discovered instead
of valid routes. Rushing attacks can be carried out in many ways: by ignoring delays
at MAC or routing layers, by wormhole attacks, by keeping other nodes’ transmission
queues full, or by transmitting packets at a higher wireless transmission power [41].
The hello flood attack [50] is another attack that makes the adversary attractive for
many routes. In some routing protocols, nodes broadcast Hello packets to detect
neighbouring nodes. These messages are received by all one-hop neighbour nodes, but
are not forwarded to further nodes. The attacker broadcasts many Hello packets with
large enough transmission power that each node receiving Hello packets assumes the
adversary node to be its neighbour. It can be highly effective in both proactive and
reactive MANET protocols.

A further significant attack on MANETs is the collaborative wormhole attack. Here an

36

attacker receives packets at one point in the network, tunnels them to an attacker at
another point in the network, and then replays them into the network from this final
point [39]. Packets sent by tunneling forestall packets forwarded by multi-hop routes as
shown in Figure 2.3 and it gives the attacker nodes an advantage for future attacks. Since
the packets sent over tunneling are the same as the packets sent by normal nodes, it is
generally difficult to detect wormhole attackers by software-only approaches such as IDS
[39]. That is why packet leashes (any information that is added to a packet designed to
restrict the packet’ s maximum allowed transmission distance [39]) have been introduced
for preventing wormhole attacks.

tunnel

S

M1 M2

D

Figure 2.3: Wormhole Attack

The very nature of MANETs renders them open to many attacks. The benefits of
significant flexibility come at a price. Many of the attacks described above could be
avoided by including authentication techniques in the routing protocol [40][80][16]. The
main idea here is to guarantee that all nodes wishing to participate in the routing
process are authenticated nodes; i.e., trusted network elements that will behave
according to the protocol rules. Authentication should be enforced during all routing
phases, thus preventing unauthorised nodes (including attackers) from participating in
the routing and so from launching routing attacks. Authentication can be provided
based either on public-key or symmetric cryptography.

The use of cryptography comes in hand with an associated problem: the necessity of a
mechanism for issuing, exchanging, and revoking keys. Key management in MANETs
is generally more difficult than in classical wired networks due to the absence of any
infrastructure or central administrative authorities. There is no obvious point(s) where
services such as certification authorities (CA) or key servers (KS) can be placed.
Furthermore cryptography and authentication are expensive tasks in terms of resource
usage in a mobile wireless environment.

37

Although we may put in place mechanisms to prevent particular types of compromise,
we will always be open to others. In general we prevent compromise where we can
(proactive solutions), but then seek to detect and deal with it when prevention does not
work (reactive solutions). In this thesis we focus on the detection part of the security
process. How security compromises on MANETs could be detected will be presented in
the subsequent chapter.

38

Chapter 3

Intrusion Detection in Mobile Ad

Hoc Networks

This chapter introduces intrusion detection systems and gives a brief summary of the
research done in this area in Section 3.1. MANETs have different properties than
conventional networks and introduce new issues for security solutions. The issues
of intrusion detection in MANETs are outlined in Section 3.2. The main solutions
proposed in the literature are reviewed in Section 3.3.

3.1 Intrusion Detection Systems (IDS)

Intrusion is any set of actions that attempt to compromise the integrity, confidentiality,
or availability of a resource [38] and an intrusion detection system (IDS) is a system
for the detection of such intrusions. The development of an IDS is motivated by the
following factors:

• Most existing systems have security flaws that render them susceptible to intru-
sions, and finding and fixing all these deficiencies are not feasible [29].

• Prevention techniques cannot be sufficient. It is almost impossible to have an
absolutely secure system [29].

• Even the most secure systems are vulnerable to insider attacks [29].

• New intrusions continually emerge and new techniques are needed to defend against
them.

Since there are always new intrusions that cannot be prevented, IDS is introduced
to detect possible violations of a security policy by monitoring system activities and
response. IDSs are aptly called the second line of defence, since IDS comes into the
picture after an intrusion has occurred. If we detect the attack once it comes into the
network, a response can be initiated to prevent or minimize the damage to the system.
It also helps prevention techniques improve by providing information about intrusion

39

techniques.

3.1.1 Taxonomy of Intrusion Detection Systems

There are three main components of an IDS: data collection, detection, and response.
The data collection component is responsible for collection and pre-processing data
tasks: transferring data to a common format, data storage, and sending data to the
detection module [60].

IDS can use different data sources which are the inputs to the system: system logs,
network packets, etc. If an IDS monitors activities on a host and detects violations on
the host, it is called host-based IDS (HIDS). An IDS that monitors network packets and
detects network attacks is called network-based IDS (NIDS). NIDSs generally listen in
promiscuous mode to the packets in a segment of the network, allowing them to detect
distributed attacks. There are also intrusion detection systems that use both host-based
IDS and network-based IDS. For example, a system can use NIDS and also HIDS for
important hosts in the networks such as servers, databases, and the like. Since NIDS
cannot monitor encrypted packets, a hybrid approach, network node IDS (NNIDS) is
introduced where each host in the network has NNIDS to monitor network packets
directed to the host [52].

There are both centralized and distributed IDSs (DIDS) in the literature. In [75]
there is a survey of current distributed IDSs which shows that most of the DIDSs
are hierarchically organized around a central node and few of them are completely
distributed. Generally, only data collection is distributed in DIDSs.

In the detection component data is analyzed to detect intrusion attempts and indications
of detected intrusions are sent to the response component. In the literature, three
intrusion detection techniques are used. The first technique is anomaly-based intrusion
detection which profiles the symptoms of normal behaviors of the system such as usage
frequency of commands, CPU usage for programs, and the like. It detects intrusions
as anomalies, i.e. deviations from the normal behaviours. Various techniques have
been applied for anomaly detection such as classification based (e.g. neural networks,
support vector machines), nearest neighbour based, clustering based and statistical
techniques [24]. Defining normal behaviour is a major challenge. Normal behavior
can change over time and intrusion detection systems must be kept up to date. False
positives – the normal activities which are detected as anomalies by IDS – can be high

40

in anomaly-based detection. On the other hand, it is capable of detecting previously
unknown attacks. This is very important in an environment where new attacks and
new vulnerabilities of systems are announced constantly.

Misuse-based intrusion detection compares known attack signatures with current system
activities. It is generally preferred by commercial IDSs since it is efficient and has a
low false positive rate. The drawback of this approach is that it cannot detect new
attacks. The system is only as strong as its signature database and this needs frequent
updating for new attacks. Both anomaly-based and misuse-based approaches have
their strengths and weaknesses. Therefore, both techniques are generally employed for
effective intrusion detection.

The last technique is specification-based intrusion detection. In this approach, a set
of constraints of a program or a protocol are specified and intrusions are detected as
runtime violations of these specifications. It is introduced as a promising alternative
that combines the strengths of anomaly-based and misuse-based detection techniques,
providing detection of known and unknown attacks with a lower false positive rate [93].
It can detect new attacks that do not follow the system specifications. Moreover, it
does not trigger false alarms when the program or protocol has unusual but legitimate
behavior, since it uses the legitimate specifications of the program or protocol [93].
It has been applied to ARP (Address Resolution Protocol), DHCP (Dynamic Host
Configuration Protocol) [90] and many MANET routing protocols. Defining detailed
specifications for each program/protocol can be a very time consuming job. New
specifications are also needed for each new program/protocol and the approach cannot
detect some kind of attacks such as DoS (Denial of Service) attacks since these do not
violate program specifications directly [44].

When an intrusion is detected, an appropriate response is triggered according to the
response policy. Responses to detected intrusions can be passive or active. Passive
responses simply raise alarms and notify the proper authority. Active responses try
to mitigate effects of intrusions and are divided into two groups: those that seek
control over the attacked system, and those that seek control over the attacking system
[17]. The former tries to restore the damaged system by killing processes, terminating
network connections, and the like. The latter tries to prevent an attacker’s future
attempts, which can be necessary for military applications.

41

3.1.2 Future Research on IDS

A great deal of research has emerged in the field of IDS. Major research areas [60] are
given below:

• Foundations: research on intrusions, intruders and vulnerabilities

• Data Collection: selecting data sources and features, how to collect data, logging,
data format

• Detection Methods: finding the best detection technique(s), improving efficiency
and effectiveness of the detection techniques

• Reporting and Response: how to respond to detected intrusions, representation of
detected intrusions to the proper authority

• IDS environment and architecture: how to distribute IDS agents and facilitate
interoperability between IDS agents, IDS issues on different systems, encrypted
networks, etc.

• IDS security: protection of IDS and IDS traffic

• Testing and evaluation: how to test and evaluate IDSs

• Operational aspects: maintenance, portability, upgradeability, etc.

• Social aspects: privacy issues

Most of the research areas above are immature. The majority of research has been
carried out on detection techniques. There are also researches on developing standards
for IDS like the Intrusion Detection Exchange Format (IDEF). The aim of IDEF is
to define data formats and exchange procedures for sharing information of interest to
intrusion detection and response systems, and to the management systems which may
need to interact with them [3].

IDS testing and evaluation needs more attention. Although there are many proposed
IDSs both in commercial and academic domain, rigorous comparisons of approaches
seem lacking. In [74], a methodology for testing IDSs is given which is inspired by
the field of software testing. In [77] an intrusion detection test bed is developed. Six
intrusion detection systems which use different detection methods are tested offline
using this test bed. Thirty two attacks against Solaris, SunOs and Linux in four
categories (Denial of Service, Remote to Local, User to Root, Surveillance/Probing)
are executed on each system. The evaluation results show that the detection rate of

42

new attacks is poor. In their next paper [78] they discuss an interesting subject about
predicting whether an intrusion detection system will miss a new attack or not. New
attacks that network-based IDSs missed are analyzed. They conclude that such misses
result from particular protocols or services that are not monitored or analyzed deeply.
Moreover, the rules, thresholds or signatures created for old attacks may not work for
new attacks. In conclusion, they suggest a few noteworthy research directions: focusing
on anomaly detection and other approaches for detecting new attacks, analyzing a
wider range of protocols and services, and exploring new input features.

As stated in [17], IDS trends are shifting from host based IDS to network based IDS,
and from centralized IDS to distributed IDS. Moreover, the trends are towards having
IDSs that are resistant to attacks and interoperate with other IDSs in heterogeneous
environments. There are still many ongoing researches on IDS. The research should give
more attention to immature areas such as IDS security and IDS testing. Furthermore,
using different detection techniques together is a hopeful research area to increase
effectiveness (detecting intrusions while keeping the rate of false positives small) of the
system. Not only effectiveness but also efficiency should be improved. Obviously, IDS
for MANETs is a new area that needs research. Intrusion detection in MANETs is
going to be discussed in the subsequent section.

3.2 Intrusion Detection Issues in MANETs

Even though there are many proposed IDSs for wired networks, MANETs specific
features make conventional IDSs ineffective and inefficient for this new environment.
Consequently, researchers have been working recently on developing new IDSs for
MANETs or changing the current IDSs to be applicable to MANETs. There are new is-
sues which should be taken into account when a new IDS is being designed for MANETs.

Lack of Central Points MANETs do not have any entry points such as routers,
gateways, etc. These are typically present in wired networks and can be used to monitor
all network traffic that passes through them. A node of a MANET can see only a
portion of a network: the packets it sends or receives together with other packets within
its radio range. Since wireless ad hoc networks are distributed and cooperative, the
intrusion detection and response systems in MANETs may also need to be distributed
and cooperative [106]. This introduces some difficulties. For example, distribution and
cooperativeness of IDS agents are difficult in an environment where resources such
as bandwidth, processor speed and power are limited. Furthermore, storing attack

43

signatures in a central database and distributing them to IDS agents for misuse-based
intrusion detection systems is not suited to this environment.

Mobility MANET nodes can leave and join the network and move independently,
so the network topology can change frequently. The highly dynamic operation of a
MANET can cause traditional techniques of IDS to be unreliable. For example, it is
hard for anomaly-based approaches to distinguish whether a node emitting out-of-date
information has been compromised or whether that node has yet to receive update
information [42]. Another mobility effect on IDS is that IDS architecture may change
with changes to the network topology.

Wireless Links Wireless networks have more constrained bandwidth than wired
networks and link breakages are common. IDS agents need to communicate with other
IDS agents to obtain data or alerts and need to be aware of wireless links. Because
heavy IDS traffic could cause congestion and so limit normal traffic, IDS agents need
to minimize their data transfers [83]. Bandwidth limitations may cause ineffective IDS
operation. For example, an IDS may not be able to respond to an attack in real-time
due to communication delay. Furthermore, IDS agents may become disconnected due to
link breakages. An IDS must be capable of tolerating lost messages whilst maintaining
reasonable detection accuracy [92].

Limited Resources Mobile nodes generally use battery power and have different
capacities. MANET devices are varied, e.g. laptops, hand held devices like PDAs
(personal digital assistants), and mobile phones. The computational and storage
capacities vary too. The variety of nodes, generally with scarce resources, affects
effectiveness and efficiency of the IDS agents they support. For example, nodes may
drop packets to conserve resources (causing difficulties in distinguishing failed or selfish
nodes from attacker or compromised nodes) and memory constraints may prevent one
IDS agent processing a significant number of alerts coming from others. The detection
algorithm must take into account limited resources. For example, misuse-based
detection algorithm must take into account memory constraints for signatures and
anomaly-based detection algorithm needs to be optimized to reduce resource usage.

Lack of a Clear Line of Defense and Secure Communication MANETs do not
have a clear line of defense. In this environment IDS traffic should be encrypted to avoid
attackers learning how the IDS works [83]. However, cryptography and authentication
are difficult tasks in a mobile wireless environment since they consume significant
resources. In many cases IDS agents risk being captured or compromised with drastic

44

consequences in a distributed environment. They can send false alerts and make the
IDS ineffective. IDS communication can also be impeded by blocking and jamming
communications on the network.

Cooperativeness MANET routing protocols are usually highly cooperative. This can
make them the target of new attacks. For example, a node can pose as a neighbour to
the other nodes and participate in decision mechanisms, possibly affecting significant
parts of the network. (A number of attacks exploiting the collaborative nature of
various routing protocols have been described in Chapter 2.)

3.3 Proposed Intrusion Detection Systems in MANETs

In this thesis the proposed IDSs on MANET are reviewed to find out how well they
address the IDS issues explained above. The following criteria are used in this survey:

Input Data Intrusion detection systems can use host audit data, network packets or
statistics of such data (e.g. statistics of updates in routing tables and the number of
received packets in the last 10 seconds).

Data Gathering Besides using local data, a node in MANETs snoops to gather its
neighbours’ data. Since MANET uses wireless links, a node can be monitored by its
neighbour nodes. Promiscuous monitoring is required for the systems using this method.

Architecture The architectures for IDS on MANET can be classified into stand-alone,
distributed and cooperative, and hierarchical IDSs [13].

In stand-alone IDS architectures, every node in network has an IDS agent and detects
attacks on their own without collaborating with other nodes. Because this architecture
cannot detect network attacks (network scans, distributed attacks, etc.) with the partial
network data on the local node, it is generally not preferred.

Since nodes in MANETs have only local data, a distributed and cooperative IDS
architecture is generally used to provide a more informed detection approach. In this
architecture, every node has its local IDS agent and communicates with other nodes’
agents to exchange information, to reach decisions and respond. Both the stand-alone
architectures and the distributed and cooperative architectures are more suitable for
flat network infrastructure.

45

The last architecture is hierarchical IDS which is a kind of distributed and cooperative
architecture more suitable for multi-layered networks [13]. In this architecture, the
network can be divided into groups such as clusters, zones where some nodes (cluster
heads, interzone nodes etc.) have more responsibility (providing communication with
other clusters, zones) than other nodes in the same cluster. It is the same from intrusion
detection point of view: Each node in the cluster carries out local detection while
cluster heads and interzone nodes carry out global detection.

Distributed IDS agents (nodes) are generally divided into small groups such as clusters,
zones, and one-hop away nodes, enabling them to be managed in a more efficient way.

Interoperability This aspect refers to the means by which IDS agents communicate with
each other. This may be done by traditional network packet based communication or
else by mobile agent approach. A mobile agent is a composition of computer software
and data which is able to migrate from one computer to another autonomously and
continue its execution on the destination computer [6]. It reduces network load by
moving computation to data that it is a significant feature for MANETs which have
lower bandwidth than wired networks.

Detection Method The most commonly proposed intrusion detection method in
MANETs to date is specification-based detection. This can detect attacks against
routing protocols with a low rate of false positives. However, it cannot detect some kind
of attacks, such as DoS attacks. There are also some anomaly-based detection systems
implemented in MANETs. Unfortunately, mobility of MANETs increases the rate of
false positives in these systems. There have been few signature-based IDSs developed
for MANETs and little research on signatures of attacks against MANETs. Updating
attack signatures is an important problem for this approach.

Decision-Making Two different decision-making mechanisms are used in distributed and
cooperative IDSs: collaborative decision-making, where each node can take active part
in the intrusion detection process, and independent decision-making, where particular
nodes are responsible for decision-making [49]. Both decision-making mechanisms
have pros and cons. Collaborative-decision making systems are more reliable. If
all nodes contribute to a decision, a few malicious nodes cannot easily disrupt the
decision-making. However, if any node can trigger a full-force response, it can affect the
entire network and be vulnerable to a DoS attack [49]. A collaborative-decision making
approach is also more resilient to benign failure of nodes. On the other hand, failing

46

or compromise of particular nodes in independent decision-making systems can have
drastic effects. However, these systems are less prone to spoofed intrusion attacks than
collaborative decision-making systems [49].

Response Mechanism The system can have a passive response or an active response to
detected intrusions. Reputation systems reviewed in [56] are example methods used on
MANETs for active responses.

IDS Testing This is the area of IDS testing and evaluating its effectiveness and efficiency.

IDS Security There can be attacks against IDS itself; this feature is the degree of IDS
security in opposition to these attacks.

All these features above are summarized in Table 3.1.

Feature Explanation Classification

Input Data monitored data network packets, MIB data, host data,
statistic, etc.

Data
Gathering

from where data is gathered host-participatory or promiscuous
listening

Architecture structure and organization of
IDS agents

standalone, distributed and cooperative,
hierarchical

Grouping how to group distributed IDS
agents

clusters, zones, one-hop away nodes

Interoperability how to communicate with
IDS agents

network packets or mobile agents

Detection
Method

method used to detect
intrusions

anomaly-based, specification-based,
misuse-based

Decision
Making

how to make decisions about
intrusions

local, collaborative or independent

Response
Mechanism

how to react to detected in-
trusions

passive or active response (on controlled
or on controlling system)

IDS Security vulnerabilities of IDS agents single point of failure, attacks against
mobile agents, DoS attacks, etc.

Table 3.1: Survey Features

The main proposed IDSs for MANETs in the literature are described below.

47

3.3.1 Distributed and Cooperative IDS [106][107]

The first IDS for MANETs proposed by Zhang and Lee is a distributed and cooperative
IDS. In this architecture, every node has an IDS agent which detects intrusions locally
and collaborates with neighboring nodes (through high-confidence communication
channels) for global detection whenever available evidence is inconclusive and a broader
search is needed. When an intrusion is detected an IDS agent can either trigger a local
response (e.g. alerting the local user) or a global response (which coordinates actions
among neighboring nodes).

Since expert rules can detect only known attacks and the rules cannot easily be
updated across a wireless ad hoc network, statistical anomaly-based detection is chosen
over misuse-based detection. The local data is relied on for statistical anomaly-based
detection: the node’s movement (distance, direction, velocity) and the change of routing
table (PCR: percentage of changed routes, PCH: percentage of changes in the sum of
hops all the routes).

A multi-layer integrated intrusion detection and response is proposed allowing different
attacks to be detected at the most effective layer. It is believed to achieve a higher
detection rate with a lower false positive rate than a single-layer intrusion detection
achieves.

The RIPPER and SVM-Light classification algorithms are used. In their subsequent
research [107], these algorithms are evaluated on three routing protocols: AODV, DSR
and DSDV using detection rate and false alarm rate metrics. SVM-Light is shown to
have better performance than RIPPER. It is also shown that the protocols with strong
correlation among changes of different types of information (location, routing, etc.)
have better performance, so reactive (on-demand) protocols are more appropriate for
this system than proactive (table-driven) protocols, since reactive protocols reflect the
changes in the network better than proactive protocols. Moreover, it is stated that
the IDS works better with protocols which include some redundancy (such as path
redundancy in DSR). However, the mobility effect is not discussed. Their results on
AODV routing protocol are presented in Table 3.2. They use five different testing data.
normal represents a network without attacks. rt shows the data with intrusions on
route logic and tf shows the data with distortions on traffic patterns. The number 100
and 10 represents the running time (100.000 and 10.000 seconds) and the number of
intrusion sessions.

48

Test Data RIPPER Algorithm SVM-Light Algorithm

DR FPR DR FPR

normal N/A 1.45±0.72% N/A 2.36±1.07%

100k-rt 91.71±3.23% 20.2±6.27% 95.3±0.79% 1.27∓0.38%

100k-tf 88.48±4.14% 17.8±5.10% 93.6±0.72% 2.06∓0.63%

10k-rt 92.36±3.79% 14.4±4.87% 94.7±0.51% 3.28∓0.93%

10k-tf 89.91±5.31% 15.7±3.39% 97.1±0.32% 3.57∓0.79%

Table 3.2: The Performance of RIPPER and SVM-Light Algorithms on AODV

This is one of the few approaches considering mobility by monitoring node movements.
This can decrease false positives resulting from the node’s mobility. However, it
only reflects the local mobility not the network’s mobility. Also, every node has to
have a built-in GPS (Global Positioning System) to obtain this mobility data. It is
emphasized that it can be applied to all routing protocols since it uses the minimal
routing information. It also allows addition of new features for a specific protocol.
From the security point of view the system is reliable unless the majority of nodes
are compromised [106] (These can send falsified data). Furthermore, the collaborative
detection mechanism can be prone to denial of service and spoofed intrusion attacks [49].

3.3.2 Cooperative IDS using Cross-Feature Analysis in MANETs

[42][43]

Huang et al. use data-mining techniques to automatically construct an anomaly
detection model [43]. They use an analysis technique that targets multiple features
and which acknowledges the characteristic patterns of correlation between them. The
basic assumption here for anomaly detection is that normal and abnormal events have
different feature vectors that can be differentiated.

In cross-feature analysis, they train the following classification model Ci from normal
data based on exploring the correlations between each feature and all other features [42].
Each feature value is estimated by other feature values in the model.

Ci : f1, f2, ..., fi−1, fi+1, ..., fL → fiwheref1, f2, ..., fL is the feature set. (3.1)

In practice, each feature fi is analyzed and compared with the predicted values of
fi. Then, the average match count is evaluated by dividing the number of total true

49

matches of all features by L and used to detect anomalies which are below the threshold.
Instead of count values, probabilities can also be used. Different classification algorithms
C4.5, Ripper, and NBC are investigated to calculate the probability function [42]. Since
C4.5 shows better performance, it is the chosen method in their subsequent research [43].

Due to resource-constraints in MANETs, they propose a cluster-based IDS archi-
tecture. A fair and secure cluster-head assignment is presented. Cluster-heads are
selected randomly to facilitate security. Otherwise few assigned cluster-heads could
be the target of attacks easily. Equal service time is assigned to all selected cluster-heads.

Simple rules are also introduced to determine attack types and sometimes attackers. The
rules are executed after an anomaly is detected. They are based on statistics such as the
number of incoming/outgoing packets on the monitored node and are pre-computed for
known attacks. For example, unconditional packet dropping of a node m is formulated
as follows [43]:

FPm (forward percentage) =
packets actually forwarded

packets to be forwarded
(3.2)

If the denominator is not zero and FPm is 0, it means that node m is dropping all
packets. The attacker is identified by a neighbour of node m who can promiscuously
overhear node m’s traffic.

It is implemented on the ns-2 simulator by using traffic related and non-traffic related
features. Traffic related features are packet type, flow direction, sampling periods
and statistics measures (counts and standard deviations of inter-packet intervals).
Non-traffic related features represent a view of network topology and routing operations
and comprise information such as the number of routes added by route discovery, total
route change, and absolute velocity (the physical velocity of a node). The AODV
protocol is targeted and the following metrics are used for evaluation: detection rate,
false positive rate, and detection rate of attack types. Their results shown in Table 3.3
are promising.

It is the first approach that uses feature correlations. They propose to investigate how
computational cost can be reduced [42]. Attacker identification and attacks against the
IDS (a major issue for a cluster-head architecture) are identified as future research [43].

50

Attack Detection
Rate

False Alarm
Rate

BlackHole and Sleep
Deprivation

85% 0.97%

Selfishness and DoS 98% 0.89%

Sleep Deprivation 99% 0.95%

Routing Loop 87% 0.98%

Table 3.3: The Performance of The IDS Technique using Cross-Feature Analysis in
MANETs

3.3.3 Zone-Based IDS [89]

In [89], a non-overlapping zone-based IDS is proposed. In this architecture, the network
is divided into zones based on geographic partitioning to save communication bandwidth
while improving detection performance by obtaining data from many nodes. The nodes
in a zone are called intrazone nodes, and the nodes which work as a bridge to other
zones are called interzone (gateway) nodes. As shown in Figure 3.1 there can be more
than one gateway node in a zone, for instance the nodes 1, 6, 7 are gateway nodes in
zone 5. Each node in the zone is responsible for local detection and sending alerts to
the interzone nodes.

10

2 7

8

9

1
11

12

3

4
5

6

13

1 32

4 5 6

7 8 9

Figure 3.1: Zone-Based IDS Architecture in MANETs

Their framework aims to allow the use of different detection techniques in each IDS

51

agent; however they use only Markov chain anomaly detection in their research. Inputs
to IDS agents are the routing table updates (PCR and PCH) as in [42][43].

Intrazone nodes carry out local aggregation and correlation, while gateway nodes are
responsible for global aggregation and correlation to make final decisions and send
alarms. So only gateway nodes participate in intrusion detection. The alerts sent by
interzone nodes simply show an assessment of the probability of intrusion, the alarms
generated by gateway nodes are based on the combined information received. In their
aggregation algorithm, gateway nodes use the following similarities in the alerts to
detect intrusions: classification similarity (classification of attacks), time similarity
(time of attack happening and time of attack detection), and source similarity (attack
sources). Source similarity is the main similarity used, so the detection performance of
aggregation algorithm could decrease with the increasing of the number of attackers [89].

One of the contributions in this paper is MIDMEF (MANET Intrusion Detection
Message Exchange Format) which defines the format of information exchange between
IDS agents. It is consistent with Intrusion Detection Message Exchange Format
(IDMEF) proposed by the Internet Engineering Task Force (IETF) [3].

Previous work [88] analyzed how to consider mobility when designing an IDS. Link
change rate is proposed to reflect different mobility levels. Suitable normal profiling and
proper thresholds can then be adaptively adopted by IDS agents using this measure.
Furthermore, it is shown that link change rate reflects the mobility model of the network
better than the generally used mobile speed measure. Link change rate of a node is
defined as [88]:

| N1 \ N2 | + | N2 \ N1 |
| t2 − t1 |

, (3.3)

where N1 is the neighbor set of the node at time t1 and N2 is the neighbor set of the
node at time t2.

