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Abstract 

Abstract 

The field of metabonomics is beginning to grow rapidly due to the ability to analyse 
biofluids, providing a `snapshot' of biological processes that have happened (cf. 

proteomic/transcriptomic studies, which predict what may happen), making it possible 
to profile responses over time. The work described in this thesis was motivated by 
the aim of profiling clinical urine samples obtained from fracture patients, with a view 
to identifying potential biomarkers related to failed fracture healing. This led to the 

need to develop and evaluate metabonomic approaches, specifically a orthogonal 
separation approach complementary to the commonly-used reversed phase (RP) 

separation methods, namely hydrophilic interaction liquid chromatography (HILIC). 

Urine samples from healthy volunteers were collected and used to develop an LC- 

MS `metabonomic toolbox'. This development evaluated various aspects of a 

metabbnomic study that are commonly poorly reported within the literature: study 
design, sample collection storage and handling considerations, data extraction, 

normalisation and scaling methods, and multivariate data analysis tools. 

From the literature, the commonly-used method of normalising to creatinine was 
found to be unsuitable due to perturbations in the urinary excretion of creatinine due 
to factors such as illness. Methods used to evaluate system stability were also 
developed and added to the `toolbox'. HILIC was successfully used as a separation 
technique orthogonal to RP, producing comparable results but using different 

metabolites; this highlights the fact that much potential information is possibly being 
lost when only RP-LC-MS methods are used for analysis. The need to use both 

modes of ionisation polarity were also addressed for an increased coverage in 
biofluid metabolite profiles. 

The knowledge gained in the development of the `metabonomic toolbox' was used for 

the analysis of clinical urine samples. Despite the lack of properly time-setted 

samples and none of the recruited patients suffering delayed fracture healing, 

potential metabolites related to fracture healing were found. However, the samples 
were very different to previously-analysed samples from healthy volunteers; they 

showed very large amounts of protein, which had a large range of molecular weights. 
These were identified proteomically. 

Finally, ESI-Q-o-ToF MS/MS, MALDI-ToF/ToF MS/MS and racemic amino acid 
analysis were used for the structural determination of a pseudomonad biosurfactant, 

which was identified, unexpectedly, as the cyclic lipopeptide white line inducing 

principle, WLIP. 



Table of contents 

Table of contents 

Abstract 

Table of contents 
List of figures ..................................................................................................... ix 

List of tables ..................................................................................................... xvi 
List of abbreviations .......................................................................................... xix 
Acknowledgements ........................................................................................... xxi 
Author's declaration .......................................................................................... xxii 

Chapter One - Introduction 

I. I. Overview ...................................................................................... 1 

1.2. Introduction ................................................................................. 1 

1.3. The skeletal system .................................................................... 4 

1.3.1. Bone remodelling .......................................................................... 4 

1.3.2. Fractures ....................................................................................... 6 

1.3.3. Fracture healing 
............................................................................ 7 

1.3.4. Factors that affect healing 
............................................................. 9 

1.4. Metabolism .................................................................................. 11 

1.4.1. Renal handling and urinary excretion ............................................ 12 

1.5. Metabonomics ............................................................................. 14 

1.5.1. Sample collection and preparation ................................................ 20 

1.5.2. Sample variation ........................................................................... 21 

1.5.3. Standards and normalisation ......................................................... 22 

1.5.4. Statistical analysis ......................................................................... 24 

1.5.4.1. Principal component analysis ........................................ ............ 24 

1.5.4.2. Partial least squares - discriminant analysis ................................. 28 

1.5.4.3. Soft independent modelling by class analogy ................................ 29 

1.6. High performance liquid chromatography ................................ 30 

1.6.1. Monolithic columns ....................................................................... 35 

1.6.2. Hydrophilic interaction chromatography ....................... ........ 36 

1.7. Mass spectrometry ..................................................................... 37 

1.7.1. History .......................................................................................... 37 

1.7.2. Ionisation methods ........................................................................ 37 

1.7.2.1. Electron ionisation ......................................................................... 37 



Table of contents 

1.7.2.2. Chemical ionisation ....................................................................... 
39 

1.7.2.2.1. Methane as a reagent gas ............................................................. 
40 

1.7.2.2.2. Proton transfer .............................................................................. 
41 

1.7.2.2.3. Adduct formation ........................................................................... 
41 

1.7.2.2.4. Charge transfer ............................................................................. 
41 

1.7.2.3. Matrix assisted laser desorption ionisation .................................... 42 

1.7.2.4. Electrospray ionisation .................................................................. 
43 

1.7.2.4.1. Nanospray .................................................................................... 46 

1.7.2.4.2. High flow rate electrospray ionisation ............................................ 47 

1.7.2.5. Atmospheric pressure chemical ionisation .................................... 48 

1.7.3. Mass analysers ............................................................................. 49 

1.7.3.1. Resolution and mass accuracy ..................................................... 49 

1.7.3.2. Magnetic sector analysers ............................................................. 50 

1.7.3.3. Quadrupole analyser ..................................................................... 52 

1.7.3.4. Quadrupoles as a collision cell - MS/MS ...................................... 55 

1.7.3.4.1. Product ion experiment ................................................................. 56 

1.7.3.4.2. Precursor ion experiment .............................................................. 56 

1.7.3.4.3. Neutral loss experiment ................................................................ 57 

1.7.3.4.4. Selected reaction monitoring ......................................................... 57 

1.7.3.5. Ion traps ........................................................................................ 57 

1.7.3.5.1. Injection and trapping of ions ........................................................ 59 

1.7.3.5.2. Ion ejection ................................................................................... 60 

1.7.3.6. Ion traps as a collision cell - MS/MS and MS" .............................. 62 

1.7.3.6.1. Ion isolation ................................................................................... 62 

1.7.3.6.2. Collision induced dissociation ....................................................... 63 

1.7.3.7. Time of flight analyser ................................................................... 64 

1.7.3.7.1. Linear time of flight ........................................................................ 64 

1.7.3.7.2. Delayed extraction ........................................................................ 65 

1.7.3.7.3. Reflectrons .................................................................................... 68 

1.7.3.7.4. Orthogonal acceleration time of flight ............................................ 69 

1.7.3.7.4.1. MS/MS ....................................................................................... 70 

1.7.3.8. MALDI-ToF/ToF ............................................................................ 70 

1.7.3.9. Detectors ...................................................................................... 71 

1.7.3.9.1. Electron multiplier ......................................................................... 72 

1.7.3.9.2. Photomultiplier 
.............................................................................. 72 

1.7.3.9.3. Microchannel plate ........................................................................ 73 

1.8. Aims ............................................................................................. 74 



Table of contents 

Chapter Two - Experimental methods 

2.1. Urine collection ........................................................................... 75 

2.1.1. Samples collected from volunteers from the Dept. Chem .............. 75 

2.1.2. Clinical urine sample collection ..................................................... 75 

2.2. Sample storage ........................................................................... 76 

2.2.1. Samples collected from volunteers from the Dept. Chem .............. 76 

2.2.2. Clinical urine samples ................................................................... 76 

2.3. Sample manipulations ................................................................ 76 

2.3.1. Samples separated using RP ........................................................ 77 

2.3.2. Samples separated using HILIC .................................................... 77 

2.3.3. Sample re-analysis using RP (clinical samples) ............................ 77 

2.4. HPLC separations ....................................................................... 77 

2.4.1. RP separation ............................................................................... 77 

2.4.2. HILIC separations ......................................................................... 78 

2.4.2.1. Gradient 1 ..................................................................................... 78 

2.4.2.2. Gradient 2 ..................................................................................... 78 

2.4.2.3. Gradient 3 ..................................................................................... 79 

2.5. LC-MS(MS) analysis .................................................................... 79 

2.5.1. ESI parameters ............................................................................. 79 

2.5.2. APCI parameters ........................................................................... 79 

2.5.3. MS parameters ............................................................................. 79 

2.5.4. MS/MS parameters ....................................................................... 80 

2.6. Data extraction and normalisation ............................................. 80 

2.6.1. Data extraction .............................................................................. 80 

2.6.2. Normalisation ................................................................................ 80 

2.7. Statistical analysis ...................................................................... 81 

2.7.1. Data import ................................................................................... 81 

2.7.2. Principal component analysis ........................................................ 81 

2.7.3. Partial least squares ...................................................................... 82 

2.7.4. External classification .................................................................... 82 

2.8. Proteomics .................................................................................. 82 

2.8.1. Bradford assay .............................................................................. 82 

2.8.2.1-D gel electrophoresis ................................................................. 83 

2.8.3. In-gel tryptic digestion ................................................................... 83 

2.8.4. MALDI-ToF/ToF analysis .............................................................. 83 
2.8.5. Protein identification by database searching ................................. 84 

IV 



Table of contents 

2.9. Lipopeptide analysis ................................................................... 84 

2.9.1. Sample information ....................................................................... 84 

2.9.2. ESI-MS(MS) analysis .................................................................... 
84 

2.9.3. MALDI-ToF/ToF analysis .............................................................. 
84 

2.9.4. Chemical methods ........................................................................ 85 

2.9.5. Racemic amino acid analysis ........................................................ 
85 

Chapter Three - Development of a `metabonomic toolbox' 

