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Abstract. This thesis is a report of work which develops the study of

electromagnetic radiation by accelerating charges in the scalar quantum elec-

trodynamic theory. We investigate aspects of this theory in flat spacetime,

and in a class of conformally flat and curved spacetimes. In particular, we

show that in flat spacetime, the quantum-theoretic prediction for the emission

of energy by the particle, in the limit ~ → 0 and to order e2 in the coupling

constant, may be shown to match the classical calculation. We also calculate

the order ~ correction to this quantity for two specific classes of problem. In

the class of conformally flat and curved spacetimes, we compare the change

in position due to the radiation reaction with the classical result, and we also

consider some of the one-loop corrections to the theory. We show that as

~ → 0, the conformally flat result and the classical result match, but that in

that limit the general spacetime results differ.
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Chapter 1

Introduction

1.1 Historical overview

Electromagnetism has, arguably, been the catalyst for more discoveries in the-

oretical physics than any other phenomenon, including gravity. This may, in

part, be due to the way in which humanity first studied it as two apparently dis-

tinct effects: electricity and magnetism. However, the explosion of nineteenth

century physics, and in particular the experimental shift from electrostatics to

the manipulation of current flows, allowed Maxwell to perceive how the two

effects could be unified into one, which we now call electromagnetism.

The classical physics, including electromagnetism, developed during the

nineteenth century was remarkably successful. Indeed, it was so successful that

one of its principal British exponents, Lord Kelvin, famously commented that

‘there [was] nothing new to be discovered in physics.’ However, the nineteenth

century physics ultimately proved incapable of explaining certain phenomena

which had been noted during this great expansion in knowledge: among others,

the strikingly regular spectral lines of the hydrogen atom, first noted in 1885

by Balmer; the photoelectric effect, first observed in 1887 by Hertz, which ap-

1



CHAPTER 1. INTRODUCTION 2

peared to overthrow the understanding of light as a wave derived from Young’s

experiment first conducted in 1801; and the spectrum of black body radiation,

which had been studied empirically but which classical physics was proving

unable to predict, much less to explain.

Perhaps the most striking problem with classical physics related to the

phenomenon of radiation by accelerating charges, and was not, in fact, realised

until after the development of its resolution. It had been known for some time

that electrons were not fixed to atoms, but rather were in motion around

a centre — to use the modern name, a nucleus. However, an electron in

motion around a nucleus is necessarily accelerating, and accelerating charges

lose energy through electromagnetic radiation, an effect which had been first

noted theoretically by Larmor in 1897 [3]. In that same paper, Larmor himself

noted (and erroneously discounted) the possibility that an orbiting electron

will continually lose energy. Such a loss of energy would push the classical

electron towards the centre of the atom, causing it to lose yet more energy:

eventually, this inspiralling of its electrons would cause the atom to collapse

in an extremely short period of time. (The lifetime of the classical Rutherford

atom, a slightly later model of the atom motivated by the discovery of the

nucleus, can be easily calculated to be of the order of 10−11s.) Needless to

say, the continued existence of matter above the subatomic level is no small

embarrassment for the classical theory.

The three problems mentioned above were to give rise to the development

of quantum physics. The black-body radiation problem was resolved by Max

Planck in 1900, when he proposed that electromagnetic energy be emitted by

the body in discrete quanta. However, Planck appears not to have considered

this idea as much more than a mathematical artifice which permitted him to

derive a result matching the empirically-measured radiation profile. It was
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Albert Einstein who, in a paper published during 1905, his annus mirabilis,

suggested that Planck’s mathematical artifice in fact reflected reality, and that

electromagnetic radiation only exists in discrete packets. By making this as-

sumption, and thus overthrowing a century’s understanding of light as a simple

wave, he was able to explain the second of the three problems: the photoelec-

tric effect. Subsequent development of the quantum theory showed that certain

electronic orbits exist at which the electrons do not radiate, thus both stopping

a quantum-theory atom from suffering the same fate as the classical one and

also explaining the lines in atomic spectra. This developing quantum theory

has been resoundingly successful at explaining the physics of the world around

us, and although we are rightly wary of repeating Lord Kelvin’s mistake, we

are confident that quantum physics is more fundamental than classical physics,

matching classical theories in the right circumstances but also making many

new predictions, which have been experimentally observed to arise.

1.2 Background literature

Our work here shall be focussing on the electromagnetic radiation by acceler-

ating charges, and particularly on the place of this phenomenon in quantum

field theory. To that end, we shall briefly review the developments, both in

classical theory and quantum theory, which have taken place in the study of

this effect.

The understanding of the classical theory continued to develop from Lar-

mor’s initial publication in 1897. We may note that the emission of radiation

causes an acceleration, and so deduce that there must be a description of this

effect as a radiation-reaction force. This force was described by Abraham and

Lorentz [4, 5], and is named the Abraham-Lorentz force.
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The special theory of relativity — interestingly, also motivated by a prob-

lem from classical electromagnetism and initiated as a field of study by Einstein

during his annus mirabilis — implied that laws expressed under the old New-

tonian paradigm were only approximations at low velocities, and therefore a

Lorentz-covariant formulation of the emitted energy and the radiation-reaction

force were necessary. The Abraham-Lorentz force was made covariant by Dirac

in 1938 [6].

The generalisation of the theory of relativity to local Lorentz covariance

gave rise to the question of the emission of radiation by charged particles mov-

ing on a curved spacetime. It was not until the work of DeWitt and Brehme

in 1960 [7], with a correction by Hobbs in 1968 [8], that the Abraham-Lorentz-

Dirac four-force was written in a generally covariant form. Subsequently, al-

ternative derivations were published by Villaroel [9], and Quinn and Wald [10]

who showed that the ALD force may be found from simple axioms; this work

has recently been made more rigorous by Gralla, Harte and Wald [11]. Poisson

provides sound reviews of both the Lorentz-Dirac [12] and DeWitt-Brehme-

Hobbs [13] equations.

As we mentioned earlier, classical physics is a certain limiting behaviour of

the quantum theory. It is therefore of interest to investigate effects which can

be treated of by both classical and quantum physical theories, to find whether

the two agree and also to find whether experimental observations agree with

the theoretical predictions. The emission of radiation by accelerating charges

is one such area of study.

Indeed, much work along these lines has already been undertaken. The

question has been dealt with by several authors [14, 15, 16, 17] as a quantum-

mechanical problem, taking the charged particle/body as a quantum parti-

cle/body.
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However, we do not regard the particle as being the fundamental theoretical

object. Instead, in the quantum field-theoretic viewpoint, we treat the charged

particle as an excitation of a quantum field. Thus, it has been of interest to

consider the possibility of recovering the ALD force, or some implication of it,

from quantum electrodynamics. Krivitskǐı and Tsytovich [18] derived the ALD

force from QED by calculating the expectation value of the momentum and

taking its time derivative. Independently, Higuchi and Martin have compared

the expected position of the charged particle under a linear acceleration in

the classical and scalar QED theories, and found them to be equal in the

limit ~ → 0 and to lowest order in α. This work was first done in the non-

relativistic régime [19], and subsequently extended to the relativistic régime

[20, 21], non-linear motion [22, 23] and the spinor case [24, 25].

Nomura, Sasaki and Yamamoto [26] moved the study of the radiation reac-

tion towards curved spacetime by showing that the radiation from a charged

scalar particle in QED in conformally flat spacetime is given by the classi-

cal Larmor formula for the corresponding flat spacetime theory in the limit

~ → 0. This therefore also matches, in part, the finding of Roberts [27], who

showed that the DeWitt-Brehme-Hobbs equation is invariant under conformal

transformations of the metric.

We shall be following on from the aforementioned work by studying the

emission of radiation in scalar quantum electrodynamics (sQED), which has

been the theory of choice for much of this work, as it provides a simpler model

for the interaction of a massive particle with the electromagnetic field than the

spinor theory. In the remainder of this introductory chapter, we shall review

the classical and quantum theories, and the model which we shall be using.

The general approach is the one shared with the series of papers by Higuchi

and Martin.
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1.3 Preliminaries

We shall be using the metric (+ − −−) throughout, unless explicitly stated

otherwise. We shall also generally take units in which c = 1, but as necessitated

by the semiclassical approximation we shall detail shortly, ~ will remain explicit

in our calculations. Complex conjugates are variously denoted: typically by

∗ for scalar quantities and for vector and higher-rank tensor quantities.

Hermitian conjugates are typically denoted by †.

1.4 Overview of the work

The thesis shall proceed according to the following scheme. In Ch. 2, we shall

consider the theory which underlies the research to be presented in subsequent

chapters. Our main tool will be perturbative approach, in which the quantum

electrodynamic theory is treated as a formal series expansion in ~.

In Ch. 3, we shall demonstrate how to derive the Larmor formula from the

quantum model we shall be considering, in the case of a background potential

depending on time only. In Ch. 4, we shall extend the calculation of the non-

relativistic Larmor formula to the next order in ~, in the separate cases of

a potential which varies with time only and with a single spatial co-ordinate

only. We show that the results in the two cases differ by a factor of c2.

In Ch. 5, we shall move from considering the energy emitted by the par-

ticle to the change in position induced by the emission, and calculate this

position shift for a particle moving on a conformally flat spacetime, where the

background potential and conformal factor are both functions of time only.

We reduce the theory to a flat spacetime with a mass term which varies only

with time, and deduce that the quantum result matches the classical result.

We consider the one-loop calculations – the ‘vacuum current’ and the for-
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ward scattering term – for the theory and recover the well-known ‘conformal

anomaly’, in which renormalised quantities do not exhibit an expected invari-

ance between the conformally flat theory and the classically equivalent flat

theory with varying mass term. However, we do show that the conformally

flat theory results match those of the flat theory, and therefore the classical

result.

In Ch. 6, we carry out the calculation of position shift at order ~
0, and

show that there is a discrepancy between our result and the classical one. We

speculate that the discrepancy should be bridged by the one-loop, forward

scattering contribution to the position shift. We also show that the one-loop

vacuum current cancels exactly the analogous classical quantity, as we would

expect.



Chapter 2

Background theory

Summary. In this chapter, we shall discuss the mathematical and physical

theory underlying the work which will be presented in later chapters.

2.1 The classical theory of electromagnetic ra-

diation by accelerating charges

Since the work presented here has its deepest physical roots in the classical

theory of accelerating charges on a flat space-time, it is appropriate to begin

this review of the background material there. In addition to the extensions

of the most original work from the early twentieth century, we also have the

benefit of the presentations found in Jackson [28], Barut [29] and Poisson [13],

among many others, which expound more clearly the underlying mathematics.

The author is indebted to those sources for the presentation here.

Let us consider a four-current, Jµ, which interacts with an electromagnetic

potential, Aα. We may describe the dynamics using a Lagrangian formulation.

8
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The Lagrangian for the system is therefore

LEM = −1

4
FµνF

µν − JαAα, (2.1)

where the electromagnetic field strength Fµν is defined by Fµν = 2∂[µAν].

Then by the standard procedure, we obtain Euler-Lagrange equations for this

system, which are

∂µF
µν = Jν . (2.2)

The vector potential Aν has a gauge symmetry: if we define A′
ν = Aν −∂νφ

for some non-dynamical scalar field φ, then it is easy to show that Maxwell’s

equations, and hence the dynamics, are unaffected. This means that any initial

value problem would have as solutions a family of potentials, equivalent up to

the application of a scalar field in the way described above. We choose to

fix this gauge symmetry by forcing a choice of φ through the imposition of

the Lorenz gauge, which is to say, the condition that ∂µA
µ = 0. For our

purposes here, the benefits of this choice of gauge are twofold: firstly, that it

is manifestly covariant; and secondly, that by its application, the equation of

motion reduces to

¤Aµ = Jµ. (2.3)

Clearly, each component of the electromagnetic field independently sat-

isfies the inhomogeneous, massless, Klein-Gordon equation in Cartesian co-

ordinates, and therefore we may construct electromagnetic Green’s functions

by

Gµ
ν(x − x′) = δν

µG(x − x′), (2.4)

where G(x− x′) satisfies the equation ¤xG(x− x′) = δ4(x− x′). We associate

the index µ with the point x, which we call a field point, and ν with x′, a

source point. It is thus evident that

Aµ(x) =

∫
d4x′Gµν(x − x′)Jν(x′) (2.5)
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must be a solution to the Lorenz-gauge equations of motion.

If we suppose that apart from the four-current, the spacetime is a vacuum,

and that the only non-zero potential is generated by that current, then we

require the Green’s function which propagates backward from x. This solution

is denoted

G+(x − x′) =
δ(t − t′ − ‖x − x′‖)

4π ‖x − x′‖ =
1

2π
θ(t − t′)δ

(
(x − x′)2

)
(2.6)

and is called the retarded Green’s function. The reader will note that this

solution is non-zero only on the backward light-cone from x to x′. Then the

field that is generated by the four-current is written

A+
µ =

∫
d4x′G+

µν(x − x′)Jν(x′). (2.7)

We may also construct an analogous, forward-propagating Green’s function,

the advanced Green’s function:

G−(x − x′) =
1

2π
θ(t′ − t)δ

(
(x − x′)2

)
, (2.8)

which is non-zero only on the forward light-cone from x. The advanced and

retarded solutions are related by the identity G+(x − x′) = G−(x′ − x).

Let us suppose that the current is due to a particle of charge e following a

trajectory zµ, parameterised by s. Then the current will be

Jµ(x) = e

+∞∫

−∞

ds
dzµ

ds
δ4(x − z(s)), (2.9)

and therefore the field that this current generates is

A+
µ (x) = e

∫
d4x′ds G+(x − x′)żµδ

4(x′ − z(s)), (2.10)

where the dot refers to differentiation with respect to the parameter s. Car-

rying out the x′ integral, we obtain

A+
µ (x) = e

+∞∫

−∞

ds G+(x − z(s))żµ. (2.11)
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We expect that this potential will lead to an electromagnetic field, which

in turn exerts a force on the particle. However, there is a difficulty with the

field derived from the potential. The derivative of the potential is

∂αA+
β = e

+∞∫

−∞

ds
(
∂α(x − z)2

) ds

d [(x − z)2]

d

ds
G+ (x − z(s)) żβ. (2.12)

The partial derivative and the first s derivative may be calculated directly,

producing

∂αA+
β = −e

+∞∫

−∞

ds
(xα − zα)żβ

(xµ − zµ)żµ

d

ds
G+(x − z), (2.13)

and we integrate this by parts. The boundary term will be zero, since the

Green’s function selects:firstly, only points x which are in the future of z(s)

and hence, the boundary term at s = +∞ will vanish; and secondly, only

points x which are null-separated from z(s) and hence, the boundary term at

s = −∞ will vanish. The delta function within the Green’s function constrains

the non-zero contributions in the integral to those points on the trajectory

which are null-separated from x, one in the future of x and one in its past.

The theta function selects the point which lies on the backward light-cone: we

denote the value of s at this point by s+ for consistency. As an implication

of the change-of-variables formula for integration, the delta function has a

generalised scaling property,

δ(g(x)) =
∑

i

δ(x − xi)

|g′(xi)|
, (2.14)

where the xi are the zeroes of the function g. Applying this, we obtain

∂αA+
β =

1

4π

e

(xν − zν)żν

[
d

ds

(xα − zα)żβ

(xµ − zµ)żµ

]

s=s+

. (2.15)

Clearly, therefore, the electromagnetic field will be infinite at the position of

the particle itself. This poses an immediate difficulty, as we are specifically
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interested in the effect of the field on the particle, which will require the value

of the field at the particle’s position.

There is a way in which we may avoid this difficulty. The infinite part of

the field arises from the Green’s function

GS(x − z) =
1

2

(
G+(x − z) + G−(x − z)

)
. (2.16)

We observe that this solution to the inhomogeneous equation ¤xG(x − z) =

δ(x−z) is symmetric in x and z (for which reason we denote it GS(x−z)), and

conclude, following Poisson’s argument [13], that it represents incoming and

outgoing radiation in equal amounts. Consequently, we argue that it produces

no net action on the particle. However, its singularity structure at x = z(s) is

the same as G+(x−z). Therefore, we construct the radiative Green’s function,

GR = G+ − GS =
1

2

(
G+ − G−

)
, (2.17)

and use this to calculate the self-force.

The reader will observe that we may obtain the radiative field from Eq. (2.13),

by integrating by parts and replacing G+ with GR. We thus obtain

FR
αβ = e

+∞∫

−∞

ds GR(x − z)
d

ds

[
(xα − zα)żβ − (xβ − zβ)żα

(xµ − zµ)żµ

]
, (2.18)

where the Green’s function GR(x − z) is

GR(x − z) =
1

4π
sgn (x0 − z0)δ

(
(x − z)2

)
. (2.19)

We are interested in the field on the trajectory of the particle. Let us

therefore consider a point x = z(s0), and transform the integration variable to

u = s − s0. Then

FR
αβ(z(s0)) =

e

4π

+∞∫

−∞

du sgn (u)δ
(
u2

)

× d

du

[
(zα(s0) − zα(s))żβ(s) − (zβ(s0) − zβ(s))żα(s)

(zµ(s0) − zµ(s))żµ(s)

]
, (2.20)
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where the z functions can be expanded as a power series in u. Before consid-

ering this, however, we shall consider the signum and delta functions together

by using the identity sgn (u)δ (u2) = −δ′(u) [29]. We may integrate by parts

to move the derivative onto the fraction, and so observe that we now have two

derivatives in u. Since we shall be integrating the fraction against δ(u), we

must find all terms of order u2 in the fraction.

Let us now take the parameter s to be the proper time. We may expand

the position as z(s)−z(s0) = uż(s0)+
u2

2
z̈(s0)+

u3

6

...
z (s0)+ . . . , and the velocity

as ż(s) − ż(s0) = uz̈(s0) + u2

2

...
z (s0) + . . . . Hence,

(zµ(s0) − zµ(s))żµ(s0) = −u + O(u3), (2.21)

with the order u2 term vanishing due to the vanishing dot product between

four-velocity and four-acceleration. So the order u2 term from the fraction in

Eq. (2.20) is
1

3
u2 (żα

...
z β − ...

z αżβ) , (2.22)

where we have suppressed the arguments on the right-hand side, since every-

thing there is evaluated at s0. Performing the u integral, which contains only

δ(u), we find

FR
αβ(z(s0)) =

2

3

e

4π
(żα

...
z β − ...

z αżβ) , (2.23)

and, dotting with żβ, thereby recover the Abraham-Lorentz-Dirac four-force,

fµ
LD = eηµαFR

αβ żβ = −2

3

e2

4π

(...
z µ + z̈2żµ

)
. (2.24)

Hence, if we suppose the particle to be accelerated by some external force

fµ as well as the Lorentz-Dirac force, we derive as an equation of motion

mz̈µ = fµ + mτ0

(...
z µ + z̈2żµ

)
, (2.25)

where we have defined τ0 = (2/3)(e2/4πm). The constant τ0 has the dimen-

sions of time, and characterises the timescale over which radiative effects are
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significant. For consistency, we shall re-label the variable s as τ , to emphasise

that we have set it to be equal to the proper time.

The solutions to this equation of motion are known to have pathologies.

Clearly, we have a trivial solution if there is no external force and the particle

is not initially accelerating. However, if there is no external force, then we can

dot the equation of motion with z̈µ and observe that we obtain a first-order dif-

ferential equation for z̈2, the general solution for which is z̈2 = −C2e2τ/τ0 . The

magnitude of the acceleration can therefore be seen to increase arbitrarily: the

so-called ‘runaway solutions’. Such solutions, which result in self-accelerating

particles, are manifestly unphysical.

It is possible to resolve this difficulty by converting the equation of motion

into integro-differential equations. If we multiply through Eq. (2.25) by a

factor e−τ/τ0 and re-arrange, we find

− d

dτ

(
τ0e

−τ/τ0 z̈µ

)
= e−τ/τ0

(
fµ

m
+ z̈2żµ

)
. (2.26)

If fµ is bounded for all τ , then we may integrate this and obtain

z̈µ(τ) =
eτ/τ0

τ0

∞∫
dτ ′e−τ ′/τ0

(
fµ(τ ′)

m
+ τ0z̈

2(τ ′)żµ(τ ′)

)
. (2.27)

Although every solution of this form satisfies the equation of motion, not ev-

ery solution of that equation satisfies this integro-differential equation. For

example, the unboundedness of the runaway solutions means they do not sat-

isfy this equation. However, having removed one difficulty, we have created

another. If we change the integration variable τ ′ = τ + aτ0, then we find that

we have

z̈µ(τ) =

∞∫

0

da e−a

(
fµ(τ + aτ0)

m
+ τ0z̈

2(τ + aτ0)ż
µ(τ + aτ0)

)
. (2.28)

It is generally the case that if fµ is non-zero at any point after time τ then

z̈µ(τ) will be non-zero: one might consider, as an example, a force which is
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represented by a delta function [6]. Specifically, the acceleration will be non-

zero before the force becomes non-zero. In other words, we have removed

the self-acceleration problem at the cost of a ‘pre-acceleration’ problem. The

characteristic timescale, τ0, governs the duration over which a particle will

experience a significant ‘pre-acceleration’, and fortunately is typically very

small: for the electron, τ0 ∼ 6.3 × 10−24s.

These pathologies in the Lorentz-Dirac force arise from the fact that we

model the charged particle as a point, when the true model in classical physics

should be of an extended body, to which the point particle model is an approx-

imation. It is possible to avoid these pathologies by using a method known as

‘reduction of order’ [12], in which we consider the problem at scales where the

difference between a point particle and a small extended body is negligible.

This implies that for a characteristic timescale τc over which the acceleration

changes, τ0 ¿ τc, and so we may treat the Lorentz-Dirac equation as a series

in τ0/τc. If we do this, then we obtain a second-order equation which equiv-

alent to the original Lorentz-Dirac equation to order τ0/τc but without the

associated pathologies.

The Lorentz-Dirac force might be thought the natural quantity to consider

in our aim, which is to derive a prediction from quantum field theory which

can be compared with the classical results. However, ‘force’ does not have

the status in quantum theory that it does in classical theory. In perturbative

quantum field theory, the framework we shall be adopting, force is mediated

by the exchange of particles and is thus a notion derived from fields, rather

than a fundamental concept in its own right. There is no ‘force operator’,

and we cannot calculate the Lorentz-Dirac four-force directly. Instead, we

must compare quantum field theoretic effects to those which we classically

attribute to a force. Two such effects are a change in the position of the
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particle (relative to where it would have been without the radiation-reaction

force) and the energy carried away by electromagnetic radiation. We shall use

each of these at different points in the work which follows, and therefore it is

helpful to give the classical calculation of them here.

The energy-momentum lost by the particle is simple to calculate, as

dP µ

dτ
=

2

3

e2

4π

(...
z µ + z̈2żµ

)
, (2.29)

where P µ is the momentum of the charged particle. Consequently, if we inte-

grate over such an interval (τ−, τ+) that z̈ν(τ−) = z̈ν(τ+) = 0, then

∆P µ =
e2

6πm3

τ+∫

τ−

dpν

dτ

dpν

dτ
pµdτ, (2.30)

which is the relativistic, four-vector generalisation of the Larmor formula. In

this equation, we have used both P µ and pµ for the particle’s momentum, with

∆P µ emphasising that this quantity is the final, fixed change in momentum

while pµ varies across the particle’s trajectory.

At the level of generality, the change in position due to a force may be

found in terms of that force by considering the effects of an external force on

a Hamiltonian system. To specialise to the Lorentz-Dirac force would then be

possible simply by explicitly substituting that force into the general expression.

A fuller version of the argument which follows can be found in a paper by

Higuchi and Martin [22]. It can also be found in Ch. 6 of the work here

presented, extended to a class of curved spacetimes which contains Minkowski

spacetime as a special case.

If we suppose that the acceleration is caused by a potential vector V and

a scalar potential V 0 which are non-zero only in the interval (t−, t+), then the

accelerating particle is governed by a Hamiltonian,

H(p,x, t) =

√
‖p − V‖2 + m2 + V 0, (2.31)
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and therefore Hamilton’s equations hold provided we incorporate the Lorentz-

Dirac force as an external force:

ẋi =
∂H

∂pi

, (2.32)

ṗi = −∂H

∂xi
+ fi. (2.33)

We write solutions to these equations as ordered pairs of position and momen-

tum, (x(t),p(t)), and call solutions which satisfy the equations when fi = 0

homogeneous solutions. We may then choose an initial solution, (x0(t),p0(t)),

which satisfies the condition (x0(0),p0(0)) = (0,p). Perturbations of these

solutions which continue to satisfy the homogeneous equations of motion we

denote by (x0 + ∆x,p0 + ∆p). We expand the Hamiltonian in terms of the

perturbations in order to obtain their equations of motion.

It is then possible to describe solutions to the inhomogeneous equations

(where fi 6= 0) in terms of a family of perturbations on the basic homogeneous

solution, (x0 + δx,p0 + δp), by using the equations of motion derived from the

homogeneously perturbed Hamiltonian. We index this family of perturbations

by (j) for j ∈ {1, 2, 3}. Then we are able to find that the inhomogeneous

perturbation in the position vector may be written as

δxi =

s+∫

s−

dsfj(s)∆xi(j)(0; s) (2.34)

for a specifically defined, homogeneous perturbation. This expression can be

manipulated using certain facts about Hamiltonian motion; we shall not enter

into a discussion of them here but note that the required steps are detailed in

Ch. 6. Then we use the fact that a change in the momentum, ∆p, results in a

change in the position, ∆x, to write the change in position due to an external
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force as

δxi = −
t+∫

t−

dt fj

(
∂xj

∂pi

)

t

, (2.35)

with the subscript t indicating that we take the partial derivative while hold-

ing t constant. The Lorentz-Dirac force is an example of such a force, and

we therefore conclude that this expression describes the classical change in

position.

2.2 Quantum theory

Before moving to the specific problems which we shall be considering, it is

worth reviewing some of the key concepts from quantum field theory which

we shall be using. In the following section, we shall consider the canonical

quantisation procedure for massive charged scalar and massless vector fields,

the quantum state and the vacuum, or ground, state. We shall see a relation

between the Green’s functions of the previous section and certain quantities

which may be calculated in quantum field theory, and note that we may rep-

resent these quantities diagrammatically. This diagrammatic representation

will be extended as we consider the interactions between the two fields, and

we shall consider how the evolution of states may be modelled in this interact-

ing theory. Finally, we shall consider interactions which modify the vacuum

state, and interactions which modify the free motion of excitations in each

field.

2.2.1 Free fields

We are seeking to compare certain classical predictions with their quantum

field theoretical counterparts. As discussed earlier, we shall be using scalar
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quantum electrodynamics to derive the quantum theoretical results. This the-

ory is an interacting theory of the charged scalar and vector fields, and we

therefore shall discuss the quantum theory of the free fields in advance of

considering the interaction.

For the charged, i.e. complex, scalar field with associated particle mass m,

we take the Lagrangian density

LS = (∂µφ)† (∂µφ) − m2

~2
φ†φ. (2.36)

This gives us as equations of motion,

(
~

2
¤ + m2

)
φ = 0, (2.37)

and its conjugate.

