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Abstract

Torsional Alfvén waves are theoretically predicted to exist in Earth’s outer core, have

been inferred from geophysical data and observed in geodynamo simulations. They

provide an indirect means of investigating core dynamics, core properties and core-

mantle coupling mechanisms. In this study, we produce 1-D forward models of torsional

waves in Earth’s core and study the wave-induced secular variation (SV).

We find that torsional waves undergo significant dispersion during propagation that

arises due to their geometric setting, with long wavelength features being more disper-

sive than short wavelength features. Other key propagation features observed in our

models are phase shifts at Earth’s rotation axis, low amplitude wakes trailing behind

sharply defined pulses, reflections from the tangent cylinder and internal wave reflec-

tions caused by strong magnetic field gradients. These combined dispersive effects

may lead to difficulties in resolving the excitation mechanism of any torsional waves

identified in geophysical data.

Fast torsional waves with amplitudes and timescales consistent with a recent study of

the 6 yr ∆LOD signal (Gillet et al., 2010) induce very rapid, small (maximum ∼2 nT/yr

at Earth’s surface) SV signals that likely could not be resolved in observations of the

Earth’s SV. Slow torsional waves with amplitudes and timescales consistent with, for

example, Zatman & Bloxham (1997), Hide et al. (2000) produce larger SV signals that

reach amplitudes of ∼20 nT/yr at Earth’s surface. We applied the two-part linear

regression jerk detection method developed by Brown et al. (2013) to the SV induced

by slow torsional waves, using the same parameters as used on real SV, which identified

several synthetic jerk events. As the local magnetic field morphology dictates which

regions are sensitive to zonal core flow, and not all regions are sensitive at the same

time, the modelled waves are not able to induce global contemporaneous jerk events

such as that observed in 1969. The synthetic jerks are only observed on regional scales

and generally occur in a single SV component. Also, the identified events are periodic

due to waves passing beneath locations periodically and the SV signals are smoothly

varying. These smooth signals are more consistent with the geomagnetic jerks envisaged

by Demetrescu & Dobrica (2005, 2014) than the sharp ‘V’ shapes that are typically

associated with geomagnetic jerks.
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B.8 Jerk identification in the ż component at Earth’s surface with a 15 yr

window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
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B.10 Jerk identification in the ż component at Earth’s surface with a 20 yr

window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



Chapter 1

Introduction

1.1 Overview

Earth’s magnetic field has existed for at least the last 3.5 billion years and is the largest

feature of our planet. Extending from within the solid inner core to the bow shock,

where it meets the solar wind approximately 90 000 km from Earth’s surface, it shields

Earth’s inhabitants and orbiting satellites from potentially harmful solar radiation (e.g.

Cole, 2003). Observations show striking spatial and temporal variations in the strength

of this protective shield. The fluctuations in time, called secular variation (SV), occur

on a wide range of time scales, from daily interactions with the ionosphere to the

millions of years between polarity reversals. Most SV at approximately annual or

longer periods is associated with the geodynamo, the process that generates a large-

scale self-sustaining magnetic field from fluid motion inside Earth’s outer core (Larmor,

1919, Elsasser, 1946). Progress in understanding the dynamics of the core, and the

associated signals in the magnetic field, is hindered by the fact that the core is too

remote to be probed directly and that numerical dynamo simulations are unable to

reach the relevant parameter regime due to computational limitations (Davies et al.,

2011, King & Buffett, 2013). This thesis focusses on probing rapid outer core dynamics

using torsional Alfvén waves, a type of magnetohydrodynamic (MHD) wave that is

predicted to exist in Earth’s core on decadal timescales, observed in dynamo models,

and inferred from various geophysical datasets.

This chapter introduces the geomagnetic field and its source region to the reader, and

provides the geophysical context for the work undertaken. Following a brief description

1
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of the observed magnetic field and relevant core properties, continuous forms of the

MHD equations are presented, along with a discussion of torsional wave theory. Next,

an overview of torsional waves inferred from geophysical data and identified in previous

numerical geodynamo simulations is provided. The chapter concludes with a list of the

thesis aims and an outline of its structure.

1.2 Earth’s deep interior

The structure and composition of Earth’s interior cannot be measured directly; models

are based on three major sources of information. First, the seismic profile of Earth and

its interpretation (see Fig. 1.1), second, comparisons of primitive meteorite composi-

tions and the known compositions of Earth’s crust and mantle, and third, models of

melting relationships and the behaviour of Earth minerals at high pressure and tem-

perature. Whilst a range of interior models are permitted by the available data, the

one that is most consistent with geochemical constraints and the seismological struc-

ture of the Earth comprises a silicate upper and lower mantle of similar composition

and an Fe-Ni (iron-nickel) core containing between 5% and 15% of a low-atomic-weight

element (e.g. Birch, 1964, McDonough & Sun, 1995). Proposed candidates for the light

element in the core include silicon, sulphur, oxygen, hydrogen and carbon (e.g. Poirier,

1994, Li & Fei, 2003, Hirose et al., 2013). Seismologists in the early twentieth cen-

tury used observations of a peculiar pattern in the distribution of shear wave (S-wave)

arrivals after large earthquakes to deduce that the metallic core is molten (Oldham,

1906, Jeffreys, 1926). Further seismic observations by Lehmann (1936) revealed the

existence of Earth’s solid inner core, which is gradually crystallising outwards at a rate

of approximately 0.3 mm/yr due to secular cooling of the whole planet (e.g. Shimizu

et al., 2005).

A 1-D density structure of the Earth (e.g. Dziewonski & Anderson, 1981) is shown

in Fig. 1.1, which shows a trend of increasing seismic velocity with increasing depth

through the mantle. The upper green and brown layers represent the mantle; the

seismic wave discontinuities at 410 km and 660 km arise due to phase transitions of

mantle minerals at increasing pressures and temperatures (e.g. Shearer, 1995). The D”

region in the lowermost mantle is thought to be a compositionally distinct boundary

layer between the silicate mantle and the iron-nickel outer core, and possibly consists of
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Figure 1.1: A 1-D density structure of the Earth according to the Preliminary Reference
Earth Model (PREM) of Dziewonski & Anderson (1981). The left axis gives depth in km, the
right axis gives pressure in GPa, the upper horizontal axis gives seismic wave velocity in km/s
for S- and P- waves and the lower horizontal axis gives density in 1000 kg/m3. Figure taken
from Romanowicz (2008).

post-perovskite, which is a high-pressure phase of magnesium silicate (Murakami et al.,

2004, Oganov & Ono, 2004, Iitaka et al., 2004). The two yellow-orange layers represent

the outer and inner cores. The strong velocity contrast across the core mantle boundary

(CMB) arises due to the phase change and the transition from silicate mantle rocks to

the dense iron-nickel alloy of the core. The S-wave velocity goes to zero in the outer

core because shear waves cannot be supported in a liquid. The density contrast at the

inner core boundary (ICB) arises due to the phase change and because light elements

are preferentially incorporated into the liquid phase upon crystallisation of the inner

core (e.g. Alfè et al., 2000). This leaves an outer core fluid that is enriched in light

element relative to the inner core, resulting in a denser Fe-Ni solid core.

At the high temperatures and pressures attained throughout Earth’s core, an iron-
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nickel alloy is thought to have a very low viscosity (de Wijs et al., 1998), comparable

to that of water at room temperature and pressure, and recent estimates predict a very

high electrical conductivity (Pozzo et al., 2012, Gomi et al., 2013). This recent upward

revision of the conductivity estimates core has profound consequences for the our un-

derstanding of the core’s thermal history and power requirements of the geodynamo,

though these high values are still the subject of some debate (Zhang et al., 2015). The

fluid in the core is likely undergoing vigorous convective motions due to both thermal

and compositional sources (see Gubbins & Roberts, 1987). The thermal buoyancy

sources arise because the liquid outer core is heated from below by the inner core and

cooled from above by the mantle as the whole planet cools and latent heat is released

at the ICB as the inner core slowly crystallises. Compositional buoyancy sources arise

when the light elements are excluded from the inner core during crystallisation. These

light elements are unstable near the ICB because they are less dense than the ambient

fluid and so they rise up through the outer core. The combination of thermal and

compositional buoyancy ensures that core convection is vigorous and thus the core is

thought to be well-mixed.

Larmor (1919) first proposed that these fluid motions in Earth’s electrically conducting

outer core are responsible for the majority of the observed geomagnetic field by means

of a dynamo mechanism, which converts the kinetic energy of the fluid into magnetic

energy. Given an initial seed magnetic field, such as the interplanetary field, the moving

conducting fluid in the core generates an electric field and an associated magnetic field.

This magnetic field then interacts with the fluid motions, which then generate further

electric and magnetic fields. In this way, a large-scale self-sustaining planetary magnetic

field is generated and maintained against decay. In the next section, the method used

to identify the source region of an observed magnetic field is described, along with a

brief discussion of the structure of the observed geomagnetic field.

1.3 The geomagnetic field and its source region

Fixed ground-based measurements of the geomagnetic field have been made at the

Earth’s surface for several centuries, though spatial coverage was historically limited

to primarily the northern hemisphere (see Jackson et al., 2000). The earliest mea-

surements consisted of nautical logs, which recorded declination (the angle between
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geographic and magnetic north). By the seventeenth century, these measurements

were commonplace, and measurements of inclination (the angle between the magnetic

field vector and the horizontal) became widespread in the eighteenth century. After the

pioneering work of Gauss (1832), and his subsequent papers describing new instrumen-

tation for magnetic observations, continuous measurements of the horizontal and total

magnetic field vector intensities became widespread at land-based observatories (e.g.

Gauss, 1834, 1839, Gauss & Weber, 1840). This resulted in a shift of the spatial bias of

measurements from sea to land, though still in the northern hemisphere and Europe in

particular. In the twentieth century, magnetic observatories adopted a new convention

of measuring the X, Y and Z (north, east and vertically downwards, respectively) com-

ponents of the magnetic field. In recent years, satellite measurements have provided

high-precision magnetic data with excellent spatial and temporal coverage, albeit of

limited duration. Notable satellite missions include MagSat (1979-1980), Ørsted (1990

to present), CHAMP (2000-2010) and the recently launched Swarm constellation of

satellites (2013 to present). The observatory and satellite data are supplemented by

less precise measurements of the remanent magnetic fields recorded in lake sediments

and lavas, and in archaeological artefacts that can become magnetised as they cool from

high temperatures. These palaeomagnetic measurements have lower temporal resolu-

tion, and uneven spatial coverage, but they provide evidence for the field’s existence

for at least the last 3.5 Ga (e.g. McElhinny & Senanayake, 1980, Biggin et al., 2011)

and are key to understanding long-term geomagnetic field behaviour.

An observed planetary magnetic field is the superposition of several sources in the plan-

etary environment (‘external sources’) and the planetary interior (‘internal sources’).

Examples of external sources include currents flowing in the ionosphere and magne-

tosphere, whilst internal sources include motion of an electrically conducting core,

magnetisation of crustal rocks and induced currents in the planetary interior due to

time-varying external magnetic fields (Olsen et al., 2010a). According to Gauss’s math-

ematical theory of magnetic fields in a region containing no electric currents or moving

charged particles (‘source-free’ regions), an observed magnetic field can be treated as

a potential field (a solution to Laplace’s equation) and separated into its internal and

external contributions. The observed geomagnetic field can be treated as such a po-

tential field if Earth’s mantle is presumed to be a source-free region (i.e. electrically

insulating). This is likely a valid assumption for most of the mantle, with the possi-
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ble exception of the D” layer in the lowermost mantle (e.g. Shankland et al., 1993).

Such mathematical analyses show that at least ∼ 97% of the field observed at the

surface has an internal origin, except during periods of high solar activity when in-

teractions between the solar wind and the ionosphere and magnetosphere are stronger

than usual (Olsen & Stolle, 2012). Magnetised material in crustal rocks accounts for

only a few percent of the observed field, on average, though the local crustal signal

can reach hundreds or thousands of nanotesla (nT) close to the surface. For compari-

son, the internally-generated geomagnetic field varies from approximately −65 000 nT

to 65 000 nT at Earth’s surface (see Fig. 1.2a).

The depth to the internal source region may be estimated using a method called mag-

netic sounding (Hide, 1978), which uses the spatial power spectrum of the observed

internally generated magnetic field. The spatial power spectrum at Earth’s surface is

the squared magnitude of the magnetic field as a function of spherical harmonic degree

Rl = (l + 1)
l∑

m=0

[(
gml
)2

+
(
hml
)2]

, (1.1)

where l is the degree, m is the order and gml and hml are the Schmidt quasi-normalised

spherical harmonic coefficients of the magnetic field (Lowes, 1974). Low degree terms

are large-scale (e.g. the degree one dipole), with the length scale of higher harmonic

degrees becoming progressively smaller. Hence, the power spectrum tells us about the

relative importance of different length scales of the field. At Earth’s surface, the power

spectrum consists of two regimes. Up to degree 14, the field is dominated by low degree

terms and there is rapid rolloff of the power with increasing degree. This ‘red’ spectrum

is consistent with a field generated inside the liquid outer core. Higher degree (smaller

scale) features of the core field are obscured by the signals from crustal rocks. Hide

(1978) proposed that at the edge of the generating region, magnetic field should be

created with equal power at all length scales and so the spatial power spectrum should

be ‘white’ (flat). The utility of the spatial power spectrum is that it can be calculated

at any radius outside the generating region, which means that determining the radius

at which the spectrum becomes independent of spherical harmonic degree would give

an estimate for the CMB radius if the outer core were indeed the source region of

the geomagnetic field. Hide & Malin (1981) used this method on the geomagnetic data

available at the time to calculate the depth to the source region of Earth’s field, obtain-
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ing values that were consistent with the seismologically determined outer core radius.

The early estimates from geomagnetic sounding, as well as modern estimates based on

high quality SV data (e.g. Langlais et al., 2014), remain in excellent agreement with

the outer core radius determined by seismology, such as that given by the Preliminary

Reference Earth Model (PREM, Dziewonski & Anderson, 1981).

Not only did the study of Hide & Malin (1981) add further weight to Larmor’s dynamo

hypothesis, the level of agreement between the geomagnetically and seismologically

determined radii also suggests that the mantle is a good electrical insulator, which

provides some justification for using Gauss’s theory to model the geomagnetic field as

a potential field. By treating the internally generated magnetic field as a potential

field and fitting spherical harmonics to observations, we can construct maps of the

magnetic field and its time variations at any radius outside the generating region by

‘upward’ or ‘downward’ continuation of the observationally-constrained surface field.

This extrapolation of the field to different radii involves multiplying the power spectrum

at the surface, given by equation (1.1), by a factor of (a/r)2l+4 where a is Earth’s radius

and r is the radius of interest (Lowes, 1974). ‘Upward continuation’ is used to examine

field structure above Earth’s surface (r > a) and ‘downward continuation’ is used to

examine its structure at the edge of the outer core (r = c, where c is the CMB radius).

Fig. 1.2a shows a contour map of the radial magnetic field at Earth’s surface in 2010

according to COV-OBS, a stochastic magnetic field model that was constrained by

observatory and satellite data spanning the period 1840 to 2010 (Gillet et al., 2013). The

surface geomagnetic field is dominated by a dipole tilted approximately 11◦ from Earth’s

rotation axis, with the south magnetic pole in the northern geographic hemisphere.

The magnitude of the field observed at the surface varies from approximately 25 000 nT

near the equator to approximately 65 000 nT near the poles. As shown in Fig. 1.2b,

the radial magnetic field at the CMB has a much higher amplitude and is considerably

more complex than the surface field. There are many visible small-scale features, the

most prominent of which are high amplitude flux patches under Canada and Siberia in

the northern hemisphere and under equatorially symmetric locations near Antarctica in

the southern hemisphere. Several prominent patches of high amplitude positive radial

magnetic field are seen near the geographic equator and similar high amplitude negative

patches occur at approximately 20◦N. Finally, two reverse flux patches (field patches of

the opposite direction to the surrounding field) are seen under the tip of South America



8 Chapter 1: Introduction

and the tip of Africa.

It is of interest to look at the temporal behaviour of the geomagnetic field as well as

its spatial structure. Magnetic signals in basalts at spreading mid-ocean ridges have

revealed irregular polarity reversals throughout the last ∼ 200 Myr. These are the

most dramatic of the field fluctuations; the axial dipole component changes sign, and

magnetic field strength decreases by up to 75% (e.g. Merrill & McFadden, 1999). These

changes are thought to occur over several millennia, though recent work by Sagnotti

et al. (2014) suggests that a reversal may occur in less than a century. The longest

timescale associated with the geomagnetic field is the rate at which polarity reversals

occur, which could be several times in a million years or there may be long periods in

which it does not reverse, such as during the Cretaceous normal superchron that lasted

for almost 40 Myr (e.g. Constable, 2000).

Several time-varying magnetic field models have been constructed using observations

of the geomagnetic field as constraints. Such models include gufm (Jackson et al.,

2000), which was constrained by historical records for the period 1590 to 1990, and the

CALSxk series (Korte & Constable, 2003, Korte et al., 2005, 2011) of models, which

were constrained by the available palaeomagnetic data for the last 3k, 7k and 10k years.

On timescales of centuries to millennia, the most obvious feature of SV is the westward

drift of several features in the equatorial Atlantic. This feature was first noticed by

Halley (1692), and was later quantified by Bullard et al. (1950) who estimated the drift

rate as approximately 0.2 ◦ yr−1. As well as such directional changes, the geomagnetic

field intensity has been gradually decreasing over the last 150 yr. During this period,

the axial dipole field strength has decreased by approximately 10% (e.g. Bloxham et al.,

1989). Figs 1.3a and 1.3b show snapshots of the SV in 2010 according to the COV-OBS

model of Gillet et al. (2013). As with the magnetic field, the SV at the CMB is higher

amplitude and on much smaller length scales compared to the surface SV. An interesting

point is that the Pacific hemisphere has much weaker SV than the Atlantic hemisphere.

At the CMB, reverse flux patches move from equator to pole (e.g. Terra-Nova et al.,

2015), simultaneously intensifying, a phenomenon that is possibly correlated with the

decay of the axial dipole moment observed at the surface (Gubbins, 1987).

On timescales of months to years, rapid changes in SV (the second temporal derivative

of the magnetic field) have been observed in various locations (e.g. Courtillot & Valet,
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1995, Le Huy et al., 1998). Some of these ‘geomagnetic jerks’ are of global extent

(Alexandrescu et al., 1996), but many jerks occur on a regional basis (Brown et al.,

2013). These rapid magnetic field changes are thought to be a result of rapid core

dynamics, and have previously been linked to a set of axisymmetric core motions called

torsional oscillations (Bloxham et al., 2002), which are thought to occur in Earth’s core

on decadal timescales and produce signals in SV and Earth’s rotation rate (defined

in terms of length-of-day, LOD). Recent work by Holme & de Viron (2013) has linked

signals in LOD, and its time-derivative, with contemporaneous geomagnetic jerk events.

However, the origin of geomagnetic jerks has not yet been identified conclusively and

questions remain as to whether torsional oscillations can produce the kind of core flow

required to cause SV matching observed patterns. The subject of this thesis is the

theory behind torsional waves, their propagation characteristics and the SV signals

that they can produce. The next section of this chapter is an overview of how magnetic

fields are generated in planetary cores and a discussion of the torsional waves in Earth’s

core.
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(a) Earth’s surface

(b) CMB

Figure 1.2: The radial magnetic field in 2010 at (a) Earth’s surface and (b) Earth’s CMB
according to the COV-OBS model (Gillet et al., 2013). Red represents positive magnetic field
(outwards) and blue represents negative magnetic field (inwards). The maps are in Robinson
projection and the scales are in (a) nT and (b) µT.
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(a) Earth’s surface

(b) CMB

Figure 1.3: The radial secular variation in 2010 at (a) Earth’s surface and (b) Earth’s CMB
according to the COV-OBS model (Gillet et al., 2013). Red represents positive SV and blue
represents negative SV. The maps are in Robinson projection and the scales are in (a) nT/yr
and (b) µT/yr.
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1.4 Internal magnetic field generation

The dynamo process in the outer core is governed by the physical laws that encapsulate

the mutual interaction of magnetic fields and the flow of an electrically conducting fluid.

This theoretical framework is known as magnetohydrodynamics (MHD) and consists

of the pre-Maxwell equations of electrodynamics, Ohm’s law for a moving conductor

and conservation laws for mass, momentum and energy (e.g. Davidson, 2001). These

equations, along with their application to the Earth’s core, are the subject of this

section. Continuous forms of the MHD equations are presented, followed by a discussion

of torsional wave theory (a derivation of the torsional wave equation may be found in

Appendix A).

In the following discussion, the electrically conducting fluid of the Earth’s outer core is

confined between two concentric spheres of outer radius rc and inner radius ri, which

correspond to the core-mantle-boundary (CMB) and inner-core-boundary (ICB) respec-

tively. Unless stated otherwise, spherical polar coordinates (r, θ, φ) are used, where r

is radius, θ is colatitude and φ is azimuth, and the position vector at a point on the

sphere is denoted r. Extensive use is also made of cylindrical polar coordinates (s, φ,

z), where s is cylindrical radius, φ is azimuth and z is height. The spheres co-rotate

about the vertical axis (z) with a constant angular velocity Ω.

1.4.1 General equations

Maxwell’s equations of electrodynamics govern the behaviour of associated electric and

magnetic fields in a moving conductor. As the fluid velocities in the core are much

less than the speed of light, it is common practice to ignore relativistic effects and use

the simpler pre-Maxwell form of the laws of electrodynamics. The differential form of

Faraday’s law, Ampère’s law and the solenoidal condition are, respectively,

∇×E = −∂B
∂t

, (1.2)

∇×B = µ0J , (1.3)
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and

∇ ·B = 0. (1.4)

These describe the relationship between an electric field E, a magnetic field B and an

electric current density J , where µ0 is the permeability of free space (4π × 10−7 H/m).

However, Maxwell’s equations are not a complete system of equations; a closure relation

is required to link the electric field, magnetic field and current density with each other.

This coupling relation is known as Ohm’s law, and is given for a conductor moving

with velocity u

J = σ(E + u×B), (1.5)

where σ is the electrical conductivity. Taking the curl of (1.5) and using (1.2) and (1.3)

eliminates the electric field and current density, which yields a transport equation for

the magnetic field called the magnetic induction equation

∂B

∂t
= ∇× (u×B)︸ ︷︷ ︸

(a)

+ η∇2B︸ ︷︷ ︸
(b)

, (1.6)

where η = 1/µ0σ is the magnetic diffusivity. The induction equation gives the change

in magnetic field at a fixed point due to two processes: advection and diffusion. Term

(a) is the advection term, which describes the transport of magnetic field lines by fluid

motion and term (b) describes the modification of magnetic flux by electromagnetic

diffusion. The relative importance of these two processes is measured by the magnetic

Reynolds number, Rm, which is defined as

Rm =
UL

η
=
L2

η

/L
U

=
τu
τη
, (1.7)

where τu is the advection timescale (the time taken for core fluid to traverse the core),

τη is the magnetic diffusion timescale, and U and L are typical velocity and length

scales respectively. When Rm � 1, the change in magnetic field is predominantly due

to advection of field lines by fluid motion, whereas Rm � 1 implies that sources can

create higher magnetic flux, or Ohmic decay can destroy existing flux, more rapidly

than the fluid motion can redistribute it. Roberts & Scott (1965) first argued that the

core can be treated as a perfect conductor on secular variation timescales because the

dynamical timescale of observed features, such as westward drift, is much shorter than

the magnetic diffusion time, which is on the order of several millennia (or 200 000 yr
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for the whole core). In this case, the magnetic field lines can be thought of as being

‘frozen in’ to the core fluid, and the induction equation reduces to its frozen-flux form

∂B

∂t
= ∇× (u×B). (1.8)

Turning to continuum mechanics for a representation of the electrically conducting fluid

in the core, we now assume that the fluid is Newtonian and that convection may be

represented using the Boussinesq approximation, which states that density variations

in the core fluid are small enough to be neglected, except for those involved in the

buoyancy term. Then, the conservation of mass equation is

∇ · u = 0, (1.9)

and the conservation of momentum in a frame of reference rotating with the mantle can

be written in the form of a Navier-Stokes equation, which is an expression of Newton’s

second law of motion:

ρ0

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸

(a)

+ 2ρ0Ω× u︸ ︷︷ ︸
(b)

= −∇p+ ρ′g + J ×B + ρ0ν∇2u, (1.10)

where ρ′ is the departure from the hydrostatic reference density ρ0, Ω is the rotation

vector of the Earth, p is the non-hydrostatic contribution to pressure, g is the acceler-

ation due to gravity and ν is the kinematic viscosity. In this work, gravity is assumed

to vary linearly as g = −gr, where g is acceleration due to gravity at the CMB and

the negative gradient indicates decreasing (i.e. stronger inward directed field) g with

increasing radius.

Term (a) in equation (1.10) represents the material derivative of the momentum and

term (b) represents the Coriolis force, which arises due to the rotation of the Earth.

The right hand side of (1.10) is the sum of all the applied forces that cause changes in

momentum. From left to right, these forces are pressure, buoyancy, the Lorentz force

and viscous forces.

Equation (1.10) may be written in non-dimensional form by scaling length by the

radius of the core rc, time by the magnetic diffusion timescale r2
c/η, the magnetic field

by
√

Ωρ0µ0η and temperature by ∆T , the adiabatic temperature difference from the
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ICB to the CMB. This non-dimensionalisation gives

Ro

(
∂u

∂t
+ u · ∇u

)
+ 2ẑ × u = −∇p+RaΘr + J ×B + E∇2u, (1.11)

where the non-dimensional numbers E = ν/Ωr2
c , Ro = η/Ωr2

c and Ra = αg0∆Tr2
c/Ωη

are, respectively, the Ekman number, Rossby number and Rayleigh number, Θ is the

buoyancy and α is the coefficient of thermal expansion. Note that in this work, we

neglect compositional buoyancy sources and consider an outer core that undergoes

purely thermal convection due to heating from below and cooling from above. Typical

values for these numbers in the Earth’s core are E ≈ 10−15, Ro ≈ 10−9 and Ra ≈ 109

(e.g. Gubbins & Roberts, 1987). The small magnitudes of E and Ro compared to Ra

imply that, to leading order, the inertial and viscous effects are unimportant and the

non-dimensional Navier-Stokes equation can be reduced to the following

2ẑ × u = −∇p+RaΘr + J ×B. (1.12)

The above equation represents the behaviour of the fluid in the slow, long term inviscid

limit and is called the magnetostrophic balance (see §1.4.2 and Hollerbach (1996) for

further details).

Another force balance, called geostrophic, arises in the absence of the Lorentz and

buoyancy forces from the magnetostrophic balance. This balance is written as

2ẑ × u = −∇p, (1.13)

whose curl yields the Taylor-Proudman theorem (Proudman, 1916, Taylor, 1917)

∂u

∂z
= 0, (1.14)

which states that the fluid motion must be independent of z. Therefore, the Coriolis

force plays a key role in determining the large scale dynamics of the outer core because

rapid rotation tends to prevent large variations in velocity parallel to the rotation axis.