The proposed IDS is simulated on the GlomoSim simulator and evaluated using the
following performance metrics: false positive rate, detection rate, and mean time of first
alarm (a measure of how fast intrusion is detected). The system is trained and evaluated
under different mobility levels (with duration time between 0-1000 seconds) and it is
shown that the anomaly-based detection performs poorly due to the irregularity of data
under high mobility. While the detection rate is around 60% under high mobility, it

52

goes up to the perfect detection rate under low mobility. The false positive rate changes
between 5% and 50%. Furthermore, the presence of partial victims who do not receive
all falsified data because of link breakages resulting from mobility [89] is claimed to
make the detection more difficult. The advantages of an aggregation algorithm using the
data from both partial and full victims are emphasized: lower false positive and higher
detection rate than local IDS achieves. Nevertheless, its performance can decrease
with the existence of more than one attacker in the network. They also conclude
that communication overhead is increased in proportion to mobility where local IDSs
generate more false positives and send more intrusion alerts to gateway nodes. In
addition, aggregating data and alerts at interzone nodes can result in detection and
response latency, when there is sufficient data for intrusion detection even at intrazone
nodes. The authors plan to investigate further attack scenarios at the routing and
other layers as well as constructing further security-related features and misuse-based
detection approaches.

3.3.4 General Cooperative Intrusion Detection Architecture [87]

In [87], Sterne et al. present a cooperative and dynamic hierarchical IDS architecture
which uses multiple-layering clustering. Figure 3.2 shows a network with two-level
clusters. The nodes annotated with “1” are the first level cluster-heads, essentially
acting as a management focus for IDS activity of immediately surrounding nodes.
These level 1 cluster heads can form a cluster around high level node “2”, second
level cluster-head. This process goes on until all nodes are assigned to a cluster. To
avoid single point of failure, they propose choosing more than one cluster-head for the
top-level cluster. The selection of cluster heads is based on topology and other criteria
including connectivity, proximity, resistance to compromise, accessibility by network
security specialists, processing power, storage capacity, energy remaining, bandwidth
capabilities, and administratively designated properties [87].

In this dynamic hierarchy, data flow is upward, while the command flow is downward.
Data is acquired at leaf nodes and aggregated, reduced and analyzed as it flows upward.
The key idea is given as detecting intrusions and correlating with other nodes at the
lowest levels for reducing detection latency and supporting data reduction, whilst
maintaining data sufficiency. It supports both direct reporting by participants and
promiscuous monitoring for correlation purposes.

The proposed intrusion detection architecture for MANETs targets military appli-

53

1
2

1 1

Figure 3.2: IDS Hierarchy with Two-Level Clusters

cations. The authors claim that the dynamic hierarchy feature is highly scalable.
It also reduces the communication overhead through the hierarchical architecture.
However, the cost of configuration of the architecture in dynamic networks should also
be considered.

Neither specific intrusion detection techniques nor the implementation of this archi-
tecture is covered. Supporting a broad spectrum of intrusion detection techniques
is posed as one of the general requirements of IDS. However, applicability of these
techniques to mobile ad hoc networks, which can have resource constrained nodes and
no central management points, is not addressed. Examples of usage scenarios, which
cover MANET-specific and conventional attacks, are presented (by using different
intrusion detection techniques) on the architecture. Some attacks can be drastic in
this architecture; for example the capturing of cluster-heads or a malicious node being
selected as a cluster-head by sending false criteria. Ongoing areas of investigation are
comparison of existing clustering algorithms and communication overhead metrics.
They identify the development of Byzantine-resistant techniques for clustering and for
intrusion detection and correlation as future work.

3.3.5 Intrusion Detection Using Multiple Sensors [49]

Kachirski and Guha propose an IDS solution based on mobile agent technology which
reduces network load by moving computation to data. This is a significant feature for
MANETs which have lower bandwidth than wired networks. A modular IDS structure
is proposed that distributes the functional tasks by using three mobile agent classes:

54

monitoring, decision-making and action-taking. The advantages of this structure are
given as increased fault-tolerance, communication cost reduction, improved performance
of the entire network, and scalability [49].

A hierarchical and distributed IDS architecture is given which divides the network into
clusters. Cluster heads are chosen by vote, with each node voting for a node based
on its connectivity. Each node in the network is responsible for local detection using
system and user level data. Only cluster heads are responsible for detection using
network level data and for making decisions. However, depending on the hop attribute
of the clusters, network intrusion detection performance can change. For example, every
node has direct connection to at least one cluster head in a one-hop clustered network
(nodes 1, 2, 5, and 8 are clusterheads), so each packet in the network can be monitored
as shown in Figure 3.3(a), while three links in Figure 3.3(b) cannot be monitored by
the cluster-heads in a two-hop clustered network (nodes 1, 2, and 5 are cluster-heads).
As the degree of monitoring increases the number of cluster heads increases too. So,
choosing the hop attribute of the clusters is a trade-off between security and efficiency.
However, the nodes not in a cluster head’s communication range can move to the
monitoring area of another cluster head due to mobility. Having a few links that
cannot be monitored by any cluster head is regarded as acceptable for highly dynamic
environments.

1
2

9

8 7

6

5

3

4

1
2

9

8 7

6

5

3

4

a) b)

Figure 3.3: IDS Architecture
(a) One-hop Clustered Network (b) Two-hop Clustered Network

55

Cluster nodes can respond to the intrusions directly if they have strong evidence locally.
If the evidence is insufficient they leave decision-making to cluster heads by sending
anomaly reports to them.

In this paper a scalable and bandwidth-efficient IDS is proposed by using mobile agents
but without giving any validation via simulation or implementation. On the other hand,
there are urgent security issues for mobile agents that are set to be investigated in their
future research. In addition, details of the anomaly-based detection method are not
given, with research on more robust and intelligent cooperative detection algorithms
left as future research.

3.3.6 Specification-Based IDS for AODV [90]

The first specification-based IDS in MANETs is proposed by Tseng et al. [90]. They
use network monitors (NM) which are assumed to cover all nodes. Nodes moving out
of the current network monitoring area are also assumed to move into range of other
network monitors. Other assumptions are: i) network monitors know all nodes’ IP and
MAC addresses, and MAC addresses cannot be forged. ii) network monitors and their
messages are secure. iii) if some nodes do not respond to broadcast messages, this will
not cause serious problems.

Network monitors employ finite state machines (FSM) as specifications of the operations
of AODV, especially for the route discovery process, and maintain a forwarding table
for each monitored node. Each Route Request (RREQ) and Route Reply (RREP)
message in the range of the network monitor is monitored in a request-reply flow.
When a network monitor needs information about previous messages or other nodes
not in its range, it can ask neighboring network monitors. In high mobility conditions
the communication between network monitors increases since monitored nodes or/and
packets frequently move out of the range of the monitoring node.

The authors also modify the AODV routing protocol by adding a new field: the previous
node. Since RREQs are broadcast messages, it is necessary to keep track of the RREQ
path. The previous node is needed to detect some kind of attacks such as sending an
RREP to a node that is not on the reverse route [90].

Future work includes experimentation via ns-2 network simulation, profiling network
QoS (Quality of Service) to reduce false positives by separating packet loss, packet

56

error, and packet generation through defining reasonable thresholds for the current
profile, and refining NM architecture using via a P2P (peer-to-peer) approach.

This is a promising approach that can detect both known and unknown attacks against
routing protocols which have clearly defined specifications. It is claimed to detect
most of the attacks with minimum overhead in real time. However, some of the
assumptions accepted in this paper are not very realistic. For example, assuming the
network monitors cover all network nodes and have all nodes’ IP and MAC addresses.
Scalability is one of the important features on many MANET applications where the
nodes can join and leave network independently and move frequently. Assuming MAC
addresses cannot be easily forged is unrealistic. Moreover, dropping of some broadcast
messages in the network can affect network services if the node dropping messages is at
a critical point. Furthermore, the details of the architecture are not addressed (such as
the positions of network monitors in MANETs where the topology changes arbitrarily).

There are other specification-based approaches proposed for AODV [36][37]. A
specification-based approach combined with cryptography is given in [36]. In this
approach RREQ and RREP messages’ specifications are given as extended finite state
machine in each node. Another finite state machine based approach proposed for DSR
is given in [105].

3.3.7 DEMEM: Distributed Evidence-Driven Message Exchanging In-

trusion Detection Model [92]

DEMEM is a distributed and cooperative IDS in which each node is monitored by
one-hop neighbor nodes. In addition to one-hop neighbor monitors, 2-hop neighbors can
exchange data using intrusion detection (ID) messages [92]. The main contribution of
DEMEM as stated by the authors is to introduce these ID messages to help detection,
which they term evidence-driven message exchange. Evidence is defined as critical
information (specific to a routing protocol) used to validate the correctness of the
routing protocol messages, for instance hop count and node sequence number in AODV
[92]. To minimize ID message overhead ID messages are sent only when there is new
evidence, so it is called evidence-driven. DEMEM also introduces an ID layer to
process these ID messages and detect intrusions between the IP layer and the Routing
Layer (intercepts routing messages between the routing layer and the IP layer) without
modifying the routing protocol, so it can be applied to all routing protocols.

57

DEMEM uses the specification-based IDS model for OLSR proposed in their previous
work [91]. In OLSR [46] there are nodes called Multipoint Relays (MPRs) which serve
to reduce the flooding of broadcast packets in the network. These nodes are selected
by their neighboring nodes called MPR selectors. The packets of an MPR node’s
MPR selectors are only retransmitted by that MPR node. TC (topology control)
messages are sent by each node periodically to declare its MPR selectors. The proposed
specification-based system uses the following constraints of OLSR to detect intrusions:

C1: neighbors in Hello messages must be reciprocal.
C2: MPRs must reach all 2-hop neighbors.
C3: MPR selectors must match corresponding MPRs.
C4: Fidelity of forwarded TC messages must be maintained.

The authors state that the system cannot detect collaborative attacks. For example
two attackers who falsely claim that they are neighbors might not be detected by the
above constraints [91].

DEMEM introduces three authenticated ID messages for OLSR. The first one is
ID-Evidence, which is designed for 2-hop-distant detectors to exchange their evidence
which is one-hop neighbors, MPRs, and MPR selectors on OLSR. The second message,
ID-Forward, is a request to forward any held ID-Evidence messages to other nodes. This
means that a detector node can request the holders of evidences (its selected neighbours)
to forward their evidences, rather than sending them by itself, so reducing message
overhead. It is sent only when there is a new evidence (e.g. new neighhbours) on this
node. The last message, ID-Request, is designed to tolerate message loss of ID-Evidence
messages by requesting them to be sent again. The false positives and delay detection
due to message loss are decreased by ID-Request messages. Moreover, they specify a
threshold value to decrease false positives due to temporary inconsistencies resulting
from mobility. When a detector detects an intrusion, it automatically seeks to correct
the falsified data.

DEMEM is simulated on the GlomoSim simulator with the random waypoint mobility
model and with different speed and pause time sets for mobile nodes. It is evaluated on
few attack scenarios such as man-in-the-middle attack. The approach is very effective
for mesh networks where nodes in the network do not move: there is no false positives
and no false negatives with 0.05% message overhead in a network with 150 nodes
and 3% overhead in a network with 10 nodes. Interestingly, the message overheads
of DEMEM are decreased as the number of nodes in the network increases, because

58

the number of Hello and TC messages is greater than ID messages in large networks
[92]. The message overhead in the simulation varies between 2% and 30% depending
on mobility level. They also show how detection accuracy and detection latency of the
system vary with the chosen thresholds.

The applicability of DEMEM to other routing protocols especially on reactive protocols
is considered. Because reactive protocols produce fewer routing messages with generally
smaller size compared to the periodic routing messages of proactive protocols, IDS on
reactive protocols may have a greater message overhead than for proactive protocols [92].
Ongoing research includes implementation of DEMEM on AODV and implementation
of a reputation-based cooperative intrusion response model.

There are also other specification-based IDSs proposed for OLSR in the literature. In
[95] a general specification-based intrusion detection which can be applied to OLSR
and similar MPR-based protocols is proposed. In [32] distributed and collaborative
detection (by the victim node and his 1-hop neighbours) is proposed. An extended
finite state machine to represent the routing protocol specifications is proposed in [71].

3.3.8 Case-Based Agents for Packet-Level Intrusion Detection [34]

Guha et al. [34] propose a case-based reasoning system for packet level monitoring
based on a hierarchical IDS architecture. In the case-based reasoning approach, known
attacks are formulated as cases in the case archive, which stores the features of known
problems as well as the actions to solve these problems. The idea is to search for similar
cases in the case archive when a problem is detected on the network. The returned
similar cases are used either failure or success, is stored into the archive. In this paper,
Snort IDS [10] rules are used as the cases and each node has the database of these rules
(which is claimed to be small in size). Since Snort rules need exact matching, this is
used instead of searching for similarity in the case archive.

IDS functions (monitoring, decision making and actions) are distributed across several
mobile agents. Some of them are presented on all mobile hosts, while others are dis-
tributed to only a select of group nodes [34]. All nodes have system-level and user-level
monitoring that uses an anomaly-based approach. However, packet-level monitoring,
which uses case-based reasoning approach, and decision-making are assigned only to
cluster-heads. In their simulation, it is shown that the number of dropped packets by
cluster-heads increases as the density of the network increases.

59

Using both anomaly-based detection for system-level and user-level monitoring, and
misuse-based detection for packet-level monitoring increases effectiveness. It is also
bandwidth-conscious, since it uses mobile agents. However, the security of the mobile
agents still needs research.

In [14], there is a research to investigate the effectiveness of signature-based techniques
on MANETs by assuming that the signatures of attacks are known. Only selected n
nodes of the network are playing role in intrusion detection for efficiency concern. The
results on four different routing protocols (DSDV, AODV, DSR, and TORA) show
that signature-based detection techniques will not be effective in the networks which
use alternative paths for the same end-to-end nodes. The reason is given as the lack of
information on the monitoring nodes due to the use of alternative paths.

3.3.9 An IDS Architecture with Stationary Secure Database [83]

A distributed architecture consisting of IDS agents and a stationary secure database
(SSD) is proposed in [83]. All nodes have IDS agents responsible for local detection and
collaborating with other agents in need. IDS agents have five components: local audit
trail; local intrusion database (LID); secure communication module; anomaly detection
modules (ADMs); and misuse detection modules (MDMs). The local audit trail gathers
and stores local audit data –network packets and system audit data. The LID is a
database that keeps information for IDS agents such as attack signatures, patterns
of normal user behavior, etc. The secure communication module is used only by IDS
agents to communicate securely with other IDS agents. ADMs use anomaly-based
detection techniques to detect intrusions. There can be more than one ADM module in
an IDS agent, for example using different techniques for different kinds of audit data.
There are also MDMs responsible for misuse-based detection to detect known attacks.

The stationary secure database (SSD) maintains the latest attack signatures and latest
patterns of normal user behaviors. It is to be held in a secure environment. Mobile
agents get the latest information from the SSD and transfer their logs to the SSD for
data mining. The SSD has more storage and computation power than mobile nodes, so
it is capable of mining rules faster than the nodes in the network and can keep all nodes’
logs [83]. Moreover, updating the SSD rather than all nodes in the network is easy. On
the other hand, a stationary database is not suited to all kinds of networks. Military
tactical environments with control centres are given as examples of the architecture

60

suitable for SSD. However, nodes in hostile environments may not attach to the SSD.
Letting the nodes update themselves with the help of other nodes (which can consume
significant bandwidth) is proposed as a solution to this problem.

Implementation and evaluation of this architecture are planned for future work.
Although it seems to be an effective approach taking advantage of both anomaly-based
detection using data mining techniques and misuse-based detection, it has a single point
of failure, the SSD. Moreover, a stationary node goes against the nature of MANETs.

3.3.10 An IDS Model Integrating Different Techniques [44]

Huang and Lee propose an IDS model that uses both specification-based and anomaly-
based detection approaches to detect interesting events [44]. A basic (routing) event
is defined as the smallest set of causally related routing operations such as receiv-
ing/delivering a packet, modifying a routing parameter. An anomalous event is defined
as a basic event that does not follow system specifications, such as deleting an entry in
the routing table, modifying route messages, etc. [44]. A specification-based approach
is used to detect anomalous events that directly violate the specifications of AODV.
Anomaly-based detection is used to detect events that do not violate specifications of
the routing protocol directly and so require statistical measures.

In the specification-based approach extended finite state automatas (EFSAs) are used to
represent the specifications of AODV. Events which include only local node operations
are mapped to the transitions of the automata. In the statistical-based approach,
features are determined to detect anomalous events that cannot be detected by the
specification-based approach, and then a set of detection rules is generated using the
RIPPER classifier.

The approach is evaluated using the MobiEmu simulator on some scenarios (not
including high a degree of mobility). It is shown that some attacks (e.g. route message
modification, rushing attacks) are not detected effectively by this approach. It is
concluded that these attacks cannot be detected locally [44]. Their results are presented
in Table 3.4.

The authors propose a taxonomy of attacks which decomposes an attack into a number
of basic events and also propose a model to detect them. They use only local detection,
since the local node is the only reliable data source. It is claimed this is the reason why

61

some attacks cannot be detected effectively by this approach. For example the detection
of network scan attack needs information from other nodes as well. Furthermore the
detection of some attacks needs data from another layers in the protocol stack such
as wormhole attack. Therefore the authors plan to investigate multi-layer and global
detection. Extracting features for detecting unknown attacks automatically is another
issue identified as future research.

Anomalous Basic
Event

Detection
Rate

False Alarm
Rate

Flooding of

Data Packets 92±3% 5±1%

Flooding of

Routing Messages 91±3% 9±4%

Modification of

Routing Messages 79±10% 32±8%

Rushing of

Routing Messages 88±4% 14±2%

Table 3.4: The Performance of Specification-Based and Anomaly-Based Detection

3.3.11 A Modular IDS Architecture [75]

Puttini et. al. propose a distributed and cooperative IDS architecture in which each
node has a local IDS (LIDS) [75]. They give the detailed modular LIDS architecture
based on the intrusion detection model of IETF IDWG (intrusion detection working
group) which defines three main components of intrusion detection –sensor, analyzer
and manager–, and the communication among these components. Communication
between IDS agents are provided by mobile agents which are created, received and
managed in the Mobile Agent Framework which is claimed to implement security
services. It is allowed to exchange only high level messages such as queries, events and
alerts to save resources.

The Management Information Base (MIB) is used as local data source for the following
reasons: (i) MIB data has standardized format, (ii) MIB data provides to monitor
simultaneously network, host, and application level.

It is one of the few IDSs on MANETs that use misuse-based detection. Since MANETs
are very recent systems not much approach work has been carried out to determine the

62

signatures of MANET attacks. Using Finite State Machines (FSM) they describe two
attack signatures: one is for a network level attack against OLSR; and the other one is
an application level attack.

Their system is implemented using Java2 and evaluated on a MANET of only 6 nodes.
They show that the two attacks described in the paper are detected. Performance and
scalability are planned areas of work. However, it is supposed to be scalable, since the
detection is not distributed all over the network and happened generally in a small
number of nodes which are close to each other. Adding anomaly detection module to
broaden the spectrum of detected attacks is identified as future work.

An outline of the proposed IDSs is given in Table 3.5. This shows the contribu-
tion/novelty each IDS brings and the MANET issues it does not address. However,
security and limited resources issues are not shown in the table for each IDS separately,
since all proposed systems usually make assumptions about these issues, or pay no
attention to them.

3.4 Detection of Misbehaving Nodes

Nodes in MANETs rely on other nodes to forward their packets. However, these
intermediate nodes can misbehave by dropping or modifying these packets. Several
proposed techniques to detect such misbehaviors are given below.

3.4.1 Watchdog and Pathrater [62]

This is the primary work in detecting misbehaving nodes –nodes that do not carry
out what they are assigned to do– and mitigating their effects. Since ad hoc networks
maximize total network throughput based on cooperativeness of all nodes for routing
and forwarding, misbehaving nodes can be critical for the performance of the network
as stated in [62]. In this paper, watchdog and pathrater mechanisms on DSR are
proposed to improve throughput of the network in the presence of misbehaving nodes.
Nodes can misbehave because they can be overloaded, selfish (wanting to save their
own resources), malicious, or simply malfunctioning [62].

The watchdog’s work is to detect misbehaving nodes by listening to nodes in promis-
cuous mode. When a node forwards a packet, the watchdog mechanism of that node

63

IDS Contribution Other Manet IDS Issues

Distributed and
Cooperative IDS

first distributed and cooperative
IDS

considers only local mobility

considers mobility

IDS Using Cross-
Feature Analysis

uses of cross-feature analysis high computational cost

constructs anomaly-based
detection model automatically

considers only local mobility

defines rules to detect attack(er)s does not consider cluster-heads’
capabilities

Zone-Based IDS uses of zone-based architecture causes detection and response latency even
when there is enough evidence on local
nodes

defines MIDMEF

considers mobility based on
changes of node’s neighbours

General Cooperative
ID Architecture

uses multiple-layered clustering high-cost maintenance of the architecture
under high mobility

IDS Using Multiple
Sensors

uses mobile agents for a scalable
and bandwidth-efficient system

may not monitor each node on the network
due to the hop attribute of clusters

Specification-Based
IDS for AODV

first application of specification-
based detection technique to
MANETs

communication overhead (among monitor
nodes) under high mobility

DEMEM introduces ID messages between
IDS agents to help detection

may not detect some kind of distributed
and collaborative attacks

Case-Based Agents for
Packet-Level ID

uses case-based approach
and anomaly-based detection
techniques together

has difficulties in updating case archives in
a distributed environment

IDS Architecture with
Stationary Database

explores use of a stationary
secure database to keep patterns
of normal user behaviors and at-
tack signatures

has a central point –one point of failure

IDS Model Integrating
Different Techniques

uses anomaly-based and
specification-based detection
techniques together

carries out only local detection, may not
detect distributed attacks

A Modular IDS
Architecture

defines two attack signatures not scalable

Table 3.5: Outline of the Proposed IDSs on MANETs

64

monitors the next node to confirm that it also forwards the packet properly. It keeps
sent packets in a buffer. When the packets are actually forwarded by next nodes, they
are removed from the buffer. If the packets remain in the buffer longer than some
timeout period, the watchdog increments the failure count of the node implicated. When
the failure count of a node exceeds a threshold, the node is identified as a misbehaving
node and a notification is sent to the source node. It is stated that watchdog can also
detect replay attacks to some extent. However, since it uses promiscuous listening, it
is stated that it might not detect misbehaving nodes in the existence of ambiguous
collisions, receiver collisions, nodes that control their transmission power to deceive
a listener into believing a message has truly been sent, and nodes that falsely report
other nodes as misbehaving. It cannot detect partial dropping attacks and collaborative
attacks involving at least two consecutive malicious nodes in a route [62].

Pathrater finds the most reliable path by using link reliability data and misbehaving
nodes’ information from the watchdog. In DSR, there can be many paths from source
to destination, but the shortest path is selected. By using pathrater, the most reliable
path is selected instead of the shortest path in the presence of misbehaving nodes. The
SRR (send extra route request) extension to DSR can be added to find new paths when
all paths include misbehaving nodes. Pathrater gives ratings to each node and provides
a path metric based on the ratings of the nodes on the path. The authors state that
ratings of the nodes should be rearranged to prevent permanently excluding temporary
misbehaving nodes from routing and forwarding.

Watchdog and Pathrater with/without SRR are evaluated on the ns simulator with
four different mobility levels by using throughput, overhead and false positive rates as
metrics. The results show that watchdog and pathrater increase the throughput by
17% in the presence of 40% misbehaving nodes under moderate mobility with 9%-17%
overhead. Under extreme mobility, they increase throughput by 27% with 12%-24%
overhead.

The approach detects misbehaving nodes efficiently by using simple techniques without
a priori trust relationship information. Moreover, it increases the throughput of the
network in the existence of misbehaving nodes, and does so with low overhead. On
the other hand, it cannot detect collaborative attacks and partial dropping attacks.
Additionally, it is applicable only to source routing protocols, because the watchdog
needs to know where the packet is going to be forwarded by the next node. Applying the
watchdog mechanism to other protocols requires adaptation. DSR needs modification
for the SRR extension when misbehaving nodes exist on all paths. Finally, it rewards

65

and reinforces malicious nodes in their behavior by forwarding their packets while they
do not forward for other nodes [21].

3.4.2 Nodes Bearing Grudges [21]

This is an interesting approach for detecting and responding to misbehaving nodes,
inspired by the biology concept of reciprocal altruism. It detects misbehaving nodes
and responds by not forwarding their packets. The aim of this approach is given as
increasing fairness, robustness and cooperation in MANETs.

Each node is responsible for monitoring the behavior of its next hop neighbors and
detecting misbehaving nodes. There is a trust architecture and an FSM in each node
with four main components: the monitor, the reputation system, the path manager,
and the trust manager.

The monitor (neighborhood watch) keeps a copy of recently sent packets. It can
compare them with the packets forwarded by the next hop node and can detect routing
and forwarding misbehaviors as deviations from normal expected behaviour. The types
of misbehavior that can be detected by this system are stated to be: no forwarding,
unusual traffic attraction, route salvaging, lack of error messages, unusually frequent
route updates, and silent route change [21]. When a misbehaving behavior is detected,
a reputation system is called for rating the misbehaving node.

The reputation system (node rating) keeps a local rating list and/or black list which
can be exchanged with friends. The rating of a node can change when there is enough
evidence, and is based on the frequency of misbehavior occurrence [62]. The rate
function also uses weights depending on the source detecting misbehavior. One’s own
experience by promisuous monitoring has the highest weight, while observations (types
of misbehaviour in the routing protocol) have relatively smaller weights and reported
experiences from other nodes have weight based on the trust level of these nodes. The
reputation system uses only negative experience, research on positive changes and
timeouts still needs attention. A path manager is called to take action when sufficient
evidence of misbehavior is obtained.

The trust level of nodes is managed by the Trust Manager which is distributed and
adaptive. It is also responsible for forwarding alarm messages and filtering incoming
messages from other nodes. The trust of a node plays a significant role when exchanging

66

routing information with that node, using it for routing or forwarding, and accepting
its forwarding requests.

Path manager may respond to a request from misbehaving nodes in a variety of ways,
such as ignoring the request, not replying back to the node, responding to any request
for a route that includes misbehaving nodes by sending alerts to the source node,
re-ranking paths, and deleting paths including misbehaving nodes [21].

ALARM messages are an extension to DSR and are used to distribute warning
information. An ALARM message contains the type of protocol violation, the number
of occurrences observed, whether the message was self-originated by the sender, the
address of the reporting node, the address of the observed node, and the destination
address [21]. When an ALARM received, it is sent to Trust Manager to evaluate its
trust level.

Assessment of this approach uses the GlomoSim simulator for evaluation and per-
formance analysis is in progress. Moreover, the use of Game Theory for analytical
evaluation is being investigated. One aim of the evaluation is to find the relation
between the number of nodes in the network, the number of malicious nodes that can
be tolerated, and the number of friend nodes that are needed for detection. In addition,
they are planning to analyze the scalability, the cost/benefit ratio, the increase in the
number of bits per unit of time forwarded to the correct destination minus any bits
lost or retransmitted, and overheads for achieving security (an important consideration
for MANETs). Research is needed to determine the degree to which mobility affects
how easily promiscuous monitoring may be carried out. The effects of mobility on
promiscuous monitoring (which can increase collusions) could be analyzed. Since,
it uses a threshold mechanism, the effects of different threshold values for different
mobility levels could usefully be assessed.