3.1. Introduction ................................................................................. 86 

3.1.1. Aims .............................................................................................. 87 

3.2. Analytical platform considerations ............................................ 88 

3.2.1. Introduction ................................................................................... 88 

3.2.2. Analytical platforms and separation techniques ............................. 88 

3.2.3. Ionisation methods ........................................................................ 91 

3.2.3.1. APCI validation ............................................................................. 93 

3.2.4. Conclusions .................................................................................. 95 

3.3. Sample collection and analysis ................................................. 96 

3.3.1. Introduction ................................................................................... 96 

3.3.2. Aims .............................................................................................. 96 

3.3.3. Results and discussion ................................................................. 97 

3.3.3.1. Sample storage, stability and preparation ..................................... 98 

3.3.3.2. System stability ............................................................................. 100 

3.3.3.3. Sample carryover .......................................................................... 105 

3.3.3.4. Random sample analysis .............................................................. 107 

3.3.4. Conclusions .................................................................................. 107 

3.4. Data extraction ............................................................................ 109 

3.4.1. Introduction ................................................................................... 109 

3.4.2. Aims .............................................................................................. 110 

3.4.3. Results .......................................................................................... 110 

3.4.4. Conclusions .................................................................................. 113 

3.5. Multivariate data analysis ........................................................... 115 

3.5.1. Introduction 
................................................................................... 115 

3.5.1.1. Aims .............................................................................................. 116 

3.5.1.2. Results 
.......................................................................................... 117 

3.5.1.2.1. Initial data analysis: principal component analysis ........................ 117 

V 



Table of contents 

3.5.1.2.2. Outlier detection ............................................................................ 116 

3.5.1.2.3. PCA for biomarker detection? ....................................................... 121 

3.5.1.3. Partial least squares (discriminant analysis) .................................. 122 

3.5.1.3.1. PLS model development - problems and solutions ....................... 123 

3.5.2. Data normalisation and scaling ..................................................... 126 

3.5.2.1. Introduction ................................................................................... 126 

3.5.2.1.1. Aims .............................................................................................. 128 

3.5.2.2. No normalisation ........................................................................... 128 

3.5.2.3. Creatinine normalisation ............................................................... 129 

3.5.2.4. Scaling techniques ........................................................................ 130 

3.5.2.5. Results .......................................................................................... 131 

3.5.2.6. Conclusions .................................................................................. 135 

3.5.3. Data fusion .................................................................................... 137 

3.5.3.1. Introduction ................................................................................... 137 

3.5.3.2. Aims .............................................................................................. 137 

3.5.3.3. Results .......................................................................................... 137 

3.5.3.4. Conclusions .................................................................................. 141 

3.6. Development of RP and HILIC methodologies for MS 

metabonomic studies of urine ................................................... 142 

3.6.1. Introduction ................................................................................... 142 

3.6.2. Aims .............................................................................................. 143 

3.6.3. Results and discussion ................................................................. 144 

3.6.3.1. RP and HILIC gradient optimisation .............................................. 144 

3.6.3.2. Data acquisition and extraction ..................................................... 150 

3.6.3.3. PCA .............................................................................................. 152 

3.6.3.4. PLS analysis ................................................................................. 155 

3.6.3.4.1. Positive ionisation mode data analysis .......................................... 155 

3.6.3.4.2. Negative ionisation mode data analysis ........................................ 160 

3.6.3.4.3. Summary of PLS analysis from positive and negative mode data. 164 

3.6.3.5. Data fusion .................................................................................... 166 

3.6.4. Variable analysis using CID tandem MS ....................................... 170 

3.6.4.1. Discussion .................................................................................... 173 

3.7. Discussion ................................................................................... 174 

3.8. Conclusions ................................................................................ 177 

3.8.1. Retrospective view ........................................................................ 178 

vi 



Table of contents 

Chapter Four - Clinical urine sample analysis 

4.1. Introduction ................................................................................. 179 

4.2. Aims ............................................................................................. 182 

4.3. Results from RP-LC-ESI-MS analysis of clinical samples ........ 183 

4.3.1. Positive mode RP-LC-ESI-MS analysis of clinical samples ........... 183 

4.3.2. Negative mode RP-LC-ESI-MS analysis of clinical samples .......... 190 

4.4. Proteomic analysis of clinical urine samples ........................... 194 

4.4.1. Bradford assay of clinical urine samples ....................................... 195 

4.4.2.1-D SDS-PAGE analysis of clinical urine samples ........................ 198 

4.4.3. Protein identification by MALDI-ToF/ToF analysis ......................... 202 

4.4.4. Discussion .................................................................................... 207 

4.5. Re-analysis of clinical samples using RP-LC-ESI-MS .............. 209 

4.5.1. Positive and negative mode RP-LC-ESI-MS analysis .................... 210 

4.6. Analysis of clinical samples using positive and negative mode 
HILIC-ESI-MS ............................................................................... 216 

4.7. Analysis of ±RP and ±HILIC data by data fusion ...................... 222 

4.8. Variable analysis using CID tandem MS .................................... 227 

4.8.1. Discussion .................................................................................... 230 

4.9. Discussion ................................................................................... 231 

4.10. Overall conclusions .................................................................... 232 

4.11. Retrospective views ...................................................................... 234 

Chapter Five - Lipopeptide analysis 

5.1. Introduction ................................................................................. 235 

5.1.1. Introduction to Pseudomonas chlororaphis PCL 1391 and tomato foot 

and root rot ................................................................................... 235 

5.1.2. CLP production ............................................................................. 236 

5.1.3. CLP analysis by CID tandem MS and amino acid analysis ........... 237 

5.1.4. Amino acid analysis ...................................................................... 243 

5.1.5. Aims .............................................................................................. 244 

5.2. Results ......................................................................................... 245 

5.2.1. Sample information ....................................................................... 245 

5.2.2. ESI-Q-o-ToF MS analysis of PCL 1391 extract ................ ...... 246 

5.2.3. ESI-Q-o-ToF MS analysis of CLP after treatment with base.......... 252 

vii 



Table of contents 

5.2.4. High energy MALDI-ToF/ToF MS analysis of the CLP 
.................. 255 

5.2.5. HE-CID MALDI-ToF/ToF tandem MS analysis of CLP treated with 

base and butanol .......................................................................... 258 

5.2.6. Amino acid analysis ...................................................................... 259 

5.3. Conclusions ................................................................................ 262 

Chapter Six - Conclusions and proposals for future work 

6.1. Conclusions ................................................................................ 264 

6.2. Future work ................................................................................. 267 

References ..................................................................................................... 269 

Appendices 

A Sample information for urine samples collected from within the 

Department of Chemistry, University of York, UK .................... 283 

B CID tandem mass spectra for variables produced in Chapter 

Three ............................................................................................ 285 

C Sample information for clinical urine samples ......................... 287 

D CID tandem mass spectra for variables produced in Chapter 

Four .............................................................................................. 290 

viii 



List of figures 

List of figures 

Figure 1.3.1. A schematic representation of the components involved in the bone 

remodelling process. Courtesy of Leah Etheridge, Dept. Biology, 

University of York, UK .............................................................. 4 

Figure 1.3.2. Diagram illustrating three types of non-pathological fractures... 7 

Figure 1.3.3. Diagram to represent the secondary fracture healing process.. 8 

Figure 1.4.1. A schematic of a nephron from a kidney ................................... 12 

Figure 1.5.1. Graph to illustrate the increasing number of papers published citing 
`meta bolomics' or 'metabonomics' ............................................ 15 

Figure 1.5.2. Diagram to represent the relationship between the genome, 

proteome and the metabolome ................................................. 16 

Figure 1.5.3. A schematic representing the breakdown of creatine to form 

creatinine .................................................................................. 22 

Figure 1.5.4. Schematic demonstrating how data are treated for PCA .......... 25 

Figure 1.5.5. PCA scores and loadings plots ................................................. 26 

Figure 1.5.6. Diagram illustrating how loadings are determined from the 

observations ............................................................................. 27 

Figure 1.5.7. Diagram to show how the fit of a model and its predictive ability 

must be controlled with respect to the number of PCs used ..... 28 

Figure 1.6.1. A schematic diagram illustrating how three different components 

migrate through a column and separate over time .................... 31 

Figure 1.6.2. A schematic illustrating the chromatogram of a mixture of two 

compounds, A and B ................................................................ 32 

Figure 1.6.3. The zwitterionic bonded stationary phase for HILIC .................. 36 

Figure 1.7.1. A schematic highlighting the components of an MS system...... 37 

Figure 1.7.2. Schematic of an electron ionisation source ............................... 38 

Figure 1.7.3. Ion intensity as a function of electron energy ............................ 39 

Figure 1.7.4. MALDI ionisation ...................................................................... 42 

Figure 1.7.5. Schematic of an electrospray ionisation source ........................ 43 

Figure 1.7.6. (a) The charge residue model, as proposed by Dole, (b) the ion 

evaporation model, as proposed by Iribarne and Thompson .... 45 

Figure 1.7.7. The Applied Biosystems TurbolonSpray source ....................... 47 

Figure 1.7.8. Schematic of the APCI source .................................................. 48 

Figure 1.7.9. Peak resolution ......................................................................... 50 

Figure 1.7.10. A magnetic sector instrument ................................................... 50 

Figure 1.7.11. Schematic of a quadrupole ....................................................... 52 

ix 



List of figures 

Figure 1.7.12. Matheiu stability diagram for a quadrupole ............................... 53 

Figure 1.7.13. Stability areas for positive ions of different masses ................... 54 

Figure 1.7.14. Summary of the four tandem mass spectrometry experiments. 56 

Figure 1.7.15. A schematic of an ion trap ........................................................ 58 

Figure 1.7.16. The stability diagram for ions in an ion trap .............................. 59 

Figure 1.7.17. An expansion of the qZ axis to illustrate the problem of high mass 
ions remaining in the trap at the maximum RF amplitude ......... 61 

Figure 1.7.18. The isolation of an ion of a specific m/z value and the expulsion of 
ions of other m/z values ............................................................ 62 

Figure 1.7.19. Low mass cut off ...................................................................... 63 

Figure 1.7.20. A schematic of a linear ToF ...................................................... 64 

Figure 1.7.21. Factors that reduce mass accuracy and resolution in ToFs ...... 66 

Figure 1.7.22. A linear ToF with a DE source .................................................. 67 

Figure 1.7.23. A schematic of a ToF analyser with a reflectron ....................... 68 

Figure 1.7.24. A schematic of the Applied Biosystems QStar Pulsar i ............. 69 

Figure 1.7.25. A schematic of an Applied Biosystems 4700 ............................ 71 

Figure 1.7.26. A schematic of an electron multiplier ........................................ 72 

Figure 1.7.27. A schematic of a photomultiplier ............................................... 73 

Figure 1.7.28. The microchannel plate detector ............................................... 73 

Figure 3.1.1. Schematic representation of the steps involved in a metabonomic 

study ........................................................................................ 
87 

Figure 3.2.1. A comparison of the different methods of ionisation for the two 

complementary ionisation methods: ESI and APCI ................... 92 

Figure 3.2.2. PLS scores plot for a gender response variable from positive mode 
RP-LC-APCI-MS data ............................................................... 94 

Figure 3.3.1. Five + RP-LC-MS TICs from aliquots of pooled urine ............... 101 

Figure 3.3.2. PCA scores plot using one principal component (y axis) comparing 

data from six LC-MS analyses of pooled urine aliquots ............ 102 

Figure 3.3.3. PLS scores plot of positive mode RP-LC-MS data separated 

according to gender .................................................................. 
104 