In spherical geometry, the Taylor-Proudman theorem implies that the only permitted

flow is purely zonal, i.e. in the azimuthal direction (Bullard & Gellman, 1954), and this

constraint requires that core fluid moves in rigid cylinders, coaxial with the rotation

axis. This flow is called geostrophic and the cylinders of fluid, defined in a cylindrical
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basis (es, eφ, ez), are correspondingly named geostrophic cylinders (GCs), shown in

Figs 1.4a and 1.4b.

1.4.2 Taylor’s constraint

Theoretical considerations suggest that the geodynamo is in the strong field regime, in

which the dominant force balance is the magnetostrophic balance of equation (1.12)

(e.g. Hollerbach (1996); Roberts (2007)). This balance is of considerable interest be-

cause it describes the slow (millennial timescales) evolution of the magnetic field, and

may explain dynamics such as geomagnetic reversals and the longstanding dominance

of the axially symmetric dipolar component of the field (Livermore et al., 2011). Su-

perimposed on this background state are more rapid dynamics such as torsional Alfvén

waves. As Taylor identified in 1963, any magnetic field evolving in the magnetostrophic

balance must satisfy a stringent class of constraints at all times. Taylor’s constraint

is a condition on the morphology of the geomagnetic field inside the core and it is de-

rived by considering the φ-component of the equation describing the magnetostrophic

balance (1.12) averaged over cylindrical surfaces aligned with the Earth’s rotation axis

(GCs). By only considering the azimuthal component of the magnetostrophic balance,

we restrict ourselves to flows that are not directly affected by the Coriolis force (Taylor,

1963). In dimensional form, this is written as∫ ∮
2ρ0(Ω× u)φdΣ = −

∫ ∮
(∇p)φdΣ +

∫ ∮
(ρ′g)φdΣ +

∫ ∮
(J ×B)φdΣ, (1.15)

where dΣ = sdφdz is an element of surface area in cylindrical coordinates (s, φ, z), see

Fig. 1.4a.

The pressure gradient term vanishes because the integrand is an exact derivative

∫ ∮
(∇p)φdΣ =

∫ (∫ 2π

0

∂p

∂φ
dφ

)
dz = 0.

The buoyancy integral also vanishes because gravity is purely radial∫ ∮
(ρ′g)φdΣ = 0.
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(a)

(b)

I

II

III

1221km

OC

IC 3480km

Figure 1.4: Vertical (meridional) slices through the core. (a) Geometry of the geostrophic
cylinders (GCs) defined in a cylindrical coordinate system. The symbols s, φ and z describe,
respectively, radial distance from the rotation axis, azimuth and height. The cylinder half
height is denoted zT . All of the fluid on the same cylindrical surface of radius s has the same
velocity uφ(s). After Dumberry (2009). (b) The Earth’s core is divided into three regions. I)
The region of the outer core (OC) that is outside the tangent cylinder. II) The region of the
outer core that lies inside the tangent cylinder and above the inner core (IC). III) The region
of the outer core that lies inside the tangent cylinder and below the inner core. The tangent
cylinder is shown as a dashed line between region I and regions II and III.
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The Coriolis term can be written in the following form due to conservation of mass

2ρ0

∫ ∮
(Ω× u)φdΣ = 2ρ0Ω

∫ ∮
usdΣ,

where us is the component of the velocity normal to the rotation axis (i.e. in the

cylindrical radial direction). The GC can be extended to form a closed surface by

including a spherical cap at both the top and bottom of the cylinder such that∫ ∮
GC

usdΣ =

∫ ∮
GC

undΣ +

∫ ∮
caps

undΣ,

where un is the normal component of the velocity. The non-penetration condition at the

CMB requires that u ·n = 0 at the CMB, which means that the integral over the caps

is zero. So, using the divergence theorem, we have the following volume integral

2ρ0Ω

∫ ∮
undΣ = 2ρ0Ω

∫ ∫ ∮
(∇ · u)dV,

which must equal zero by the conservation of mass equation (1.9). Therefore, only the

Lorentz term in (1.15) does not identically vanish and we must have∫ ∮
(J ×B)φdΣ = 0. (1.16)

This imposes a condition on the morphology of the internal magnetic field and an

associated dynamic state, which are called the Taylor constraint and Taylor state re-

spectively. Taylor’s constraint specifies that the magnetic field inside the core must be

organised in such a way that the azimuthal Lorentz force vanishes when averaged over

an arbitrary cylindrical surface that is coaxial with the rotation axis, which would occur

by having (J ×B)φ = 0 everywhere or regions of positive and negative (J ×B)φ can-

celling each other out over the whole of Σ. Taylor (1963) suggested that not only must

the field obey this constraint at some initial time, but that departures from a Taylor

state would excite azimuthal accelerations of these rigid cylindrical surfaces in order to

reestablish the Taylor state at all later times. Note that equation (1.16) contains only

the Lorentz term; if Taylor’s constraint is violated, another term must be added back

in to the equation so that the Lorentz force is balanced by another force. Torsional

Alfvén waves arise when inertial forces are used to balance (J ×B)φ. Relative rotation

of adjacent cylinders perturbs magnetic field lines (see the magnetic induction equation

(1.6)) and the stretching of these field lines provides a restoring force to counter the
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perturbation. Fluid inertia carries the cylinder past the equilibrium position and the

restoring force then changes direction, thus allowing torsional waves to propagate along

radial magnetic field lines with a velocity that is linearly dependent on the intensity of

the radial magnetic field. The observation of torsional waves in geophysical data would

indicate that the Earth’s core is in a quasi-Taylor state, in which the azimuthal Lorentz

force vanishes when averaged over a cylinder, except for the part involved in torsional

waves (Dumberry & Bloxham, 2003).

1.4.3 The torsional wave equation

We have previously derived Taylor’s constraint, equation (1.16), which specifies that the

Lorentz torque vanishes when averaged over cylindrical surfaces. When the magnetic

field does not precisely satisfy Taylor’s constraint, inertia may be reintroduced into

equation (1.16) and used to balance the azimuthal Lorentz force to obtain

ρ0

∫
z

∮
∂ug
∂t

sdφdz =

∫
z

∮
(J ×B)φsdφdz, (1.17)

for an incompressible fluid. Since we have integrated in the φ and z directions, the

problem collapses to one dimension and the above equation (1.17), along with the

induction equation, may be used to derive an equation for the time derivative of the

geostrophic flow ug. The resulting 1-D torsional wave equation

∂2ωg
∂t2

=
1

s3µ0ρ0zT

∂

∂s

(
s3zT {B2

s}
∂ωg
∂s

)
(1.18)

was first established by Braginsky (1970), though the derivation in Appendix A follows

that found in Légaut (2005) and Jault & Légaut (2005) (see Braginsky (1970) and

Roberts & Aurnou (2011) for alternative derivations). In this wave equation, ωg is the

angular speed (=uφ/s where uφ is the linear velocity and s is the cylindrical radius),

zT is the cylinder half-height (see Fig. 1.4a), µ0 is the permeability of free space,

ρ0 is the hydrostatic reference density and we have introduced the notation {B2
s} =

1
4πzT

∫ +zT
−zT

∮
B2
sdφdz. As previously stated, the torsional wave problem has collapsed to

one dimension due to integration in the φ and z directions. Although torsional waves

may be modelled in 1-D, Cox et al. (2014) argue that they are fundamentally a 2-D

phenomenon, such as symmetric waves on a circular drum for example, due to their

convergence on an axis at s = 0. If torsional waves were fundamentally 1-D or 3-D,
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they would converge on a point at the origin. Their convergence on an axis imposes

many conditions on the velocity and its derivatives (see §2.3), which would otherwise

be unnecessary. We will return to this point in §3.9 of chapter 3.

1.5 Torsional waves in the core

Assuming an electrically insulating mantle, measurements of the geomagnetic field and

its time variations may be downward continued to the core-mantle boundary (CMB)

and inverted to construct maps of flow at the core surface (Backus, 1968). Dynamical

assumptions can be used to constrain the flow model. One such assumption is that

the time-dependent zonal motions are geostrophic, which are constrained by the core

geometry to be axisymmetric and often characterised by the rotation of nested con-

centric cylinders, Fig. 1.5. All of the fluid on the same geostrophic cylinder has the

same azimuthal velocity, uφ. Due to its simple geometry and the presumed rigidity of

geostrophic cylinders, this part of flow may then be extrapolated into the core interior

(e.g. Le Mouël (1984)).

Figure 1.5: Torsional waves: azimuthal accelerations of rigid coaxial cylindrical surfaces.
Each cylindrical surface moves with a different speed and is coupled to adjacent surfaces by the
radial magnetic field Bs. Note that cylinder height decreases with increasing distance from the
rotation axis.
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Changes in core angular momentum can be calculated from core surface flow models.

If the angular momentum of the core varies, there must be a corresponding variation

in mantle angular momentum in order to satisfy the conservation law for this quantity.

This leads to variations in length of day (∆LOD). According to Jackson et al. (1993) and

Jault et al. (1988), there is good correlation between changes in core angular momentum

carried by geostrophic motions extracted from core flow models based on temporal

changes in the geomagnetic field (secular variation), and observed changes in solid Earth

angular momentum (∆LOD) between 1920 and the present day. Braginsky (1970, 1984)

first used torsional normal modes to explain observations of secular variation (SV) and

decadal variations in ∆LOD. He made the link between theory and observations by

deriving the torsional wave equation and predicted that torsional normal modes would

have a period of approximately 60 years if Bs, the cylindrical radial (s) component of

the magnetic field is ∼0.2 mT. The magnetic field strength and the Alfvén wave group

velocity, VA are related through the equation

VA =

√
{B2

s}
µ0ρ0

(1.19)

More recently, several authors have reported observational evidence to support the

existence of torsional waves in the core (Hide et al., 2000, Pais & Hulot, 2000, Zatman

& Bloxham, 1997, 1999). Zatman & Bloxham (1997, 1999) concluded that the core

flow model that best fits the observed axially and equatorially symmetric component

of SV consists of a steady flow plus several damped harmonic waves with periods of 53

and 76 years (Fig. 1.6).

The same authors subsequently repeated the analysis on a shorter but better temporally

resolved dataset from 1957 to 2001, and noted three standing oscillations with periods

of 13, 20 and 45 years (Zatman & Bloxham (1999)). In both studies, they interpreted

these waves as torsional normal modes and inverted them to derive an estimate of

the internal magnetic field strength responsible for the waves and an estimate of core

viscosity. Pais & Hulot (2000) used a method developed by Le Mouël et al. (1985) for

determining the core surface flow accounting for the observed SV and obtained results in

agreement with Zatman & Bloxham (1997, 1999). Hide et al. (2000) calculated the core

angular momentum based on flow velocity models of Jackson et al. (1993), which were

inferred from SV observed between 1840 and 1990. They noted a dominant latitude
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Figure 1.6: The axisymmetric, equatorially symmetric part of decadal geostrophic core flow,
inferred from secular variation at the CMB (Zatman & Bloxham (1997)). The colour scale is
in km/yr; red represents positive velocity and blue represents negative velocity.

dependent fluctuation with a 65 year period, with angular momentum propagating

from the equatorial to the polar regions (Fig. 1.7). The direction of propagation of the

waves had not been considered in prior studies because previous models were restricted

to standing oscillations.

However, recent work by Gillet et al. (2010) suggests that torsional waves are faster

than previously concluded. They inverted the gufm1 magnetic model (Jackson et al.,

2000) for core flow and found that a recurring torsional wave matches the observed

phase and amplitude of the observed 6 year ∆LOD signal (Fig. 1.8).

As the propagation velocity of Alfvén waves is proportional to magnetic field strength

(see equation (1.19)), this would suggest that the internal core field strength is higher

than previously assumed. Indeed, having calculated an ensemble of admissible profiles

of torsional wave speed as a function of cylindrical radius, Gillet et al. (2010) inferred

an internal field strength of 4 mT, compared to ∼2.5 mT calculated by Buffett (2010),

∼0.3 mT by Buffett et al. (2009) and ∼0.4 mT by Zatman & Bloxham (1997). Inter-

estingly, not only does the internal magnetic field strength differ from previous studies,
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Figure 1.7: Representation of core angular momentum of 20 cylindrical shells as a function
of latitude. The two peaks in mid-latitude coincide with the two geomagnetic jerk events that
occurred during the studied interval (1912 and 1969). Based on the observed propagation
pattern, Hide et al. (2000) suggested that the signal is transmitted from the equatorial to the
polar regions. Taken from Hide et al. (2000).

but also the direction of propagation inferred by Gillet et al. (2010) is from the tangent

cylinder outwards, rather than from the equator to the poles as suggested by Hide et al.

(2000). The tangent cylinder is the imaginary cylinder that is coaxial with the rotation

axis and just touches the inner core (see Fig. 1.4b). As previously mentioned, previous

studies had reported that standing oscillations were a better fit to the observed data

than propagating waves. However, when Gillet et al. (2010) considered only the ∆LOD

time series filtered between five and eight years, they found that propagating waves best

fit the data. Canet et al. (2009) derived a quasi-geostrophic model of rapid (secular

variation timescales) core dynamics and used a variational data assimilation approach

to link the model to the observed secular variation. Using both forward and adjoint

models of torsional waves, which included both zonal and non-zonal velocity compo-

nents, they concluded that torsional waves may be properly resolved using the last

10 years of satellite measurements of the geomagnetic field. Buffett et al. (2009) used

normal mode analyses to recover the excitation source for torsional normal modes and

identified the tangent cylinder as the main source region. A review of prior modelling
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Figure 1.8: (a) Comparison of bandpass-filtered ∆LOD time series with a six-year signal.
The green line is observed LUNAR97 data, the black line is predicted core flow models and the
red line is the result of the torsional wave assimilation of the flow coefficients (b) Time versus
cylindrical radius map of bandpass-filtered angular velocity. The colour scale ranges between
-0.4 km/yr (blue) and +0.4 km/yr (yellow) with contours every 0.02 km/yr. The observed six
year signal is carried by wave-like patterns travelling from the tangent cylinder (the horizontal
dashed black line at s = 0.35) to the outer core equator (s = 1). Taken from Gillet et al. (2010).

attempts of torsional waves can be found in Jault & Légaut (2005).
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1.6 Torsional waves in geodynamo models

Current knowledge of torsional waves based on geophysical observations is limited due

to the sparsity of data, the non-uniqueness of observationally constrained core flow

models (e.g. Holme, 2007) and the fact that, apart from the geostrophic flow, internal

core dynamics remain inaccessible. An advantage of investigating torsional waves using

numerical simulations of the geodynamo is that one can directly analyse the entire core

flow field, examine force balances and look for Taylor states and/or torsional waves.

Since the pioneering work of Glatzmaier & Roberts (1995), many numerical models of

the geodynamo have been developed (for a detailed review see Christensen & Wicht

(2007)). However, although geodynamo models are able to replicate some of the most

important geomagnetic field features, such as polarity reversals, the simulations cannot

run in the appropriate parameter regime for the Earth’s core due to computational

limitations. An important consequence of this is that the force balances involved in

the models may differ from those expected in the Earth’s core, which could prevent the

excitation of torsional waves. In particular, even the most sophisticated geodynamo

models operate with viscosities that are many orders of magnitude higher than esti-

mated core values. If any waves were to develop in models with these high viscosities,

they would be damped more quickly than expected in the Earth’s core, which poten-

tially means that torsional waves do not have the same importance in numerical models

as in the core.

Nevertheless, several authors have reported evidence of torsional waves and/or quasi-

Taylor states in geodynamo models (Kuang, 1999, Rotvig & Jones, 2002, Stellmach &

Hansen, 2004, Takahashi et al., 2005, Wicht & Christensen, 2010). Kuang (1999) inves-

tigated the force balance in the Kuang-Bloxham dynamo model (Kuang & Bloxham,

1997) and concluded that torsional waves would develop in the model, and would be

slightly damped by viscous dissipation. Dumberry & Bloxham (2003) obtained similar

results using the same model and model parameters as in Kuang & Bloxham (1997).

They observed rigid azimuthal accelerations when examining the torque balance on

cylindrical surfaces, but concluded that they were not conventional torsional waves be-

cause Reynolds stresses, which are usually neglected, were relatively large and played

a major role in wave dynamics by providing an alternative means of balancing the az-

imuthal Lorentz force. Wicht & Christensen (2010) provide a more detailed review of
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the above work and other attempts to identify Taylor states and torsional waves in nu-

merical simulations. They also present the results of a suite of geodynamo simulations,

each performed at different parameters, with the aim of identifying torsional waves

based on two criteria: first, the presence of wave-like structures propagating with the

expected Alfvén velocity and second, a dominant azimuthal Lorentz force during prop-

agation. Fig. 1.9 shows wave-like propagating structures in their best model, named

E6, and Fig. 1.10 shows the Taylorisation during the same time period. Taylorisation

is a measure of cancellation of the Lorentz torque, where T = 0 is perfect Taylorisation

(high cancellation) and T ≈ 1 is poor Taylorisation (effectively no cancellation).

Figure 1.9: Velocity of geostrophic cylinders during the time interval in model E6 of Wicht
& Christensen (2010). The time averaged velocity has been subtracted for each cylinder to
highlight faster variations. White lines indicate the path waves should take when propagating
with the Alfvén velocity.

As expected, the cancellation is relatively low during wave propagation, which corre-

sponds to poor Taylorisation (high T ), because torsional waves are excited to reestablish

the Taylor state. Wicht & Christensen (2010) were therefore able to confirm the pre-

dicted link between the magnetostrophic force balance, Taylor states and the existence

of torsional waves.

Recent work by Teed et al. (2013) also focussed upon torsional waves in geodynamo sim-

ulations. Having performed 3-D simulations in a spherical shell in parameter regimes

where Earth-like magnetic fields were produced, they identified torsional waves prop-

agating at the theoretically predicted Alfvén speed in many of their simulations, an

example of which is shown in Fig. 1.11. Waves propagated in the cylindrical radial di-

rection, either inwards or outwards, and were sometimes excited at the tangent cylinder.
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Figure 1.10: Taylorisation measure during the selected time interval in model E6 of Wicht &
Christensen (2010).

Figure 1.11: Contour plot of azimuthal velocity, as a function of time and cylindrical radius,
showing torsional waves propagating from the tangent cylinder at the predicted Alfvén speed,
from Teed et al. (2013).

Typical core transit times were between 4 and 6 years. Teed et al. (2013) noted that

the frequency, location and direction of propagation of the waves were influenced by

the choice of model parameters and also that excitation mechanisms for torsional waves

were available throughout the outer core in their models. They calculated the driving

terms for the observed torsional waves and concluded that both the Reynolds force

and ageostrophic convection acting through the Lorentz force were important driving

mechanisms. In a subsequent work focussing upon torsional waves in 3-D magneto-
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Figure 1.12: Contour plot of azimuthal velocity, as a function of time and cylindrical radius,
showing torsional waves propagating at the predicted Alfvén speed in four different models.
The fifth model (e), is included as an example of a model in which no torsional waves were
observed. Taken from Teed et al. (2015).

convection simulations, Teed et al. (2015) investigated the driving forces of torsional

waves at high and low Ekman numbers. At large Ekman numbers (E ≥ 10−5), they

found that torsional waves are typically only a small fraction of the overall dynamics

and are often driven by Reynolds forcing at various locations throughout the domain

(see Fig. 1.12a). However, decreasing the Ekman number results in more prominent

torsional waves that can be the dominant portion of the short timescale flow (see the

models in Fig. 1.12b-d). The dominance of torsional waves in the models coincides with

a transition to regimes in which wave excitation is found only at the tangent cylinder,

is provided by the Lorentz force and gives rise to periodic wave patterns operating on

approximately 4 to 5 year timescales. Teed et al. (2015) also noted that the core travel

times of their waves became independent of rotation at low Ekman number, with many
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converging to ‘Earth-like’ values of around 4 years.

1.7 Aims and structure of the thesis

The aim of this thesis is to use numerical simulations to answer the following questions

regarding torsional Alfvén waves in Earth’s core and their influence on geomagnetic

secular variation:

1. What are the fundamental propagation characteristics of torsional Alfvén waves?

2. What are the implications of these propagation characteristics on torsional waves

in Earth’s core?

3. Are torsional wave-induced perturbations to the ambient magnetic field resolvable

in SV data?

4. Can torsional waves produce signals in secular variation that are consistent with

geomagnetic jerks?

Chapter 2 describes various analytic and numerical methods used to solve simple wave

equations and discusses their application to the torsional wave equation. The develop-

ment and testing of the numerical models used in this work is also discussed in that

chapter. The results of the torsional wave forward models are presented and discussed in

chapter 3, which elucidates the answers to questions 1 and 2 of the above list. Chapter

4 uses the results contained in the preceding chapter to produce synthetic geomagnetic

secular variation data for propagating torsional waves. Questions 3 and 4 of the above

list are answered in that chapter. The thesis ends in chapter 5 with some concluding

remarks and suggestions for future extensions to the current study.





Chapter 2

1-D modelling: numerical

methods

Many propagation phenomena can be mathematically described as solutions to a hy-

perbolic partial differential equation (PDE). Indeed, the 1-D Cartesian wave equation

is the prototype hyperbolic PDE, and the torsional wave equation also belongs to this

subset of time-dependent differential equations. Some simple PDEs can be solved an-

alytically; for example, as is shown shortly, explicit solutions to the 1-D Cartesian

wave equation (e.g. Morse & Feshbach, 1953) and to the torsional wave equation in

a cylinder (constant zT , Mound & Buffett (2007)) can be derived. However, explicit

solutions to more complicated differential equations are often unknown and so their

solutions must be approximated numerically. To do this, accurate numerical methods

must be employed. There are several categories of numerical methods available, which

include finite differences, finite elements and spectral methods. The application of cer-

tain analytic and finite difference methods to the 1-D Cartesian wave equation and

the torsional wave equation is the subject of this chapter. We begin by solving the

1-D Cartesian wave equation and the equation describing torsional waves in a cylinder,

analytically, to find the normal modes of the systems and discuss how these normal

modes can be used to investigate how waves propagate over time. We then explore how

various finite difference numerical schemes could be implemented to produce models of

torsional waves. The accuracy and convergence of our proposed numerical algorithms

are verified by benchmarking numerical results against the known analytic solutions

for simple test cases. Finally, we describe how these benchmarked numerical methods

31
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can be extended to solve the more challenging problem of torsional wave propagation

in the Earth’s core. Discussion of the results of these torsional wave models is left until

the following chapter.

2.1 Analytic solutions to simplified wave equations

In this section, the 1-D Cartesian wave equation and a simplified version of the 1-D

torsional wave equation are solved analytically. Although these equations are much

simpler than those governing the evolution of torsional waves in the outer core, this

is a useful exercise because knowledge of analytic solutions allows us to test proposed

numerical algorithms before confronting more complicated physical problems.

2.1.1 1-D wave equation in Cartesian coordinates

The simplest possible wave (a ‘wave on a string’) is represented by the 1-D wave equa-

tion in Cartesian coordinates

∂2Ψ(x, t)

∂t2
= c2∂

2Ψ(x, t)

∂x2
, (2.1)

where Ψ is the wave velocity, x is the spatial coordinate, t is time and c is the wave group

speed. This equation is readily solved using the separation of variables method, where

we suppose that the solution Ψ(x, t) constitutes a product of two separate functions of

x and t. Substituting Ψ(x, t) = X(x)T (t) into equation (2.1) gives

1

c2

1

T (t)

d2T (t)

dt2
=

1

X(x)

d2X(x)

dx2
= −k2, (2.2)

where k is a constant. The spatial solution of equation (2.2) takes the form

X(x) = A1 cos (kx) +A2 sin (kx), (2.3)

where A1 and A2 are arbitrary constants to be determined by the boundary condi-

tions.

For example, assuming that a string of length L is fixed at both ends for all time, the

no-slip boundary conditions Ψ(0, t) = 0 and Ψ(L, t) = 0 may be used to deduce that

A1 = 0 and kL = mπ, where m is an integer. This gives the spatial solution below
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Xm(x) = Am sin

(
mπx

L

)
(2.4)

for a particular value of m.

The temporal part of equation (2.2) is

1

T

∂2T

∂t2
= −ω2, (2.5)

where ω = ck, which has solutions of the form

Tm(t) = Bm cos (ωmt) + Cm sin (ωmt), (2.6)

where Bm and Cm are arbitrary constants for each value of m.

For example, the initial condition ∂Ψ
∂t

∣∣∣
x,t=0

= 0 gives Cm = 0 and so a solution to

equation (2.1) is

Ψm(x, t) = Am sin

(
mπx

L

)
cos (ωmt), (2.7)

where each value of m describes a single normal mode (eigenvalue) of the system. The

general solution is a linear sum over all possible values of m (i.e. over all of the normal

modes)

Ψ(x, t) =
∞∑
m=1

Dm sin

(
mπx

L

)
cos(ωmt), (2.8)

where Dm is an arbitrary constant for each value of m.

2.1.2 1-D torsional waves in a cylinder

The canonical version of the 1-D torsional wave equation is

∂2ωg
∂t2

=
1

s3µ0ρ0zT

∂

∂s

(
s3zT {B2

s}
∂ωg
∂s

)
. (2.9)

This section outlines an analytic solution of (2.9) when the equation is simplified by

using a constant zT , which corresponds to a completely fluid cylindrical core, and a

constant {B2
s} profile. Taking the zT and {B2

s} terms outside the spatial derivative

gives
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∂2ωg
∂t2

=
{B2

s}
s3µ0ρ0

∂

∂s

(
s3∂ωg

∂s

)

=
{B2

s}
s3µ0ρ0

(
s3∂

2ωg
∂s2

+ 3s2∂ωg
∂s

)

=
{B2

s}
µ0ρ0

(
∂2ωg
∂s2

+
3

s

∂ωg
∂s

)
. (2.10)

Equation (2.10) can now be solved by separation of variables, supposing that the angu-

lar speed ωg(s, t) constitutes a product of two separate functions of s and t such that

ωg(s, t) = Φ(s)T (t). This substitution yields

Φ(s)
d2T (t)

dt2
=
{B2

s}
µ0ρ0

T (t)

(
d2Φ(s)

ds2
+

3

s

dΦ(s)

ds

)
, (2.11)

where the functions for space and time are now found individually. We now define a

constant α2 = {B2
s}/µ0ρ0 and solve the torsional wave equation for general α.