3.4.3 LiPaD: Lightweight Packet Drop Detection for Ad Hoc Networks

[15]

Anjum and Talpade have proposed a practical approach for detecting packet dropping
attacks [15]. In this approach every node counts the packets that it receives and
forwards and periodically reports these counts to a coordinator node. Promiscuous
monitoring is not used since it depends on the link layer characteristics and the link
layer encryption approach [15]. That’s why every node is responsible for monitoring its

67

packets in LiPaD. The algorithm executed in each node is very simple, which is good for
resource-constrained nodes. On the other hand, the network bandwidth consumption
can be huge, since every node sends reports of each flow defined by source IP and
destination IP to the coordinator node. They suggest compressing and aggregating
the reports of multiple flows instead of sending each flow in a packet. However, it still
affects network traffic, especially in networks with hundreds of nodes. There will be a
heavy computation load on the coordinator node (which analyzes all nodes’ reports).
The coordinator node needs to be a powerful device and must also be secure as it can
be the target of the attacks to disable the detection mechanism. For example, it can be
target of DoS attacks (by overloading the coordinator node with reports).

Since the coordinator node analyzes the same flow through the reports from all nodes
in the route, it can detect liar nodes that pass the wrong information about the
statistics of their packets to the coordinator node [15]. If all the nodes on the route are
cooperative and malicious, LiPaD cannot detect packet dropping attacks on this route.
It is stated that LiPaD detects selective forwarding attacks. It determines a threshold
value for permissible packet loss. The coordinator node also implements rewards and
punishments depending on the behavior of the nodes.

It is assumed that IDS messages are encrypted and that nodes use a delivery mechanism
for IDS messages to prevent them being dropped.

LiPaD is simulated on a network with 30 nodes using the OP-net simulator. It
demonstrates that LiPaD detects malicious packet-dropping nodes even in the presence
of non-malicious natural link-loss. On the other hand, the performance of LiPaD
needs to be evaluated under high mobility and frequent link-loss. Evaluation of LiPaD
performance under increased network traffic and node mobility is needed.

3.4.4 Intrusion Detection and Response for MANET [72]

Parker et al. extend snooping based methods to detect misbehavior across routing
protocols. A node listens to all nodes in its transmission range, not just the packets
forwarded by one of its next nodes (as in watchdog [62]). To detect a malicious node in
this approach, it is stated that the node must be in the proximity of a good node and
act maliciously. It detects dropping and modification attacks which exceed the value
in the threshold table for the particular attack class. However, a node moving out of
range of the monitoring node before it forwards packets can be assumed to be carrying

68

out a dropping attack. This issue will be addressed in future by the authors. Also, this
approach cannot detect misrouting attacks, since it does not know the next hop of a
packet that it monitors.

The intrusion detection protocol can give either a local or global response. In a local
response, misbehaving nodes in the Bad Node table are isolated. It is emphasized that
it is more effective in more dense networks, since more nodes detect intrusive behavior
and prevent malicious nodes from utilizing network resources. In the global response,
the maliciousness of a node is determined by a vote by all nodes in a cluster. If the
majority of the nodes agree that the node is intrusive, an alert will be broadcast.
Voting is initiated by cluster heads. Cluster heads can be malicious but the likelihood
of malicious nodes being elected as cluster heads is relatively small.

The approach is simulated using the GlomoSim simulator. The effect of node density
(both malicious and normal nodes) on false positives is stressed. The response mecha-
nism also affects the rate of false positives. It is claimed that global response reduces
false positives due to rapid isolation of the intrusive nodes from the network.

Another approach for detecting dropping attacks on MANETs is presented in [33].
The algorithm only differentiates dropping attacks from the faults due to broken
links. Malicious behaviour is defined as the dropping of data packets starting at some
random time and going on from that time onwards. The idea behind the algorithm
is based on associating the route error messages of the DSR routing protocol with
TCP timeouts. In the DSR protocol, a route error control message is sent back to
the source node, if an intermediate node cannot forward the packet to the next hop.
TCP timeout occurs when the sender does not receive an acknowledgement within a
specific interval. All route error messages on a per flow basis are collected at the source
node. When a TCP timeout occurs at this node, it is controlled if there are any route
error messages for this flow within the detection interval or not. If there are, they are
associated with broken link, otherwise with malicious dropping. Obviously, choosing the
detection interval is very important in terms of effective detection and low false positives.

All reviewed IDSs are summarized in Table 3.6.

69

ID
S

In
p

u
t

D
a
ta

D
e
te

c
ti

o
n

M
e
th

o
d

A
r
c
h

it
e
c
tu

r
e
,

G
r
o
u
p

in
g

In
te

r
-

o
p

e
r
a
b
il

it
y

D
e
c
is

io
n

M
a
k
in

g
R

e
sp

o
n

e
M

e
c
h

a
n

is
m

ID
S

S
e
c
u
r
it

y
S
im

u
la

ti
o
n

D
is

tr
ib

u
te

d
a
n
d

C
o
o
p

e
r
a
ti

v
e

ID
S

lo
ca

l
d

a
ta

:
n

o
d

e’
s

m
o
v
e-

m
en

t
a
n

d
ch

a
n

g
es

o
f

ro
u
ti

n
g

ta
b

le

st
a
ti

st
ic

a
l

a
n
o
m

a
ly

-b
a
se

d
d

et
ec

ti
o
n

d
is

tr
ib

u
te

d
&

co
o
p

er
a
ti

v
e,

-
n

et
w

o
rk

p
a
ck

et
s

lo
ca

l
&

co
ll
a
b

o
ra

ti
v
e

a
ct

iv
e

re
sp

o
n

se
o
n

a
tt

a
ck

ed
sy

st
em

p
ro

n
e

to
D

o
S

a
n
d

sp
o
o
fe

d
in

tr
u

si
o
n

a
tt

a
ck

s

n
s-

2

ID
S

U
si

n
g

C
r
o
ss

-
F
e
a
tu

r
e

A
n
a
ly

si
s

tr
a
ffi

c
a
n
d

n
o
n

-t
ra

ffi
c

fe
a
tu

re
s

a
n
o
m

a
ly

-b
a
se

d
d

et
ec

ti
o
n

h
ie

ra
rc

h
ic

a
l,

cl
u
st

er
s

n
et

w
o
rk

p
a
ck

et
s

in
d
ep

en
d

en
t

a
ct

iv
e

re
sp

o
n

se
o
n

a
tt

a
ck

ed
sy

st
em

se
cu

ri
ty

o
f

cl
u
st

er
-h

ea
d
s

n
s-

2

Z
o
n
e
-B

a
se

d
ID

S
ch

a
n

g
es

in
ro

u
ti

n
g

ta
b

le
m

a
rk

o
v

ch
a
in

a
n
o
m

a
ly

-b
a
se

d
d

et
ec

ti
o
n

h
ie

ra
rc

h
ic

a
l,

zo
n

es
n

et
w

o
rk

p
a
ck

et
s

in
d
ep

en
d

en
t

a
la

rm
s

a
n
d

re
sp

o
n

se
ID

S
a
g
en

ts
:

a
ss

u
m

ed
to

b
e

se
cu

re

G
lo

m
o
S

im

G
e
n
e
r
a
l

C
o
o
p

e
r
a
ti

v
e

ID
A

r
c
h
it

e
c
tu

r
e

h
o
st

d
a
ta

a
n
d

n
et

w
o
rk

p
a
ck

et
s

a
ll

h
ie

ra
rc

h
ic

a
l,

m
u
lt

ip
le

-l
a
y
er

cl
u
st

er
s

n
et

w
o
rk

p
a
ck

et
s

co
ll
a
b

o
ra

ti
v
e

a
la

rm
s

a
n
d

re
sp

o
n

se
se

cu
ri

ty
o
f

cl
u
st

er
-h

ea
d
s

-

ID
S

U
si

n
g

M
u

lt
ip

le
S
e
n

so
r
s

u
se

r,
sy

st
em

a
n
d

n
et

w
o
rk

le
v
el

d
a
ta

a
n
o
m

a
ly

-b
a
se

d
d

et
ec

ti
o
n

h
ie

ra
rc

h
ic

a
l,

cl
u
st

er
s

m
o
b

il
e

a
g
en

ts
in

d
ep

en
d

en
t

a
ct

iv
e

re
sp

o
n

se
o
n

a
tt

a
ck

ed
sy

st
em

a
tt

a
ck

s
a
g
a
in

st
m

o
b

il
e

a
g
en

ts

-

S
p

e
c
ifi

c
a
ti

o
n

-B
a
se

d
ID

S
fo

r
A

O
D

V
ro

u
ti

n
g

p
a
ck

et
s

o
f

A
O

D
V

sp
ec

ifi
ca

ti
o
n
-

b
a
se

d
se

le
ct

iv
e

d
is

tr
ib

u
te

d
co

o
p

er
a
ti

v
e,

n
o
d

es
in

m
o
n

it
o
rs

’
ra

d
io

ra
n

g
e

n
et

w
o
rk

p
a
ck

et
s

co
ll
a
b

o
ra

ti
v
e

a
la

rm
s

a
ss

u
m

ed
to

b
e

se
cu

re
-

70

ID
S

In
p

u
t

D
a
ta

D
e
te

c
ti

o
n

M
e
th

o
d

A
r
c
h
it

e
c
tu

r
e
,

G
r
o
u
p

in
g

In
te

r
-

o
p

e
r
a
b
il

it
y

D
e
c
is

io
n

M
a
k
in

g
R

e
sp

o
n

e
M

e
c
h

a
n

is
m

ID
S

S
e
c
u
r
it

y
S
im

u
la

ti
o
n

D
E

M
E

M
ro

u
ti

n
g

p
a
ck

et
s

o
f

O
L

S
R

sp
ec

ifi
ca

ti
o
n
-

b
a
se

d
d

is
tr

ib
u
te

d
&

co
o
p

er
a
ti

v
e,

-
n

et
w

o
rk

p
a
ck

et
s

co
ll
a
b

o
ra

ti
v
e

a
ct

iv
e

re
sp

o
n

se
a
n
d

re
co

v
er

y
o
n

a
tt

a
ck

ed
sy

st
em

m
es

sa
g
es

a
n
d

n
o
d
e

id
en

ti
ti

es
a
re

a
ss

u
m

ed
to

b
e

a
u

th
en

ti
-

ca
te

d

G
lo

m
o
S

im

C
a
se

-B
a
se

d
A

g
e
n
ts

fo
r

ID
S

u
se

r,
sy

st
em

a
n
d

n
et

w
o
rk

le
v
el

d
a
ta

a
n
o
m

a
ly

-b
a
se

d
a
n
d

m
is

u
se

-
b

a
se

d
d
et

ec
ti

o
n

h
ie

ra
rc

h
ic

a
l,

cl
u
st

er
s

m
o
b

il
e

a
g
en

ts
in

d
ep

en
d

en
t

a
ct

iv
e

re
sp

o
n

se
o
n

a
tt

a
ck

ed
sy

st
em

se
cu

ri
ty

o
f

m
o
b

il
e

a
g
en

ts

n
o

d
et

a
il
s

ID
S

A
r
c
h

it
e
c
tu

r
e

w
it

h
S
ta

ti
o
n

a
r
y

D
a
ta

b
a
se

h
o
st

a
n

d
n

et
w

o
rk

a
u
d

it
d
a
ta

a
n
o
m

a
ly

-b
a
se

d
a
n
d

m
is

u
se

-
b

a
se

d
d
et

ec
ti

o
n

d
is

tr
ib

u
te

d
&

co
o
p

er
a
ti

v
e,

-
n

et
w

o
rk

p
a
ck

et
s

co
ll
a
b

o
ra

ti
v
e

a
ct

iv
e

re
sp

o
n

se
o
n

a
tt

a
ck

ed
sy

st
em

o
n
e

p
o
in

t
o
f

fa
il
u
re

-

ID
S

M
o
d
e
l
In

te
g
r
a
ti

n
g

D
iff

e
r
e
n
t

T
e
c
h

n
iq

u
e
s

n
et

w
o
rk

p
a
ck

et
s

a
n
d

ro
u
ti

n
g

ta
b
le

sp
ec

ifi
ca

ti
o
n
-

b
a
se

d
a
n

d
a
n
o
m

a
ly

-b
a
se

d
d

et
ec

ti
o
n

st
a
n

d
-a

lo
n
e

-
lo

ca
l

-
co

m
p

ro
m

is
ed

n
o
d

es
M

o
b
iE

m
u

W
a
tc

h
d
o
g

a
n
d

P
a
th

r
a
te

r
n

et
w

o
rk

p
a
ck

et
s

te
ch

n
iq

u
es

u
se

p
a
ck

et
sn

o
o
p

in
g

d
is

tr
ib

u
te

d
&

co
o
p

er
a
ti

v
e,

o
n
e-

h
o
p

a
w

a
y

n
o
d

es

n
et

w
o
rk

p
a
ck

et
s

lo
ca

l
a
ct

iv
e

re
sp

o
n

se
o
n

a
tt

a
ck

ed
sy

st
em

n
o
d

es
w

h
ic

h
se

n
d

fa
ls

e
re

p
o
rt

s
to

so
u
rc

e
n
o
d

e

n
s

N
o
d
e
s

B
e
a
r
in

g
G

r
u

d
g
e
s

n
et

w
o
rk

p
a
ck

et
s

te
ch

n
iq

u
es

u
se

p
a
ck

et
sn

o
o
p

in
g

d
is

tr
ib

u
te

d
&

co
o
p

er
a
ti

v
e,

o
n
e-

h
o
p

a
w

a
y

n
o
d

es

n
et

w
o
rk

p
a
ck

et
s

co
ll
a
b

o
ra

ti
v
e

w
it

h
tr

u
st

ed
n

o
d

es

a
ct

iv
e

re
sp

o
n

se
n

o
d

e
id

en
ti

ti
es

a
re

a
ss

u
m

ed
to

b
e

a
u

-
th

en
ti

ca
te

d

G
lo

m
o
S

im

71

ID
S

In
p

u
t

D
a
ta

D
e
te

c
ti

o
n

M
e
th

o
d

A
r
c
h
it

e
c
tu

r
e
,

G
r
o
u
p

in
g

In
te

r
-

o
p

e
r
a
b
il

it
y

D
e
c
is

io
n

M
a
k
in

g
R

e
sp

o
n

e
M

e
c
h

a
n

is
m

ID
S

S
e
c
u
r
it

y
S
im

u
la

ti
o
n

L
iP

a
D

n
et

w
o
rk

p
a
ck

et
s

u
si

n
g

st
a
ti

st
ic

s
d

is
tr

ib
u
te

d
&

co
o
p

er
a
ti

v
e,

-
n

et
w

o
rk

p
a
ck

et
s

in
d
ep

en
d

en
t

a
ct

iv
e

re
sp

o
n

se
(r

ew
a
rd

a
n

d
p

u
n

is
h

m
en

t)

o
n
e

p
o
in

t
o
f

fa
il
u
re

,
ca

n
b

e
ta

rg
et

o
f

D
o
S

a
n

d
co

o
p

er
a
ti

v
e

a
tt

a
ck

s

O
P

-n
et

In
tr

u
si

o
n

D
e
te

c
ti

o
n

a
n

d
R

e
sp

o
n
se

n
et

w
o
rk

p
a
ck

et
s

te
ch

n
iq

u
es

u
se

p
a
ck

et
sn

o
o
p

in
g

d
is

tr
ib

u
te

d
&

co
o
p

er
a
ti

v
e,

cl
u
st

er
s

n
et

w
o
rk

p
a
ck

et
s

co
ll
a
b

o
ra

ti
v
e

a
ct

iv
e

re
sp

o
n

se
se

cu
ri

ty
o
f

cl
u
st

er
h
ea

d
s

G
lo

m
o
S

im

A
M

o
d

u
la

r
ID

S
A

r
c
h

i-
te

c
tu

r
e

M
IB

d
a
ta

m
is

u
se

-b
a
se

d
d

et
ec

ti
o
n

d
is

tr
ib

u
te

d
&

co
o
p

er
a
ti

v
e,

-
m

o
b

il
e

a
g
en

ts
co

ll
a
b

o
ra

ti
v
e

re
sp

o
n

se
a
ss

u
m

ed
to

h
a
v
e

se
cu

-
ri

ty
se

rv
ic

es
fo

r
m

o
b

il
e

a
g
en

ts

n
et

w
o
rk

w
it

h
6

n
o
d

es

O
u
r

A
p
p

r
o
a
c
h

n
et

w
o
rk

p
a
ck

et
s

a
n
d

ro
u
ti

n
g

ta
b
le

m
is

u
se

-b
a
se

d
d

et
ec

ti
o
n

lo
ca

l
a
n

d
d

is
tr

ib
u
te

d
&

co
o
p

er
a
ti

v
e,

o
n
e-

h
o
p

a
w

a
y

n
o
d

es

n
et

w
o
rk

p
a
ck

et
s

lo
ca

l
a
n

d
co

o
p

er
a
ti

v
e

a
la

rm
s

a
ss

u
m

ed
to

b
e

se
cu

re
n

s-
2

T
ab

le
3.

6:
Su

m
m

ar
y

of
th

e
R

ev
ie

w
ed

ID
Ss

on
M

A
N

E
T

s

72

3.5 Discussion of Applicability of Proposed IDSs to

MANETs

Proposed IDSs for MANETs vary significantly, e.g. in terms of their detection technique,
architecture, decision making and response mechanisms. All systems have advantages
and disadvantages. On the other hand, every proposed system should be considered in
its own context. For example, a system using a misuse-based technique is generally not
suited to the very nature of MANETs, since attack databases cannot easily be updated
without a central point. On the other hand, it can fit a military network which has a
central location during peace-time.

Mobility, node capabilities, and network infrastructure are usually the main fea-
tures examined for proposed MANET IDSs. For highly mobile networks IDSs using
anomaly-detection techniques may suffer high false positive rates. Furthermore, an IDS
architecture that is easy to set up should be preferred for these networks, e.g. IDS
agents who collaborate with one-hop away nodes. Besides mobility, node capabilities
should also be considered. Simple detection techniques can be more appropriate for
nodes with limited resources. Trying to make the techniques simpler can be another
approach. For instance, the approach in [96] uses a reduced feature set without
significantly decreasing detection rate. Obviously, network infrastructure plays an
important role in IDS selection. A hierarchical IDS architecture should be preferred to
a multi-layered infrastructure, and distributed and cooperative architecture should be
preferred for flat infrastructures [13]. Networks with central points make misuse-based
and anomaly-based detection techniques easier to use by maintaining the signature
database and user behaviors and analyzing them at these points. There may be an
opportunity to use these techniques together in order to increase the effectiveness of the
system.

For highly secure networks, the security of IDS and IDS traffic should be considered. For
example, use of mobile agents can be avoided. Moreover, IDSs that are able to detect
both known and unknown attacks should be preferred. That security requirements of
the system can change in different situations (e.g. peace time and war time requirements
of a military network may differ) should be borne in mind while designing an IDS. For
low bandwidth networks communication between IDS agents should be minimized.

None of the proposed systems are necessarily the best solution taking into account
different applications. Every organization should choose the appropriate IDS for
its network. Moreover, it can change the IDS according to its own requirements

73

and characteristics. For example, it can change architecture of chosen IDS or put
different intrusion detection techniques together. Therefore, defining requirements and
determining characteristics of the network are very important factors in determining
the most appropriate IDS solution.

3.6 Future Research

MANETs are a new type of distributed network whose properties are complex and ill-
understood. Intrusion detection on these complex systems is still an immature research
area. There are far fewer proposed IDSs for MANETs than for conventional networks.
Researchers can focus on either introducing new IDSs to handle MANET specific fea-
tures or can adapt existing systems. Hybrid approaches may also prove of significant use.

As stated earlier, intrusion detection in MANETs poses special problems. Table 3.5
shows each proposed IDS reviewed in this chapter, identifying any novel contributions
together with an indication of notable issues they do not address. They usually
emphasize just a few specific MANET concerns. The range of MANET issues should
be considered during design to ensure effective and efficient intrusion detection suited
to the environment at hand.

We make the following observations about the proposed IDSs:

• The systems generally cover restricted sets of attacks.

• The systems usually target a specific protocol.

• Some proposed IDS systems do not take into account mobility of the network.

• Inadequate acknowledgement is given to the resource constraints that many nodes
are likely to be subject to, and to the likelihood of nodes with different capabilities.

• Several network architectures proposed do not fit well with the dynamic nature of
MANETs.

• A more extensive evaluation of many of the systems would seem appropriate.

The proposed systems seek to address the lack of central points issue on MANETs
by proposing distributed and cooperative IDS architectures. Such architectures raise
questions about security, communication and management aspects. Suitability of the
architecture to the environment is an important consideration in designing IDS. An

74

architecture should not introduce new weaknesses/overheads to IDS. For instance,
some of the proposed architectures like cluster-based approaches are costly to build and
maintain for high mobility networks. Some have critical points of failure.

Appropriate weight should be attached to mobility, especially for anomaly-based IDSs.
The false positive rate may be greatly affected by mobility level. The system should
be aware of its mobility and current network topology. So, features having information
about mobility should be included to the intrusion detection system being designed.
How we get information about the mobility of the network and what features of the
nodes or the network are related to mobility should be investigated.

Communication between IDS agents should be minimized due to constrained bandwidth
of wireless links. This is one of the goals of the approach described in [92]. Other
proposed systems usually do not pay attention to this issue. MANET Intrusion
Detection Message Exchange Format (MIDMEF) is consistent with IDMEF and is
defined in [89].

Since the nodes are the only data sources on the network, many nodes might be needed
to carry out monitoring, detection and providing data to other nodes cooperatively
in order to detect some attacks (e.g. distributed attacks). However, nodes can have
different computational capabilities. Moreover, some of them cannot be powerful enough
for executing complex or large intrusion detection algorithms. There would appear to be
insufficient research on the limited resources issue. Researchers can consider developing
different algorithms for different nodes based on their resources and/or computational
capabilities. Besides this, more resource intensive detection algorithms can be applied
in order to monitor critical nodes as proposed in [51]. The approach in [96] aims to
reduce the number of input features used for IDS for the nodes with limited capability.
It is shown that a subset of the features used in [43] reduced by the Markov Blanket
algorithm produces almost the same detection results as the approach uses all features.

Testing IDS is an open research area for both MANETs and conventional networks.
Some of the proposed systems in MANETs have not yet been implemented. Some of
them are tested only on very small simulated networks and with few attack scenarios.
IDSs should be tested under different mobility levels and with different network
topologies. Defining testing criteria for IDSs and preparing test datasets need research.

75

3.7 Conclusion

MANETs are a new technology, increasingly used in many applications. These
networks are more vulnerable to attacks than wired networks. Since they have different
characteristics, conventional security techniques are not directly applicable to them.
Researchers currently focus on developing new prevention, detection and response
mechanism for MANETs.

In this chapter, we have given a survey of research on IDS for MANETs. Many
MANET IDSs have been proposed, with different intrusion detection techniques,
architectures, and response mechanisms. We have focused on the contribution/novelty
each brings and have identified the specific MANET issues each does not address.
Proposed systems generally emphasise only a few MANET issues. MANETs have most
of the problems of wired networks and many more besides. As a consequence intrusion
detection for MANETs remains a complex and challenging topic for security researchers.

In this thesis we investigate the use of artificial intelligence techniques in order to
explore this complex design space. Evolutionary computation techniques introduced
in the subsequent chapter are employed to evolve both effective and efficient intrusion
detection programs. The suitability of evolved programs to MANETs is also considered
during the IDS design. The following features of MANETs are taken into account:
mobility, limited resources (power, bandwidth) and lack of central points. The proposed
approach and the evaluation results are presented in the subsequent chapters.

76

Chapter 4

Evolution of An Intrusion

Detection System in MANETs

This chapter introduces the problem of intrusion detection on MANETs. It then
presents an introduction to the techniques that form the core of our proposed solution.
The evolutionary computation techniques Genetic Programming (GP) and Grammatical
Evolution (GE) are explained in Section 4.2.1 and Section 4.2.2 respectively. The appli-
cations of evolutionary computation techniques to intrusion detection in the literature
are also summarized. A rationale is provided for why evolutionary computation is
worthy of investigation for the development of intrusion detection on MANETs. Finally
the application of each technique (GP and GE) to intrusion detection in MANETs is
detailed in Section 4.3.

4.1 Threat Model

MANETs require new approaches to routing and have become the target of new attacks
which exploit this cooperative nature of routing protocols. Because collaborative
routing is so crucial to MANET operations, we have decided to focus the work in this
thesis on the detection of attacks on the protocols that implement collaborative routing.
Specifically we will focus on AODV as an exemplar protocol in this research. The basic
operations of AODV and the attacks on AODV we aim to detect are explained in detail
in the subsequent sections.

4.1.1 Ad-Hoc On Demand Routing Protocol (AODV)

There have been many routing protocols proposed to suit the different needs of
MANETs. Unfortunately most of these routing protocols do not consider security. One
of the most popular ones is the Ad hoc On-Demand Vector (AODV) routing protocol.
In this research the Ad hoc On-Demand Vector routing protocol is employed. The
operations of AODV are now described in order to allow a better understanding of the

77

routing attacks explained subsequently.

AODV is a reactive routing protocol, discovering routes only when they are needed.
“It offers quick adaptation to dynamic link conditions, low processing and memory
overhead, low network utilization, and determines unicast routes to destinations within
ad hoc network” [73]. It is claimed that AODV can handle low, moderate, and relatively
high mobile rates, together with a variety of data traffic loadings [73]. However, it
makes no provisions for security.

There are three main types of messages in AODV: Route Request (RREQ), Route Reply
(RREP), and Route Error (RERR) messages. When a node wants to communicate with
another node in the network and does not have a fresh route to this destination, it starts
the route discovery process by broadcasting a RREQ message for the destination node
into the network. Intermediate nodes that receive this request either send a RREP to
the source node if they have a fresh route to the destination node and the “destination
only” flag is not set, or forward the RREQ message to other nodes. A fresh route is
a valid route entry whose sequence number is equal to or greater than that contained
in the RREQ message. If the request packet has been previously forwarded by this
intermediate node, it is silently dropped. When the destination node receives a RREQ
for itself, it sends back a RREP message on the reverse route. The requesting node and
the nodes receiving RREP messages on the route update their routing tables with the
new route.

Wireless mobile networks can have frequent link breakages due to the mobility of nodes
in the network or simply due to transmission errors. “AODV allows mobile nodes to
respond to link breakages and changes in a timely manner” [73]. The methods for a
node to control its connectivity to its active next hops on AODV are:

• link layer notification using control packets such as link layer acknowledgement
messages (e.g. ACK or RTS-CTS);

• passive acknowledgement: notification by listening on the channel to determine if
the next node forwards the packet or not; and

• receiving any packet from the next node or sending some request packets to the
next node, such as RREQ or ICMP Echo Request, or Hello messages which are
periodic control messages sent only to one hop neighbours.

Assume that a link breakage to the next hop is detected by the absence of Hello
messages in the allowed time interval (or with any of the methods above). The node,

78

who detected the link breakage, invalidates the routes (using this link) in his routing
table and notifies other nodes affected by the link breakage by sending RERR messages.
If the link breakage occurs on an active route, a local repair mechanism can be initiated.
In this mechanism new RREQ messages are broadcast to the destination by nodes on
the existing route who detect the link breakage.

4.1.2 Attacks on AODV

The three attacks (targeting at AODV) whose detection is the subject of this research
are introduced below.