Figure 3.3.4. Two TIC traces from a positive RP-LC-MS analysis ................. 106 

Figure 3.4.1. An excerpt of the extracted data matrix ................................... . 111 

Figure 3.4.2. An extracted ion chromatogram of m/z 114 ............................. . 112 

Figure 3.5.1. A PCA scores plot for different classes of hypothetical data .... . 117 

Figure 3.5.2. DModX and 3-D plots .............................................................. . 119 

X 



List of figures 

Figure 3.5.3. Loadings and variable plots ...................................................... 121 

Figure 3.5.4. PLS scores plot illustrating how seemingly good models can be 

created given enough variables, despite there being no basis for 

the grouping shown .................................................................. 123 

Figure 3.5.5. Schematic representing our method of PLS development ........ 124 

Figure 3.5.6. (a) Schematic representing how normalisation to creatinine works. 
(b) Schematic of normalisation to total ion count ...................... 127 

Figure 3.5.7. Graphical representation of external classification results for all 36 

developed PLS models ............................................................. 134 

Figure 3.5.8. Representation of data fusion of four different LC-MS datasets 138 

Figure 3.5.9. Graphical representation of external test set classification results for 

concatenated data .................................................................... 139 

Figure 3.6.1. (a) Typical UV254 chromatogram obtained using RP separation of a 

urine sample. (b) Positive mode TIC of the same urine sample, 

normalised to the most intense peak ........................................ 145 

Figure 3.6.2. (a - b) UV254 chromatograms of the same urine sample using the 

gradient described in table 3.6.3, (c - d) two replicate injections of 
the same urine sample using same gradient, but with the addition of 
5 mM ammonium acetate to the aqueous phase ...................... 148 

Figure 3.6.3. (a) Typical UV254 chromatogram obtained using HILIC separation of 

a urine sample. (b) Positive mode TIC of the same urine sample, 

normalised to the most intense peak ........................................ 149 

Figure 3.6.4. Graphical representation of the extracted creatinine peak intensity 

from positive mode data for both RP and HILIC separation ...... 151 

Figure 3.6.5. PCA scores plots of the first two principal components for (a) 

positive mode RP-LC-MS analysis, (b) negative mode RP-LC-MS 

analysis, (c) positive mode HILIC-LC-MS analysis and (d) negative 

mode HILIC-LC-MS analysis .................................................... 152 

Figure 3.6.6. PLS scores plots for a gender response variable analysed in 

positive mode ESI-MS: (a) RP data training set data. (b) HILIC data 

training set data. (c) RP data with external test set overlaid. (d) 

HILIC data with external test set overlaid .................................. 156 

XI 



List of figures 

Figure 3.6.7. PLS scores plots for the response variables time of collection (a, b) , 
and age (c, d) analysed in positive mode ESI-MS with both the 

training and test set data shown. (a) PLS model for discrimination 

by time of collection using RP-LC-MS data, (b) PLS model for 

discrimination by time of collection using HILIC-LC-MS data, (c) 

PLS model for discrimination by age using RP-LC-MS data, (d) PLS 

model for discrimination by age using HILIC-LC-MS data......... 157 

Figure 3.6.8. PLS scores plots for negative mode ESI-MS with the response 

variables: gender (a, b), time of collection (c, d), and age (e, f). (a) 

PLS model for discrimination by gender using RP-LC-MS data, (b) 

PLS model for discrimination by gender using HILIC-LC-MS data, 

(c) PLS model for discrimination by time of collection using RP-LC- 

MS data, (d) PLS model for discrimination by time of collection 

using HILIC-LC-MS data, (e) PLS model for discrimination by age 

using RP-LC-MS data, (f) PLS model for discrimination by age 

using HILIC-LC-MS data ........................................................... 161 

Figure 3.6.9. PLS scores plots for the response variables: gender (a), time of 

collection (b) and age (c) .......................................................... 167 

Figure 4.3.1. Five overlaid TICs from positive mode RP-LC-MS analysis of five 

pooled urine samples ............................................................... 184 

Figure 4.3.2. (a) PCA scores plot of positive mode RP-LC-MS data (b) PCA 

scores plot of pooled samples only ........................................... 185 

Figure 4.3.3. Three TICs from positive mode RP-LC-MS analysis of pooled urine 

samples .................................................................................... 186 

Figure 4.3.4. (a) PCA scores plot of positive mode RP-LC-MS data (b) 

Corresponding DModX plot ...................................................... 187 

Figure 4.3.5. (a) PCA scores plot of positive mode RP-LC-MS data (b) Resulting 

PLS analysis of positive mode RP-LC-MS data for a gender 

response variable ..................................................................... 188 

Figure 4.3.6. (a) PCA scores plot of negative mode RP-LC-MS data (b) PCA 

scores plot of pooled samples only ........................................... 190 

Figure 4.3.7. (a) PCA scores plot of negative mode RP-LC-MS data (b) 

Corresponding DModX plot ...................................................... 191 

xii 



List of figures 

Figure 4.3.8. (a) PLS scores plot of negative mode RP-LC-MS data for a gender 

response variable (b) Resulting PLS analysis of negative mode RP- 

LC-MS data for a gender response variable ............................. 192 

Figure 4.4.1. Coomassie stained 1D SDS-PAGE of two urine samples ......... 195 

Figure 4.4.2. Standard curves for standard protein samples .......................... 196 

Figure 4.4.3. A graph plotting the protein concentrations of each clinical urine 

sample ...................................................................................... 197 

Figure 4.4.4. SDS-PAGE protocol for analysis of protein ............................... 199 

Figure 4.4.5. SDS-PAGE analysis of six randomly chosen clinical urine samples 
from three different concentration levels ................................... 200 

Figure 4.4.6. Flow chart of the bottom-up proteomic analysis of proteins ...... 202 

Figure 4.4.7. SDS-PAGE gel of three clinical samples F67, F94 and F78 ..... 203 

Figure 4.4.8. Probability based MOWSE score plots for each of the ten excised 

protein bands ............................................................................ 204 

Figure 4.5.1. Three overlaid positive mode RP-LC-MS TICs of pooled urine 

aliquots ..................................................................................... 209 

Figure 4.5.2. (a) PCA scores plot of positive mode RP-LC-MS data (b) PCA 

scores plot of pooled samples only (c) PCA scores plot of negative 

mode RP-LC-MS data (d) PCA scores plot of aliquots of pooled 

urine only .................................................................................. 211 

Figure 4.5.3. (a) PLS scores plot of positive mode RP-LC-MS data with the 

response variables 'frac2" (b) PLS scores plot of positive mode RP- 

LC-MS data with the response variables `frac3' (c) PLS scores plot 

of positive mode RP-LC-MS data with the response variables 
`ankle' (d) PLS scores plot of negative mode RP-LC-MS data with 

the response variables `frac2" (e) PLS scores plot of negative mode 

RP-LC-MS data with the response variables `frac3' (f) PLS scores 

plot of negative mode RP-LC-MS data with the response variables 

'ankle' ....................................................................................... 
213 

Figure 4.6.1. Three overlaid positive mode HILIC-MS TICs of aliquots of pooled 

urine samples ........................................................................... 
216 

Figure 4.6.2. (a) PCA scores plot of positive mode HILIC-MS data (b) PCA 

scores plot of aliquots of pooled urine only (c) PCA scores plot of 

negative mode HILIC-MS data (d) PCA scores plot of aliquots of 

pooled urine only ...................................................................... 
217 

xiii 



List of figures 

Figure 4.6.3. (a) PLS scores plot of positive mode HILIC-MS data with the 

response variables 'fracT (b) PLS scores plot of positive mode 
HILIC-MS data with the response variables 'fracT (c) PLS scores 

plot of positive mode HILIC-MS data with the response variables 
`ankle' (d) PLS scores plot of negative mode HILIC-MS data with 
the response variables 'fracT (e) PLS scores plot of negative mode 
HILIC-MS data with the response variables 'fracT (f) PLS scores 

plot of negative mode HILIC-MS data with the response variables 
`ankle' ....................................................................................... 219 

Figure 4.7.1. (a) PCA scores plot of concatenated data (b) PCA scores plot 

concatenated data with all samples having normal levels of protein 
(less than 5mg/mL, corresponding to the labelled samples in (a)) 

being removed .......................................................................... 222 

Figure 4.7.2. (a) PLS scores plot of concatenated data with the response 

variables `frac2" (b) PLS scores plot of concatenated data with the 

response variables `frac3' (c) PLS scores plot of concatenated data 

with the response variables `ankle' ........................................... 224 

Figure 4.10.1 A graph comparing the external classification rates for each 
developed PLS model .............................................................. 233 

Figure 5.1.1. Peptide fragmentation nomenclature ........................................ 237 

Figure 5.1.2. Proposed formation of b and y ions by LE-CID tandem MS ...... 239 

Figure 5.1.3. Proposed fragmentation scheme for the isomeric AAs 

Leu and lie ............................................................................... 
240 

Figure 5.1.4. Immonium ion formation ........................................................... 241 

Figure 5.1.5. Reaction scheme for the derivatisation of free AAs ................... 243 

Figure 5.2.1. Structure of the CLP massetolide C .......................................... 245 

Figure 5.2.2. Product ion spectrum of proposed PCN peak at m/z 224.......... 246 

Figure 5.2.3. ESI-MS of putative biosurfactant from PCL 1391 ...................... 247 

Figure 5.2.4. Product ion spectrum of the protonated molecule at m/z 1126 . 249 

Figure 5.2.5. Proposed structure of fragment ions ......................................... 250 

Figure 5.2.6. Product ion spectrum of the sodiated molecule at m/z 1148 ..... 251 

Figure 5.2.7. ESI-Q-o-ToF MS of CLP after treatment with NH4OH ............... 
252 

Figure 5.2.8. Product ion spectrum of the CLP treated with base .................. 
253 

Figure 5.2.9. Product ion spectrum of protonated lipopeptide observed at 32 Th 

higher than ring closed CLP ..................................................... 
254 

Figure 5.2.10. HE-CID tandem MS analysis of sodiated CLP at m/z 1148....... 256 

XIV 



List of figures 

Figure 5.2.11. HE-CID tandem MS of sodiated CLP treated with base 

atm/z1180 .............................................................................. 257 