1

T

d2T

dt2
= α2

(
1

Φ

d2Φ

ds2
+

3

sΦ

dΦ

ds

)
= −k2, (2.12)

where k is a constant. The time equation

1

T

d2T

dt2
= −k2, (2.13)

has solutions of the form

T (t) = A1 cos(kt) +A2 sin(kt), (2.14)

where A1 and A2 are arbitrary constants. The spatial part of (2.12) is a modified Bessel

equation
d2Φ

ds2
+

3

s

dΦ

ds
+

(
k

α

)2

Φ = 0 (2.15)

whose solutions take the form

Φ(s) =
1

s

(
B1J1

(
ks

α

)
+B2Y1

(
ks

α

))
, (2.16)
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where J1(ks/α) and Y1(ks/α) are Bessel functions of order one of the first and second

kind respectively and B1 and B2 are arbitrary constants.

The boundary conditions are now used to remove any unphysical parts of the solutions

at the origin and to determine the constants B1, B2 and k. The rotation axis of a

cylindrical system is not a physical boundary, but a singular point of the cylindrical co-

ordinate system. Care must be taken that the physical solution, itself regular at s = 0,

is not subject to such singularities. Lewis & Bellan (1990) detail the mathematical con-

straints that impose regularity on the solution at the origin in cylindrical coordinates.

They state that the general form for the φ-component of any axisymmetric vector, u,

in cylindrical coordinates is

uφ = sf(s2), (2.17)

where f is any smooth function of s2, which implies that the linear velocity uφ (where

ωg = uφ/s) is zero at the rotation axis for all time. Setting uφ = 0 at s = 0 requires

B2 = 0 due to the singularity of Y1, the Bessel function of the second kind, at the

origin. Scaling the radius of the cylinder by a characteristic length scale leads to non-

dimensional radius of s = 1. The no-slip boundary condition

uφ

∣∣∣
s=1

= 0 (2.18)

at outer edge of the cylinder (s = 1) can then be used to find the eigenvalues, k, of the

system. Thus, k/α are the zeroes of J1(s). The n-th mode of ωg is described by

(ωg)n = (An1 sin(knt) +An2 cos(knt))
1

s
J1

(
kns

α

)
, (2.19)

where the arbitrary constants An1 and An2 now depend on n. The general solution to

equation (2.10) is then a sum over all the possible n values

ωg =

∞∑
n=1

(An1 sin(knt) +An2 cos(knt))
1

s
J1

(
kns

α

)
. (2.20)

These normal mode solutions can be used to test the numerical schemes discussed in

the next section before they are implemented to study the more complicated problem

of torsional wave propagation in the Earth’s core.
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2.2 Numerical schemes

In this section, we discuss two independent methods of investigating wave evolution in

both Cartesian and cylindrical coordinates. The first method is a normal mode ap-

proach in which an initial profile is projected onto a set of basis functions and then

evolved through time. This method relies on knowledge of the analytic solutions to

equations (2.1) and (2.9), which were derived in sections 2.1.1 and 2.1.2 respectively.

The second method uses a time-stepping finite difference algorithm to study the evo-

lution of an initial wave pulse.

2.2.1 Normal mode projections

As discussed in the previous section, the analytic spatial solutions to the 1-D wave equa-

tions previously considered take the form of sine waves in Cartesian coordinates and

Bessel functions in cylindrical coordinates. These are therefore the appropriate basis

functions onto which we project an initial profile f . We then exploit the orthogonality

properties of these basis functions to calculate the coefficient of each mode (i.e. the

contribution of each mode to the projection). To illustrate this point, consider an arbi-

trary initial profile described by an infinite sum of sine waves in Cartesian coordinates

f(x) =

∞∑
m=1

cm sin (mπx), (2.21)

where cm is the contribution of a particular mode m. Multiplying both sides of equation

(2.21) by sin(nπx) and integrating with respect to x gives∫ 1

0
f(x) sin (nπx)dx =

∫ 1

0

∞∑
m=1

cm sin (mπx) sin (nπx)dx, (2.22)

from which it is easy to deduce that each coefficient, cm, is given by

cm = 2

∫ 1

0
f(x) sin (mπx)dx (2.23)

since the sine function obeys the following orthogonality condition (e.g. Boas, 2006; pp.

575) ∫ 1

0
sin (mπx) sin (nπx)dx =

1

2
δmn, (2.24)

where δmn is the Kronecker delta.
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If an arbitrary initial profile f , satisfying the regularity condition of equation (2.17)

and the no-slip boundary condition of equation (2.18), is now defined in cylindrical

coordinates as a function of cylindrical radius, f(s) is projected onto (2.20) by assuming

that the profile may be constructed using an infinite sum of Bessel functions as follows

f(s) =

∞∑
m=1

bmJν(ανms), (2.25)

where ανm is the m-th zero of Jν and ν = 1. We then multiply both sides by a factor

of sJν(ανns) and integrate both sides with respect to s. This allows us to make use of

the following orthogonality property of the Bessel functions of the first kind (e.g. Boas,

2006; pp. 601) ∫ 1

0
Jν(ανms)Jν(ανns)sds =

1

2
[Jν+1(ανm)]2δmn (2.26)

to find an expression for the coefficient of each mode

bm =

∫ 1
0 f(s)Jν(ανms)sds

1
2 [Jν+1(ανm)]2

. (2.27)

Of course, in practice it is not feasible to project onto an infinite sum of normal modes

and we must therefore choose a number of modes that is both practical and gives a

converged solution. A converged solution is one that does not change upon increasing

resolution (adding more modes), which is essential because any initial misfit between

the initial profile and its normal mode projection will be amplified with time. This am-

plification could then introduce spurious wave characteristics that are simply numerical

artefacts. The relative magnitude of the normal mode coefficients and the convergence

of the projections at different stages of the wave evolution were investigated in order

to determine how many modes are required to represent the wave with sufficient accu-

racy (see the next section). Having chosen a suitable resolution, we then introduced

the companion time dependent functions, complex exponentials, to evolve the wave

through time and investigate its propagation.

2.2.1.1 Convergence testing

Before using normal mode projections to examine wave propagation, it is first neces-

sary to determine how many normal modes are required to represent the initial profile

with sufficient accuracy. This was done using two methods; first, by calculating the
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coefficient magnitude of each mode and second, by examining the convergence of the

L2-norm between projections using successively larger numbers of modes. The second

convergence test involves projecting onto a certain number of modes n, and then n+ 5

modes and calculating the L2-norm of the difference between the two projections such

that ∥∥f(x)n+5 − f(x)n
∥∥

2
=

[∫ 1

0

(
f(x)n+5 − f(x)n

)2
dx

] 1
2

, (2.28)

where the subscripts on f(x) denote the number of modes used in the projection.

Perfect convergence would be when this norm falls to zero, which is not possible in

practice because a perfect representation of the initial profile would require an infinite

number of modes.

As a demonstration of this normal mode projection method, consider a Gaussian-like

initial wave profile defined in Cartesian geometry as

f(x) = Ax2(x− 1)2e−(x−0.5
0.1 )

2

, (2.29)

where A is a constant chosen such that the maximum value of the profile is 1, see

Fig. 2.6a. This initial profile is a smooth bell-shaped curve that is centred about

x = 0.5, the midpoint of the domain, and satisfies our chosen boundary conditions.

The absolute magnitude of the contributions of the first 100 normal modes are shown

in Fig. 2.1.

There are two clear trends in the coefficient magnitudes, corresponding to the odd and

even values of the number of the normal mode, m. The even m values have very low

magnitudes of O(10−22) to O(10−30) in the plot; the normal mode calculations were

performed in Maple using a precision of 30 digits. This implies that these coefficients

are actually zero, rather than O(10−30), and that only the odd normal mode numbers

contribute to the projection. Given the symmetry of the initial profile, this result

is unsurprising and may be explained as follows. As described in section 2.2.1, the

orthogonality properties of the basis functions are used to calculate each coefficient.

The chosen initial profile is an even function (symmetric) about x = 1/2, the midpoint

of the domain, whereas sin(mπx) is an odd function (antisymmetric) about x = 1/2

for even values of m. This means that the integral
∫ 1

0 f(x) sin (mπx)dx is zero for

even m because the integrand is an odd function. For odd m, the integrand is an



§2.2 Numerical schemes 39

Figure 2.1: The absolute magnitude of the coefficients of the first 100 normal modes, |cm|, for
the projection of the initial profile given by equation (2.29) onto sine functions.

even function, because both the initial profile and sin(mπx) are even functions, and

so non-zero coefficients cm are obtained. These modes show a decrease in magnitude

with increasing m, which is expected because the initial profile is a smooth bell-shaped

curve and easily represented by the large-scale normal modes.

Fig. 2.2 shows the L2-norm between the projection of the initial profile using successive

numbers of normal modes (e.g. 5 and 10 modes, 10 and 15 modes and so on), with

the final point showing the difference in the projection of 100 and 105 modes. The

figure shows a rapid drop in this norm, which indicates that a well-resolved projection

is achieved using the first few normal modes.

Perfect convergence is reached when this norm, or |cm|, falls to zero because this means

that adding more normal modes results in no change to the projection. In practice,

this is not possible because a perfect projection requires an infinite number of modes.

One convergence criterion that could be used is when |cm| reaches a certain threshold,

below which any non-zero coefficients are considered as noise. For the purposes of the
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Figure 2.2: The L2-norm, given by equation (2.28), of the difference between a projection
of the initial profile described by equation (2.29) onto a certain number of sine modes, n, and
a projection onto n + 5 modes. The values on the horizontal axis show the lower resolution
projection. For example, the leftmost data point shows the norm of the difference between a
projection using 5 modes and a projection using 10 modes and the rightmost point shows the
norm between projections using 100 and 105 normal modes.

discussion in this section, the threshold is set to 10−10. In this case, both Figs. 2.1 and

2.2 show that approximately 30 normal modes, i.e. the first 15 normal modes with odd

m, are sufficient to represent the initial profile given by equation (2.29).

Now considering the convergence of the projection of the same initial profile defined in

a cylindrical geometry as

f(s) = As2(s− 1)2e−( s−0.5
0.1 )

2

, (2.30)

where A is a constant chosen such that the maximum value of the profile is 1, see Fig.

2.9a. Again, this initial profile is a smooth bell-shaped curve that is centred about



§2.2 Numerical schemes 41

s = 0.5, the midpoint of the domain. The absolute magnitude of the contributions of

the first 100 normal modes are shown in Fig. 2.3. In this geometry, projection of the

initial profile requires normal modes with both odd and even m normal modes because

the modes are not symmetric about s = 1/2. As in the Cartesian projection, there is

a rapid drop off in the coefficient magnitudes |bm| because the chosen initial profile is

smooth and easily represented by large-scale normal modes. Fig. 2.4 shows the L2-norm

between the projection of the wave profile using successive numbers of normal modes

(e.g. 5 and 10 modes, 10 and 15 modes and so on), defined by

∥∥f(s)n+5 − f(s)n
∥∥

2
=

[∫ 1

0

(
f(s)n+5 − f(s)n

)2
ds

] 1
2

, (2.31)

where the subscripts on f(s) denote the number of modes used in the projection. The

final point shows the difference in the projection of 100 and 105 modes. The figure

shows a rapid drop in this norm, which indicates that a well-resolved projection is

achieved using the first few normal modes. Again using a threshold value of 10−10,

both figures 2.3 and 2.4 show that the first 30 normal modes are sufficient to represent

the initial profile.

The convergence tests described above are valid only for the specific initial profiles

described by equations (2.29) and (2.30) and do not account for any time variation in

the wave profiles. It should be noted that smaller scale features may be introduced into

the system during wave propagation, which may not be well-resolved if the resolution

adopted does not include enough normal modes. Convergence tests such as those

described above were performed for every initial profile used in this work, and at several

different times during wave evolution to ensure that the initial profile projection is

sufficient to resolve all features that occur during wave evolution. Examples of wave

evolutions obtained using the normal mode projection method will be discussed in the

benchmarking section, 2.4.
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Figure 2.3: The absolute magnitude of the coefficients of the first 100 normal modes, |bm|,
for the projection of the initial profile given by equation (2.30), defined as a function of s in
cylindrical geometry, onto Bessel functions.
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Figure 2.4: The L2-norm, given by equation (2.31), of the difference between a projection of
the initial profile described by equation (2.30) onto a certain number of Bessel modes, n, and
a projection onto n + 5 modes. The values on the horizontal axis show the lower resolution
projection. For example, the leftmost data point shows the norm of the difference between a
projection using 5 modes and a projection using 10 modes and the rightmost point shows the
norm between projections using 100 and 105 normal modes.
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2.2.2 Finite difference codes

Finite difference (FD) methods are techniques that approximate the solution to dif-

ferential equations by replacing the continuous derivatives by numerical differentiation

formulae. These formulae are then applied to discrete meshes, with the value at one

node, x0 say, being dependent upon a linear combination of the sampled values at

nearby points. To do this, we must discretise the problems under consideration in

space and in time. As an example of this method, we now consider a 1-D Cartesian

‘wave on a string’ given by equation (2.1). In this geometry, we have a grid of N interior

nodes xi with constant spacing ∆x such that xi = i∆x, i = 1..N , where ∆x = L
N+1

when the equations are solved in the spatial domain 0 to L. Time is discretised in a

similar manner such that tj = j∆t, where ∆t is the time step. We then apply the

following differentiation formulae to each node, except where the values are given by

boundary conditions, in order to develop an appropriate numerical algorithm

∂Ψ

∂x
(xi, tj) = Ψ′(xi, tj) =

Ψ(xi+1, tj)−Ψ(xi−1, tj)

2∆x
+O((∆x)2) (2.32)

∂2Ψ

∂x2
(xi, tj) = Ψ′′(xi, tj) =

Ψ(xi+1, tj)− 2Ψ(xi, tj) + Ψ(xi−1, tj)

(∆x)2
+O((∆x)2) (2.33)

∂2Ψ

∂t2
= Ψ′′(xi, tj) =

Ψ(xi, tj+1)− 2Ψ(xi, tj) + Ψ(xi, tj−1)

(∆t)2
+O((∆t)2). (2.34)

The FD scheme may be explicit, which calculates the state of the system at a later

time based on the current state, or implicit, which uses both the current and later

state. Although explicit schemes are easier to implement and less numerically intensive

than implicit schemes, they often require very small time steps for numerical stability.

A requirement for numerical stability is the Courant-Friedrichs-Lewy (CFL) condition

γ =
c∆t

∆x
≤ 1 (2.35)

which relates the wave speed c, the stable time step and spatial resolution (e.g. Press

et al., 1992; pp. 1034). However, not all stable schemes give accurate results. To obtain

solutions that are accurate and converged, the spatial resolution must be sufficiently

high and the time step must be small enough to resolve the intrinsic timescales of the
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system. In the case of a wave equation, this timescale corresponds to the time taken

for the wave to travel between adjacent nodes. The convergence of numerical solutions

obtained by FD schemes was investigated by varying the time step and number of

grid points in order to determine the appropriate resolution before producing forward

models of waves. Details of an example FD scheme used to solve the Cartesian wave

equation are given below. Substituting the FD approximations of equations (2.33) and

(2.34) into the 1-D Cartesian wave equation, (2.1), and rearranging terms leads to the

following iterative scheme

Ψ(xi, tj+1) = α2Ψ(xi+1, tj) + 2(1− α2)Ψ(xi, tj) + α2Ψ(xi−1, tj)−Ψ(xi, tj−1) (2.36)

where α = c∆t/∆x. Taking into account the no-slip boundary conditions discussed in

section 2.1.1, this system may be rewritten in matrix form as follows

Ψj+1 = DΨj −Ψj−1 (2.37)

where D is a tridiagonal matrix with elements

D =



2(1− α2) α2

α2 2(1− α2) α2

α2 . . .
. . .

. . .
. . . α2

α2 2(1− α2)


(2.38)

and the entries of Ψj are the numerical approximations at the interior nodes at time

tj

Ψj =



Ψ(x1, tj)

Ψ(x2, tj)
...

Ψ(xN−1, tj)

Ψ(xN , tj)


. (2.39)

This is a second-order implicit FD scheme; each iterate Ψj+1 requires the values of the

preceding two values, Ψj and Ψj−1. This poses a problem because initially we have no

information about the second iterate (at time t = ∆t), which is needed to start the

sequence of iterations. In this scheme, the first iterate Ψ1 is determined by the initial



46 Chapter 2: 1-D modelling: numerical methods

position profile f(x) and the second iterate Ψ2 is either filled in using values calculated

by normal mode projections or determined using an explicit first-order Euler step. One

way to avoid this necessity is to write the second-order wave equation (2.1) as a system

of first-order differential equations such that

∂Ψ

∂t
=
∂v

∂x
(2.40)

and
∂v

∂t
= c2∂Ψ

∂x
, (2.41)

where v is an auxiliary variable. This leads to the following iterative system

vj+1 =
c2∆t

(∆x)2
EΨj + vj (2.42)

where E is a tridiagonal matrix with elements

E =



−2 1

1 −2 1

1
. . .

. . .

. . .
. . . 1

1 −2


(2.43)

and the entries of Ψj and vj are, respectively, the numerical approximations to the

solution and its first time derivative at the interior nodes at time tj . As equations

(2.40) and (2.41) are first-order in time, an initial profile for Ψ and v is sufficient

to commence the sequence of iterations. The centred difference approximation to a

first derivative, described by equation (2.32), is used to ensure that the scheme retains

second-order accuracy in space and time. This technique of using an auxiliary variable

to reduce the order of the system will prove useful when solving the torsional wave

equation because it ensures that iterations can be started by specifying a single initial

condition for each variable. The normal mode solutions to the torsional wave equation

in Earth-like geometries are unknown, so this information cannot be used to ‘infill’

missing iterates at the start of wave propagation as is possible for simpler cases with

known solutions.

Having considered the simplest possible case, the 1-D ‘wave on a string’, we now con-
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sider the numerical schemes that can be used to solve the 1-D torsional wave equation

given by (2.9). As previously discussed, its canonical form is

∂2uφ
∂t2

=
1

s2µ0ρ0zT

∂

∂s

s3zT {B2
s}
∂
(
uφ
s

)
∂s

 . (2.9 revisited)

Introducing an auxiliary variable, τ , we separate the second-order torsional wave equa-

tion (2.9) into two first-order differential equations as follows

∂uφ
∂t

=
1

µ0ρ0zT s2

∂τ

∂s
, (2.44)

∂τ

∂t
= s3zT {B2

s}
∂
(
uφ
s

)
∂s

, (2.45)

following Canet et al. (2009). Equations (2.44) and (2.45) are solved, respectively, for

uφ and τ on separate staggered equally spaced grids using the finite difference schemes

described below.

2.2.2.1 The second-order staggered leapfrog method

The leapfrog FD scheme is widely used for the study of wave propagation and is second-

order in both space and time (e.g. Press et al., 1992; pp.1038-1042). It is an efficient

method that achieves second-order accuracy with only one function evaluation per time

step and does not produce instabilities by amplifying oscillatory motion (e.g. Durran,

1991)). In a staggered scheme, variables are solved on grids that are shifted with respect

to each other by half an interval (see Fig. 2.5). The variables uφ (denoted u here) and

τ are centred on half-mesh points as follows

τn
j+ 1

2

= (zT )j+ 1
2
{B2

s}j+ 1
2
s3
j+ 1

2

 1

sj+ 1
2

un− 1
2

j+1 − u
n− 1

2
j

∆s

− u
n− 1

2
j+1 + u

n− 1
2

j

2s2
j+ 1

2

 (2.46)

u
n+ 1

2
j =

1

µ0ρ0(zT )js2
j

τnj− 1
2

− τn
j+ 1

2

∆s

 , (2.47)

where the superscripts denote the time step and the subscripts denote the spatial node

at which the equations are solved. The values for velocity are calculated on the integer
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Figure 2.5: The grid on which wave equations are discretised when using the staggered leapfrog
finite difference scheme. Note that the space and time mesh points are shifted with respect to
each other by half an interval.

space nodes and half-integer time steps, whereas τ is calculated at the half-integer space

nodes at the integer time steps so the time levels for one variable ‘leapfrog’ over time

levels for the other variable. Substituting the above expressions into a forward Euler

differencing, equations (2.33) and (2.34), gives these equations for the new values of τ

and uφ based on previously calculated values

τn+1
j+ 1

2

= τn
j+ 1

2

+ (zT )j+ 1
2
{B2

s}j+ 1
2
s3
j+ 1

2

∆t

 1

sj+ 1
2

un+ 1
2

j+1 − u
n+ 1

2
j

∆s

− u
n+ 1

2
j+1 + u

n+ 1
2

j

2s2
j+ 1

2


(2.48)

and

u
n+ 1

2
j = u

n− 1
2

j +
∆t

µ0ρ0(zT )js2
j

τnj− 1
2

− τn
j+ 1

2

∆s

 . (2.49)

As this explicit scheme requires solutions at two previous times to calculate a new

solution, a profile for each of uφ and τ at times t = ∆t/2 and t = 0, respectively, is

sufficient to commence the sequence of iterations. Details of the initial and boundary

conditions used in this study are given in section 2.3.

However, one problem with the leapfrog method is that its computational mode (a

spurious part of the numerical solution that is not part of the physical solution) is
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undamped (Durran, 1991). This undamped computational mode slowly amplifies to

produce an instability called ‘time-splitting’ in numerical simulations of nonlinear fluid

dynamics. One way to avoid this instability is the use of a Robert-Asselin filter (Robert

(1966), Asselin (1972)), but this reduces the accuracy of the scheme from second-order

to first-order.

2.2.2.2 The third-order Adams Bashforth method

The multistep differential equation solvers are a class of alternative time differencing

schemes with damped computational modes (e.g. Press et al., 1992; pp. 942-946). Mul-

tistep methods approximate the solution to a differential equation by constructing a

polynomial that passes through the solution at several previous time levels. The order

of the scheme depends on how many previous values are required to calculate the new

value. The third-order Adams-Bashforth scheme (AB3) belongs to this class of inte-

gration techniques and is an explicit finite difference scheme, requiring knowledge of

the solution at three previous time steps in order to calculate the next solution. Like

the leapfrog scheme, AB3 requires only one function evaluation per time step, though

more storage is required due to the use of three previous time levels in every calcula-

tion. Its main advantages over the leapfrog scheme is that AB3 is not subject to the

time-splitting instability and is of higher accuracy, being third-order in time O((∆t)3)

and second order in space O((∆s)2). The maximum stable time step for AB3 is similar

to that permitted by the filtered leapfrog scheme (Durran, 1991).

Considering an initial value problem of the form

dψ

dt
= F (ψ, t), (2.50)

most numerical schemes, including the AB3 scheme, replace the differential equation

for ψ with algebraic equations for the approximation to the true solutions at a set

of discrete time levels. In this notation, we denote ξn as the approximate solution

to (2.50) at time tn where tn = n∆t. The algebraic equations for the solution are

solved repeatedly to step the solution forwards from the initial condition ξ0 = ψ0. The

multistep methods approximate the solution to (2.50) by integrating the differential
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equation over time intervals of ∆t as follows

ψ(tn+1) = ψ(tn) +

∫ tn+1

tn

F (ψ(t), t)dt (2.51)

and the algebraic equation of the particular numerical method provides an approxima-

tion to the integral of F (the right hand side of the differential equation). The AB3

method uses the following formula to approximate the solution to (2.50) at time tn+1

ξn+1 = ξn +
∆t

12

[
23F (ξn)− 16F (ξn−1) + 5F (ξn−2)

]
. (2.52)

Reducing the second-order torsional wave equation (2.9) by splitting it into equations

(2.44) and (2.45) gives two coupled first order time-dependent differential equations of

the same form as (2.50). Equations (2.44) and (2.45) are solved, respectively, for uφ

and τ by time stepping the scheme described by (2.52), with the function F of the

above example being replaced by the right-hand side of the relevant equation (2.44

or 2.45). The two equations are discretised in space and time on the same staggered

equally spaced grids as that used in the leapfrog method, shown in Fig. 2.5. The time

step ∆t and the grid spacing ∆s were chosen such that all models were converged. The

sequence of iterations is started with an initial profile for each variable at time t = 0,

an explicit first-order Euler step at time t = ∆t and a second-order Adams Bashforth

step at time t = 2∆t. Details of the initial and boundary conditions used in this study

are given in the next section.

2.3 Regularity and boundary conditions

The FD numerical schemes require that both uφ and τ are defined on their respective

spatial grids when iterations commence and that boundary conditions are imposed on

uφ at s = 0 and the outer boundary s = rc. For models of torsional waves in the Earth’s

core, rc corresponds to the equator of the core-mantle boundary (=3480 km). Despite

the need for a boundary condition at s = 0, the rotation axis is not a physical boundary.

As previously remarked upon in section 2.2.1, the rotation axis is a singular point of

the cylindrical coordinate system. In order for the physical solution to remain regular

at the origin, the φ-component of any axisymmetric vector in cylindrical coordinates
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must satisfy

uφ = sf(s2), (2.17 revisited)

where f is any smooth function of s2. The Taylor expansion of (2.17) includes only

odd powers of s

uφ = a0s+ a1s
3 + a2s

5 + ..., (2.53)

from which it follows that uφ = 0 at the rotation axis. Dividing equation (2.17) by s

and differentiating with respect to s yields

∂(
uφ
s )

∂s

∣∣∣
s=0

= 2sf ′(s2) = 0. (2.54)

This means that the solution must satisfy constraints simultaneously imposed on both

the velocity uφ and
∂
(
uφ
s

)
∂s at the rotation axis in cylindrical coordinates. Further differ-

entiation of equation (2.54) would yield an infinite hierarchy of higher order conditions

that must also be satisfied at s = 0. Numerically, we impose only the regularity con-

dition uφ = 0 at s = 0 in our models; all other necessary conditions are automatically

satisfied. Note that in subsequent discussions of torsional wave propagation we refer

to interactions with, and reflections at, the ‘boundary’ at s = 0. The reader should

regard these ‘reflections’ at the rotation axis as pseudo-reflections, because they occur

at a singular point of the coordinate system and not at a physical boundary.

A boundary condition is also required for the outer boundary of the domain. Rigid

boundaries, such as the Earth’s CMB, require

u · n = 0 (2.55)

and

u× n = 0, (2.56)

where n is the normal vector to the velocity (e.g. Gubbins & Roberts, 1987). These

are the ‘no-slip’ conditions, which state that flow cannot penetrate the boundary and

that the tangential components of velocity must vanish at the boundary, implying that

u = 0 on the boundary. The no-slip condition is transmitted through the fluid via

viscous effects, which cause fluid to adhere to a rigid boundary and give rise to shear

stresses in the region immediately adjacent to the boundary. A thin boundary layer

forms in this region, across which the velocity undergoes a rapid adjustment from its
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mainstream value (in the bulk of the core fluid) to the value specified on the boundary.

However, an inviscid fluid, as is considered in this work, has no viscosity and therefore

feels no shear effects, even in the presence of a rigid boundary. In this case, the

appropriate boundary condition is called ‘stress-free’, which replaces equation (2.56)

with the requirement that the tangential stresses vanish on the boundary. For the

azimuthal fluid flow involved in torsional waves, the stress-free condition is

∂ωg
∂s

∣∣∣
s=rc

= 0 (2.57)

(Jault & Légaut, 2005), which we impose at the equator of the CMB (s = rc).