Dropping Attack

In a dropping attack malicious node(s) drop data packets not destined for themselves
with the aim of disrupting the network connection. Selfish nodes also drop data
packets not destined for themselves to preserve their resources. Dropping attacks result
in reduced network performance by causing the retransmission of data packets, the
discovery of new routes to the destination, and the like. Furthermore, they can prevent
the end-to-end communications between nodes if the dropping node is at a critical
point. In this paper, a dropping attack pattern is defined as dropping data packets not
destined for the node itself for a given time interval. Since malicious nodes need to be
on a routing path to drop data packets, they have little reason to drop routing protocol
control packets such as RREQ, RREP, and RERR messages used in route discovery
and maintenance mechanisms of AODV. So, it is assumed that malicious nodes do not
drop routing protocol control packets.

While packet losses usually occur due to congestion in wired networks, there can be
other causes on MANETs. Major causes of packet losses on MANETs are given below
[59]:

• wireless link transmission errors

• mobility

• congestion

Transmission errors depend on the physical characteristics of the channel and the terrain,
and they can not be eliminated or reduced by improving routing protocols [59]. Packet
losses due to mobility are the result of one of the main characteristics of MANETs.

79

Mobility of the nodes changes network topology and frequently makes existing routes
inactive. Situations like buffer overflows, broken links, and no route to the destination
can occur due to mobility and cause packets to be dropped. Lastly, packet losses due
to congestion occur when the demands exceeds the capacity of a communication link [59].

Mobility is given as the major cause of packet losses on AODV [59]. It is shown that
more than 60% of total packet loss on AODV is due to mobility. We mainly aim to
differentiate packet dropping due to malicious behaviour from packet dropping due to
mobility in this research. The attacker drops all packets received in the last attack
period(=3 seconds) in the simulation. Our attack simulation is much more challenging
than other approaches in the literature which drop all packets continuously. That is the
reason we keep the attack period reasonably small on purpose.

Route Request Flooding Attack (Ad Hoc Flooding Attack)

Network topology changes frequently on MANETs due to mobility. Moreover link
breakages are very common in wireless networks. These may result in making existing
routes inactive and discovering new routes by route request packets. Route request
messages are sent only when nodes need a new route on reactive routing protocols
such as AODV. Evidently, mobility may increase the number of route request packets
on the network. In the flooding attack scenario, the attacker exploits this property
of the route discovery mechanism by broadcasting a lot of route request messages for
randomly selected nodes. The attacker aims to consume the resources of the nodes and
the network. We believe that high mobility makes it difficult to distinguish a flooding
attack from benign behaviour on a network, since it may also cause a high number of
route request packets in the network. In the simulation, the attacker broadcasts 20
route request packets in a row as in [68].

Route Disruption Attack

In a route disruption attack, the attacker sends route reply messages to the victim node
without receiving any route request messages from that node. There is no mechanism
that checks route request-reply flow in AODV. Even nodes overhearing a route reply
message can update their routing tables if the message carries a fresh route. Instead
of sending route replies for random destination nodes, the attacker chooses one of
its neighbours as a victim. Since the attacker is the victim node’s neighbour, he
already knows about the active routes of the victim through the routing control packets

80

broadcasted by him, or by promiscuous monitoring. The attacker sends fresh route
reply messages (with higher destination sequence numbers) to this node. Since the
route reply messages sent by the attacker are fresher, the victim node updates his
routing table with the routes that the attacker advertises. Hence the attacker is able to
disrupt the victim’s active routes and puts himself into the victim’s routes. As stated in
[89], one or just a few routing control packets could hardly inflict severe damage to the
system. So, in the simulation the attacker sends 5-10 route reply packets to the victim
in a time interval (a second). This attack has been extended to 3 and 5 seconds in
further simulations where the attacker achieves his goal slowly and makes the detection
of his malicious behaviour difficult.

Minimal attack parameters are chosen here for each attack scenario (except the
dropping attack) from the literature. It is believed that when these parameters are
increased, the consequences of attacks will be more obvious on the network. In this
research evolutionary computation techniques are employed to detect these three
attacks effectively and efficiently. These techniques are explained thorougly in the next
section.

4.2 Introduction to Evolutionary Computation

Evolutionary Computation (EC) is a research area inspired by natural evolution. It is
loosely based on the process of Darwinian survival of the fittest, where individuals
are competing with each other for survival and reproduction in an environment
that can only host limited number of individuals [30]. Evolutionary computation
uses this approach to create computer programs for a given problem automatically,
where candidate solutions of the problem correspond to the individuals, and the best
programs correspond to the fittest individuals in a population in natural evolution. The
pseudocode of the general steps in evolutionary computation is given below.

initialize population
while termination criterion not satisfied do

execute and evaluate fitness value of each individual
apply genetic operators (selection, crossover, mutation, etc.) to the individuals
create new population

end while

return best-of-run individual

81

EC starts with generating a population of individuals (usually randomly) which are
candidate solutions for the target problem. Then, each individual is evaluated and
assigned a fitness value that indicates how well this candidate solves or comes close to
solving the problem at hand. Until a termination criterion is satisfied, new populations
are generated iteratively by using selection, crossover, and mutation operators as in
natural evolution. These genetic operators are used to provide better solutions in the
new population.

The main components of an evolutionary algorithm are outlined as follows:

• Representation of Individuals

• Fitness (Evaluation) Function

• Initialization

• Selection Mechanism (Parent Selection)

• Variation Operators

• Replacement Mechanism (Survivor Selection)

• Termination

Representation of Individuals defines how to link a real world problem to the EC
world (the problem-solving space) [30]. There have been many different EC techniques
proposed in the literature such as genetic algorithms, genetic programming, and
grammatical evolution. They generally differ from each other in the representation of
individuals.

In natural evolution, individuals are represented by the set of genes contained in a
genome, which is called the genotype. However, individuals with the same genotype
can look different as a consequence of their interaction with the environment. These
observable characteristics of an individual are called phenotype.

The Fitness Function indicates how well a candidate (individual) solves or comes close
to solving the problem at hand. The aim of an evolutionary algorithm is to optimize
this function. So individuals in a population are selected or replaced based on this
measure. Since it influences the search directly, the choice of the fitness function in EC
is very important. In natural evolution the fitness of an individual is how well adapted
that individual is to its environment. The fitter individuals in a population have a

82

higher chance to survive or mate.

Initialization identifies how to create the first population. The individuals are usually
generated randomly at this stage. Every population other than the first population is
generated by applying the evolution operators to the previous (old) population in the
evolution.

Variation Operators are used to create new individuals using the selected individuals
from the old population. It aims to create better individuals in the next generations by
using/modifying the fitter individuals in the current populations as in natural evolution.
Application of these operators differentiate the evolutionary computation from random
search. The main variation operators are crossover and mutation. Crossover mimics
the exchange of DNA under sexual production to generate new individuals. This
binary operator generates two child individuals by swapping some part of two parent
individuals selected. The parameter crossover probability shows how likely this operator
will be performed on the individuals selected for mating. Mutation is an unary operator
that mimics natural mutation by changing selected individuals to introduce diversity
into the population. The parameter mutation probability shows how likely each part
of an individual’s genotype elements will be altered. Reproduction is another unary
operator used in EC which copies selected individuals without any modification to the
new population. The reproduction probability shows how likely this operator will be
applied to the individual selected.

The Selection Mechanism provides a great opportunity for fitter individuals to survive
by picking out individuals from the current population based on their fitness values.
There are various selection methods such as roulette-wheel, rank-based, tournament
selection. Tournament selection is employed in our experiments. In tournament
selection, a group of individuals is chosen randomly from the population and the best
individual from this group is selected as parent. Tournament size defines the number
of the individuals in this group.

Replacement Mechanism In EC the population size is constant most of the time, so the
individuals who will survive in the next generation need to be selected. A choice is made
among the current population and the new individuals generated by variation operators.
This choice is based on the fitness value. In contrast to parent selection which is
typically stochastic, survivor selection is often deterministic [30]. There are two main
replacement mechanisms: simple, and steady-state. In a simple replacement approach,
the new individuals (children) replace the current population. In the steady-state

83

approach, only one individual, which is generally the worst member of the population, is
replaced. Hence, in the latter method, the best fitness value of the population steadily
increases (or stays still) as the number of generations increases. A common mechanism
also is (λ, µ). In this approach µ offsprings are generated and pooled with the λ existing
population. The best λ are then selected on the next generation.

Termination defines when the evolution process terminates. New populations are
generated iteratively by using genetic operators until a termination criterion such as
‘the ideal solution is found’ is satisfied. However finding the ideal solution may take a
very long time for complex problems. That is the reason the parameter generations is
typically used in evolutionary algorithms. This parameter refers to the pre-specified
number of generations at which the evolution stops, whether the ideal solution is found
or not. In natural evolution there is no such termination criterion, because the evolution
goes as long as the environment changes.

4.2.1 Genetic Programming

Genetic Programming (GP) introduced by Koza [55] is one of the most widely employed
evolutionary techniques in the literature. It is claimed that GP has equaled or exceeded
the performance of other machine learning techniques, and also evolved better programs
than the best programs written by people [19]. It has been applied to many problems.

Representation:

The individuals are typically represented by a tree structure in GP. A GP tree is
built from the functions and the terminals. Terminals are the leaves in a tree which
are generally the inputs to the GP, constants, or other functions with no argument.
Functions can be mathematical operators, boolean functions, program statements (if,
loop), and the like which can be applied to terminals. Figure 4.1 shows an example GP
tree of depth 3 which represents the following mathematical expression: (22 - X

11)+(7
× cos(Y)). Tree depth defines the maximum size of the individuals (trees) which is the
length of the longest path in the tree from the root node.

Initialization:

There are two main methods to initialize the first population in GP: full and grow. The
full initialization method creates trees where each terminal node reaches the maximum

84

x

2.2

11

7

Y

+

-

/

X

cos

Figure 4.1: An Example GP Tree of Depth 3

tree depth given as a parameter. In this method nodes are selected randomly from the
function set until the maximum tree depth is reached, after this level only terminal nodes
are selected. In the grow initialization method nodes are selected from the terminal and
function sets at any tree level until the maximum depth is reached. So the trees created
by this method will not necessarily be full. The ramped half and half initialization
method which combines both methods is introduced to increase the population diversity
in GP. In this method the population is divided equally into groups with different maxi-
mum tree depth size between two to the maximum parameter given. Half of the trees of
each group are initialized with the grow method, and the other half with the full method.

Variation Operators:

GP employs point mutation by default as shown in Figure 4.2. In this research
strongly-typed point mutation is employed. In strongly-typed point mutation a subtree
is selected randomly and exchanged with a tree created with the same constrainsts.

Mutation

sqrt

+

X 4

x

2.2

11

7

+

-

/

X
Y

/

2
Y

/

2

x

2.2

11

7

+

-

/

X

Figure 4.2: Mutation Operator on Genetic Programming

85

In GP crossover is implemented as a swapping of subtrees of two individuals. Subtree
crossover operator is illustrated in Figure 4.3. This research uses a strongly-typed
subtree crossover operator, where only subtrees having the same constraints (return
type, etc.) are exchanged.

x

2.2

11

7

Y

+

-

/

X

cos

+

x

Y

sqrt

+sin 5

X 4

Parent 1 Parent 2

Child 1 Child 2

Crossover

Y

cos

sqrt

+

X 4

x

2.2

11

7

+

-

/

X

+

x

Y

sin 5

Figure 4.3: Crossover Operator on Genetic Programming

Replacement Mechanism:

GP employs a simple replacement mechanism by default. The new population replaces
the old population at each generation.

4.2.2 Grammatical Evolution

Grammatical Evolution (GE) is a technique that allows us to generate programs in an
arbitrary language by evolving programs written in a BNF grammar [79]. GE is not
the first technique using grammars, but it presents a unique way of using grammars in
an evolution process [69]. The core idea of GE relates to how simple integer sequences

86

can be interpreted as programs and this is now described below.

Representation:

GE evolves programs written in a BNF grammar. BNF (Backus-Naur Form) is a formal
way to describe a language by defining a set of rules. A BNF system is described as
a quadruple: T, N, P, S. T is a set of terminal symbols, which are concrete terms in
the grammar. N is a set of non-terminal symbols, which are place-holders used in the
generation of terminals by using the set of production rules P. P provides mapping
from non-terminal symbols to sequences of terminal or non-terminal symbols. S is the
start symbol where mapping starts. A BNF grammar for a symbolic regression problem
is given in Table 4.1 [70]. The symbols enclosed by brackets (<>) are non-terminals,
others are terminals. The productions of a rule assigned by ‘::=’ are separated with ‘|’.

S = <expr>
<expr> ::= <expr><op><expr> | (<expr><op><expr>) |

<pre-op>(<expr>) | <var>
<op> ::= + | - | / | *
<pre-op>::= sin | cos | exp | log
<var> ::= X | 1.0

Table 4.1: BNF Grammar for a Symbolic Regression Problem

In GE genomes are represented by variable-length binary strings. A group of 8 bits in a
genome produces a codon value, which is used to choose a rule from a BNF grammar. As-
sume that the genome of an individual with consecutive codons interpreted as integers is:

220 35 47 68 137 55 144 22 46 178

At any stage the interpretation proceeds by expansion of the leftmost non-terminal.
The first codon value is used to choose the production rule from the start rule S. Since S
has one production expr, 220 is used to choose one of the productions of expr according
to the formula below:

Rule = (codon value) MOD (number of productions of the non− terminal) (4.1)

expr has 4 productions, so (220 MOD 4 = 0) is calculated and the production
‘<expr><op><expr>’ is selected accordingly (production options are numbered
starting from 0). Then, the next codon value 35 is used to choose from expr rule, since

87

it is the first non-terminal at this point. So, the third (35 MOD 4 = 3) production of
the expr, ‘<var>’, is selected. The individual becomes ‘<var><op><expr>’, the next
codon value 47 is used to choose the first production of var rule (47 MOD 2 = 1) to give
‘1.0<op><expr>’. The process continues until there are no unmapped non-terminal
symbols. If there are still non-terminal symbols to be expanded and all integers in a
string are used, the interpretation simply returns to the beginning of the genome again
and starts re-reading the string. This process is called wrapping. However, there is a
threshold value for such wrapping. If this value is exceeded and there are still unmapped
non-terminals, this individual is assumed invalid and assigned the lowest fitness value.

GE maps a binary string to a BNF grammar (program) as genotype-phenotype mapping
in natural evolution. This provides an unconstrained searh of the genotype, while it
ensures the validity of the phenotype (program) [18]. Moreover GE supports silent
mutation where the mutations on a genotype do not result in a change on the outcome
phenotype. The formula given in Equation 4.1 is the interpretation of many different
genotypes. For example two different codon values 15 (15 MOD 4 = 3), 39 (39 MOD
4 = 3) in two different genomes can result in choosing the same production of an
expression with four production rules. This feature of GE helps the maintenance of
genetic diversity within a population [70].

Initialization:

GE employs sensible initialization to create the inital population. Sensible initialization
is based on ramped half and half initialization in GP but generates derivation trees of
equivalent size [70].

Variation Operators:

GE employs one-point crossover by default. In one-point crossover, two points are
selected on each parent randomly and their genetic contents are exchanged starting
from these points. This operator is illustrated in Figure 4.4.

As a mutation operator point mutation which mutates each bit of a genome with a
given probability is employed in this research. It is possible that more than one bit
making up a codon value will be changed. However, for low probability of individual
bit mutation, this is clearly unlikely.

88

8 17 21 26 28 5 2 50

21 7 42 10 3 17 11 1 80

Crossover 8 17 21 26

21 7 42 10 28 5 2 50

3 17 11 1 80

Figure 4.4: Crossover Operator on Grammatical Evolution

Replacement Mechanism:

GE is proposed as a steady-state approach by default to eliminate generated invalid
individuals in evolution. These individuals are assigned to the lowest fitness value in a
population and might result in slowing down the evolution process. These individiuls
are likely to survive in the next generations with a simple selection approach. However
they might be eliminated with a steady-state approach which generally replaces the
worst individuals of an population with the new individuals. The positive effect of
steady-state approach on GE has also been observed in our results.

4.2.3 Related Work

Applications of evolutionary computation techniques to intrusion detection have
employed generally either genetic programming (GP) or genetic algorithms (GA) so far.
One of the first GP applications to intrusion detection was given in 1995 by Crosbie and
Stafford [28]. The main idea in that research is to train autonomous agents based on
the input features and the functions given to detect intrusive behaviours. If a malicious
activity (believed to be detected easily) is mis-classified during the evolution process,
it is penalised heavily in the fitness function. There are also promising applications of
genetic algorithms proposed for misuse-based intrusion detection given in [57][63].

Two recent approaches use GP and evaluate its performance on the KDD-99 data set
[4], which is the most widely used benchmark evaluation data for intrusion detection
on wired networks. In [12], the output program evolved by GP is small, simple and
uses just a few input features where “most machine learning paradigms (artificial neural
networks, support vector machines, decision trees) examine all input features to detect
intrusions [12]”. The results of the evaluation show that the approach is lightweight
and effective, satisfying the main goals of an intrusion detection algorithm. The GP
techniques used in that research are compared with some other machine learning
techniques (Support Vector Machines and Decision Trees) on intrusion detection in [11].

89

The results show that genetic programming technique outperforms other techniques
and is a lightweight approach which uses far fewer input features. In [84] linear GP is
efficiently trained on a large data set by using the RSS-DSS (Random Subset Selection-
Dynamic Subset Selection) algorithm. This approach also uses a small set of the features.

Grammatical evolution has been proposed recently for intrusion detection on wired
networks [100]. It is applied to the KDD-99 data set [4] and evolves programs to detect
different class of attacks such as DoS, and probes. While the classification accuracy
is higher for the DoS attack class, the U2R (user-to-root) and R2L (remote-to-local)
attacks show low detection rates. The grammar, the fitness function, the training data,
and the features all might affect the results. In summary, the application of GE to
intrusion detection in wired networks is in its early stages and improvements are very
likely possible.

There is little research on applying evolutionary computation techniques to few prob-
lems in sensor networks. Evolutionary computation techniques have not beed applied
to intrusion detection problem in sensor networks so far. Researchers generally focus
on how to adapt GP to the new environment, wireless sensor networks. In [97], the
Distributed Genetic Programming Framework (DGPF) which automatically discovers
distributed algorithms for given problems was introduced for sensor networks. The
election problem (to select one node out of a group of nodes, for example to act as
a communication relay [97]) is solved by using this framework and, a multi-objective
optimization technique is also employed on this problem by considering non-functional
fitness functions such as code size, memory size, and transmission count for this
resource-constrained environment. Another research aims to adapt the GP system to
work in a low-power environment such as wireless sensor networks by using a distributed
parallel genetic algorithm, limiting individual sizes and the like [48].

4.2.4 Why Evolutionary Computation?

All intrusion detection techniques have their strengths and weaknesses. It is hard to say
one technique is better than others. Different techniques are often used together for an
effective intrusion detection in conventional networks. Intrusion detection architectures
combining different techniques are also proposed for MANETs. A great deal of research
has been done on specification-based intrusion detection for different MANETs’ routing
protocols. Its combination with anomaly-based intrusion detection techniques has
also been suggested since specification-based techniques can not detect DoS attacks.

90

Even though using anomaly-based and specification-based techniques together with
misuse-based approaches are proposed, there has been little research in finding the
signatures of known attacks against MANETs. In this research this issue has been
addressed by using techniques from artificial intelligence to find intrusion detection
rules automatically.

MANETs are a new type of distributed network whose properties are complex. It
is hard to distinguish attacks from normal activities under a dynamic environment
such as MANETs. It is far from clear whether the human perception of what makes
a good intrusion detection algorithm in these contexts really is the best possisevil
senble. Moreover resource-constrained nodes require different tradeoffs to be made
between intrusion detection ability of programs and their resource usage. Humans are
not particularly adept at selecting good choices when complex tradeoffs have to be
made. In this research evolutionary computation techniques are proposed to discover
automatically complex properties of MANETs. Although various artificial intelligence
technqiues have been proposed for intrusion detection, EC is one of the most promising
approaches. It makes fewer assumptions about the solution space. Of course, it is
possible to use other heuristic computation techniques to derive intrusion detection
systems. However, our chosen EC approaches are very flexible. IDS programs derived
using GP or GE lend themselves to some degree to manual analysis. We can often see
what the program is doing. Many alternative approaches, such as neural networks,
often produce results that are very hard to understand. Furthermore recent research
[11][84] shows that the programs evolved by EC are lightweight and use far fewer
features compared to some other machine learning techniques. The representation of
IDS problems in an evolutionary computation framework is also quite easy. These
characteristics are among the main motivations behind using EC in this research.
Futhermore multi-objective evolutionary algorithms allow us to optimize multiple
objectives simultaneously. So they can be used to discover detection programs that are
both effective (i.e. detect intrusions without a high false positive rate) but also efficient
(in particular, suited to deployment on constrained resource platforms). These features
make EC very attractive for the development of intrusion detection programs suitable
for MANETs.

4.3 Evolving Intrusion Detection Rules

In this section we detail how to apply evolutionary computation techniques to derive
intrusion detection programs for MANETs.

91

4.3.1 Feature Selection

“Features” are characteristics of our system whose measurements provide the inputs
to our evolved decision algorithms. They provide the basic data any such evolved
algorithms can use to reach a result. The choice of which characteristics can be used
for these purposes is very important. They must contain sufficient information to allow
the fundamentals to be developed.

Features Explanation

neighbours no. of neighbours

added neighbours no. of added neighbours

removed neighbours no. of removed neighbours

active routes no. of active routes

repaired routes no. of routes under repair

invalidated routes no. of invalidated routes

addedroutes disc no. of added routes bsevil seny route discovery mechanism

addedroutes notice no. of added routes by overhearing

updated routes no. of updated routes (modifying hop count, sequence number)

added repairedroutes no. of added routes under repair

invroutes timeout no. of invalidated routes due to expiry

invroutes other no. of invalidated routes due to other reasons

avg hopcount average no. of hop counts of active routes

recv rreqPs no. of received route request packets destined to this node

recvF rreqPs no. of received route request packets to be forwarded by this node

send rreqPs no. of broadcasted route request packets from this node

frw rreqPs no. of forwarded route request packets from this node

recv rrepPs no. of received route reply packets destined to this node

recvF rrepPs no. of received route reply packets to be forwarded by this node

send rrepPs no. of initiated route reply packets from this node

frw rrepPs no. of forwarded route reply packets from this node

recvB rerrPs no. of received broadcast route error packets (to be forwarded or not)

send rerrPs no. of broadcasted route error packets from this node

recv aodvPs no. of received total routing protocol packets

recvF aodvPs no. of received total routing protocol packets to be forwarded

send aodvPs no. of initiated total routing protocol packets from this node

frw aodvPs no. of forwarded total routing protocol packets by this node

dropped dataPs no. of data packets not forwarded by the next node

Table 4.2: The Features

In this research we have sought to allow a considerable degree of expressiveness. Table
4.2 shows the features maintained at each node by the routing protocol. (Some additional
information is also stored, e.g. some configuration constants, but these are of little use
for our purposes and so are omitted from the table.) We provide a rich set of features
and expect our technqieus to select judiciously from them. It would be difficult to
confidently supply apriori a narrower set of features. The features used in this research

92

can be categorized into two main groups: mobility-related and packet-related features.
Mobility-related features help reflect the mobility model of a node or the network. How
to consider mobility when designing an IDS is analyzed in [88] and the link change rate
in Equation 4.2 is proposed to reflect different mobility levels. It is shown that link
change rate reflects the mobility model of the network better than the generally used
mobile speed measure. Furthermore the physical movements only give an idea about
local mobility, not the network’s mobility. Hence the features related to nodes’ physical
movements (speed, velocity and direction) are not used in this research. The feature
link change rate is not used directly either. The evolutionary computation algorithm is
allowed to discover mobility level by using the features and the mathematical functions
given as input. It could evolve the same formula given in Equation 4.2. Some of these
mobility features give information about the mobility directly such as changes in the
number of neighbours (e.g. added neighbours, removed neighbours). Others can be the
results of mobility such as changes in the routing table (e.g. addedroutes notice). For
example the active routes can be inactive due to mobility and so new routes need to be
discovered. Hence a significant increase in the number of added routes can result from
high mobility. It is believed that these features can help to reflect not only the local
mobility but also the network mobility or the mobility around a node.

| N1 \ N2 | + | N2 \ N1 |
| t2 − t1 |

, (4.2)

where N1 is the neighbor set of the node at time t1 and N2 is the neighbor set of the
node at time t2.

Packet-related features include information about the frequency of the routing protocol
control packets (RREQ, RREP, RERR) sent, received, forwarded in a time interval,
and the routing table updates respectively.

Some of the features in Table 4.2 are specific to some attacks. The average hop count
(avg hopcount) feature is used only for detection of route disruption attacks since this
feature can reflect the abnormal changes in a victim node. Similarly an increase in the
number of data packets not forwarded by the next node (dropped dataPs) can be a sign
for a dropping attack and employed only for detection of this attack.

These features are gathered periodically by each node. All features are local to a
node, so no communication with other nodes is needed to gather them. The other
option is to collect data when an event (such as a control routing packet is received)

93

occurs. However, such event-driven feature collection is very expensive in this dynamic
environment. Because routing protocols aim to meet network needs continually in
MANETs (especially in on-demand routing protocols), they may result in a lot of
routing protocol control packets on the network. That is why a periodic approach,
where the features are collected every second is chosen over an event-driven approach
in this research.

4.3.2 Application of Genetic Programming to Intrusion Detection in

MANETs

In GP, a problem is defined with functions and terminals (features) which are the parts
of a GP tree, and the fitness function. The strongly-typed GP (STGP) [66] is employed
here. STGP enforces data type constraints. For example a genetic function could be
forced to use specific data types (as input and output). The operators applied to these
variables, (mathematical, relational, and comparison operators) are given in the Table
4.3.

91
Objective Find a computer program to detect ad hoc flooding and

route disruption attacks against MANETs routing protocols

Function set The binary operators +, -, ×, /, pow, min, max, mod, percent

The unary operators sin, cos, log, ln, sqrt, abs, exp, floor, ceil

The comparison operators <, <=, ==, !=, >, >=

The relational operators and, or

Terminal set The feature set given in Table 4.2

Population Size 100

Generations 1000

Crossover Probability 0.9

Reproduction Probability 0.1

Tournament Size 7

Table 4.3: The GP Parameter Settings

The fitness function is very important in evolutionary computation, since it evaluates
how good the individual is. In our experiments we use a fitness function based on the
the main metrics used to evaluate an IDS (i.e. detection rate, false positive rate) as
shown in the equation below. The detection rate shows the ratio of correctly detected
intrusions to the total intrusions on the network. The false positive rate shows the

94

ratio of normal activities that are incorrectly marked as intrusions to the total normal
activities on the network. An acceptable low rate of false alarms is as important as true
alarms in intrusion detection. A high false positive rate will cause a good deal of time
to be wasted and will likely destroy confidence in the IDS.

detection rate = correctly detected attacks
total attacks (4.3)

false positive rate = normal activities incorrectly detected as attacks
total normal activities (4.4)

Fitness = detection rate− false positive rate (4.5)

The toolkit ECJ 18 [2] is used for the GP implementation in the experiments. The
GP parameters used in this research are given in Table 4.3. The parameters except
the population size and the generations are the default parameters of the toolkit. The
population size is decreased to 100, the generation size is decreased to 1000 in order to
decrease the algorithm’s execution time. Obviously parameter choices could affect the
performance of the system. However, our significant use of default settings will make
future comparisons easier. We can make no claim to optimality of these choices. Indeed,
finding optimal parameter choices is a significant challenge encountered when EC
techniques are applied to almost any problem. Our choice of parameters is a pragmatic
one. We aim to show that good results can be achieved with the specified sets of
parameters. With very significant computational resources, better results could likely be
obtained. (In practice, if IDS designers were to use our technique to evolve programs for
their specific networks, a degree of parametric experimentation would be recommended.
Again, no claim to optimality could then be made, but experimentation might continue
until the designers were happy with the performance of the programs that were evolved.)