To use the canonical quantisation of the field φ, we derive the conjugate

field momenta,

πφ =
∂LS

∂ (∂0φ)
= φ̇†, (2.38)

πφ† =
∂LS

∂ (∂0φ†)
= φ̇, (2.39)

and impose the equal-time commutation relations,

[φ(t,x), πφ(t,x
′)] = i~δ3(x − x′) =

[
φ†(t,x), πφ†(t,x′)

]
. (2.40)

All other commutation relations on the scalar field operators vanish. Since the

field φ is not Hermitian, we may treat the fields φ and φ† as independent of

each other, and in the momentum-space representation introduce two particles

for the fields — the scalar particle and its anti-particle — with annihilation

(creation) operators A(†) and B(†) respectively. The main body of the work

is concerned with motion under the influence of an external potential, which

will replace the (real) differential operator in the Lagrangian above with a
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complex operator. For that reason, we associate the particle and anti-particle

with mode solutions Φp and Φp respectively. Since these are free fields, these

mode solutions are plane-wave solutions, which gives us

Φp(x) = e−
i
~

p·x = Φp(x), (2.41)

where p0
2 = ‖p‖2 + m2. Hence, we may write the two fields φ and φ† in the

momentum-space representation as

φ(x) = ~

∫
d3p

2p0(2π~)3

[
A(p)e−

i
~

p·x + B†(p)e
i
~

p·x
]
, (2.42)

φ†(x) = ~

∫
d3p

2p0(2π~)3

[
A†(p)e

i
~

p·x + B(p)e−
i
~

p·x
]
. (2.43)

From these expansions, we deduce that the particle creation and annihilation

operators obey the commutation relations

[
A(p), A†(p′)

]
=

[
B(p), B†(p′)

]
= 2p0(2π~)3δ3(p − p′) (2.44)

and its conjugate, with every other commutation relation being zero.

At this point, it is worth considering the nature of quantum states. A

state is an element of the Hilbert space on which the field operators act; we

denote such elements by |ψ〉. On a flat space-time, we are able to define a

unique state, |0〉, which satisfies the relations A(p) |0〉 = B(p) |0〉 = 0. This

state we term the vacuum state, since it may be thought of as being devoid

of all particles. States with particles and anti-particles of various momenta

are constructed by successive applications of the relevant creation operators.

Since these creation operators all commute with each other, we note that the

order in which the operators are written does not affect the state.

Briefly taking an heuristic view, we could say that the field operator φ†(x)

represents the creation of a scalar particle at the position x or, equivalently, the

destruction of a scalar anti-particle at the same position. The field operator
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φ(x′), likewise, would represent the creation of a scalar anti-particle at x′, or

equivalently the destruction of a scalar particle at the same position, or in fact

both. How we interpret the vacuum expectation value of the product of these

two operators depends on the chronological ordering of the two points x and

x′: if t < t′, then we create a particle at x and subsequently destroy a particle

at x′; if t′ < t, then we create an anti-particle at x′ and subsequently destroy

an anti-particle at x.

The reader will note that the vacuum expectation value, 〈0|φ†(x)φ(x′) |0〉,
is a solution to the homogeneous Klein-Gordon equation in both x and x′.

The same is also true of the vacuum expectation value with the fields φ(x′)

and φ†(x) reversed. If we construct the operator θ(t − t′)φ(x′)φ†(x) + θ(t′ −
t)φ†(x)φ(x′), then a short calculation shows that the vacuum expectation value

of this operator is, contrariwise, a solution to the inhomogeneous Klein-Gordon

equation. We shall interpret the meaning of this operator shortly. We thus

denote this amplitude −iGF(x− x′), and application of the Fourier expansion

from above shows us that

GF(x − x′) =

∫
d4p

(2π~)4

i

p2 − m2 + iε
e−

i
~

p·(x−x′), (2.45)

where we are now considering p0 as a variable. If we define Ep
2 ≡ ‖p‖2 + m2,

then the poles of the integrand are to be found at ± (Ep − iε): the iε term has

been inserted to displace the poles so that the line of integration does not pass

through them, and its sign has been chosen so as to produce the correct theta

functions. The intention is to conclude calculations by taking the limit ε → 0.

This displacement of the poles is shown in Fig. 2.1. The reader will note that

there are four ways to displace the two poles relative to the line of integration,

of which the Feynman prescription is the most useful for our purposes.

If we again consider this heuristically, we can interpret the expectation

value we have just calculated as the transition amplitude for a unit of charge
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Figure 2.1: The Feynman ε-prescription, displacing the poles of the propagator

function above and below the line of integration.

(for sQED, we understand a unit of charge to be −e) being transferred between

x and x′, and we can therefore represent the flow of charge diagrammatically

as a directed line, pointing from x to x′. The reader will note that the theta

functions in the operator guarantee that the operator corresponding to the

earlier point in spacetime appears on the right; we call this arrangement of

operators time-ordering, and denote it T{φ(x′)φ†(x)}. In the momentum-space

representation, we display a flow of charge as a directed line without specified

spacetime endpoints; instead, we specify the momentum carried by the field.

With the propagation of a particle in this representation, we associate the

algebraic expression for the Fourier transform of GF,

G̃F(p) =
i

p2 − m2 + iε
. (2.46)

We call these functions propagators as they represent propagation of particles.

Owing to the specific prescription we used to displace the poles, we refer to

the propagators derived from this prescription as the Feynman propagators.

We shall go on to see that the interactions between the particles allow us to

construct diagrams illustrating the possible paths that the state can follow;
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x x′

Figure 2.2: The free scalar propagator in the spacetime representation. We

associate this with the function GF(x−x′). We shall find the momentum-space

representation to be the more useful.

the diagrams we thus obtain by the drawing and connection of these lines we

call Feynman diagrams. Fig. 2.2 shows the spacetime representation of the

propagator and the associated algebraic expression.

Another helpful expression involves the commutator of the two fields, not

necessarily at equal times. If we take −i 〈0|
[
φ†(x), φ(x′)

]
|0〉, this can also be

shown to be a solution to the Klein-Gordon equation: the advanced-minus-

retarded fundamental solution. We obtain the advanced and retarded solutions

by multiplying by θ(t′ − t) and θ(t − t′) respectively. These have the same

structure as the Feynman propagator given above, but with a different ε-

prescription:

G±(x − x′) =

∫
d4p

(2π~)4

i

(p0 ± iε)2 − ‖p‖2 − m2
e−

i
~

p·(x−x′). (2.47)

For completeness, the Dyson propagator is the acausal propagator produced

by displacing the poles to ±(Ep + iε).

At present, we have only been able to consider free particles propagating on

the spacetime: after briefly considering the massless vector field, we shall con-

sider the interaction between the two fields, and the Feynman-diagrammatic

representation of these interactions.

For the massless vector field, we draw the Lagrangian from Eq. (2.1), set-

ting Jα = 0 since the field is free:

LEM = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 . (2.48)
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The field is uncharged, so we take Aµ to be real. The equations of motion we

derive are

¤Aµ −
(

1 − 1

ξ

)
∂µ∂νA

ν = 0; (2.49)

for the conjugate momenta, we get

πµ = F µ0 +
1

ξ
δµ
0 ∂νA

ν . (2.50)

The canonical quantisation procedure is unaffected by our choice of the param-

eter ξ, provided it remains finite [30]. We choose the Feynman gauge, ξ = 1,

which reduces the equations of motion to

¤Aµ = 0. (2.51)

We now impose the canonical commutation relations,

[Aµ(t,x), πµ′(t,x′)] = −i~ηµµ′δ3(x − x′). (2.52)

Since the field is real, it has only one associated particle. We now expand the

field into Fourier modes. The solutions of the equations of motion are plane

waves with k0 = ‖k‖, and the field is thus

Aµ(x) =

∫
d3k

2k(2π)3

[
aµ(k)e−ik·x + a†

µ(k)eik·x
]
. (2.53)

This expansion together with the canonical commutation relations gives us the

following non-zero commutation relations for the particle operator:

[
aµ(k), a†

µ′(k
′)
]

= −ηµµ′2~k(2π)3δ3(k − k′). (2.54)

The free field propagator for the massless vector field may be found by

calculating 〈0|T{Aµ(x)Aµ′(x′)} |0〉; this gives us

GF
µµ′(x − x′) = −

∫
d4k

(2π)4

iηµµ′

k2 + iε
e−ik·(x−x′). (2.55)
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Turning again to the heuristic understanding we have been using to interpret

this propagator, we may say that it represents two components of a photon

which travels between x and x′: specifically, the component µ at x and µ′ at

x′. The momentum-space representation of the propagator is

G̃F
µµ′(k) =

−iηµµ′

k2 + iε
. (2.56)

2.2.2 Interacting fields

Having considered the free field theory, we turn to the interacting theory, and

specifically to a model of the situation we wish to study. In the classical

case we were able to assume some acceleration of the charged particle; in the

quantum field case, we shall suppose that the acceleration is the result of some

potential field V µ generated by a current Jµ. We shall restrict the potential

by hypothesis to be a function of time only, varying over a bounded interval,

[−T, 0], and use the gauge freedom to set V 0(t) equal to a constant, which we

can choose to be zero. Consequently, this forces the background field to be

divergence-free, which is to say, ∂µV
µ = 0. We can freely choose V µ(t) = 0 for

t > 0, but do not require that the same be true for t < −T .

We incorporate this potential field into the scalar Lagrangian by making

the replacement ∂µ 7→ Dµ ≡ ∂µ + iVµ/~, and we also have an interaction

Lagrangian linking the scalar and massless vector fields:

Lnon = (Dµφ)† (Dµφ) +
m2

~2
φ†φ − 1

4
FµνF

µν − 1

2
(∂νA

ν)2 , (2.57)

Lint = −ie

~
Aµ

[
φ†←→D µφ

]
+

e2

~2
AµAµφ

†φ, (2.58)

where
←→
D µ =

−→
Dµ − ←−

D †
µ. The total Lagrangian for the system is then L =
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Lnon + Lint, which simplifies to

L =

((
Dµ +

ie

~
Aµ

)
φ

)† ((
Dµ +

ie

~
Aµ

)
φ

)
+

m2

~2
φ†φ−1

4
FµνF

µν−1

2
(∂νA

ν)2 .

(2.59)

Briefly, let us consider the case where the background potential V µ has

been set to zero, so that we recover standard scalar QED. We may then read

off from the interacting Lagrangian the interactions of the scalar and elec-

tromagnetic fields. There are two: each has an incoming and an outgoing

scalar particle, but one has one photon and the other has two. The algebraic

expressions associated with the two momentum-space propagators and these

two interactions (‘vertices’) are noted down in Table 2.1. For a given inter-

acting quantum field theory, these associations between elements of diagrams

and algebraic expressions are known as the Feynman rules for that theory. We

construct the full algebraic expression by multiplying together the expression

for each component of a Feynman diagram, applying momentum conservation

and integrating over the ‘internal momenta’, which are the momenta asso-

ciated with propagators connected by vertices to other propagators at both

ends.

The equations of motion for the non-interacting vector field are identical

to the equations of motion for the free field, ¤Aµ = 0: consequently the

momentum mode solutions are the same as for the free field, and the four-

momentum kµ still satisfies k0 = ‖k‖.
Let us once again consider the situation with V µ made as general as our

original hypotheses allow. For the non-interacting scalar field, we find the

equations of motion on the mode solutions to be

~
2DµD

µΦ + m2Φ = 0, (2.60)

~
2Dµ

†Dµ†Φ + m2Φ = 0.
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Table 2.1: The Feynman rules for scalar quantum electrodynamics without

a background potential.

Description Diagrammatic representation Algebraic representation

Scalar particle p
i

p2 − m2 + iε

Photon
k

µ µ′ iηµµ′

k2 + iε

Vertices

p

p′
µ

−ie(pµ + p′µ)

µ ν

2ie2ηµν
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Since the potential V µ varies only in t, we may separate the equation of motion

into spatial and temporal derivatives, and conclude that Φ(p, x), Φ(p, x) ∝
eip·x/~. Hence, we obtain as equations on the time-dependent mode,

~
2∂0

2φp(t) + σp
2(t)φp(t) = 0, (2.61)

~
2∂0

2φp(t) + σp
2(t)φp(t) = 0, (2.62)

where σp
2(t) = ‖p − V(t)‖2 + m2 = σ−p

2(t). Clearly, this implies that the

time-varying parts of the particle and anti-particle solutions are related by

φp(t) = φ−p(t). Note that our conditions on V µ imply that for t > 0, the

field modes reduce to the usual free field solutions, Φ(p, x) = e−ip·x/~ with

p0 = σp(0) =
√

‖p‖2 + m2. We note that the canonical commutation relations

are constant in time, and therefore we consider the commutation relations at a

time t > 0. Doing so, we obtain the following non-zero commutation relations

for the operators:

[
A(p), A†(p′)

]
=

[
B(p), B†(p′)

]
= 2p0(2π~)3δ3(p − p′). (2.63)

We thus expand the scalar field in terms of momentum modes as

φ(x) = ~

∫
d3p

2p0(2π~)3

[
A(p)φp(t)e

i
~
p·x + B†(p)φ∗

−p(t)e−
i
~
p·x

]
. (2.64)

We shall consider the form of φp(t) later, and turn now to the evolution of the

quantum state and the role of the interacting Hamiltonian.

The standard approach to an interacting quantum field theory is pertur-

bation theory. In this approach, we assume that the coupling constant in the

interaction term, which in this case is the charge on the scalar (anti-)particle,

e, is small. Hence, the interacting Hamiltonian may be considered as a small

perturbation on the non-interacting Hamiltonian. We thus find that the inter-

acting Hamiltonian governs the way a state evolves subject to the interaction,
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and this evolution may be seen as a formal power series in the coupling con-

stant. Development of the perturbation theory may be found in the standard

texts, such as Peskin and Schroeder [31] and Itzykson and Zuber [30]. In the

latter, the scalar electrodynamic case is treated of directly.

The Hamiltonian density for the scalar electrodynamic theory is found in

the canonical manner. From the full Lagrangian, Eq. (2.59), we note that the

interaction can be seen as a substitution in the Lagrangian of the complex

scalar field, replacing ∂µ 7→ Dµ + ieAµ/~. Hence, we consider the interaction

Hamiltonian for the scalar field, which means we may define L0 ≡ Lnon−LEM.

Then the conjugate fields we derive from L0 + Lint are

πφ =
∂ (L0 + Lint)

∂ (D0φ)
=

(
D0φ

)† − ie

~
A0φ†, (2.65)

πφ† =
∂ (L0 + Lint)

∂ (D0φ)†
=

(
D0φ

)
+

ie

~
A0φ. (2.66)

The Hamiltonian density is derived from the Lagrangian by

H(x) = πφφ̇ + πφ†φ̇† − L0 − Lint, (2.67)

into which we substitute the conjugate fields, obtaining

H(x) = πφ

(
πφ† − i

~
(V0 + eA0) φ

)
+ πφ†

(
πφ +

i

~
(V0 + eA0) φ†

)

− (Dµφ)† (Dµφ) + m2φ†φ +
ie

~
Aµ

[
φ†←→D µφ

]
− e2

~2
AµAµφ

†φ.

(2.68)

The Hamiltonian then simplifies to H(x) = H0(x) + Hint(x), where

H0(x) = πφ†πφ + (Diφ)† (Diφ) + m2φ†φ − i

~
V0

(
πφφ − πφ†φ†

)
, (2.69)

HI(x) =
ie

~
A0

(
πφφ − πφ†φ†

)
− ie

~
Ai

(
φ†←→D iφ

)
+

e2

~2
AiAiφ

†φ. (2.70)
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Taking H0 =
∫

d3xH0(x) to be the Hamiltonian and using equivalence of

Hamiltonians under addition of total derivative terms, we obtain as equations

of motion

φ̇ =
δH0

δπφ

= πφ† − i

~
V0φ, (2.71)

π̇φ = −δH0

δφ†
= DiDiφ − m2φ − i

~
V0πφ† , (2.72)

and their conjugates. We can re-write these equations

πφ† = D0φ (2.73)

(
DµD

µ + m2
)
φ = 0. (2.74)

Since in the interaction picture we treat H0 as the source of Hamilton’s equa-

tions for φ, we can thus let πφ† = D0φ; then the interaction Hamiltonian

becomes

HI(x) =
ie

~
Aµ

[
φ†←→D µφ

]
+

e2

~2
AiAiφ

†φ. (2.75)

The reader will note that this interaction Hamiltonian is different from what

might usually be expected. The presence of a derivative of the scalar field

in the interaction Lagrangian is the cause of the difference: if the interaction

terms had been simple powers of the fields, then the relationship would have

been simply HI = −Lint. The interaction Hamiltonian we have derived here

differs by e2A0
2φ†φ/~

2.

Let us again consider the situation without a background potential V µ.

As we have said, the evolution of states takes place through the interaction

Hamiltonian density, Hint(x); it does so as follows. If we suppose that the

fields are in some initial configuration |i〉 at a time t′0, then a state |f〉 at some

later time t′ is given by

|f〉 = T

{
exp

[
−i

∫ t′

t′
0

dt

∫
d3xHI(t,x)

]}
|i〉 . (2.76)
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(a) (b) (c) (d) (e) (f)

Figure 2.3: Simple vacuum fluctuation diagrams. Example (a) is of order e2,

while (b)—(f) are of order e4.

If we consider this time-ordered product, it is clear that we can construct

terms where the fields from the Hamiltonian interact only with each other, and

not with the initial state. That is, self-contained interactions are generated.

Indeed, we can see that even were the initial state to be taken as the vacuum

state, there would still be terms arising from the Hamiltonian which represent

the creation, interaction and subsequent annihilation of particles. These terms

are known as vacuum fluctuations, and would appear, diagrammatically, as

self-contained loops: Fig. 2.3 shows some simple examples which can occur. It

can be shown that these diagrams may be discarded entirely [31].

A final concept we must introduce bears some similarity to these vacuum

fluctuations. Instead of considering the evolution of the vacuum, however,

we consider the evolution of the particles in the background-free interacting

theory. We shall see that what we would consider a free particle in the unper-

turbed theory is not quite the same in the perturbed theory.

Let us firstly consider the evolution of the state which commences and

concludes with a single photon, and add in possible intervening interactions

which leave the initial and final states unaffected. Up to order e4, there are

three non-trivial ways of combining copies of the vertices we described in Table

2.1; these are illustrated in Fig. 2.4. It can be shown that the summed effect

of these extra diagrams, called loop corrections, is to make the interacting
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(a) (b) (c)

Figure 2.4: Loop corrections to the photon propagator up to order e4. Diagram

(a) is a one-loop correction while (b) and (c) are two-loop corrections.

propagator a scalar multiple of the non-interacting one, with the sum being

divergent. The proportionality factor is a certain function of the momentum

possessed by the virtual photon, q, which we typically denote by (1−Π(q2))−1.

For low-q2 processes, integrating over q (as we do for all internal momenta) will

produce the residue of the pole, which we denote Z3 ≡ (1−Π(0))−1. Thus for

such processes, we may replace the photon propagator e2gµν/q
2 by Z3e

2gµν/q
2.

Equivalently, we may regard this as a modification of the non-interacting (or

bare) coupling constant, which we denote e0: we then have the renormalised

charge, which is given by e2 = Z3e0
2.

Let us secondly consider the evolution of the state with a single scalar

particle. Again, we have ways in which to add in vertices to alter the propa-

gator without altering either the initial or final states, illustrated up to order

e2 in Fig. 2.5. Since there is only one loop in these diagrams, they are called

one-loop corrections. Higher order terms in e arise with more loops. We may

extract the algebraic form for this correction from either the Feynman dia-

grams or the exponentiated Hamiltonian, which generates the necessary terms

automatically.

As the effect of the renormalisation for the vector field was on the photon

propagator or equivalently the unit of charge, so here the effect is to modify
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(a) (b)

Figure 2.5: Loop corrections to the scalar propagator up to order e2.

the scalar propagator or equivalently the mass associated with the scalar field;

for this latter reason, the summed effect of all such diagrams with a scalar

particle entering and emerging is known as the self-energy. Again, this sum is

divergent, and we therefore seek some way of removing the difficulty that such

a quantity would pose.

By considering the infinite sum of loop corrections, we find repetitions of

certain terms, which we can use to show that the sum of these terms reduces

to

i

p2 − m0
2

+
i

p2 − m0
2

[−iΣ(p)]
i

p2 − m0
2

+
i

p2 − m0
2

[−iΣ(p)]
i

p2 − m0
2

[−iΣ(p)]
i

p2 − m0
2

+ . . . ,

where Σ(p) represents the ‘one-particle irreducible’ corrections, which is the

infinite sum of loop corrections which are not disconnected by the removal of a

single propagator, and m0 represents the ‘bare mass’ in the Lagrangian. This

quantity can be shown, by the binomial theorem, to be equal to

i

p2 − m0
2 − Σ(p)

. (2.77)

We thus conclude that the mass is renormalised by the addition of an extra

term, m2 = m0
2 + δm2, where δm2 = Σ(p)|p2=m2

1. In addition to finding

1Clearly this is self-referential as it stands. However, to lowest order in ~ we may take

δm2 ≈ Σ(p)|
p2=m0

2 .
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whether the quantum field theory generates the same predictions as the clas-

sical theory, we are interested in whether the one-loop corrections to the mass

which arise in the presence of a background field cancel against δm2. Any

difference between the two may give rise to additional quantum corrections in

the theory.

2.3 Quantum model

In this section, we shall review the results reported by Higuchi and Martin

[20, 21, 22, 23]. The two key findings are that the change in position induced

by the background potential matches the prediction of the classical theory, and

that the mass counterterm, δm2, continues to cancel the one-loop corrections

to the propagators. This latter is an intricate and complicated calculation

which we will not summarise here, although at the appropriate point in the

review below we shall note where a failure of cancellation would have a physical

effect. We shall provide a sketch of the former, details of which can be found

in Martin [25], or in Ch. 6 in a more general form of which the flat metric is

a special case.

The initial state for the model is a single scalar particle with a momentum

which is distributed around a central momentum p̄ by a function f(p). That

is, we set

|i〉 =

∫
d3p√

2p0(2π~)3
f(p)A†(p) |0〉 , (2.78)

where this is normalised so that 〈i|i〉 = 1. Then to order e2, the final state

satisfies

|f〉 = T exp





i

~

∞∫

−∞

dt′
∫

d3xHI(t
′,x)





conn.

|i〉 , (2.79)

where we have restricted the exponentiated Hamiltonian to those terms which
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generate connected diagrams. By the unitarity of the time-evolution opera-

tor, 〈f |f〉 = 1 as well. We are interested only in those sectors of the final

state which contain a single scalar particle, and also only those sectors which

contribute to the squared state 〈f |f〉 and similar quantities up to order e2.

Therefore, we may write the sectors of the state in which we are interested as

|f〉 =

∫
d3p√

2p0(2π~)3

[
1 +

i

~
F(p)

]
f(p)A†(p) |0〉

+
i

~

∫
d3p√

2p0(2π~)3

∫
d3k

2k(2π)3
Aµ(p,k)a†

µ(k)f(P)A†(P) |0〉 , (2.80)

where P = p − ~k, as the scalar particle loses momentum to the photon.

The complex quantity Aµ(p,k) is called the emission amplitude, and is

related to the probability of finding a photon in the final state. We shall see

later that this quantity is of order e.

The complex quantity F(p) is called the forward-scattering amplitude,

since it relates to the one-loop processes depicted in Fig. 2.5. We shall see

later that this quantity is of order e2.

Consider now the equations of motion we derived for the scalar field,

Eq. (2.60). We noted that we have solutions which can be separated into

factors dependent on each of the co-ordinates, and that applying this gives us

solutions Φp(x) ∝ e
i
~
p·x, leaving us with an equation for φp(t) which is

~
2∂0

2φp(t) + σp
2(t)φp(t) = 0, (2.81)

where σp(t) = ‖p − V(t)‖2 + m2. The anti-particle mode satisfies Φp(x) ∝
e

i
~
p·x, and thus we find as an equation of motion

~
2∂0

2φp(t) + σ−p
2(t)φp(t) = 0. (2.82)

We thus conclude that the time-dependent factors of the particle and anti-

particle modes are related by

φp(t) = φ−p(t). (2.83)
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To find the form of this mode, we apply the technique known as the WKB

approximation, by which we treat the solution to the equation of motion as a

power series in ~, and thus suppose that log φp(t) = ~
−1

∑
n ~

nsn(t). We solve

this for sn sequentially, obtaining2

ṡ0 = −σp(t), (2.84)

ṡ1 = −1

2
∂0 log σp(t). (2.85)

In order to find the expected change in position due to the radiation emis-

sion, we must calculate an expectation value for the position of the particle in

the case that the background field is removed, which will serve as a baseline.

Since there is only one particle in this state, we may use the charge density as

a proxy for the particle’s position density, and consequently,

〈
xi

〉
in

=

∫
d3x 〈i| xiJ0 |i〉 , (2.86)

where Jµ ≡ i
~
gµν : φ†∂νφ − (∂νφ)†φ :. Applying our definition of the initial

state, we find
〈
xi

〉
in

=
i~

2

∫
d3p

(2π~)3
f ∗(p)

←→
∂pi

f(p), (2.87)

where
←→
∂pi

≡ −→
∂pi

−←−
∂pi

.

We may distinguish two sectors within the final state by the number of pho-

tons they contain. Hence, we write |f〉 = |f0〉 + |f1〉 and see that 〈f0|f1〉 = 0,

owing to the photon creation operator in |f1〉 which annihilates the no-photon

state 〈f0|. Therefore, we may separate the position expectation value in the

final state into two parts: the no-photon and one-photon sectors. Considering

first the no-photon sector, we find

〈
xi

〉
fin,0

=
i~

2

∫
d3p

(2π~)3

[
f ∗(p)

←→
∂pi

f(p)
] [

1 − 2

~
ImF(p)

]
, (2.88)

2For ṡ0, we obtain ±σp(t) and choose the negative sign as φp(t) ∝ e−
i

~
p0t in the far

future.
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while in the one-photon sector, we find

〈
xi

〉
fin,1

= − i

2

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

×
{
− |A(p,k)|2

[
f ∗(p)

←→
∂pi

f(p)
]

+ |f(p)|2
[
Aµ(p,k)

←→
∂pi

Aµ(p,k)
]}

,

(2.89)

where P0 = σP(0) and |A(p,k)|2 ≡ −A∗
µ(p,k)Aµ(p,k). By studying the

implications of the unitarity condition 〈f |f〉 = 1, we deduce that

〈
xi

〉
fin

=
〈
xi

〉
in

+ δxi
tree + δxi

loop, (2.90)

where

δxi
tree = − i

2

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

|f(p)|2
[
Aµ(p,k)

←→
∂pi

Aµ(p,k)
]
, (2.91)

δxi
loop = −

∫
d3p

(2π~)3
|f(p)|2∂pi

ReF(p). (2.92)

The names ‘tree’ and ‘loop’ are intended to denote the origin of the two position

shifts: the first comes from the tree-level vertex with a single particle entering

and a particle-plus-photon leaving, while the second comes from the one-loop

corrections to the scalar propagator. It is here that the renormalisation of

the mass enters, since any remnant from the renormalisation would cause this

position shift to be non-zero. The calculation showing that δxi
loop = 0 is long,

involved, and found in [25].

In order to calculate the size of the tree-level position shift, we must con-

sider the emission amplitude Aµ(p,k). This we do by noting that we have two

different definitions of the final state |f〉: one exact, the other correct to order

e2. The first, exact definition is the evolutionary one,

|f〉 = T exp





i

~

+∞∫

−∞

dt′
∫

d3xHI(t
′,x)





conn.

|i〉 ; (2.93)
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the second, approximate definition includes the order-e term

|f1〉 =
i

~

∫
d3p√

2p0(2π~)3

∫
d3k

2k(2π)3
Aµ(p,k)a†

µ(k)f(P)A†(P) |0〉 . (2.94)

If we consider the terms from the first definition at order e, we see that for

any state |ω〉,

− e

~2
〈ω|

∫
d4xAν :φ†←→D νφ :

∫
d3p√

2p0(2π~)3
f(p′)A†(p) |0〉

=
i

~
〈ω|

∫
d3p√

2p0(2π~)3

∫
d3k

2k(2π)3
Aν(p,k)a†

ν(k)f(P)A†(P) |0〉 . (2.95)

Hence, if we choose |ω〉 = a†
µ(k′)f(p)A†(p′) |0〉, we find

Aµ(p,k) = − ie

~2

∫
d3p′

2p′0(2π~)3
〈0|A(p′)aµ(k)

∫
d4xAν :φ†←→D νφ : A†(p) |0〉 .