Figure 5.2.12. MALDI-ToF/ToF MS of CLP treated with mild base 

and butanol .............................................................................. 258 

Figure 5.2.13. Resulting UV fluorescence chromatogram from the 

AAA of the CLP ........................................................................ 260 

Figure 5.2.14. Graphical representation of the amount of each AA detected ... 261 

Figure 5.3.1. Structure of the CLP as determined by MS and AAA ................ 263 

xv 



List of tables 

List of tables 

Table 3.5.1. All methods used to develop PLS models (totalling 36) to allow the 

comparison of different normalisation and scaling techniques.. 133 

Table 3.5.2. Comparison of the top five variables forming each PLS model for all 
three scaling methods .............................................................. 140 

Table 3.6.1. Gradient profile for RP-LC-MS metabonomic studies ............... 144 

Table 3.6.2. Gradient profile for HILIC-LC-MS metabonomic studies ........... 146 

Table 3.6.3. Gradient profile for HILIC-LC-MS metabonomic studies ........... 147 

Table 3.6.4. Comparison of the top five variables for each developed model 

using gender as a discriminatory factor for positive ionisation mode 
LC-ECI-MS data ....................................................................... 159 

Table 3.6.5. Comparison of the top five variables for each developed model 

using gender as a discriminatory factor for negative ionisation mode 
LC-ECI-MS data ....................................................................... 163 

Table 3.6.6. Comparison of external test set classification results for reversed 

phase and HILIC separation technique data from positive and 

negative mode ESI-MS studies ................................................. 164 

Table 3.6.7. Comparison of the external test set classification results for 

concatenated data and each of the four individual data sets (± RP 

and ± HILIC) ............................................................................. 
168 

Table 3.6.8. Comparison of the top five variables for each developed model 

highlighting which separation and ionisation mode generated each 

of the variables ......................................................................... 
169 

Table 3.6.9. A table showing any precursor ions that were isolated and 

subjected to CID tandem MS analysis, or corresponded to a 

metabolite from a database search ........................................... 171 

Table 4.1. Summary of fracture types, breakdown by gender and number of 

samples obtained ..................................................................... 
181 

Table 4.4.1. Summary of each protein identified by MASCOT from the ten 

excised bands, along with the estimated mass from the gel ..... 205 

Table 4.5.1. Comparison of the top five variables for each model ................ 
215 

Table 4.6.1. Comparison of the top five variables for each model ................ 221 

Table 4.7.1. Comparison of the top five variables for each of the three 

developed models .................................................................... 
225 

XVI 



List of tables 

Table 4.8.1. A table showing any precursor ions that were isolated and 

subjected to CID tandem MS .................................................... 228 

Table 5.2.1. CLPs reported within the literature with nominal mass 1125..... 248 

Table 5.3.1. Comparison of MS and AAA results ......................................... 263 

xvii 



List of abbreviations 

List of abbreviations 

APCI Atmospheric pressure chemical ionisation 

ASCII American Standard Code for Information Interchange 
BuOH Butanol 

CE Capillary electrophoresis 
Cl Chemical ionisation 

CID Collision induced dissociation 
CLP Cyclic lipopeptide 

cps Counts per second 
CRM Charge residue model 
Da Daltons 

DC Direct current 
DE Delayed extraction 
El Electron ionisation 

ELISA Enzyme-linked immunosorbent assay 
ESI Electrospray ionisation 

FA Formic acid 
FAB Fast atom bombardment 

FWHM Full width half maximum 
GC Gas chromatography 
HCI Hydrochloric acid 
HILIC Hydrophilic interaction chromatography 
HMW High molecular weight 
HPLC High performance liquid chromatography 
IEM Ion evaporation model 
IT Ion trap 

KE Kinetic energy 
LC Liquid chromatography 
LV Latent variable 
LMW Low molecular weight 

m/z Mass to charge ratio 
MALDI Matrix assisted laser desorption/ionisation 

mAU Milli absorbance units 
MCP Multi-channel plate 
MeCN Acetonitrile 

MeOH Methanol 

XIX 



List of abbreviations 

MOWSE Molecular weight search 

MS Mass spectrometry 

MS/MS Tandem mass spectrometry 

MW Molecular weight 

NMR Nuclear magnetic resonance 

OPLS-DA Orthogonal partial least squares - discriminant analysis 

PC Principal component 

PCA Principal components analysis 

PGC Porous graphitised carbon 

PLS-DA Partial least squares - discriminant analysis 

ppm Parts per million 
Q-o-ToF Quadruploe orthogonal acceleration time of flight 

RF Radio frequency 

RMM Relative molecular mass 

rpm Revolutions per minute 
SDS-PAGE Sodium dodecyl sulfate - polyacrylamide gel electrophoresis 

SIMCA Soft independent modelling of class analogy 

Th Thompsons 

TIC Total ion count 
ToF Time of flight 

tR Retention time 

UPLC Ultra performance liquid chromatography 

UV Ultraviolet 

xx 



Acknowledgements 

Acknowledgements 

Firstly, I would like to give a huge thank you to Jane Thomas-Oates for letting me 

pursue a Ph. D. within her group. Over the past three years Jane has helped me 
tremendously with advice, encouragement and support as well her unhealthy 
dedication to ensuring that everything I touched during the preparation of this thesis 

turned bright pink (or 
, or green, or blue), and had a glittery shine - this is 

one thing that I am sure I will not miss. 

A big thank you to all other members of the JTO group past and present, who have 

made it such a great place to work: Adrian, Barbara, Caroline, Carla, Dave, Emma, 

Ed, Jimbo, Joao, Karl, Kriang, NJ, Sally, Sarah, Sian, Tim, and our fellow office- 

mates: Chris, Deborah, Jayne, Matt and Phil. Thanks must also go to Jerry Thomas, 

for giving me access to `his' instruments in Biology and for his comedic actions over 
the past three years, Dave Ashford for helping me pacify the somewhat 
temperamental QStar, and to Julie Wilson for her help with understanding statistics! I 

am grateful to the EPSRC (DTA Chair) and Smith & Nephew (Steve Fenwick and 
Martin Todman) for providing financial support that enabled this Ph. D. work to be 

undertaken. 

I would also like to thank all of my friends who have made the last several years in 

York and Leeds an absolutely amazing time; special thanks are due to the following 

people: Bungle and Becs, Froglet and Ellie, Blag and Beth, Woody and Ruth, Crofty, 

Dr. Revvitt, Jimbo, Wheway, Greg and Sally, Arran, SuePoo, G, Tom and Claire, and 

Nick. 

Finally, I would like to thank my family and Lynne. A big thanks goes to my Mum and 

Dad for being amazingly good parents, to my sisters Emma, Laura and Alison, and to 

the two dogs in my life: Whiskey and Wilma. Thank you to Lynne, for her friendship, 

love and support over the last three years, especially the last two months when 

writing this thesis when I would sit in my own little world paying too little attention to 

her - here's to Central and South America! 

xx' 



Author's declaration 

Author's declaration 

I hereby declare that the work described in this thesis is my own, except where 

otherwise acknowledged, and has not been submitted previously for a degree at this 

or any other university. 

S. J. Cubbon 

XXII 



Chapter One 

Introduction 



Chapter One: Introduction 

1.1. Overview 

The work described in this thesis was motivated by the original aim of profiling clinical 

urine samples obtained from fracture patients, in research originated in collaboration 

with Smith & Nephew, UK. This led to the work described in this thesis being 

primarily focussed upon investigating certain aspects of, and developing further 

methods for, liquid chromatography-mass spectrometric metabonomic studies. As 

the field of metabonomics is relatively young (Nicholson, 1999) compared to other 

better established `omic' techniques, there was (and still is) a need to consider many 

different aspects of the experimental approach that are not always covered within the 

literature, so that a robust `metabonomic toolbox' can be created and utilised for the 

study of the clinical urine samples, with the original hope of identifying candidate 
biomarkers for further study. 

In addition to the metabonomic studies of human urine samples, the same methods 

as are used for metabonomic studies were exploited for the structural identification of 

a biosurfactant from a soil bacterial isolate. 

1.2. Introduction 

The human skeletal system consists of 206 bones (upon maturity) that function to 

support, protect and store. Whilst being strong, bones can fracture; given the nature 

of human activity bone fractures will and do occur. Most fractures that occur within 

the human body will heal successfully given some degree of medical intervention, 

however, there are occasions where a fracture will fail to heal successfully (delayed 

or non-union) and require further medical attention. The number of non-unions has 

been described as "alarming"; in the United States alone there were nearly 100,000 

non-union treatments performed in 2003 (Jones, 2005). 

Metabolic bone diseases such as Paget's', osteoarthritis2 and osteoporosis3 are a 

common cause of pathological fractures in the elderly. Over three million people 

suffer from osteoporosis in the UK, and as a result there are over 200,000 fractures 

annually (NHS-Direct). Studies have utilised biofluids such as serum and urine to try 

1 Increased and irregular bone formation leading to larger, weaker bones. 
2 The most common type of arthritis, primarily affecting joints. 
3 Bone structure becomes porous (osteoporosis literally means 'porous bones'). 
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and find indicators of metabolic bone disease, with a view to the possibility of earlier 
diagnosis and treatment of these pathological bone diseases 

The overall processes behind the biochemistry of bone formation and resorption 
(bone turnover) are reasonably well known, but in-depth knowledge is lacking; 

numerous studies are currently trying to gain a further insight into the complex 

processes involved in bone turnover (Fisher et al., 2005; Heer et al., 2005; Mandelin 

et al., 2005; Leu et al., 2006; Nancollas et al., 2006; Viguet-Carrin et al., 2006). 

Many studies have identified biomarkers in both serum and urine that have been 

used to monitor bone turnover (Calvo et al., 1996; Eyre, 1996; Woitge et al., 1998; 

DeLaurier et al., 2004; Miller, 2005; Weisman and Matkovic, 2005). However, it has 

been noted that no single biomarker can provide a reliable results for monitoring 
bone turnover (Calvo et al., 1996). As analytical techniques such as gas 

chromatography-mass spectrometry (GC-MS), high performance liquid 

chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance 
(NMR) provide increased selectivity and sensitivity over more traditional assay based 

techniques, they will become an increasingly important techniques for biomarker 

analysis and identification. 