4.3.3 Application of Grammatical Evolution to Intrusion Detection in

MANETs

In GE, a problem is defined with a grammar and a fitness function. In this research the
grammar in Table 4.4 is used to evolve programs in order to detect the attacks (ad hoc
flooding, route disruption, dropping) on MANETs and raise an alarm.

This grammar returns an ‘if’ statement. The variables and the functions used in this
grammar are the same as those used in GP. Even though more complicated grammars
including ‘if-else’ statements, loops are employed at first, it is observed that simplified

95

S = <code>

<code> ::= if(<cond>) {raise alarm()}
<cond> ::= <cond><set-op><cond> | <expr><relop><expr>

<expr> ::= <expr><op><expr> | (<expr> <op><expr>) |
<pre-op>(<expr>) | <pre-op2>(<expr>) | <var>

<op> ::= + | - | / | ×
<pre-op> ::= sin | cos | log | ln | sqrt | abs | exp | ceil | floor

<pre-op2>::= max | min | pow | percent

<rel-op> ::= < | ≤ | > | ≥ | == | !=

<set-op> ::= and | or

<var> ::= The features given in Table 4.2

Table 4.4: The BNF Grammar Used for the Problem

programs make the evolution process much easier. Moreover the grammar in Table 4.4
shows a good performance on detecting attacks as shown in the results section. The
fitness function in Equation 4.5 is used in the GE algorithm as well.

The libGE [5] library is used for the GE implementation in this research. The GE
parameters used in the experiments are given in Table 4.5.

Programs are evolved using GP and GE with the parameters, the inputs and the fitness
function introduced in this chapter. A simulated network under medium mobility and
traffic is used in the evolution process to evaluate the candidate solutions on. The “best”
solutions obtained by the evolutionary run are subsequently evaluated on simulated
networks with varying mobility and traffic patterns.

96

Objective: Find computer programs to detect ad hoc flooding, route dis-
ruption and dropping attacks on MANETs

Non-Terminal Operators: The binary operators +,-,×, /, pow, min, max, mod, percent

The unary operators sin, cos, log, ln, sqrt, abs, exp, floor, ceil

The comparison operators <, <=, ==, !=, >, >=

The relational operators and, or

Terminal Operators: The feature set given in Table 4.2

Fitness cases: The given sample of network data marked malicious or non-
malicious

Raw Fitness: The detection rate over the fitness cases subtract the false
positive rate over the fitness cases

Standardised Fitness: Same as raw fitness

Parameters Population Size = 100

Generations = 2000

Crossover Probablity = 0.9

Mutation Probability = 0.01

Steady State

Table 4.5: The GE Tableau for Detecting Known Attacks on MANETs

97

98

Chapter 5

Performance Evaluation of

Evolutionary Computation on

Intrusion Detection

This chapter presents the evaluation results. Firstly the simulation environment is
introduced in Section 5.1. Then the performance of evolved programs using GE and
GP on simulated networks with various mobility and traffic patterns are demostrated
and discussed in Section 5.2 and Section 5.3. The effects of variations in attack
scenarios on the results are also discussed. The performance of evolved programs
are also compared with the hand-coded programs in Section 5.4. Lastly the per-
formance of GP and GE for evolving intrusion detection programs in MANETs is
compared fairly by using a Design of Experiments methodology explained in Section 5.5.

5.1 Simulation Model

In this research the networks are simulated by ns-2 [7] to evaluate the performance of
evolved programs by using GP and GE. Mobility patterns of the nodes on the network
are created using BonnMotion [1]. The Random Waypoint mobility model is employed
here. In this model, each node moves from its current location to a random new location
with random speed and pause time within determined speed/pause time limits [23].
The parameters of the network simulation are given in Table 5.1.

Different network scenarios are created with different mobility levels and traffic loads.
50 nodes are placed in a 1000m by 500m grid. TCP traffic is used for communication.
The maximum number of connections is set to either 20 or 30 to simulate different
traffic loads. The maximum speed of nodes is set to 20 m/sec and the pause time
between movements is set to 40, 20, and 5 sec to simulate low, medium, and high
mobility respectively. AODV is chosen as the routing protocol and AODV periodic
hello messages are used for local link connectivity. The simulations run 5000 seconds to

99

network dimensions 1000x500

number of nodes 50

packet traffic TCP with 20 and 30 connections

speed 0-20 m/sec, pause time 40, 20, 5 sec to simulate

low, medium and high mobility respectively

routing protocol AODV

radio propagation two-ray ground model with 250m transmission range

local link connectivity AODV periodic hello messages

simulation time 5000 sec (training), 2000 sec (testing)

Table 5.1: The Parameters of Network Simulation

create training data and 2000 seconds to create testing data.

The detection programs are evolved using the training data collected from a network
under medium mobility with 30 TCP connections. The same network with attacks and
without attacks are used together for training to reduce false positives. The best result of
ten runs is chosen for each attack type and then evaluated on different network scenarios.

Separate programs are evolved for each attack by offline training. Intrusion detection
programs are distributed to each node on the network. Each node gathers the features
defined in Table 4.2 at each time interval. We assume that attacks are detected by the
nodes that the attacks affect directly.

• In dropping attacks, the monitor nodes are the ones who forward packets to the
malicious node.

• In flooding attacks, the nodes who are flooded by route request messages detect
the attack.

• In route disruption attacks, the victim node is assumed to detect malicious change
in its routing table.

The performance of evolved programs using GP and GE, and hand-coded programs are
evaluated on the simulated networks and discussed in the subsequent sections.

5.2 The Performance of Grammatical Evolution

The GE algorithm is run ten times on the training data and the best result of ten
runs is evaluated on simulated networks. Table 5.2 shows the performance of the

100

evolved program for each attack on the network under medium mobility with 30 TCP
connections (the same traffic and mobility levels that the training network has). The
false positive rates on the same network under no attack and on the stable network (no
mobility) under no attack are also given in the table.

The results show that the evolved program for the dropping attack has a perfect
detection rate. However it results in a high false positive rate. As it is stated before,
packet losses occur frequently on MANETs due to congestion, wireless link transmission
errors, and mobility. So, the features beyond the routing protocol are also needed to
detect malicious dropping effectively. We believe that the system could be improved
by adding these features to the evolution. Furthermore the attack takes a few seconds
in the simulation here since the main aim is to differentiate malicious packet dropping
from benign packet dropping. In the literature many approaches define this attack as
when the attacker drop packets continuously (or for a long time) and thus makes the
attack very obvious to detect. The dropping attack scenario used in this research is
clearly more challenging than given in those approaches.

Attacks Detection False Positive False Positive
without attack
(with mobility)

False Positive
without attack
(no mobility)

Dropping Attack 100% 8.46% 8.81% 10.30%

Flooding Attack 99.86% 2.00% 2.19% 5.11%

Route Disruption 100% 0.83% 0.81% 0.59%

Table 5.2: The Performance of GE on a Network with Medium Mobility/Traffic

In the results given in Table 5.2 the false positive rate of the detection program for the
ad hoc flooding attack on the stable network is higher than for the mobile network. Since
the programs are evolved under medium mobility, this is quite expected. Furthermore
lots of route request messages are noticed in the stable network. The nodes who cannot
communicate with their destination nodes (the network could be partitioned) broadcast
route request messages frequently to find routes. As a consequence of lots of route
request packets under no mobility the system results in high false positive rate.

It it observed that the false positive rate on the network under attack is slightly more
than the network without any attacks for the detection of route disruption attack in
Table 5.2. It might be the consequence of the attack whose effect takes longer on the
network than it is assumed.

For each attack, the performance of the evolved programs is also tested on the network

101

under different mobility and traffic levels. The results for each attack are given in Table
5.3.

Network Flooding Attack Route Disruption

Scenarios Attack

DR FPR DR FPR

low mobility

low traffic 99.81% 0.29% 100% 0.41%

low mobility

medium traffic 98.54% 1.72% 100% 0.88%

medium mobility

low traffic 99.86% 0.36% 100% 0.40%

medium mobility

medium traffic 99.86% 2.00% 100% 0.83%

high mobility

low traffic 99.96% 0.66% 100% 0.44%

high mobility

medium traffic 98.66% 1.73% 100% 0.76%

Table 5.3: The Performance of GE on Simulated Networks

The results demonstrate that programs evolved using a grammatical evolution approach
show good performance on intrusion detection in mobile ad hoc networks. The detection
rate is high for both ad hoc flooding attack and route disruption attack, since the
results of these attacks are quite evident on the network. However they are not easily
differentiated from normal network operations under high mobility and high traffic, but
still achieve a false positive rate under 2%.

The false positive rate changes due to the mobility and the traffic load. However
they are not the only factors affecting the false positive rate. Other factors such as
network topology, traffic and mobility patterns also affect the results. For instance,
it is expected that the number of route request packets will be much higher in high
mobility networks, since mobility could frequently make existing routes inactive. In
Figure 5.1 the number of route request packets on a normal network and on a network
under ad hoc flooding attack are presented. It shows little difference in the numbers of
route request packets among the networks with different mobility levels. The network
under low/medium mobility may also broadcast a lot of route request packets due to
its topology, its mobility and traffic patterns to build and preserve its active routes. In
conclusion mobility is not the only major factor affecting the number of route request

102

packets on the network. Hence the performance of evolved programs here is affected by
those factors as well.

350

700

1050

1400

1750

low mob. medium mob. high mob.

T
h
o

u
sa

n
d

s

Mobility

Normal, low traffic Normal, medium traffic

Ad Hoc Flooding Attack, low traffic Ad Hoc Flooding Attack, medium traffic

R
R

E
Q

 P
a

ck
et

s

Figure 5.1: Route Request Packets on Simulated Networks

Another factor affecting the performance of GE could be the fitness function. Since
the number of normal events is much higher than the number of malicious events in
the network, a small improvement in increasing the number of attacks detected could
improve the fitness function much more than a small improvement in decreasing the
number of false positives. The results also support this idea by evolving programs with
high detection rates. This issue could be addressed by improving the fitness function
such as assigning different weights to detection rate and false positive rate, or adapting
a multi-objective fitness approach. In the subsequent chapters a multi-objective fitness
function, which aims to optimize these two objectives simultaneously, is employed. How-
ever, here we have chosen the fitness function defined in Section 4.3.2 due to its simplicity.

For each attack type, the evolved programs and the memory usage of each program
(detect an attack and call the response function) are given in Table 5.4. Memory usage
of each program is calculated according to the formula below:

memory = program binary size+ variables ∗ sizeof(float) (5.1)

Lastly the relation between accuracy of evolved programs for each attack and number of
generations in GE algorithm is examined and demonstrated in Figure 5.2. A high fitness
value is achieved in 100 generations and afterwards. Furthermore the best program

103

Attack
Type

Evolved Program Memory
Usage

Flooding (send rrepPs + exp(frw aodvPs -
updated routes * pow(frw rreqPs,
added repairedroutes))) > no neighbours

'7.52kB

Route log(exp(invroutes other)) + recv aodvPs '7.79kB

Disruption - percent(exp(send aodvPs), send rreqPs)

+ repaired routes > recvB rerrPs

Table 5.4: The Intrusion Detection Programs –Best Individuals– Evolved by GE

show a performance on the testing data (network) almost as good as on the training data.

0

20

40

60

80

100

0 500 1000 1500 2000

Number of generations

Best for train Best train applied for test

A
d

 H
o
c

F
lo

o
d

in
g
 A

tt
a
ck

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

0

20

40

60

80

100

0 500 1000 1500 2000

Number of generations

Best for train Best train applied for test

R
o
u

te
 D

is
ru

p
ti

o
n

 A
tt

a
ck

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

Figure 5.2: GE: Relation Between Classification Accuracy and Number of Generations

5.2.1 Variations in Route Disruption Attack

In this section we investigate how variations in an attack affect the performance of
evolved programs. The route disruption attack has been extended to 3 and 5 seconds
in the simulations. The attacker sends the same amount of route reply packets but in
different time intervals. The attacker achieves his goal but more slowly. He aims to hide
his malicious behaviour from the intrusion detection system. So the route disruption
attack is implemented in 1, 3, 5 seconds on the same networks and trained separately by
collecting data for each of 1, 3, 5 seconds respectively. In each case, the GE framework
is applied ten times and the best performing resulting program is returned.

The results for the best individuals are presented in Figure 5.3. It is clear that the
false positive rate is increased proportional to the attack distribution time. The best
individual with the highest detection rate (100%) is chosen here to compare attack

104

0.0

0.5

1.0

1.5

2.0

2.5

low mob.

low traf.

low mob.

medium traf.

medium mob.

low traf.

medium mob.

medium traf.

high mob.

low traf.

high mob.

medium traf.

Mobility & Traffic

Route Disr. Attack in 1sec Route Disr. Attack in 3sec Route Disr. Attack in 5sec

F
a

ls
e
 P

o
si

ti
v

e
R

a
te

Figure 5.3: The Performance of Evolved Programs on Route Disruption Attack

patterns with each other easily. There are individuals who have lower false positive rate
but also a lower detection rate among the evolved programs. Detection rate and false
positive rates are effectively traded off.

5.3 The Performance of Genetic Programming

In Table 5.5 the performance of the evolved program (the best individual of the ten
runs of the GP algorithm) is shown for each attack type on networks with varying
mobility and traffic patterns.

Some conclusions can be drawn from these results. Apparently, route disruption attacks
seem to be easier to detect than ad hoc flooding attacks. In all cases but one the
detection rate is 100% and the false positive rate is less than 1%. Note that in the case
with medium mobility and low traffic perfect detection is not reached, but the false
positive rate is low (0.46%). It seems reasonable to suppose that a 100% detection rate
can be achieved with a small increase in the false positive rate as observed in our further
experiments. The results for ad hoc flooding attacks are slightly “worse”, attaining in
almost all cases detection rates higher than 99% while keeping the false positive rate
reasonably low. Note that in both attacks the main difficulty seems to come from the
traffic load: regardless of the mobility patern, the false positive rate for medium traffic
is higher than for low traffic. This is a common characteristic of any detection technique
which does not achieve a perfect detection, as the higher the traffic to be analysed, the

105

Network Flooding Attack Route Disruption

Scenarios Attack

DR FPR DR FPR

low mobility

low traffic 99.81% 0.34% 100% 0.51%

low mobility

medium traffic 99.24% 1.94% 100% 0.99%

medium mobility

low traffic 99.95% 0.36% 97.06% 0.46%

medium mobility

medium traffic 99.89% 1.88% 100% 0.88%

high mobility

low traffic 99.79% 0.66% 100% 0.52%

high mobility

medium traffic 98.62% 1.83% 100% 0.84%

Table 5.5: The Performance of GP on Simulated Networks

higher the false positives.

50

60

70

80

90

100

0 200 400 600 800 1000

Number of generations

Best train applied for test Best train applied for test

A
d

 H
o

c
 F

lo
o

d
in

g
 A

tt
a

c
k

C
la

ss
if

ic
a

ti
o

n
A

cc
u

r
a

c
y

50

60

70

80

90

100

0 200 400 600 800 1000

Number of generations

Best for train Best train applied for test

R
o

u
te

 D
is

r
u

p
ti

o
n

 A
tt

a
c
k

C
la

ss
if

ic
a

ti
o

n
A

cc
u

r
a

c
y

Figure 5.4: GP: Relation Between Classification Accuracy and Number of Generations

The relation between accuracy of evolved programs for each attack and number of
generations in GP algorithm is shown in Figure 5.4. While a high fitness value for
detection of ad hoc flooding attack is achieved in 100 generations and onwards, it is
obtained in early generations for detection of route disruption attack. It is observed
that the route disruption attack can be detected by a simple program since it directly
violates the routing protocol. Note that the evolution process is carried out offline.
Computational complexity of the evolution process is an orthogonal issue to that of

106

computational resource requirements of any evolved program when deployed.

5.4 The Performance of Manual Detection

The performance of hand-coded programs for ad hoc flooding and route disruption
attacks is analysed in this section to see if an evolved program could discover MANETs’
complex relations and achieve a better performing solution.

In manual detection of an ad hoc flooding attack a threshold-based signature is typically
used which simply considers the excessive amount of forwarded route request packets
by a node (frw rreqPs > threshold). Threshold-based signatures to detect resource
depletion attacks in MANETs have already been employed in other approaches [94].
The performance of the signature is evaluated with different threshold values on a
network with medium mobility and traffic, and demonstrated in Figure 5.5. It is shown
that the fitness value (100-Fitness) has its optimal value at the threshold value three,
then it starts increasing. The manual signature (using the threshold value three) is
evaluated on networks with varying mobility and traffic patters and demonstrated
in Table 5.6. The results show that the manual detection achieves almost a perfect
detection rate. However it does not perform well on differentiating benign flooding
from malicious flooding, and results in non-negligible false positive rate for networks
under high traffic. On the other hand GP and GE decrease the false positive rate with
a small amount of decrease in the detection rate. The false positive rate is decreased to
almost half that of the manual detection does. The difference becomes more remarkable
with the distributed and cooperative intrusion detection programs evolved in Chapter
7. Overall, GP and GE outperform the manual detection for the ad hoc flooding attack
by some considerable margin.

An intuitive signature which checks if the number of received route reply packets are
consistent with (less than) the number of sent route request packets by a node is em-
ployed in the manual detection of route disruption attack (init rreqPs < recv rrepPs).
A similar approach has been used in some specification-based IDSs proposed for
MANETs [90] which monitor request-reply flow of each routing packet. The results
are demostrated in Table 5.6. Programs evolved by GP and GE already show that the
route disruption is a simple attack detected by small and relatively simple programs.
The highest detection rate and a false positive rate less than 1% could be achieved by
manual detection as well. GE decreases the false positive rate a bit more (up to 0.12%),
while GP shows almost the same performance as manual detection. A node which

107

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

M
et

ri
cs

Threshold

detection rate false positive rate 100-fitness

Figure 5.5: The Performance of Manual Detection of Ad Hoc Flooding Attack on
Different Threshold Values

compares the number of route reply packets sent and received for each node on the
network separately can achieve a better detection performance, but this approach is not
very effective in terms of memory. In this research the hand-coded signatures used only
the features in Table 4.2 to allow a fair comparison. In conclusion GE shows a slightly
better performance in detection of the route disruption attack than manual detection.

There are also other advantages of our approach over other misuse-based and hand-
coded approaches proposed in the literature. For example nodes monitor every packet
and keep them in its memory for a while in many approaches [62][94]. In addition they
usually do it by using promiscuous monitoring which is expensive in terms of power
usage. Furthermore, we consider the effect of mobility on attacks in this research.
While other approaches generally monitor if a node behaves properly or not without
taking into account other factors affecting its behaviour.

Two variants of evolutionary computation techniques, namely Genetic Programming
(GP) and Grammatical Evolution (GE), have been evaluated to design intrusion
detection programs for known attacks against MANETs so far. It is shown that GP and
GE are good at discovering complex relations on MANETs. In these experiments the
default parameters (of ECJ [2] and libGE [5]) are used for each technique. However each
techniques can show different performance under different parameter settings. In the
subsequent section each technique is analysed at their approximate optimal parameters
for an unbiased evaluation.

108

Network Flooding Attack Route Disruption

Scenarios Attack

DR FPR DR FPR

low mobility

low traffic 99.95% 0.62% 100% 0.51%

low mobility

medium traffic 99.92% 3.19% 100% 1.00%

medium mobility

low traffic 100% 0.98% 100% 0.47%

medium mobility

medium traffic 99.96% 3.07% 100% 0.90%

high mobility

low traffic 99.91% 0.99% 100% 0.53%

high mobility

medium traffic 99.80% 3.39% 100% 0.85%

Table 5.6: The Performance of Manual Detection on Simulated Networks

5.5 The Evaluation of GP and GE on Intrusion Detection

In this section a fair comparison between GP and GE on intrusion detection in MANETs
is aimed. Approximations to the optimal parameters for each technique are identified
at first and then a fair comparison of these techniques under their optimal parameter
settings are made. In order to achieve these goals the steps of a simple Design of
Experiments (DoE) methodology in [99] are followed in this research.

Genetic Programming and Grammatical Evolution differ from each other in three
fundamental ways [70]. The main difference is the representation of individuals. While
individuals are represented as trees in GP, GE employs linear genomes. Secondly,
GE performs mapping from the genotype to the phenotype (program) which provides
degenerate code as in biological genetic systems. Lastly, GE uses a grammar to dictate
legal structures in the phenotypic space [70]. We aim to show if these differences make
a statistically significant difference on the performance of detection programs evolved
by using these techniques separately.

The experiment results so far show that route disruption attack can be detected easily
since it violates the specifications of the routing protocol directly. However the ad hoc

109

flooding attack is a more complex attack and not easily differentiable from normal
behaviour of the system due to the dynamic nature of MANETs. Since this seems a
challenging problem it can serve as a useful test case for a comparative evaluation of
GE and GP.

5.5.1 The Testbed

Firstly a common platform is built for each evolutionary computation algorithm before
tuning the parameters. Each algorithm uses the feature set in Table 4.2, the fitness
function given in Section 4.3.2, the same training and testing data simulated by ns-2
[7] and BonnMotion [1]. The functions used in order to define the problem in a GP
tree are the same as the ones in the GE grammar. Strongly-typed GP is employed
here to enforce the rules of the GE grammar in the GP. It facilitates the production of
suitably structured code. For example, only relational functions which return Booleans
can be placed at the first level of the GP tree by requiring the tree to return a Boolean
type. Then relational functions are placed into an if-statement while the individual
is translated to a C program. Consequently, it provides a program start with an
if-statement as in the GE grammar. Figure 5.6 shows a C statement expanded from the
GE grammar and the GP tree corresponding to it.

>

+

expsend_rrepPs

frw_aodvPs

neighbours

if((send rrepPs + exp(frw aodvPs)) > neighbours)

Figure 5.6: A GP Tree and Corresponding C statement

The size of an individual is constrained by tree depth in GP, and by genome size
and wrapping in GE. Maximum tree depth size is one of the important parameters in
GP. Maximum genome size in GE, corresponding to maximum tree depth in GP, is
also defined in our experiments to evolve individuals in the same size range in each
technique. Maximum genome size is computed by building the full tree with maximum
tree depth and defining the grammar which builds this tree intuitively. Since our
grammar is not complicated, it is estimated easily. However both algorithms behave
differently when the size of an individual exceeds the predefined parameter or an invalid

110

individual is created in general. While GP copies the parents of the invalid individual
instead of itself, GE assigns the lowest fitness value to the individual.

Koza’s ramped half and half initialization in GP and sensible initialization in GE are
used to create an initial population. GE sensible initialization is based on Ramped Half
and Half Initialization in GP but generates derivation trees of equivalent size [70].

Tournament selection is used to select individuals for recombination. However the
libGE library [5] uses an improved version of the tournament selection. That is why it
was re-implemented in a standard way. A simple genetic algorithm was used in both
techniques to select individuals for replacement. Furthermore elitist approaches were
employed in each technique by keeping the best individual of each population.

The details of other parameters used/tuned in our experiments and the methodology to
compare GP and GE techniques are given in the subsequent section.

5.5.2 The Design of Experiments

In this methodology the parameters to identify approximations to the optimal param-
eters for each technique are tuned firstly. However, finding the optimal parameters
for an algorithm requires a large-scale experimentation consuming potentially vast
computing resources. So the approach which assumes “if an equivalent amount of effort
is spent in applying this method to each of the algorithms, it is reasonable to expect
the approximations to be similarly close to the absolute optimum for each algorithm
and so the comparisons to be fair” [99] is taken here. Therefore we start with finding
approximations to the optimal parameters for each technique.

Four independent parameters are used in these experiments: crossover and mutation
probabilities, population size, and tournament size. Since it is excessive to run
experiments at each possible parameter setting, a three-level full factorial design is
used, where each parameter is considered at three levels (referred as low, interme-
diate and high). Table 5.7 shows the value range of each parameter in these experiments.

The ranges of each parameter are chose large enough to cover all practical values. For
crossover probability the highest value is chosen as 0.9 since leaving some part of old
population survive to next generation is believed to be good [82]. Mutation helps to
avoid being trapped in local extremes by introducing diversity into the system. However,

111

Parameter Value Range

x1: crossover probability [0.1,0.9]

x2: mutation probability [0.01,0.5]

x3: tournament size [2,9]

x4: population size [50,1000]

x5: max. number of generation 100.000/x4

Table 5.7: The Parameters and Their Ranges

mutation should be used sparingly (In extremis, use of a very high mutation rate cuases
the process to degenerate into a random search). A maximum rate of 0.5 will be used
here. The pilot study also showed that high mutation rates did not give good results.
The parameter for termination criteria of an evolutionary algorithm, namely generations,
depends on the parameter population size in this table to ensure the same number
of individuals are created overall in each algorithm. Each algorithm runs twice (with
different seeds) for each parameter setting. Hence each algorithm is run totally 34 × 2
times to estimate the β coefficients in the second linear model below which describes the
relationship between the performance of the algorithm, y, and the parameter settings,
xi. y shows the fitness value (detection rate - false positive rate) of the evolved intrusion
detection programs evaluated on simulated networks. ε represents the noise which is the
difference between the predicted mean performance of the algorithm and its observed
performance.

y = β0 +
∑
i

βixi +
∑
i

∑
j>i

βijxixj
∑
i

βiix
2
i + ε (5.2)

The coefficents in the linear model are estimated by using a standard linear regression.
Then we apply quadratic programming in order to locate approximations to the optimal
parameters. Quadratic programming is an optimization problem which aims to optimize
a quadratic function of several variables subject to linear constraints on these variables
[8]. Table 5.8 shows the results, the parameter settings which give the best performance
for each algorithm.

Finally each algorithm is run one hundred times at the parameter settings in Table 5.8
and compared by applying a statistical hypothesis test of equality. The results show
that the mean of GP runs (fitness values) is greater than the mean of GE runs with
95% confidence. However better results by GE which uses steady-state approach have
been observed in the experiments presented in Chapter 4. This approach is proposed

112

Parameter GP GE

crossover probability 0.1 0.9

mutation probability 0.37 0.5

tournament size 8 7

population size 50 1000

max. number of generation 2000 100

Table 5.8: The Approximate Optimal Parameters for Each Algorithm with Simple Ap-
proach

to reduce the effect of invalid individuals in GE. That is why the same methodology is
applied to compare two techniques with the same parameter values in Table 5.7, but
with a steady-state approach. The standard steady-state approach which replaces the
worst individual of the preceeding population is employed. Even if this individual is
better than the new individual, it will be replaced regardless of its better score. The
parameter settings which give the best performance for each algorithm are given in
Table 5.9.