(2.96)

Applying the Fourier expansions of the fields and the commutation relations,

we find

Aµ(p,k) = −ie~

∫
d3p′

2p′0(2π~)3

∫
d4x eik·x

[
Φ∗

p′(x)
←→
D µΦp(x)

]
. (2.97)

We substitute in the WKB approximation in order to apply the derivative. The

momentum of the classical particle, pµ, satisfies the identity (pµ − V µ)(pµ −
Vµ) = m2; this can be shown to imply that if we define kξ ≡ k · x, then

Aµ(p,k) = −e

∫
dξ

dxµ

dξ
eikξ, (2.98)

where xµ refers to the trajectory of the equivalent classical particle with mo-

mentum p for t > 0, parameterised by ξ. This expression is ill-defined, as

the integrand remains finite and non-zero as ξ → ±∞. We resolve this dif-

ficulty by the insertion of a cut-off factor, χ(ξ), which satisfies the following

conditions:

1. χ(ξ) equals 1 in the region [−T, 0]: that is, while the acceleration is

non-zero;
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2. limξ→±∞ χ(ξ) = 0; and

3.
∫ +∞

−∞
(χ′(ξ))2dξ is bounded.

In App. A, we show that these cut-off functions may be removed for inte-

grals satisfying certain conditions. We obtain the following equations for the

emission amplitude, the second derived from the first through integration by

parts:

Aµ(p,k) = −e

∫
dξ χ(ξ)

dxµ

dξ
eikξ = −ie

k

∫
dξ

(
d2xµ

dξ2
+ χ′(ξ)

dxµ

dξ

)
eikξ.

(2.99)

The first of these definitions can be written, alternatively, as

Aµ(p,k) = −
∫

d4x jµ(p, x)eik·x, (2.100)

where

jµ(p, x) = e

+∞∫

−∞

ds
dzµ

ds
δ4(x − z(s))χ(s) (2.101)

is the (cut-off-incorporated) classical current associated with the trajectory

z(s) and momentum p.

The reader will recall that we were able to recover the fundamental solu-

tions to the Klein-Gordon equation from vacuum expectation values of prod-

ucts of the fields. Working from these, it is possible to show that we are able

to write the emission amplitude, Aµ(p,k), in terms of the positive-frequency

part of the retarded electromagnetic field generated by the current jµ(p, x).

This will be detailed in Ch. 6. We may apply the Kirchhoff identity, which

relates fields to initial data on a Cauchy surface through the retarded Green’s

function [12], to introduce the radiative field which we used in the classical

case, and thus to write

δxi
tree = −

∫
dt

(
∂xj

∂pi

)

t

fR
j , (2.102)
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where fR
j is the electromagnetic force due to the field as defined using the

radiative Green’s function. The reader will recall that this formula matches

exactly the classical calculation we carried out previously.

A similar line of argument will yield the same conclusion for a potential

which is dependent on one spatial co-ordinate.



Chapter 3

Energy radiation from an

accelerating charged particle

Summary. In this chapter, we shall show that it is possible directly to derive

the Larmor formula from the scalar quantum electrodynamic theory presented

earlier.

The position shift calculation carried out by Higuchi and Martin and re-

viewed above verified that the classical and quantum field-theoretic effects

matched to zeroth order in ~. Here we shall calculate the stress-energy tensor

of the quantised electromagnetic field on a flat space-time and using this pro-

ceed to find the expectation value of the energy content of that field. It will

be shown that this result matches the classical Larmor formula.

In Lagrangian field theories, the stress-energy tensor can be defined in a

number of different ways. The symmetric stress-energy tensor is defined by

the functional derivative,

Θµν(x)δ4(x − y) = 2
δ

δgµν(x)
L(y). (3.1)

Since we are carrying out the functional derivative with respect to the metric,

41
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it is necessary to use the curved-space definition of the electromagnetic La-

grangian, which is LEM = −1
4

√−ggαµgβνF
αβF µν . Then, since δg/δgµν = ggµν ,

Θρσ
EM = −√−gF µβF ν

β − gµνLEM . (3.2)

The classical energy-momentum four-vector is by definition Θ0µ
EM , and at

a given time t, the expectation value for the quantised energy-momentum

operator is

〈P µ〉f ≡
∫

x0=t

d3x 〈f | : Θ0µ : |f〉 . (3.3)

It is useful at this juncture to define a new pair of operators out of the

vector field operators,

Cµν†(k) = −kµaν†(k) + kνaµ†(k) (3.4)

and its Hermitian conjugate. It satisfies the commutation relations

[
aµ(k′), Cαβ†(k)

]
= −

(
kαgµβ − kβgµα

)
(2π)32~kδ(3)(k′ − k), (3.5)

and acts as the electromagnetic field creation operator, so that

Fµν =

∫
d3k

2k(2π)3

[
Cµν(k)e−ik·x + C†

µν(k)eik·x
]
. (3.6)

Inspecting the final state |f〉 in Eq. (2.80), only the sector with an exci-

tation in the electromagnetic field will contribute to the expectation value of

the energy-momentum operator defined in Eq. (3.3); therefore we combine this

with Eq. (3.6) to obtain

〈P µ〉f =
1

~2

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

d3k

2k(2π)3

d3k′

2k′(2π)3

d3l

2l(2π)3

d3l′

2l′(2π)3
d3x

× 〈0|A(P)f ∗(p)A∗
ρ(p,k)aρ(k)

[
−1

4

(
Cαβ†(l)Cαβ(l′)e−i(l−l′)·x + Cαβ†(l′)Cαβ(l)ei(l−l′)·x

)
g0µ

+
(
C0ν†(l′)Cµ

ν(l)e
i(l′−l)·x + Cµν†(l)C0

ν(l
′)e−i(l′−l)·x

)]

×Aσ(p′,k′)a†
σ(k′)f(p′)A†(P′) |0〉 . (3.7)
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The Ward identity [31] implies that kµAµ(p,k) = 0; applying this together

with our commutation relations gives us

〈P µ〉f =

∫
d3p

(2π~)3

d3k

2k(2π)3

P0

p0

|f(p)|2kµ|A(p,k)|2, (3.8)

where |A(p,k)|2 = −A∗
α(p,k)Aα(p,k). We take the integral to lowest order

in ~: the normalisation of f(p) as well as

P0 = p0

[
1 +

~k · p
p0

2

]
(3.9)

combine to produce

〈P µ〉f =

∫
d3k

2k(2π)3
kµ |A(p,k)|2 . (3.10)

From this point on, we have taken |f(p)|2 to be sharply peaked about a certain

momentum; henceforth in this chapter, we refer to this peak momentum as p.

Taking Aµ(p,k) in the second-order derivative form from Eq. (2.99), we

also integrate with respect to k to find

〈P µ〉f = − e2

16π2

∫
dΩk

∫
dξnµ d2xν

dξ2

d2xν

dξ2
, (3.11)

where nµ is defined by kµ = knµ and dΩk is used to denote integrating over

the angular part of the vector k. The terms proportional to χ′(ξ) vanish as

we apply our limit to remove χ(ξ). Since ξ ≡ nµx
µ, we have

dξ

dt
= nµẋ

µ (3.12)

and, applying the chain rule to xµ(t(ξ)),

d2xµ

dξ2
=

(
dt

dξ

)3 (
dξ

dt

d2xµ

dt2
− d2ξ

dt2
dxµ

dt

)
. (3.13)

This gives us the apparently complicated integral

〈P µ〉f = − e2

16π2

∫
dt

(∫
dΩkξ̇

−5nµnσnρ

)
[ẋσẋρẍν ẍν − 2ẋσẍρẍν ẋν + ẍσẍρẋν ẋν ] ;

(3.14)
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however, the reader will remark that the angular integral, set off in parentheses,

is in fact quite simple. It can be rendered simpler still by using the following

observation. It is the case that

∂

∂ẋα
ξ̇−2 = −2nαξ̇−3, (3.15)

where we treat the components of ẋµ, including ẋ0, as independent variables;

we set ẋ0 = 1 later. Two further derivatives together with an appropriate

coefficient, therefore, will give us the integrand we desire.

The basic angular integral, before the application of derivatives with re-

spect to the velocity, is performed by noting that ξ̇ = n0ẋ
0 − n · v and using

the vector v as the azimuthal axis defining the elevation of n. The result is
∫

dΩξ̇−2 = 4πγ2, which we differentiate three times to obtain

∫
dΩkξ̇

−5nµnσnρ = −4

3
π

(
6γ8ẋµẋσẋρ + γ6

(
δµ
σ ẋρ + ẋµgσρ + δµ

ρ ẋσ

))
. (3.16)

We use the fact that dt/dτ = γ = (ẋµẋ
µ)−

1

2 , and define αc = α~, where

α = e2/4π~ is the fine structure constant, to obtain

〈P µ〉f = −2αc

3

∫
dt ẋµγ6

(
ẋαẋαẍβẍβ − (ẋαẍα)2

)
, (3.17)

and so can see that

〈P µ〉f = −2αc

3

∫
dτ

dxµ

dτ

d2xν

dτ 2

d2xν

dτ 2
. (3.18)

Comparing this with Eq. 2.30, we see that this matches the energy-momentum

of the electromagnetic field according to the Larmor formula. The difference

in sign arises because here we are considering the energy content of the elec-

tromagnetic field, whereas in the earlier equation we were considering the

energy-momentum of the particle.



Chapter 4

First-order corrections

Summary. In this chapter, we shall calculate the corrections to first order in

~ to the Larmor formula, doing this for two different potentials: one varying in

t and the other, in z. We shall find that the two situations give qualitatively

different results.

Having shown that the Larmor formula may be found directly from the

quantum field theory, it would be interesting to investigate any correction

which the quantum theory might contribute to the radiated energy. The spec-

tral lines of the hydrogen atom are a demonstration of the difference in pre-

dictions between quantum theory and classical theory about the emission of

radiation by charged particles. In the previous chapter we showed that, as

we might expect, the semiclassical approximation produces the same energy

emission to lowest order in ~. We therefore wish to determine whether any

corrections to this energy arise at first order in ~, and the conditions under

which this correction would be significant.

The structure of both sections shall be to extend our previous calculation

of the WKB approximation to the necessary order in ~, and thus to extend

the Larmor formula to first order in ~, in a non-relativistic setting. Two

45
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separate categories of correction will be identified, which are then combined

and calculated in order to produce the desired first-order correction.

To allow for the possibility of a potential dependent on a single space

co-ordinate instead of being dependent on time, we modify the equation for

the energy emitted by the scalar particle (Eq. (3.8)) by inserting a Jacobian

determinant, |∂P/∂p|, to account for the change of variables in the integral

from P to p:

〈E〉f =
1

2

∫
d3p

(2π~)3

d3k

(2π)3

∣∣∣∣
∂P

∂p

∣∣∣∣
P0

p0

|f(p)|2 |A(p,k)|2 . (4.1)

We now specialise our condition on |f(p)|2 to being infinitely sharply peaked

about the specified momentum p. Inspecting this equation, it is clear that any

approximation in ~ will arise from three sources: that Jacobian determinant,

the ratio of P0 to p0, and the squared emission amplitude. In both the cases

we study, we shall see that the first two are easily dealt with, as they cancel

exactly against a factor in the squared emission amplitude. It is this latter

which requires the calculation of further terms in the ~-expansion of the wave-

function, and it will be from this point that each of the following two sections

begins.

4.1 Time-dependent potential

As the reader will recall from work developed previously, if the potential is

time-dependent then we are able to suppose that the positive-frequency mode

solution to the equation of motion separates into free spatial factors and an

as-yet-unknown temporal factor:

Φp(x) =
√

p0φp(t) exp

(
i

~
p · x

)
. (4.2)
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Writing the temporal factor as

φp(t) = exp

(
1

~

∞∑

n=0

~
nsn(p, t)

)
, (4.3)

we obtain from the equation of motion, Eq. (2.81), an equation on sn which is

~

∞∑

n=0

~
ns̈n +

(
∞∑

n=0

~
nṡn

)2

+ σp
2 = 0, (4.4)

where σp(t)2 = |p − V(t)|2 + m2c2. This has solutions to order ~
0 of

s0(p, t) = −i

∫ t

σp(t′)dt′, and (4.5)

s1(p, t) = −1

2
log σp(t), (4.6)

which gives a normalised wavefunction of

φp(t) =
1√

σp(t)
exp

(
− i

~

∫ t

0

σp(t′)dt′
)

. (4.7)

One might expect the term at order ~ in the WKB expansion of φp(t) to

contribute to the first-order correction. However, we can read from Eq. (4.4)

above that 2ṡ0ṡ2 = −s̈1 − ṡ1
2. This implies that s2 is purely imaginary, and

will thus appear in φ∗
P(t)φp(t) as i~(fp(t) − fP(t)). Since P will be replaced

with p − ~k, the term in the brackets is itself of order ~, and therefore the

first-order WKB correction to the wavefunction is not relevant at order ~ to

the amplitude.

We then substitute the WKB expansion for φp(t) into the equations for
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the components of the emission amplitude, and obtain the following:

A0(p,k) =
−ie~

2

√
p0

P0

∫
dt eikt 1√

σp(t)σP(t)

× exp

{
− i

~

∫ t

0

(σp(T ) − σP(T )) dT

}

×
[
1

2

d

dt
log

(
σP(t)

σp(t)

)
− i

~
(σp(t) + σP(t))

]
, (4.8)

Ai(p,k) = −e

2

√
p0

P0

∫
dt eikt 1√

σp(t)σP(t)

× exp

{
− i

~

∫ t

0

(σp(T ) − σP(T )) dT

}
[2(pi − Vi(t)) − ~ki] . (4.9)

In order to proceed further, we require the function σP(t) as a series in ~
n up

to n = 2. This is easily found to be

σP(t) = σp(t)

(
1 − ~k · (p − V(t))

σp(t)2
+

~
2k2

2σp(t)2
− ~

2 (k · (p − V(t)))2

2σp(t)4

)
,

(4.10)

which simplifies, by defining n = k/k and by application of the equations of

motion, to

σP(t) = σp(t)

(
1 − ~k n · ẋ

σp(t)
+

~
2k2

2σp(t)2

[
1 − (n · ẋ)2

])
. (4.11)

It is clear that the ratio σP(t)/σp(t) is 1 + ~A for some A of order ~
0.

Thus, the derivative of the logarithm in A0 above may be discounted as it is

intrinsically of order ~, with another factor ~ outside the integral. Since the

difference σp(t)−σP(t) is everywhere accompanied by a factor ~
−1, the reason

for expanding σP(t) to order ~
2 becomes apparent. Using our expression to

second order for that difference, and to first order for 1/
√

σP(t), we obtain
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the following expressions for the emission amplitudes:

A0(p,k) = −ec

√
p0

P0

∫
dt eik·x exp

{
−i~k2c

2

∫ t

0

[
1 − (n · ẋ)2

c2

]
dT

σp(T )

}

×
[
1 +

~k · ẋ
2cσp(t)

] [
1 − ~k · ẋ

2cσp(t)

]
,

Ai(p,k) = −ec

√
p0

P0

∫
dt eik·x exp

{
−i~k2c

2

∫ t

0

[
1 − (n · ẋ)2

c2

]
dT

σp(T )

}

×
[
ẋi

c
+

~k

2σp(t)

(
ẋi(n · ẋ)

c2
− ni

)]
. (4.12)

We have re-instated factors of c by dimensional analysis in advance of taking

the non-relativistic limit. Clearly, the factors multiplying the exponentials in

the A0(p,k) integrand produce 1 to order ~, and thus we find that the above

expressions give as the squared emission amplitude:

|A(p,k)|2 = −e2c2 p0

P0

∫
dt dt′ eik·(x−x′) exp

{
−i~k2c

2

∫ t

t′

[
1 − (n · ẋ)2

c2

]
dT

σp(T )

}

×
[
1 − ẋ · ẋ′

c2
− ~

2

(
ẋ · ẋ′

c2

k · ẋ
σp(t)

− k · ẋ′

σp(t)
+

ẋ · ẋ′

c2

k · ẋ′

σp(t′)
− k · ẋ

σp(t′)

)]
,

(4.13)

where for the sake of concision we have defined x ≡ x(t) and x′ ≡ x(t′).

The correction at order ~ then comes from two places: firstly from the

exponential term in the integrand, and secondly from the bracketed term mul-

tiplying it. We shall denote the corrections coming from each of these as ∆E1

and ∆E2, respectively, and consider ∆E1 first.

Considering first ∆E1, we define ω ≡ ck, and expand the second exponen-

tial; we thus obtain

∆E1 =
ie2

~

4c4

∫
ω2dω dΩn

(2π)3

∫
dt dt′ eiω(t−t′)e−iωn·(x−x′)/c

× ω2(c2 − ẋ · ẋ′)

∫ t

t′

[
1 − (n · ẋ)2

c2

]
dT

σp(T )
. (4.14)

Clearly, the integral over T is not generally tractable: the integral of σp(T )−1

causes one problem, and the integral of (n·ẋ)2 another. Both of these problems
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are obviated by taking a non-relativistic approximation: it gives us σp(t) ≈
mc, and the first term in the integrand dominates the second when ‖ẋ‖ /c is

taken to be small. Thus we are able to replace the troublesome integral with

(t − t′)/mc.

If it were desired to extend the calculation to the relativistic régime, this

should be possible by a numerical calculation. First, it would be necessary to

carry out the ω integral, regulating it with an e−εω term in order to keep it well-

defined. This will allow the n, t and t′ integrals to be carried out numerically.

In order for this to be done, an explicitly-specified V(t) is necessary in order

to know the velocity, acceleration and σp(t).

This non-relativistic approximation implies that we must find the correc-

tion to lowest order in c−1, or equivalently highest order in c. Therefore, we

shall truncate the term e−iωn·(x−x′)/c at order c−2, which is sufficient to capture

the term of lowest order in c−1. Thus expanding the exponential, we obtain

∆E1 =
ie2

~

4c4

∫
ω2dω dΩn

(2π)3

∫
dt dt′ eiω(t−t′)

(
1 +

iω

c
n · (x − x′) − ω2

2c2
(n · (x − x′))

2

)

× ω2
(
c2 − ẋ · ẋ′

) (t − t′)

mc
.

Analysing the above integral, we see that there is a term which contributes

a single factor of n where all others are even powers: since the integral
∫

dΩkni = 0 (and likewise for all other odd powers of n), we can remove

that term immediately, leaving us with

∆E1 =
ie2

~

4mc5

∫
dω dΩn

(2π)3

∫
dt dt′ eiω(t−t′)ω4(t − t′)

×
(

1 − ω2

2c2
(n · (x − x′))

2

) (
c2 − ẋ · ẋ′

)
. (4.15)

We regulate the behaviour of the exponential by adding iε to (t− t′), and use

the identity ∫ ∞

0

ωneiω(z+iε)dω =
in+1n!

(z + iε)n+1
, (4.16)
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to integrate over ω. When this is carried out, we obtain

∆E1 = − e2
~

4mc5

∫
dΩn

(2π)3

∫
dt dt′(t − t′)

×
[

4!

(t − t′ + iε)5
+

1

2c2

6!

(t − t′ + iε)7
(n · (x − x′))

2

]
(c2 − ẋ · ẋ′). (4.17)

This integral is ill-defined, since t − t′ may be kept finite while the integrand

remains finite for arbitrarily large |t + t′|. For this reason, we insert a cut-off

factor χ(at)χ(at′) with 0 < a ≤ 1, such that χ(at) is smooth and compactly

supported and such that χ(at) = 1 for t ∈ [−T, T ]: i.e., while V µ(t) is not

constant. Then we find that this integral is a sum of terms of the form A
(1)
1

and A
(3)
3 as defined in Eq. (A.1). Therefore, as shown in Appendix A, we can

formally integrate by parts with respect to t and t′ to reduce the power of

t − t′ + iε in the denominator. Using this, we observe that

c2

∫
dt dt′

4!(t − t′)

(t − t′ + iε)5
= 0, (4.18)

which shows that the highest order non-zero term (in powers of c) in the

integrand is of order c0. Hence,

∆E1 = − e2
~

4mc5

∫
dΩn

(2π)3

∫
dt dt′ (t−t′)

[
− 4! ẋ · ẋ′

(t − t′ + iε)5
+

1

2

6!(n · (x − x′))2

(t − t′ + iε)7

]
.

(4.19)

The angular integral is now calculated: for the second term in the inte-

grand, we use the identity

∫
dΩnninj = 4π

(
1

3
δij

)
. (4.20)

Performing this integral and carrying out some simple re-arrangements, we

obtain

∆E1 = − e2
~

2mc5

∫
dt dt′

[
− 3!

(t − t′ + iε)4
ẋ · ẋ′ +

5 × 3!

(t − t′ + iε)6
‖x − x′‖2

]
.

(4.21)
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These two terms can be combined by integrating the second term by parts

twice: once with respect to t, and once with respect to t′. Carrying this

through, and continuing to integrate by parts, we finally obtain

∆E1 = − e2
~

8π2mc5

∫
dt dt′

t − t′
(
...
x · ẍ′ − ẍ · ...x ′) . (4.22)

We now consider the correction coming from the multiplicative factor in

|A(p,k)|2. Turning back to Eq. (4.13), we extract this correction as

∆E2 = −e2
~

4

∫
d3k

(2π)3

∫
dt dt′ eikc(t−t′)

(
1 − ik · (x − x′) − 1

2
(k · (x − x′))

2

)

×
(

ẋ · ẋ′

c2
k ·

(
ẋ

σp(t)
+

ẋ′

σp(t)′

)
− k ·

(
ẋ′

σp(t)
+

ẋ

σp(t′)

))
. (4.23)

Since the terms in the second set of brackets all contain a single factor of k,

we only retain the imaginary term from the first set of brackets; the first term

in the second set of brackets may be discarded as it is smaller than the second

by a factor of c2; and σp(t) and σp(t′) may be replaced again by mc. Carrying

out the re-scaling of k as we did for ∆E1, we find

∆E2 = − ie2
~

2mc5

∫
dω dΩn

(2π)3

∫
dt dt′ eiω(t−t′)ω4(n · (x− x′))(n · (ẋ + ẋ′)). (4.24)

The integrals over Ωn and ω now separate, and produce

∆E2 =
e2

~

24π2mc5

∫
dt dt′

∂2

∂t2
∂2

∂t′2

(
1

t − t′ + iε

)
(x − x′) · (ẋ + ẋ′). (4.25)

At this point, we should have again to regulate the integral by the use of cut-

off factors; however, as earlier this integral is of the form of A
(1)
1 in Eq. (A.1).

Therefore, we may integrate by parts, twice with respect to t and twice with

respect to t′, and ignore the cut-off factors. Thus we obtain

∆E2 = − e2
~

24π2mc5

∫
dt dt′

t − t′
[
...
x · ẍ′ − ẍ · ...x ′] =

1

3
∆E1. (4.26)
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Our final result for the order ~ correction to the Larmor formula, therefore,

is

∆E = − e2
~

6π2mc5

∫
dt dt′

t − t′

[
d3x

dt3
· d2x′

dt′2
− d2x

dt2
· d3x′

dt′3

]
. (4.27)

The reader will observe that this is of lower order in c than the Larmor formula

by a factor of c2.

Example

In order to see the scale of this correction in comparison to the energy emitted,

let us consider a simple situation where the acceleration is linear and given by

a(t) = a0(1 − t2/t0
2) for |t| < t0, and a(t) = 0 otherwise. We use the above

equation to find

∆E =
4e2

~a0
2

3π2mc5
. (4.28)

On the other hand, the energy radiated according to the Larmor formula can

be found from Eq. (3.18) as E
(0)
em = 8a0

2t0/45πc3. Hence we have

∣∣∣∣
∆E

E
(0)
em

∣∣∣∣ =
15~

2πmc2t0
. (4.29)

Therefore, the Larmor formula is expected to be a good approximation as

long as t0 À ~/mc2, which is the time for a light ray to traverse a Compton

wavelength of the charged scalar particle. Since the probability distribution

for the frequency of the photon emitted is given by the square of the Fourier

transform of a(t), the typical energy of the photon emitted will be of order ~/t0

(though the probability of emission can be made small by letting a0 be small).

This energy will be comparable to mc2 if t0 ∼ ~/mc2. Then the scattered

charged scalar particle will be relativistic, and it is not surprising that the non-

relativistic approximation will break down. It is interesting that the classical

(non-relativistic) Larmor formula seems to remain a good approximation as

long as the scattered state remains non-relativistic even if its momentum may
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be much different from that of the initial state, in the case where the particle

is accelerated by a time-dependent but space-independent vector potential.

4.2 Space-dependent potential

We now turn to the case in which the potential varies in a space co-ordinate,

taken to be z. As with the time-dependent case, we assume that the vector

potential Vµ(z) is constant across space and time except for the region where

z ∈ [−Z,Z], Z > 0. We assume that Vµ(z) = 0 for z < −Z, but allow that

the potential may attain a different constant value in the region z > Z. We

further let Vz(z) = 0 for all z by a gauge transformation.

The WKB approximation changes, as now the mode which presents diffi-

culties is the z-dependent factor, not the time-dependent factor. The constant

momenta are now p0 and p⊥ = (px, py): note that we define these to be com-

ponents of the contravariant vector p. As a result, the approximate solution

to the equation of motion is

Φp(t,x) =

√
p

κp(z)
exp

(
i

~

∫ z

0

κp(ζ)dζ

)
exp

(
i

~
(p⊥ · x⊥ − p0t)

)
, (4.30)

where the function analogous to σp(t) in the time-dependent case is now a

varying momentum,

κp(z) =
√

(p0 − V0(z))2 − |p⊥ − V⊥(z)|2 − m2, (4.31)

and the initial momentum p = κp(0) =
√

p0
2 − |p⊥|2 − m2. As with the

time-dependent potential, it can be shown that higher-order corrections to the

wavefunction do not contribute to the energy emitted at order ~.

Whereas with the time-dependent potential the Jacobian determinant for

changing the momentum variable was unity, here it is

det

(
∂P

∂p

)
=

dP

dp
. (4.32)
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As previously, P = κP(0), and Pµ = pµ − ~kµ for µ 6= z. Therefore, in the

limit that the momentum distribution is arbitrarily sharply peaked, the energy

emitted is given by

Eem = −1

2

∫
d3k

(2π)3

P0

p0

dp

dP
A∗

µ(p,k)Aµ(p,k). (4.33)

Many of the details of the calculation which follows find, as one might expect,

direct analogues in the time-dependent case; although occasional mention will

be made of these, many will be sufficiently obvious to be left unremarked.