Theory predicts that with stress-free boundary conditions applied at the equator of the

CMB, and no coupling between the fluid core and the mantle, total angular momentum

of the core should be conserved. The total angular momentum of the waves, MT , is

the integral of the angular momentum density over the whole core

MT =

∫ rc

0
uφs

2zTds. (2.58)

From the definition of
∂uφ
∂t given by equation (2.44), it follows that

∂MT

∂t
=

1

µ0ρ0

∫ rc

0

∂τ

∂s
ds =

1

µ0ρ0
[τ ]rc0 . (2.59)

This integral vanishes if τ |s=rc = τ |s=0 throughout wave evolution, which is guaranteed

by the stress-free boundary condition at s = rc applied in equation (2.45) and, following

Canet et al. (2009), by initially setting the variable τ to zero on the whole domain.

A Gaussian-like initial profile, that is not a normal mode solution to the torsional

wave equation but satisfies the boundary and regularity conditions, is chosen for uφ.

Although the choice of initial profile is somewhat arbitrary, the Gaussian-like profile

has several desirable properties; it is smooth, continuous and infinitely differentiable.

Also, its simple shape allows the investigation of how the form of the pulse changes

during the wave evolution. The initial profile is given by

uφ = As2(s− rc)2e
−
(
s−(rc/2)

σ

)2

, (2.60)

where A is a constant chosen such that the maximum value of the profile is 1 and σ

determines the width of the pulse. This profile is the same as that described in the
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normal mode projection method section 2.2.1 when σ = 0.1.

2.4 Benchmarking

In this section, solutions to the 1-D Cartesian wave equation (2.1) and of torsional

waves in a cylinder (2.9) obtained from the normal mode projection method and from

finite difference schemes are shown. As the two methods are used to solve the same

equation, but are mutually independent, comparison of the two sets of results provides

a robust and convenient benchmark of the numerical schemes.

2.4.1 1-D ‘wave on a string’ benchmark

Fig. 2.6 shows profiles of a 1-D wave in Cartesian geometry at different times during its

wave evolution, with the red continuous line representing the normal mode (analytic)

solution to the wave equation and the blue crosses representing the results obtained

using a leapfrog FD scheme on a staggered grid. In this test case, no-slip conditions

(Ψ = 0) were used at both boundaries of the domain. There is excellent agreement

between the analytic and numerical solutions, which is a demonstration of the suitability

and accuracy of the implemented numerical methods. Fig. 2.7 is a space-time contour

plot of the same wave evolution, with time along the horizontal axis and x on the

vertical axis. Red indicates a positive wave amplitude and blue indicates a negative

wave amplitude. The 1-D Cartesian wave equation does not define a magnitude for the

velocity Ψ because it is linear and homogeneous, so the velocity in the plots is scaled by

the amplitude of the initial pulse, which is given by equation (2.29). The FD scheme

used 500 interior nodes, a time step of 0.00001 and a wave group speed of 1. The scheme

therefore satisfies the CFL condition of equation (2.35) with γ = 5× 10−3.

The wave begins as one large positive pulse that subsequently splits into two smaller

pulses of equal amplitude (=0.5). These two pulses travel across the domain until they

reflect from the no-slip boundaries at time t = 0.5. Upon reflection, the pulses change

polarity (so that their amplitude becomes -0.5) and travel towards the midpoint of the

domain. The two small negative pulses reach x = 0.5 at time t = 1.0 and form a large

negative pulse that is the exact negative of the initial profile. The large negative pulse

splits apart again and the two small pulses travel towards the domain boundaries.
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Again, the pulses change sign upon reflection and two small positive pulses travel

towards the midpoint of the domain. These two pulses join together to reform the

original pulse when t = 2.0. The wave is symmetric about the midpoint x = 0.5 at

all times. The recovery of the initial wave pulse is an expected result, as is the time

at which this occurs. Any arbitrary wave can be decomposed into contributions from

individual normal modes of the chosen system. For this ‘wave on a string’ example, the

individual normal modes of the system all repeat with multiples of the same frequency

and the initial wave profile is periodically recovered. As previously discussed, the

general solution to equation (2.1) is a linear sum over all possible values of m

Ψ(x, t) =
∞∑
m=1

Am sin

(
mπx

L

)
cos(ωmt), (2.8 revisited)

whose m-th mode has a time dependence of cos (cmπt/L). If a wave travels at speed

c along a string of length L, the m-th normal mode solution to the wave equation has

period Tm = 2L/mc. Therefore, an arbitrary travelling wave solution of the system,

which can be regarded as a superposition of the periodic normal modes, will itself be

periodic in time and the whole system will repeat every time t = 2L/c. Substituting

t = t+ 2L
c leaves 2.8 (revisited) unchanged. In the example shown in this section, L = 1

and c = 1, and so the wave pattern should repeat every t = 2.0, as observed.

A solution to equation (2.1) will obey conservation of energy, which provides another

test for numerical schemes. The total energy consists of the kinetic energy Ek plus the

potential energy Ep such that

E(t) =

∫ L

0
Ek + Epdx =

∫ L

0

1

2

(
∂Ψ

∂t

)2

dx+
1

2
c2

∫ L

0

(
∂Ψ

∂x

)2

dx. (2.61)
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Differentiating equation (2.61) with respect to time gives

dE

dt
=

∫ L

0

∂Ψ

∂t

∂2Ψ

∂t2
dx+ c2

∫ L

0

∂Ψ

∂x

∂2Ψ

∂x∂t
dx

=

∫ L

0

∂Ψ

∂t

∂2Ψ

∂t2
dx+ c2

∂Ψ

∂t

∂Ψ

∂x

∣∣∣L
0︸ ︷︷ ︸−

∫ L

0

∂Ψ

∂t

∂2Ψ

∂x2
dx


= 0

=

∫ L

0

∂Ψ

∂t

∂2Ψ

∂t2
− c2∂

2Ψ

∂x2︸ ︷︷ ︸
 dx

= 0 (since Ψ is a solution to the wave equation)

= 0, (2.62)

which is the requirement for energy conservation because the total energy in the system

must remain constant with time. The conservation of total energy was verified for both

the normal mode and numerical solutions, to accuracies of 16 digits and a few parts in

105 respectively. Since the appropriate boundary condition for torsional waves in an

inviscid core is stress-free (see §2.3), it is of interest to consider how a 1-D ‘wave on a

string’ propagates with this condition imposed at the boundaries (dΨ
dx = 0 at x = 0 and

at x = 1). Fig. 2.8 is a space-time contour plot of the velocity of the 1-D ‘wave on a

string’ with stress-free boundary condition imposed, using the same initial profile as the

no-slip model discussed above. The initial wave pulse splits into two smaller pulses of

amplitude 0.5 that traverse the domain and reflect from the boundaries. Upon reflection

from the stress-free boundaries, there is no change of sign and the two positive wave

pulses travel towards the midpoint of the domain, where they reform the initial pulse

at time t = 1.0. The change in the time at which the initial pulse is recovered is

due the application of the stress-free boundary condition. The analysis of initial pulse

recovery previously discussed is valid only for no-slip boundaries because this was the

boundary condition used to determine the general solution to the wave equation (2.1).

The general solutions differs slightly if the stress-free boundary condition is used to

determine the arbitrary constants.
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2.4.2 Torsional waves in a cylinder

Fig. 2.10 shows profiles of a torsional wave in a cylinder of unit radius (rc = 1) at

different times during its wave evolution, with the red continuous line representing the

normal mode (analytic) solution to the torsional wave equation and the blue crosses

representing the results obtained using the AB3 finite difference scheme and the same

resolution as in the previous Cartesian models (500 interior nodes and a time step of

0.00001). Fig. 2.10 is a space-time contour plot of the same wave evolution. In this

example, the velocity obeys the regularity condition uφ = 0 at the rotation axis and the

no-slip boundary condition uφ = 0 at the outer boundary s = 1. The no-slip boundary

condition was imposed in this benchmarking test case because it is easier to implement

exactly in the normal mode projection codes. Since the stress-free boundary condition

of equation (2.57) is most appropriate for torsional waves modelled in an inviscid outer

core, a numerical model using that boundary condition is discussed in the next chapter.

As the purpose of this chapter is to describe the methods used to obtain results, we

leave discussion of torsional wave evolution until the next chapter and comment only

that there is excellent agreement between the analytic and numerical solutions.

Results from the second-order leapfrog (LF) finite difference scheme were also success-

fully benchmarked against the analytic solutions and AB3 results for torsional waves in

a cylinder (not shown on figures because the LF results plot on top of the AB3 results).

Conservation of angular momentum was also verified for both normal mode and nu-

merical solutions. Although the solutions using the leapfrog and AB3 method matched

closely, the third-order Adams Bashforth method was chosen to produce models of

torsional waves in the Earth’s core due to its strong damping of numerical instabili-

ties. Unlike the leapfrog method, it is not subject to time-splitting instability and has

significantly smaller associated phase speed errors (Durran, 1991).

Having established the suitability of the proposed numerical algorithms for solving the

torsional wave equation in simple test cases, and benchmarked numerical results against

analytic solutions, we now turn our attention to the model geometries and parameters

required for numerical models of torsional waves in the Earth’s core.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k)

Figure 2.6: Profiles of the velocity Ψ of a ‘wave on a string’ during its evolution with no-slip
boundary conditions applied at both ends of the domain. The red continuous line represents
the normal mode (analytic) solution to the wave equation and the blue crosses represent the
results obtained using an FD numerical scheme. The wave amplitude and the time have no
intrinsic scale.
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Figure 2.7: Contour plot of the velocity Ψ of a ‘wave on a string’ with no-slip boundary
conditions applied at both ends, with time on the horizontal axis and x on the vertical axis.
Red corresponds to positive velocity and blue corresponds to negative velocity. The wave group
speed c is equal to 1 in this model.
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Figure 2.8: Contour plot of the velocity of a ‘wave on a string’ with stress-free boundary
conditions applied at both ends, with time on the horizontal axis and x on the vertical axis.
Red corresponds to positive velocity and blue corresponds to negative velocity. The wave group
speed c is equal to 1 in this model.
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(g) (h)

(i) (j)

(k)

Figure 2.9: Profile of the velocity uφ of a torsional wave propagating in a cylinder of unit
radius. The red continuous line represents the normal mode (analytic) solution to the wave
equation and the blue crosses represent the results obtained using the AB3 FD scheme. The
wave amplitude has no intrinsic scale.
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Figure 2.10: Contour plot of the velocity uφ of torsional waves in a cylinder of unit radius,
with time on the horizontal axis and cylindrical radius on the vertical axis. Red corresponds to
positive velocity and blue corresponds to negative velocity. The no-slip condition was imposed
on the outer boundary.
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2.5 Code geometries

Following the successful benchmarking of the numerical schemes, three codes were de-

veloped to solve torsional wave equations better tailored to Earth’s core. The geometries

of these models are:

1. a cylinder of radius rc, where rc is the radius of the outer core (3480 km). The

cylinder height zT is constant in this geometry.

2. a full sphere (no inner core). The cylinder height decreases with increasing cylin-

drical radius such that zT =
√
r2
c − s2 (see Fig. 1.4a for a schematic).

3. an equatorially symmetric spherical shell (the velocities uφ are identical in regions

II and III in Fig. 1.4b). Outside the tangent cylinder, the cylinder height is the

same as in the full sphere case. Inside the tangent cylinder, the height of the inner

core is subtracted from the full sphere case, which gives a piecewise differentiable

function for cylinder height

zT =


√
r2
c − s2 −

√
r2
i − s2 if s < ri√

r2
c − s2 if s ≥ ri

(2.63)

where ri is the inner core radius (1221 km). The difference between the two

models is purely geometric; there is no coupling mechanism between the inner

and outer cores. Note that the height of the geostrophic cylinders tends to zero

at the equator of the CMB (s = rc, see Fig. 1.4b for a schematic).

2.6 Magnetic field profiles

For the majority of the work in the next chapter, we consider three models with a

constant {B2
s} profile, one in a cylinder (model i), a second in full sphere (model ii)

and the third in an equatorially symmetric spherical shell (model iii). In these models,

the {B2
s} profile takes a constant value of 4 (mT)2. This value was chosen because it

gives a core transit time of approximately 6 years, which is consistent with the work

of Gillet et al. (2010). As stated in the derivation of the torsional wave equation in
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Appendix A, the quantity {B2
s} is defined as

{B2
s} =

1

4πzT

∫ +zT

−zT

∮
B2
sdφdz. (2.64)

If the magnetic field were axisymmetric and independent of z, then equation (2.64)

implies that

{B2
s} =

2zT
4πzT

∮
B2
sdφ

=
4πzT
4πzT

B2
s

= B2
s , (2.65)

which requires a non-zero B2
s at s = 0 if {B2

s} 6= 0 at the rotation axis and therefore vio-

lates the divergence-free condition of the magnetic field. However for non-axisymmetric

magnetic fields, the quantities Bs and {B2
s} are not subject to the same requirement;

many different configurations of the magnetic field could give a profile of {B2
s} that is

non-zero at the rotation axis (e.g. an equatorial dipole). We leave the structure of the

radial magnetic field Bs used in models i, ii and iii unspecified, except to remark that a

constant {B2
s} profile requires a non-axisymmetric magnetic field at s = 0 and that we

anticipate many different asymmetric Bs profiles would have the same profile of {B2
s}.

The requirement of axial symmetry is geophysically unreasonable because observations

of the geomagnetic field show that it is not axisymmetric, and indeed no axisymmet-

ric magnetic field could be generated and maintained by a dynamo process (Cowling,

1934). Potential effects of variable {B2
s} are considered in a fourth model (model iv),

which is in a full sphere geometry. Model (iv) uses the magnetic field profile shown in

Fig. 2.11, which is based on a profile taken from a geodynamo simulation (Rob Teed,

personal communication).
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Figure 2.11: The spatially varying {B2
s} profile used in the full sphere model (iv).



Chapter 3

1-D modelling: torsional wave

propagation

In this chapter, results from the previously described 1-D torsional wave models are

presented. Models of torsional waves propagating in an ambient magnetic field whose

radial component has a constant cylindrical average were produced in three geometries:

first, a cylinder of fluid; second, a sphere of fluid; third, an equatorially symmetric

spherical shell. A fourth model, in a sphere, examines torsional wave propagation in an

ambient magnetic field whose cylindrical average is spatially varying. For these models,

figures relating to the velocity uφ are presented, along with a detailed discussion of the

observed propagation characteristics. The key points of investigation include wave

propagation, reflection and dispersion. The chapter concludes with a discussion on the

implications of the observed features on the potential for identifying torsional waves in

geophysical data. This final point is expanded upon in the next chapter, which focusses

on the secular variation induced by torsional wave propagation.

3.1 Parameters and scalings

For the models discussed in this chapter, the scales of length, time and magnetic field

have been non-dimensionalised, respectively, by the radius of the outer core 3480 km,

1 year and 1 mT. The time and length scales have been restored to their correct values

on the contour plot axes, but the velocity uφ has no intrinsic scale. The torsional wave

equation does not define a magnitude for the velocity because it is linear and homo-

67
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geneous, so the velocity in the following plots is scaled by the amplitude of the initial

pulse, which is given by equation (2.60). Also required are values for the permeability

of free space, µ0, and a reference density ρ0 (taken as 9900 kg/m3 in this work). The

torsional wave models do not include viscosity or dissipation terms that take into ac-

count coupling between the core and the mantle or between the inner core and the outer

core. Neglecting the effects of a conducting layer at the base of the mantle and Ohmic

and viscous dissipation allows us to isolate effects of core geometry and investigate their

importance on torsional wave propagation. Models i-iv use the initial velocity profile

described by equation (2.60), with σ = 0.1, which is smooth and has one positive peak

at the midpoint of the domain (s = rc/2). This is the same initial profile as in §2.2.1

and can be seen in the blue line of Figs. 3.2, 3.6 and 3.12.

3.2 Model i: torsional waves in a cylinder

Fig. 3.1 shows the evolution of this pulse in a cylinder of radius 3480 km. The first

observation is that the initial waves are apparently non-dispersive and travel as distinct

independent pulses before they first encounter the boundaries (0-3 years). The initial

pulse splits into two smaller positive peaks, one of which travels outwards towards

the equator (a′) and the other travels inwards towards the rotation axis (a). After

approximately 3 years, both pulses arrive at their respective boundaries and then reflect.

When (a′) reaches the outer boundary (the equator of the CMB), it reflects with no

change of sign such that (b′) is also positive, see Fig. 3.3 for profiles of the wave one

year before and one year after reflection at the outer boundary. A strong positive pulse

(a) followed by a very weak negative pulse (b) converges on the rotation axis, and the

returning wave train consists of a strong trough (c) followed by a small peak (d), see

Fig. 3.4 for profiles of the wave one year before and one year after reflection at the

rotation axis. The reader is reminded that the rotation axis at s = 0 is not a physical

boundary, but a singular point of the coordinate system. Therefore, ‘reflections’ of

waves at this point should be regarded as pseudo-reflections. Note that the specific

behaviour of the reflections will be considered in detail in §3.10. Having reflected from

the boundaries, the two wave trains (b′) and (c, d) traverse the core radius, meeting and

interfering with each other after a further 3 years. The waves continue to reflect from

the boundaries and interfere, each time taking approximately 6 years to traverse the
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Figure 3.1: Contour plot of the velocity uφ of torsional waves in a cylinder, with time on
the horizontal axis and cylindrical radius on the vertical axis. Red corresponds to positive
velocity and blue corresponds to negative velocity. The two vertical lines show the times at
which profiles are shown in Figs. 3.3 and 3.4 (one year before and one year after the waves
reflect from the boundaries).

entire core. Note that after one core transit time (6 years), some of the wave energy

has spread throughout the domain and the wave no longer travels entirely as distinct

pulses. An evolving wave packet shape through time would indicate that some form of

dispersion is occurring. It seems that successive reflections at the boundaries increase

the effects of this dispersion such that after 3 core transit times most of the energy has

spread out and the wave bears little resemblance to the initial velocity profile (Fig. 3.2).

The propagation of torsional waves in a cylinder of fluid is not a geophysically realistic

case due to the shape of the Earth’s core, but it is an interesting study because the

torsional wave equation (2.9) can be solved analytically for this problem (see §2.1.2).

These analytic solutions were used to benchmark the numerical models implemented to

produce torsional wave models. Having briefly considered waves in this geometry, the

remainder of this chapter focusses upon wave propagation in more Earth-like settings,

namely a full sphere of fluid and an equatorially symmetric spherical shell.
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Figure 3.2: Velocity profiles of the waves at the start of evolution (blue), after one core transit
(green), after two core transits (red) and after three core transits (cyan) in a cylinder.
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Figure 3.3: Velocity profiles of the waves one year before (a′, blue) and after (b′, red) reflection
at the outer boundary of a cylinder of radius rc. The annotations correspond to those in Fig. 3.1
and the times at which the profiles were taken are shown in that figure as two vertical black
lines.
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Figure 3.4: Velocity profiles of the waves one year before (a and b, blue) and after (c and d,
red) reflection at the outer boundary of a cylinder of radius rc. The annotations correspond to
those in Fig. 3.1 and the times at which the profiles were taken are shown in that figure as two
vertical black lines.

3.3 Model ii: torsional waves in a sphere

The wave evolution of torsional waves in a sphere is very similar to that of waves in a

cylinder, see Fig. 3.5. Again, the initial wave pulse splits into an outwards travelling

peak (a′) and an inwards travelling peak (a). Pulse (a′) hits the equator of the CMB

after 3 years and reflects with no change of sign. The positive pulse (a), followed by the

weak negative pulse (b), reflects at the rotation axis to form a strong trough (c) and a

small peak (d). These waves meet (b′) at approximately t = 6 years and interfere. As

in the cylindrical case, waves have a core transit time of approximately 6 years and the

pulses become more dispersed with increasing time, see Fig. 3.6 for profiles of the wave

after one, two and three core transit times.

Figs. 3.7 and 3.8 show the velocity profiles across the core 1 year before and after the

wave reflects from the boundaries in the full sphere geometry. Since we investigate the

effects of core geometry on torsional waves, it is of interest to compare the boundary

effects in the full sphere model results with those expected in the simplest possible

geometry, which is 1-D Cartesian (a ‘wave on a string’). In the latter case, after

reflection at a stress-free boundary, the wave profiles at the same time before and

after reflection, one year for example, are identical. At a no-slip boundary, the wave
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Figure 3.5: Contour plot of the velocity uφ of torsional waves in a full sphere, with time
on the horizontal axis and cylindrical radius on the vertical axis. Red corresponds to positive
velocity and blue corresponds to negative velocity. The horizontal black dashed line represents
the location of the tangent cylinder at s = 1221 km to aid comparison with the spherical shell
case in Fig. 3.11. The two vertical lines show the times at which profiles are shown in Figs. 3.7
and 3.8 (one year before and one year after the waves reflect from the boundaries).
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Figure 3.6: Velocity profiles of the waves at the start of evolution (blue), after one core transit
(green), after two core transits (red) and after three core transits (cyan) in a full sphere.
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Figure 3.7: Velocity profiles of the waves one year before (a′, blue) and after (b′, red) reflection
at the equator of the core mantle boundary (s = rc) in a full sphere. The annotations correspond
to those in Fig. 3.5 and the times at which the profiles were taken are shown in that figure as
two vertical black lines.

changes sign and the reflected wave is the exact negative of the incoming wave. Since

a stress-free boundary condition is applied at the equator of the CMB (s = rc) in

our torsional wave models, we might expect the incoming and reflected torsional wave

profiles to match as they do in the Cartesian case. Although the incident (a′) and

reflected (b′) wave profiles in Fig. 3.7 are of the same sign, the incoming pulse is not

exactly recovered after reflection. At the rotation axis (see Fig. 3.8), the reflected wave

profile (c, d) contains both positive and negative components, and is very different from

the incident profile (a, b). We discuss this observation in more detail in §3.10.

Fig. 3.9 shows the transport of angular momentum density uφs
2zT through the core

for the full sphere model discussed above. The plot of angular momentum density

is similar to the contour plot of velocity shown in Fig. 3.5, in that the initial pulse

is shown splitting apart into two pulses travelling in opposite directions and these

pulses are subsequently shown reflecting from the domain boundaries. The amplitude

of angular momentum density is low in the region close to the rotation axis due to the

influence of the s2 contribution to angular momentum density, which decreases with

decreasing cylindrical radius more rapidly than uφ increases. Though theoretically

predicted, numerically exact conservation of angular momentum in models is unlikely

due to computational error and due to the use of the canonical torsional wave equation,
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Figure 3.8: Velocity profiles of the waves one year before (a and b, blue) and after (c and d,
red) reflection at the rotation axis in a full sphere. The annotations correspond to those in Fig.
3.5 and the times at which the profiles were taken are shown in that figure as two vertical black
lines.

which omits the second term on the RHS of the torsional wave equation (A.21) derived

in Appendix A. The total angular momentum of the initial wave pulse was compared

to the total angular momentum of the wave profiles at every time step and we find that

this quantity is conserved to a few parts in 104 for the models presented in this work,

see Fig. 3.10 for a plot of this normalised angular momentum for the full sphere model

described in this section. We produced similar plots for models using finer spatial grids

and found that angular momentum is better conserved in models with better spatial

resolution, which indicates that the spatial discretisation is largely responsible for the

observed small fluctuations of angular momentum.
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2zT of torsional waves in a
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corresponds to positive angular momentum density and blue corresponds to negative angular
momentum density.
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malised by the angular momentum of the initial profile.
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Figure 3.11: Contour plot of the velocity uφ of torsional waves in an equatorially symmetric
spherical shell, with time on the horizontal axis and cylindrical radius on the vertical axis. Red
corresponds to positive velocity and blue corresponds to negative velocity. The horizontal black
dashed line represents the location of the tangent cylinder at s = 1221 km.

3.4 Model iii: torsional waves in a spherical shell

The wave evolution in an equatorially symmetric spherical shell, Fig. 3.11, is very

similar to that of a full sphere and of a cylinder. The initial wave pulse splits into an

outwards travelling peak (a′) and an inwards travelling peak (a). Pulse (a′) hits the

equator of the CMB after 3 years and reflects with no change of sign. The positive

pulse (a), followed by the weak negative pulse (b), reflects at the rotation axis to form

a strong trough (c) and a small peak (d). These waves meet (b′) at approximately

t = 6 years and interfere. As in the previous cases, waves have a core transit time of

approximately 6 years and the pulses become more dispersed with increasing time.
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Figure 3.12: Velocity profiles of the waves at the start of evolution (blue), after one core transit
(green), after two core transits (red) and after three core transits (cyan) in an equatorially
symmetric spherical shell.

3.5 Comparision

An important observation is that the wave amplitude changes throughout propagation.

In all three geometries, peaks (a) and (a′) are not symmetric about s = rc/2; the

inwards travelling pulse (a) has a higher amplitude than the outwards travelling (a′)

when traversing the central regions of the domain, Figs. 3.1, 3.5 and 3.11. At the

rotation axis, the amplitude of pulse (a) drops to zero due to the regularity condition,

whilst the wave amplitude of pulse (a′) is high in the region adjacent to the equator

of the CMB. Jault & Légaut (2005) used geometric effects on the transport of angular

momentum density to explain these variations of wave amplitude during torsional wave

propagation through the core.

Although Figs. 3.5 and 3.11 appear quite similar, subtracting the full sphere velocities

from the spherical shell velocities highlights some important differences between models

(ii) and (iii) (Fig. 3.13). The first of these differences is a weak reflection at the tangent

cylinder. After the initial pulse splits apart and pulse (a) hits the tangent cylinder,

a very weak reflection of the same sign (A) can be seen travelling away from the

inner core after time T∼0.6 years. Pulse (A) is much weaker than the incident pulse

(a), with a reflection coefficient of approximately 0.07. The second difference between

the two models is that the wave amplitude is higher near the rotation axis in the
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Figure 3.13: Contour plot of the difference in velocity uφ when full sphere velocities were
subtracted from the spherical shell case. Time is on the horizontal axis and cylindrical radius
is on the vertical axis. Red corresponds to positive velocity differences and blue corresponds
to negative velocity differences. The horizontal black dashed line represents the location of the
tangent cylinder at s = 1221 km. Note the weak positive reflection (in yellow) from the tangent
cylinder at time T∼0.6 years.

equatorially symmetric spherical shell model than in the full sphere model (pulses a, b, c

and d in Figs. 3.5 and 3.11, and the waves inside the tangent cylinder in Fig. 3.13).

The amplitudes of the velocity differences between models (ii) and (iii) increases with

increasing time in Fig. 3.13. This could be due to the successive reflections from the

tangent cylinder that only occur in the spherical shell model. Alternatively, since

it appears that the waves in both models are subject to dispersion, the increasing

amplitude with time in the difference plot in Fig. 3.13 may indicate that the phase

difference between the models is increasing with time.