Pathological bone fractures, which are caused by metabolic bone diseases, have 

received most of the attention in the literature on bone turnover studies; osteoporosis 

being the predominant disease is therefore the most studied. Many potential serum 

biomarkers such as osteocalcin, alkaline phosphatase, pyridinoline, 

deoxypyridinoline, tartrate resistant acid phosphatase, hydroxylysine glycosides and 

urinary biomarkers including pyridinoline, deoxypyridinoline, osteocalcin or cross- 

linking telopeptides have been identified as biochemical markers that are suitable for 

use in the management of osteoporosis (Ebeling and Akesson, 2001). Research has 

shown that recently sustained pathological fractures influence the levels of 

biochemical markers of bone turnover (Obrant et al., 2005); given that the levels of 

biomarkers can be profiled for fractures that are a result of a metabolic bone disease, 

there is good reason to propose that the biochemical response to a non-pathological 

fracture may also be profiled in a similar way. 

Since this study was commissioned, there have only been a handful of papers 

published that study non-pathological fractures and their delay or failure to heal. Of 

these papers none studied urine as a biofluid, all having chosen to concentrate on 
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serum. Zimmermann et al., (Zimmermann et al., 2005) concentrated on the 

transforming growth factor family, and in particular TGF-(31 as a marker of delayed 

fracture healing, whilst Henle et al., (Henle et al., 2005) studied matrix 

metalloproteinases and failed fracture healing. These studies were designed to look 

at specific compounds within serum; as serum is a homeostatically controlled biofluid 

there may be more hope for the analysis of urine, which is a biofluid that should 

contain biomarkers that have been removed from serum as they are no longer 

required, and are therefore a functional end-point. 

One area of analytical science that is suitable for the analysis of biofluids, and has 

seen substantial growth are the related fields of metabonomics and metabolomics. 
These `omic' technologies typically involve a less targeted approach to analysis, 
being hypothesis forming, rather than hypothesis driven. They utilise analytical 

methodologies such as capillary electrophoresis (Pisitkun et al., 2006; Ullsten et al., 
2006; Monton and Soga, 2007), gas chromatography (Kopka, 2006) and high 

performance liquid chromatography (Plumb et al., 2005; Wilson et al., 2005; Lenz 

and Wilson, 2007), which are typically coupled to a mass spectrometer, or use NMR 

(Robertson et al., 2000; Constantinou et al., 2005; Bertram et al., 2007) (or recently 
HPLC-NMR-MS (Bajad et al., 2003)). These methods typically provide separation of 
the complex biofluid matrix components, and their subsequent detection (and ideally 

quantification). 

Techniques such as NMR and HPLC-MS create vast amounts of data, which have 

been called mega-variate data, which would be impossible to visually interpret. 

Thankfully, methods such as multi-variate data analysis (MVDA) which encompass 

techniques such as principal component analysis (PCA) and partial least squares - 
discriminant analysis (PLS-DA) have been developed, which allows the comparison 

of large datasets with few observations (samples) and many thousands of variables. 

The dimensionality of datasets is reduced before any differences (such as 

metabolites or groups of metabolites that are related to the condition being 

investigated) can be pinpointed and subjected to further investigation (Dunn and 
Ellis, 2005; Wilson et al., 2005; Chen et al., 2007). 
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1.3. The skeletal system 

The skeletal system performs a vital role within the human body; it supports muscle, 

which allows locomotion (mechanical role), affords protection for vital organs and 

stem cells (protective role) and also provides a large reserve of ions (metabolic role). 
The body stores a total of about 1000 g of calcium and 600 g of phosphate, 99 and 
65 % of which respectively, is housed within the skeletal system (American Society 

for Bone and Mineral Research, 1999). 

1.3.1. Bone remodelling 

Bone is a living tissue and as such is in a dynamic state as it is continually being 

formed by osteoblasts and broken down by osteoclasts (figure 1.3.1); this is known 

as bone turnover. As the skeleton is in a dynamic state, it can continually adapt to 

changes in its physiological and mechanical environment, i. e. periods of heavy, 

repeated stress on the skeleton would cause more bone to be laid down, whereas 
long periods of inactivity can cause bone to be resorbed, weakening the skeleton. 

Bane king ceis 

o ýý Bane irrig ce>s 
Non- 

mineafised 
bane 

New bane 

ald bone 

Figure 1.3.1. A schematic representation of the components involved in the bone 
remodelling process. Courtesy of Leah Etheridge, Dept. Biology, University of York, 
UK. 

The process of bone turnover is highly complex and is still not fully understood. In 

order to maintain bone (dynamic tissue) it is removed by resorption so that new bone 

can be laid down in its place. Osteoclasts are giant nucleated cells that contain four 

to twenty nuclei; parathyroid hormone (PTH) is released by the parathyroid gland. 

This induces the production of vitamin D3 [1,25(OH)2 vitamin D3], which in turn 
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induces the differentiation of marrow monocytes, from bone marrow, into osteoclasts. 
Each resorptive site only contains one or two osteoclasts that secrete a range of 
enzymes which function to digest the bone and release the stored calcium and other 
minerals into the blood stream. The secretion of tartrate resistant acid phosphatase 
(TRAP) lowers the pH at the resorptive site. TRAP actively digests the hydroxyapatite 

crystals that are linked to collagen; collagenase digests the exposed collagen fibres, 

leaving a site that is now ready for new bone to be laid down. 

Normally, bone formation only occurs at a site that has previously undergone bone 

resorption and typically deposits around 0.55 µm of new bone per day (American 

Society for Bone and Mineral Research, 1999). Osteoblasts are formed by the 

proliferation of stem cells (found in bone marrow), which is induced by a drop in the 

serum levels of PTH, caused by an increase in the hormone oestrogen. Whereas 

osteoclasts are few in number at a resorptive site, osteoblasts form clusters of 100 to 

400 cells and are rich in alkaline phosphatase, and secrete type I collagen that 

matures and allows the deposition of minerals. 

Bone matrix is a two-phase system; collagen provides ductility and the ability to 

absorb energy whereas minerals provide rigidity. Collagen has a triple helix structure 
formed by three alpha polypeptide chains; these are laid down and arranged in fibrils 

in concentric strands. Depending upon the type of collagen, each chain generally 

consists of a tight triple helix afforded by a Gly-X-Y triplet (where X is usually proline 

and Y hydroxyproline). Glycine is an absolute requirement as it is the smallest amino 

acid, and so can occupy the centre of the triple helix structure, making possible the 

tight helix structure (Viguet-Carrin et al., 2006). The collagen fibrils are roughly 300 

nm in length and are capped by N- and C-terminal propeptides' that function to allow 

the association of newly synthesised procollagen chains. 95 % of collagen content in 

bone comprises type I collagen (and also accounts for - 80 % of the total protein 

content in bone); type III and V collagens are present at. low levels and function to 

modulate the diameter of the type I collagen fibrils. 

Collagen is initially un-mineralised. As bone matures, hydroxyapatite crystals are 

deposited and the bone becomes calcified, increasing the stiffness. Further stability 

is derived from inter and intramolecular cross-links as the N- and C-terminal 

1 The prefix pro- refers to an inactive protein or peptide. They can be activated by posttranslational 
modification (a chemical modification). 
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telopeptides1 are oxidatively deaminated. This results in cross links being formed 

through condensation with a lysyl or hydroxylysyl side chain on an adjacent collagen 
fibril. 

The three dimensional architecture of bone, its shape and geometry and the intrinsic 

properties of the matrix (mineral and collagen), give the skeleton the capacity to 

resist mechanical forces. However, the amount of force that a bone can withstand 
before giving way and causing a fracture is dependent upon the quality and quantity 

of bone tissue that is laid down. 

1.3.2. Fractures 

Bone is anisotropic in nature, meaning that it has different mechanical properties 

when it is loaded along its different axes; bones are typically strongest when weight 
is applied along their length. Fractures occur when too much pressure is loaded onto 

any one of the axes, or a combination of axes. Pathological fractures are caused by 

diseases such as osteoporosis2 and Paget's3; bones are weaker and more likely to 

suffer from a fracture due to the inherent bone structure being degraded. The 

majority of fractures are not a result of a pathological disease; they are caused by 

either direct or indirect forces that result in the fracture being classed as one of three 

types (Wraighte and Scammell, 2006). 

Transverse fractures (figure 1.3.2a) are a result of a direct force or bending and are 

considered to be a simple fracture as they are typically stable, which favours union of 

the broken bone. They may require some kind of external fixation such as a plaster 

cast to ensure that there is minimal movement. Oblique and spiral fractures (figures 

1.3.2b and c respectively) are usually caused by compression/loading and torsional 

forces; these types of fractures are inherently less stable than transverse fractures 

and can suffer from bone shortening and/or displacement. All three types of fractures 

can become more complex when multiple bone fragments are present; these 

fractures are referred to as comminuted4 fractures. 

1 The prefix telo- means 'at the end'. 
2A metabolic bone disease where the structure of bone becomes porous (osteoporosis literally means 

orous bones'), it typically affects those over the age of 45. 
Paget's is a metabolic bone disease where bone cells begin to form bone in an uncontrolled and 

irregular pattern, causing poor bone structure, it typically affects those over the age of 45. 
4 Many broken, splintered or crushed bone fragments. 
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(a) (b) (c) 

Figure 1.3.2. Diagram to illustrate the three types of non-pathological fractures: (a) 
transverse fracture. (b) oblique fracture, (c) spiral fracture. 

1.3.3. Fracture healing 

Bone has the amazing ability to successfully repair itself and heal without leaving any 

visible signs of scarring. There are two types of fracture healing, primary and 

secondary. Primary fracture healing can take place after reduction and rigid internal 

fixation that leaves the fracture surfaces unable to move. However, there has to be a 

direct bony union. More commonly, secondary fracture healing occurs. Secondary 

fracture healing affords some controlled movement, as there is relative stability; the 

fracture is usually cast in a plaster cast or is externally fixed. 

Fracture treatment in the UK follows the RIP (reduction, immobilisation and 

physiotherapy) model (Wraighte and Scammell, 2006). Reduction is only undertaken 

if there is any significant displacement of the fracture and is typically used when 

oblique or spiral fractures occur. Manipulative reduction involves the reversal of 

direction that initially caused the fracture in an attempt to re-align the fractured 

bones. If a fracture is considered to be stable then a plaster cast can be used but 
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must be moulded properly to avoid any subsequent re-displacement of the bones. 
Plaster casts cannot, however, prevent any shortening of the bone. Less stable 
fractures can be externally fixed but are often accompanied by internal fixation 
devices. Once any reduction and/or immobilisation technique has been carried out, 
the healing process can begin. 