The formula for the emission amplitude, Eq. (2.97), remains the same, and

thus after integrating over t, x⊥ and p′ we find

A0(p,k) =
e

2

∫
dz e−ikzz 1

P

√
pP

κp(z)κP(z)

× (2V0(z) − (p0 + P0)) exp

(
i

~

∫ z

0

(κp(ζ) − κP(ζ))dζ

)
, (4.34)

A⊥(p,k) =
e

2

∫
dz e−ikzz 1

P

√
pP

κp′(z)κp′(z)

× (−2V⊥(z) + (p⊥ + P⊥)) exp

(
i

~

∫ z

0

(κp(ζ) − κP(ζ))dζ

)
, (4.35)

and

Az(p,k) =
−ie~

2

∫
dz e−ikzz 1

P

√
pP

κp(z)κP(z)

×
[
−1

2

(
κ′

p(z)

κp(z)
− κ′

P(z)

κP(z)

)
+

i

~
(κp(z) + κP(z))

]

× exp

(
i

~

∫ z

0

(κp(ζ) − κP(ζ))dζ

)
. (4.36)

Up to first order in ~, i.e., noting that ~(κ′
P(z)/κP(z)−κ′

p(z)/κp(z)) ∼ ~
2
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in Eq. (4.36), we have

|A(p,k)|2 =
e2

4

p

P

∫
dz dz′

eikz(z′−z)

√
κp(z)κP(z)κp(z′)κP(z′)

× exp

(
i

~

∫ z

z′
(κp(ζ) − κP(ζ))dζ

)

× [(2V0(z) − (p0 + P0))(2V0(z
′) − (p0 + P0))

−(2V⊥(z) − (p⊥ + P⊥)) · (2V⊥(z′) − (p⊥ + P⊥))

−(κp(z) + κP(z))(κp(z′) + κP(z′))] . (4.37)

This we can substitute into Eq. (4.33) to find Eem.

We note that in Eem, we have a factor

P0

p0

dp

dP

p

P
= 1; (4.38)

a fact which may be easily shown by application of the chain rule and the fact

that dP/dP0 = P0/P .

The motion of the corresponding classical particle may be expressed in

terms of the momentum κp(z) as follows:

p0 − V0

κp(z)
=

dx0

dz

∣∣∣∣
p

, (4.39)

p⊥ − V⊥

κp(z)
=

dx⊥

dz

∣∣∣∣
p

, (4.40)

where xµ is the path of the classical particle under the influence of the potential

Vµ and where ‘|p’ indicates that the quantity is evaluated with the initial

momentum p. Using these equations, we obtain from Eq. (4.37),

E = −e2

8

∫
d3k

(2π)3

∫
dz dz′χ(z)χ(z′)eikz(z′−z) exp

(
i

~

∫ z

z′
(κp(ζ) − κP(ζ)) dζ

)

×




√
κp(z)

κP(z)

dxµ

dz

∣∣∣∣∣
p

+

√
κP(z)

κp(z)

dxµ

dz

∣∣∣∣∣
P







√
κp(z′)

κP(z′)

dx′
µ

dz′

∣∣∣∣∣
p

+

√
κP(z′)

κp(z′)

dx′
µ

dz′

∣∣∣∣∣
P


 .

(4.41)
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The correction to first order in ~ will again arise from the exponential and

the other factors in the integral: again, we denote these ∆E1 and ∆E2 respec-

tively. We shall examine these separately but then combine the intermediate

results, as they pair up neatly and cancellations can be made throughout.

Let us consider the exponential correction first. As with the time-dependent

case, we need to find the correction to κP(z) up to second order in ~:

κP(z) = κp(z)

(
1 − ~k

κp(z)

(
dx0

dz
− n⊥

c
· dx⊥

dz

)

+
~

2k2

2κp(z)2

(
−

(
dx0

dz
− n⊥

c
· dx⊥

dz

)2

+
nz

2

c2

))
. (4.42)

Therefore, the correction to the energy emitted coming from the exponential

factor is

∆E1 = −ie2
~

4

∫
dk dΩk

(2π)3

∫
dt dt′k4e−ikc(t′−t)+ikn·(x′−x)(c2 − ẋ · ẋ′)

×
∫ t

t′

(
1 − 2n⊥ · dx⊥

dT

)(
dz

dT

)−2

dT. (4.43)

We make the transformation ω = kc at this point, and so observe that we

need only take the eik·(x′−x) term to second order in k. The reader will note

that as previously, the integral over Ωn will select only terms in the integrand

with an even number of copies of n⊥. Then we obtain

∆E1 = − ie2
~

8π2mc3

∫
dω

∫
dt dt′χ(at)χ(at′)ω4eiω(t−t′+iε)(c2 − ẋ · ẋ′) (4.44)

×
[(

1 − 1

6c2
ω2 ‖x − x′‖2

) ∫ t

t′
ż−2dT − 2

3c2
iω(x′

⊥ − x⊥) ·
∫ t

t′
ẋ⊥ż−2dT

]
,

again inserting a factor of iε to avoid the singularity at t = t′ in such a way

that the ω integral is convergent. The term of highest order in c is at order

c2: noting that once the ω integral is carried out, this term is of the form of

A
(1)
1 , we may therefore integrate by parts in t and t′ to obtain:

c2

∫
dωω4

∫
dt dt′ eiω(t−t′+iε)

∫ t

t′
ż−2dT = 0. (4.45)
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This gives us, to lowest order in c−1,

∆E1 = − ie2
~

8π2mc3

∫
dω

∫
dt dt′χ(at)χ(at′)ω4eiω(t−t′+iε) (4.46)

×
[(

ẋ · ẋ′ +
1

6
ω2 ‖x − x′‖2

) ∫ t

t′
ż−2dT +

2iω

3
(x′

⊥ − x⊥) ·
∫ t

t′
ẋ⊥ż−2dT

]
.

Turning to the factor correction, ∆E2, clearly dz/dz = 1 whether the as-

sociated initial momentum is p or P. When µ 6= 3, however, dxµ/dz|P =

(P µ − V µ)/σP(z) must be corrected through both P and κP(z). Throughout

this part of the calculation, we shall use Roman indices to indicate all compo-

nents except z; then this exact re-writing shows the origins of the correction:

dxm

dz

∣∣∣∣
P

=
κp(z)

κP(z)

dxm

dz

∣∣∣∣
p

− ~km

2κP(z)
. (4.47)

Since we are only seeking corrections at first order in ~, we have that

dxm

dz

∣∣∣∣
P

=

(
1 +

~kn

2κp(z)

dxn

dz

)
dxm

dz

∣∣∣∣
p

− ~km

2κp(z)
. (4.48)

Thus, the correction coming from the factor can be written as follows:

E + ∆E2 = −e2

2

∫
d3k

(2π)3

∫
dz dz′eik·(x−x′) (4.49)

×
[√

κp(z)

κP(z)

√
κp(z′)

κP(z′)

dxm

dz

∣∣∣∣
p

dx′
m

dz′

∣∣∣∣
p

− ~km

2

(
1

κp(z′)

dxm

dz

∣∣∣∣
p

+
1

κp(z)

dx′
m

dz′

∣∣∣∣
p

)
− 1

]
;

therefore,

∆E2 = −e2

2

∫
d3k

(2π)3

∫
dz dz′eik·(x−x′) (4.50)

× ~

2

[(
kn

κp(z)

dxn

dz
+

kn

κp(z′)

dx′
n

dz′

)
dxm

dz

dx′
m

dz′
−

(
kn

κp(z′)

dxn

dz
+

kn

κp(z)

dx′
n

dz′

)]
.

At this point, we make the replacement κp(z) ≈ mż, expand the summations,

and so obtain

∆E2 =
e2

~

32π3m

∫
d3k dt dt′χ(at)χ(at′)keik·(x−x′) (4.51)

×
[(

c − n⊥ · ẋ⊥

ż2
+

c − n⊥ · ẋ′
⊥

ż′2

) (
c2 − ẋ⊥ · ẋ′

⊥

)
− (c − n⊥ · ẋ⊥ + c − n⊥ · ẋ′

⊥)

]
.
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Expanding the term eikn·(x−x′), we observe that the angular integral will

once again select only terms in the integrand with an even number of copies

of n. Making the replacement ω = kc, we find to highest order in c,

∆E2 = − e2
~

8π2mc3

∫
dω dt dt′χ(at)χ(at′)ω3eiω(t−t′+iε) (4.52)

×
[(

ẋ⊥ · ẋ′
⊥ +

ω2

6
‖x − x′‖2

) (
ż−2 + ż′−2

)
+

iω

3
(x′

⊥ − x⊥) ·
(
ẋ⊥ż−2 + ẋ′

⊥ż′−2
)]

.

It is convenient to combine the two integrals ∆E1 and ∆E2 at this stage,

since all terms in each will pair up to show cancellations and combinations,

giving the following expression:

∆E = − e2
~

8π2mc3

∫
dt dt′χ(at)χ(at′)

∫
dωeiω(t−t′+iε) (I1 + I2 + I3) (4.53)

where

I1 = ω3

(
iωẋ · ẋ′

∫ t

t′
ż−2dT + ẋ⊥ · ẋ′

⊥

(
ż−2 + ż′−2

))
,

I2 =
1

3
iω4

(
2iω(x⊥ − x′

⊥) ·
∫ t

t′
ẋ⊥ż−2dT + (x⊥ − x′

⊥) · (ẋ⊥ż−2 + ẋ′
⊥ż′−2)

)
,

I3 =
1

6
ω5

(
iω ‖x − x′‖2

∫ t

t′
ż−2dT + ‖x − x′‖2

(ż−2 + ż′−2)

)
. (4.54)

Each of these integrands may be considered separately according to general

principles, before recombining them for the complete result.

Prior to that, however, we must briefly consider the cut-off functions. As

with previous calculations, it is desirable that these not appear in the final

result: and as with those previous calculations, the integral we have is of the

form of A
(n)
1 in Appendix A. The most complicated of the six is

i

∫
dt dt′χ(at)χ(at′)eiω(t−t′+iε)ω6 ‖x − x′‖2

∫ t

t′
ż−2dT ; (4.55)

here, n = 3, f(t, t′) = ẋµẋ′
µ, and the three functions gi(t) are, twice, xi(t)

(to form ‖x − x′‖2) and, once, the integral
∫

t
ż−2dT (so that g(t′) − g(t) =
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∫ t′

t
ż−2dT ). Therefore, we deduce that after integration by parts, this becomes

a sum of terms which either tend to zero or are convergent as the cut-off

factors are removed. Hence, it may be formally integrated by parts without

the cut-off functions. The other five integrands follow similarly, and therefore

the whole integral as a whole is convergent without the cut-off functions which

we consequently drop.

To analyse the three pairs in the integrand above, the basic rule of approach

is to use the fact that ωe−iω(t−t′) = i∂te
−iω(t−t′) = −i∂t′e

−iω(t−t′), and integrate

by parts to move the derivatives from the exponential to the other terms in

the integral. We shall choose our derivatives carefully, and use the relation

‘∼’ to denote equivalence of two expressions up to such a replacement of a

factor or factors of ω and integration by parts. Therefore, we may say that

ω ∼ i
2
(∂t − ∂t′).

We shall illustrate the general strategy using the term with the lowest

power in ω, and then state the results of following the similar approach with

the other terms. Commencing, then, with that term,

I1 ∼ ω3

[
1

2
(∂t′ − ∂t)

(
ẋ · ẋ′

∫ t

t′
ż−2dT

)
+ ẋ⊥ · ẋ′

⊥

(
ż−2 + ż′−2

)]

=
1

2
ω3

[
(ẍ′ · ẋ − ẋ′ · ẍ)

∫ t

t′
ż−2dT + (ẋ⊥ · ẋ′

⊥ − żż′)
(
ż−2 + ż′−2

)]
.

We now split the terms, so that the derivative from the next factor of ω does

not affect any of ẍ, ẍ′, ż−2 or ż′−2:

I1 ∼
1

2
ω2

[
i∂t′

(
ẍ · ẋ′

∫ t

t′
ż−2dT

)
+ i∂t

(
ẋ · ẍ′

∫ t

t′
ż−2dT

)

+ i∂t(ẋ⊥ · ẋ′
⊥ − żż′)ż′−2 − i∂t′(ẋ⊥ · ẋ′

⊥ − żż′)ż−2

]

= iω2

[
ẍ · ẍ′

∫ t

t′
ż−2dT − z̈ż′−1 + z̈′ż−1

]
. (4.56)
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The general strategy has been to observe that we have two terms in the in-

tegrand of I1 as written at the beginning of the process: the first multiplies

the integral, and the second does not. That second term in I1 comes from the

factor part of the correction and is therefore related to a derivative of the first

term. Consequently, we might expect combinations and cancellations to arise

between derivatives of the first term and the second term. We therefore choose

derivatives which will give us such cancellations. In this instance, it was also

possible to avoid derivatives of ż−2; in the other two cases, we shall have to

allow first derivatives of such terms to arise. We stop once we have obtained

a term proportional to ω2.

Following a similar strategy, the other two integrals become

I2 ∼
1

3
iω2

[
ẍ′
⊥ · ẋ⊥ż−2 − ẋ′

⊥ · ẍ⊥ż′−2
]

(4.57)

and

I3 ∼ −1

3
iω2

[
ẍ · ẍ′

∫ t

t′
ż−2dT + ẍ′ · ẋż−2 − ẋ′ · ẍż′−2

]
(4.58)

Then we see that I2 + I3 = −1
3
I1, and consequently,

I1 + I2 + I3 ∼
2

3
iω2

[
ẍ · ẍ′

∫ t

t′
ż−2dT + z̈′ż−1 − z̈ż′−1

]
. (4.59)

If we were to apply the remaining factors of ω to the derivatives of z, then we

would obtain

ω2
[
z̈′ż−1 − z̈ż′−1

]
∼ −...

z ′ z̈ż−2 + z̈′
...
z ż′−2; (4.60)

using our equivalence between ω and derivatives in the time co-ordinates once

more, we may write

z̈
...
z ′ż−2 ∼ −ω2z̈z̈′

∫

t

ż−2dT +
...
z

...
z ′

∫

t

ż−2dT, (4.61)



CHAPTER 4. FIRST-ORDER CORRECTIONS 62

and a similar expression for the second term. Therefore,

I1 + I2 + I3 ∼
2

3
iω2ẍ⊥ · ẍ′

⊥

∫ t

t′
ż−2dT +

2

3
i
...
z

...
z ′

∫ t

t′
ż−2dT. (4.62)

Inserting the above expression into Eq. (4.53) and integrating the final

factors of ω with eiω(t−t′+iε), we find

∆E =
e2

~

12π2mc3

∫
dt dt′

[ ...
z

...
z ′

t − t′ + iε
− 2ẍ⊥ · ẍ′

⊥

(t − t′ + iε)3

] ∫ t

t′
ż−2dT. (4.63)

For calculation purposes this result is too singular, a result of the (t− t′ + iε)3

denominator. Integrating by parts to remove it gives a less concise but more

tractable form,

∆E =
e2

~

12π2mc3

∫
dt dt′

t − t′ + iε

[
...
x · ...x ′

∫ t

t′
ż−2dT

−1

2
(ẍ′

⊥ · ...x⊥ − ...
x ′

⊥ · ẍ⊥)(ż−2 + ż′−2) − 1

2
ẍ⊥ · ẍ′

⊥(∂tż
−2 − ∂t′ ż

′−2)

]
. (4.64)

This correction is of the same order in c as the Larmor formula, although of

course it is of higher order in ~; this is a contrast with Eq. (4.27), which was

of lower order in c by a factor of c2.

Example

To estimate the size of this correction, we consider a charged particle moving

at a constant speed vz in the z-direction, and accelerated in the x-direction

with an acceleration given by a(t) = a0(1− t2/t0
2) for |t| ≤ t0 and 0 otherwise.

It is possible to arrange the vector potential to produce this motion, as by

hypothesis, Vx is then determined by a(t(z)), Vy = 0, and therefore V0 is

determined by vz and Vx. Then, since vz is constant, the first term in Eq. (4.64)

gives a vanishing contribution, and from the remaining terms, we find

∆E = − 2e2
~a0

2

3π2mvz
2c3

, (4.65)
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and ∣∣∣∣
∆E

E
(0)
em

∣∣∣∣ =
15~

4πmvz
2t0

. (4.66)

Thus, the correction is small, and the Larmor formula is expected to be reliable

as long as the kinetic energy associated with the motion in the z-direction is

much larger than the energy of the photon emitted, ~/t0. This provides a

general, loose, lower bound on the velocity ż, which ensures that the case

of small ż, which might have raised a concern earlier, need not cause any

difficulties.



Chapter 5

Conformally flat space-time

Summary. In this chapter, we consider the radiation reaction of a charged

scalar particle of mass m moving in a space-time with metric gµν = Ω2(t)ηµν .

We shall show that at the tree level, this scalar QED theory can be transformed

into one with a flat metric and a squared mass term Mc
2(t) ≡ m2Ω2(t) + (ξ −

1
6
)~2Ω2(t)R(t). We proceed to demonstrate that this is equivalent to the scalar

QED theory of a charged particle of squared mass M2(t) = m2Ω2(t) moving

on a flat space-time, and that therefore the radiation reaction forces agree to

leading order in ~. Considering the one-loop corrections to the theory, we show

that a flat-space theory with a general varying mass term gives rise to non-

zero corrections, while the one-loop corrections to the conformally-flat theory

vanish as ~ → 0.

5.1 Radiation reaction at tree level

Let us take, for the time being, a general conformally flat metric, gµν(x) =

Ω2(x)ηµν , and consider how the classical scalar theory propagating on it may

be converted to a flat space-time with a varying mass. We shall then move to

64
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the quantum electrodynamic theory and specialise to dependence on t only.

We shall find it helpful to appeal to certain facts which may be found in

App. D of [32], which treats the case of two metrics related by a conformal

transformation.

A charged particle moving on such a space-time experiences an accelera-

tion aµ ≡ uα∇αuµ, generated by a classical, DeWitt-Brehme-Hobbs, radiation

reaction force [13]:

fµ
(R) =

2

3
αc

(
ȧµ − a2uµ

)
+

1

3
αc

(
−Rµ

νu
ν + uµRαβuαuβ

)
, (5.1)

where a2 = −aµaµ and we have defined the ‘classical fine structure constant’,

αc ≡ α~. In a general space-time there would be an additional term called the

tail term and coming from the propagation of the electromagnetic field within

the light-cone. This term is conformally invariant [27]; and since it vanishes on

a flat space-time, it also vanishes here. If there is an external electromagnetic

field, then the equation of motion for the particle is

maµ = F µν
ex uν + fµ

(R). (5.2)

Let us define the flat-space proper time by τ[ ≡ Ω−1τ , the four-velocity in

the corresponding flat-space theory by uµ
[ ≡ dxµ/dτ[, the flat-space accelera-

tion by aµ
[ ≡ uα

[ ∂αuµ
[ = d2xµ/dτ[

2 and ȧµ
[ ≡ daµ

[ /dτ[. Given these definitions,

the relationship between the DeWitt-Brehme-Hobbs force in the space-time

with the conformal metric and the equivalent force in the flat space-time is

[33]

fµ
(R) = Ω−3fµ

(R)[ ≡
2

3
αcΩ

−3
(
ȧµ

[ − a[
2uµ

[

)
. (5.3)

This may either be shown by a brute force calculation, or by noting (as does

[34]) that as Maxwell’s equations are conformally invariant, the field tensor is

also conformally invariant. Then fµ = Fµνu
ν = F[µνΩuν

[ , and so fµ = gµνfν =

Ω−3fµ
[ .
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If we define a varying mass, M(x) = mΩ(x), then the equation of motion,

Eq. (5.2), becomes

d

dτ[

[
M(x)uµ

[

]
− ηµν∂νM(x) = eηµαF ex

αβuβ
[ + fµ

(R)[. (5.4)

Thus, the motion of a charged particle of mass m on a space-time with a

conformally-flat metric gµν = Ω2ηµν is the same as that of a charged parti-

cle with mass mΩ(x) in flat space-time under the influence of the Abraham-

Lorentz-Dirac force. It is useful at this point to note that without the ALD

force, Eq. (5.4) can be derived from Hamilton’s equations, treating position

and momentum as functions of time, from the Hamiltonian

H(x,p, t) =

√
‖p − eAex(x, t)‖2 + M2(x, t) + eA0

ex(x, t), (5.5)

where we have defined ηµνAex ν = (Aex 0,Aex).

We also transform the Lagrangian for the theory in the conformally flat

space-time into the one in flat space-time. The Lagrangian for scalar QED in

a general space-time with a metric gµν and a background electromagnetic field

Aex µ is

L =
√−g

(
−1

4
gµαgνβFµνFαβ + gµν (Dµφ)† Dνφ −

[(m

~

)2

− ξR

]
φ†φ

)
,

(5.6)

where Dµφ ≡ [∂µ + iVµ/~ + ieAµ/~]φ, Vµ ≡ eAex µ and Fµν ≡ 2∂[µAν]. Let

the metric be conformally flat, i.e., gµν = Ω2ηµν : then
√−g = Ω4 and R =

−6gµν(∂µ∂ν log Ω + ∂µ log Ω∂ν log Ω). If we introduce a rescaled scalar field,

ϕ ≡ Ωφ, then we can re-write this Lagrangian, using the fact that Lagrangians

are equivalent up to a total derivative. Specifically,

√−ggµν(∂µφ)†(∂νφ) = Ω4Ω−2ηµν
[
∂µ(Ω−1ϕ)

]† [
∂ν(Ω

−1ϕ)
]
, (5.7)



CHAPTER 5. CONFORMALLY FLAT SPACE-TIME 67

which we expand and re-arrange to produce derivatives of log Ω so far as

possible. Further re-arrangements lead to

= ηµν∂µ log Ω∂ν log Ωϕ†ϕ − ηµν∂µ log Ω∂ν(ϕ
†ϕ) + ηµν∂µϕ

†∂νϕ, (5.8)

at which point we use the equivalence of Lagrangians to move the derivative

∂ν onto the logarithm in the middle term, changing its sign. The first two

terms can then be seen to be proportional to the scalar curvature, so that

=
1

6
Ω2Rϕ†ϕ + ηµν∂µϕ

†∂νϕ. (5.9)

Applying this at the relevant point in the Lagrangian, it is simple to see that

the rest transforms so that

L = −1

4
ηµαηνβFµνFαβ + ηµν (Dµϕ)†Dνϕ − Mc

2(x)

~2
ϕ†ϕ, (5.10)

where

Mc
2(x) = m2Ω2 +

(
ξ − 1

6

)
~

2Ω2R. (5.11)

The reader will observe that the difference Mc
2(x) − M2(x) is of order ~

2.

At this point, we impose the condition that the conformal factor Ω and the

external electromagnetic field Vµ depend only on time, t. We also let Ω(t) 6= 1

or Vµ(t) 6= 0 only for −T1 < t < −T2 for some positive constants T1 and T2.

We also choose the gauge V0 = 0. As a result the background field Vµ satisfies

the Lorenz gauge condition, ηµν∂µVν = 0. We shall demonstrate that the

tree-level motion of the particle in scalar QED with Lagrangian in Eq. (5.10)

reproduces the classical motion obeying Eq. (5.4) in the limit ~ → 0 under

these conditions.

Since the vector field Aµ propagates on the light-cone in the conformally-

flat space-time, it satisfies the Feynman-gauge free field equation

∂α∂αAµ = 0; (5.12)
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consequently, we may expand the quantised field in the interaction picture in

terms of explicit mode functions as

Aµ(x) =

∫
d3k

2k(2π)3

[
aµ(k)e−ik·x + a†

µ(k)eik·x
]
. (5.13)

Here, k = ‖k‖, and we have the same commutation relations as in the flat

space-time case, Eq. (2.54).

The rescaled scalar field ϕ in the interaction picture may be expanded in

terms of solutions to the field equation, which we denote by Φp(x) and Φ
∗

p(x),

the mode functions satisfying the equation of motion. As in the earlier cases,

the differential operator generating the equation of motion is not real, and

consequently we must distinguish between the two solutions. For Φp(x), that

equation is
(
~

2DµD
µ + Mc

2(t)
)
Φp(x) = 0 (5.14)

where Dµ = ∂µ + iVµ; a similar equation holds for Φ
∗

p(x). When t > −T2, we

require that our solutions become the flat space-time solutions, i.e., Φp(x) =

e−
i
~

p·x and Φ
∗

p(x) = e
i
~

p·x, and p0 ≡
√
‖p‖2 + m2. Since the background fields

are assumed to be smooth, the particle creation effect is non-perturbative in

~: i.e., it does not occur at any finite order in ~. Hence Φp(x) = e−
i
~

p·x+iδ for

some real number δ for t < −T1 to all orders in ~ in the WKB approximation,

and similarly for Φ
∗

p(x). Note that the momentum may be different in the

regions t < −T1 and t > −T2. Then we can expand the scalar field ϕ as

ϕ(x) = ~

∫
d3p

2p0(2π~)3

[
A(p)Φp(x) + B†(p)Φ

∗

p(x)
]
; (5.15)

as with the vector field, the non-zero commutation relations are the flat space-

time ones.

Since this rescaled scalar field inhabits a flat space-time, the analysis of

the position shift follows the same lines as in Ch. 2. That is to say, we can
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derive the emission amplitude in the same way, and find that as previously,

the change in expected position due to the emission derives from two sources:

the tree level and the one-loop diagrams. These are

δtreex
i = − i

2

∫
d3k

2k(2π)3
Aµ∗(p,k)

←→
∂pi

Aµ(p,k), (5.16)

δloopx
i = −∂pi

ReF(p). (5.17)

It now remains to be shown that a scalar quantum field with a varying mass

term generates the same position shift as the equivalent classical theory. The

one-loop position shift, however, is not the same as the flat space result (which

is zero), although it is zero for the conformally-related theory with a constant

mass.

Consider an electromagnetic field coupled to a classical external current jµ

with a Lagrangian,

L =
√−g

(
−1

4
FµνF

µν − eAµj
µ

)
. (5.18)

The classical current from a point charge is

jµ(x, t) =
dxµ

dt
δ3(x − x(t)) (5.19)

where x(t) is the position of the particle at time t. The reader will note that

this is written differently from the current as we defined it in Ch. 2, although it

is easy to see that the two definitions are, in fact, equivalent. In the Feynman

gauge, the emission amplitude is given by

Aµ
cl(k) = −e

∫ ∞

−∞

dτ
dxµ

dτ
eik·x. (5.20)

Higuchi and Martin [22] showed that if the quantum field theory is a Hamil-

tonian system when e = 0 and if the one-photon emission amplitude Aµ(p,k)

equals the emission amplitude Aµ
cl(k), then in the limit ~ → 0 the tree-level
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position shift δtreex
i equals the position shift due to the classical ALD force

fµ
(R)[. Eq. (5.5) demonstrates that the first of these conditions is satisfied; we

now show that Aµ(p,k) equals the classical emission amplitude Aµ
cl(k) for the

point charge with final momentum p, which is thus sufficient to show that

δtreex
i is identical to the classical position shift.

Considering the field equation Eq. (5.14), we observe that the deviation

from the free-field equation is time-dependent and therefore spatial momentum

in the field is conserved. Thus, if we separate variables in the wavefunction

Φp(x) and carry out the WKB approximation as in Ch. 2, we find the following:

Φp(x) =
√

p0φp(t)e
i
~
p·x, (5.21)

φp(t) =
1√

σp(t)
exp

{
− i

~

∫ t

0

σp(t′)dt′
}

ϕp(t), (5.22)

where σp(t) =
√

‖p − V(t)‖2 + Mc
2(t). To lowest order in ~, the function

ϕp(t) equals 1: it therefore contains the terms of order ~ and higher.