Parameter GP GE

crossover probability 0.1 0.9

mutation probability 0.01 0.5

tournament size 50 2

population size 9 514

max. number of generation 2000 194

Table 5.9: The Approximate Optimal Parameters for Each Algorithm with Steady-State
Approach

After running each algorithm one hundred times with the parameter settings in Table
5.9, hypothesis testing is applied for comparison. The results show that if a steady-state
approach is employed, the mean of GE runs (fitness values) is greater than the mean
of GP runs with 90% confidence. It is reasonable to say that it was invalid individuals
who affect the performance of GE (slow down the evolution) in the simple approach.
Overall when the results of the best GP version (with simple approach) is compared
with the results of the best GE version (with steady-state approach), GP shows a better
performance.

The performance of programs evolved with approximate optimal parameters on
simulated networks (under medium mobility and medium traffic) is shown in Table

113

5.10. The results obtained in the previous sections are also represented in the table. It
is observed that programs evolved with approximate optimal parameters decreases the
false positive rate with a small decrease in the detection rate.

Algorithm Detection
Rate

False Positive
Rate

GP 99.89% 1.88%

GP with Optimal
Parameters

98.24% 1.12%

GE 99.86% 2.00%

GE with Optimal
Parameters

98.59% 1.58%

Table 5.10: The Performance of Programs Evolved with Approximate Optimal Param-
eters on Simulated Networks

In this chapter it is shown that evolutionary computation techniques discover complex
relations of MANETs such as mobility. The main hypothesis of this research is supported
with the evaluation results. Furthermore it is shown that GP and GE both show good
results in intrusion detection in MANETs. They show their optimal performances under
different parameter settings. GE performance is clearly affected by invalid individuals.
That is the reason steady-state approach is more suitable for GE.

114

Chapter 6

Trade-offs in Intrusion Detection

in MANETs

This chapter presents a new approach to intrusion detection in MANETs. Section
6.1 explains the need for a power-aware intrusion detection system in this resource-
constrained environment. Section 6.1.1 introduces the simulation environment to
estimate the energy consumption of programs. The energy consumption of programs
evolved using GP is analyzed in Section 6.3 and it is observed that different trade-offs
can be made between the classification accuracy and the energy consumption of the
evolved programs. In order to discover these tradeoffs multi-objective evolutionary
computation, explained in Section 6.2, is employed. Finally the evaluation results are
given and discussed in Section 6.4.

6.1 Introduction

Nodes on MANETs can vary from hand held devices such as PDAs, cell phones,
and the like to laptops that have different resource and computational capacities.
Moreover they usually run on battery power to provide mobility. They are generally
constained in terms of computational capabilities, memory, communication bandwidth,
and especially power. In the case of sensor networks, the power issue may become
acute. Some microcontrollers used in wireless nodes (especially for sensor networks) and
their capabilities are given in Table 6.1 [76]. The first element in the table is extremely
constrained, even unable to support the de-facto operating system for sensor nodes
TinyOS [76]. However there are more powerful devices such as the last two elements
in the table, which are widely used in hand-held devices (PDAs). Other devices shown
in Table 6.1 are defined as normal devices which are resource-constrained but powerful
enough to host a complex application. They are the most common devices used in
sensor networks [76].

The variety of mobile nodes often with scarce resources affects the proper working of
intrusion detection systems running on these nodes. For instance, IDS agents might not

115

Model Frequency
(MHz)

Word size
(bit)

RAM
memory

Inst.
memory

Power:awake
(mA)

Power:sleep

PIC12F675 4 8 64 KB 1.4 KB 2.5 1nA

PIC18F6720 20 8 4 KB 128 KB 2.2 1 µA

MSP430F14x 4 16 2 KB 60 KB 1.5 1.6 µA

MSP430F16x 8 16 10 KB 48 KB 2 1.1 µA

ATmega128L 8 8 4 KB 128 KB 8 15 µA

PXA271 13(416) 32 256 KB 32 MB 31-44 390 µA

ARM920T 180 32 512 KB 4 MB 40-100 40 µA

Table 6.1: Example Microcontrollers in Wireless Networks [76]

be able to process every packet/alert due to limited resources. This is why efficiency
is as important as effectiveness for intrusion detection in mobile networks. Hence the
detection algorithm must take into account limited resources.

Two different power-saving strategies have been used in MANETs routing [64]: local
and global. In local strategies a node can save his energy by controlling its transmission
power enough to reach the receiving node, or switching to a sleep state when it is
idle. Global strategies aim to maximize the network lifetime by balancing the energy
consumption across the network [64]. The network lifetime is defined as the duration of
time until the first node fails due to the battery depletion [53] and affects the network
performance. In most of the routing protocols for MANETs the shortest path is the
only metric used to choose a path between end-points. In [81] power required for
transmitting/receiving a packet on a route is also taken into account. The approach in
[64] also uses the remaining energy on nodes in order to maximize the network lifetime.
It is stated that if remaining energy is not considered then more nodes will suffer
battery depletion earlier than otherwise. In [61] the remaining energy (the ratio of the
full-charge battery capacity to the remaining battery capacity of nodes) is considered
with their transmission power for a power-aware source routing protocol. The approach
in [25] also uses the remaining energy for routing in a static wireless network and shows
that the traffic should be routed through a path which balances the energy consumption
in the network instead of minimizing the required power on this path.

Currently proposed intrusion detection approaches for MANETs generally do not put
emphasis on power issues. Some approaches propose a hierarchial intrusion detection
architecture where the network is divided into manageable small groups such as clusters
and zones. In this architecture some nodes bear more IDS responsibility than other
nodes in a group. For example while all nodes are responsible for local intrusion
detection in a cluster, clusterheads carry out global intrusion detection (network-based).

116

In some approaches [87][49] cluster heads are chosen based on some criteria such
as connectivity, energy remaining, and the like. However the selection mechanisms
proposed for cluster-heads are neither investigated in detail nor implemented in those
approaches. In other approaches such choices are made randomly for security reasons
[42][105]. Using central management points to carry out computationally intensive tasks
like data mining [83] is another method proposed in intrusion detection on MANETs.

Limited resources (especially power) in intrusion detection on MANETs is only
considered in a few approaches. In [53] monitoring nodes are selected based on their
connectivity and battery power with a voting mechanism. The weakness of this
approach as stated in the paper [53] is that many control messages are sent for voting,
since monitoring nodes need to be updated frequently. In this approach only monitoring
nodes carry out intrusion detection, so a monitoring node listens to all traffic in its
transmission range (not only that destined for itself), which is expensive in terms of
power. In [85] another power-aware approach which determines network monitors based
on available power in nodes is proposed. While all nodes carry out host monitoring,
network monitoring is distributed to the nodes powerful enough.

In this research we investigate evolving intrusion detection programs which take
into consideration the capability of nodes running these programs as well as their
classification accuracies. We aim to explore trade-offs between these functional and
non-functional properties of programs by using multi-objective evolutionary computa-
tion techniques. Since power is one of the most crucial resources on mobile networks,
both classification accuracy and energy consumption of programs are considered as
objectives during the evolution process. This approach is different to proposed IDSs
in the literature which distribute some functional tasks among nodes usually based on
randomness or consider only the capabilities of nodes carrying out global detection.
In this research the capabilities of each node on the network, regardless of whether
they carry out local or global detection, are taken into account while designing an IDS
for MANETs. Programs demonstrating different trade-offs among these objectives are
evolved in this research. So a node might choose one of these programs based on its
remaining battery power and play a part in intrusion detection.

6.1.1 Power Simulation

Wattch [20] (integrated with SimpleScalar [9]) is used to estimate the energy consump-
tion of programs evolved in this research. Wattch is an architectural simulator for

117

analyzing and optimizing microprocessor power dissipation for specific architectures. It
is claimed it achieves accuracy within 10% of their estimates as verified using industry
tools [20].

Wattch estimates CPU power consumption using the power model based on dynamic
power consumption (Pd) which is the main source of power consumption in CMOS
microprocessors. The power model is defined as follows:

Pd = CV 2
ddaf, (6.1)

where C is given as the load capacitance, Vdd as the supply voltage, a as the activity
factor, f as the clock frequency. Where Vdd and f are dependant on the process
technogoloy, C is estimated. The activity a represents how often clock ticks lead to
switching activity on average. It is an estimated value (between 0 and 1) based on the
benchmark programs executed or is assumed to be 0.5 as a default.

In this research Sim-Wattch, an integration of Wattch with the SimpleScalar archi-
tectural simulator, is used. SimpleScalar measures the dynamic characteristics of the
hardware model (such as which units are accessed per cycle) and the performance of the
software running on it [9]. Here the execution of a program is simulated on the PISA
(the Portable Instruction Set Architecture) architecture and its energy consumption is
estimated.

6.2 Multi-Objective Evolutionary Computation

Multi-Objective Optimisation (MOO) aims to optimise two or more, often conflicting
objectives simultaneously. The Multi-Objective Optimization Problem is defined in [?]
as “the problem of finding a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent the objective functions. The term
optimize is defined as finding such a solution which would give the values of all the
objective functions acceptable to the decision maker since the objectives are usually in
conflict with each other”.

The solution to multi-objective optimisation generally is not unique, it is the set of
optimal solutions called the Pareto set. An objective vector x is said to dominate another
objective vector y (x � y) if no criterion of x is greater than the corresponding component

118

of y and at least one criterion is less (lesser values are preferable). Formally:

x � y : if xi ≤ yi for each i and xi < yi for some i (6.2)

The Pareto front comprises the solutions that are not dominated by any other individ-
ual. In other words, it includes the optimal solutions (non-dominated) which represent
different trade-offs among objectives. Figure 6.1 shows an example of non-dominated
solutions lying on the Pareto front and a solution dominated by both point A and point B.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A

B

dominated

Figure 6.1: An Example of Pareto Front

Multi-objective evolutionary computation (MOEC) allows us to combine multi-objective
optimisation with evolutionary search. The use of evolutionary algorithms to solve
problems with multiple objectives has been motivated mainly because of the population-
based nature of evolutionary algorithms which allow the generation of several elements
of the Pareto optimal set in a single run [27].

6.2.1 Strength Pareto Evolutionary Algorithm (SPEA2)

There are two methods to define a multi-objective optimization problem in evolutionary
computation: weight-based and pareto-based. In weight based approaches a single
fitness function is defined and the relations among objectives are indicated by weights.
However it is difficult to determine the weights. Furthermore this approach does not
allow us to compare different objectives and trade-offs among them. It summarises
many different trade-offs as effectively equally good. That is why SPEA2 [108],
which is one of the most popular Pareto-based MOEA algorithms, is employed here.
An implementation of SPEA2 which is an extension to ECJ [2] is utilised in this research.

119

In SPEA2 there is a regular population and a fixed size archive. The archieve contains
the non-dominated individuals among all candidate solutions considered so far. The
main steps of the algoritm [108] are given in Table 6.2.

Input : N population size

N archive size

T maximum number of generations

Output : A nondominated set

Step 1 : Initialization generate an initial population (P0) and cre-
ate an empty archive (P0 = ∅).

Step 2 : Fitness assignment calculate fitness values of individuals
in Pt and Pt.

Step 3 : Environment selection copy all non-dominated individ-
uals in Pt and Pt to Pt+1. If size of Pt+1 exceeds N then
reduce Pt+1 with the truncation operator, otherwise if it is
less than N then fill Pt+1 with dominated individuals in Pt
and Pt.

Step 4 : Termination if termination criteria (t ≥ T) is satisfied then
set A to the non-dominated individuals in Pt+1 and stop.

Step 5 : Parent Selection perform tournament selection with re-
placement on Pt+1 to fill the mating pool.

Step 6 : Variation apply variation operators to the mating pool and
set Pt to the new population. Increase generation number
(t = t + 1) and go to Step 2.

Table 6.2: The Main Steps of SPEA2 Algorithm

The fitness of an individual i in SPEA2 is defined by two elements: the raw fitness R(i)
and the density D(i).

F (i) = R(i)−D(i) (6.3)

The raw fitness of an individual i is determined by the strengths of its dominators in
both archive and population. It is aimed to be minimized. The density is calculated by
an adaption of the k-th (k=

√
N +N) nearest neighbour method which gives the k-th

nearest neighbour (σki) to the individual.

R(i) =
∑

j∈Pt+Pt,j�i

S(j) (6.4)

120

D(i) =
1

σki + 2
(6.5)

A simple MOO problem is given as an example here. We evolved programs using MOEC
techniques to discover trade-offs between two conflict objectives in intrusion detection:
detection and false positive rate. The optimal solutions for both metrics might not be
discovered by using the fitness function described in Equation 4.3.2. The fitness of an
individual can be high due to high detection rate or low false positive rate, or both.
For example, the fitness of a program with 90% detection rate and 2% false positive
rate (Fitness = 90 - 2) is the same with a program which has the perfect detection
rate and 12% false positive rate (Fitness = 100 - 12). Therefore, the fitness of an
individual (evolved program) is represented by two separate objectives here: detection
rate and false positive rate and, a set of optimal solutions is obtained by using MOEC
techniques. Figure 6.2 shows the Pareto fronts for each attack, which demonstrate
the optimal solutions at the end of 500 generations. Each chart shows detection rate
versus false positive rate which are metrics to be minimized simultaneously. As it is
seen there is a clear trade-off between these two objectives: while false alarm decreases,
detection rate decreases too. In this research MOEC techniques are employed in
order to discover more complex relations (functional and non-functional properties
of a program) on intrusion detection in MANETs as presented in the subsequent sections.

0

20

40

60

80

100

0 5 10 15 20 25 30

A
d

 H
o
c

F
lo

o
d

in
g
 A

tt
a
ck

D
et

ec
ti

o
n

 R
a
te

False Positive Rate

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

R
o
u

te
 D

is
r
u

p
ti

o
n

 A
tt

a
ck

D
et

ec
ti

o
n

 R
a
te

False Positive Rate

Figure 6.2: Trade-offs Between Detection Rate and False Positive Rate for Attacks Ad
Hoc Flooding and Route Disruption

6.3 Analysis of Power Consumption of Evolved Programs

Firstly the power consumption of the programs evolved by using GP to detect ad
hoc flooding and route disruption attacks on MANETs and represented in Chapter
5 are analyzed in this section. To evaluate a program’s energy consumption, the
execution of each program needs to be simulated. For that reason each individual

121

(GP Tree) is converted to a C program and written to a file. In the transformation
process from a GP tree to a C program, the functions used by the individuals and
not included in the standard C library (e.g. percent function) are defined as macros.
After the C file is created, it is compiled and run on the Sim-Wattch to simulate the
execution of the program on the PISA architecture and estimate its energy consumption.

The best individuals of ten runs with their energy consumptions are given in Figure
6.3. This figure shows that while classification accuracy is high, energy consumption of
the program gets higher as well for ad hoc flooding attacks. On the other hand, this
relation is not quite straightforward for route disruption attacks. Analyzing the best
individuals evolved for route disruption attack shows that it can be detected by small
programs (with simple expressions) which have a tendency to consume lower energy.

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

A
d

 H
o
c

F
lo

o
d

in
g
 A

tt
a
ck

D
R

-F
P

R

Energy

depth: 17

depth: 5

90

92

94

96

98

100

100 110 120 130 140 150 160 170

R
o
u

te
 D

is
r
u

p
ti

o
n

 A
tt

a
ck

D
R

-F
P

R

Energy

depth: 17

depth: 5

Figure 6.3: Classification Accuracy and Energy Consumption of the Optimal Evolved
Programs

Furthermore, since the size of the programs can affect their energy consumption,
we conduct experiments to evolve programs with different tree depths (17, 5) (the
maximum size of the individuals (trees) evolved in GP). The same GP parameters
listed in 4.3 and the same fitness function given in Equation 4.3.2, are used to evolve
programs. The effect of program size on evolved programs’ detection ability and energy
consumption can also be seen in Figure 6.3. As it has been stated before, the evolved
programs for route disruption attacks are small. There are programs which can achieve
the same performance on detecting this attack in different program sizes in Figure 6.3.
However, program size forces the programs to be smaller which can result in less energy
consumption. Hence the programs evolved for this attack with the same detection
ability but consuming different energy levels can be seen in the figure. The results are
more dramatic for the ad hoc flooding attack. Good performance on detection of this
attack can be achieved with small-sized programs as well. Nevertheless programs with
bigger program size and accordingly higher energy consumption show a slightly better
detection performance.

122

The energy consumption of programs is mainly affected by the program size and the
functions used. In GP there is a phenomenon called bloat where the size of individuals
(program size) in a GP population increases dramatically over the duration of a run,
largely due to redundant code [79]. The effect of bloat is also noticed in our experiments
with some larger individuals exhibiting redundancy. Fortunately SPEA2 reduces the
bloat where a larger individual (with accordingly higher energy consumption) will only
survive if it makes an improvement over the existing archive in at least one objective
[98]. It should be noted that small programs do not necessarily consume low energy,
a program that uses expensive functions (such as multiply) could have higher energy
consumption than a program with greater size.

These experiments demonstrate that different trade-offs can be made between clas-
sification accuracy and energy consumption of programs, and encourage us to find
acceptable trade-offs between these objectives. A multi-objective evolutionary compu-
tation technique is employed to discover these trade-offs, as explained in the next section.

6.4 Discovering Trade-offs in Intrusion Detection Pro-

grams

Multi-objective evolutionary computation techniques are employed in order to optimise
the following three objectives in our experiments: detection rate, false positive rate, and
energy consumption of the program. The individual takes part in the evolution process
and survives in the next generations based on its performance on these objectives. A
multi objective function of an individual is defined below. These three objective are to
be maximized simultaneously.

f1 = no. of attacks detected/no. of attacks (6.6)

f2 = 1− no. of false events/no. of normal events (6.7)

f3 = 1/energy consumption (6.8)

The conceptual schema of the experiments is demonstrated in Figrure 6.4.

123

Individuals

C File

Sim-

Wattch

Object File

GP and SPEA2

GCC

Energy

consumption

DR FPR

Simulated

Network

Figure 6.4: Simplified Schema of Experiments

6.4.1 Experiment 1: Attack-specific Intrusion Detection Programs

We firstly evolved intrusion detection programs for ad hoc flooding and route disruption
attacks separately by using MOEC techniques. The parameters used are the same as in
Table 4.3 except the population size (150) and SPEA2 archive size (100).

Figure 6.5 shows the optimal solutions found for ad hoc flooding attack at the 1000th
generation. It shows the conditioning plots of detection rate (DR) versus false positive
rate (FPR) which are produced conditional on the energy consumption of programs.
Each chart shows the value DR and FPR of programs whose energy consumption
fall in one of the intervals shown in the top of the figure. For example the top-right
chart shows the programs whose energy consumption falls in the highest energy
consumption and the bottom-left chart shows the programs with the lowest energy
consumption. These charts show that the programs more close to the optimal solution
(high detection rate and low false positive rate) consume higher energy consumption, as
expected. In programs with lower energy consumption the false positive rate increases
noticably. Overall, the trade-offs falling in the second biggest energy consumption
interval (the chart in the top-middle) could be more optimal and acceptable, since it in-
clude points which achieve the high classification accuracy with less energy consumption.

For the route disruption attack, programs closer to the optimum solution which have
higher detection ability and lower energy consumption are achieved by using MOEC
techniques. Moreover we have compared energy consumption of programs which have
a high-accuracy detection ability with the programs evolved using GP in Figure 6.3.
It is observed that programs with lower energy consumption stands out in the results

124

Figure 6.5: Coplots for Programs Evolved for Detection of Ad Hoc Flooding Attack with
Three Objectives

obtained by MOEC techniques. Especially for the ad hoc flooding attack, energy
consumption is significantly reduced. It could also be the effect of reduced bloat by
using SPEA2.

6.4.2 Experiment 2: Multi-attack Intrusion Detection Programs

In this part we evolve programs to detect ad hoc flooding and route disruption attacks
together by using MOEC techniques. We aim to investigate if it is better to evolve one
program to detect both attacks or evolve two programs each using half the resource
usage. The following multi-fitness function which evaluate the performance of program
on both attacks, and its energy consumption is employed.

125

f1 =
(detection rateflooding + detection rater.disruption)

2
(6.9)

f2 = 1− (false positive rateflooding + false positive rater.disruption)
2

(6.10)

f3 = 1/energy consumption (6.11)

Figure 6.6: Coplots for Programs Evolved for Detection of Both Attacks Together with
Three Objectives

Figure 6.6 shows the conditioning plot diagrams for three objectives on detection of
both attacks together. The programs with lower false positive rate generally consume
higher energy consumption. However good results (closer to the classification accuracy
of programs consuming high energy consumption) are also observed in the lower energy
consumption intervals. In overall the results demonstrate that a detection program
for both attacks can be more energy-efficient than two programs which detect these
attacks separately, although it does not show high classification accuracy as the two

126

programs do separately. In the results of thirty runs, there is no program evolved for
detecting both attacks which has false positive rate less than 2% (with high detection
rate) simultaneously. There is a trade-off to be made based on the requirements of the
MANET application used. Some good results are demonstrated in Table 6.3.

Flooding Attack Route Disruption Resource

Attack (Wattch Units)

DR FPR DR FPR

98.80% 1.90% 100% 2.97 '131

97.71% 1.75% 100% 2.48 '169

98.80% 1.86% 97.78% 2.90 '174

Table 6.3: The Performance of Some Programs for Detection of Both Attacks Together

Table 6.4 shows some example programs (with high performance) evolved using MOEC.
(There are many other programs on the Pareto front which have different trade-offs.)

Attack
Type

Evolved Program DR FPR Energy
Usage

Flooding (frw aodvPs * frw aodvPs) > 99.79% 1.63% '142

(4log(neighbours) + 5updated routes)

Route ((2updated routes - 2recv aodvPs 100% 0.85% '122

Disruption + active routes) * recv rrepPs > (recv aodvPs

+ updated routes)

Both init rreqPs < (recv rrepPs + 99.40% 2.44% '131

sin(recv rrepPs + log(log10(frw aodvPs -

updated routes))) -

cos(added repairedroutes - log10(frw aodvPs -

updated routes)) +

log(frw aodvPs - updated routes))

Table 6.4: Example Programs Evolved by MOEC for Each Attack

These experiments show that different trade-offs could be made between classification
accuracy and energy consumption. The trade-offs are discovered by using a MOEC
technique. It is shown how in some circumstances a multiple objective approach provides
a more effective means of searching the trade-off space. It is likely that for some types of
networks (e.g. sensor networks) the ability to make good trade-offs will be particularly
important. Programs with almost the same classification accuracy (as obtained by

127

GP) but with lower energy consumption are evolved by using MOEC techniques.
More importantly a set of solutions showing different trade-offs is obtained. So pro-
grams showing different trade-offs could be distributed to nodes based on their energy
level. A final choice between solutions making different trade-offs rests with the designer.

Programs detecting ad hoc flooding and route disruption attacks together (in a program)
are also evolved in this section to see if energy consumption for detection of these two
attacks separately could be minimized. The results show that although these programs
consume less energy than two separate detection programs do, they do not show as
high classification accuracy as the separate targetted programs achieve. It is a decision
to be made based on the application of MANET. It is believed that evolving programs
to detect similar attacks (showing similar consequences on the network) such as DoS
attacks together could give more promising results in terms of energy consumption than
evolving separate programs for each attack, since they are more likely to have similar
signatures.

This work is unusual in that it trades off security performance (detection and false pos-
itive rates) against resources (power). The inherent complexity of MANET operations
makes it difficult to see how IDS programs with optimal trade-offs could be obtained by
standard system development practices. To conclude, an optimisation based approach
seems a natural and effective candidate for the problem.

128

Chapter 7

Distributed and Cooperative

Intrusion Detection on MANETs

The only thing that will redeem
mankind is cooperation.

Bertrand Russell

This chapter investigates the evolutionary synthesis of a suitable intrusion detection
system for MANETs. An architecture cooperative detection in neighbourhoods is inves-
tigated using GE and GP techniques in Section 7.2.1 and Section 7.2.2 respectively and
evolved programs are compared with the local detection results presented in Chapter
5. The energy and bandwidth consumption of these programs are also considered,
and optimal trade-offs between intrusion detection ability and resource usage (energy,
bandwidth) of evolved programs are discovered using multi-objective optimization
techniques and presented in Section 7.2.3.

7.1 Introduction

So far it is assumed that each node in the network carries out monitoring and detecting
of malicious activities. Every node has an intrusion detection agent and detects
network attacks locally. Hence the evolved programs are distributed to each node on
the network. In this chapter further intrusion detection architectures suited to this
distributed and resource-constrained environment are explored.

Intrusion detection architectures on MANETs can be classified into two main groups:
local detection, and distributed and coopeative detection. In local detection, every node
in the network has an IDS agent and detect attacks on their own without collaborating
with other nodes. Hence the evolved programs are distributed to each node. However
a node on a MANET can only see a portion of the network: the packets in its radio
range and the packets which it sends or receives. So network attacks (network scans,

129

distributed attacks, etc.) cannot be detected with such partial network data on a lo-
cal node in this environment. Moreover, not every node in the network is capable of
performing intrusion detection, due to limited resources.

In a distributed and cooperative architecture each node has IDS agents as in the local
detection architecture, but they can also communicate with other nodes to exchange
information, to reach decisions and to agree on responses. One of the most cooperative
detection architectures proposed in the literature is based on hierarchy among nodes.
Distributed IDS agents (nodes) are generally divided into small groups such as one-hop
away nodes, neighbouring nodes enabling them to be managed in a more efficient way.
For example in one-hop away nodes a node and its immediate neighbour nodes build a
group. However a node could be a member of more than one group based on the grouping
algorithm in this architecture. In a hierarchical architecture, the network is divided into
groups such as clusters, zones where some nodes (cluster heads, interzone nodes etc.)
have more responsibility (providing communication with other clusters, zones) than other
nodes in the same cluster. It is the same from intrusion detection point of view: each
node in the cluster carries out local detection while cluster heads and interzone nodes
carry out global detection. The biggest drawback of this architecture is the high cost
of building and maintaining the hierarchy in a highly dynamic environment. Message
sending and receiving is also very expensive in terms of energy consumption on MANETs.
Communication between these IDS agents is provided either by exchanging data directly
or by use of mobile agents.

In this research we explore an intrusion detection architecture suitable to the dis-
tributed and resource-constrained environments of interest. Two intrusion detection
architectures are investigated in this research: local detection and cooperative detection
in the neighbourhood. A distributed and cooperative intrusion detection architecture
where nodes communicate with their immediate (one-hop away) neighbours to reach
decisions is proposed. The following question is explored: “Is it possible to increase
the effectiveness of an intrusion detection system by collaboration with the IDS agents
in its neighbourhood?”. The efficiency of this architecture in terms of bandwidth and
energy usage is also explored and compared with that of local detection. The trade-offs
between the intrusion detection ability, the enery usage of programs, and the number of
neighbours in cooperation are discovered using multi-objective optimization techniques
and demonstrated.

130

7.2 Intrusion Detection Architectures in MANETs

In this section the intrusion detection architecture cooperative intrusion detection in
neighbourhood is investigated by employing grammatical evolution, genetic program-
ming, and multi-objective optimization techniques and compared with the performance
of local detection.

7.2.1 Cooperative Detection in Neighbourhood by GE

It is shown that ad hoc flooding attack can be detected effectively by using evolutionary
computation techniques in Chapter 5. By nature an ad hoc flooding attack is a
distributed DoS attack and floods almost every node in the network with broadcast
RREQ packets. When a node believes that someone is attacking (flooding) him, he
can support his judgement with the help of his neighbour nodes since he gets RREQ
packets through them. Accordingly we believe that cooperative intrusion detection with
neighbour nodes can increase the fitness value. So we extend the experiments to evolve
a distributed and cooperative detection program in which a node asks for information
from its neigbour nodes to reach a decision.