Site of fracture 

Dead bone 
f-- Haematoma 

(b) 

New bone Granulation tissue 

(c) 

Granulation tissue 
New bone 

Figure 1.3.3. Diagram to represent the secondary fracture healing process: (a) 
formation of a haematoma at the fracture site, (b) inflammation stage, (c) final repair 
stage. 

Primary healing requires direct bony union and absolute stability; this is only 

achieved through reduction and rigid internal fixation, usually with some 

compression. As there is no motion, there is very little (if any) strain present. The gap 

between the bone ends is less than 200 pm. This allows osteoclasts to "... tunnel 

across the fracture line... " (Wraighte and Scammell, 2006). Osteoblasts can follow, 

laying down the bone matrix to establish continuity. However, primary healing is a 

slow process as it is basically an extension of normal bone turnover. The bones must 

remain internally fixed until the healing process has finished and the remodelling is 

complete. 
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Secondary healing is the most common form of fracture healing and occurs when 
there is controlled movement of the fracture; the bone is relatively stable and is 

usually supported by an external fixation device such as a plaster cast. Secondary 

healing follows four phases that overlap. 

The first phase involves the formation of a haematoma' at the site of the fracture, 

causing the periosteum2 to tear. The ends of the bone die due to the formation of the 

haematoma, killing the osteocytes; osteoclasts begin to resorb the dead bone at the 

fracture site (figure 1.3.3a). The haematoma is gradually replaced by granulation 
tissue (fracture callus) during the inflammation stage (figure 1.3.3b). Granulation 

tissue is an intermediary between the formation of bone; unlike bone, granulation 
tissue can withstand high degrees of strain (osteoblasts can only withstand strains of 
less than 1 %). Granulation tissue increases in size, which has the effect of 

stabilising the fracture. As soon as the strain drops below 10 % (the fracture begins 

to stabilise) the granulation tissue begins to be replaced by forming cartilage, 

signalling the onset of the repair stage (figure 1.3.3c). Continuity between the bones 

is achieved when the cartilage bridges the gap and an external callus is formed. 

Upon further stabilisation of the fracture (when the stress is less than 1 %), the 

cartilage is gradually replaced with woven bone by the osteoblasts, which go on to 

replace all of the cartilage and callus with woven bone. The final step in secondary 

fracture healing is the longest and may take several years to complete. Lamellar 

bone is created from the weaker woven bone that was laid down previously. The 

bone shape begins to return but is based upon the stresses under which the bone 

has been placed during the whole repair process. Eventually, when the osteoblasts 

and osteoclasts begin to once more work in unison, the bone has healed and 

typically bears no scar tissue or evidence that a fracture has even occurred. 

1.3.4. Factors that affect healing 

There are many factors that can affect the rate at which a fracture heals, and also 

whether a fracture heals at all. Many fractures take longer than expected to heal, 

termed delayed union, whilst others fail to heal at all and are classed as non-union. 

Age has a large effect upon the rate of healing as young people, especially children, 

tend to heal at a much faster rate than older. Over the age of 40 to 50 there is an 

A collection of blood as the result of haemorrhage/internal bleeding. 
2A layer of irregular tissue membrane that covers the outer surface of bone (not at joints). 
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increased risk of fractures due to pathological disease. These fractures are likely to 

take much longer to heal than the non-pathological fractures that are common to the 

younger age groups. Other factors such as gender may play a part, but lifestyle 

differences may account for the delayed or non-union of fractures. People who 

smoke, drink and eat excessively or poorly are at a higher risk of fractures that fail to 

heal successfully (Wraighte and Scammell, 2006). 
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1.4. Metabolism 

Metabolism is the word used to describe many biological processes that are the 

means by which the body can synthesise many compounds and also generate 

energy. The synthesis of compounds is termed anabolism, and requires energy; this 

energy is generated by catabolism, where large molecules are broken down to 

generate smaller molecules, releasing energy in the process. Hormones typically 

control both anabolism and catabolism. The process of metabolism (both anabolic 

and catabolic) can be summarised as primary or secondary metabolism depending 

upon the function: primary metabolism (or basic metabolism) refers to any metabolic 

processes that are necessary to keep a cell alive (e. g. energy production, 
biosynthesis of molecules), whereas secondary metabolism relates to compounds 
that are produced/broken down, but are not important for the survival of the cell itself. 

However, secondary metabolism is important for an organism as a whole, as 

secondary metabolites are produced to enhance survival (their absence may not 
immediately result in death, but prolonged absence would). Molecules are typically 

synthesised from fats, carbohydrates and proteins (obtained from food) by enzymes. 
Many metabolic pathways interlink, and need to be able to detect the function or 

status of other pathways for efficient metabolism. 

One important factor that is gaining interest in the field of metabolism (and 

metabonomics/metabolomics) is gut microflora (Nicholson, J et al., 2002; Nicholson, 

Jeremy K. and Wilson, 2003; Nicholson, J et al., 2004; Nicholson, J et al., 2005; Gill 

et al., 2006; Bertram et al., 2007; Goodacre, 2007; Rezzi et al., 2007a; Rezzi et al., 

2007b). Nicholson et al., and Gill et al., report that the human intestinal tract is home 

to some 10 to 100 trillion (1014) microbes, which are essential for function (Nicholson, 

J et al., 2005; Gill et al., 2006). Given that the human base pair genome stands at 

2.85 billion, the estimated >_100 times greater number of genes contained within the 

human gut dwarfs this value. Gut microflora (microbiome) have been shown to 

enhance the metabolism of amino acids, glycans and xenobiotics, as well as the 

synthesis of vitamins (Gill et al., 2006). 

Whilst much more research is required to understand the effects of age, diet and 

pathological status upon the gut microbiome, Bertram et al. have shown that diet 

strongly affects the gut microbiome (Bertram et al., 2007). Rezzi et al. have observed 

that the gut microbiome, once considered to be relatively stable, are more related to 

diet than once previously thought (Rezzi et al., 2007a; Rezzi et al., 2007b). 
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As the gut microbiome also varies upon demographic profile (personal conference 

notes), it is clear that metabolites are very varied, and largely influenced by many 

factors. 

1.4.1. Renal handling and urinary excretion 

The kidney is a key organ in the regulation of metabolic products, as it is the route by 

which they can be excreted. Kidneys regulate the composition of the blood by 

maintaining the appropriate composition of many ions, removing waste compounds 

such as urea, ammonia and xenobiotics, and regulating the pH. Compounds can be 

modified to either make them more soluble (e. g. sulfonation, alkylation, acetylation or 

glucuronidation where a compound is bound to glucuronic acid via a glycosidic 

bond), or to contain a functional marker group to allow excretion rather than 

retention. 

(e) 

fib, 

Figure 1.4.1. A schematic of a nephron from a kidney: (a) capillaries, (b) glomerulus 
and glomerular capillaries, (c) descending loop of Henle, (d) ascending loop of Henle, 
(e) distal tubule to the bladder. 

In the nephron (figure 1.4.1), blood received from the heart gets filtered under 

pressure in the glomerulus, creating a filtrate. The glomerulus acts as a physical and 
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electrical charge barrier to most plasma proteins, although some do pass into the 

proximal tubule (figure 1.4.1c and d) dependent upon their size and concentration in 

plasma (Christian and Watson, 2004). The filtrate consists of water, ions such as 

sodium, potassium and chloride, glucose, amino acids and small proteins (less than 

40 kDa (Gonzalez-Buitrago et al., 2007)). The loop of Henle consists of transporters, 

which are selective for specific molecules. The descending loop of Henle has 

transporters that are specific for glucose and sodium, creating a concentration 

gradient that causes water to be passively reabsorbed in the ascending loop of Henle 

by osmosis; low molecular weight proteins can be degraded in the proximal tubule 

(figure 1.4.1 c and d), either being reabsorbed or passed to the bladder. Other 

molecules can be actively or passively absorbed; the majority of glucose, amino 

acids and inorganic salts are reabsorbed, leaving a filtrate that consists of any 

excess molecules and waste products or compounds. The final filtrate passes 
through the distal tubule (figure 1.4.1 e) to the bladder to form urine. 

As urine is one of the body's waste excretion methods, urine should contain a wealth 

of metabolites that are related to many processes within the body, meaning that the 

study of urine should enable a picture of what has gone on in the body to be 

explored; Goodacre describes the study of such biofluids as "... the way forward... " 

(Goodacre, 2007), although this is nothing new as metabolites in urine have been 

used to detect diabetes, pregnancy and liver function to name but a few. 

Given that the bone remodelling process causes secretion of compounds related to 

this process into the bloodstream, serum has been analysed for biomarkers of the 

remodelling process (Chapurlat et al., 2000; Ebeling and Akesson, 2001; Igarashi 

and Yamaguchi, 2002; Henle et al., 2005; Zimmermann et al., 2005). As the kidneys 

filter blood around 25 times a day, urine might be expected to contain excreted 

biomarkers relating to the bone remodelling process. 

13 



Chapter One: Introduction 

1.5. Metabonomics 

The field of systems biology has given rise to an impressive array of 'omes' and 
`omics', such as the genome, transcriptome, proteome and metabolome along with 
their studies giving genomics, transcriptomics, proteomics and 

metabolomics/metabonomics. The ultimate goal of these technologies has to be the 

complete understanding of a biological system from the genome right down to the 

metabolome, and also how each of these different `omes' relates to one another 

given the bigger picture; this is clearly a long way from being reality, but with 

continual developments in both technology and its application, it may one day 

become feasible. 

Within the scientific community there has been much debate with respect to what to 

name the field related to the metabolome, or indeed the metabonome. 

`Metabolomics' versus `metabonomics' may at first appear to merely be a case of 

semantics, but there are significant differences that emerge between the way the two 

terms are used in the literature, even though some prefer to use the terms 

interchangeably. 

The term 'meta bonomics' was coined by J. K. Nicholson et al. in 1999 (Nicholson et 

al., 1999), and was defined as "... the quantitative measurement of the multi- 

parametric metabolic response of living systems to pathophysiological stimuli or 

genetic modification... " with metabonomics being derived from the Greek "meta" and 

"nomos" meaning changes and rules/laws respectively (Lindon et al., 2004). 