If we consider the Hamiltonian, Eq. (5.5), and replace M2(x) = Mc
2(t) and

eAex µ = Vµ(t), then we find the following equations

σp(t) = Mc(t)
dt

dτ
, (5.23)

p̃(t) ≡ p − V(t) = Mc(t)
dx

dτ
, (5.24)

where we consider xµ(τ) as the worldline of a classical scalar charged particle of

mass Mc(t) in a background field V(t), passing through the space-time origin

with a momentum p, and parameterised by the proper time, τ .

If we define
←→
Dµ ≡ −→

Dµ −←−
Dµ†, then the current operator associated with the

rescaled scalar field is

Jµ(x) ≡ i

~
:ϕ†(x)

←→
Dµϕ(x) : . (5.25)
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Pursuing the same line of argument by which we obtained Eq. (2.96), we find

Aµ(p,k) = −e

∫
d3P

2P0(2π~)3

∫
d4x 〈P| Jµ |p〉 eik·x. (5.26)

The commutation relations give us

〈P| Jµ |p〉 = i~Φ∗
P(x)

←→
D µΦp(x), (5.27)

and if we define p̃µ ≡ (σp,p), then we find to lowest order in ~,

∫
d3x 〈P| Jµ(x) |p〉 e−ik·x =

∫
d3x

(
p̃µ + P̃ µ

)
Φ∗

P(x)Φp(x)e−ik·x. (5.28)

Carrying out the x-integral, we obtain a delta function, (2π~)3δ3(P−p+~k).

Then as P and p differ by ~k, we are able to approximate σP(t) − σp(t) ≈
−~p̃ · k/σp(t), and thus

∫
d3x 〈P| Jµ(x) |p〉 e−ik·x =

2p̃µp0

σp

exp

{
−i

∫ t

0

p̃ · k
σp(t′)

dt′
}

(2π~)3δ3(P−p+~k).

(5.29)

Integrating over P, we find in the limit ~ → 0

Aµ(p,k) = −e

∫
dt

p̃µ

σp

exp

{
−i

∫ t

0

p̃

σp

dt · k
}

eikt, (5.30)

and using the equations derived from the Hamiltonian above, we find

Aµ(p,k) = −e

∫
dτ

dxµ

dτ
eik·x. (5.31)

The reader will observe, by comparing this with Eq. (5.20), that we have

obtained the same expression as Aµ
cl(k). Since the difference between the

masses used for the two derivations, M(t) and Mc(t), is of order ~
2, these two

expressions are equal in the limit ~ → 0, and therefore we conclude that the

position shift δtreex
i is identical to the corresponding classical position shift in

the limit ~ → 0.
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5.2 One-loop corrections for the theory with

time-dependent mass

In this section we calculate the one-loop corrections for the charged scalar field

with a time-dependent mass M(t), not assumed to arise from a conformal

transformation, in an external electromagnetic potential V(t). Higuchi [19]

argued that there is a logarithmic correction to the mass that is of order ~
−1;

we confirm this here. We also show that the relation between the external

current and the electromagnetic field that it generates is modified.

We recall that at tree level the background field V µ is generated by an

external current Jµ
C ; i.e.,

∂ν(∂
νV µ − ∂µV ν) = e2Jµ

C . (5.32)

Let us denote the original, ‘bare’ fields and constants of the (flat space-time,

varying mass) scalar QED Lagrangian with subscript zeroes. The loop cor-

rections act to multiply these fields and constants by the renormalisation con-

stants, which are defined in the following manner [31]:

ϕ0 = Z2
1/2ϕ,

Aµ
0 = Z3

1/2Aµ,

e0Z2Z3
1/2 = eZ1,

Z2M0
2(t) = M2(t) − δM2(t). (5.33)

The Ward-Takahashi identity implies that Z1 = Z2. Applying these consider-

ations to the scalar Lagrangian, we obtain

L = −Z3

4
F̃µνF̃

µν +Z2(Dµϕ)†Dµϕ− M2(t)

~2
ϕ†ϕ+

δM2(t)

~2
ϕ†ϕ−e(Jµ

C +∆Jµ)Aµ,

(5.34)
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When considering the one-loop calculations, we shall use the dimensional reg-

ularisation procedure, which gives at one loop a multiplicative mass renormal-

isation, δM2(t) ∝ M2(t). The field strength F̃µν is derived from the total elec-

tromagnetic field Ãµ ≡ Aµ + e−1Vµ in the usual way. We define the derivative

operator Dµ by Dµ = ∂µ + ieÃµ/~. The tree-level current Jµ
C is supplemented

with the current ∆Jµ in order to generate the background field Vµ at one-loop

order. Thus, Maxwell’s equations at one loop are

Z3∂ν(∂
νV µ − ∂µV ν) = e2(Jµ

C + Jµ
Q), (5.35)

where Jµ
Q ≡ 〈0| Jµ |0〉, which we call the vacuum current. This equation can

be written

e2∆Jµ = e2Jµ
Q − (Z3 − 1)∂ν(∂

νV µ − ∂µV ν). (5.36)

By using the definition of Ãµ above, substituting it into the Lagrangian

and dropping terms which are total derivatives or independent of the fields,

we find

L =
Z3

4
FµνF

µν +Z2(Dµϕ)†Dµϕ− M2(t)

~2
ϕ†ϕ+

δM2(t)

~2
ϕ†ϕ+eAµ∆Jµ. (5.37)

5.2.1 The supplementary current and Maxwell’s equa-

tions

Here we shall show that in the semi-classical approximation, the current ∆Jµ

is non-zero at order ~
−1. That is, Maxwell’s equations relating the external

current to the external electric field are altered at this order. In order to find

this correction to Maxwell’s equations, we must first calculate the vacuum

current Jµ
Q = 〈0| Jµ |0〉.

Under the assumptions that V 0(t) = 0 and that V depends only on time,

it is easy to show that J0
Q = 0. This is physically reasonable as a homogeneous

electric field cannot generate an inhomogeneous charge distribution.



CHAPTER 5. CONFORMALLY FLAT SPACE-TIME 74

The spatial components of Jµ
Q are

J i
Q =

∫
d3p

(2π~)3

pi − V i(t)

σp(t)
|ϕp(t)|2. (5.38)

We wish to calculate JQ up to order ~
0, which necessitates the calculation of

|ϕp(t)|2 up to order ~
3.

Let us define Σ(t) ≡ σp
2(t), and re-write the equation of motion, Eq. (5.14),

in terms of the logarithm of the mode function φp(t):

~
2∂0

2 log φp(t) + ~
2(∂0 log φp(t))2 + Σ(t) = 0. (5.39)

Taking φp(t) from Eq. (5.22) and replacing Mc
2(t) with M2(t), we obtain

log φp = −1

4
log Σ − i

~

∫ t

Σ
1

2 dt′ + log ϕp, (5.40)

which we substitute into the above equation of motion, finding

1

i~
Σ

1

2

d

dt
log ϕp =

1

4

Σ̇

Σ

d

dt
log ϕp −

1

2

d2

dt2
log ϕp −

1

2

(
d

dt
log ϕp

)2

+
1

8

Σ̈

Σ
− 5

32

Σ̇2

Σ2
.

(5.41)

Plainly, the solution to this equation, log ϕp(t), may be written as a power

series:

log ϕp(t) =
∞∑

n=1

(i~)nϕ(n)
p (t). (5.42)

Consequently, the odd-order terms in the squared amplitude |ϕp(t)|2 cancel,

and thus this may may be written up to order ~
3 as

|ϕp(t)|2 = 1 − 2~
2ϕ(2)

p (t) + O(~4). (5.43)

We therefore need seek the second-order solution, ϕ(2), and no further in the

expansion.

Taking the equation at order i~, we find

ϕ̇(2)
p = −1

2

d

dt

(
Σ− 1

2 ϕ̇(1)
p

)
, (5.44)
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and so we must find the first-order solution in order to calculate the second-

order solution. That first-order solution is simply read off from the equation

of motion:

Σ
1

2 ϕ̇(1)
p =

1

8

Σ̈

Σ
− 5

32

Σ̇2

Σ2
. (5.45)

Hence, we conclude that

ϕ(2)
p (t) =

5

64

Σ̇2

Σ3
− 1

16

Σ̈

Σ2
. (5.46)

Considering the vacuum current, Eq. (5.38), we observe that the integration

variable may be changed to p̃ ≡ p − V(t), so that d3p = d3p̃. Then we

substitute in our equation for ϕ
(2)
p , noting that the factor of p̃ in the integrand

already will select only those terms in the integrand which have an odd number

of factors of p̃. Therefore,

J i
Q = −

∫
d3p̃

(2π)3~

p̃i

√
‖p̃‖2 + M2(t)

[
5

8σp
6(t)

p̃jV̇ j(t)
d

dt
M2(t) − 1

8σp
4(t)

p̃jV̈ j(t)

]
.

(5.47)

Let us define the two integrals as J i
Q1 and J i

Q2 respectively.

In JQ1, we observe that only the factor p̃ip̃j contributes to the angular part

of the integral, and we apply the identity concerning the angular integral,

∫
dΩq qiqj =

1

3
gij

∫
dΩq q2, (5.48)

to obtain

J i
Q1 =

5

24~
V̇ i(t)

d

dt
M2(t)

∫
d3p̃

(2π)3

‖p̃‖2

(‖p̃‖2 + M2(t))
7

2

. (5.49)

This integral is regular, and evaluating it we find

J i
Q1 =

1

48π2~

(
d

dt
log M2(t)

)
V̇ i. (5.50)

The second integral, however, is not regular. We shall use the dimensional

regularisation procedure over 3-momentum, setting D = 4−2ε and introducing
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the renormalisation scale µ. This gives us

e2J i
Q2 = −µ4−D V̈ i

12~

∫
dD−1p̃

(2π)D−1

‖p̃‖2

‖p̃‖2 + M2(t)

=

(
Z3 − 1 +

e2

48π2~
log

M2(t)

m2

)
V̈ i, (5.51)

where the renormalisation constant Z3 is

Z3 = 1 − e2

48π2~
Γ

(
4 − D

2

)(
m2

4πµ2

)D−4

2

= 1 − e2

48π2~

(
1

ε
− γ − log

m2

4πµ2

)
. (5.52)

Using our expressions for J i
Q1 and J i

Q2 in Eq. (5.36), we find

e2∆J i = e2J i
Q1 +

e2

48π2~
V̈ i log

M2(t)

m2
. (5.53)

Therefore Maxwell’s equations V̈ = e2JC have quantum corrections at one

loop at order ~
−1, and the corrected equations are

V̈ = e2

[
1 +

e2

48π2~
log

M2(t)

m2

]
JC + e2JQ1. (5.54)

5.2.2 One-loop corrections to the time-dependent mass

In App. A of [22], it was shown that for a charged scalar particle on a flat space-

time, the mass renormalisation term exactly cancels the one-loop contribution

up to order ~
−1. Here, we shall show that for the time-dependent mass M2(t) =

m2Ω2, there remains a residual term after the mass renormalisation term and

terms occurring at one-loop are added together, and that this residual term

affects the motion at a lower order in ~
−1 than the ALD force.

The one-loop terms arise from the forward scattering amplitude F (p),

which is given at order e2 in terms of the interaction Hamiltonian density
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HI(x) as

2ip0

~
(2π~)3F (p)δ3(p − p′) = − i

~

∫
d4x 〈0|A(p′)HI(x)A†(p) |0〉

− 1

2~2

∫
d4x d4x′ 〈0|A(p′)T [HI(x)HI(x

′)]A†(p) |0〉 , (5.55)

where

HI(x) = eJµAµ +
e2

~2

3∑

i=1

AiAi :ϕ†ϕ : −δM2(t)

~2
:ϕ†ϕ :, (5.56)

and the current Jµ is given by Eq. (5.25).

We consider first the contribution made by the mass counterterm, δM2(t).

The relation between the mass and the curved space-time constant mass sug-

gests that δM2(t) = (δm)2(M2(t)/m2), where δm2 is set to the standard value

in the on-shell renormalisation. The contribution from this term, which cor-

responds to diagram (c) in Fig. 5.1, is

2ip0(2π~)3F c(p)δ3(p − p′) = − i

~2

δm2

m2

∫
d4x 〈0|A(p′) :ϕ†ϕ : A†(p) |0〉M2(t).

(5.57)

Expanding the field ϕ in terms of its modes, we find

F c(p)δ3(p − p′) = − 1

2p0~(2π~)2

δm2

m2

∫
d4xΦ∗

p′(x)Φp(x)M2(t). (5.58)

Integrating over the spatial components, we find

F c(p)δ3(p − p′) = −
∫

dt
δm2

m2

1

2σp(t)
ϕ∗

p′(t)ϕp(t)M2(t)δ3(p − p′); (5.59)

therefore,

F c(p) = −δm2

m2

∫
dt
|ϕp(t)|2
2σp(t)

M2(t). (5.60)

The mass counterterm is

δm2 =
e2

~
µ4−D

∫
dDq

(2π)Di

{
(p + q)2

[q2 − m2 + iε][(p − q)2 + iε]
− 4

[(p − q)2 + iε]

}
;

(5.61)
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dimensionally regularising this with D = 4 − 2ε, we obtain

δm2 = − 3e2m2

(4π)2~

(
1

ε
− γ +

7

3
− log

m2

4πµ2

)
. (5.62)

At this point it is convenient also to carry out the q0-integral in the first

expression for δm2 and note the result. To do this, we apply the technique of

partial fractions to the integrand. We define K ≡ ‖p − q‖; then this gives us

δm2 =
e2

~
µ4−D

∫
dDq

(2π)Di

{
1

(q0)2 − σq
2(0) + iε

(p0 + σq(0))2 − ‖p + q‖2

(p0 − σq(0))2 − K2

+
1

(p0 − q0)2 − K2 + iε

(2p0 + K)2 − ‖p + q‖2

(p0 + K)2 − σq
2(0)

− 4

(q0 − p0)2 − K2 + iε

}
.

(5.63)

If we consider the q0-integral as a contour integral and close the curve in

the upper half of the complex plane then the iε terms in the denominators

will select only the roots q0 = −σq(0) + iε (with a residue [−2σq(0)]−1) and

q0 = p0 − K + iε (with a residue [−2K]−1), in the relevant integrands. In

both cases, the poles’ contributions to the closing arc cancel, and thus the

q0-integral is simply 2πi times the residue. Hence, we find

δm2 =
e2

~
µ4−D

∫
dD−1q

(2π)D−1

{
− 1

2σq(0)

(p0 + σq(0))2 − ‖p + q‖2

(p0 − σq(0))2 − K2

− 1

2K

(2p0 + K)2 − ‖p + q‖2

(p0 + K)2 − σq
2(0)

+
2

K

}
. (5.64)

We collect terms according to their numerator: the parts of the integrand with

a factor of ‖p + q‖2 simplify, under the technique of partial fractions, to

‖p + q‖2

[
1

2σq(0)

1

(p0 − σq(0))2 − K2
+

1

2K

1

(p0 − K)2 − σq
2(0)

]

= −‖p + q‖2

4Kσq(0)

[
1

p0 + K + σq(0)
+

1

K + σq(0) − p0

]
. (5.65)
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(a)

+

(b)

+

(c)

Figure 5.1: The Feynman diagrams at order e2 contributing to the correction

to the (time-dependent) mass term.

In like manner, the other terms give us

− (p0 + σq(0))2

2σq(0)

1

(p0 − σq(0))2 − K2
− (2p0 + K)2

2K

1

(p0 + K)2 − σq
2(0)

= − 1

2K
− 1

4Kσq(0)

[
(p0 + σq(0))2

p − σq(0) − K
+

(p − σq(0))2

p0 + K + σq(0)

]
. (5.66)

Combining all these re-arrangements, we find

δm2 =
e2

~
µ4−D

∫
dD−1q

(2π)D−1

{
−‖p + q‖2

4Kσq(0)

[
1

σq(0) + K − p0

+
1

σq(0) + K + p0

]

+
3

2K
+

1

4Kσq(0)

[
(p0 − σq(0))2

σq(0) + K + p0

+
(p0 + σq(0))2

σq(0) + K − p0

]}
. (5.67)

We now consider the contribution made by the second term in the inter-

action Hamiltonian, (e2/~
2)

∑
i AiAi : ϕ†ϕ :, corresponding to diagram (b) in

Fig. 5.1. As with the mass counterterm, this also contributes through the term

in Eq. (5.55) with only one copy of the interaction Hamiltonian. Defining this

contribution to be F b(p), we have

2ip0

~
(2π~)3F b(p)δ3(p − p′) = −ie2

~3

∫
d4x 〈0|A(p′)

3∑

i=1

AiAi :ϕ†ϕ : A†(p) |0〉 .

(5.68)

We expand both the vector and scalar fields in terms of modes and note that

we may separate the two, so that

F b(p)δ3(p−p′) = − e2

2p0(2π~)3~2

∫
d4x 〈0|A(p′) :ϕ†ϕ : A†(p) |0〉

3∑

i=1

〈0|AiAi |0〉 .

(5.69)
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Using the mode expansion for the fields ϕ(x) and Aµ(x), we find

F b(p)δ3(p − p′) = − e2
~

2

2p0(2π~)3

∫
d4xΦ∗

p′(x)Φp(x)

∫
d3k

2k(2π)3

3∑

i=1

ηii (5.70)

The result of the x-integral can be easily deduced from the foregoing con-

siderations of the mass counterterm, with which it shares a great similarity.

Carrying this out, and integrating with respect to p′ as well, we find

F b(p) = e2

∫
dt
|ϕp(t)|2
2σp(t)

∫
d3q

(2π)3

3

2K
, (5.71)

where we have scaled and shifted the integration variable from the wave-vector

k to the momentum q ≡ p − ~k; then K = ‖p − q‖.
Finally, we consider the first term in the Hamiltonian, corresponding to

diagram (a) in Fig. 5.1. The contribution this makes through the first term

in Eq. (5.55) vanishes, as the vacuum expectation value of Aµ(x) is zero.

We define the contribution through the second term to be Fa(p), and note

that only the square of the term eJµAµ will contribute up to order e2. This

contribution is

2ip0

~
(2π~)3Fa(p)δ3(p − p′) = − e2

2~2

∫
d4x d4x′

× 〈0|A(p′)T
[
Jµ(x)Aµ(x)Jµ′

(x′)Aµ′(x′)
]
A†(p) |0〉 . (5.72)

Again, we may separate the fields, so that we find a factor of the form

〈0|T [Aµ(x)Aµ′(x′)] |0〉 = θ(x0 − x′0) 〈0|Aµ(x)Aµ′(x′) |0〉

+ θ(x′0 − x0) 〈0|Aµ′(x′)Aµ(x) |0〉

= ~ηµµ′

∫
d3k

2k(2π)3

[
θ(x0 − x′0)e−ik·(x−x′)

+θ(x′0 − x0)eik·(x−x′)
]
. (5.73)

Since θ2(y) = θ(y) and θ(y)θ(−y) = 0, we may use this to extract the time-

ordering of the scalar current as well. Thus replacing the time-ordered vector
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field correlation function inside Eq. (5.72) and re-arranging, we find

Fa(p)δ3(p − p′) =
ie2

4p0(2π~)3

∫
d4x d4x′

∫
d3k

2k(2π)3
ηµµ′

×
[
θ(x0 − x′0) 〈0|A(p′)Jµ(x)Jµ′

(x′)A†(p) |0〉 e−ik·(x−x′)

+ θ(x′0 − x0) 〈0|A(p′)Jµ′

(x′)Jµ(x)A†(p) |0〉 eik·(x−x′)
]
. (5.74)

Since we integrate over x and x′ and ηµµ′ is symmetric in its indices, we may

exchange the labelling in the second term of the integrand, which makes that

term equal to the first. We may ignore the vacuum diagrams produced by the

currents, as the algebraic terms they generate are cancelled by a normalisation

condition [31]. Then using the mode expansion for the field ϕ(x), we have

Fa(p)δ3(p − p′) =
ie2

2p0(2π~)3

∫
d4x d4x′

×
∫

d3k

2k(2π)3

d3q

2q0(2π~)3
ηµµ′eik·(x−x′)θ(x0 − x′0)

×
[
Φ∗

p′(x)Φ∗
q(x

′)
←→
D µ←→D µ′

Φq(x)Φp(x′) + Φq(x)Φ∗
p′(x′)

←→
D µ←→D µ′

Φp(x)Φ
∗

q(x
′)
]
.

(5.75)

We can turn the anti-particle modes into particle modes by observing that

φp(t) = φ−p(t). Therefore,

Fa(p)δ3(p − p′) =
ie2

2p0(2π~)3

∫
d4x d4x′

∫
d3k

2k(2π)3

d3q

2q0(2π~)3
ηµµ′

×
[
θ(x0 − x′0)

(
Φ∗

p′(x)Φ∗
q(x

′)
←→
D µ←→D µ′

Φq(x)Φp(x′)
)

eik·(x−x′)

−θ(x′0 − x0)
(
Φ−q(x

′)Φ∗
p′(x)

←→
D µ←→D µ′

Φp(x′)Φ∗
−q(x)

)
e−ik·(x−x′)

]
. (5.76)

Applying the spatial derivatives, and integrating over the spatial co-ordinates
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x and x′ as well as the momentum p′, we obtain

Fa(p) =
ie2

4~

∫
d3q

2K(2π)3

∫
dtdt′

[
θ(t − t′)

(
φ∗

p(t)φp(t′)
←→D1(t, t

′,p,q)φq(t)φ
∗
q(t

′)
)

e−iK(t−t′)/~

+θ(t′ − t)
(
φ∗

p(t)φp(t′)
←→D1(t, t

′,p,q)φq(t
′)φ∗

q(t)
)

eiK(t−t′)/~

]
, (5.77)

where K = p − q, K = ‖K‖, and

←→D1(t, t
′,p,q) = −~

2←→∂t

←→
∂t′ + [p + q − 2V(t)] · [p + q − 2V(t′)]. (5.78)

Now, we seek the terms of lowest non-trivial order in ~, noting that the

WKB expansion can be constructed in the same way as for the theory with a

constant mass. Hence, we find that

φ∗
p(t)φp(t′)

←→
∂t

←→
∂t′ φq(t)φ

∗
q(t

′) =
1√

σp(t)σp(t′)
exp

{
− i

~

∫ t′

t

σp(T )dT

}

× i

~
(−σq(t) − σp(t))

i

~
(σq(t

′) + σp(t′))
1√

σq(t)σq(t′)
exp

{
i

~

∫ t′

t

σq(T )dT

}

=
1

~2

1√
σp(t)σp(t′)σq(t)σq(t′)

exp

{
− i

~

∫ t′

t

[σp(T ) − σq(T )] dT

}

× (σp(t) + σq(t)) (σp(t′) + σq(t
′)) . (5.79)

Hence, the corresponding integrand may be written as

θ(t − t′)
1√

σp(t)σp(t′)σq(t)σq(t′)
exp

{
− i

~

∫ t′

t

[σp(T ) − σq(T ) − K] dT

}

× {− (σp(t) + σq(t)) (σp(t′) + σq(t
′)) + [p + q − 2V(t)] · [p + q − 2V(t′)]} .

(5.80)

Similarly, the other integrand may be found by noting that the difference

between the two amounts to changing σq 7→ −σq and K 7→ −K, and switching
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the sign of the theta function’s argument. Therefore, we have

θ(t′ − t)
1√

σp(t)σp(t′)σq(t)σq(t′)
exp

{
− i

~

∫ t′

t

[σp(T ) + σq(T ) + K] dT

}

× {− (σp(t) − σq(t)) (σp(t′) − σq(t
′)) + [p + q − 2V(t)] · [p + q − 2V(t′)]} .

(5.81)

We change the integration variables to t̄ ≡ (t + t′)/2 and η ≡ (t′ − t)/~.

The theta function therefore restricts η to be negative (for the first integrand)

or positive (for the second). The Jacobian for this transformation is dt dt′ =

~dt dη, and so

Fa(p) = ie2

∫
d3q

2K(2π)3

∫
dt̄ [G−(p,q, t̄) + G+(p,q, t̄)], (5.82)

where we define

G±(p,q, t̄) ≡ ±
∫ ∞

0

dη[f±(p,q, t̄) + O(~2)]

× exp

{
∓i

∫ η/2

−η/2

dζ[±σp(t̄ + ~ζ) + σq(t̄ + ~ζ) + K]

}
, (5.83)

and

f±(p,q, t̄) ≡ 1

4σp(t̄)σq(t̄)

{
−[σp(t̄) ∓ σq(t̄)]

2 + ‖p + q − 2V(t̄)‖2} . (5.84)

The exponential term may be expanded in powers of ~, as

∓i

∫ η/2

−η/2

dζ[±σp(t̄+~ζ)+σq(t̄+~ζ)+K] = ∓i[±σp(t̄)+σq(t̄)+K]η +O(~2).

(5.85)

Thus, we can ignore the terms of higher order in ~ and perform the integral

over η in our definition of G±(p,q, t̄) for the term of lowest order, obtaining

∫ ∞

0

dη exp {∓i[±σp(t̄) + σq(t̄) + K]} =
∓i

±σp(t̄) + σq(t̄) + K
. (5.86)
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Therefore,

Fa(p) = ie2

∫
d3q

2K(2π)3

∫
dt̄

1

4σp(t̄)σq(t̄)

×
{
− i

−σp(t̄) + σq(t̄) + K

[
−(σp(t̄) + σq(t̄))

2 + ‖p + q − 2V(t̄)‖2]

− i

σp(t̄) + σq(t̄) + K

[
−(σp(t̄) − σq(t̄))

2 + ‖p + q − 2V(t̄)‖2]
}

.

(5.87)

If we define q̃ ≡ q − V(t̄) and p̃ ≡ p − V(t̄), then σq(t̄) = σq̃(0) ≡ q̃0 and

similarly σp(t̄) = σp̃(0) ≡ p̃0. We may then change the variable of integration

from q to q̃ and also change p to p̃. As a result, we obtain

Fa(p) = e2

∫
d3q̃

(2π)3

∫
dt̄

1

2σp(t̄)

1

4Kσq̃(0)

×
{
‖p̃ + q̃‖2

[
1

σq̃(0) − p̃0 + K
+

1

σq̃(0) + p̃0 + K

]

−
[

(p̃0 + σq̃(0))2

σq̃(0) − p̃0 + K
+

(p̃0 − σq̃(0))2

σq̃(0) + p̃0 + K

]}
. (5.88)

As with the theory on a flat space-time with a constant mass term, the q̃-

integral gives rise to infrared divergences in the terms of higher order in ~:

these terms do not contribute to the real part of the forward-scattering am-

plitude.

Combining our results for Fa(p) and F b(p) and taking only those terms

which do not vanish in the limit ~ → 0 [22], we find a similarity between the

terms from the forward-scattering amplitude and the mass renormalisation.

We thus conclude that

Re
[
Fa(p) + F b(p)

]
= −~

∫
dt

2σp(t)
∆M2(t) + O(~2), (5.89)

where ∆M2(t) is obtained by replacing m2 with M2(t) in Eq. (5.67). Therefore,

∆M2(t) = − 3e2

16π2~
M2(t)

(
1

ε
− γ +

7

3
− log

M2(t)

4π2µ2

)
. (5.90)
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We observe, therefore, that the mass renormalisation term and the contri-

bution from the rest of the forward-scattering amplitude do not exactly cancel

out. Specifically,

∆M2(t) − δM2(t) =
3e2

16π2~
M2(t) log

M2(t)

m2
. (5.91)

This non-zero result implies that if it were desired to calculate the effects

of one-loop diagrams on the particle’s motion, the mass would need to be

modified by this quantity. The fact that this correction is of order ~
−1 means

that it affects the motion of the particle at that order as shown in Eq. (5.17).