In all three geometries, an interesting feature is observed in both the velocity and

angular momentum density contour plots; after the initial pulse has separated, there

remains a low amplitude negative tail connecting the two pulses in the centre of the

domain. This central region never returns to its initial quiescent state after the passage

of the torsional waves as one might expect, but the wavefronts leave a low amplitude

negative trailing wake (labelled as pulse (b) in Figs. 3.1, 3.5 and 3.11). In the case of the

general wave equation for a scalar field, the failure of Huygens’ principle in even spatial

dimensions gives rise to trailing wakes behind sharply defined wave pulses (Courant &
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Hilbert (1962; pp. 765-766); Hadamard (1923; pp. 53, 176-177)). Since torsional waves

are symmetric 2-D waves due to their convergence on an axis at s = 0, we interpret the

observed trailing wakes in terms of Huygens’ principle in §3.9.

3.6 Dispersion

In the archetypical 1-D Cartesian ‘wave on as string’ example, the second spatial deriva-

tive of the velocity Ψ is the only term on the right hand side (RHS) of the 1-D wave

equation given by
∂2Ψ(x, t)

∂t2
= c2∂

2Ψ(x, t)

∂x2
, (2.1 revisited)

D’Alembert first proposed that the solution to the above equation (2.1) takes the form

of two superposed waves travelling in opposite directions with speed c such that

Ψ(x, t) = F (x− ct) +G(x+ ct), (3.1)

where F and G are two arbitrary twice differentiable functions that are found from the

initial and boundary conditions. F (x− ct) represents a wave travelling in the positive

x-direction, whilst G(x + ct) represents a wave travelling in the negative x-direction.

Since the speed c remains constant and does not depend on wave number, the waves

are non-dispersive. In other geometries, such as the cylindrically symmetric 2-D setting

that we consider in this paper, the relevant wave equation includes additional terms on

the RHS and the 1-D Cartesian (non-dispersive) case is approached when the relative

magnitudes of these extra terms are small. Assuming a constant magnetic field profile

{B2
s} across the core, expanding the RHS of the torsional wave equation gives

∂2uφ
∂t2

=
{B2

s}
µ0ρ0

∂2uφ
∂s2︸ ︷︷ ︸

1

+
1

s

∂uφ
∂s︸ ︷︷ ︸
2

− s

z2
T

∂uφ
∂s︸ ︷︷ ︸

3

+
uφ
z2
T︸︷︷︸
4

−
uφ
s2︸︷︷︸
5

 . (3.2)

One measure of the dispersive properties of the modelled torsional waves is the ratio of

the magnitude of the second spatial derivative (term 1) to the maximum value of the

magnitude of the other four terms (terms 2-5) on the RHS of equation (3.2). We define
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Figure 3.14: Contour plots of α, as defined by equation (3.3), over one complete transit time
(6 years) in the full sphere model. Black regions (α < 1) are locally ‘dispersive’, since term 1
is smaller than at least one of the other terms. Coloured regions are locally ‘non-dispersive’,
with the magnitude of term 1 at least equal to that of the other terms in the blue regions and
exceeding the other terms by at least a factor of 10 in the red regions. White regions show
areas where the terms are very small and calculating the ratio is numerically intractable.

a measure α such that

α =

∣∣∣∂2uφ∂s2

∣∣∣
max

(∣∣∣1s ∂uφ∂s ∣∣∣, ∣∣∣ sz2T ∂uφ
∂s

∣∣∣, ∣∣∣uφz2T ∣∣∣, ∣∣∣uφs2 ∣∣∣
) . (3.3)

If α is sufficiently large, waves become effectively non-dispersive. For the purposes of

the following discussion of our torsional wave models, we label waves as locally ‘non-

dispersive’ if term 1 exceeds the largest of the other terms (α ≥ 1). The ratio α may

be evaluated at every point in space during the wave evolution to determine what

percentage of the spatial domain is dispersive or non-dispersive over a particular time

duration.

Fig. 3.14 is a contour plot of α over one complete transit time (6 years) in the full sphere

geometry. Black regions (α < 1) are locally ‘dispersive’, since term 1 is smaller than at

least one of the other terms. Coloured regions are locally ‘non-dispersive’ according to

our definition, with the magnitude of term 1 at least equal to that of the other terms

in the blue regions and exceeding the other terms by at least a factor of 10 in the red

regions. White regions show areas where the terms are all very small and calculating
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the ratio is numerically intractable. We see that in our geometry, geometric factors

begin to dominate the second spatial derivative near the boundaries, especially near to

the rotation axis, though the dispersion condition is also violated in central areas of

the domain, where trailing wakes are observed. Since the condition given by equation

(3.3) evaluates the extent to which the torsional wave equation itself is non-dispersive,

rather than the solutions to the torsional wave equation, it is of interest to compare the

predicted dispersive regions of the domain with the regions in which dispersion is seen

in our model results. Comparing the contour plots of the first 6 years of wave evolution

in Fig. 3.5 with the elements in Fig. 3.14, we find that wave dispersion, which manifests

as an evolving wave pulse shape through time, coincides with regions of the domain

where the second spatial derivative is dominated by another term, as predicted. We

performed the same analysis, in both a sphere and spherical shell, using several initial

velocity profiles of differing widths for threshold values on α of 1, 2, 5 and 10. Fig. 3.15

shows the percentage of the domain that is non-dispersive over one core transit time

as a function of the initial pulse width. It shows that narrower Gaussian-like pulses

(lower σ values) undergo less dispersion than wider pulses in both the full sphere and

shell models. The models presented in Figs. 3.5 and 3.11 both used σ = 0.1. In the full

sphere case, this corresponds to the domain being at most 84% non-dispersive over one

transit time (using a threshold on α of 1). The spherical shell model is at most 83%

non-dispersive over the same period, using a threshold on α of 1. Using the threshold

value of 1 only ensures that the second derivative (term 1) is at least the same order

of magnitude as the other terms, not that it is the dominant term of the RHS of the

torsional wave equation. A more realistic condition would be that the second derivative

must be at least an order of magnitude higher than the other terms to be considered

the dominant term. Using this more stringent threshold value of 10, we find that the

domains in models (ii) and (iii) are, respectively, only 40% and 42% non-dispersive over

one core transit time.
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Figure 3.15: The percentage of the domain that is non-dispersive over one core transit time
(6 years) in the full sphere (crosses) and shell (circles) geometries according to the four different
thresholds on α: 1 (blue), 2 (green), 5 (red) and 10 (cyan) as a function of initial pulse width.
Lower σ values correspond to narrower initial velocity profiles.
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Figure 3.16: Contour plot of the velocity uφ of torsional waves in a full sphere with the steady
background magnetic field shown in Fig. 2.11, with time on the horizontal axis and cylindrical
radius on the vertical axis. Red corresponds to positive velocity and blue corresponds to negative
velocity.

3.7 Model iv: torsional waves in a magnetic field with

spatially varying {B2
s}

Since the magnetic field in the Earth’s core is expected to vary on large length scales,

it is of interest to study torsional wave evolution in an ambient magnetic field whose

cylindrical average is spatially varying. Fig. 3.16 shows the first 20 years of torsional

wave evolution in the spatially varying ambient magnetic field shown in Fig. 2.11.

As in previous results for constant {B2
s} models, the initial profile splits into two waves

travelling in opposite directions, with a low amplitude tail connecting the two pulses in

the centre of the domain. These pulses take just over 6 years to traverse the entire core.

Waves reflect from the stress-free boundary at s = rc with no change of sign and with

a partial change of sign at the rotation axis. We observe that wave energy becomes

increasingly dispersed through the core with increasing time and that the initial profile

is never recovered. In order to quantify this dispersion, two terms must be added to

equation (3.2) to account for spatial variations of the {B2
s} profile. The fully expanded
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torsional wave equation now reads

∂2uφ
∂t2

=
1

µ0ρ0

[
{B2

s}

(
∂2uφ
∂s2︸ ︷︷ ︸

1

+
1

s

∂uφ
∂s︸ ︷︷ ︸
2

− s

z2
T

∂uφ
∂s︸ ︷︷ ︸

3

+
uφ
z2
T︸︷︷︸
4

−
uφ
s2︸︷︷︸
5

)

+
∂uφ
∂s

∂{B2
s}

∂s︸ ︷︷ ︸
6

−
uφ
s

∂{B2
s}

∂s︸ ︷︷ ︸
7

]
, (3.4)

which suggests that the following ratio

α =

∣∣∣∂2uφ∂s2

∣∣∣
max

(∣∣∣{B2
s}
s

∂uφ
∂s

∣∣∣, ∣∣∣ s{B2
s}

z2T

∂uφ
∂s

∣∣∣, ∣∣∣uφ{B2
s}

z2T

∣∣∣, ∣∣∣uφ{B2
s}

s2

∣∣∣, ∣∣∣∂uφ∂s ∂{B2
s}

∂s

∣∣∣, ∣∣∣uφs ∂{B2
s}

∂s

∣∣∣) (3.5)

should be evaluated at each point in space during wave evolution. We again use thresh-

olds on α of 1, 2, 5 and 10, and find that over the first 6 years of wave propagation, the

domain is 88%, 78%, 55% and 36% non-dispersive for these four thresholds for σ = 0.1.

We note that these dispersion percentages are very similar to those obtained in the full

sphere (ii) and spherical shell (iii) models with constant {B2
s} profiles, see Fig. 3.15.

Fig. 3.17 shows the regions of the domain that are labelled ‘dispersive’ (black) and

‘non-dispersive’ (coloured) for model (iv). As in previous models, we see that disper-

sion mainly occurs near to the rotation axis due to geometric factors and, to a lesser

extent, in central parts of the domain where trailing wakes are observed.

Although we observe the same geometric features in all of the models, there are some

important differences in wave behaviour between the variable field model (iv) and the

constant field models (ii) and (iii). First, the pulse trajectories in Fig. 3.16 are curved

due to variations in the local Alfvén wave group velocity. Since the cylindrical average

of the magnetic field {B2
s} varies across the core, and the local wave group speed

depends on this quantity (see section 3.8), the pulses accelerate when the magnetic

field strength is increasing and decelerate when the magnetic field is weakening. One

consequence of this is that pulses (a) and (a′) do not reach their respective boundaries

at the same time, and that waves (c, d) and (b′) no longer intercept each other in the

centre of the domain as in the constant {B2
s} profile models. The second observed

feature is an internal reflection, labelled as pulse B in Fig. 3.16, which likely arises

due to the relatively steep magnetic field gradient at s = 1300 km (see the {B2
s}

profile in Fig. 2.11). Third, we observe several pulses of alternating polarity near to
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Figure 3.17: Contour plots of α, as defined by equation (3.5), over one complete transit
time (6 years) in the full sphere model with varying {B2

s}. Black regions (α < 1) are locally
‘dispersive’, since term 1 is smaller than at least one of the other terms. Coloured regions
are locally ‘non-dispersive’, with the magnitude of term 1 at least equal to that of the other
terms in the blue regions and exceeding the other terms by at least a factor of 10 in the red
regions. White regions show areas where the terms are very small and calculating the ratio
would therefore be numerically intractable.

both the rotation axis and the equator after the first reflection of torsional waves at the

boundaries (examples of these are labelled as (c′), (e) and (f)). We note that this effect

is particularly prominent near the rotation axis, where the gradient of the magnetic

field profile is steep. An explanation for the observed wave patterns is that strong

magnetic field gradients cause continual reflections of propagating waves in the narrow

region of the core between s = 0 and s ≈ 500 km, resulting in waves being unable to

exit this region.

3.8 Local wave speed

Dumberry (2009) investigated dispersion of torsional normal modes by substituting

solutions of the following form into the torsional wave equation

uφ = U0e
−iωt+iks,

where ω is the angular frequency and k is the wavenumber. For large k values, the
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second spatial derivative (k2 for the above form of solution) dominates the other terms

on the RHS of the wave equation and we obtain

ω2 =
{B2

s}
µ0ρ0

k2,

from which the Alfvén wave group velocity

VA =
∂ω

∂k
=

√
{B2

s}
µ0ρ0

(3.6)

may be recovered. In models (ii) - (iii) of travelling torsional waves, the cylindrical

average of the radial magnetic field, {B2
s} was kept to a constant 4 (mT)2. From the

above Alfvén wave group velocity, it is possible to compare the theoretically predicted

local wave speeds with those obtained in the models. Substituting the constants used

in the models into equation (3.6) results in a predicted local wave speed of ∼0.018 m/s.

Using the gradient of the wave travel path in our model results (the time taken for the

pulse to traverse a particular distance), we obtain a local wave speed of ∼0.018 m/s

as predicted. This group velocity was used to calculate the theoretical reflection time

from the boundaries and used to produce Figs. 3.3, 3.4, 3.7 and 3.8, which show the

wave velocity profiles one year before and after reflection.

In the results of model (iv), we observed all of the geometric effects observed in previous

models with constant {B2
s} profiles, which included angular momentum effects, trailing

wakes left behind wave pulses, geometric dispersion and phase shifts at the boundaries.

In addition to these geometric effects, we also observed several features that arise due

to magnetic field variations such as curved pulse travel paths, an internal reflection

from the global field maximum and partially trapped waves near the boundaries. The

trajectories of the pulses are curved due to variations in local Alfvén group velocity; we

checked the local group velocity at several points during wave propagation by comparing

the travel path gradients in the velocity contour plot (Fig. 3.16) with the predicted VA

according to equation (3.6), and found that the calculated and predicted values were

in agreement.
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3.9 The failure of Huygens’ principle and dispersion in

2-D

The general wave equation for a scalar f is

∂2f

∂t2
= c2∇2f, (3.7)

where c2 is the wave group speed.

In sections 3.2-3.7, we commented upon the existence of dispersion and trailing wakes

behind the wave pulses in our models. For the general wave equation above, the latter

feature is related to what is termed the failure of Huygens’ minor premise in even

spatial dimensions. Huygens’ minor premise states that a wave disturbance is localised

in space and time (Hadamard, 1923; pp. 53). For example, a wave packet arriving at an

initially quiescent location would depart after a finite time period leaving a quiescent

state. This premise is known to hold for symmetric waves obeying equation (3.7) in

odd spatial dimensions; for example, waves in 1-D are characterised by the solution

(3.1), which has this property, as does the equivalent formula for spherically symmetric

waves in 3-D

u =
1

r

[
F+(r + ct) + F−(r − ct)

]
, (3.8)

where r is the spherical radius. However, it has been shown (Courant & Hilbert (1962;

pp. 765-766); Hadamard (1923; pp. 53, 176-177)) that Huygens’ minor premise fails in

even dimensions and behind any wave pulse will be an infinite reverberation. Equation

(3.7) can be written in cylindrical coordinates as

∂2f

∂t2
= c2

(
∂2f

∂s2
+

1

s

∂f

∂s

)
, (3.9)

and the second term on the RHS is linked to the failure of Huygen’s principle in this

geometric setting. Although torsional waves may be modelled in 1-D, 2-D or 3-D,

we believe that they are fundamentally a 2-D phenomenon due to their convergence

on an axis at s = 0. This convergence imposes many conditions on the velocity and

its derivatives, and changes the shape of wave pulses due to phase shifts (see section

3.10). The torsional wave equation differs from the general cylindrically symmetric

wave equation for a scalar, equation (3.9), for several reasons. First, torsional waves
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are Alfvénic, meaning that the local wave group speed depends on the strength of the

magnetic field at a particular location. This is taken into account by terms 6 and 7 on

the RHS of equation (3.4). Second, the height of the geostrophic cylinders changes due

to the spherical boundary of the CMB, which gives rise to terms 3 and 4 in equations

(3.2) and (3.4). Finally, the velocity u is a vector field, of which torsional waves involve

only the azimuthal component uφ. Term 5 of equations (3.2) and (3.4) arises due to

the vector nature of the velocity field. As term 2 on the RHS of the torsional wave

equation (equations (3.2) and (3.4)) is the same as the term linked to the failure of

Huygens’ principle for the general wave equation (3.9), it is of interest to investigate

where in the domain this term is large and whether these regions correspond to where

trailing wakes are observed in our models. In order to do this, we produced individual

contour plots of the ratio of term 1 to terms 2-5 on the RHS of equation (3.2) during

one core transit time (6 years). These plots (Figs. 3.18a-d), have the same colour scale

as figures 3.14 and 3.17.

Dispersion is observed in our torsional wave models as trailing wakes in the centre of

the domain and as energy spreading out in the regions close to s = 0 and s = rc after

a wave has passed through. From Figs. 3.18a-d, it seems that dispersion arises in

our models due to the dominance of different terms in different regions of the domain.

Terms 2 and 5 are large near to the rotation axis, whilst terms 3 and 4 are large near to

the equator of the CMB. This suggests that all of these terms are sources of dispersion

near the boundaries of the model domain. The regions in which term 2 is dominant,

shown in Fig. 3.18a, correspond to the regions in the centre of the domain where we

observe trailing wakes in our models. Since the other terms on the RHS of equation

17 are smaller than term 2 in the same regions at those times, we conclude that the

failure of Huygens’ principle in the geometric setting of torsional waves is related to the

observed trailing wakes, and is therefore a source of dispersion in our models.
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Figure 3.18: Contour plots of the magnitude of the ratio of term 1 to (a) term 2 (b) term
3 (c) term 4 and (d) term 5, from the RHS of equation (3.2), over one complete transit time
(6 years) in the full sphere model. Black regions are locally ‘dispersive’, since the relevant term
is larger than term 1. Coloured regions are locally ‘non-dispersive’, with the magnitude of term
1 at least equalling that of the other term in the blue regions and exceeding the other term by
at least a factor of 10 in the red regions. White regions show areas where the terms are very
small and calculating the ratio is numerically intractable.



90 Chapter 3: 1-D modelling: torsional wave propagation

3.10 Phase shift at the boundaries

In this section, we explain the change in wave profile upon reflection at the boundaries,

which was reported in section 3 and Figs. 3.7 and 3.8. The reader is reminded that the

rotation axis is not a physical boundary, but a singular point of the coordinate system

at which an infinite set of constraints is satisfied, and as such, an explanation of the

observed pseudo-reflection is not trivial. Morse & Feshbach (1953) investigated tran-

sient (wave) motion on a circular membrane of radius r = a and, by considering normal

modes, found that a wave undergoes a π/4 phase shift when traversing the region r ≈ 0

to r ≈ a. We now perform a similar analysis to that detailed in Morse & Feshbach

(1953) for torsional normal modes, whose analytic form is known in a cylindrical con-

tainer (constant zT ), and use phase shifts to explain wave behaviour at s = 0 and s = rc.

For the purposes of the following discussion, we restrict ourselves to a simplified geom-

etry consisting of a cylinder of radius 1, with constant {B2
s} such that the wave speed

is 1. This case was considered in the benchmarking section of the previous chapter,

see Fig. 2.9 for wave profiles and Fig. 2.10 for a space-time contour plot of the wave

evolution. In this geometry, the general solution to the axisymmetric torsional wave

equation is

uφ(s, t) =

∞∑
j=1

NjJ1(kjs) cos(kjt), (3.10)

where Nj are coefficients determined by the initial condition, J1 is the first order Bessel

function of the first kind and kj is the j-th zero of J1 (e.g. Mound & Buffett (2007)).

These solutions satisfy the required regularity condition at the rotation axis and a no-

slip condition (uφ = 0) at the outer boundary, rather than the stress-free condition that

has previously been considered in this work. For large argument, kjs, the asymptotic

behaviour of J1 is

J1(kjs) ≈

√
2

πkjs
cos

(
kjs−

3π

4

)
, (3.11)

e.g. Abramowitz & Stegun (1984). Substitution of (3.11) into equation (3.10) gives the

following general solution away from the rotation axis

uφ(s, t) ≈ 1

2

∞∑
j=1

Nj

√
2

πkjs

[
cos

(
kj(s− t)−

3π

4

)
+ cos

(
kj(s+ t)− 3π

4

)]
, (3.12)
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which represents two waves travelling in opposite directions. Assuming an initial Gaus-

sian wave profile centred at s = 1/2, the wave travelling towards the rotation axis (the

‘incoming’ wave) at time t = 0 is

uφ(s, 0) ≈ 1

2

∞∑
j=1

Nj

√
2

πkjs
cos

(
kjs−

3π

4

)
. (3.13)

At time t = 1, this incoming wave packet has reflected at the rotation axis and is again

centred at s = 1/2 and travelling outwards towards s = 1. The outgoing wave profile

is

uφ(s, 1) ≈ 1

2

∞∑
j=1

Nj

√
2

πkjs
cos

(
kj(s− 1)− 3π

4

)
, (3.14)

which has undergone a phase shift of −kj in each mode with respect to the incoming

wave. Using the asymptotic expansion of J1 given by equation (3.11), we find an

expression for the zeroes

kj ≈
3π

4
+

(
j − 1

2

)
π, (3.15)

which implies the following index-dependent phase shift at the rotation axis

ψ =


π
4 j even,

−3π
4 j odd

. (3.16)

Note that at time t = 0, both the incoming and outgoing waves are described by equa-

tion (3.13). Wave behaviour at the outer boundary, s = 1, is considered by comparing

the initial outgoing wave with the incoming wave profile at time t = 1, which gives a

phase shift of +kj in every mode.

In the above analysis, we have used the asymptotic approximations to torsional normal

modes in a cylinder to investigate the predicted phase shift at the rotation axis and at

the outer boundary (for a no-slip boundary condition). These predicted phase shifts

are not uniform, but depend on the mode under consideration. Since the normal mode

solutions to the torsional wave equation in a cylinder are known, it is of interest to

compare these analytic solutions with the wave profiles approximated by their phase

shifted asymptotic form, which is given by equations (3.12) and (3.16). The initial

wave profile described by equation (2.60), with σ = 0.1, was projected onto the first

twenty normal modes of the system and evolved through time. Figs. 3.19a and 3.19b

show, respectively, the travelling wave solution given by the normal mode projections
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(blue line) and their phase shifted asymptotic form (red line) for reflections at s = 0

and s = 1. In both cases, the two wave profiles are very similar, which indicates that

the reflections are adequately described by the kj (index-dependent) phase shift of the

asymptotic approximations. Interestingly, the index-dependent phase shifts reproduce

the analytic normal mode wave behaviour for both the rotation axis and s = 1, despite

the former being a singular point and the latter a physical boundary.

Powell (1994) investigated the phase shift of waves on a circular membrane when pass-

ing through, or reflecting from, the focal point. By considering normal modes and their

periodic approximations, he found that the divergent (outgoing) waveform is found by

phase shifting the convergent (incoming) waveform by −π/2 in every mode. As a uni-

form π/2 phase shift of a waveform constitutes its Hilbert transform (the sign of the

phase shift depends on the convention, e.g. Shearer (2009; pp. 155)), Powell (1994)

concluded that the focal shift of waves on a circular membrane is equivalent to the

Hilbert transform of the converging wave. In the remainder of this section, we attempt

to recover this result for torsional normal mode projections and for travelling waves

in forward models. For narrower initial profiles than those shown in Figs. 3.19a and

3.19b, which used σ = 0.1, we recover this result for our normal mode projections.

Although the normal mode projections and their phase shifted asymptotic approxima-

tions remain very similar, the outgoing wave after reflection at the rotation axis also

strongly resembles the Hilbert transform of the incoming wave profile, which in this

case, converts the cosines in equation (3.12) to sines. It seems that, for a sufficiently

narrow pulse, the overall wave behaviour of the predicted phase shift, for which some

normal modes are shifted by π/4 and others by −3π/4, averages to mimic the behaviour

of a uniform π/2 phase shift.

We might expect to recover a similar result in our torsional wave models because the

region near to the rotation axis in a spherical geometry is well-approximated by a

cylinder (constant zT ). For our torsional wave models, which are in a full sphere and

an equatorially symmetric spherical shell, there is empirical evidence to suggest that

the Hilbert transform is recovered for narrow pulses after reflection at the rotation

axis. Fig. 3.20a shows the wave profiles 1 year before (blue line) and after (red line) in

the previously discussed full sphere model (ii), with the Hilbert transform of the blue

profile drawn in black. For this initial profile, with σ = 0.1, we see that although the



§3.10 Phase shift at the boundaries 93

(a)

(b)

Figure 3.19: (a) Comparison of the outgoing wave in a cylinder of radius 1 at time t = 1 (after
reflection at the rotation axis) according to the normal mode solution given by equation (3.10)
(blue line) and the phase shifted asymptotic approximation to the normal mode solutions, given
by equations (3.12) and (3.16) (red line). (b) Comparison of the incoming wave in a cylinder
of radius 1 at time t = 1 (after reflection at the outer boundary s = 1) according to the
normal mode solution given by equation (3.10) (blue line) and the phase shifted asymptotic
approximation to the normal mode solutions, given by equations (3.12) and (3.16) (red line).
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general shape of the Hilbert transform matches the reflected wave profile, the required

regularity condition is not met at the rotation axis, which implies that the wave has

undergone a more complex reflection than a uniform π/2 phase shift. However, when

the initial profile is much narrower, as shown in Fig. 3.20b for a σ value of 0.01, the shape

of the Hilbert transform and reflected wave profile match more closely and the Hilbert

transform better matches the regularity condition at s = 0. From this we conclude

that while some narrow initial pulses appear to undergo a uniform phase shift at the

rotation axis, in general, an arbitrary initial pulse will undergo a more complicated

phase shift that cannot readily be understood as a Hilbert transform.
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Figure 3.20: (a) Velocity profiles of the waves one year before (blue) and after (red) reflection
at the rotation axis in the full sphere model (ii). The annotations correspond to those in Fig. 3.5
and the times at which the profiles were taken are shown in that figure as two vertical black
lines. The black dashed line is the Hilbert transform of the incoming wave (the blue line). Note
that the Hilbert transform is somewhat similar to the outgoing wave (the red line). (b) Velocity
profiles of the waves one year before (blue) and after (red) reflection at the rotation axis in a
full sphere model with a narrow initial profile (σ = 0.01). The black dashed line is the Hilbert
transform of the incoming wave (the blue line). Note the increased similarity of the Hilbert
transform to the outgoing wave (the red line).
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3.11 Implications for torsional waves in the Earth’s core

In the Earth’s interior, the inner core is thought to have strong electromagnetic coupling

with the outer core, which was not included in our models. In that case, one would

expect the core fluid above and below the inner core (regions II and III in Fig. 1.4b) to

rotate rigidly inside the tangent cylinder at the same speed as the inner core. Electro-

magnetic coupling to the inner core would quickly dissipate torsional waves entering the

tangent cylinder and, consequently, waves would not exist long enough to reflect from

the rotation axis and reenter the outer core as they do in our models. The reflection

at the tangent cylinder observed in Fig. 3.13 is an interesting feature that may have

implications for torsional waves in the geophysical context. If a torsional wave were

generated outside the tangent cylinder in the Earth’s core by a local impulse in space

and time, as opposed to a temporally periodic global forcing, we could only expect to

observe the outwards travelling pulse once at the CMB before it is reflected back into

the core and absorbed on the tangent cylinder. However, as the discontinuity in the

derivative of the cylinder height causes waves to be partially reflected at the tangent

cylinder, it is possible that they could be observed at the CMB at regular intervals

and may then be linked with decade variations in SV and/or ∆LOD . Another possible

source of internal reflections of torsional waves in the Earth’s core are strong gradients

in the radial magnetic field, as seen in Fig. 3.16 (pulse B). However, the reflection co-

efficients for pulses A and B are both very small and it is possible that these internally

reflected pulses would immediately be damped or dispersed upon reaching the CMB

such that regular observation is impossible.