`Metabolomics' first appeared in 2000 and was coined by O. Fiehn et al., (Fiehn et 

al., 2000) and was defined as "... the quantitative measurement of all low molecular 

mass metabolites in an organism's cells at a specific time under specific 

environmental conditions... ". The main noticeable difference is that metabonomics is 

concerned with dynamic changes within a system that is a response to some sort of 

stimulus, whereas metabolomics looks at a `snap-shot of the cellular metabolome' 

(Tang and Wang, 2006). The two terms are sometimes differentiated between based 

upon the analytical method utilised; metabolomics initially utilised hyphenated mass 

spectrometry techniques, whereas metabonomics utilised NMR based techniques, 

however, this is clearly an out-dated way of differentiating between metabonomics 

and metabolomics as is shown in the papers by Wilson et al., and Lindon et al., 

(Lindon et al., 2004; Wilson et al., 2005). Other arguments amount to metabolomics 

(and the metabolome) relating to plant and microbial systems whereas 
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metabonomics (and the metabonome) relate to animal models (Tang and Wang, 

2006). Whichever definitions people use to decide if their study is metabolomics or 

metabonomics based, it is academic and arguments only detract from the science 
that is being carried out. Studies in the field of metabolomics and metabonomics are 
increasing steadily as is shown by a PubMed search' (figure 1.5.1). Metabolomics 

appears to be the favoured term used but may be caused by the fact that many 
people (incorrectly) choose to use the terms interchangeably; the field in general is 

still lagging behind that of proteomics which is still receiving much attention, although 
it may be beginning to reach its maturity as the 'hype' dies down (2430 PubMed 

citations for `Proteomics' in 20071). 
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Figure 1.5.1. Graph to illustrate the increasing number of papers published citing 
`metabolomics' or 'meta bonomics'. 

For the purpose of this study, it was chosen to use the term `metabonomics', based 

upon the fact that that human clinical urine samples that were not from one given 

time, and the body's response to a stimulus, in this case bone fractures, were 

studied. 

Metabonomics can provide a real biological endpoint2; other 'omic' techniques such 

as proteomics and transcriptomics are very useful, but cannot provide any biological 

endpoint markers that could be used to relate to a specific disease or the effects of 

drug metabolism. The genome, proteome and metabonome/metabolome are all 

1 http: //www. pubmed. com accessed November 2007. 
2 Metabonomic analyses of biofluids such as urine can provide a snapshot of biological processes that 

have happened, whereas proteomic/transcriptomic studies can only predict what may happen. 
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related to one another (figure 1.5.2), and as such, environmental factors could affect 
each level either directly or indirectly through a knock-on effect. Through the process 
of homeostasis, the body automatically attempts to maintain a constant internal 
environment, even when disease, drugs or toxins affect concentrations and fluxes of 
endogenous metabolites. In order to maintain this constant internal environment, 
increased levels of endogenous metabolites and any exogenous metabolites are 
eliminated through the body's waste (urine and faeces). Many biofluids contain a 

wealth of information, but some such as blood may not be the best to use when real 
biological endpoints are sought as blood is a homeostatically controlled biofluid, the 

composition of which is therefore heavily regulated. There are other 'exotic biofluids' 

that can be sampled such as saliva, semen, bile etc., (Mukhopadhyay, 2006) but the 

biofluid that receives the most attention for good reason in metabolomic and 

metabonomic studies is urine. 

Genome 

Figure 1.5.2. Diagram to represent the relationship between the genome, proteome 
and the metabolome, and how environmental factors affect each one. 

Initial urinary metabonomic studies focussed upon the use of 'H NMR as the 

analytical platform (Nicholson et al., 1999; Lenz et al., 2000; Robertson et al., 2000). 

NMR requires very little sample preparation and is also a non-destructive technique, 

which can be useful if samples are precious. As urine is primarily water, special 

pulses have to be applied to the sample in order to suppress the overwhelming signal 

that would otherwise be present in the spectra, meaning increased analysis times. 

Even though NMR is a reasonably fast technique and shows fantastic reproducibility, 

when compared to MS techniques it shows significantly lower sensitivity. Given that 

there are estimates of 2,000 to 20,000 human metabolites' (compared to an 

1 The Human Metabolome Database Project has recently catalogued 2500 metabolites in the first draft 

of the human metabolome. (http: //www. hmdb. ca, accessed November 2007). 
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estimated 30,000 genes and 1,000,000 proteins (Schmidt, 2004)) it would appear 

that profiling metabolites would be comparatively easy. However, there is a large 

dynamic range in concentrations of endogenous metabolites that range from 

femtomolar (and lower) to millimolar; coupled to the fact that the chemical complexity 
(lipids, sugars, amino acids, nucleotides, sulfates and many more atomic 

arrangements) and biological variation between samples can be large, this only 

serves to further complicate the analysis of biofluids. NMR can fail to detect many 

metabolites that are present due to `... NMR-invisible moieties... ' (Williams et al., 
2005). It is not to say that NMR is a redundant technique though, as it can often 

provide information that other techniques cannot, as well as being a complementary 
technique to MS that can allow a more comprehensive picture of the components 

present within a biofluid, and the metabonomic question being posed to be revealed 
(Kenney and Shockcor, 2003; Williams et al., 2005; Forshed et al., 2006). 

Many metabonomic studies now utilise mass spectrometry coupled to some sort of 

separation technique. The technology has vastly improved in terms of sensitivity, 

selectivity, resolution, reproducibility and price over the last decade (Plumb et al., 
2003; Drexler et al., 2004; Villas-Boas et al., 2004; Beattie et al., 2005; Idborg eta!., 
2005b; Wilson et al., 2005; Kopka, 2006; Lu et al., 2006; Lutz et al., 2006). Mass 

spectrometry coupled to gas chromatography (GC) provided a sound basis for the 

analysis of metabolites from plant samples after derivatisation (Gullberg et al., 2004) 

as GC affords very long columns (typically in the range of 30 to 60 meters) with very 
high separation efficiencies due to the large number of theoretical plates. However, 

complex sample matrices such as urine and blood do not contain large numbers of 

volatile metabolites and therefore require derivatisation. The process of derivatisation 

means that the chemical structure of metabolites is being altered; given that not all 

components are amenable to derivatisation means that a substantial amount of 

potentially important metabolic information may not be detected. Other separation 

techniques such as capillary electrophoresis (CE) afford high levels of separation 

efficiency as well as being able to cope with `dirty' samples, reducing the amount of 

sample preparation needed' (Ullsten et a!., 2006; Monton and Soga, 2007). Coupling 

CE to ESI-MS has proven to be a problem; there are commercially available sources 

that allow the 'easy' coupling of CE to ESI-MS, but the technique suffers from poor 

reproducibility due to CE. The future may hold great promise for CE-MS with further 

development, but at present is not reliable enough for large scale, high throughput 

1 This was found to be contradictory to the results of E. Edwards from the JTO group (Edwards, 2007). 
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metabonomics experimentation. By far the most common separation technique used 

in MS metabonomics is reversed-phase liquid chromatography. 

HPLC can separate a wide range of complex compounds; it is a liquid method and 

therefore does not require compounds to be volatile in order to be analysed. 
Compounds often require little or no preparation prior to their injection onto the 

column where they are separated based upon their partitioning behaviour between 

the liquid mobile phase, and the solid stationary phase. The performance of modern 
HPLC columns is far lower than that of GC columns, typical analytical column sizes 

of 4.6 x 100 mm can only resolve an upper limit of around 300 theoretical peaks 

(Sumner, 2006). This poor peak capacity can be increased by coupling columns 

together or by decreasing the particle size; this is at the expense of higher 

backpressures, which presents a technical challenge when designing HPLC systems. 
Recently, monolithic columns have begun to make their mark as they afford higher 

flow rates, meaning faster separations (Ishizuka et al., 2002; Ikegami and Tanaka, 

2004; Svec, 2004), they have also been applied to metabonomic studies (Tolstikov et 

al., 2003; Wilson et al., 2005). Correctly so, hydrophilic interaction chromatography 
(HILIC) is beginning to make an impact on metabonomic research (Tolstikov et al., 
2003; Idborg et al., 2005a; Kind et al., 2007), as it is selective towards polar analytes 
(which should be present in large amounts in aqueous biofluids). HPLC appears as 

though it may be superseded by ultra-performance liquid chromatography (UPLC, or 

small particle liquid chromatography as it should properly be called). UPLC utilises 

smaller particle and column sizes, typically sub 2 pm diameter particles, and a 

column length of 3 cm x2 mm for traditional packed style columns (monolithic 

columns can also be used on UPLC systems). As the columns are much smaller than 

traditional HPLC columns, UPLC requires much greater backpressures of around 

12,000 psi to be obtained (compared to - 6000 psi for traditional HPLC systems). 

The result of this new technology is a vast increase in the column efficiency and the 

number of compounds detected. Wilson et al., showed that traditional HPLC-MS 

allowed the detection of - 1,500 ions in 10 min, whereas capillary HPLC-MS could 

detect twice as many ions in the same time and UPLC-MS over 5,000 ions in only 

five minutes (Wilson et al., 2005). Even with these developments in HPLC, we are 

still a long way from satisfying the complete picture of the metabonome as many 

metabolites may fail to be detected. A recent analytical development involving LC 

coupled to NMR and MS (LC-NMR-MS) is emerging and is a promising field for 

metabonomic studies (Burton et al., 1997; Bajad et al., 2003; Bollard et al., 2005). 
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Whichever analytical platform is used, vast amounts of data are typically produced; 

once called multivariate data, megavariate data is now far too large to be analysed 

without the use of complex statistical methods. The overwhelming majority of 

metabonomic studies use a statistical method called principal components analysis 

(PCA). PCA is a descriptive technique and serves to show any trends or similarities 

inherent in the data. Another statistical method that is commonly employed is partial 

least squares - discriminant analysis (PLS-DA). This is a discriminative technique as 

it utilises a priori knowledge of group classification. 
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1.5.1. Sample collection and preparation 

Biofluids are generally easy to obtain, with blood (invasive collection) and urine (non- 
invasive collection) the most widely analysed. A biofluid only provides a `snapshot' of 
the metabolome at a specific time point, and as such is representative of the system 
under investigation at that time. To avoid subsequent changes (metabolic reactions, 
chemical modifications and microbial growth) the biofluid should ideally be flash 
frozen using liquid nitrogen and be stored at a suitable temperature (-20 °C, or better 

-80 °C). Studies (LeBeau et al., 2001; Schneider et al., 2002; Fura et al., 2003) have 

shown that freezing can alter the levels of endogenous metabolites, as can repeated 
freeze/thaw cycles; even though freezing is detrimental to the stability of endogenous 

metabolites, the effects are minimal (compared to storage above freezing) and the 

concentrations of endogenous metabolites appears to stabilise after two weeks 
(Schneider et al., 2002). 