Indeed, this effect is at a lower order in ~ than the ALD force, which is of

order ~
0, and consequently not only might one wish to calculate the one-loop

effects, but one would have to in order to have an accurate result to lowest

order in ~.

5.3 One-loop corrections for the conformally

flat theory

We have seen that the charged scalar field theory on a conformally flat space-

time, with a conformal factor dependent on time only, is classically equivalent

to a charged scalar field theory on a flat space-time with a time-dependent

mass. Having shown that there exist non-zero one-loop corrections to this

classically-equivalent theory with a time-dependent mass on a flat space-time,

we shall now show that for the theory on a conformally flat space-time with

a constant mass, the one-loop corrections vanish. We shall therefore conclude

that the equivalence established earlier, while holding for the classical limit,

breaks down at the one-loop level.

In the dimensional regularisation approach, where we continue the dimen-
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sion of space-time, the conformal transformation φ = Ω−1ϕ is modified to

φ = Ω(2−D)/2ϕ; Aµ does not need to be re-scaled as Maxwell’s equations are

conformally invariant. However, the derivative of the electromagnetic field

changes from ordinary to covariant: Aα
,β 7→ Aα

;β = (1/
√−g)∂β(

√−gAα).

The classical Lagrangian, Eq. (5.6), is therefore transformed to

L = −1

4
ΩD−4FµνF

µν − 1

2
Ω4−D[∂ν(Ω

D−4Aν)]2 +(Dµϕ)†Dµϕ− Mc
2

~2
ϕ†ϕ, (5.92)

with Dµ = ∂µ + iVµ/~ + ieAµ/~, and where the indices are raised and lowered

by the flat metric ηµν . The term playing the role of a mass we defined to be

Mc
2 ≡ m2Ω2 +

[
ξ − 1

4

D − 2

D − 1

]
~

2RΩ2. (5.93)

Note that in the Lagrangian above, we have chosen to use a gauge-fixing term

which would correspond to the Feynman gauge, were Ω(t) = 1.

5.3.1 The supplementary current and Maxwell’s equa-

tions

Firstly, we shall show that in the limit ~ → 0, the additional term in the

vacuum current entering from the one loop contribution is zero: that is, ∆Jµ =

0. In the classical theory, we suppose that the background field V µ is generated

by a classical current, Jµ
C , which is given by

Jµ
C = ∂ν

[
ΩD−4 (∂νV µ − ∂µV ν)

]
; (5.94)

the correction to the current is then

e2∆Jµ = e2Jµ
Q − (Z3 − 1)∂ν

[
ΩD−4 (∂νV µ − ∂µV ν)

]
. (5.95)

Since the currents and the field V µ depend only on time and since V 0 = 0,

∆J0 = 0 and

e2∆J = e2JQ1 + e2JQ2 − (Z3 − 1)
d

dt

(
Ω−2εV̇

)
. (5.96)
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Applying the derivative to the classical current and using the fact that ε(Z3 −
1) → −e2/(48π2

~) as ε → 0, we find

e2∆J = e2JQ1 + e2JQ2 −
e2

48π2~

(
d

dt
log Ω2

)
V̇−

(
Z3 − 1 +

e2

48π2~
log Ω2

)
V̈.

(5.97)

The currents JQ1 and JQ2 are given by Eqs. (5.50) and (5.51), replacing M2(t)

with Mc
2(t): in the limit ~ → 0, we may in fact replace Mc

2(t) with m2Ω2,

since the difference between the two is of order ~
2. Then applying those results

here, we find

e2JQ1 =
e2

48π2~

[
d

dt
log (m2Ω2)

]
V̇, (5.98)

e2JQ2 =

(
Z3 − 1 +

e2

48π2~
log Ω2

)
V̈. (5.99)

Since m is a constant, it is clear that ∆J = 0, and hence Maxwell’s equations

do not receive a correction at order e2 in the limit ~ → 0.

5.3.2 Vanishing corrections to the mass term

Now we show that there is no correction to the time-dependent mass term in

the limit ~ → 0. In order to proceed with this, it is necessary first to consider

further the change generated in the free electromagnetic field equations by the

conformal transformation. We obtain the Euler-Lagrange equations from the

Lagrangian describing the free electromagnetic field:

LEM ≡ −1

4
ΩD−4FµνF

µν − 1

2
Ω4−D

[
∂ν(Ω

D−4Aν)
]2

; (5.100)

these equations are

∂ν

[
F µν − ∂α

(
ΩD−4Aα

)
ηµν

]
+ Ω4−D∂ν

(
ΩD−4Aα

)
∂νΩD−4 = 0. (5.101)

Re-arranging these, we find

∂ν(Ω
D−4∂νAµ) + (D − 4)ΩD−4(∂µ∂ν log Ω)Aν = 0. (5.102)
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If we define

Qµν ≡ ΩD−4

[
2∂µ∂ν log Ω − ηµν∂α∂α log Ω +

4 − D

2
ηµν∂α∂α log Ω

]
, (5.103)

then the field equations given above are equivalent to

Ω
D−4

2 ∂ν∂
ν [Ω

D−4

2 Aµ] − 4 − D

2
QµνA

ν = 0. (5.104)

Hence, if we define a Lagrangian

Lfree ≡ LEM − 4 − D

4
QµνA

µAν , (5.105)

then the Euler-Lagrange equations which we derive from this new Lagrangian

are

∂ν∂
ν
[
Ω

D−4

2 Aµ
]

= 0. (5.106)

By regarding the term QµνA
µAν as an interaction term, we are able to find

equations of motion for Aµ which permit us to expand this field in the inter-

action picture:

Aµ(x) = Ω
4−D

2 (t)

∫
d3k

2k(2π)3

[
aµ(k)e−ik·x + a†

µ(k)eik·x
]
. (5.107)

The canonical quantisation procedure leads to the standard commutation re-

lations. Observe that the “interaction term” will contribute only in diagrams

which are ultraviolet divergent, due to the factor 4 − D = 2ε. We shall now

show that these diagrams generate a term proportional to e2
~Qα

α : ϕ†ϕ : in

the one-loop effective Lagrangian.

We let Q̂µν(k) be the Fourier transform of Qµν(x), so that

Qµν(x) =

∫
d4k

(2π)4
Q̂µν(k)e−ik·x. (5.108)

Then we consider the Feynman diagrams in Fig. 5.2. Using the Feynman rules
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(a)

+

(b)

Figure 5.2: The Feynman diagrams contributing to the correction due to the

quadratic interaction term. The cross indicates the “interaction term” −[(4−
D)/2]QµνA

µAν .

for scalar electrodynamics in Table 2.1, their sum is

Σ̂(p, k) =e2µ4−Dε

∫
dDq

(2π)Di

{
(pµ + qµ)(pν + kν + qν)Q̂µν(k)

(q2 − m2 + iε)[(p − q)2 + iε][(p − q + k)2 + iε]

− ηµνQ̂µν(k)

(q2 + iε)[(q − k)2 + iε]

}
, (5.109)

where we have let ~ = 1. Counting dimensions, we observe that the integrand

has a q-dimension of D − 4 ≡ −2ε, so it is logarithmically divergent. Hence,

to find the pole in ε, we replace all terms of the form q2 + . . . with q2 −λ2 + iε

for some arbitrary, positive number λ. Consequently, we have

Σ̂(p, k) = εe2µ2ε

∫
dDq

(2π)Di

{
qµqνQ̂µν(k)

(q2 − λ2 + iε)3
− Q̂α

α(k)

(q2 − λ2 + iε)2

}
. (5.110)

We Wick-rotate this integral, and then combine the two terms over a sin-

gle denominator. Applying the dimensional regularisation procedure [31], we

obtain

Σ̂(p, k) = − 3

64π2
e2Q̂α

α(k). (5.111)

Hence, the contribution to the effective Lagrangian is

Leff = −3e2
~

64π2
Qα

α(x) :ϕ†ϕ :, (5.112)

where we have inserted a factor of ~ by dimensional analysis. Thus, the con-

tribution of the extra mass-like term in Eq. (5.105) to the effective Lagrangian
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vanishes in the limit ~ → 0.

Having shown that the additional term is negligible at one-loop to first

order in ~, we may change the electromagnetic Lagrangian from LEM to Lfree,

which leads to the mode expansion given above, and we therefore need only

incorporate the factor Ω(4−D)/2 in this mode expansion in order to adapt the

calculations in Sec. 5.5.2.2 to this theory. Thus, in Eq. (5.77) the integrand

is multiplied by Ω(4−D)/2(t)Ω(4−D)/2(t′), and in Eq. (5.71) the integrand is

multiplied by Ω4−D(t); these give us

Fa(p) =
ie2

4~

∫
d3q

2K(2π)3

∫
dtdt′ Ω(4−D)/2(t)Ω(4−D)/2(t′)

[
θ(t − t′)

(
φ∗

p(t)φp(t′)
←→D1(t, t

′,p,q)φq(t)φ
∗
q(t

′)
)

e−iK(t−t′)/~

+θ(t′ − t)
(
φ∗

p(t)φp(t′)
←→D1(t, t

′,p,q)φq(t
′)φ∗

q(t)
)

eiK(t−t′)/~

]
, (5.113)

F b(p) =
e2

~

∫
dt
|ϕp(t)|2
2σp(t)

Ω4−D(t)

∫
d3q

(2π)3

3

2K
. (5.114)

In the earlier section, when considering the equation for Fa(p), we subse-

quently undertook a change of variables to t̄ ≡ (t + t′)/2 and η ≡ (t − t′)/~.

Applying the same change of variables here turns the additional multiplicative

factor into

Ω(4−D)/2(t)Ω(4−D)/2(t′) = Ω4−D(t̄) + O(ε2
~

2η2), (5.115)

and since we only have poles of order ε−1 at one loop, the latter term does

not contribute. Thus in fact the integrands of both Fa(p) and F b(p) are

multiplied by Ω4−D(t) (where we have redefined t̄ = t in Fa(p)). Taking the

real part of the sum of these terms, we find that

Re
[
Fa(p) + F b(p)

]
= −~

∫
dt

σp(t)
∆Mc

2(t) + O(~2). (5.116)

We define ∆Mc
2(t) in a similar way to the definition of ∆M2(t) in Sec. 5.2.2:

we use Eq. (5.67) and replace m2 with Mc
2(t). Note that we must also insert
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the additional factor of Ω4−D we have just discussed. We combine it with the

µ4−D so that this mass renormalisation scale becomes (µΩ)4−D. Then we may

use an analogy with Eq. (5.62) to conclude that

∆Mc
2(t) = −3e2Mc

2(t)

16π2~

(
1

ε
− γ +

7

3
− log

Mc
2(t)

4π2(µΩ)2

)
. (5.117)

Since Mc
2(t) = m2Ω2 + ~

2(ξ − 1
6
)Ω2R and we are intending to take the limit

~ → 0, to order ~
0 the above equation may be simplified to give

∆Mc
2(t) = − 3e2

16π2~
m2Ω2

(
1

ε
− γ +

7

3
− log

m2

4π2µ2

)
. (5.118)

Thus, in the limit ~ → 0, ∆Mc
2(t) = (δm2)Ω2. As we discussed previ-

ously, δM2(t) = (δm2)M2(t)/m2 for any mass term, and so here, δMc
2(t) =

(δm2)Ω2 in the limit ~ → 0. Hence, the correction to the time-dependent mass

∆Mc
2(t) − δMc

2(t), and the corresponding contribution to the position shift

δloopx
i in Eq. (5.17), vanish in the limit ~ → 0.

In conclusion, the equivalence we saw at tree level, between the flat-space

theory with a varying mass M2(t) = m2Ω2(t) and the corresponding confor-

mal theory with a constant mass, breaks down at the one-loop level. This

breakdown in equivalence is a manifestation of the conformal anomaly [35],

which was first discussed by Capper and Duff [36] as an anomaly regard-

ing the trace of the renormalised stress-energy tensor of the electromagnetic

field. As the field is conformally invariant, it was expected that this fact alone

should guarantee the invariance of the trace of the dimensionally regularised,

electromagnetic stress-energy tensor under conformal transformations. This

does not occur. Hence, Fulling and Davies describe the conformal anomaly

as a “loss in the renormalized quantum theory of the invariance expected on

formal grounds” [37]. Likewise here, we find that the renormalised quantum

theory loses an invariance which we would expect on the same, formal grounds.



Chapter 6

Time-dependent metric

Summary. In this chapter, we shall investigate the theory of a minimally-

coupled scalar charged particle on a spacetime with a metric which depends

only on time. We shall firstly calculate the expected position of the particle at

tree level, and argue that a discrepancy between the tree level calculation and

the classical calculation implies that the forward scattering terms will make

a contribution at order ~
0 which covers the difference. We shall then show

that up to the one-loop level, the quantum vacuum current exactly cancels

the classical vacuum current and hence Maxwell’s equations are valid without

corrections.

6.1 Scalar QED on a curved spacetime

A complex scalar field propagating on a curved spacetime, subject to a back-

ground field V µ and coupled to the electromagnetic field, is governed by the

Lagrangian given in Eq. (5.6) which we modify below by supplying the gauge-

92
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fixing term −1
2
(∇µA

µ)2, so that we have

L =
√−g

(
−1

4
gµαgνβFµνFαβ + gµν

[(
Dµ +

ie

~
Aµ

)
φ

]† [(
Dν +

ie

~
Aν

)
φ

]

−
[(m

~

)2

− ξR

]
φ†φ − 1

2
(∇µA

µ)2

)
,

where Dµφ = ∂µφ+iVµ(t)φ/~. We shall be using the minimally-coupled theory,

and hence set ξ = 0.

As conditions on the background field, we shall specify that it varies with

time and only between t = −T and t = 0. As previously, we use a gauge

freedom to set V 0(t) = 0 for all t. We do not suppose that V µ(−T − δ) and

V µ(δ) are equal for positive δ.

For the metric, we shall require that the metric for our spacetime is time-

dependent, gµν(t), and further, we shall require gµν(t) = ηµν for t < −T and

t > 0. Hence, the region of spacetime which is curved is bounded by space-

like hypersurfaces at constant time. We choose a foliation of this spacetime

in which g0i = gi0 = 0. In principle, we could also choose g00 = 1, but as

we expect the tree-level result to be conformally invariant, it is convenient to

allow g00 to vary from this. We shall define Ω2(t) ≡ g00(t). Hence, we write

the metric as

(gµν) =


Ω−2 0T

0 −gij


 ; (6.1)

the reader will note that we have chosen the sign of the spatial part of the

metric so that its determinant is positive, and that we are using Ω2 for g00,

rather than the conformal factor connecting gµν with ηµν , as in Ch. 5.

This metric is not physical, in the sense that it is highly unlikely that a

metric of this form can be found which satisfies Einstein’s equations. However,

it serves as a useful testing ground to see whether the classical and quantum

results do indeed match on metrics which are not flat. Moreover, as Martin
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showed [25], the flat space-time results match for both time-dependent and

space-dependent potentials: we have shown in Ch. 4 that the way the potential

varies makes a difference at first order in ~. There may then be an analogy

with the case we consider here, so that if it is possible to use an (unphysical)

time-dependent metric to simulate a (physical) space-dependent metric, then

our result may extend to such ‘simulable’ metrics too.

We shall proceed to quantise the scalar and vector fields. In order to

consider the mode expansion, with the associated creation and annihilation

operators, we must select an appropriate vacuum state as a reference. Since

the spacetime is flat except in the intermediate region, there exist well-defined

vacua in each of the flat regions. However, the intervening time-dependence

of the metric means that we cannot suppose that the two vacua are identical.

We therefore shall select the vacuum state in the region t > 0 as the one which

we shall use to define our annihilation and creation operators.

Having made this selection, we then quantise the field φ(x) by imposing

the flat-space commutation relations, Eq. (2.40),

[φ(t,x), πφ(t,x
′)] = iδ3(x − x′), (6.2)

in the region t > 0. Then the standard commutation relations for the creation

and annihilation operators are obtained in the usual manner in this region.

Since the fields satisfy the equations of motion everywhere, the commutation

relations are preserved in the curved region of spacetime and also the flat

region with t < −T . Hence, we may expand the field φ as

φ(x) ≡ ~

∫
d3p

2p0(2π~)3

[
A(p)Φp(x) + B†(p)Φ

∗

p(x)
]
, (6.3)

where p0 =
√
‖p‖2 + m2 and the non-zero commutation relations are

[
A(p), A†(p′)

]
=

[
B(p), B†(p′)

]
= 2p0(2π~)3δ3(p − p′). (6.4)
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We carry out a similar procedure for the vector field Aµ(x), imposing the

equal-time commutation relations in the region t > 0 and propagating them

backwards using the fundamental solutions to the equations of motion. How-

ever, whereas the scalar field appeared formally identical in its expansion to

the flat spacetime case, this vector field does exhibit a degree of difference.

We impose a tetrad-like construction on the mode functions, so that the field

operators are indexed by frame indices, (a, b, . . .), rather than the spacetime

indices, (µ, ν, . . .). Then

Aµ(x) ≡
∫

d3k

2k(2π)3

[
εa

µ(k, x)aa(k) + εa
µ(k, x)a†

a
(k)

]
, (6.5)

where k = ‖k‖ and εa

µ(k, x) = δa

µ for t > 0. The equation of motion for the

free vector field in curved spacetime is

¤Aµ − Rµ
νA

ν = 0. (6.6)

Since the metric is dependent on time only, the field three-momentum is con-

served. Hence, we may write

εa

µ(k, x) = εa

µ(k, t)eik·x. (6.7)

The non-zero commutation relations are then

[
aa(k), a†

a′
(k′)

]
= −2~k(2π)3ηaa′δ

3(k − k′), (6.8)

which correspond to the flat spacetime commutation relations.

The equation of motion which governs the modes of the scalar field may

be derived from the non-interacting Lagrangian, which is to say, the full La-

grangian with the interaction Lagrangian,

LI = −ie

~

√−ggµνAµ

(
φ†←→Dνφ

)
, (6.9)



CHAPTER 6. TIME-DEPENDENT METRIC 96

subtracted from it, where we have defined
←→
Dν ≡ −→

Dν−
←−
Dν

†. The Euler-Lagrange

equation derived from the non-interacting Lagrangian is then

1√−g
Dα

(√−ggαβDβΦp(x)
)

+
(m

~

)2

Φp(x) = 0. (6.10)

On a general curved spacetime, this equation cannot be solved in closed

form. Since we have specified that the metric only varies from the flat metric

in a bounded interval of time, the mode solutions in the flat-spacetime re-

gions are the familiar, plane-wave, constant momentum modes, although the

intervening variation means that an initial state with a given four-momentum

may not evolve into a final state with that same four-momentum. As with

the vector field, the scalar field has a conserved three-momentum. Therefore,

we may suppose that the mode solutions are separable in the four spacetime

coordinates, with the spatial parts of the mode solutions forming the usual

plane-wave solutions. Thus each such mode solution may be written

Φp(x) =
√

p0φp(t)e
i
~
p·x, (6.11)

where p0
2 = ‖p‖2+m2. It is important to note that the constant momentum is

the covariant vector pi, not the contravariant vector. The equation of motion

for φp(t) is then

~
2Ω2∂0∂0φp(t) + ~

2Ω2
(
∂0 log

√−gΩ(t)2
)
∂0φp(t) + Σ(t)φp(t) = 0, (6.12)

where Σ(t) ≡ σp
2(t) = gij(pi − Vi)(pj − Vj) + m2. Thus, p0 = σp(0).

The anti-particle mode is treated similarly, with

Φp(x) =
√

p0 φp(t)e
i
~
p·x. (6.13)

Then the equation for φp(t) is like the one for φp(t), and results in the relation

φp(t) = φ−p(t). (6.14)
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Therefore, we may consider the particle mode, and use the above relation

to transform it into the anti-particle mode. We apply the WKB technique

to this mode, seeking the solutions to order ~
0 and expanding the mode as a

series in powers of ~: we let

φp(t) = exp

(
1

~

∞∑

n=0

~
nsn(t)

)
, (6.15)

and thus produce from the equation of motion,

~

∞∑

n=0

~
ns̈n +

(
∞∑

n=0

~
nṡn

)2

+ ~∂0 log
(√−gΩ2

) ∞∑

n=0

~
nṡn +

Σ

Ω2
= 0. (6.16)

Since all functions are now functions of t only, we have suppressed their

arguments. Considering the order ~
0 term in the above equation, we find

ṡ0 = ±iσp/Ω; we shall choose the negative sign since Φp(x) ∝ e−ip0t/~ in the

future region t → ∞. Hence, s0(t) = −i
∫ t

σp(t′)/Ω(t′)dt′.

The equation at order ~ is

s̈0 + 2ṡ0ṡ1 + ṡ0∂0 log
(√−gΩ2

)
= 0, (6.17)

which gives us

s1 = −1

2
log

(
|ṡ0|

√−gΩ2
)

= log
1√

σp

√−gΩ
. (6.18)

Our solution up to order ~
0 is therefore

φp(t) =
1√

σp

√−gΩ
exp

{
− i

~

∫ t

0

σp(t′)

Ω(t′)
dt′

}
ϕp(t), (6.19)

where ϕp(t) ≡ exp (
∑∞

n=2 ~
n−1sn) contains all the terms of higher order in ~,

and where we have chosen to use initial conditions at t = 0 for the integral.

The reader will note that the equations of motion preserve positive- and

negative-frequency modes, and consequently we do not observe particle cre-

ation at any order in ~.
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6.2 Position shift

Higuchi and Martin [23, 25] expressed the calculation showing equality be-

tween the quantum and classical predictions for the change in position due to

the Lorentz-Dirac force in terms of Green’s functions derived from the elec-

tromagnetic field, set on a flat spacetime. In this section, we show that the

position shift (relative to the expected position in the absence of radiation

reaction) may be separated into two parts, coming from the tree and one-loop

levels. This is largely a review of that earlier work, generalised to the class of

spacetimes we are considering in this chapter.

To find the position shift predicted in the quantum theory, we must define

the initial and final states and compare the positions which they predict. As

in the flat spacetime case, we set the initial state, in the first flat spacetime

region, to be

|i〉 =

∫
d3p√

2p0(2π~)3
f(p)A†(p) |0〉 . (6.20)

Here, the momentum p over which we are integrating is what would be the

final momentum in the absence of the radiation-reaction force. As usual,

the function f is sharply peaked about a given central momentum, and the

condition 〈i|i〉 = 1 implies that

∫
d3p

(2π~)3
|f(p)|2 = 1. (6.21)

The evolution of the state |p〉 up to order e2 is then

|p〉 7→
[
1 +

i

~
F (p)

]
|p〉 +

i

~

∫
d3k

2k(2π)3
ηabAa(p,k)a†

b
(k) |P〉 , (6.22)

where P = p − ~k by momentum conservation. As the evolution operator

is unitary, the final state is normalised as well, so that 〈f |f〉 = 1. We shall

consider the implications of this subsequently.
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To commence, we consider the expectation value for the particle were the

background potential and variation in the metric to be removed. We consider

this expectation value at time t = 0. Then we would expect to find the scalar

particle at

〈
xi

〉
in

=

∫
d3x

√−gxiPi(x), (6.23)

where Pω(x) is the probability density for the excitations of the scalar field

in the state |ω〉. Since there is only one scalar particle in the final state, this

density is equal to the expectation value of the charge density, and so

〈
xi

〉
in

=

∫
d3x

√−gxi 〈i| J0 |i〉 . (6.24)

Substituting our definitions of the initial state and the charge density, we find

〈
xi

〉
in

= i~g00

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

× f ∗(p)
(
(∂0Φp′) Φ∗

p − Φp′

(
∂0Φ

∗
p

))
f(p′). (6.25)

= i~g00

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

× f ∗(p)f(p′)∂0 log

(
Φp′

Φ∗
p

)
Φp′Φ∗

p. (6.26)

Using our approximate solution for φp(t), Eq. (6.19), we find

〈
xi

〉
in

= i~g00

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

× f ∗(p)f(p′)

[
1

2
∂0 log

(
σp

σp′

)
− i

~

σp′ + σp

Ω

]
(6.27)

× 1

Ω2
√−g

√
p0p′0
σpσp′

exp

{
i

~

∫ t

0

σp′(t′) − σp(t′)

Ω(t′)
dt′

}
e−

i
~
(p′−p)·x.

(6.28)
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As in Sec. 4.1, we may discard the logarithm since we are only concerned with

the term of lowest order in ~. It is convenient, having now removed all terms

with time derivatives, to make use of the fact that we are considering the

expectation value at time t = 0, which gives Ω = 1 and σp = p0. In order to

carry through the integral over x, we use xi = −i~∂pi
exp (ip · x/~) and obtain

〈
xi

〉
in

=
1

2

∫
d3x

d3p

(2π~)3

d3p′

(2π~)3

× f ∗(p)f(p′)
p0 + p′0√

p0p′0

i~

2
(∂pi

− ∂p′i
)e

i
~
(p−p′)·x. (6.29)

We integrate by parts to move the momentum derivatives from the exponential

to the remainder of the integrand, and then integrate with respect to x and

obtain a delta function, (2π)3δ3(p − p′). Integrating this delta function over

p′ then gives us

〈
xi

〉
in

=
i~

2

∫
d3p

(2π~)3
f ∗(p)

←→
∂pi

f(p), (6.30)

where we define
←→
∂pi

≡ −→
∂pi

−←−
∂pi

.

We now consider the position expectation value of the particle in the pres-

ence of the variations in the metric and the background field, in order to

compare this with the initial state position. The final expectation value will

be

〈
xi

〉
fin

=

∫
d3x

√−gxi 〈f | J0 |f〉 , (6.31)
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but we note that the state |f〉 may be split into two sectors: a sector with no

electromagnetic excitations, and a sector with one electromagnetic excitation.

Considering first the sector with no photons, we have

〈
xi

〉
fin,0

=

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

〈0|A(p)

[
1 − i

~
F∗(p)

]

× f ∗(p)g00 i

2~

(
{∂0φ, φ∗} − {∂0φ, φ∗}†

) [
1 +

i

~
F (p′)

]
f(p′)A†(p′) |0〉 .

(6.32)

If we replace f(p)
[
1 + i

~
F (p)

]
with F (p), then we may follow the line of

argument above for 〈xi〉in, mutatis mutandis. This leads us to conclude that

〈
xi

〉
fin,0

=
i

2

∫
d3p

(2π~)3

(
f ∗(p)

←→
∂pi

f(p)
)

(~ − 2 ImF (p))

−
∫

d3p

(2π~)3
|f(p)|2 ∂pi

ReF (p), (6.33)

since F (p) is intrinsically of order e2.