The analysis by Dumberry (2009) reproduced in section 3.8 implies that short wave-

length torsional normal modes, corresponding to high wave numbers, are non-dispersive.

Our findings are consistent with that conclusion because we find that, for travelling

torsional waves, narrow (short wavelength) wave profiles are less dispersive than wider

pulses, see Fig. 3.15. This result may be particularly important when studying tor-

sional waves in the Earth’s core because those inferred from SV data appear to be

relatively long wavelength. For example, the smallest features of torsional waves pre-

sented in Gillet et al. (2010) occupy approximately one fifth of the core radius and

those presented in Hide et al. (2000) occupy almost the entire core radius. Our analy-

ses of dispersive regions and the evolution of our modelled waves suggest that torsional
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waves in the core may undergo a significant dispersion process that arises solely as a

result of core geometry. This geometric dispersion is an effect that has previously been

neglected in torsional wave studies. Recent work by Schaeffer et al. (2012) discusses

Alfvén wave reflection properties and energy dissipation in boundary layers based on the

ratio of kinematic viscosity to magnetic diffusion (the magnetic Prandtl number, Pm).

They argue that for geophysically relevant liquid metals, corresponding to Pm � 1,

little energy is dissipated during a single reflection at s = rc but that many successive

reflections may lead to significant dissipation. Dissipative processes are damping mech-

anisms for waves; they dissipate wave energy and decrease wave amplitude. Schaeffer

et al. (2012) define a quality factor for reflected waves and conclude that torsional wave

normal modes could survive in the Earth’s core for a few periods of the fundamental

modes, which they take as 6 years. Given that successive reflections from the bound-

aries significantly changes the shape of wave pulses in our models, as seen in Figs. 3.5

and 3.6 for example, we suggest that terrestrial torsional waves would undergo signif-

icant dispersion (energy spreading) irrespective of, and in addition to, any dissipative

(damping) effects and therefore may not survive as distinct pulses for several transits

of the Earth’s core.





Chapter 4

Geophysical signatures of

torsional waves

In the previous chapter, we presented the results of forward models of torsional waves

and discussed their propagation in Earth’s core. The key features observed in the mod-

els were dispersion, phase shifts and internal reflections. Torsional waves involve the

interaction of zonal fluid flow and the ambient magnetic field in the core. Consequently,

they perturb the background magnetic field and induce a secondary magnetic field. The

subject of this chapter is the magnetic signals induced by the torsional waves in the pre-

viously presented forward models. In §1.3, we discussed observations of the geomagnetic

field and the resulting spherical harmonic magnetic field models that are constructed

using potential theory. Using a steady background magnetic field from observationally

constrained field models and azimuthal velocities from torsional wave forward models,

we solve an induction equation for the wave-induced secular variation. Treating both

the background field and the wave-induced perturbation as potential fields allows us

to calculate their spherical harmonic coefficients and reconstruct their North, East and

radial components. We construct time series and maps of wave-induced SV and investi-

gate how the propagation characteristics identified in the previous chapter manifest in

the magnetic signals. As torsional waves have previously been linked with geomagnetic

jerks (Bloxham et al., 2002), we apply a method developed by Brown et al. (2013) to

search for jerk-like signals in the synthetic time series. Finally, we examine the ampli-

tudes of the torsional wave-induced SV and use the amplitude of observed SV signals

to place constraints on torsional waves in the core.

99



100 Chapter 4: Geophysical signatures of torsional waves

4.1 Torsional waves and geomagnetic jerks

Geomagnetic jerks are abrupt jumps in the second time-derivative (secular acceleration,

SA) of Earth’s magnetic field, which corresponds to sharp changes in the trend of the

the first time-derivative of the magnetic field (the SV) (Courtillot et al., 1978). Jerks

separate periods of almost steady SA so that the SV appears as a series of straight-line

segments separated by the jerk itself, see Fig. 4.1. Several jerks are known to have

occurred in the 20th and 21st centuries, including those in 1969 (Courtillot et al., 1978,

Malin et al., 1983, Whaler, 1987), 1978 (Gubbins & Tomlinson, 1986, Davis & Whaler,

1997), 1991 (Macmillan, 1996), 1999 (Mandea et al., 2000) and 2003 (Olsen & Mandea,

2007). According to Alexandrescu et al. (1996), who used wavelet analysis to detect

and characterise worldwide jerk occurrences, some are observed globally and others in

only small regions, and all occur within differential time delays of about two years at

Earth’s surface.

Pinheiro et al. (2011) described a method for applying a two-part linear regression to the

SV of observatory data (i.e. fitting a ‘V’ shape to the SV) and generating a probability

density function (PDF) of potential jerk occurrence times. The technique was designed

for use on a single component of SV data and two-part linear regression is iterated across

the window, with each time step considered a potential jerk occurrence. Brown et al.

(2013) extended this method to use a sliding window for the two-part linear regression

and applied the modified method to monthly mean data from observatories spanning

the period 1957-2008. Their study provided quantitative uncertainty estimates on jerk

occurrence times and amplitudes with minimal a priori information. They identified

frequent events fitting their definition of jerks throughout the period of study, though

relative peaks in the global number of jerk occurrences were found in 1968-71, 1973-74,

1977-79, 1983-85, 1989-93, 1995-98 and 2002-03, coinciding with previously established

jerk events. They also found further, poorly sampled, events in the early 1960s and late

2000s. The jerks in that study often occurred only in one component of the magnetic

field and were not globally contemporaneous. The regional jerks had no consistent

occurrence pattern, though Brown et al. (2013) identified possible periodic trends in

Europe and N. America.

Despite many attempts, the physical origin of geomagnetic jerks is yet to be established,
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Figure 4.1: The general morphology of a geomagnetic jerk as seen in, from left to right, the
magnetic field, the SV (first time-derivative of the field), the SA (second time-derivative of the
field) and the impulse (third time-derivative of the field).

see Mandea et al. (2010) for a recent review of this topic. Malin & Hodder (1982) used

spherical harmonic analysis to establish that jerks are of internal origin, but none of the

subsequently proposed generating mechanisms has proved completely successful. The

previous interpretations of jerks include core flows (e.g. Le Huy et al., 1998, Wardinski

et al., 2008, Silva & Hulot, 2012), torsional oscillations (Bloxham et al., 2002) and

instability of an Ekman-Hartman boundary layer at the CMB (Desjardins et al., 2001).

Of particular interest to this work are those interpretations that rely upon zonal core

flows and/or torsional waves.

Several authors (Waddington et al., 1995, Bloxham et al., 2002, Olsen & Mandea, 2008)

have shown that no steady flow can produce jerk-like features, nor can a steady flow

in a drifting frame (Holme & Whaler, 2001). This implies that a steady flow of the

magnitude typically assumed for core flow, O(10−4) m/s, is not able to produce the

strong SA associated with jerks and that flow acceleration is likely an important con-

tribution to jerks (Waddington et al., 1995). Bloxham et al. (2002) relaxed the steady

flow constraint and showed that jerks can be explained by the combination of a steady

flow and a simple time-varying, axisymmetric, equatorially symmetric, toroidal zonal

flow. Such flows are consistent with torsional oscillations (torsional normal modes) and

give an excellent fit to many jerk features, particularly in Europe. The authors also

noted that the SV generated by simple core flows depends on the local morphology of

the ambient magnetic field, as we shall see in §4.4. This is a crucial point because it

means that large-scale core flow can produce localised signals at magnetic observatories

and thus there is no need to invoke a small-scale core flow to explain those jerk events

that are observed on a regional scale. However, whilst the simple zonal flows consistent

with torsional waves are likely an important contribution to jerks, less restrictive flows,



102 Chapter 4: Geophysical signatures of torsional waves

such as toroidal or tangentially geostrophic flows, are needed to reproduce all of the

observed features (e.g. Wardinski et al., 2008, Silva & Hulot, 2012). Toroidal flows

have no radial (poloidal) component and are consistent with a stratified layer at the

top of the outer core, which was first proposed by, among others, Whaler (1980) and

Braginsky (1999). More recently, various authors (e.g. Helffrich & Kaneshima, 2013,

Gubbins & Davies, 2013, Buffett, 2014) have advocated a stratified layer in the outer

core using seismological evidence, geomagnetic observations and material properties of

liquid iron at high temperature and pressure. Tangentially geostrophic flows neglect

the Lorentz term in the force balance at the top of the core, implying a zeroth order

balance between the horizontal components of the pressure gradient and the Coriolis

force (Le Mouël, 1984). This flow is also consistent with a stratified layer beneath

the CMB (Jault & Le Mouël, 1991), though this constraint is less restrictive than the

purely toroidal case because it allows a poloidal component. An intermediary flow that

is more general than pure torsional oscillations but more restrictive than tangential

geostrophy is also able to explain observed SV, including geomagnetic jerks. These are

called quasi-geostrophic flows (Gillet et al., 2009) and are almost invariant along the

rotation axis.

Given the proposed link between torsional oscillations, zonal flows and geomagnetic

jerks, it is of interest to take velocity data from torsional wave forward models and

investigate whether our modelled travelling torsional waves are capable of producing

SV signals that resemble jerks in terms of amplitude and timescale. In order to do

this, we first calculate the torsional wave-induced SV and then apply the jerk detection

method developed by Brown et al. (2013) to the resulting synthetic time series.

4.2 Method

Under the frozen-flux approximation, fluid in the outer core is assumed to be perfectly

conducting and magnetic field lines are tied into the fluid. Since the mantle is pre-

sumed to be an electrical insulator, there is a jump in electrical conductivity across

this boundary which means only the radial component of the magnetic field is guaran-

teed to be continuous across the CMB (e.g. Whaler & Holme, 2007). Fluid motions

interact with Br through the radial component of the diffusionless version of the in-

duction equation discussed in chapter 1.4.1, equation (1.6). The frozen-flux form of the
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induction equation at the CMB is

∂Br
∂t

= −∇H · (uBr), (4.1)

e.g. Canet et al. (2009), where ∇H · is the horizontal divergence operator. For an

arbitrary vector, A, defined in spherical coordinates (r, θ, φ), ∇H ·A = 1
r sin θ

∂Aθ sin θ
∂θ +

1
r sin θ

∂Aφ
∂φ .

The total magnetic field, previously denoted B, is the sum of the steady background

field B and a small perturbation b. In the following discussion, we assume that this

perturbation to the magnetic field is caused by flow associated with torsional waves,

uφ. Therefore, the equation to be solved is a linearisation of (4.1) when u and b are

small:
∂br
∂t

= −
uφ
s

∂Br
∂φ

(4.2)

where s is the radius in cylindrical coordinates and is linked to the radius in a spherical

coordinate system by the relation s = r sin θ.

Since the mantle is presumed electrically insulating, the vector fields B and b can both

be expressed as scalar potential fields, V and v respectively, such that

B = −∇V, (4.3)

∇2V = 0, (4.4)

b = −∇v (4.5)

and

∇2v = 0. (4.6)

These scalar fields, evaluated at a radius r, are expressed as sums of spherical harmonics

and Gauss coefficients such that

V = r

∞∑
l=1

l∑
m=0

(
a

r

)l+1 [
Gml cosmφ+Hm

l sinmφ
]
Pml (cos θ), (4.7)

where a is the radius of the Earth, Pml (cos θ) is the associated Legendre function in
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cos θ of degree l and order m and Gml and Hm
l are the Gauss coefficients. These are

usually denoted using lower case gml and hml , but we use upper case letters here to

avoid confusion with the expansion of br below, which uses a different set of Gauss

coefficients denoted gml and hml .

The radial component of the steady background magnetic field is

Br = −∂V
∂r

, (4.8)

which expands to give

Br =

∞∑
l=1

l∑
m=0

(l + 1)

(
a

c

)l+2 [
Gml cosmφ+Hm

l sinmφ
]
Pml (cos θ) (4.9)

when evaluated at the CMB r = c.

The φ derivative of this component is therefore

∂Br
∂φ

=
∞∑
l=1

l∑
m=0

m(l + 1)

(
a

c

)l+2 [
−Gml sinmφ+Hm

l cosmφ
]
Pml (cos θ). (4.10)

Using a similar expansion for the perturbation to the main field gives an expression for

br at the CMB

br =− ∂v

∂r

=

∞∑
l=1

l∑
m=0

(l + 1)

(
a

c

)l+2 [
gml cosmφ+ hml sinmφ

]
Pml (cos θ) (4.11)

and its time derivative

∂br
∂t

=
∞∑
l=1

l∑
m=0

(l + 1)

(
a

c

)l+2 [
ġml cosmφ+ ḣml sinmφ

]
Pml (cos θ). (4.12)

where gml and hml are the Gauss coefficients associated with b and ġml and ḣml denote

their temporal derivative.
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Substituting equations (4.10) and (4.12) into (4.2) gives

∞∑
l=1

l∑
m=0

(l + 1)

(
a

c

)l+2 [
ġml cosmφ+ ḣml sinmφ

]
Pml (cos θ) =

−
uφ

r sin θ

∞∑
l=1

l∑
m=0

m(l + 1)

(
a

c

)l+2 [
−Gml sinmφ+Hm

l cosmφ
]
Pml (cos θ). (4.13)

This expression can be greatly simplified by using the Schmidt quasi-normalised spher-

ical harmonics defined by

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ) [cosmφ+ i sinmφ] (4.14)

and exploiting their orthogonality properties∫ 2π

0

∫ π

0
Y m
l Y m′

l′
∗

sin θdθdφ =
4π

2l + 1
δll′δmm′ (4.15)

where * denotes the complex conjugate and δ is the Kronecker delta.

Multiplying equation (4.13) by Pm
′

l′ (cos θ) cosm′φ and integrating over a spherical sur-

face (the CMB) gives

∫ 2π

0

∫ π

0

∞∑
l=1

l∑
m=0

m(l + 1)

(
a

c

)l+2 [
ġml cosmφ cosm′φPml (cos θ)Pm

′
l′ (cos θ)+

ḣml sinmφ cosm′φPml (cos θ)Pm
′

l′ (cos θ)
]

sin θdθdφ =

−
∫ 2π

0

∫ π

0

uφ
r sin θ

∞∑
l=1

l∑
m=0

m(l + 1)

(
a

c

)l+2 [
−Gml sinmφ+

Hm
l cosmφ

]
cosm′φPml (cos θ)Pm

′
l′ (cos θ) sin θdθdφ (4.16)

which simplifies to

4πl′

2l′ + 1
(l′ + 1)

(
a

c

)l′+2

ġm
′

l′ = −
∫ π

0

uφ
r sin θ

[ ∞∑
l≥m′

(l + 1)

(
a

c

)l+2

Hm′
l Pm

′
l (cos θ)

]
m′Pm

′
l′ (cos θ) sin θdθ

∫ 2π

0
cos2m′φdφ︸ ︷︷ ︸

=π for m′ > 0 or =2π for m′ = 0

. (4.17)
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Therefore

4πl′

2l′ + 1
(l′ + 1)

(
a

c

)l′+2

ġm
′

l′ = −
∫ π

0

uφπ

r sin θ

[ ∞∑
l≥m′

(l + 1)

(
a

c

)l+2

Hm′
l Pm

′
l (cos θ)

]
m′Pm

′
l′ (cos θ) sin θdθ. (4.18)

The 1-D torsional wave models previously discussed in chapters 2 and 3 give the az-

imuthal velocities as a function of cylindrical radius s. We must now map these ve-

locities uφ(s) onto a grid in θ and φ so that all of the RHS of the above equation is

defined on a spherical surface. This projection onto spherical harmonics is performed

in a similar manner to the normal mode projections described in §2.2.1. We begin

by assuming that the velocity may be represented as a linear sum of zonal spherical

harmonics (m = 0) such that

uφ(s) =

∞∑
k=1

akP
0
k (cos θ), (4.19)

where ak is the contribution of a particular mode k. We may then use orthogonality

properties to derive an expression for each coefficient ak up to the maximum number

of modes used in the projection, which is chosen to give a converged solution (see §4.4

for a discussion of resolution testing).

For each order m′, we then calculate the sum in square brackets at each θ node, we

denote the sum β(θ) such that

ġm
′

l′ = − 2l′ + 1

4a(l′ + 1)

(
c

a

)l′+2

m′
∫ π

0

uφ
r sin θ

βPm
′

l′ (cos θ) sin θdθ. (4.20)

A similar expression for the ḣml coefficients is obtained by multiplying equation (4.13)

by Pm
′

l′ (cos θ) sinm′φ and again using the orthogonality properties of the spherical

harmonics to simplify the resulting expression. We then have

− 4πl′

2l′ + 1
(l′ + 1)

(
a

c

)l′+2

ḣm
′

l′ = −
∫ π

0

uφ
r sin θ

[ ∞∑
l≥m′

(l + 1)

(
a

c

)l+2

Gm
′

l Pm
′

l (cos θ)

]
m′Pm

′
l′ (cos θ) sin θdθ

∫ 2π

0
sin2m′φdφ︸ ︷︷ ︸

=π

(4.21)
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which gives a final expression for ḣm
′

l′

ḣm
′

l′ =
2l′ + 1

4a(l′ + 1)

(
c

a

)l′+2

m′
∫ π

0

uφ
r sin θ

βPm
′

l′ (cos θ) sin θdθ, (4.22)

where the coefficient Gm
′

l , rather than Hm′
l , now appears in the sum β.

Since we know the value of the integrand everywhere on the spherical surface, we can use

Gauss Legendre quadrature (GLQ) to evaluate the above integral. GLQ is a numerical

integration method that approximates the value of a definite integral using a weighted

sum of function values at specified points in the integral domain such that

∫ 1

−1
f(x)dx ≈

N∑
i=1

wn,if(xn,i) (4.23)

where the xn,i are the quadrature points and the wn,i are the weights (e.g. Abramowitz

& Stegun (1984)). The quadrature point xn,i is the i-th root of the Legendre polynomial

of degree n (Pn(x)) and its weight is

wn,i =
2

(1− x2
n,i)
[
P ′n(xn,i)

]2 (4.24)

where P ′n(x) is the derivative of the Legendre polynomial Pn(x) with respect to x. The

abscissae for quadrature occur symmetrically about 0, and the number of quadrature

points, N , is chosen to yield a converged representation of a polynomial of degree

n.

Once the ġml and ḣml coefficients have been obtained, they are then substituted back

into equation (4.12) to give a time series of ḃ at the CMB. This time series will then

be investigated using the method detailed in Brown et al. (2013).

4.3 Background magnetic fields

The production of synthetic data relies upon zonal velocities obtained from our tor-

sional wave forward models and upon a background magnetic field defined by Gauss

coefficients (Gml and Hm
l in the previous section) obtained from a field model. The

choice of background field will obviously influence the wave-induced SV (see equation

(4.2) and Bloxham et al. (2002)), so we investigated the effects of choosing one field
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model over another, and of using a snapshot of the observed field as opposed to a

time-averaged field. As discussed in §1.3, several such magnetic field models exist, each

spanning different time periods and constrained by different observational datasets. For

example, the CALSxk series of models uses archaeomagnetic and lake sediment data

spanning several millennia (Korte & Constable, 2003, Korte et al., 2005, 2011), the

historical gufm1 model uses shipping logs and observatory data spanning the period

1540-1990 (Jackson et al., 2000), and the CHAOS series of models uses satellite data

spanning less than 20 years (e.g. Olsen et al., 2006, 2009, 2010b, 2014).

As torsional waves are thought to occur on decadal timescales, and have been asso-

ciated with 6 year signals in ∆LOD and SV, and with geomagnetic jerks, this work

only considers magnetic field models with high spatial and temporal resolution. High

spatial resolution permits investigation of small-length scale features, and high tempo-

ral resolution is required because we consider the effects of using a single snapshot of

the field versus a time-averaged field. Two magnetic field models were chosen as the

starting point for the steady background field required for torsional wave-induced SV;

CHAOS-4 by Olsen et al. (2014) and COV-OBS by Gillet et al. (2013). The CHAOS-4

model covers the period 1997-2013 and is constrained by Ørsted, CHAMP and SAC-C

satellite data, augmented by monthly mean values from observatories. The time vari-

ations of the core-generated field are described by 6th order splines and the third time

derivative of the squared radial magnetic field component is regularised at the CMB.

Such regularisation forces the expansions in the spatial and time domains to converge,

but also hinders the calculation of reliable second order statistics that are required

for inferring the core dynamics responsible for observed SV. The COV-OBS family of

models, spanning the period 1840-2010, takes a stochastic approach that uses time

covariance functions to integrate some prior information on the time evolution of the

geomagnetic field. The time series of spherical harmonic coefficients are considered as

realisations of a continuous and differentiable stochastic process, which is chosen such

that it is not twice differentiable. This property allows for sharper changes in SV, such

as geomagnetic jerks, than are permitted in previous regularised field models, which

were designed to penalise sharp changes.

Despite the fundamental differences in model construction between the CHAOS-4 and

COV-OBS models, the resulting magnetic fields look remarkably similar when evaluated
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using Gauss coefficients from both models for the same time interval. Indeed, when

the radial magnetic field, Br, is constructed at the CMB for the same time, the fields

differed by only a few nanotesla. This led to the conclusion that there is no reason to

prefer one model over the other when looking at single snapshots of the geomagnetic

field because their spatial structure is very similar. In terms of temporal variations,

the background magnetic field is considered constant over the timescales of torsional

wave evolution in our models. A consideration is whether a single snapshot for the field

at a particular time is consistent with waves on decadal timescales; the field snapshot

may actually contain features that are caused by torsional waves. In order to assess

whether a snapshot or a time-averaged field should be used in the calculations, we

compared the radial magnetic field at the CMB in three cases: a snapshot in 2010, a

50 year time-average (1960-2010) and a 130 year time-average (1840-2010) according to

COV-OBS, see Fig. 4.2. The figure shows that the three fields are very similar in both

spatial structure and in amplitude, with only a few small length scale features vanishing

from the 130 year average compared to the modern snapshot. Rather than small-

scale features being absent from the field prior to 1960, it is likely that observational

limitations and spatial coverage at the time were not sufficient to resolve them. From

this, it seems that the choice between the two field models, and between a snapshot of

the radial field at the CMB and a time-averaged field, is unlikely to greatly influence

the results. As such, we chose the 2010 radial field according to COV-OBS for our

synthetic data production, see Fig. 4.3. For the forward models of the previous chapter,

we required a profile for the cylindrical average of the background magnetic field inside

the core, {B2
s}. As observationally-constrained field models describe the geomagnetic

field above the core surface, and only up to degree 14, such models provide no constraint

on the profile of {B2
s} inside the core. Therefore, there is no inconsistency between the

{B2
s} profiles used in the forward models and the COV-OBS background magnetic field

used for wave-induced SV calculations.
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(a)

(b)

(c)

Figure 4.2: The Z (= −Br) component of the geomagnetic field at the CMB according to
the COV-OBS field model Gillet et al. (2013) (a) Snapshot of the field in 2010 (b) 50 year
time-averaged field (1960-2010) and (c) 130 year time-averaged field (1840-2010). The scale is
in µT; red indicates positive field (entering the core) and blue indicates negative field (exiting
the core).
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4.4 Benchmarking and resolution testing

Numerical results for torsional wave-induced SV were obtained using a code written in

Matlab that takes as inputs the wave velocities in the spatial domain, uφ(s), and the

Gauss coefficients of the background magnetic field at the CMB, Gml and Hm
l . The

background magnetic field B is specified up to spherical harmonic degree 14, which

is the maximum degree to which the internally generated field is robustly determined

in field models. The Gauss nodes and weights were computed using the eigenvalue

method of Golub & Welsch (1969) and, in all models, sufficient nodes were used to

ensure convergence of the projection of uφ(s) onto spherical harmonics. The code

projects the wave velocities onto spherical harmonics and solves equations (4.20) and

(4.22) for the Gauss coefficients of the scalar potential v describing the wave-induced

SV ḃ. The Matlab script was benchmarked against a Maple script that performs the

required integrations analytically when the input velocities and background field are

expressed explicitly as associated Legendre functions. The Maple code outputs the

Gauss coefficients for v and can evaluate the values of any component of ḃ at a given

point. We compared values for the Gauss coefficients and magnetic field values output

by the two independent codes and found they were in excellent agreement.

Fig. 4.4 shows the initial wave profile, given by equation (2.60) in cylindrical coordi-

nates, mapped onto the collocation points for GLQ (top), in the theta domain, and the

spatial power spectrum of the velocity (bottom). The single pulse in the spatial domain

maps into two pulses on the Gauss nodes due to the equatorial symmetry of torsional

waves (e.g. see Figs 1.4a and 1.5). When the single pulse splits into two, such as the

torsional waves shown in Fig. 3.5 of §3.3, this manifests as four pulses on the Gauss

nodes (see Fig. 4.5). This equatorial symmetry also explains the power spectra in Figs

4.4 and 4.5; only even spherical harmonic degrees are present because only harmonics

with l −m even have this property. As the velocities are axisymmetric (m = 0), this

leaves only spherical harmonics of even degree available. Convergence of the velocity

expansion was ensured by calculating the spatial power spectra (the squared magnitude

of the spherical harmonic coefficients at each degree, see equation (1.1)) and compar-

ing the power contained at low and high spherical harmonic degrees at different times

during wave propagation. From the calculated spectra, examples of which are shown

in Figs 4.4 and 4.5, we chose to project uφ onto spherical harmonics up to degree
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40, anticipating that the magnitudes of higher degree coefficients are negligibly small.

Similarly, spatial power spectra were used to compare the magnitudes of the Gauss

coefficients of the calculated wave-induced SV (see the next sections for figures) and

determine the resolution required for the calculation of ḃ. The power spectrum of ḃ was

calculated at different times throughout the wave evolution in order to ensure that the

resolution required for the SV induced by the initial profile is sufficient to resolve the

SV induced by the waves at any time in the model. We also performed the numerical

integration using different numbers of quadrature points between 20 and 200, in order

to verify convergence of the solutions. Following this convergence testing, a value of

N = 100 was chosen so as to be large enough to ensure convergence but small enough

to avoid inaccuracies associated with calculating the eigenvalues of large matrices in

Matlab.
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Two further tests of the code were carried out: first, using an axisymmetric magnetic

field and second, a sensitivity test for a bulk rotation of the core fluid. Equation (4.1)

shows that zonal flow-induced secular variation depends upon the azimuthal (longitu-

dinal) variations in the background magnetic field, which means that an axisymmetric

magnetic field should be unaffected by torsional waves. We verified that both the

Matlab and Maple codes give all Gauss coefficients for v as zero for any axisymmetric

background field.