Extending the Grammar for Cooperative Detection

The grammar introduced in Table 4.4 is extended in order to evolve a cooperative
detection program for ad hoc flooding attack as below.

The main difference here from the grammar for local detection in Table 4.4 is that it
allows using features from neighbouring nodes to make a decision. Each neighbour
execute the evolved statement and send its result to the main node. These results from
each neighbour are added together at this node. Moreover while the local detection
grammar returns an if statement, the cooperative detection grammar returns if or
if-else statement as shown below. The logic behind this is that we can evolve pro-
grams for each node to detect attacks locally where we can, and ask more information
from its neighbour nodes otherwise. Other primitives used in the grammar are the same.

Number of runs(=30) is increased in these experiments. We aim to see the best
cooperative detection program evolved in those runs and compare them with the best
local detection program evolved in thirty runs. To compare these results fairly, we
increase the number of runs. The same parameters except the generations(=4000)

131

S = <code>

<code> ::= if(<cond>) {raise alarm()} |
if(<cond>) {raise alarm()} else {<code>}

<cond> ::= <cond><set-op><cond> | <expr-list><relop><expr-list>

<expr-list> ::= <expr><op><expr> |
the sum of (<expr> <op><expr>) from each neighbour

<expr> ::= <expr><op><expr> | (<expr> <op><expr>) |
<pre-op>(<expr>) | <pre-op2>(<expr>) | <var> |
<neighvar> | <const>

<op> ::= + | - | / | *

<pre-op>::= sin | cos | log | ln | sqrt | abs | exp | ceil | floor

<pre-op2>::= max | min | pow | percent

<rel-op>::= < | ≤ | > | ≥ | == | !=

<set-op> ::= and | or

<var> ::= The features given in Table 4.2

<neighvar> ::= The features obtained from neighbours

<const> ::= 0.<digit><digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Table 7.1: The BNF Grammar Used for Cooperative Detection in Neighbourhood

in Table 4.5 are used. Since the grammar is more complex, we increase the number
of generations until termination. The performance of the best program evolved is
demonstrated in Table 7.2. Detection rate and false positive rates are used to evaluate
its performance. It is also compared with the best local detection program evolved in
Chapter 5. The results show that cooperative detection algorithm can achieve lower
a false positive ratio (0.06%-0.31%) compared to systems employing local detection only.

However, all the best evolved programs of each run return an if statement which uses
information only from neighbour nodes. However, a program that detects attacks locally
where it can is more desirable to preserve limited bandwidth. Furthermore, message
sending and receiving is very expensive in terms of energy consumption. It is observed
that the grammatical evolution algorithm tends to evolve simplified programs. For that
reason GE algorithm is forced to evolve a program in the structure Cooperative Detection
2 by changing the grammar.

GE is run thirty times using a new grammar (Cooperative Detection 2). The results
show that the false positive ratio is significantly reduced. Furthermore the communni-
cation workload between nodes is reduced approximately 70% compared to the best

132

Algorithm 1 Local Detection
if condition satistifed then

raise alarm
end if

Algorithm 2 Cooperative Detection-1
if condition satistifed then

raise alarm
else

Local Detection
or
Cooperative Detection

end if

Algorithm 3 Cooperative Detection-2
if local condition satistifed then
{suspect locally that there might be a malicious activity happening}
if condition satisfied then
{reach on a decision based on the further information coming from neighbour
nodes}
raise alarm

end if
end if

evolved program with the grammar Cooperative Detection 1 where a node asks for
information from its neighbours at each time interval. However the best program
evolved below by the grammar Cooperative Detection 2 consults its neighbour nodes
only when it believes there is a chance of malicious activity on the network.

We here presented the performance of the program with the minimum false positive rate.
The program decreases the false positive rate with a small decrease in detection rate.
Different programs with different trade-offs between detection rate and false positive
rate are also seen in the results. For example another good evolved program results in
a lower false positive rate than local detection without decreasing the detection rate.
However the false positive rate of the program is a slightly higher than the best program
evolved with the grammar Cooperative Detection 1. On the other hand the program
whose results presented in Table 7.2 achieves lower false positive rate than the best
program evolved with the grammar Cooperative Detection 1, but with a small decrease
in the detection rate.

In conclusion, cooperative intrusion detection programs which achieve lower false
positive rates than local detection are evolved by using GE. Furthermore the interaction
between IDS agents is investigated and is reduced enormously by improving the BNF
grammar of the problem. GE provides a great flexibility in changing the representation

133

Network Local Detection Coop. Detection-1 Coop. Detection-2

DR FPR DR FPR DR FPR

low mobility

low traffic 99.81% 0.29% 99.62% 0.23% 99.29% 0.20%

low mobility

medium traffic 98.54% 1.72% 99.48% 1.58% 98.65% 1.43%

medium mobility

low traffic 99.86% 0.36% 99.86% 0.22% 99.86% 0.28%

medium mobility

medium traffic 99.86% 2.00% 99.61% 1.69% 99.44% 1.32%

high mobility

low traffic 99.96% 0.66% 99.49% 0.60% 99.32% 0.47%

high mobility

medium traffic 98.66% 1.73% 98.15% 1.42% 97.61% 1.32%

Table 7.2: Comparison of Local and Cooperative Intrusion Detection Programs Evolved
by GE for Detection of Ad Hoc Flooding Attack

of a problem by changing the BNF grammar easily. The best programs evolved with
each grammar are shown in Table 7.3.

Detection
Type

Evolved Program

Local Detec-
tion

if((send rrepPs + exp(frw aodvPs - updated routes * pow(frw rreqPs,
added repairedroutes))) > no neighbours)

Coop.
Detection-1

if((abs(floor(frw aodvPs) - send rreqPs) - log(no neighbours)) > (up-
dated routes)) //by neighbour nodes

Coop. if(invroutes timeout < frw rreqPs && added neighbours < frw aodvPs)

Detection-2 if((frw aodvPs - updated routes) > (max(exp(0.93) + 0.21 - addedroutes notice,
0.20)) //by neighbour nodes

Table 7.3: The Programs –Best Individuals– Evolved by GE for Detection of Ad Hoc
Flooding Attack

7.2.2 Cooperative Detection in Neighbourhood by GP

The local and cooperative intrusion detection programs are also evolved by using
GP. The parameters in Table 7.4 are employed. Strongly-typed GP is employed here
to return programs in an “if” structure. To evolve cooperative intrusion detection
programs, the features of neighbour nodes are also added to the terminal list given

134

in Table 4.2. The performance of the best cooperative detection program evolved
is compared with the performance of the best local detection program evolved and
demonstrated in Table 7.5.

Objective Find a computer program to detect ad hoc flooding

attack on MANETs cooperatively

Function set The binary operators +,-,*, /, pow, min, max, mod, percent

The unary operators sin, cos, log, ln, sqrt, abs, exp, floor, ceil

The comparison operators <, <=, ==, !=, >, >=

The relational operators and, or

Terminal set The feature set

Populations Size 100

Generations 1000

Crossover Probability 0.8

Reproduction Probability 0.2

Tournament Size 7

Table 7.4: The GP Parameter Settings

The results show that cooperative detection algorithm both increases detection rate and
decreases false positive rate. The best program achieves a very high detection rate for
each network except one (under high mobility and medium traffic). The false positive
ratio is also improved a little. The fitness value of local detection is decreased up to
0.6% in some networks with cooperative detection. It is a good improvement based on
the fitness values (between 0.37 and 2.38) achieved by GP.

7.2.3 Investigating the Resource Usage of Cooperative Detection Pro-

grams

So far, the question “is it possible to increase the effectiveness of an intrusion detection
system by collaboration with the IDS agents in its neighbourhood?” has been addressed
and it is shown that cooperative intrusion detection with neighbour IDS agents can
achieve better fitness values than local detection only does. However suitability of these
evolved programs to MANETs should also be considered for this resource-constrained
environment. Consequently the energy usage of cooperative intrusion detection
programs are now evaluated and compared with the energy usage of local detection
programs in this section. The trade-offs between intrusion detection ability and resource
consumption of programs (in terms of energy and bandwidth) are also discovered by us-

135

Network Local Detection Cooperative Detection

Scenarios

DR FPR Fitness DR FPR Fitness

low mobility

low traffic 99.47% 0.27% 0.80 99.95% 0.32% 0.37

low mobility

medium traffic 99.70% 1.54% 1.84 99.92% 1.39% 1.47

medium mobility

low traffic 99.62% 0.23% 0.61 99.72% 0.14% 0.43

medium mobility

medium traffic 99.45% 1.56% 2.11 99.61% 1.45% 1.84

high mobility

low traffic 99.20% 0.50% 1.29 99.91% 0.61% 0.70

high mobility

medium traffic 99.02% 1.41% 2.38 99.10% 1.37% 2.26

Table 7.5: Comparison of Local and Cooperative Intrusion Detection Programs Evolved
by GP for Detection of Ad Hoc Flooding Attack

ing multi-objective optimization techniques. Reducing bandwidth usage is investigated
by reducing the number of immediate neighbour nodes that cooperate to reach a decision.

In cooperative intrusion detection, each neighbour runs the program and sends his
result to the node which aggregates information from neighbour nodes and reaches a
decision. In cooperative intrusion detection each node might not need to get/process
local information as much as local detection does, since the decision is based on the
collected information from each neighbour node. While the information on a node
itself might not be able to detect attacks locally, it helps to detect attacks effectively
with other neighbours’ local information. On the other hand, local detection tries hard
to detect attacks with the local information only. These could affect the program’s
size and energy consumption. The bloat is another affect on program size and energy
consumption. In order to analyze energy consumption of evolved programs fairly and
discover trade-offs between detection ability and energy consumption of programs
SPEA2 is employed.

The SPEA2 algorithm is run to evolve power and bandwidth efficient intrusion detection
programs. The algorithm aims to maximize the following objectives simultaneously.

136

f1 = no. of attacks detected/no. of attacks (7.1)

f2 = 1− no. of false events/no. of normal events (7.2)

f3 = 1/energy consumption (7.3)

f4 = 1 − % of neighbour nodes in cooperation (7.4)

The number of neighbour nodes in cooperation (f4) is also added to the fitness function in
order to minimize communication between IDS agents. Communication between nodes
consumes both bandwidth and power. Accordingly we seek to reduce it as far as is
practical. A simple way of achieving this is to seek to reduce the number of neighbouring
nodes a node collaborates with to reach an IDS decision. In [31] energy consumption in
ad hoc networks is modelled for the four states (transmit, receive, sleep, and idle) of the
network interface. The cost to a node to send or receive a packet on the network layer is
modeled by the linear equation below. The cost associated with channel acquisition (m
and b) is assumed to be fixed and given in Table 7.6 [31]. The cost of a sending/receiving
packet is proportional to the size of the packet as given in the equation below.

Cost = m × size + b (7.5)

The total cost of a packet is evaluated by summing the cost of sending packet and the
cost of receiving packet (by all receivers). So if it is a point-to-point traffic, the total
cost is calculated as follows.

Cost = msend × size + bsend (7.6)

+ mrecv × size + brecv (7.7)

msend 1.89 mW.s/byte

bsend 246 mW.s

mrecv 0.494 mW.s/byte

brecv 56.1 mW.s

Table 7.6: Fixed Costs in the Power Model

The packet size (the output of evolved programs) in our experiments is quite small,

137

generally it is one or two floating point numbers. However each neighbour node par-
ticipates in detection by sending their local information. More neighbours means more
communication and more energy consumption. So reducing the number of neighbours
who send their local information for detection is an objective. Therefore the number
of neighbours (%) in cooperation to reach IDS decisions is added to the multi-fitness
function (as shown in Equation 7.4.). The trade-offs among the number of neighbours in
cooperation, detection ability and power usage of evolved programs are to be discovered.

In mobile networks radio communication has very high power consumption. A node
consumes an amount of power(=Rx receiving power) even in its idle state in order
to monitor the channel. While transmission power(Tx) is higher, it depends on the
transmission range. A node should maintain its transmission power at a level sufficient
to reach receiving nodes, or switch to a sleep state to save its power locally. Researchers
generally focus on reducing the communication power since this is the main cause of
battery depletion. In this research even though an intrusion detection program is likely
to consume a small amount of power compared to the communication power, it runs
continuously. When the communication is inevitable in mobile networks, controlling the
power usage of programs running on a node is another approach to save battery power
locally. The degree to which a node engages in “passive” monitoring may also be a
factor. With largely passive operation, the relative importance of power consumption of
programs increases. These are the main reasons that we consider the power consumed
by intrusion detection programs besides its communication power in this research.
However, we are aware that further integration of these conpepts is also possible. For
example, we could reduce the rate at which neihgbouring information is requested (and
hence save power) but this would inevitably give rise to a lower detection capability.
(That is to say there is a trade-off to be made here.)

SPEA2 was run thirty times. Each run produced a Pareto optimal set of non-dominated
solutions. Figure 7.1 shows the distribution of the union of those thirty sets. (Within
the union some individual solutions from one contributing set may dominate or be
dominated by an individual solutions from another contributing set). We really want
solutions that work well on all three criteria. Consider, for example, the set of solutions
with x>=0.8, y>=0.7 and z>=0.5. Solutions in this set clearly perform well on all three
axes. In some respects we may consider them ”excellent”, or an acceptable outcome from
a run of our technique. The black points in the figure show the acceptable solutions
found by our technique. The average number of ”acceptable” solutions in each run is
2.8333 (with a standard deviation of 2.0356). The number of runs which produced
no ”acceptable” solution is 6. Of course, different definitions of acceptable are clearly

138

possible.

Figure 7.1: Union of the Non-dominated Solutions from Each Run

MOEC returns a set of solutions and one solution has four values showing different
trade-offs between the multi-objectives described in Equation 7.1-7.4. Since analyzing
the multi-dimensonal data is difficult, we show the relation between each pair of
multi-objectives separately here. Only programs with high classification accuracy
(where the fitness value of detection rate and (100-false positive rate) is bigger than
98%) are selected here and evaluated on a network under medium mobility and medium
traffic. Firsly, the relation between the fitness values of these programs and the
percentage of neighbour nodes asked for information to achieve these fitness values is
shown in Figure 7.2. In the figure when the number of neighbours participating in the
detection increases, the effectiveness of the programs increases as well. The correlation
between these values is analyzed for each run and the average correlation coefficient is
calculated as 0.3829∓0.0963. This value (with the p-value 0.0142∓0.0226) shows that
this two value is correlated, however it is not a very strong relationship. There are
other influences and the relationship between these values is not fixed. Since the aim is
to find different trade-offs among four objectives, the value of one objective is affected
by other objectives as well.

The relation between energy usage of programs and the percentage of neighbour nodes
in cooperation is shown in Figure 7.3. There is no statistifically significant correlation

139

96.0

96.5

97.0

97.5

98.0

98.5

20 30 40 50 60 70 80 90 100

F
it

n
es

s

Node %

Figure 7.2: Fitness vs. Percentage of Neighbour Nodes in Cooperation

found between these two elements. Energy usage is affected by the fitness values as
shown in Figure 7.4. Programs with higher classification accuracy tend to consume
more energy as shown. We here present few solutions produced in one run. These
values are weakly correlated in some runs where the average correlation coefficient is
0.3070∓0.0131 (with the p-value 0.0167∓0.0038). It means while the energy increases,
the fitness increases too in the output non-dominated solutions. However the fitness is
also affected by other objectives. Moreover it is observed that the energy consumption
of these programs is lower than that of the programs given in the previous sections
which only considers classification accuracy as the fitness function.

100

110

120

130

140

150

160

20 30 40 50 60 70 80 90 100

E
n

er
g

y

Node %

Figure 7.3: Energy Consumption vs. Percentage of Neighbour Nodes in Cooperation

140

96.0

96.5

97.0

97.5

98.0

98.5

120 125 130 135 140 145 150 155 160

F
it

n
es

s

Energy

Figure 7.4: Fitness vs. Energy Consumption

The performance of some of these programs evolved is demonstrated in Table 7.7. The
best classification accuracy is achieved by program 4 which uses 80% of neighbour nodes
to reach a decision. Where program 1 consumes higher energy than the program 4, but
decreases the number of nodes participating in intrusion detection very significantly. Its
detection ability (fitness value) is as almost the same as that of local detection, but it
only uses half of its neighbour nodes. It decreases the false positive rate with a small
decrease in the detection rate. The energy consumption of evolved programs is generally
almost the same as for the power-aware local detection programs’ evolved in Chapter
6. Different trade-offs among the classification accuracy, the energy consumption and
the number of neighbour nodes in cooperation are clearly seen in these results. Here
we are using the number of collaborating nodes as a proxy for resource consumption
incurred by collaboration. Thus, we need to send requests to our neighbours and they
must respond. This incurs both broadcast and reception costs but also information
retrieval costs within each of the neighbouring nodes. It is clear that we should seek to
reduce the number of collaborating neighbours as much as it is practical.

The performance of evolved programs is demonstrated on networks only under medium
mobility and medium traffic as shown in Table 7.7. On simulated networks under
high mobility the detection rate is decreased down to 97% with a decrease in the false
positive rate down to 1%.

The programs evolved are demonstrated in Table 7.8.

This chapter demonstrates the potential use of evolutionary computation techniques

141

Program
No.

Detection False Positive Nodes Energy

Rate Rate

1 99.21% 1.32% 51% ' 149

2 99.53% 1.54% 58% ' 151

3 99.65% 1.72% 74% ' 149

4 99.41% 1.23% 80% ' 137

Table 7.7: The Performance of Some Cooperative Programs Evolved by MOEC

Program
No.

Evolved Program

1 (cos(log(cos(log(log(frw rreqPs))) - frw rreqPs))) <
(log(log(log(frw rreqPs) - frw rreqPs)))

2 (cos(log(repaired routes + (log(frw rreqPs) / frw rreqPs)))) <
(log(log(frw rreqPs)))

3 (frw rreqPs) > (min(exp(exp(exp(0.00627320552581323))),
exp(exp(log10(exp(min(exp(0.00627320552581323),active routes)))))))

4 (cos(log(frw rrepPs - frw rreqPs))) < (log(log(log(addedroutes notice) -
(log(frw rrepPs - 2frw rreqPs)) - frw rreqPs))))

Table 7.8: Example Programs Evolved by MOEC for Detection of Ad Hoc Flooding
Attack Cooperatively

to discover complex properties of MANETs (such as limited power and limited band-
width) and to generate a suitable intrusion detection approach applicable to this new
environment. It is shown that cooperative intrusion detection with neighbour nodes
increase the effectiveness of the system. The energy consumption of these programs
is almost the same as that of the power-aware local detection programs evolved in
Chapter 6. However cooperative intrusion detection requires communication between
nodes. Even though the size of the packets sent for intrusion detection is small, message
sending and receiving still consume an amount of energy. For that reason the number
of neigbour nodes taking a role in intrusion detection is aimed to be minimized by
using MOEC techniques. The results show that the performance of the local detection
programs can be achieved by using a distributed and cooperative detection program.
Some neighbouring nodes (50% of neighbouring nodes asked for information) participate
in cooperative intrusion detection. If the number of nodes in cooperation increases,
the classification accuracy increases as well. Different trade-offs that can be applied
according to the application are presented here. We believe this is the first work to
consider constrained resources in the case of IDS for MANETs.

142

143

144

Chapter 8

Conclusion

This chapter completes the thesis by summarizing the research and reviewing the
contributions. The thesis hypothesises presented in Chapter 1 are also revisited to show
how the work done in this research support them. Finally areas of future work are
discussed.

8.1 Summary of Experimentation

The main problems of existing approaches for intrusion detection in MANETs have been
addressed in Chapter 3. The main issues can be be summarized as follows:

• The traditional way of monitoring network traffic at the traffic concentration points
is no longer suitable for MANETs. Network data on MANETs is distributed to all
nodes in the network.

• Detection of malicious activies is a difficult research problem even on stable net-
works (with fixed infrastructures). The dynamic topology of MANETs makes
intrusion detection harder.

• MANET nodes usually have limited resources and bandwidth, and existing solu-
tions might not be suitable for this environment.

Researchers have generally focused on the first two issues so far. However consideration
resource-constraints is vital. In this thesis the limited resources of nodes are also taken
into consideration.

This research investigates the use of evolutionary computation techniques, specifically
GP and GE, to evolve intrusion detection programs for MANETs. Since MANETs
have become the target of new attacks which exploit the cooperative nature of routing
protocols, we have aimed to detect specific attacks targetting routing protocols. It is
the first application of evolutionary computation to intrusion detection in MANETs.
Furthermore it is one of the few misuse-based approaches proposed in the literature

145

which can be used to complement other approaches.

This thesis consists of the detailed descriptions of how to apply evolutionary com-
putation techniques to the detection of the following attacks: ad hoc flooding, route
disruption (and its variations), and dropping attacks. As given in hypothesis 1:
evolutionary computation will be able to discover complex properties of mobile ad hoc
networks and evolve intrusion detection programs suitable for this new environment. To
evaluate this hypothesis we performed a variety of experiments.

The performance of programs evolved using GP and GE is evaluated on simulated
networks with varying mobility and traffic patterns. Both techniques show a good
performance for detecting ad hoc flooding and route disruption attacks. The programs
provide close to perfect detection with false positive rate less than 2%. The factors (e.g.
mobility, traffic, topology) affecting the false positive rate are also discussed. However
programs evolved to detect dropping attacks cause a high rate of false positives which
cannot be managed easily. The performance of these programs could be increased with
the use of data from lower layers in the protocol stack since lots of packet losses could
occur (before packets are sent to the routing layer) due to congestion, and wireless
link transmission errors other than those due to mobility. The approximate optimal
parameters for GP and GE were also explored and the algorithms compared fairly at
these parameter settings.

The performance of hand-coded programs using the same features given as input to
GP and GE algorithms is also presented and compared with the programs evolved
automatically in this research. The results show that manual detection achieves almost
a perfect detection rate on ad hoc flooding attacks. However it does not perform
well on differentiating benign flooding from malicious flooding. On the other hand
GP and GE derived programs reduce the false positive rate by almost as half as the
manual detection does with a small amount of decrease in the detection rate. For
route disruption attack GE slightly decreases the false positive rate. It is shown that
this attack could be detected by small and relatively simple programs, since it violates
the routing protocol specifications directly. Overall, GP and GE considerably out-
perform the manual detection for the ad hoc flooding attack and route disruption attacks.

Any proposed approaches (no matter how effective they are) should be suitable
for MANETs. Since battery power is the critical resource in mobile nodes, energy
consumption of evolved programs using GP are analyzed in Chapter 6. While the
classification accuracy of a program is high, energy consumption of the program gets

146

higher as well for ad hoc flooding attacks. It was also shown that route disruption
attacks could be detected by small programs which consume lower energy. Furthermore,
the effect of program size on energy consumption of evolved programs is analyzed.
These results prompt us to find trade-offs between classification accuracy and energy
consumption of evolved programs.

Multi-objective evolutionary computation is employed to discover the relations among
detection rate, false positive rate and energy consumption of evolved programs. A
set of solutions which show different trade-offs among these objectives is obtained for
each attack. The results show that an increase in false positive rate is correlated with
a decrease in energy consumption of detection programs for ad hoc flooding attacks.
Since route disruption is a simpler attack, programs closer to the optimum solution
which have high detection ability with low energy consumption are produced by MOEC
techniques. For both attacks programs with lower energy consumption than programs
evolved with the single objective (classification accuracy) stand out in the results.
Finally, programs are evolved to detect two attacks together by using MOEC techniques
to answer the following research question: “Is it better to evolve one program to detect
both attacks or evolve two programs each using half the resource usage?”. In the
results there are programs which are more energy-efficient than two programs which
detect these attacks separately, however they do not show as high classification accu-
racy as the two programs do separately. It is a trade-off to be considered by the designer.

Finally a suitable intrusion detection architecture for MANETs is sought in Chapter 7.
The work explores how evolutionary computation techniques could evolve to improve
its detection performance and its suitability to MANET environment. An architecture
(coopeative detection in neighbourhood) is investigated to address the following research
question: “Is it possible to increase the effectiveness of an intrusion detection system by
collaboration with the IDS agents in its neighbourhood?”. Distributed and cooperative
detection programs are evolved using GP and GE techniques to detect ad hoc flooding
attacks. In GE the BNF grammar is extended to allow the use of data from neighbour
nodes. Evolved distributed and cooperative programs are shown to generate lower false
positives than the local detection does. With the flexibility provided by the grammar
in GE the communication among nodes is also reduced enormously. Distributed and
cooperative programs evolved using GP also show a slightly better performance (high
detection rate, low false positive rate) than the local detection programs do. We also
explore the efficiency of this architecture. The trade-offs between the intrusion detection
ability, the enery usage of programs, and the number of neighbours in cooperation
are discovered using multi-objective optimization techniques and interesting results

147

have been obtained. The results show that the performance of the local detection
programs can be achieved by using half of neighbouring nodes of a node which
cooperates with each other to make decisions. If the number of nodes in cooperation
increases, the classification accuracy increases as well. Different trade-offs which
can be applied according to the application are presented here. Hypothesis 2: multi
objective evolutionary computation will allow us to discover trade-offs between functional
(intrusion detection ability) and non-functional (power and bandwidth usage) properties
of intrusion detection programs is supported with these results.

8.2 Thesis Contributions

The main contributions of this research are outlined as follows:

Evolutionary computation techniques for intrusion detection in MANETs:

This research investigates the use of a promising technique from artificial intelligence
to synthesise the most appropriate intrusion detection programs for this challenging
network type. Evolutionary computation techniques essentially “grow” intrusion
detection programs by evaluating populations of potential programs and subjecting
them to a variety of genetically inspired operators. This thesis shows that GP and GE
can be used to evolve efficient detectors for known attacks against routing protocol
on MANETs. To the best of our knowledge it is the first application of evolutionary
computation techniques to intrusion detection in MANETs.

A misuse-based approach: This research presents evolved programs using GP and
GE for the detection of some specific attacks against routing protocols: ad hoc flooding
and route disruption attacks. It aims to evolve the characteristics of these attacks
automatically by differentiating malicious behaviour from normal behaviour of the
network or the node. It is one of the few misuse-based intrusion detection approaches
proposed for MANETs, while they are widely used for conventional networks due to
their low false positive ratios.

This approach shows similarity with anomaly-based intrusion detection systems by
aiming to differentiate malicious behaviour from normal behaviour. In these systems
the normal behaviours of the system, the user, etc. are defined in a general way
and, any deviations from the defined normal profile is considered malicious. The idea
that malicious behaviour has different characteristics from normal behaviour is the
core of intrusion detection systems. In misuse-based systems this idea is applied by

148

defining signatures which show different characteristics of known attacks or system
vulnerabilities than normal behavior. The latter approach is employed in this research.

Efficiency: This research proposes a novel approach by discovering different trade-offs
between functional and non-functional properties of programs. Our main contribution
in this thesis is to evolve a set of programs for each attack offering different trade-offs
between intrusion detection ability and energy usage. Moreover, we investigate if it
is better to evolve separate programs for each attack or one program to detect both
attacks. Our techniques can be used to generate solution sets with the best (or near
best) trade-offs possible. A final choice between solutions making different tradeoffs
rests with the designer.