We must now consider the position expectation value arising from the one-

photon sector of the final state. This is

〈
xi

〉
fin,1

=

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

d3k

2k(2π)3

d3k′

2k′(2π)3

× 〈0| am(k)A∗
n
(p,k)ηmn

(
− i

~

)
A(P)f ∗(p)g00 i

2~

×
(
{∂0φ, φ∗} − {∂0φ, φ∗}†

)
f(p′)A†(P′)

i

~
ηabAa(p

′,k′)a†
b
(k′) |0〉 ,

(6.34)
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where P = p−~k and likewise for P′. We apply the commutation relation for

the electromagnetic field operators, the effect of which is to produce a factor

of ~, to set k′ = k, and to contract the metrics so that we have ηma. Applying

the commutation relations for the scalar field as well, we thus find

〈
xi

〉
fin,1

= ig00ηaa
′

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

d3k

2k(2π)3

d3k′

2k′(2π)3

×A∗
a
(p,k)f ∗(p)

(
∂0 log

(
ΦP′

Φ∗
P

))
ΦP′Φ∗

Pf(p′)Aa′(p
′,k′). (6.35)

Then we find that, if we define

Ca(p) ≡ f(p)Aa(p,k), (6.36)

we have

〈
xi

〉
fin,1

= ig00

∫
d3k

2k(2π)3

∫
d3x

√−gxi

∫
d3p√

2p0(2π~)3

d3p′

√
2p′0(2π~)3

× ηaa
′

C†
a
(p)Ca′(p

′)

(
∂0 log

(
ΦP′

Φ∗
P

))
ΦP′Φ∗

P. (6.37)

Clearly, this is very similar to previous expressions with the momenta p re-

placed with P. However, the relationship between P and p implies that

ΦP′Φ∗
P|t=0 =

√
P0P ′

0e
− i

~
(P ′

0
−P0)te

i
~
(p′−p)·x. As previously, the xi factor will

generate i
~
(∂pi

− ∂p′i
). Since the factor

√
P0P ′

0/(p0p′0) is symmetric between

p and p′, when we integrate by parts, the term arrived at by applying the

derivative to this factor vanishes as p → p′. Further, we shall subsequently

show that Aa(p,k) is of order ~
0, and we know that ~f ∗

←→
∂pi

f is of order ~
0 as

upon integration it will give us 〈x〉in. Hence, we have

〈
xi

〉
fin,1

= − i

2
ηaa

′

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

(
C†

a
(p)

←→
∂pi

Ca′(p
′)
)

, (6.38)
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which we expand to find

〈
xi

〉
fin,1

= − i

2

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

×
{
− |A(p,k)|2

[
f ∗(p)

←→
∂pi

f(p)
]

+ ηaa
′ |f(p)|2

[
A∗

a
(p,k)

←→
∂pi

Aa′(p,k)
]}

.

(6.39)

We now consider the unitarity condition 〈f |f〉 = 1. Since there is no

cross-term between the zero-photon and one-photon sectors,

〈f |f〉 =

∫
d3p√

p0(2π~)3

d3p′

√
p′0(2π~)3

× 〈0|A(p)

[
1 − i

~
F∗(p)

]
f ∗(p)f(p′)

[
1 +

i

~
F (p)

]
A†(p′) |0〉

+
1

~2

∫
d3p√

p0(2π~)3

d3p′

√
p′0(2π~)3

d3k

2k(2π)3

d3k′

2k′(2π)3

× 〈0| f ∗(p)ηabA∗
a
(p,k)ab(k)A(P)A†(P′)ηmna†

m
(k′)An(p

′,k′)f(p′) |0〉 .

(6.40)

If we apply the commutation relations to these, then we find

1 =

∫
d3p

(2π~)3
|f(p)|2

(
1 +

2

~
ImF (p)

)

− 1

~

∫
d3p

(2π~)3

d3k

2k(2π)3

P0

p0

|f(p)|2 |A(p,k)|2 , (6.41)

where we have dropped the |F (p)|2 term as F (p) is of order e2. Then the

condition 〈i|i〉 = 1 can be applied to the first integral to cancel a portion of

it. Our conditions on f(p) are consistent with taking the limit |f(p)|2 →
(2π~)3δ3(p − p′), where p′ is the central momentum about which f(p) is

peaked, so that we find

∫
d3k

2k(2π)3

P0

p0

|A(p,k)|2 = 2 ImF (p). (6.42)
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Then if we combine 〈xi〉fin,0 + 〈xi〉fin,1, we find

〈
xi

〉
fin

=
i~

2

∫
d3p

(2π~)3

(
f ∗(p)

←→
∂pi

f(p)
) (

1 − 2

~
ImF (p)

)

−
∫

d3p

(2π~)3
|f(p)|2 ∂pi

ReF (p)

+
i

2

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

|A(p,k)|2
[
f ∗(p)

←→
∂pi

f(p)
]

− i

2
ηaa

′

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

|f(p)|2
[
A∗

a
(p,k)

←→
∂pi

Aa′(p,k)
]
,

(6.43)

and can see that our consideration of the normalisation conditions 〈f |f〉 = 1

implies that two of the terms will cancel. Noting that we also have a term of

the form 〈xi〉in, we conclude

〈
xi

〉
fin

=
〈
xi

〉
in
−

∫
d3p

(2π~)3
|f(p)|2 ∂pi

ReF (p)

− i

2
ηaa

′

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

|f(p)|2
[
A∗

a
(p,k)

←→
∂pi

Aa′(p,k)
]
.

(6.44)

Hence, we define the positions shifts

δxi
tree = − i

2
ηaa

′

∫
d3k

2k(2π)3

∫
d3p

(2π~)3

P0

p0

|f(p)|2
[
A∗

a
(p,k)

←→
∂pi

Aa′(p,k)
]
,

(6.45)

δxi
loop = −

∫
d3p

(2π~)3
|f(p)|2 ∂pi

ReF (p), (6.46)

so that

〈
xi

〉
fin

=
〈
xi

〉
in

+ δxi
tree + δxi

loop. (6.47)
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6.3 Tree-level position shift

In Ch. 2, we sketched a derivation of the tree-level position shift due to radi-

ation reaction on a flat spacetime. In this section, we calculate the tree-level

position shift due to radiation reaction for the class of curved spacetimes we are

considering. As in the introductory derivation, our presentation shall follow

the contours of the one found in Martin [25].

In order to analyse the tree-level position shift derived above, we must

consider the emission amplitude Aa(p,k). We may calculate this from the

time-dependent evolution of a state as follows. The evolution of the initial

state into the final state is described, to the order relevant to our purposes

here, by

〈ω|T
{

exp

(
− i

~

∫
d4xHI(x)

)}

connected

|p〉

=

[
1 +

i

~
F (p)

]
〈ω|p〉 +

i

~

∫
d3k

2k(2π)3
ηab 〈ω| Aa(p,k)a†

b
(k) |P〉 , (6.48)

where T denotes the time-ordered product. We shall omit vacuum polarisation

terms, as previously. Hence, we extract the emission amplitude from Eq. (6.22)

by taking the inner product with 〈ω| = 〈p′| am(k′) and integrating over p′ with

an appropriate measure, so that to order e we have

Aa(p,k) = −i

∫
d3p′

2p′0(2π~)3
〈p′| aa(k)T

{
exp

(
− i

~

∫
d4xHI(x)

)}

connected

|p〉 .

(6.49)

We find the interacting Hamiltonian density by deriving the full Hamilto-

nian from the Lagrangian as follows. Since we are interested in the interaction

between the scalar and vector fields we shall exclude all terms which do not

contain the scalar field. Then the Lagrangian for our current purposes becomes

Lscal =
√−g

(
gµν (Dµφ)† (Dνφ) − m2φ†φ

)
, (6.50)
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where Dµφ = Dµφ + ieAµφ/~. The Hamiltonian H which arises from a La-

grangian L(φj, φ̇j) is defined by the equation

H ≡
∑

i

φ̇iπφi
− L, (6.51)

where φ̇i = ∂0φi and πφi
= ∂L/∂φ̇i. In our case, these conjugate field momenta

are

πφ =
√−gg00 (D0φ)† , (6.52)

πφ† =
√−gg00 (D0φ) , (6.53)

and hence we derive the Hamiltonian

H(x) = H0 + HI (6.54)

where

H0 =
1√−g

g00πφπφ† +
i

~
V0

(
φ†πφ† − φπφ

)

−√−ggij (Diφ)† (Djφ) +
√−gm2φ†φ, (6.55)

HI =
ie

~
A0

(
φ†πφ† − φπφ

)
− ie

~

√−ggijAi

[
φ†←→Djφ

]
− e2

~2

√−ggijAiAjφ
†φ.

(6.56)

The first line of the above we define to be the free Hamiltonian, H0(x), and

the second line, the interacting Hamiltonian, HI(x). Then the Hamilton’s

equations we derive from H0 =
∫

d3xH0 are

φ̇ =
δH0

δπφ

=
1√−g

g00πφ† − i

~
V0φ, (6.57)

π̇φ† = −δH0

δφ†
= − i

~
V0πφ† − i

~

√−ggijVi (Djφ) −√−gm2φ, (6.58)
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and their conjugates. These equations imply that

πφ† =
√−gg00 (D0φ) (6.59)

and the conjugate, which allows us to write the interacting Hamiltonian as

HI(x) =
√−g

(
ie

~
gµνAµ

[
φ†←→Dνφ

]
− e2

~2
gijAiAjφ

†φ

)
. (6.60)

Returning to Eq. (6.49), we note that we shall be working up to order e2,

which implies that we are only interested in the terms from the exponential

with up to two factors of the vector field. However, the additional field operator

applied to the exponential eliminates any even multiple of the vector field, so

that the only term remaining is

Aa(p,k) = − ie

~2

∫
d3p′

2p′0(2π~)3
〈p′| aa(k)

∫
d4x

√−ggµνAµ :
[
φ†←→Dνφ

]
: |p〉 ,

(6.61)

where we have normal-ordered the scalar fields from the Hamiltonian density

to remove the vacuum polarisation diagrams. It is easy to see that the scalar

and vector field commutation relations then give us

Aa(p,k) = −ie~

∫
d3p′

2p′0(2π~)3

∫
d4x

√−ggµνηaa′εa′

µ (k, x)

×
[
Dν log Φp − D†

ν log Φ∗
p′

]
Φ∗

p′(x)Φp(x). (6.62)

We split the summation over ν into spatial and temporal components and

apply Eq. (6.19) to the derivatives of the logarithms, taking the term of lowest

order in ~. We therefore find

Aa(p,k) = e

∫
d3p′

2p′0(2π~)3

∫
d4x

√−gηabεb
µ(k, x)

×
[
−gµ0σp(t) + σp′(t)

Ω(t)
+ gµi(pi + p′i − 2Vi(t))

]
Φ∗

p′(x)Φp(x). (6.63)
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If we consider the momentum of a classical particle in this spacetime and

subject to the background field V µ,

gµν(pµ − Vµ)(pν − Vν) = m2, (6.64)

then we can see that σp = Ωp0, and hence

mg00
dt

dτ
= p0 =

σp

Ω
, (6.65)

mgij
dxj

dτ
= pi − Vi. (6.66)

If we denote the four-velocity by uµ, then we have

muµ = σpΩ
dxµ

dt
. (6.67)

Hence, the terms in the square brackets from the equation for Aa(p,k) above

may be replaced to obtain

Aa(p,k) = −em

∫
d3p′

2p′0(2π~)3

∫
d4x

√−gηaa′εa′

µ (k, x)
(

uµ|p + uµ|p′

)
Φ∗

p′(x)Φp(x),

(6.68)

where ‘|p’ denotes that the quantity is taken at the momentum p.

At this point, we separate the electromagnetic and scalar field modes into

spatial and temporal factors, using Eqs. (6.7) and (6.11). Thus we have

Aa(p,k) = −em

∫
d3p′

2p′0(2π~)3

∫
d4x

√−gηaa′εa′

µ (k, t)
(

uµ|p + uµ|p′

)

× φ∗
p′(t)φp(t)e

i
~
(p−p′−~k)·x. (6.69)

We integrate this with respect to x and so obtain a delta function, (2π~)3δ3(p′−
P), where P = p − ~k. Integrating over p′ as well, we find

Aa(p,k) = − em

2P0

∫
dt
√−gηaa′εa′

µ (k, t)
(

uµ|p + uµ|P
)

φ∗
P(t)φp(t). (6.70)
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Since we are considering terms of lowest order in ~, the uµ terms may be taken

to be 2uµ|p, and in the scalar field time-dependent modes, we have

φ∗
P(t)φp(t) =

1√−gΩ

√
p0P0

σpσP

exp

{
− i

~

∫ t

0

σp(t′) − σP(t′)

Ω(t′)
dt′

}
. (6.71)

Outside the exponential, we may take σP ≈ σp, and in the exponential factor,

we treat σp−~k(t
′) as a power series in ~ in order to write

σp(t′) − σp−~k(t
′) ≈ −~

d

d~
σp−~k(t

′)

∣∣∣∣
~=0

, (6.72)

which gives us σp(t′)− σp−~k(t
′) = ~Ωk · ẋ. The dot represents differentiation

with respect to the co-ordinate time, t. Hence,

Aa(p,k) = −e

√
p0

P0

∫
dtηabεb

µ(k, x(t))
dxµ

dt

∣∣∣∣
p

. (6.73)

Since δxi
tree, Eq. (6.45), contains factors which are squares in the emission

amplitude as well as a factor P0/p0, we may drop the prefactor
√

p0/P0 from

the expression for Aa above and the P0/p0 from δxi
tree. The reader will also

note that P0/p0 ≈ 1 in any case.

We may construct the current formed by a charged scalar particle with

charge e and momentum p,

√−gjµ(p, x) = e
dxµ

dt

∣∣∣∣
p

δ3(x − Xp(t))χτ (t), (6.74)

where χτ (t) is, as previously, a cut-off function which is 1 while the metric

and the background field are varying and which decreases smoothly so that

χτ (t) = 0 for t ≤ −T − τ and t ≥ τ . We substitute this into our expression

for Aa(p,k) above, to derive an expression for Aa(p,k) which includes this

classical current,

Aa(p,k) = −
∫

d4x
√−gηabεb

µ(k, x)jµ(p, x). (6.75)
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Let us consider the classical field which is generated by the classical current

defined above, and show that this field arises in connection with δxi
tree. A

current jµ(x) generates an electromagnetic field propagated by the retarded

electromagnetic Green’s function:

A+
µ (x) =

∫
d4x′

√
−g′G+

µν′(x, x′)jν′

(x′). (6.76)

We may find the retarded Green’s function from the quantised electromagnetic

field as

G+
µµ′(x, x′) =

i

~
θ(x0 − x0′) 〈0| [Aµ(x), Aµ′(x′)] |0〉 (6.77)

= iθ(x0 − x0′)ηaa′

×
∫

d3k

2k0(2π)3

[
εa

µ(k, x)εa′

µ′(k, x′) − εa
µ(k, x)εa

′

µ′(k, x′)
]
. (6.78)

Together with the definition of the classical current, these imply that for t ≥ τ

we may write the classical retarded field in terms of the quantum emission

amplitude,

A+
µ (t,x) = i

∫
d3k

2k(2π)3

(
εa

µ(k, x)A∗
a
(p,k) − εa

µ(k, x)Aa(p,k)
)

. (6.79)

If we define the positive- and negative-frequency parts of the field as

A(+)
µ (t,x) =−i

∫
d3k

2k(2π)3
Aa(p,k)εa

µ(k, x), (6.80)

A(−)
µ (t,x) = i

∫
d3k

2k(2π)3
A∗

a
(p,k)εa

µ(k, x), (6.81)

then we may write

A∗
a
(p,k) =−2ik

∫
d3xεµ

a
(k, x)A(−)

µ (t,x) (6.82)

Aa(p,k) = 2ik

∫
d3xεµ

a (k, x)A(+)
µ (t,x). (6.83)
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Substituting our expressions for Aa into Eq. (6.45), we find

δxi
tree = − i

2
ηaa

′

∫
d3k

2k(2π)3

d3p

(2π~)3
|f(p)|2

(
−2ik

∫
d3x′εµ′

a
(k, x′)A

(−)
µ′ (x′)

)←→
∂pi

(
2ik

∫
d3x′′εµ′′

a′
(k, x′′)A

(+)
µ′′ (x′′)

)
(6.84)

where x′ = (t,x′) and x′′ = (t,x′′) and as the reader will recall, t ≥ τ so that

the underlying spacetime metric is flat and the background field is zero. Here,

then, the vector modes εa

µ(k, x) = δa

µe
−ik·x and so

−2ik = −2i ‖k‖ = εa

µ(k, x)
←→
∂t εa

µ(k, x). (6.85)

The integral over k will generate a delta function, (2π)3δ3(x′ − x′′), and inte-

grating over either of these will give us

δxi
tree =

1

2

∫
d3p

(2π~)3
|f(p)|2

∫
d3xgµν

[
A(−)

µ (x)
←→
∂t

←→
∂pi

A(+)
ν (x)

]
. (6.86)

The function f(p) is sharply peaked about the particle’s initial momentum

and is normalised so that the momentum integral is one; hence, provided we

understand the momentum of the particle generating the classical field to be

this momentum about which f(p) is peaked, we may write

δxi
tree =

1

2

∫
d3xgµν

[
A(−)

µ (x)
←→
∂t

←→
∂pi

A(+)
ν (x)

]
. (6.87)

If we consider a similar expression to the one above, but with A
(+)
µ (x) (or

the conjugate, A
(−)
µ (x)) repeated, then within it we find a factor of the form

∫
d3xεa

µ(k, x)
←→
∂t εa

′

ν (k′, x) = 0. (6.88)

Consequently, if we consider Aret
µ (x) = A

(+)
µ (x) + A

(−)
µ (x), we find

δxi
tree =

1

4

∫
d3xgµνAret

µ (x)
←→
∂t

←→
∂pi

Aret
ν (x), (6.89)
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and we may use the symmetry of the metric tensor to conclude that

δxi
tree = −1

2

∫
d3xgµν

(
∂pi

Aret
µ (x)

)←→
∂t Aret

ν (x). (6.90)

We simplify this expression by using the Kirchhoff representation for half

the retarded-minus-advanced electromagnetic potential,

Gr−a
µ′µ′′(x

′, x′′) = −1

2

∫
dΣν

[
G+

µ′µ(x′, x)∇νG
µ+
µ′′(x, x′′) − Gµ+

µ′′(x, x′′)∇νG
+
µ′µ(x′, x)

]
.

(6.91)

We take x0 > max
(
x0′, x0′′

)
, since t ≥ τ and therefore the metric is flat. In

consequence, we find

δxi
tree =

∫
d4x′d4x′′

√
−g(x′)

√
−g(x′′)Gr−a

µ′µ′′(x
′, x′′)

(
∂pi

jµ′

(x′)
)

jµ′′

(x′′)

(6.92)

=

∫
d4x

√
−g(x) (∂pi

jµ(x)) Ar−a
µ (x), (6.93)

where Ar−a
µ (x) is defined analogously to A+

µ (x), with the retarded Green’s

function replaced with the half-retarded-minus-advanced one.

If we consider the definition of the classical current, jµ(x), we treat the

position function X(t) as a function of p, with X0(t) = t, and so obtain

√
−g(x)∂pi

jµ = −e lim
∆pi→0

1

∆pi

[
dXµ

dt
δ3(x − X) −

(
dXµ

dt
+

d∆Xµ

dt

)
δ3(x − X − ∆X)

]
.

(6.94)

Hence, if we take the inner product with the half-retarded-minus-advanced

electromagnetic potential, we find

∫
d3x

√
−g(x) (∂pi

jµ(x)) Ar−a
µ (x)

= −e lim
∆pi→0

1

∆pi

[
dXµ

dt
Ar−a

µ (X) −
(

dXµ

dt
+

d∆Xµ

dt

)
Ar−a

µ (X + ∆X)

]
.

(6.95)
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We may thus approximate Ar−a
µ (X +∆X) ≈ Ar−a

µ (X)+∆Xα∇αAr−a
µ (X), and

discarding the term which arises at second order in ∆pi, we find

∫
d3x

√
−g(x) (∂pi

jµ(x)) Ar−a
µ (x)

= e lim
∆pi→0

1

∆pi

[
d∆Xµ

dt
Ar−a

µ (X) +
dXµ

dt
∆Xα∇αAr−a

µ (X)

]
. (6.96)

The position shift is the integral over time of the quantity above. If we inte-

grate the first term by parts, we find that we have

δxi
tree = e

∫
dt lim

∆pi→0

1

∆pi

[
−∆Xµ dXα

dt
∇αAr−a

µ (X) +
dXµ

dt
∆Xα∇αAr−a

µ (X)

]
,

(6.97)

which, upon an appropriate re-arrangement of the indices, yields

δxi
tree = −

∫
dt lim

∆pi→0

1

∆pi

dXµ

dt
∆XαF r−a

αµ (6.98)

= −
∫

dt

(
∂Xj

∂pi

)

t

f r−a
j ; (6.99)

we have changed the spacetime indices to spatial indices since the partial

derivative is taken at a constant time. The covector f r−a
j is a force derived

from the half-retarded-minus-advanced electromagnetic field, fj = ẋµF r−a
jµ .

Finally in this section, we shall proceed to justify the claim that this quantum

position shift matches the classical position shift coming from the same force,

and argue that there remains a part to be found from the one-loop contribution

to the position shift.

If we consider a classical scalar particle of charge e and mass m on a curved

spacetime and subject to a background potential V µ, both of which we allow

to vary with x, then the Hamiltonian for this theory is

H =
√

gij(pi − Vi)(pj − Vj) + m2 + V0. (6.100)

Incorporating an external force, fi, the equations of motion we derive from
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this Hamiltonian are

ẋi =
∂H

∂pi
, (6.101)

ṗi = −∂H

∂xi
+ fi. (6.102)

Then we let (xi
0(t), p0,k(t)) be the solution to the coupled differential equations

above subject to fi = 0 and the conditions (xi
0(0), p0,k(0)) = (0, pk). We call

such a solution an homogeneous solution. This solution is the trajectory of the

particle in the absence of the external force which satisfies the final conditions

on the particle.

We may write perturbations on this solution which continue to satisfy the

equations of motion with fi = 0 as (xi
0 + ∆xi, p0,k + ∆pk). Expanding the

Hamiltonian to second order in these perturbations, we find

H(xi + ∆xi, pj + ∆pj) = H(xi, pj) +
∂H

∂xi
∆xi +

∂H

∂pi

∆pi

+
1

2

[
∂2H

∂xi∂xj
∆xi∆xj + 2

∂2H

∂xi∂pi

∆xi∆pj +
∂2H

∂pi∂pj

∆pi∆pj

]
, (6.103)

which implies that the perturbations are governed by the equations

d

dt
∆xi =

(
∂2H

∂xj∂pi

)

(xi
0
,p0,k)

∆xj +

(
∂2H

∂pj∂pi

)

(xi
0
,p0,k)

∆pj, (6.104)

d

dt
∆pi = −

(
∂2H

∂xj∂xi

)

(xi
0
,p0,k)

∆xj −
(

∂2H

∂pj∂xi

)

(xi
0
,p0,k)

∆pj. (6.105)

If (∆xi, ∆pj) and (∆X i, ∆Pj) are solutions, then it is readily verified, using

the above equations, that

d

dt

(
∆xi∆Pi − ∆X i∆pi

)
= 0. (6.106)

Let us define a set of homogeneous perturbations (∆xi(j)(t; s), ∆p
(l)
k (t; s))

with j = 1, 2, 3 and s ∈ (−∞,∞) by the conditions

∆xi(j)(s; s) = 0, (6.107)

∆p
(j)
i (s; s) = δj

i . (6.108)
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The homogeneous solution (xi
0 + ∆xi(j)(t; s), p0,k + ∆p

(l)
k (t; s)) is then the so-

lution for the trajectory which crosses xi
0(t) at t = s, but has a momentum

which differs by δj
i at that point. It is simple to see, from the equations of

motion on perturbations given above, that if we define

δxi =

∫ t

−∞

dsfj(s)∆xi(j)(t; s), (6.109)

δpi =

∫ t

−∞

dsfj(s)∆p
(j)
i (t; s), (6.110)

then the pair (xi
0 + δxi, p0,k + δpk) solves the equations of motion with fi 6= 0;

this solution we call the inhomogeneous solution. Note that (δxi, δpk) = (0, 0)

for t < −T .

The classical position shift may therefore be written

δxi
C =

∫ 0

−∞

dsfj(s)∆xi(j)(0; s). (6.111)

The constancy of the symplectic product between perturbations implies that if

we choose the two perturbations
(
∆xk(i)(t; s), ∆p

(i)
l (t; s)

)
and

(
∆xm(j)(t; u), ∆p

(j)
n (t; u)

)
,

then the symplectic products at t = s and t = u are equal. That is to say,

∆xa(i)(s; s)∆p(j)
a (s; u) − ∆xa(j)(s; u)∆p(i)

a (s; s)

= ∆xa(i)(u; s)∆p(j)
a (u; u) − ∆xa(j)(u; u)∆p(i)

a (u; s), (6.112)

which implies

−∆xi(j)(s; u) = ∆xj(i)(u; s). (6.113)

Hence, we may use this identity to re-write

δxi
C = −

∫ 0

−∞

dtfj(t)∆xj(k)(t; 0). (6.114)

From the definition of the homogeneous perturbations above, we see that at

time t = 0, a small change in the momentum, ∆p
(l)
k , induces a small change in
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the position, ∆xi
(j): that is to say, that

(
∂xi

∂pj

)

t

= ∆xi(j)(t; 0). (6.115)

Hence, we find

δxi
C = −

∫ 0

∞

dtfj(t)

(
∂xj

∂pi

)

t

, (6.116)

and conclude that if the external force fi is identified with the force arising

from the half-retarded-minus-advanced field, then this classical position shift

and the quantum position shift at tree level are equal.

This is not, however, the entirety of the field, nor is the force we described

the entirety of the Lorentz-Dirac force. In a curved spacetime, the radiative

Green’s functions do not equal half the retarded-minus-advanced electromag-

netic Green’s functions. (The reader is encouraged to consult Poisson’s review

[13] for fuller details of the considerations which follow here. The original

work on which our argument here chiefly depends was published by Detweiler

and Whiting [38].) In order to describe the radiative Green’s functions and

their causal structure, it is first necessary to reprise briefly the Hadamard con-

struction of the retarded and advanced Green’s functions, which gives us the

following structure:

G±
µµ′(x, x′) = Uµµ′(x, x′)δ±(σ(x, x′)) + Vµµ′(x, x′)θ±(σ(x, x′)). (6.117)

The function σ(x, x′) is Synge’s world function, which is half the squared

geodesic separation between x and x′; the function δ± is the delta function

selecting x on the forward (+) or backward (−) light-cone from x′; and θ± is

likewise the theta function selecting x in the chronological future (+) or past

(−) of x′. We then define the radiative Green’s functions as follows, and apply
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the Hadamard construction to obtain

GR
µµ′(x, x′) =

1

2

(
G+

µµ′(x, x′) − G−
µµ′(x, x′) + Vµµ′(x, x′)

)
(6.118)

=
1

2
Uµµ′(x, x′) [δ+(σ) − δ−(σ)] + Vµµ′(x, x′)

[
θ+(σ) +

1

2
θ(−σ)

]
.

(6.119)

From this we may read the causal structure of the Green’s functions: there

are parts which lie along the forward and backward light-cones as in the flat

spacetime case, but two additional parts arise on a curved spacetime, one when

x is in the causal future of x′ (which is called the tail part) and the other when

x and x′ are space-like separated. Since we define the radiative electromagnetic

potential, from which we derive the classical Lorentz-Dirac force, by

AR
µ (x) =

∫
d4x′GR

µµ′(x, x′)jµ′

(x′), (6.120)

we consequently conclude that we may write the classical radiation reaction

four-force, schematically, as

maµ =
e

2

(
F lc,+

µν − F lc,−
µν

)
uν + eF tail,+

µν uν +
e

2
F sp.

µν uν , (6.121)

and that therefore the classical position shift, which is linear in the reaction

force, will exhibit a similar structure.

The position shift we have thus far derived may be written, using the same

schema, as

δxtree =
1

2

(
δxlc,+ − δxlc,−

)
+

1

2

(
δxtail,+ − δxtail,−

)
. (6.122)

We do not expect a priori that the one-loop contribution to the position shift,

δxloop will equal zero. Indeed, we may conclude from the foregoing considera-

tions that if the classical and quantum position shift predictions are to match,

it must contribute something which is schematically,

δxloop =
1

2

(
δxtail,+ + δxtail,− + δxsp.