For a bulk rotation of the core fluid with respect to the mantle (constant ωg), the SV

obtained can be predicted from equation (4.2); differentiating the background Br (from

the field model) with respect to φ and multiplying by −ωg shows the pattern of SV

that is expected to arise when all of the fluid in the core is perturbed equally. Not

only does this sensitivity test provide another means of benchmarking the numerical

solutions, it highlights those regions of the field at the CMB that are sensitive to zonal

core flow, and which regions are unaffected by zonal core flow.

4.5 SV patterns

As Bloxham et al. (2002) noted in the first paper linking geomagnetic jerks to torsional

oscillations, local magnetic field morphology dictates whether a particular location is

sensitive to zonal core flow. This is an important point because some jerks are ob-

served globally, while others are seen on regional scales, which has previously hindered

identification of a common physical origin for these events.

Fig. 4.6a shows the φ-derivative of the radial component of the selected background

magnetic field shown in Fig. 4.3. The red and blue regions show where zonal flow

will induce a signal in the SV, whilst the white areas indicate regions that are not

sensitive to zonal flow because there are no azimuthal gradients in the radial field at

that location. The middle figure, 4.6b, shows the SV pattern that would be induced by

a bulk rotation of the core fluid with respect to the mantle and, as expected, the pattern

matches that of Fig. 4.6a. An interesting point is that the pattern is also very similar to

the observed SV at the same time (see Fig. 4.6c), particularly in the equatorial Atlantic

region, which implies that much of the observed SV can be accounted for by a general

zonal core flow. A bulk rotation of −0.2864◦/yr was needed to match the amplitudes
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of the observed SV. The observed westward drift of the historical geomagnetic field at

a rate of approximately 0.2◦/yr has long been associated with a general westward flow

at the top of the core (Bullard et al., 1950, Jackson, 1997, Jault et al., 1988, Dumberry

& Finlay, 2007). More recent work by Livermore et al. (2013) has even linked the flows

responsible for the westward drift of the magnetic field with the shuffling superrotation

of the inner core observed by Tkalc̆ić et al. (2013).

In order to produce time series and maps of torsional wave-induced SV, the torsional

wave velocities uφ must be scaled by an appropriate amplitude; recall that the torsional

wave equation has no intrinsic scale. Having chosen the internal magnetic field ampli-

tude to give a core transit time of approximately 6 years in order to be consistent with

Gillet et al. (2010), we chose to scale our torsional waves to match their amplitude as

well. As shown in Fig. 1.8, the torsional waves in that study had maximum amplitudes

of approximately 0.4 km/yr. When this amplitude is used, the resulting SV is relatively

small; the amplitudes of ẋ and ẏ are generally less than ±20 nT/yr at the CMB. The

radial component of ḃ is a factor of 2-3 larger than the other components, and so the

rest of this section will focus upon the pattern of signals in ż. Having discussed these

patterns, we will then investigate the wave amplitudes and timescales needed to match

SV observations and produce jerk-like signals.

When both the velocity and magnetic fields are expressed in spherical harmonics, the

interactions between different magnetic and velocity modes are non-zero only when

certain selection rules are satisfied (Bullard & Gellman, 1954). For example, when the

velocity is purely toroidal everywhere (ur = 0), the induction equation has no non-

trivial solution and dynamo action cannot be sustained. However, in general, starting

with any magnetic field and velocity field, an infinite sequence of other harmonics will be

excited. Since no general statement can be made, we must resort to numerical methods

to solve (4.2) and ensure that the calculations are converged and account for most

of the wave-induced SV. Fig. 4.7 shows the spatial power spectrum of the calculated

potential field, v, pertaining to ḃ up to spherical harmonic degree 50. An interesting

feature of these spectra is a step down in power at l = 14, which corresponds to the end

of the background magnetic field expansion. The spectrum is calculated at different

times throughout the wave evolution in order to ensure that the initial resolution is

sufficient for the whole calculation. A resolution of 40 spherical harmonics was chosen
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for the SV calculations discussed in the this chapter, as the power had dropped several

orders of magnitude from its maximum by this degree.

Fig. 4.8 shows the SV induced by the torsional waves of the forward model in the

previous chapter, see Fig. 3.5 for the contour map of uφ for the full sphere model. As

previously discussed, the single pulse of the initial profile in Fig. 4.8a, which is placed

at the midpoint of the core radius (s = rc/2), manifests as two bands of SV at mid

to high-latitudes. The location of these bands is equatorially symmetric due to the

symmetry of the columnar flow comprising torsional waves, but the bands themselves

are not equatorially symmetric because the local magnetic field morphology differs in

the northern and southern hemispheres. The locations of the lines of zero wave-induced

SV match those in Figs. 4.6a and 4.6b, which describe where the background magnetic

field has no longitudinal variations and these differ in each hemisphere. After 1 year,

the wave has split into two smaller pulses that begin to move away from the initial

pulse position (s = rc/2), see Fig. 4.8b. The two velocity pulses now manifest as four

bands of SV, two at slightly lower latitudes than before and two at slightly higher

latitudes than the initial bands. Fig. 4.8c shows the wave profile after 2 years when

one pulse has moved towards the rotation axis and the other towards the equator of

the CMB. Due to the geometry of torsional waves, the pulse near the rotation axis

perturbs the magnetic field in the polar regions and the pulse near the equator of the

CMB perturbs the field in equatorial regions. Fig. 4.8d shows the wave profile at 3

years, during the first reflections and phase shifts of the pulses. The strong SV in the

equatorial region is due to the waves being high amplitude during the reflection at the

stress-free boundary. The band is wider than in the previous figures because the wave

is no longer a distinct pulse at the equator; at least the outermost 500 km of the core

fluid is perturbed. The wave pulse near the rotation axis is smaller than before the

phase shift and of the opposite polarity, which explains the sign reversal of the SV and

lower amplitude signal. The SV signals are seen across the whole planet as the wave

becomes dispersed and the energy spreads through the domain, see Figs. 4.8e and 4.8f

for the wave profiles and corresponding SV signals after 4 and 5 years respectively. The

white lines of zero wave-induced SV arise from two effects; first, the background field

has no longitudinal variations in some locations and second, the velocity profile crosses

uφ = 0 at several radii throughout the core whilst changing polarity, which results in

no induced SV along certain bands of latitude.



§4.5 SV patterns 119

As the dynamics of the waves in the forward models were very similar, we shall focus

on the full sphere model in this chapter; the effects of changing geometry to that of

a spherical shell or adding a spatially varying {B2
s} profile would result in only minor

differences in the SV maps. In the previous chapter, we also considered the effect of

wavelength on torsional wave propagation, finding that long wavelength features are

more dispersive than short wavelength features, though the general dynamics of the

modelled waves were very similar for all wavelengths. Increasing the wavelength of

the initial pulse results in wider bands of SV because the wave occupies more of the

core and perturbs a larger portion of the ambient magnetic field. Conversely, narrower

initial pulses than that shown in Fig. 4.8a occupy less of the core and therefore perturb

less of the magnetic field, resulting in narrower bands of SV. The amplitude of the SV

is unchanged by varying the wavelength because it is determined only by the amplitude

of the torsional wave.
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(a)

(b)

(c)

Figure 4.6: (a) The φ-derivative of the radial component of the geomagnetic field at the CMB
in 2010 according to the COV-OBS field model Gillet et al. (2013) (b) The radial SV, ḃr, induced
by the interaction of the field shown in (a) with a bulk rotation of the core fluid with respect
to the mantle of -0.005 rad/yr (−0.2864◦/yr) (c) The radial SV of the geomagnetic field at the
CMB in 2010 according to the COV-OBS field model. The scale is in µT/yr; red indicates more
positive field (more exiting the core) and blue indicates more negative field (more entering the
core).



§4.5 SV patterns 121

Figure 4.7: The spatial power spectrum, evaluated at the CMB radius, of torsional wave-
induced SV. The waves in this model had a core transit time of 6 yr and an initial pulse
amplitude of 0.4 km/yr.
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(a) t = 0

(b) t = 1 yr

(c) t = 2 yr
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(d) t = 3 yr

(e) t = 4 yr

(f) t = 5 yr

Figure 4.8: Maps of the radial component of the SV induced by torsional waves with a 6 yr
core transit time and an initial wave pulse amplitude of 0.4 km/yr. The SV is evaluated at
the CMB and the colour scale is from −150 nT/yr to 150 nT/yr. The torsional wave profile
is shown on the right, with cylindrical radius (km) on the horizontal axis and zonal velocity
(km/yr) on the vertical axis.
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4.6 Synthetic observatory data

Having examined the general structure of SV induced by torsional waves travelling

through the core, it is now of interest to investigate the signals that would be observed

at particular locations throughout wave evolution. Fig. 4.9 shows the locations of

the 24 magnetic observatories at which synthetic SV time series are produced. These

observatories are a sample of the total number of observatories worldwide and were

chosen to give maximum spatial coverage. We first calculate the wave-induced SV at

the CMB radius, using the real observatory latitudes and longitudes, and subsequently

look at the signals at Earth’s surface.

The figures in Appendix B show time series of the z component of wave-induced SV

at the 24 observatory locations (at CMB radius) for the first 20 yr of torsional wave

evolution in the full sphere model; for illustrative purposes, a selection of these figures is

provided in this section. As previously discussed, all of the observatories record different

SV signals, but all share two common traits: first, the amplitudes are quite small and

second, the timescales are very short. Also, where signals are recorded, they show some

periodicity because the waves travel beneath the same location approximately every six

years.

For example, Fig. 4.10a shows the signal recorded at the Bangui observatory in the

Central African Republic, at CMB radius. At this station, the SV signals are relatively

large compared to other stations, approximately 200 nT/yr, and vary on timescales of

6 yr. Fig. 4.10b shows that very little is recorded at the Eskdalemuir observatory in

Scotland. One of the objectives of this work was to investigate whether the torsional

waves in our forward models produce signals that resemble geomagnetic jerks. Of

course, we do not observe jerks at the CMB, but at observatories on Earth’s surface

and via satellite observations. The synthetic data were upward continued to the Earth’s

surface (taken as 6371 km) in order to permit comparison with real magnetic data, see

Fig. 4.11 for time series of the SV at the same three observatories shown in Fig. 4.10.

Note the very small amplitudes (<3 nT/yr) compared to the maximum amplitude of

observed SV at Earth’s surface (∼ 200 nT/yr) and the rapid timescales of the signals.

Using the the wave amplitude and timescales of Gillet et al. (2010), we must conclude
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(a)

(b)

(c)

Figure 4.10: Time series of the z component of the SV induced at the CMB by torsional
waves with a 6 yr core transit time and an initial pulse amplitude of 0.4 km/yr at (top) Bangui,
(middle) Eskdalemuir and (bottom) Port Stanley.
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(a)

(b)

(c)

Figure 4.11: Time series of the z component of the SV induced at Earth’s surface by torsional
waves with a 6 yr core transit time and an initial pulse amplitude of 0.4 km/yr at (top) Bangui,
(middle) Eskdalemuir and (bottom) Port Stanley.
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that the waves do not produce jerk-like signals because the timescales of the synthetic

SV are much too rapid and at Earth’s surface, the signals are too small. Jerks in real SV

data generally consist of two linear segments of data that are several years (or decades)

long, with the jerk event being the very rapid (<1 yr) change from one gradient to the

other, as shown in Fig. 4.1. In the synthetics, the SV does change slope very rapidly in

many of the time series, particularly in the time series evaluated at CMB radius, but

these changes do not separate long periods of SV of constant slope; the rapid changes

are bracketed by linear SV segments of only a few months and, often, two rapid changes

occur in quick succession due to the wave passing beneath a particular location and

then changing direction, after reflection for example, and passing beneath the same

point shortly afterwards. For example, see the signals predicted at Bangui at the CMB

in Fig. 4.10a and at Port Stanley in the Falkland Islands, Fig. 4.10c at CMB radius and

Fig. 4.11c at Eath’s surface. Applying the jerk detection method of Brown et al. (2013)

that was described in §4.1 required parameters far removed from those applied to real

SV data in order to identify ‘jerks’. At Earth’s surface, the jerk algorithm could only

detect ‘jerks’ if the amplitude threshold was considerably lower than that used for real

SV data. The algorithm could detect jerk-like signals at the CMB, due to the larger

signals at this radius, but the signals identified were the very rapid ‘wiggles’ described

above, and required very short sliding windows of less than 2 yr to be detected. For

comparison, window lengths of 5-20 yr were used by Brown et al. (2013) in their study of

magnetic data from 1958-2008. Another point for consideration is that real jerks can be

observed in any component of the magnetic field, but the synthetic data produced very

small signals in all three components at Earth’s surface, which would likely be within

the noise threshold of observational data (see Wardinski & Holme (2011) for details on

the techniques used to denoise geomagnetic data for SV studies). For comparison, the

radial SV at the CMB is on the order of 20 µT/yr (see Fig. 4.6c), which is two orders

of magnitude larger than the wave-induced SV shown in Fig. 4.8, and the radial SV at

Earth’s surface is on the order of ∼ 200 nT/yr compared to the wave-induced SV of a

few nanotesla.

The selected wave amplitude and timescale were chosen for consistency with a recent

study on torsional waves by Gillet et al. (2010). Those waves were much faster than the

waves in previous works and of relatively small amplitude, which raises the question

of whether matching torsional waves in previous studies might yield results that bear
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more resemblance to real SV data. The first study of torsional oscillations in Earth’s

core by Braginsky (1970) theoretically predicted torsional oscillations with a period of

approximately 60 years. The same period was recently advocated by Roberts et al.

(2007), based on empirical mode decomposition of ∆LOD and SV data. Zatman &

Bloxham (1997) identified two torsional modes with periods of 76 and 53 years, re-

spectively, based on observational data, giving an average period of 60-65 years. A

subsequent study by Hide et al. (2000), also based on observations, identified a ro-

bust 65 year torsional oscillation period. The theoretical study of Mound & Buffett

(2005) used Green’s functions to show how torsional oscillations might be excited in

the core, and a subsequent study by the same authors identified several periods asso-

ciated with torsional oscillations (Mound & Buffett, 2007). Their first four modes had

approximate periods of 80, 46, 32 and 24 years respectively. Dickey & de Viron (2009)

reviewed the leading modes of torsional oscillations found in previous studies, from

both observational and theoretical methods, and also isolated some additional modes

using core angular momentum data from the core flow (Hide et al., 2000) reconstructed

from Jackson et al. (1993). Their first two modes were in agreement with the previous

results by Zatman & Bloxham (1997) and Mound & Buffett (2007).

Based on the above overview of previously determined torsional oscillation periods, a

forward model of torsional waves with a revised core transit time and wave amplitude

was run, see Fig. 4.12 for the contour plot of the azimuthal velocity for the first 200

years of wave evolution. The amplitude of the initial wave pulse was set to 4 km/yr,

for consistency with previously determined torsional wave amplitudes (e.g. Zatman &

Bloxham, 1997) and the core transit time was 60 yr. Note that recent work by Buffett

(2014) has attributed the 60 yr core signal to another type of waves, called Magneto-

Archimedes-Coriolis (MAC) waves, that may propagate in a stably stratified layer at

the top of the outer core. However, as discussed above, there is a substantial body of

work linking the 60 yr signal with torsional waves and for the purposes of this study,

we will assume that the signal is indeed related to torsional waves.

Having rescaled our torsional wave timescales and amplitudes, we produced synthetic

time series of the induced SV at the previously discussed observatories. The spatial SV

patterns at the CMB are the same as discussed in the previous section, and the temporal

scales are now elongated compared to the previous model. As seen in Fig. 4.8 and the
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Figure 4.12: Contour plot of the velocity uφ of torsional waves in a full sphere, with time
on the horizontal axis and cylindrical radius on the vertical axis. Red corresponds to positive
velocity and blue corresponds to negative velocity. The colour scale is from -6 km/yr to 6 km/yr;
the initial wave pulse had an amplitude of 4 km/yr and the waves have a 60 yr core transit
time.

spectra in Fig. 4.7, much of the wave-induced SV is small length scale at the CMB.

At Earth’s surface, many of the small length scale (high spherical harmonic degree)

features of the induced SV have been filtered out during the upward continuation and

the majority of the SV is of degree l < 5, see the spectra in Fig. 4.16. Maps of the

x, y and z components of the torsional wave-induced SV at six different times during

the first core transit time are shown in Figs. 4.13, 4.14 and 4.15. This filtering out

of small length scales would be increased in the case of the mantle containing any

electrically conducting material. This screening by conductive material is an effect

that is typically neglected in models, but the presence of such material is thought likely

for parts of Earth’s lower mantle (e.g. Shankland et al., 1993).

The magnitudes of the synthetic SV are an order of magnitude larger than in the previ-

ous model, due to the increased torsional wave amplitude, and all three components are

large enough to be resolved in observations (see the amplitude of the observed SV at

the Earth’s surface in Fig. 1.3a and Wardinski & Holme (2011), Brown et al. (2013)).

We applied the jerk detection method of Brown et al. (2013) to the synthetic time

series evaluated at Earth’s surface. As previously discussed, that method was based
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on a study by Pinheiro et al. (2011), which described a method for identifying jerks by

applying a two-part linear regression to a window of a single component of observatory

SV data and generating a PDF of the ‘likeliness’ of potential jerk occurrence times.

A potential jerk occurrence is considered at each time step as the linear regression is

iterated across the window of data, and the misfit of the regression to the data is used

to build the PDF. Estimates of the uncertainties in jerk occurrence times and ampli-

tudes may then be calculated, assuming Gaussian error distributions in the ‘peaks of

likeliness’. Events are classified as jerks if a 68% confidence window (± one standard

deviation) may be defined about the most likely occurrence time in the PDF, whilst

no jerks are identified if the confidence interval cannot be defined about the peak in

likeliness or if no peak in likeliness occurs within the window of data.

As the previously described method uses a static window of data, Brown et al. (2013)

proposed that the jerk identification may be biased due to inherent limitations in the

extent and time of potential jerks considered, and suggested that a more robust method

would use the whole time series of data (e.g. Stewart & Whaler, 1995, Alexandrescu

et al., 1996, De Michelis & Tozzi, 2005), rather than requiring prior data selection.

Therefore, they modified the method to use a sliding window that acts as in Pinheiro

et al. (2011), but shifts one time step per iteration along the time series of data and

calculates the PDF repeatedly. The summation of the resulting overlapping probability

functions is then normalised to an integral of 1, so as to produce a continuous PDF

for the entire series of data under consideration. The modified method uses the same

procedure for estimating time uncertainties as described in Pinheiro et al. (2011), but

Brown et al. (2013) introduced a threshold probability above which an event may be

considered ‘significantly likely’ compared to the background level of ‘likeliness’ that

arises from the misfit of the regression to the variability in the data. Their method also

requires a minimum jerk amplitude below which an event is not considered significant

compared to the background noise level of the data.

For consistency, we used the same parameters on the synthetics as Brown et al. (2013)

used on the real magnetic data for the period 1958-2008. These parameters include a

PDF threshold cut-off (taken as 0.2 in Brown et al. (2013), based on trade-off curve

of the number of jerks detected versus the probability cut-off threshold above which

peaks in probability are considered jerks), a minimum jerk amplitude (3 nT/yr2) and
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the window length for the linear regression. Four different window lengths (5, 10, 15

and 20 yr) were applied to each individual component of the SV time series, and a

two-part linear regression was fitted to the series at every potential jerk occurrence

time (taken as 0.001 yr so as to be smaller than the monthly (0.08 yr) synthetic data

sampling).

The jerk detection method identified several jerk events at Earth’s surface, according

to the criteria specified by Brown et al. (2013). As previously discussed in relation to

the previous synthetic series, the signals retain some periodicity due to waves travelling

beneath some locations periodically. This periodicity results in several successive jerks

being observed at some observatories, but there is only weak evidence for such periodic

jerks in real magnetic data (Brown et al., 2013). Figures of all results from this method

may be found in Appendix B, Figs. B.2 to B.10; a few example figures are also included

in this chapter for ease of discussion. The top panel of these figures shows a time series

of a single component of the SV signal (in nT/yr) at a particular observatory throughout

the 200 years of the torsional wave forward model shown in Fig. 4.12. The observatory

name and the window length are displayed at the top of each figure, and any identified

jerk events are shown as a red ‘V’ shape fitted to the synthetic SV series. The bottom

panel shows the calculated PDF from the two-part linear regression, with the chosen

threshold cut-off value shown as a green line, and the positive and negative errors on the

PDF are filled in underneath the PDF curve in red and black respectively. As described

in Brown et al. (2013), the PDF values are normalised to a value of one across the entire

window to account for any jerk events being identified in several windows during the

sliding regression. Note that for narrow PDF curves, the values of the PDF are very

high (>100) because the algorithm normalises the area of a spike.

In general, the identified jerk events occurred in single components of the SV and were

localised to small regions. Since the torsional waves perturb the ambient magnetic field

in two equatorially symmetric bands of latitude, the waves do not produce signals that

are observed everywhere at the same time, which precludes the generation of global

jerk events such as that observed in 1969 (Courtillot et al., 1978, Malin et al., 1983,

Whaler, 1987). However, more observatories see signals simultaneously towards the

end of the wave model because the wave energy has dispersed through the domain,

though these signals tend to be low amplitude and smoothly varying. As the wave
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energy disperses through the core, the SV signals become broader and weaker, which

at some observatories, such as at Hermanus in South Africa (Fig. 4.17a), results in fewer

jerk events being identified during the final core transit time in the model. In other

locations, jerk events are identified whenever the wave passes beneath the observatory,

see San Juan, USA in Fig. 4.17b.
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(a) t = 0

(b) t = 10 yr

(c) t = 20 yr
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(d) t = 30 yr

(e) t = 40 yr

(f) t = 50 yr

Figure 4.13: Maps of the x component of the SV induced by torsional waves with a 60 yr
core transit time and an initial wave pulse amplitude of 4 km/yr. The SV is evaluated at the
Earth’s surface and the colour scale is from −10 nT/yr to 10 nT/yr. The torsional wave profile
is shown on the right, with cylindrical radius (km) on the horizontal axis and zonal velocity
(km/yr) on the vertical axis.
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(a) t = 0

(b) t = 10 yr

(c) t = 20 yr
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(d) t = 30 yr

(e) t = 40 yr

(f) t = 50 yr

Figure 4.14: Maps of the y component of the SV induced by torsional waves with a 60 yr
core transit time and an initial wave pulse amplitude of 4 km/yr. The SV is evaluated at the
Earth’s surface and the colour scale is from −20 nT/yr to 20 nT/yr. The torsional wave profile
is shown on the right, with cylindrical radius (km) on the horizontal axis and zonal velocity
(km/yr) on the vertical axis.
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(a) t = 0

(b) t = 10 yr

(c) t = 20 yr
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(d) t = 30 yr

(e) t = 40 yr

(f) t = 50 yr

Figure 4.15: Maps of the z component of the SV induced by torsional waves with a 60 yr
core transit time and an initial wave pulse amplitude of 4 km/yr. The SV is evaluated at the
Earth’s surface and the colour scale is from −25 nT/yr to 25 nT/yr. The torsional wave profile
is shown on the right, with cylindrical radius (km) on the horizontal axis and zonal velocity
(km/yr) on the vertical axis.
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Figure 4.16: The spatial power spectrum, evaluated at Earth’s surface, of torsional wave-
induced SV. The waves in this model had a core transit time of 60 yr and an initial pulse
amplitude of 4 km/yr.



§4.6 Synthetic observatory data 141

(a)

(b)

Figure 4.17: The top panel of these figures shows a time series of a single component of the SV
signal (in nT/yr) at (a) Hermanus and (b) San Juan throughout the 200 years of the torsional
wave forward model shown in Fig. 4.12. The observatory name and window length are displayed
at the top of each subfigure, and identified jerk events are shown as a red ‘V’ shape fitted to
the SV series. The bottom panel shows the calculated PDF from the two-part linear regression,
with the chosen threshold cut-off value of 0.2 shown as a green line. The positive and negative
errors on the PDF are filled in underneath the PDF curve in red and black, respectively
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4.7 Discussion and conclusions

In this chapter, we have used the induction equation under the frozen flux assumption

and velocities from torsional wave forward models to produce maps and synthetic time

series of wave-induced SV. The required background fields were taken from the COV-

OBS model by Gillet et al. (2013), though the effects of using different field models

and/or time-averaged fields were investigated and found to give equivalent results. We

conducted a sensitivity test of the magnetic field to a bulk rotation of the core fluid,

finding that global zonal core flows produce SV signals that strongly depend on the

local magnetic field morphology and in particular, on the field’s longitudinal variations.

As Bloxham et al. (2002) noted in the first paper suggesting that geomagnetic jerks

are caused by torsional oscillations, the local effects of field structure may explain why

some jerk events are only observed on regional scales and implies that small length

scale core flow need not necessarily be the cause of regional SV signals. However,

some geomagnetic jerks, such as the event in 1969, were observed at a global scale

(Courtillot et al., 1978, Malin et al., 1983, Whaler, 1987), but not all parts of Earth’s

magnetic field are sensitive to zonal core flows at any particular time. Since torsional

waves (or other zonal flow) cannot produce global contemporaneous SV signals, we

concur with previous studies (e.g. Wardinski et al., 2008, Silva & Hulot, 2012) that

suggested geomagnetic jerks cannot be caused by zonal flows alone, even though such

flows are an important contributor to the observed SV. An interesting point to note

from the sensitivity test, is that the observed SV and that induced by a bulk rotation

of the core fluid are remarkably similar, particularly in the equatorial regions. The

amplitude of the bulk rotation required to match the observed SV amplitudes was

approximately 0.3◦/yr, which is similar to many estimates of the rate of westward drift

of the geomagnetic field in the equatorial Atlantic (e.g. Bullard et al., 1950).

We set out to investigate whether the torsional waves in our forward models can produce

SV signals that resemble geomagnetic jerks. Several studies have linked the origin of

jerks to torsional oscillations and/or toroidal core flows (e.g. Waddington et al., 1995,

Bloxham et al., 2002, Olsen & Mandea, 2008, Wardinski et al., 2008, Silva & Hulot,

2012). When the torsional wave amplitudes and timescales are chosen to match a

recent study of the 6 yr signal in ∆LOD by Gillet et al. (2010), the resulting SV signals

were very small (<3 nT/yr at Earth’s surface) and would not be resolved in magnetic
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data. The timescales of the induced SV signals are very short, due to the waves having

a 6 yr core transit time, and are consequently too rapid to be considered as jerks

because observed jerks punctuate relatively long (years to decades) periods of constant

SV. However, torsional oscillations have most often been linked to decadal signals in

geophysical data with higher amplitudes (e.g. Braginsky, 1970, Zatman & Bloxham,

1997, 1999, Hide et al., 2000, Roberts et al., 2007, Dickey & de Viron, 2009), and so we

recalculated the SV signals induced by torsional waves with a 60 yr core transit time

and an increased amplitude of 4 km/yr.