Intrusion Detection Architecture: A suitable intrusion detection architecture is
investigated in this thesis. Even though the same architecture has been investigated
before in other approaches, it is a novel approach in terms of proposing how to
choose monitoring nodes in MANETs by considering limited resources. Beside energy
consumption of programs, energy consumption by message sending and receiving in the
cooperative detection is taken into account. The interaction between IDS agents and
the number of nodes participating in detection are reduced by using multi-objective
optimization techniques.

To conclude in this thesis we demonstrate the potential use of evolutionary computation
techniques to discover complex properties of MANETs and to propose a suitable
intrusion detection on this new environment respectively. Target audiences are artificial
intelligence and mobile ad hoc networks community. The properties of MANETs taken
into consideration in this research could be summarized as mobility, lack of concentra-
tion points, limited power and limited bandwidth. The mobility issue is considered in
the design stage by adding features reflecting mobility levels of the network (directly
or indirectly) to the model. To overcome lack of concentration points which are used
to monitor all network traffic in conventional networks, a distributed and coopeative
architecture is proposed to get information beyond local data. Limited resource issues
are taken into account by applying a multi-objective optimization technique which aims
to optimize power and bandwidth usage of IDS agents as well as their detection ability.

The work presented in this thesis crosses sub-disciplines of computer science. We have
endeavoured to present our work to different communities. Thus, publications have
appeared in fora of interest to the ad hoc networks and wireless networks community as
well as fora familiar to the AI/evolutionary computation community.

149

8.3 Future Research

The potential areas for future research are summarized below:

Applying evolutionary computation techniques to other areas: In this researh,
we show how to apply evolutionary computation techniques to the problem of intrusion
detection in MANETs and how to explore different trade-offs between criteria in such
resource-limited networks. The work proposed in this research could be adapted easily
to other areas such as wireless sensor networks. It is likely that for wireless sensor
networks the ability to make good trade-offs will be particularly important since these
networks are more resource-constrained than MANETs.

Exploration of new attacks: More research is needed to analyze and discover
MANET attacks. Programs could be evolved for the detection of new attacks by
using the techniques proposed in this thesis. Similar attacks which have similar effects
on a network could be categorized (e.g. DoS attacks) and programs to detect these
attacks together could be evolved. It is believed that these attacks could have common
signatures and evolving programs to detect these attacks together could be more
efficient than detecting them separately. Futhermore distributed attacks which cannot
be detected locally and have a distributed effect on the network (e.g. network scans)
could be explored by using cooperative intrusion detection approach proposed in this
research. Our approach could evolve effective programs to detect attacks which seems
normal to a node but malicious if detected cooperatively.

Improving our approach: In this research we have mainly focused on the data
collection and detection components of an IDS. We have dealt only with the raising
of alarms in the response component. However there is a tendency in the research
of intrusion detection to prevent future attacks by active responses. In MANETs
few researchers have employed reputation systems. Those systems maintain a list of
misbehaving nodes and exclude these nodes from network operations. Our approach
could be improved by developing an aggregation mechanism for alarms produced by
each node and adding an active response module. Moreover it could be integrated with
other intrusion detection techniques in order to increase effectiveness of the overall
system.

More research could be done to investigate a suitable intrusion detection architecture
for MANETs. For example, more sophisticated monitoring node assignment algorithms
could be developed that take into account other factors such as nodes’ coverage areas,

150

the amount of traffic passing on them, and the like. In addition, it is not yet established
how many nodes in a MANET need also participate in IDS. Thus, we could explore
whether a small number of nodes with high computational ability is better than many
nodes with lower computational budgets.

To conclude we believe that artificial intelligence based approaches to program synthesis
such as grammatical evolution, genetic programming, and multi-objective evolutionary
computation, are of significant potential benefit for the evolution of IDS programs for
challenging complex environments such as MANETs and we encourage the research
community to explore their use.

151

152

References

[1] BonnMotion: A mobility scenario generation and analysis tool.
http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/. 99,
110

[2] Ecj18: A Java-based evolutionary computation research system.
http://cs.gmu.edu/ eclab/projects/ecj/. 95, 108, 119

[3] Intrusion detection message exchange format (IDMEF).
http://www.ietf.org/html.charters/OLD/idwg-charter.html. 42, 52

[4] KDD cup 1999 intrusion detection data set.
http://kdd.ics.uci.edu/databases/kddcup99/. 89, 90

[5] libGE: A C++ library for grammatical evolution. http://bds.ul.ie/libGE. 96, 108,
111

[6] Mobile agent. http://en.wikipedia.org/wiki/Mobile agent. 46

[7] ns-2: The network simulator. http://www.isi.edu/nsnam/ns. 99, 110

[8] Quadratic programming. http://en.wikipedia.org/wiki/Quadratic programming.
112

[9] SimpleScalar. http://www.simplescalar.com/. 117, 118

[10] Snort. http://www.snort.org/. 59

[11] A. Abraham and C. Grosan. Evolving intrusion detection systems. In Genetic
Systems Programming: Theory and Experiences, volume 13, pages 57–79. Springer,
2006. 89, 91

[12] A. Abraham, C. Grosan, and C. Martiv-Vide. Evolutionary design of intrusion
detection programs. International Journal of Network Security, 4:328–339, 2007.
89

[13] T. Anantvalee and J. Wu. A survey on intrusion detection in mobile ad hoc
networks. In Wireless Network Security, pages 159–180. Springer, 2007. 45, 46, 73

[14] F. Anjum, D. Suhbadrabandhu, and S. Sarkar. Signature based intrusion detection
for wireless ad hoc networks: a comparative study of various routing protocols. In
Proceedings of the 58th IEEE Vehicular Technology Conference. 60

153

[15] F. Anjum and R. Talpade. Lipad: Lightweight packet drop detection for ad hoc
networks. In Proceedings of the 60th IEEE Vehicular Technology Conference, pages
1233–1237. IEEE, 2004. 8, 67, 68

[16] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An on demand se-
cure routing protocol resilient to byzantine failures. In Proceedings of the ACM
Workshop on Wireless Security, 2002. 37

[17] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical Re-
port 99–15, Department of Computer Engineering, Chalmers University of Tech-
nology, 2000. 41, 43

[18] W. Banzhaf. Genotype-phenotype mapping and neutral variation –a case study
in genetic programming. In Proceedings of the International Conference on Evo-
lutionary Computation: The Third Conference on Parallel Problem Solving from
Nature, LNCS 866, pages 322–332. Springer, 1994. 88

[19] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francome. Genetic Program-
ming: An Introduction on the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufman Publishers, 1998. 84

[20] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level power analysis and optimizations. In Proceedings of the 27th International
Symposiyum on Computer Architecture (ISCA-27), 2000. 117, 118

[21] S. Buchegger and J. Le Boudec. Nodes bearing grudges: Towards routing security,
fairness, and robustness in mobile ad hoc networks. In Proceedings of the 10th
Euromicro Workshop on Parallel, Distributed and Network-based Processing, pages
403–410. IEEE Computer Society, January 2002. 7, 66, 67

[22] S. Buchegger, C. Tissieres, and J.-Y. Le Boudec. A test-bed for misbehaviour
detection in mobile ad-hoc networks –how much can watchdogs really do? In Pro-
ceedings of the IEEE Workshop on Mobile Computing Systems and Applications,
2003. 34

[23] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing (WCMC):
Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications,
2:483–502, 2002. 99

[24] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys, 41, 2009. 40

154

[25] J.H. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc net-
works. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), pages 22–31, 2000. 116

[26] H. Chivers and J.A. Clark. Smart dust, friend or foe? –replacing identity with
configuration trust. Computer Networks, 46(5):723–740, 2004. 32

[27] C. A. C. Coello, G. B. Lamont, and D. A. V. LinkVeldhuizen. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Springer US, 2002. 119

[28] M. Crosbie and G. Stafford. Applying genetic programming to intrusion detection.
In Proceedings of the AAAI Symposium on Genetic Programming, 1995. 89

[29] D. Denning. An intrusion detection model. IEEE Transactions on Software Engi-
neering, 13(2):222–232, 1987. 22, 39

[30] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2003. 81, 82, 83

[31] L. M. Feeney. An energy consumption model for performance analysis of routing
protocols for mobile ad hoc networks. Mobile Networks and Applications, 6:239–
249, 2001. 137

[32] A. Fourati and K.A. Agha. An IDS first line of defense for ad hoc networks. In
Proceedings of the Wireless Communications and Networking Conference, pages
2619–2624, 2007. 59

[33] S. Gavini. Detecting packet-dropping faults in mobile ad-hoc networks. Master’s
thesis, School of Electrical Engineering and Computer Science, Washington State
University, 2004. 69

[34] R. Guha, O. Kachirski, D.G. Schwartz, S. Stoecklin, and E. Yilmaz. Case-based
agents for packet-level intrusion detection in ad hoc networks. In Proceedings of
the 17th International Symposium on Computer and Information Sciences, 2002.
7, 59

[35] Z.J. Haas, J. Deng, B. Liang, P. Papadimitratos, and S. Sajama. Wireless ad hoc
network. In Encyclopedia of Telecommunications. Wiley-Interscience, 2002. 28

[36] E. Hansson, J. Gronkvist, K. Persson, and D. Nardquist. Specification-based intru-
sion detection combined with cryptography methods for mobile ad hoc networks.
Technical report, FOI Swedish Defence Research Agency/Command and Control
Systems, 2005. 57

155

[37] H.M. Hassan, M. Mahmoud, and S. El-Kassas. Securing the AODV protocol
using specification-based intrusion detection. In Proceedings of the 2nd ACM In-
ternational Workshop on Quality of Service and Security for Wireless and Mobile
Networks, pages 33–35, 2006. 57

[38] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The architecture of a network
level intrusion detection system. Technical report, Computer Science Department,
New Mexico, 1990. 39

[39] C.-Y. Hu, A. Perrig, and D.B. Johnson. Packet leashes: A defence against worm-
hole attacks in wireless ad hoc networks. In Proceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications (INFOCOM), 2003. 37

[40] Y.-C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing
protocol for ad hoc networks. In Proceedings of the 8th International Conference
on Mobile Computing and Networks, pages 12–23, 2002. 37

[41] Y.-C. Hu, A. Perrig, and D.B. Johnson. Rushing attacks and defence in wireless ad
hoc network routing protocols. In Proceedings of the ACM Workshop on Wireless
Security, 2003. 36

[42] Y. Huang, Wei Fan, Wenke Lee, and Philip S. Yu. Cross-feature analysis for detec-
tion ad-hoc routing anomalies. In Proceedings of the 23rd International Conference
on Distributed Computing Systems (ICDCS). 7, 44, 49, 50, 52, 117

[43] Y. Huang and W. Lee. A cooperative intrusion detection system for ad hoc net-
works. In Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks, 2003. 7, 49, 50, 52, 75

[44] Y. Huang and Wenke Lee. Attack analysis and detection for ad hoc routing pro-
tocols. In Proceedings of the 7th International Symposium on Recent Advances in
Intrusion Detection (RAID’04), pages 125–145. Springer, 2004. 7, 41, 61

[45] J.-P. Hubaux, L. Buttyan, and S. Capkun. The quest for security in mobile ad hoc
networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad
hoc Networking and Computing, pages 146–155, 2001. 29, 33

[46] P. Jacquet, P. MÃijhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot.
Optimized link state routing protocol for ad hoc networks. In Proceedings of the
IEEE International In Multi Topic Conference (INMIC), pages 62–68, 2001. 28,
58

156

[47] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless net-
works. In Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.
28

[48] D. M. Johnson, A. M. Teredesai, and R. T. Saltarelli. Genetic programming in
wireless sensor networks. In Proceedings of the European Conference on Genetic
Programming (EUROGP 2005), LNCS 3447, pages 96–107. Springer, 2005. 90

[49] O. Kachirski and R. Guha. Effective intrusion detection usign multiple sensors in
wireless ad hoc networks. In Proceedings of the 36th IEEE International Conference
on System Sciences, 2003. 7, 46, 47, 49, 54, 55, 117

[50] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and
countermeasures. Elsevier’s Ad Hoc Networks Journal: Special Issue on Sensor
Network Applications and Protocols, 1(2–3):293–315, 2003. 36

[51] A. Karygiannis, E. Antonakakis, and A. Apostolopoulos. Detecting critical nodes
for MANET intrusion detection systems. In Proceedings of the 2nd International
Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing,
2006. 75

[52] P. Kazienko and P. Dorosz. Intrusion detection systems (IDS), 2004.
http://www.windowsecurity.com/articles/IDS-Part2-Classification-methods-
techniques.html. 40

[53] H. Kim, D. Kim, and S. Kim. Lifetime-enhancing selection of monitoring nodes for
intrusion detection in mobile ad hoc networks. International Journal of Electronics
and Communications, 60:248–250, 2006. 116, 117

[54] J. Kong, X. Hong, and M. Gerla. A new set of passive routing attacks in mobile ad
hoc networks. In Proceedings of the IEEE Military Communications Conference
(MILCOM), 2003. 33

[55] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992. 84

[56] S. Laniepce, J. Demerjian, and A. Mokhtari. Cooperation monitoring issues in ad
hoc networks. In Proceedings of the International Conference on Communications
and Mobile Computing, pages 695–700, 2006. 47

[57] W. Li. Using genetic algorithm for network intrusion detection. In Proceedings
of the United States Department of Energy Cyber Security Training Conference,
2004. 89

157

[58] Y. Li and J. Wei. Guidelines on selecting intrusion detection methods in MANET.
In Proceedings of the Information Systems Educators Conference, 2004. 21, 29

[59] Y. Lu, Y. Zhong, and B. Bhargava. Packet loss in mobile ad hoc networks. Tech-
nical Report 03–009, Department of Computer Science, Purdue University, April.
79, 80

[60] E. Lundin and E. Jonsson. Survey of intrusion detection research. Technical Report
02–04, Department of Computer Engineering, Chalmers University of Technology,
2002. 40, 42

[61] M. Maleki, K. Dantu, and M. Pedram. Power-aware source routing protocol for
mobile ad hoc networks. In Proceedings of the International Symposium on Low
Power Electronics and Design, pages 72–75, 2002. 116

[62] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in
mobile ad hoc networks. In Proceedings of the ACM International Conference on
Mobile Computing and Networking (MOBICOM), pages 255–265, 2000. 7, 63, 65,
66, 68, 108

[63] L. Me. GASSATA, A genetic algorithm as an alternative tool for security audit
trails analysis. In Proceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID’98), 1998. 89

[64] S. Mehfuz and M. N. Doja. Swarm intelligent power-aware detection of unautho-
rized and compromised nodes in MANETs. Journal of Artificial Evolution and
Applications, 2008. 116

[65] R. Molva and P. Michiardi. Security in ad hoc networks. In Proceedings of the Per-
sonal Wireless Communications (PWC’03), LNCS 2775, pages 756–775. Springer,
2003. 28

[66] D. J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3:199–230, 1995. 94

[67] P. Ning and K. Sun. How to misuse AODV: A case study of insider attacks
against mobile ad hoc routing protocols. In Proceedings of the IEEE Workshop on
Information Assurance, pages 60–67, 2003. 32, 35

[68] P. Ning and K. Sun. How to misuse AODV: A case study of insider attacks against
mobile ad hoc routing protocols. Technical report, Department of Computer Sci-
ence, North Caroline State University, 2003. 80

158

[69] M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolu-
tionary Computation, 5:4:349–358, 2001. 86

[70] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language. Springer, 2003. 87, 88, 109, 111

[71] J.-M. Orset, B. Alcalde, and A. Cavalli. An efsm-based intrusion detection system
for ad hoc networks. In Proceedings of the Automated Technology for Verification
and Analysis, pages 400–413, 2005. 59

[72] J. Parker, J. Undercoffer, J. Pinkston, and A. Joshi. On intrusion detection and
response for mobile ad hoc networks. In Proceedings of the 23th IEEE International
Performance Computing and Communications Conference, 2004. 8, 68

[73] C. Perkins, E. Belding-Royer, and S. Dan. Ad hoc on-demand distance vector
(AODV) routing, 2003. http://www.ietf.org/rfc/rfc3651.txt. 28, 78

[74] N.J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R.A. Olsson. A method-
ology for testing intrusion detection systems. IEEE Transactions on Software
Engineering, 22:719–729, 1996. 42

[75] R.S. Puttini, J.-M. Percher, L. Me, O. Camp, R. Jr. Sousa, C.J.B. Abbas, and
L.J. Garcia-Villalba. A modular architecture for distributed IDS in MANET. In
Proceedings of the Computational Science and Its Applications: LNCS 2669, pages
91–113, 2003. 7, 40, 62

[76] R. Roman, C. Alcaraz, and J. Lopez. A survey of cryptographic primitives and
implementations for hardware-constrained sensor network nodes. Mobile Networks
and Applications, 12:231–244, 2007. 13, 115, 116

[77] Lippmann R.P., Fried D.J., Graf I., Haines J.W., Kendall K.R., McClung D.,
Weber D., Webster S.E., Wyschogrod D., Cunningham R.K., and Zissman M.A.
Evaluating intrusion detection systems: The 1998 darpa off-line intrusion detection
evaluation. In Proceedings of the 2000 DARPA Information Survivability Confer-
ence and Exposition (DISCEX), volume 2, pages 12–26, 2000. 42

[78] Lippmann R.P., Haines J.W., Fried D.J., Korba J., and Das K. Analysis and results
of the 1999 darpa off-line intrusion detection evaluation. In Proceedings of the
International Symposium on Recent Advances in Intrusion Detection (RAID’00),
LNCS 2212, pages 162–182. Springer, 2000. 43

159

[79] C. Ryan, J.J. Colline, and M. O’Neill. Grammatical evolution: Evolving programs
for an arbitrary language. In Proceedings of the 1st European Workshop on Genetic
Programming, LNCS 1391, pages 83–95. Springer, 1998. 86, 123

[80] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, and E.M. Belding-Royer. A secure
routing protocol for ad hoc networks. In Proceedings of the 10th IEEE Conference
on Network Protocols, pages 12–23, 2002. 37

[81] S. Singh, M. Woo, and C. S. Raghavendra. Power aware routing in mobile ad
hoc networks. In Proceedings of the Annual International Conference on Mobile
Computing and Networking, pages 181–190, 1998. 116

[82] S.N. Sivanandam and S.N. Deepa. Introduction to Genetic Algorithms. Springer,
2008. 111

[83] A.B. Smith. An examination of an intrusion detection architecture for wireless
ad hoc networks. In Proceedings of the 5th National Colloquium for Information
System Security Education, 2001. 7, 44, 60, 117

[84] D. Song, M. I. Heywood, and A. Nur Zincir-Heywood. Training genetic program-
ming on half a million patterns: An example from anomaly detection. IEEE
Transactions on Evolutionary Computation, 9(3), June 2005. 90, 91

[85] T. Srinivasan, V. Mahadevan, A. Meyyappan, A. Manikandan, M. Nivedita, and
N. Pavithra. Hybrid agents for power-aware intrusion detection in highly mobile
ad hoc networks. In Proceedings of the International Conference on Systems and
Network Communication. IEEE Computer Society, 2006. 117

[86] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-
hoc wireless networks. In Proceedings of the International Workshop on Security
Protocols. Springer, 1999. 30, 36

[87] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko,
R. Balupari, C.-Y. Tseng, and T. Bowen. A general cooperative intrusion detec-
tion architecture for MANETs. In Proceedings of the 3rd International Workshop
on Information Assurance, pages 57–70, 2005. 7, 53, 117

[88] B. Sun. Intrusion Detection in Mobile Ad Hoc Networks. PhD thesis, Computer
Science, Texas A&M University, 2004. 52, 93

[89] B. Sun, K. Wu, and U.W. Pooch. Zone-based intrusion detection for mobile ad hoc
networks. International Journal of Ad Hoc and Sensor Wireless Networks, 2(3),
2003. 7, 32, 51, 52, 53, 75, 81

160

[90] C.-Y. Tseng, P. Balasubramayan, C. Ko, R. Limprasittiporn, J. Rowe, and K. Le-
witt. A specification-based intrusion detection system for AODV. In Proceedings
of the ACM Workshop on Security in Ad Hoc and Sensor Networks (SASN), 2003.
7, 41, 56, 107

[91] C.H. Tseng, T. Song, P. Balasubramanyam, C. Ko, and K. Levitt. A specification-
based intrusion detection model for OLSR. In Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection (RAID’05), LNCS 3858,
pages 330–350. Springer, 2005. 58

[92] C.H. Tseng, S.-H. Wang, Wenke Lee, C. Ko, and K. Lewitt. Demem: Distributed
evidence driven message exchange intrusion detection model for MANET. In Pro-
ceedings of the 9th International Symposium on Recent Advances in Intrusion De-
tection (RAID’06), pages 249–271. Springer, 2006. 7, 44, 57, 59, 75

[93] P. Uppuluri and R. Sekar. Experiences with specification-based intrusion detection.
In Proceedings of the Recent Advances in Intrusion Detection (RAID’01), LNCS
2212, pages 172–189. Springer, 2001. 41

[94] G. Vigna, S. Gwalani, K. Srinivasan, E. M. Belding-Royer, and R. A. Kemmerer.
An intrusion detection tool for AODV-based ad hoc wireless networks. In Proceed-
ings of the 20th Annual Computer Security Applications Conference (ACSAC’04),
pages 16–27, Washington, DC, USA, 2004. IEEE Computer Society. 107, 108

[95] M. Wang, L. Lamont, P. Mason, and M. Gorlatova. An effective intrusion detection
approach for OLSR MANET protocol. In Proceedings of the 1st IEEE ICNP
Workshop on Secure Network Protocols, pages 55–60, 2005. 59

[96] X. Wang, T. Lin, and J. Wong. Feature selection in intrusion detection system
over mobile ad-hoc network. Technical report, Department of Computer Science,
Iowa State University, 2005. 73, 75

[97] T. Weise. Genetic programming for sensor networks. Technical report, Distributed
Systems Group, Fachbereich 16: Elektrotechnik/Informatik, University of Kassel,
2006. 90

[98] D. R. White, J. Clark, J. Jacob, and S. Poulding. Evolving software in the presence
of resource constraints. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO’08). Springer, 2008. 123

[99] D. R. White and S. Poulding. A rigorous evaluation of crossover and mutation in
genetic programming. In Proceedings of the Genetic and Evolutionary Computation
Conference (EuroGP’08), LNCS 5481, pages 220–231. Springer, 2009. 109, 111

161

[100] D. Wilson and D. Kaur. Knowledge extraction from KDD’99 intrusion data using
grammatical evolution. WSEAS Transactions on Information Science and Appli-
cations, 4:237–244, February 2007. 90

[101] B. Wu, J. Chen, J. Wu, and M. Cardei. A Survey on Attacks and Countermeasures
in Mobile Ad Hoc Networks, chapter 12. 2006. 36

[102] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang. Security in mobile ad hoc networks:
Challenges and solutions. IEEE Wireless Communications, 11(1):38–47, 2004. 30

[103] P.-W. Yau and C.J. Mitchell. Security vulnerabilities in ad hoc networks. In
Proceedings of the 7th International Symposium on Communications Theory and
Applications, pages 99–104, 2003. 31, 34

[104] P. Yi, Z. Dai, S. Zhang, and Y. Zhong. A new routing attack in mobile ad hoc
networks. International Journal of Information Technology, 11(2):83–94, 2005. 36

[105] P. Yi, Y. Zhong, and S. Zhang. A novel intrusion detection method for mobile
ad hoc networks. In Proceedings of the Advances in Grid Computing (EGC’05),
LNCS 3470. 57, 117

[106] Y. Zhang and W. Lee. Intrusion detection in wireless ad hoc networks. In Pro-
ceedings of the 6th Annual International Conference on Mobile Computing and
Networking (MobiCom’00), pages 275–283, 2000. 7, 30, 43, 48, 49

[107] Y. Zhang, W. Lee, and Y. Huang. Intrusion detection techniques for mobile wireless
networks. Wireless Networks Journal (ACM WINET), 2(5), September 2003. 7,
48

[108] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm. Technical Report 103, Swiss Federal Institute of Technol-
ogy, 2001. 119, 120

162

	Introduction
	Mobile Ad Hoc Networks (MANETs)
	Intrusion Detection in MANETs
	Thesis Hypothesis
	Thesis Overview

	Security in Mobile Ad Hoc Networks
	Mobile Ad Hoc Networks
	Vulnerabilities of MANETs
	Attacks on MANETs
	Adversary Model
	Attacks

	Intrusion Detection in Mobile Ad Hoc Networks
	Intrusion Detection Systems (IDS)
	Taxonomy of Intrusion Detection Systems
	Future Research on IDS

	Intrusion Detection Issues in MANETs
	Proposed Intrusion Detection Systems in MANETs
	Distributed and Cooperative IDS zhang:intrusionzhang:intrusion2
	Cooperative IDS using Cross-Feature Analysis in MANETs huang:crosshuang:cooperative
	Zone-Based IDS sun:zonebased
	General Cooperative Intrusion Detection Architecture sterne:general
	Intrusion Detection Using Multiple Sensors kachirski:effective
	Specification-Based IDS for AODV tseng:specification
	DEMEM: Distributed Evidence-Driven Message Exchanging Intrusion Detection Model tseng:demem
	Case-Based Agents for Packet-Level Intrusion Detection guha:case
	An IDS Architecture with Stationary Secure Database smith:examination
	An IDS Model Integrating Different Techniques huang:attack
	A Modular IDS Architecture puttini:modular

	Detection of Misbehaving Nodes
	Watchdog and Pathrater marti:mitigating
	Nodes Bearing Grudges buchegger:nodes
	LiPaD: Lightweight Packet Drop Detection for Ad Hoc Networks anjum:lipad
	Intrusion Detection and Response for MANET parker:intrusion

	Discussion of Applicability of Proposed IDSs to MANETs
	Future Research
	Conclusion

	Evolution of An Intrusion Detection System in MANETs
	Threat Model
	Ad-Hoc On Demand Routing Protocol (AODV)
	Attacks on AODV

	Introduction to Evolutionary Computation
	Genetic Programming
	Grammatical Evolution
	Related Work
	Why Evolutionary Computation?

	Evolving Intrusion Detection Rules
	Feature Selection
	Application of Genetic Programming to Intrusion Detection in MANETs
	Application of Grammatical Evolution to Intrusion Detection in MANETs

	Performance Evaluation of Evolutionary Computation on Intrusion Detection
	Simulation Model
	The Performance of Grammatical Evolution
	Variations in Route Disruption Attack

	The Performance of Genetic Programming
	The Performance of Manual Detection
	The Evaluation of GP and GE on Intrusion Detection
	The Testbed
	The Design of Experiments

	Trade-offs in Intrusion Detection in MANETs
	Introduction
	Power Simulation

	Multi-Objective Evolutionary Computation
	Strength Pareto Evolutionary Algorithm (SPEA2)

	Analysis of Power Consumption of Evolved Programs
	Discovering Trade-offs in Intrusion Detection Programs
	Experiment 1: Attack-specific Intrusion Detection Programs
	Experiment 2: Multi-attack Intrusion Detection Programs

	Distributed and Cooperative Intrusion Detection on MANETs
	Introduction
	Intrusion Detection Architectures in MANETs
	Cooperative Detection in Neighbourhood by GE
	Cooperative Detection in Neighbourhood by GP
	Investigating the Resource Usage of Cooperative Detection Programs

	Conclusion
	Summary of Experimentation
	Thesis Contributions
	Future Research

	References