)
; (6.123)
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the quantity δxsp. having been included for completeness, since we expect it

to be zero. Preliminary investigations have indicated that this calculation

will be considerably more complicated and protracted than the flat spacetime

version, and we shall not be carrying out this calculation here. However, we

shall proceed to present the vacuum current calculation and to show that there

is no correction to Maxwell’s equations arising at this order.

6.4 Vacuum current

The reader will recall that the background potential V µ(t) is generated by

a classical current and gives rise to a field Wαβ = 2∇[αVβ]. As in Ch. 5,

the tree-level current Jµ
C may be supplemented with a one-loop level current,

∆Jµ, if the vacuum quantum current, 〈Jµ〉0, is not equal to the renormalised

classical current, (Z3−1)Jµ
C , where Z3 is defined as in Eq. (5.52). We therefore

investigate the possibility that a vacuum current arises at one-loop level in this

theory.

The field equation for this current is

Jµ
C = gµαgνβ∇ν (∇αVβ −∇βVα) . (6.124)

Since V 0(t) = 0, only the spatial components of this current will be non-zero.

We also note that ∂iV
µ = 0, and so we have

J i
C = Ω2

(
gij∇0∂0Vj − gijΓk

0j∂0Vk + gijΓa
0a∂0Vj

)
. (6.125)

We now calculate the quantum expectation value for the vacuum current,

Jµ
Q ≡ 〈Jµ〉. The current operator in curved spacetime is

Jµ = − i

2~
gµν

(
{Dνφ, φ∗} − {Dνφ, φ∗}†

)
, (6.126)
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and so the expectation value of the current relative to the final flat-spacetime

vacuum is

〈Jµ〉 = −i~

2
gµν

∫
d3p

2p0(2π~)3

d3p′

2p′0(2π~)3

× 〈0|
[(

A(p)DνΦp(x) + B†(p)DνΦ
∗

p(x)
) (

A†(p′)Φ∗
p′(x) + B(p′)Φp′(x)

)

+
(
A†(p′)Φ∗

p′(x) + B(p′)Φp′(x)
) (

A(p)DνΦp(x) + B†(p)DνΦ
∗

p(x)
)

−
(
A†(p)(DνΦp(x))† + B(p)(DνΦ

∗

p(x))†
) (

A(p′)Φp′(x) + B†(p′)Φ
∗

p′(x)
)

−
(
A(p′)Φp′(x) + B†(p′)Φ

∗

p′(x)
) (

A†(p)(DνΦp(x))† + B(p)(DνΦ
∗

p(x))†
)]

|0〉 .

(6.127)

From this, only four terms do not annihilate the vacuum, which if we re-label

some of the momenta we may combine thus:

〈Jµ〉 =
i~

2

∫
d3p

2p0(2π~)3

d3p′

2p′0(2π~)3

×〈0|
[
A(p)A†(p′)

(
Φ∗

p′(x)
←→
D µΦp(x)

)
+ B(p)B†(p′)

(
Φp(x)

←→
D µΦ

∗

p′(x)
)]

|0〉 .

(6.128)

The reader will observe that we may exchange the anti-particle mode func-

tions for particle mode functions by using the definitions of the modes and

the identity in Eq. (6.14), so that when we apply the relevant commutation

relations, we find

〈Jµ〉 =
i

~

∫
d3p

2p0(2π~)3

(
φp(t)e−

i
~
p·x←→D µφ∗

p(t)e
i
~
p·x − φp(t)e

i
~
p·x←→D µφ∗

p(t)e−
i
~
p·x

)
.

(6.129)

We therefore see that for µ = 0, the terms in the integrand cancel and we

obtain 〈J0〉 = 0, while for spatial values of µ, the terms reinforce. Thus we

consider the spatial components only, and find

〈
J i

〉
=

∫
d3p

(2π~)3

pi − V i

σp

√−gΩ
|ϕp|2 . (6.130)
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In order to find this vacuum current up to order ~
0, we must, as in Ch. 5,

consider the WKB expansion to third order in ~.

Substituting the solution to order ~
0, Eq. (6.19), back into Eq. (6.16), we

obtain the equation of motion for the terms of higher order in ~,

∞∑

n=2

~
n−1s̈n +

(
∞∑

n=2

~
n−1ṡn

)2

+

(
Ω̇

Ω
− 1

2

Σ̇

Σ
− 2i

~

Σ
1

2

Ω

)
∞∑

n=2

~
n−1ṡn

+


 5

16

(
Σ̇

Σ

)2

− 1

4

Σ̈

Σ
− 1

4

Ω̇

Ω

Σ̇

Σ
− 1

4

(
Ω̇

Ω

)2

− 1

2

Ω̈

Ω
+

3ġ2

16g2
− g̈

4g
− ġΩ̇

2gΩ


 = 0.

(6.131)

To make this simpler to handle, let us define

u =
Σ

1

2

Ω
, (6.132)

v =
5

16

(
Σ̇

Σ

)2

− 1

4

Σ̈

Σ
− 1

4

Ω̇

Ω

Σ̇

Σ
− 1

4

(
Ω̇

Ω

)2

− 1

2

Ω̈

Ω
+

3ġ2

16g2
− g̈

4g
− ġΩ̇

2gΩ
.

(6.133)

Then the equation of motion can be shown easily to simplify to

∞∑

n=2

s̈n +

(
∞∑

n=2

~
n−1ṡn

)2

−
(

∂0 log u +
2iu

~

) ∞∑

n=2

~
n−1ṡn + v = 0. (6.134)

Taking the above equation at order ~
0, we have

ṡ2 =
iv

2u
. (6.135)

At order ~
1, this equation gives us

s̈2 − ∂0 log uṡ2 − 2iuṡ3 = 0. (6.136)

On re-arranging, we find

2iṡ3 =
s̈2

u
− u̇

u
ṡ2 (6.137)
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and hence conclude that

ṡ3 =
1

4
∂0

( v

u2

)
. (6.138)

Expanding out these terms according to our substitutions above, and integrat-

ing, we therefore find

s3 = −Ω2

Σ


 5

64

(
Σ̇

Σ

)2

− 1

16

Σ̈

Σ
− 1

16

Ω̇

Ω

Σ̇

Σ
− 1

16

(
Ω̇

Ω

)2

− 1

8

Ω̈

Ω
+

3ġ2

64g2
− g̈

16g
− ġΩ̇

8gΩ


 .

(6.139)

Since we can easily see that s4 will be imaginary, we conclude that it will not

contribute to |ϕp|2 and so we do not need to calculate this directly. Likewise,

s2 will not not contribute, and so |ϕp|2 = 1 + 2~
2s3.

We may carry out the change of variables p̃ = p − V, which implies that

d3p = d3p̃. We note that in the integral over momentum, terms which are

odd in p̃i will not contribute. Therefore, contributions can only arise from s3,

and specifically from terms in s3 which involve derivatives of Σ. Hence,

〈
J i

〉
=

2Ω

~
√−g

gij

∫
d3p

(2π~)3

p̃j

Σ
3

2

(
5

64

Σ̇2

Σ2
− 1

16

Σ̈

Σ
− 1

16

Ω̇

Ω

Σ̇

Σ

)
. (6.140)

Not every portion of the derivatives of Σ will contribute, though, as some parts

will be even in p̃. The derivatives are

d

dt
Σ = ∇0Σ = 2gij p̃i

˙̃pj, (6.141)

d2

dt2
Σ = ∇0∂0Σ + Γ0

00∂0Σ

= 2gij ˙̃pi
˙̃pj + 2gij p̃i

¨̃pj + ∂0 log Ω2 · gij p̃i
˙̃pj, (6.142)

where the dot refers to the covariant derivative with respect to the time co-

ordinate, not the partial derivative. For the purposes of calculation, we let

p̃0 = 0. Removing terms which are even in p̃ and noting a cancellation between
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the last term in the bracket and a part of the second, we are left with

〈
J i

〉
= − 2Ω

~
√−g

gij

∫
d3p

(2π)3

p̃j

Σ
5

2

[
5

16

gklgmn ˙̃pk
˙̃pmp̃lp̃n

Σ
− 1

8

(
gkl ˙̃pk

˙̃pl + gkl ¨̃pkp̃l

)]
.

(6.143)

We may therefore deduce the following two equations:

˙̃pi = −∂0Vi − Γj
i0p̃j; (6.144)

¨̃pi = −∇0∂0Vi + Γj
0i∂0Vj − ∂0Γ

j
0i · p̃j + Γ0

00Γ
j
0ip̃j + Γj

0iΓ
k
0j p̃k, (6.145)

where ∇0∂0Vi is defined as though ∂0Vi were the 0i component of a covariant,

rank two tensor. Using these, we remove some more terms which are odd in

p̃, and so obtain

〈
J i

〉
= − 2Ω

~
√
|g|

gij

∫
d3p

(2π)3

[
5

16
gklgmn p̃j p̃lp̃ap̃n

Σ
7

2

(Γa
0k∂0Vm + Γa

0m∂0Vk)

−1

8
gkl p̃mp̃j

Σ
5

2

(Γm
0k∂0Vl + Γm

0l∂0Vk) −
1

8
gkl p̃j p̃l

Σ
5

2

(−∇0∂0Vk + Γa
0k∂0Va)

]
.

(6.146)

Now, we shift the integral over pi so that p̃i 7→ pi, with the effect that

Σ 7→ p2 + m2 (understanding that p2 = gijpipj is a function of t through the

variation in the metric). This gives us the following divergent integrals:

Iij =

∫
dD−1p

(2π)D−1

pipj

(p2 + m2)
5

2

; (6.147)

Iijkl =

∫
dD−1p

(2π)D−1

pipjpkpl

(p2 + m2)
7

2

, (6.148)

where we define D− 1 = 3− 2ε. As in the flat spacetime case, we may replace

pipj 7→ 1
D−1

gijp
2 in the first integral [31]. In the second integral, we similarly

replace pipjpkpl 7→ 1
(D−1)(D+1)

(gijgkl + gikgjl + gilgjk)p
4. Hence, extracting the

index structure from each integral, we obtain, respectively,

I2 =

∫
dD−1p

(2π)D−1

p2

(p2 + m2)
5

2

, (6.149)

I4 =

∫
dD−1p

(2π)D−1

p4

(p2 + m2)
7

2

. (6.150)
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In order to apply dimensional regularisation to this integral, we must

change the integration variable so that the space over which the integration

takes place is Euclidean. Therefore, let us define a kind of square root for the

metric: a positive, real, symmetric matrix E which satisfies gij = (E2)ij. Then

we can use this matrix to define a new (Euclidean) momentum, pE ≡ E−1p.

If we consider the integrals above, then we see that we must find p2 and

dD−1p in terms of this new momentum. Taking p2, we see that p2 = gijpipj,

and we replace the metric with its matrix expression, so that p2 = pT (E2)−1p,

understanding p to be a vector. It is simple to see from this point that we may

combine the matrices with the momenta in such a way that we find p2 = pE
2.

Since the matrix E−1 is clearly the Jacobian for the transformation, this gives

us dD−1p = (det E)dD−1pE =
√

det (gij)d
D−1pE, and so the integrals become

I2 =
√

det (gij)

∫
dD−1pE

(2π)D−1

pE
2

(pE
2 + m2)

5

2

; (6.151)

I4 =
√

det (gij)

∫
dD−1pE

(2π)D−1

pE
4

(pE
2 + m2)

7

2

. (6.152)

These integrals are now dimensionally regularisable and give us

I2 =
√

det (gij)
D − 1

12π2

(
4πµ2

m2

) ε
2

Γ
(ε

2

)
; (6.153)

I4 =
√

det (gij)
(D − 1)(D + 1)

60π2

(
4πµ2

m2

) ε
2

Γ
(ε

2

)
(6.154)

=
D + 1

5
I2. (6.155)

The reader will recall that the integrals

Iij =
1

D − 1
gijI2, (6.156)

Iijkl =
1

(D − 1)(D + 1)
(gijgkl + gikgjl + gilgjk)I4. (6.157)
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Clearly, therefore, the factors of D − 1 and D + 1 cancel, and thus we find

Iij = −4(Z3 − 1)gij

√
det (gij); (6.158)

Iijkl = −4

5
(Z3 − 1)(gijgkl + gikgjl + gilgjk)

√
det (gij), (6.159)

where Z3 is defined in Eq. (5.52).

We can simplify the determinants by using
√
|g| = Ω−1

√
det (gij), which

allows us to write 〈J i〉 as

〈
J i

〉
= 2Ω2(Z3 − 1)gij

×
[
1

4
gklgmn(gjlgan + gjagln + gjngla) (Γa

0k∂0Vm + Γa
0m∂0Vk)

−1

2
gklgmj (Γm

0k∂0Vl + Γm
0l∂0Vk) −

1

2
gklgjl (−∇0∂0Vk + Γa

0k∂0Va)

]
. (6.160)

Working through the index contractions, and using the fact that under the

conditions placed on the metric gijΓk
0j = Γi

0jg
jk, we find

〈
J i

〉
= Ω2(Z3 − 1)

[
Γm

0mgij∂0Vj + gij∇0∂0Vj − Γi
0jg

jk∂0Vk

]
. (6.161)

From the above equation and Eq. (6.125), we can see that (Z3−1)J i
C = J i

Q,

and therefore there is no need for a supplementary vacuum current and no

corrections to Maxwell’s equations arise at the one-loop level in this theory.

The reader will note that this result specialises to the conformally flat result

we found in the preceding chapter.



Chapter 7

Conclusions and outlook

Summary. In this chapter we shall summarise the findings presented hereto-

fore, and discuss possible directions in which the work could be extended.

In the preceding chapters, we have extended the study of the radiation

of accelerating charges in quantum field theory in two different directions.

The context for the work has been the classical problem, long known and well-

studied, and its quantum field-theoretic counterpart, which is a continuing field

of research. The work by Higuchi and Martin [20, 21, 22, 23] is the starting-

point for our studies here, as they demonstrated that both scalar and spinor

quantum theories predict the correct, i.e. classical, change in the trajectory

due to the radiation effect at tree level.

As we are taking the semiclassical approximation, it is natural to expect

that the quantum theory should reproduce the classical results to order ~
0.

This is indeed what has been found in previous work, and in Ch. 3 we showed

that the Larmor formula itself may be directly recovered through the quan-

tised, symmetric, stress-energy tensor.

We do not expect that the classical and quantum results will match exactly,

but rather that the quantum-theoretic calculation will match the classical re-
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sult at order ~
0, with the potential for quantum theory to contribute correcting

terms at higher orders in ~. Consequently, in Ch. 4, we investigated the cor-

rections to the Larmor formula in two different cases: a background potential

varying only in time, and a background potential varying only in the z co-

ordinate. The calculation proved sufficiently complicated that we needed to

take a non-relativistic limit, but having done so, we were able to find that the

results differed qualitatively between the two cases. In the time-dependent

case, we found, from Eq. (4.27), that

∆E = − e2
~

6π2mc5

∫
dt dt′

t − t′

[
d3x

dt3
· d2x′

dt′2
− d2x

dt2
· d3x′

dt′3

]
.

In the z-dependent case, we found a result which was larger by a factor c2,

Eq. (4.63):

∆E =
e2

~

12π2mc3

∫
dt dt′

[ ...
z

...
z ′

t − t′ − iε
− 2ẍ⊥ · ẍ′

⊥

(t − t′ − iε)3

] ∫ t′

t

ż−2dT.

Applying these two formulae to a simple example, we were thus able to deduce

that that the first-order quantum correction in this semiclassical approxima-

tion arises only when the relevant energy of the scalar particle is not signifi-

cantly larger than the energy of the emitted photon. In the t-dependent case,

the relevant energy is the mass-energy, mc2, while in the z-dependent case,

the relevant energy is the z-term of the kinetic energy, 1
2
mvz

2.

Another interesting extension of the question of radiation emission by

charged particles is to curved spacetimes. It had been shown by Roberts [27]

that the classical radiation effect is conformally invariant, and consequently, it

was reasonable to begin by investigating the quantum theory in a conformally-

flat spacetime. In Ch. 5, we took the metric to be gµν = Ω2(t)ηµν , and sub-

jected the particle to a time-varying background potential. We showed that we

could turn the theory with this metric into a theory on Minkowski spacetime

at a cost of creating a time-varying mass term, Mc
2(t) = m2Ω2+(ξ− 1

6
)~2Ω2R;
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this caused no great obstacle to recovering the classical result from the quan-

tum field theory. The results we obtained were equivalent to the results we

would obtain from a varying mass term M2(t) = m2Ω2, as the difference be-

tween the two is of order ~
2.

The more interesting phenomenon arose at the one-loop level. Here, we

showed that a general time-dependent mass, M(t), gives rise to correction

terms which affect both Maxwell’s equations for the background potential and

also the mass renormalisation term. This difference, being of order ~
−1, would

result in a measurable effect which was greater than the Abraham-Lorentz-

Dirac force.

When we considered the conformally-flat theory, however, we found that

these non-zero loop corrections vanished. Thus, although we had established

an equivalence at tree level between the conformally-flat theory and the flat

theory with time-dependent mass Mc(t), the same does not hold for the one-

loop calculation. We also noted that this breakdown of equivalence was a

manifestation of the more general and well-known ‘conformal anomaly’.

In Ch. 6, we pressed this one stage further and took a time-varying metric.

By the use of an appropriate foliation, we were able to write this metric in a

simpler form, which was more conducive to the calculations we needed to carry

out. Following a similar line of argument to that produced by Martin [25], we

were able to show that the tree-level position shift does not quite match the

classical prediction.

Specifically, we obtained the position shift stemming from the half-retarded-

minus-advanced electromagnetic field from the tree-level calculation. This

term propagates on and within both light-cones, with an anti-symmetry be-

tween the forward and backward contributions. The classical result, however,

derives from the radiative electromagnetic field, which does not possess the
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same anti-symmetry. The causal structure between the two is thus different,

and we concluded that we would expect the one-loop level position shift to

make a contribution at order ~
0 such that the discrepancy between the tree-

level and classical calculations is bridged.

Looking to the potential for further work along these lines, we note that

this work has focussed on the complex scalar field. While this provides a

useful toy model of the behaviour of a spinor, the spinor theory and the scalar

theory have some significant differences. For example, the scalar quantum

electrodynamic theory contains an additional vertex: the interaction between

two scalar particles and two photons. Also, the spinor theory exhibits a much

richer structure: among other examples, a non-zero (indeed, non-integral) spin.

Therefore, it would be interesting to investigate whether the results presented

here are matched by the spinor quantum electrodynamic calculations.

Considering the results themselves, the ~ correction was found in two cases

which involved variation in only one co-ordinate. Clearly, we would wish to

have results which cover all possible background potentials. It would also be

desirable to extend the calculation so that a fully relativistic result could be

calculated.

The result we found is, in principle, a prediction which could be tested

empirically, although real-world examples would require, as we have already

said, the spinor theory. As we noted in Ch. 4, the hydrogen atom owes its

spectral lines fully to quantum mechanics as classical mechanics cannot repli-

cate this result at all. If we were to investigate the behaviour of an electron

loosely bound to a considerably larger nucleus, which we call a Rydberg atom,

this should provide a scenario in which the semiclassical approximation may

be applied and a quantum correction at order ~ be found to the energy emit-

ted by an electron changing levels. The resulting calculations could then be
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subjected to experimental test.

The work carried out in the time-dependent spacetime also requires com-

pletion. The vacuum current has been found and the tree-level calculation

performed, but mass renormalisation remains to be tackled. We expect that

this will close the gap which currently exists between the tree-level calculation

and the classical prediction.

However, even once completed, this is not an entirely general spacetime.

By restricting our case to a time-dependent metric, we were able to use the

translation invariance to infer conservation of three-momentum, and so to

simplify the problem we faced. It is clearly desirable that the results here be

extended to a fully general metric with a fully general background potential.



Appendix A

Cut-off independence of

integrals in Ch. 4

In this Appendix we show that formal integration by parts used in Ch. 4 to

find the quantum corrections is justified. Take the interval I ≡ [−T, T ] with

T > 0, such that the acceleration ẍµ(t) 6= 0 only if t ∈ I. Then let f(t, t′)

be a smooth function which satisfies the following condition. The derivative

∂tf(t, t′) (resp. ∂t′f(t, t′)) is supported on a subset of I × R (resp. R × I);

this implies that f and its first derivatives are bounded. We also let gi(t),

for i = 1, 2, . . . , n, be smooth functions such that the support of g′′
i (t) is a

subset of I; again, this implies that g′
i(t) are bounded. Finally, we introduce

our cut-off factor, χ(t), which is compactly supported with χ(t) = 1 for t ∈ I.

We use χ(at), 0 < a ≤ 1, as our cut-off factor, and take the limit a → 0 in the

end. Note that this definition guarantees that

lim
a→0

∫ +∞

−∞

(χ′(at))2dt = 0,

which had been necessary to derive the Larmor formula in Ch. 3.
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Then we consider the following integrals:

A
(n)
1 =

∫
dtdt′

f(t, t′)

(t − t′ + iε)n+4

{
n∏

i=1

[gi(t) − gi(t
′)]

}
χ(at)χ(at′), (A.1)

A2 =

∫
dtdt′

∂tf(t, t′)

(t − t′ + iε)n+3

{
n∏

i=1

[gi(t) − gi(t
′)]

}
χ(at)χ(at′), (A.2)

A
(n)
3 = a

∫
dtdt′

f(t, t′)

(t − t′ + iε)n+3

{
n∏

i=1

[gi(t) − gi(t
′)]

}
χ′(at)χ(at′), (A.3)

A4 = a

∫
dtdt′

∂t′f(t, t′)

(t − t′ + iε)n+2

{
n∏

i=1

[gi(t) − gi(t
′)]

}
χ′(at)χ(at′), (A.4)

A5 = a2

∫
dtdt′

f(t, t′)

(t − t′ + iε)n+2

{
n∏

i=1

[gi(t) − gi(t
′)]

}
χ′(at)χ′(at′). (A.5)

Our aim is to demonstrate that integrals of the form of A1 may be written as

a sum of: firstly, integrals with undifferentiated cut-off factors which are con-

vergent without those cut-offs; and secondly, integrals which tend to zero as

a → 0. This implies that we may formally integrate the first category of inte-

grals by parts, discounting the cut-off factors, until the integral is convergent.

Hence, we shall find that our method in previous chapters is justified.

Turning first to A2, the support of ∂tf(t, t′) implies that the t-integral is

over the interval I, so χ(at) = 1. We have already noted that ∂tf(t, t′) is

bounded. Hence, the t-integral is convergent. As g′
i is compactly supported,

it must be that there are constants α±
i , β±

i such that gi(t) = α±
i t + β±

i as

t → ±∞. Thus, ∏n
i=1(gi(t) − gi(t

′))

(t − t′ + iε)n+3
→

∏n
i=1 α±

i

(t − t′ + iε)3
(A.6)

as t′ → ±∞. Hence, it is clear that the t′-integral is also convergent.

Turning our attention to the integral A4 we observe that the t′-derivative

on f restricts the integral to I, which forces χ(at′) = 1. The factor χ′(at)

restricts the t-integral to R \ I, which in turn forces ∂t′f(t, t′) = F (t′) and

gi(t) = α±
i t + β±

i (dependent on whether t is greater or less than zero). Then
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the t′-integral is over a bounded region and the integrand is finite, so this

integral is convergent. The t-integral is also manifestly convergent for both

positive and negative t, and hence A4 → 0 as a → 0.

A similar argument can be applied to the case of A5. The derivatives

on the cut-offs restrict the two integrals to four disjoint regions of the tt′-

plane: (−∞,−T )× (−∞,−T ), (−∞,−T )× (T,∞), (T,∞)× (−∞,−T ), and

(T,∞) × (T,∞). Then we note that in these regions, f takes a constant

value and the gi are linear functions. Thus, the integral over the regions with

sgn t = sgn t′ (which we denote ‘±±’) may be written

A5|±± = a2f±±

n∏

i=1

α±
i

∫ ±∞

±T

dt

∫ ±∞

±T

dt′
χ′(at)χ′(at′)

(t − t′ + iε)2
; (A.7)

the integrals where sgn t = − sgn t′ are then

A5|±∓ = a2f±∓

∫ ±∞

±T

dt

∫ ∓T

∓∞

dt′
χ′(at)χ′(at′)

(t − t′ + iε)n+2

n∏

i=1

(
α±

i t + β±
i − α∓

i t′ − β∓
i

)
.

(A.8)

In all cases, the integrals are finite, and hence A5 → 0 as a → 0.

For the integral A
(n)
3 , we can integrate this by parts with respect to t′. We

attach an extra label to the integral to make clear how many terms are in the

product; as will be seen, we can reduce the number of terms by the procedure

of integration by parts, which proceeds as follows:

A
(n)
3 = a

∫
dt dt′

f(t, t′)

(t − t′ + iε)n+3

n∏

i=1

(gi(t) − gi(t
′))χ′(at)χ(at)

= − a

n + 2

∫
dt dt′

1

(t − t′ + iε)n+2

∂

∂t′

[
f(t, t′)

n∏

i=1

(gi(t) − gi(t
′))χ(at′)

]
χ′(at)

= − A4

n + 2
− A5

n + 2
(A.9)

+
a

n + 2

∫
dt dt′

f(t, t′)

(t − t′ + iε)n+2

n∑

k=1

[
g′

k(t
′)

∏

i6=k

(gi(t) − gi(t
′))

]
χ′(at)χ(at′).
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Now, the first and second of these terms tend to zero as a → 0 as already

shown; the last, as suggested earlier, is a sum of terms of the form A
(n−1)
3

because the partial derivatives of f(t, t′)g′
k(t

′) with respect to t and t′ have

support in I × R and R × I respectively. Therefore, by repeated application

of this reduction procedure, all terms of the form A
(n)
3 will have the same

behaviour in the limit a → 0 as the term A
(0)
3 . This term is

A
(0)
3 = −a

2

∫
dt dt′

1

(t − t′ + iε)2

∂

∂t′
[f(t, t′)χ(at′)] χ′(at)

= −1

2
A4 −

1

2
A5, (A.10)

and we have already seen that terms of these forms vanish in the limit a → 0.

Finally, we are able to turn to the first integral in the list, which is the form

of the ones we encounter in our calculations. Again, we integrate by parts:

A
(n)
1 =

1

n + 3

∫
dt dt′

1

(t − t′ + iε)n+3

∂

∂t

[
f(t, t′)

n∏

i=1

(gi(t) − gi(t
′))χ(at)

]
χ(at′)

=
A2

n + 3
+

A
(n)
3

n + 3
(A.11)

+
1

n + 3

∫
dt dt′

f(t, t′)

(t − t′ + iε)n+3

n∑

k=1

[
g′

k(t)
∏

i6=k

(gi(t) − gi(t
′))

]
χ(at)χ(at′).

The A
(n)
3 term has already been shown to vanish in the limit, and the A2 term

is independent of the cut-off. The last term is a sum of terms of the form

A
(n−1)
1 . Again, therefore, we can continue to integrate by parts until we reach

terms of the form A
(0)
1 , to which we can now turn. This integral is

A
(0)
1 =

∫
dt dt′

f(t, t′)

(t − t′ + iε)4
χ(at)χ(at′)

=
1

3
A

(0)
2 +

1

3
A

(0)
3 , (A.12)

and as we have already established, the latter vanishes in the limit while the

former is independent of the cut-off.
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Thus we have shown that we may integrate any integral of the form A1

with respect to t (or t′), disregarding the cut-off factor until the integral is

rendered convergent without it.
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