We applied the jerk detection method of Brown et al. (2013) to the synthetic SV series

evaluated at Earth’s surface, using the same parameters as they used on real magnetic

data. Various signals were identified as jerks in the synthetic data, according to the

criteria described in Brown et al. (2013), though they do not appear to resemble SV

signals that have traditionally been identified as jerks. At all observatories, the SV

signals are smoothly-varying and do not resemble the sharp ‘V’ shape that is usually

associated with geomagnetic jerks, see Fig. 4.1. However, despite the prevalence of this

definition, not all authors agree that jerks should be defined as sharp changes in SV and

a corresponding step in the second time derivative of the magnetic field and spike in

the third time derivative (e.g. Alldredge, 1984, 1985). Demetrescu & Dobrica (2005)

decomposed the geomagnetic field variation into its multidecadal ingredients, which

include a ‘steady variation’ and three quasi-periodic signals of ∼11 yr, ∼22 yr and

∼80 yr. The steady variation and 80 yr signals are related to main field evolution, the

11 yr is of external origin and 22 yr signal has both internal and external sources. When

considering the 22 yr signal to be of purely external origin, Demetrescu & Dobrica

(2005) suggested that a jerk results from the superposition of the 11 yr and 22 yr

variations on the 80-yr variation, and this superposition of quasi-periodic signals affects

jerk timing, magnitude, and duration. In a subsequent paper, in which the authors

made the distinction between the external 22 yr signal and the (larger) internal 22 yr

signal, the authors found that jerks arise from the combination of the internal 22 yr and

80 yr signals (Demetrescu & Dobrica, 2014). They argue that since jerks are caused

by smoothly-varying periodic signals, they are not inherently sharp SV signals and

that contamination by the external 22 yr signal causes the often reported ‘V’ shape on

very short timescales, and also influences the amplitude and timing of the jerk. The

smoothly varying SV signals induced by our torsional waves seem to be more consistent
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with the results of Demetrescu & Dobrica (2005, 2014) than other works requiring very

sharp SV variations.

Many of the signals are only identified in a single component of the field, and the several

jerks often occur in quick succession due to the periodic propagation of waves under

particular locations. Despite attempts by Brown et al. (2013), such periodicities have

not been identified in jerk occurrences in observatory data. If torsional waves in the

core are related to geomagnetic jerks, it could be that the waves are generated in one

region of the core, the tangent cylinder for example (Livermore & Hollerbach, 2012,

Teed et al., 2015), and are damped out in another region so that the waves do not

reflect from the core boundaries (Schaeffer et al., 2012). If the base of the lower mantle

were electrically conducting, the waves would likely be rapidly attenuated at the top

of the core (e.g. Dumberry & Mound, 2008) and so would be unable to produce the

periodic signals seen in our forward models. Despite several suggestions, the excitation

mechanism of torsional waves in the core has not yet been confirmed. The waves could

be continually generated, periodically generated or irregularly generated, depending on

the physical processes that excites them, and each of these scenarios would result in

very different SV signals.



Chapter 5

Concluding remarks

This thesis has focussed upon torsional Alfvén waves in Earth’s core and their influence

on geomagnetic secular variation. This chapter collects the principal results obtained

in the previous chapters and returns to the questions posed in chapter 1. Finally, we

discuss some remaining gaps in knowledge of torsional waves and make suggestions as

to how these could be addressed in future studies.

5.1 Conclusions

What are the fundamental propagation characteristics of torsional Alfvén

waves?

In chapter 3, we presented the results of our 1-D forward models of torsional waves in

a cylinder of fluid, a sphere of fluid and an equatorially symmetric spherical shell. The

key propagation features of the torsional waves in our models are: dispersion, phase

shifts and internal reflections.

We found that torsional waves undergo significant dispersion during propagation that

arises due to their geometric setting, and that the waves are increasingly dispersed with

time. Using the various ‘geometric’ terms in the torsional wave equation, we quantified

and characterised this dispersion, concluding that long wavelength features are more

dispersive than short wavelength features. An additional source of dispersion in the

models is the presence of a low amplitude wake trailing behind sharply defined pulses

after the initial wave pulse has split apart. We attributed these negative wakes to

145
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the failure of Huygens’ principle in even spatial dimensions, hypothesising that despite

their 1-D mathematical description, torsional waves involve 2-D physics due to their

convergence upon an axis.

Having observed unexpected wave behaviour at the Earth’s rotation axis, we performed

a similar analysis to that detailed in Morse & Feshbach (1953) for torsional normal

modes and showed that phase shifts can explain the observed wave behaviour. We also

investigated the possibility of torsional waves undergoing a Hilbert transform at the

rotation axis, a phenomenon that was first reported by Powell (1994) for waves passing

through the focal point of a circular membrane. From these analyses, we concluded

that while some narrow initial pulses appear to undergo a uniform phase shift at the

rotation axis, in general, an arbitrary initial pulse will undergo a more complicated

phase shift that cannot readily be understood as a Hilbert transform.

We investigated the effects on torsional wave propagation of using a spatially varying

profile of the cylindrically averaged magnetic field and observed all of the features

contained in previous models, plus three additional propagation features. First, the

pulse trajectories are curved due to variations in the local Alfvén wave group velocity.

Second, we observed an internal wave reflection, which we attributed to relatively

steep magnetic field gradient at the same location. Third, we observed several pulses

of alternating polarity near to both the rotation axis and the equator of the CMB

after the first reflection of torsional waves at the boundaries. We noted that this effect

is particularly prominent near the rotation axis, where the gradient of the magnetic

field profile is steep, and concluded that these strong field gradients cause continual

reflections of propagating waves in this region of the model, resulting in waves becoming

partially trapped.

What are the implications of these propagation characteristics on torsional

waves in Earth’s core?

The main propagation characteristics of torsional waves in our forward models all act

to significantly change the shape of an initial wave pulse. For travelling torsional

waves, narrow (short wavelength) wave profiles are less dispersive than wider pulses,

which may be particularly important when studying torsional waves in the Earth’s

core because those inferred from SV data appear to be relatively long wavelength.

For example, the torsional waves presented in Gillet et al. (2010) occupy at least one



§5.1 Conclusions 147

fifth of the core radius and those presented in Hide et al. (2000) occupy almost the

entire core radius. Our analyses of dispersive regions and the evolution of our modelled

waves suggested that torsional waves in the core may undergo a significant dispersion

process that arises solely as a result of core geometry, an effect that has previously

been neglected in torsional wave studies. Given that successive reflections from the

boundaries significantly changes the shape of wave pulses in our models, we suggested

that terrestrial torsional waves would undergo significant dispersion (energy spreading)

irrespective of, and in addition to, any dissipative (damping) effects such as those

proposed by Schaeffer et al. (2012), and therefore may not survive as distinct pulses

for several transits of the Earth’s core. The phase shifts and internal reflections also

contribute to this effect, resulting in the initial pulse being unrecognisable after only a

few core transits. Perhaps the most obvious implication of these combined dispersive

effects is that if torsional waves were observed in geophysical data, they may not shed

much light on their excitation mechanism as it would be difficult to recover the originally

generated wave.

How do torsional waves perturb the ambient magnetic field, and are tor-

sional wave-induced signals resolvable in SV data?

Using torsional wave velocities from our forward models and a background magnetic

field taken from an observationally-constrained model, we investigated which regions

of the geomagnetic field are most sensitive to zonal core flow and produced maps and

synthetic time series of wave-induced SV. A sensitivity test of the magnetic field to a

bulk rotation of the core fluid highlighted two important considerations. First, it has

reiterated a point previously made by Bloxham et al. (2002) that local magnetic field

morphology is a key factor in determining whether a particular location could observe

an SV signal generated by zonal core flow and second, that a bulk rotation of ∼0.3◦/yr

with respect to the mantle can explain much of the observed SV signal.

Torsional wave time scales and amplitudes that are consistent with a recent investiga-

tion of the 6 yr signal in ∆LOD (Gillet et al., 2010) produced very small SV signals

that likely could not be resolved in data and very rapid variations that are inconsistent

with observed jerk events. Waves with 6 yr core transit time and an initial pulse am-

plitude of 0.4 km/yr gave SV signals that were, at most, approximately 20 nT/yr at

the CMB, which is very small compared to the amplitude of the observed SV (approx-
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imately 20 µT/yr). At Earth’s surface, the x and y components of wave-induced SV

were less than 1 nT/yr, and the radial component was less than 3 nT/yr, compared to

the maximum ∼200 nT/yr amplitude of the observed radial SV. However, this scaling

for the waves is only one of many possible choices. Scaling the waves such that they

are consistent with other previous works (e.g. Zatman & Bloxham, 1997, Hide et al.,

2000), gave more promising results. Torsional waves with a 60 yr core transit time and

an initial pulse amplitude of 4 km/yr gave SV signals that are an order of magnitude

larger than the previous scaling. At Earth’s surface, all three components of the SV

reach amplitudes of approximately 20 nT/yr, which could be resolved in SV data.

Can torsional waves produce signals in secular variation that are consistent

with geomagnetic jerks?

We applied the jerk detection method developed by Pinheiro et al. (2011) and extended

by Brown et al. (2013) to the synthetic SV data at Earth’s surface. Application to the

fast torsional waves required parameters that were far removed from those used for

real SV data. Not only were the SV amplitudes small, the timescales were much too

rapid to be consistent with jerks. Observed jerks tend to punctuate two relatively

long periods (years to decades) of steady SV, with the jerk itself taking place very

quickly. Due to the rapid core transit time of the waves, the synthetic data had no long

periods of steady SV and so could not replicate jerk signals. However, using a different

torsional wave scaling with a 60 yr core transit time and an initial pulse amplitude

of 4 km/yr produces SV signals that are identified as jerks when the two-part linear

regression method developed by Brown et al. (2013) is applied to the resulting synthetic

SV time series. The signals tend to occur in only one SV component and are only

observed on regional scales. As the local magnetic field morphology dictates which

regions are sensitive to zonal core flow, and not all regions are sensitive at the same

time, the torsional waves in the models are not able to induce global contemporaneous

jerk events such as that observed in 1969 (Courtillot et al., 1978, Malin et al., 1983,

Whaler, 1987). Also, the identified events are periodic due to waves passing beneath

locations periodically and the SV signals are smoothly varying rather than the sharp

‘V’ shapes that are typically associated with geomagnetic jerks. These smooth signals

are more consistent with the geomagnetic jerks envisaged by Demetrescu & Dobrica

(2005, 2014) than other works requiring very sharp SV variations.
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5.2 Future extensions

This work has focussed upon 1-D forward models of torsional waves that are initiated

by a single velocity perturbation and propagate in an outer core that is not coupled to

the inner core or to the mantle. The most obvious extensions to these models would be

to use different forcing mechanisms to generate the torsional waves, add damping mech-

anisms to account for core-mantle and inner-outer core coupling mechanisms and/or

extend them to higher dimensions.

The torsional waves in our forward models were initiated by an initial wave pulse and

then left to propagate. As the excitation mechanism of torsional waves in the core

has not yet been confirmed, forward models present an opportunity to investigate the

effects of various forcing mechanisms on wave dynamics and their signals in SV. For

example, the modelled waves could be periodically generated, excited at random times,

or excited by adding random velocity perturbations. These generation mechanisms

would produce very different SV signals, which could then be studied using methods

such as the jerk detection code employed in this work.

Earth’s outer core is thought to have strong electromagnetic (EM) coupling with the

inner core and a weaker EM coupling with the lower mantle due to the presence of elec-

trically conducting material in that region. Other core-mantle coupling mechanisms,

such as gravitational, topographic or viscous, are also possible and could be included in

future forward models. In the case of strong EM coupling with the inner core, one would

expect the core fluid above and below the inner core (regions II and III in Fig. 1.4b)

to rotate rigidly inside the tangent cylinder at the same speed as the inner core. The

coupling would quickly dissipate torsional waves entering the tangent cylinder and so

the waves would not exist long enough to reflect from the rotation axis and reenter

the outer core as they do in our models. EM coupling with the inner core could be

included in models by adding a magnetic diffusion layer to the ICB. Outer core-mantle

coupling could be included in the models by adding an electrically conducting layer at

the CMB. The thicknesses and material properties of these layers could then be varied

in order to investigate the damping times and the effects of damping on wave dynamics,

and to identify the most efficient damping mechanism and the best location for wave

excitation. The wave-induced SV signals could then be filtered through the conducting
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layer at the CMB by using a conductivity profile of Earth’s interior to solve a magnetic

diffusion equation, in a similar study to that of Pinheiro & Jackson (2008).

Although we have made extensive use of the 1-D torsional wave equation derived by

Braginsky (1970), some aspects of torsional wave propagation cannot be thoroughly

investigated using 1-D models. For example, Teed et al. (2013) reported that some

torsional waves in their 3-D geodynamo simulations are transmitted through the tan-

gent cylinder and others are dissipated when travelling towards the rotation axis. An

interesting feature of the transmitted waves is that they appear to propagate into either

the northern or southern hemisphere inside the tangent cylinder (regions II or III in

Fig. 1.4b), but not into both hemispheres. An investigation of torsional wave behaviour

at the tangent cylinder would require a developed theory of how to match the three

regions of the core. In particular, if the wave velocities in regions II and III differ from

each other, what does the velocity in region I match to? In the absence of a known

matching condition, 1-D models such as those described in this work must be restricted

to a full sphere of fluid or to an equatorially symmetric spherical shell, which precludes

an investigation of this hemispherical preference of the waves.
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Appendix A

Derivation of the torsional wave

equation

In §1.4.2 we derived Taylor’s constraint, equation (1.16), which specifies that the

Lorentz torque vanishes when averaged over cylindrical surfaces. When the magnetic

field does not precisely satisfy Taylor’s constraint, inertia may be reintroduced into

equation (1.16) and used to balance the azimuthal Lorentz force to obtain

ρ0

∫
z

∮
∂ug
∂t

sdφdz =

∫
z

∮
(J ×B)φsdφdz, (A.1)

for an incompressible fluid. The above equation is defined in cylindrical polar coordi-

nates (s, φ, z), where s is cylindrical radius, φ is azimuth and z is height. The symbol

ug represents the geostrophic flow, J is the electric current density, B is the magnetic

field and ρ0 is the hydrostatic reference density. Since we have integrated in the φ and z

directions, the problem collapses to one dimension and the above equation (A.1), along

with the induction equation, may be used to derive an equation for the time derivative

of the geostrophic flow. The resulting 1-D torsional wave equation was first established

by Braginsky (1970), though the following derivation is that found in Légaut (2005)

and Jault & Légaut (2005). See Braginsky (1970) and Roberts & Aurnou (2011) for

alternative derivations.

Equation (A.1) relates the geostrophic fluid velocity ug to the magnetic field B. Sub-

stituting ug = sωg(s, t)eφ yields

4πρ0szT
∂ωg
∂t

=

∫
z

∮
(J ×B)φdφdz, (A.2)

which now couples the angular speed ωg and the magnetic field. In order to derive

the torsional wave equation, we also need an equation that describes the evolution of
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the magnetic field. As the timescales of interest for torsional waves (years to decades)

are much less than the electromagnetic diffusion timescale of the core (approximately

200 000 yr), we use the frozen-flux form of the induction equation

∂B

∂t
= ∇× (u×B). (A.3)

Since ug = (0, uφ, 0) and B = (Bs, Bφ, Bz) in cylindrical coordinates,

ug ×B = uφBzes − uφBsez,

and

∇× (u×B) =



−ωg ∂Bs∂φ

sωg

(
1
s
∂
∂s(sBs) + ∂Bz

∂z

)
+ sBs

∂ωg
∂s .

−ωg ∂Bz∂φ

(A.4)

Using the solenoidal condition ∇ · B = 1
s
∂
∂s(sBs) + 1

s
∂Bφ
∂φ + ∂Bz

∂z = 0, equation (A.3)

may be written as

∂B

∂t
= sBs

∂ωg
∂s

eφ − ωg
(
∂Bs
∂φ

+
∂Bφ
∂φ

+
∂Bz
∂φ

)
, (A.5)

which is a second equation relating the fluid speed and the magnetic field. The two

coupled equations (A.2) and (A.5) may now be used to derive the canonical part of the

torsional wave equation. That is, the simplest form of the wave equation to which more

complicated contributions may be added, such as coupling to the mantle or solid inner

core. Roberts & Aurnou (2011) provide a thorough review of the possible coupling

mechanisms between the mantle and outer and inner cores. These processes include

thermal interactions, viscosity, gravity, topography and magnetic field. The authors

of that study also derive solutions to the torsional wave equation in a dissipative core

and discuss the various mechanical and magnetic boundary layers that affect torsional

waves when core-mantle coupling mechanism are taken into account. These additional

contributions will not be considered in this thesis.

We now denote the meridian field BM = B −Bφeφ and note that

(µ0J ×B)φ =
1

s
∇ · (sBMBφ) +

1

s

(
Bφ

∂Bφ
∂φ
−Bs

∂Bs
∂φ
−Bz

∂Bz
∂φ

)
︸ ︷︷ ︸∮

∂
∂φ(B2

φ −B2
s −B2

z )dφ = 0

which yields ∮
(J ×B)φdφ =

1

µ0s

∮
∇ · (sBMBφ)dφ. (A.6)
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Using ∇ · (sBMBφ) = ∂
∂s(s

2BsBφ) + s ∂∂z (BzBφ) and integrating (A.6) with respect to

z over the entire cylinder height gives

∫ +zT

−zT

∮
(J ×B)φdφdz =

1

µ0s

∫
z

∮  ∂

∂s
(s2BsBφ)︸ ︷︷ ︸

(a)

+s
∂

∂z
(Bzφ)

 dφdz, (A.7)

Term (a) of the above is evaluated by taking the differential operator outside the integral

and using the Leibniz integral rule

∂

∂s

∫ +zT

−zT
(s2BsBφ)dz =

∫ +zT

−zT

∂

∂s
(s2BsBφ)dz+

∂zT
∂s

(s2BsBφ)
∣∣∣
+zT
−∂(−zT )

∂s
(s2BsBφ)

∣∣∣
−zT

,

which gives

∫ +zT

−zT

∮
(J ×B)φdφdz =

1

s2µ0

∂

∂s

(
s2

∫ +zT

−zT

∮
BsBφdφdz

)
+

1

µ0

∮
BsBφ

∣∣∣
+zT

∂zT
∂s

dφ

+
1

µ0

∮
BsBφ

∣∣∣
−zT

∂zT
∂s

dφ+
1

µ0s

∫ +zT

−zT

∮
s
∂

∂z
(BzBφ)dφdz︸ ︷︷ ︸

(A)

.

(A.8)

Term (A) in the above is∫ +zT

−zT

∮
s
∂

∂z
(BzBφ)dφdz = sBzBφ

∣∣∣
+zT
− sBzBφ
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−zT

which yields

∫ +zT
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1

s2µ0

∂

∂s

(
s2

∫ +zT

−zT

∮
BsBφdφdz

)

+
1

µ0

∮ (
BsBφ

∣∣∣
+zT

∂zT
∂s

+BsBφ

∣∣∣
−zT

∂zT
∂s

)
dφ+

1

µ0

∮ (
BzBφ

∣∣∣
+zT
−BzBφ

∣∣∣
−zT

)
dφ.

(A.9)
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zT

s

z

er

Figure A.1: Simplified geometry of the core

zT =
√
r2
c − s2 (A.10)

∂zT
∂s

=
−s√
r2
c − s2

=
−s
zT

(A.11)

Br = er·B =
s

rc
Bs+

z

rc
Bz (A.12)

rcBr(+zT ) = sBs + zTBz (A.13)

rcBr(−zT ) = sBs − zTBz (A.14)

Equation (A.9) may now be rewritten using equations (A.11), (A.13) and (A.14)

∫ +zT

−zT

∮
(J ×B)φdφdz =

1

s2µ0

∂

∂s

(
s2

∫ +zT

−zT

∮
BsBφdφdz

)

+
1

µ0

∮ (
BsBφ

∣∣∣
+zT

∂zT
∂s

+BzBφ

∣∣∣
+zT

+BsBφ

∣∣∣
−zT

∂zT
∂s
−BzBφ

∣∣∣
−zT

)
dφ

with the second integral on the right-hand side

Bφ
zT

(sBs + zBz)︸ ︷︷ ︸
Br

∣∣∣
zT

+
Bφ
zT

(sBs − zBz)︸ ︷︷ ︸
Br

∣∣∣
−zT



165

simplifying to give

∫ +zT

−zT

∮
(J ×B)φdφdz =

1

s2µ0

∂

∂s

(
s2

∫ +zT

−zT

∮
BsBφdφdz

)

+
1

µ0

∮ (
BrBφ
zT

∣∣∣∣
zT

+
BrBφ
zT

∣∣∣∣
−zT

)
dφ, (A.15)

where the radial magnetic field component, Br, is defined using the geometry in

Fig. A.1. We now introduce a perturbation b to the background magnetic field B

such that the total field, previously denoted B, is now B + b. Differentiating (A.15)

with respect to time and considering that the background field is constant over the

short periods of interest (much less than the magnetic diffusion time), equation (A.15)

becomes

∂

∂t

∫ +zT

−zT

∮
(J ×B)φdφdz =

1

s2µ0

∂

∂s

(
s2

∫ +zT

−zT

∮ (
Bs
∂bφ
∂t

+
∂bs
∂t
Bφ

)
︸ ︷︷ ︸

(a)

dφdz

)

+
1

µ0zT

∮ ((
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
+zT

+

(
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
−zT

)
dφ. (A.16)

Term (a) is calculated using the frozen-flux form of the induction equation for the

perturbation b
∂b

∂t
= ∇× (u×B), (A.17)

assuming that the velocity perturbations are small and that the background flow is

zero.

Bs
∂bφ
∂t

+
∂bs
∂t
Bφ = sB2

s

∂ωg
∂s
− ωg

(
Bs
∂Bφ
∂φ

+Bφ
∂Bs
∂φ

)
︸ ︷︷ ︸ = sB2

s

∂ωg
∂s∮

∂

∂φ
(BsBφ)dφ = 0. (A.18)
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Substituting the above into (A.16) gives the equation

∂

∂t

∫ +zT

−zT

∮
(J ×B)φdφdz =

1

s2µ0

∂

∂s

(
s2

∫ +zT

−zT

∮ (
sB2

s

∂ωg
∂s

)
dφdz

)

+
1

µ0zT

∮ ((
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
+zT

+

(
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
−zT

)
dφ

(A.19)

which may then be simplified by introducing the notation {B2
s} = 1

4πzT

∫ +zT
−zT

∮
B2
sdφdz,

∂

∂t

∫ +zT

−zT

∮
(J ×B)φdφdz =

4π

s2µ0

∂

∂s

(
s3zT

∂ωg
∂s
{B2

s}
)

+
1

µ0zT

∮ ((
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
+zT

+

(
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
−zT

)
dφ.

(A.20)

Substituting equation (A.2) into the LHS of the above equation gives the 1-D torsional

wave equation coupling the angular speed and the magnetic field

∂2ωg
∂t2

=
1

s3µ0ρ0zT

∂

∂s

(
s3zT {B2

s}
∂ωg
∂s

)

+
1

µ0zT

∮ ((
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
+zT

+

(
Br
∂bφ
∂t

+
∂br
∂t
Bφ

) ∣∣∣∣
−zT

)
dφ. (A.21)

For an electrically insulating mantle, the second term on the RHS is thought to be small

due to the cancellation of different harmonics of B and b during the integration in φ

and is therefore usually neglected in numerical studies of torsional waves in Earth’s core

(Légaut, 2005). Although, Roberts & Aurnou (2011) and Légaut (2005) have verified

its small magnitude for all magnetic fields used in their work, there appears to be no

mathematical proof that this term may always be neglected. According to Roberts

& Aurnou (2011), if the second term on the RHS of (A.21) were not negligibly small

but nevertheless omitted from numerical studies, the angular momentum of the core

would not be conserved in the models. With this in mind, we will follow other works in

using the ‘canonical’ torsional wave equation, which includes only the first term on the

RHS of (A.21). We will subsequently verify the conservation of angular momentum in

our torsional wave models, which should provide some a posteriori justification for the

omission of the additional terms.



Appendix B

Synthetic SV series and jerk

results

Figure B.1 shows the z component of the SV signal recorded at each of the 24 observa-

tories shown in Fig. 4.9, evaluated at the CMB radius, when the torsional wave scalings

are chosen to be consistent with Gillet et al. (2010). Time (in yr) is on the horizontal

axis, the SV (in nT/yr) is on the vertical axis and the observatory name is at the top

of each subfigure. Figures B.2 to B.10 show the results of applying the jerk detection

method of Brown et al. (2013) to the synthetic SV data generated by torsional waves

with a 60 yr core transit time and an initial pulse amplitude of 4 km/yr. The figures

are organised first by window length (5, 10, 15 and 20 yr) and then by SV component

(x, y and z). The top panel of these figures shows a time series of a single component

of the SV signal (in nT/yr) at a particular observatory throughout the 200 years of

the torsional wave forward model. The observatory name and the window length are

displayed at the top of the figure, and any identified jerk events are shown as a red ‘V’

shape fitted to the synthetic SV series. The bottom panel shows the calculated PDF

from the two-part linear regression, with the chosen threshold cut-off value shown as

a green line, and the positive and negative errors on the PDF are filled in underneath

the PDF curve in red and black respectively. As described in Brown et al. (2013), the

PDF values are normalised to a value of one across the entire window to account for

any jerk events being identified in several windows during the sliding regression. For

narrow PDF curves, the values of the PDF are very high (>100) because the regression

is attempting to normalise the area of a spike.
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(d)

Figure B.6: The z component of the SV induced at the CMB by torsional waves with a 6 yr
core transit time and an initial pulse amplitude of 0.4 km/yr. Time is on the horizontal axis, SV
is on the vertical axis and the observatory name is at the top of each subfigure. The locations
of the observatories are shown in Fig. 4.9.

Figure B.7: Jerk identification in the ẋ component at Earth’s surface with a 5 yr window.
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(d)

Figure B.8: Jerk identification in the ẏ component at Earth’s surface with a 5 yr window.
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Figure B.9: Jerk identification in the ż at Earth’s surface component with a 5 yr window.
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Figure B.11: Jerk identification in the ẋ component at Earth’s surface with a 10 yr window.
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Figure B.13: Jerk identification in the ż component at Earth’s surface with a 10 yr window.
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Figure B.16: Jerk identification in the ẋ component at Earth’s surface with a 15 yr window.
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Figure B.18: Jerk identification in the ż component at Earth’s surface with a 15 yr window.
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Figure B.19: Jerk identification in the ẋ component at Earth’s surface with a 20 yr window.
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(d)

(e)

Figure B.20: Jerk identification in the ż component at Earth’s surface with a 20 yr window.
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