Samples may require preparation prior to analysis such as acid hydrolysis, 

derivatisation, dilution or centrifugation depending upon the analytical platform 

chosen. Analysis by GC requires analytes to be volatile and thermally stable. Some 

compounds therefore require derivatisation. Whilst the derivatisation of compounds in 

biofluids may allow analysis by GC and increase the detection of some compounds, 
the derivatisation process is not 100 % efficient; many compounds may not be 

completely derivatised, and some may not be derivatised at all. Non-volatile 

compounds that are not derivatised may not be detected using GC; therefore when 

analysing the metabolome of a biofluid, there are compounds that cannot be 

detected. GC is biased against non-volatile, high molecular weight compounds. 

Most biofluids are analysed using HPLC-MS due to the ease of sample preparation 

and the possibility of online coupling of the HPLC to the MS using liquid introduction 

interfaces. Samples are typically extracted using solid phase extraction or liquid- 

liquid extraction when identifying specific metabolites. Typically, biofluids can be 

analysed directly (after only centrifugation or dilution) for unbiased analyses, avoiding 

the unwanted exclusion of metabolites when study of the whole metabolome is 

required. 
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1.5.2. Sample variation 

Biological samples are subject to biological and analytical variation. Biofluids such as 
blood and urine exhibit a large diurnal variation (Ebeling and Akesson, 2001; Wilson 

et al., 2005); physiological factors such as state of health, age, diet, stress or diurnal 

cycles (Antti et al., 2004) affect the composition and result in variation between 

samples. Analytical variation, whilst being accepted as less influential than biological 

variance, contributes to overall variation; sample storage, treatment, preparation and 
instrumental variation may all affect the data recorded. 

Together, biological and analytical variance affects the ability to obtain reproducible 
data; controlling the variation in a sample is challenging. Analytical variation can be 

minimised by ensuring each sample is treated in as similar a manner as possible, but 

being analysed in a random order to spread any variation across the dataset. 

Biological variance is harder to control; inclusion/exclusion criteria can be used, as 

can regulating the diet and lifestyle, although this is easier said than done when 

using human volunteers. The inclusion of internal standards, or the pooling of 

samples, is another way of accounting for biological and analytical variation. 
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1.5.3. Standards and normalisation 

The inclusion of an internal standard allows analytical variation to be accounted for, 

but has to be carefully considered. An ideal internal standard should not co-elute with 

other compounds in the biofluid being analysed, and not cause ion suppression in the 
ionisation process during LC-MS analysis. 
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Figure 1.5.3. A schematic representing the breakdown of creatine to form creatinine. 
Adenosine diphosphate (ADP) is phosphorylated to adenosine triphosphate (ATP) by 
the removal of a phosphate group from N-phosphocreatine. 

Biological variation is a much harder variable to control, especially in biofluids such 

as urine and serum. Creatinine is an endogenous metabolite that is excreted in urine; 
it is produced as a waste breakdown product during the synthesis of the body's 

energy source, adenosine triphosphate (ATP) (figure 1.5.3). The level of creatinine in 

an individual's urine is relatively stable and related to the individual's muscle mass. 
Creatinine has been utilised in many studies (Woitge et al., 1999; Schneider et al., 
2002; Schoenau and Rauch, 2003; Felitsyn et al., 2004; Huskovä et al., 2004; Idborg 

et al., 2004; Svoboda and Kasai, 2004; Obrant et al., 2005) and is often used to 

express the concentrations of urinary metabolites (urinary metabolite : creatinine 
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ratio). When statistical analysis of data is undertaken, to account for concentration 

variance between samples, the data can be normalised to the intensity of the peak 

corresponding to creatinine in the MS chromatogram. 

It is common in NMR metabonomic studies to normalise the data based upon the 

total signal intensity (Kenney and Shockcor, 2003; Antti et al., 2004; Williams et al., 
2005). Using the total intensity normalisation method accounts for any variation in the 

concentration of individual urine samples, and removes the need for any internal 

standard to be included. More recently, LC-MS metabonomic studies have begun to 

use the total ion counts of individual samples to normalise the data to account for any 

concentration differences and analytical variation (Plumb et al., 2005; Williams et al., 
2005). Many papers do not report how they normalise their data, but it appears that it 

is increasingly common to use the total ion count over creatinine (personal 

conference notes). Creatinine, whilst a good indicator of basal metabolism and 
individual muscle mass, may be perturbed by illness and other factors (Schneider et 

al., 2002), meaning that utilising it for normalisation may not be as desirable as first 

thought. It is clear that the area of normalisation requires further in-depth study to 

determine the suitability of the different normalisation methods that are currently 

used. 
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1.5.4. Statistical analysis 

Modern analytical techniques generate vast amounts of high-dimensional data (e. g. a 
30 min LC-MS acquisition generates -- 50 MB of data, so 200 samples would be 10 

GB of data! ), far more than can be dealt with manually. Thankfully, with the 

computing power now available, complex algorithms can be utilised to analyse these 

large, complex datasets. The field of chemometrics is defined as "... the science of 

relating measurements made on a chemical system or process to the state of the 

system via the application of mathematical or statistical methods... " (International 

Chemometrics Society). There are many different statistical methods that can be 

employed in order to analyse the megavariate data from metabonomic experiments. 
The most common tools are the descriptive principal components analysis (PCA) and 
the discriminative partial least squares - discriminant analysis (PLS-DA), soft 
independent modelling by class analogy (SIMCA) or more recently orthogonal partial 
least squares - discriminant analysis (OPLS-DA) (Nicholson et al., 1999; Granger et 

al., 2003; Idborg et al., 2004; Wilson et al., 2005). Whichever statistical approach is 

chosen, the user must be aware of the possible errors that can occur. There are 
typically two types of error that are considered, types I and II (or a and ß errors 

respectively). A type I error is a `false positive', this is when the hypothesis tested is 

rejected, although it is correct; a type II error, or a `false negative', occurs when the 

hypothesis tested was not rejected when it was false. 

1.5.4.1. Principal component analysis 

Principal components analysis is an unsupervised technique; it does not require any 

prior knowledge, as it is a descriptive technique. PCA was first described in 1901 by 

Karl Pearson (Pearson, 1901) but was only able to be used for two to three variables 

due to the complex calculations involved; in 1933, Hotelling published practical 

computing methods, although these could not be realised until the advent of the 

modern computer (Hotelling, 1933). The early use of statistics could only cope with 

`long and thin' data matrices, whereas today's data uses `short and fat' data matrices 

as modern analytical techniques typically record many variables for few samples (or 

observations). 

The function of PCA is to simplify, or reduce the dimensionality, of large amounts of 

data; data are broken down into two smaller tables, the scores and loadings. Scores 
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summarise the observations' and enable any patterns or trends inherent in the data 

to be visualised, whilst the loadings summarise the variables2 and help to explain the 

position of the observations in the scores plot. PCA generates principal components 
(PCs) that are linear combinations of the original data. The first principal component 

accounts for the greatest amount of variation within the data; successive principal 

components account for the maximum variation possible that has not already been 

accounted for by the previous PC. Each observation is represented by a point in 'n - 
1' dimensional space, where n= the number of variables (figure 1.5.4a). A line that 

accounts for the greatest amount of variation is fitted through the origin of the data (if 

the data have been mean centred) and is termed the first PC (figure 1.5.4b). The 

second principal component is orthogonal to the first, and accounts for the next 
largest amount of variation within the data (figure 1.5.4c). For a PC 1 vs. PC 2 plot, 
all of the points are projected onto a plane (figure 1.5.4c), this is termed the scores 

plot (figure 1.5.5a). 
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Figure 1.5.4. Schematic demonstrating how data are treated for PCA analysis, each 
blue dot represents an observation (an individual sample). (a) Each observation 
exists in n-1 dimensional space. (b) A line accounting for the greatest variation in the 
data is fitted, PC 1. (c) A subsequent line accounting for the next greatest variation is 
orthogonally placed. 

Residual values based upon each point's distance in (n - 1) dimensional space from 

the plane (figure 1.5.4c) can help to identify outliers, as can the use of Hotelling's T2 

tool which is used to show a 95 % confidence limit within which data that fits the 

model well should appear, illustrated by the oval ring in the scores plot (figure 

1.5.5a). Outliers can be easy to find, but can cause problems as the PCs are skewed 

1 'Observations' relate to each sample analysed. For example: each urine sample analysed would be 
classed as an observation when their resulting data is analysed statistically. 
2A 'variable' is a compound detected in one or more 'observation' (a variable would be an m/z value 
and a retention time, along with the relative intensity for each observation (or sample). This 
nomenclature shall be used whenever data are analysed statistically. 
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by the presence of an outlier and are therefore not a true representation of the data. 

However, to justify the removal of an outlier there should be sound scientific 

reasoning. 
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Figure 1.5.5. (a) Scores plot with three groups of data, clustering separately. (b) 
Loadings plot showing which factors are responsible for the clustering, the positions 
of which relate to the clustering observed in the corresponding PCA score plot (a). 
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Loadings determine how observations positions in the scores plot relate to the 

variables that were used. Loadings plots allow the user to interpret the scores plot, as 
the loadings relate to each variable. Loadings are calculated by relating the angles 
between each PC and the variable axis. The cosine of each angle is taken with 
respect to each axis and a loadings vector is generated (figure 1.5.6). If a particular 
variable has a strong influence then the cosine is close to 1 as the cosine of 0 is 1 
(the angle of the component to the variable is close to 0 degrees); conversely, if a 
component has very little influence then the loading will be close to zero as the 

variable is nearly orthogonal (cosine of 90 degrees is 0). The loadings scale runs 
from -1 to +1 giving negative loadings, which correspond to a cosine of 180 degrees. 
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Figure 1.5.6. Diagram illustrating how loadings are determined from the 
observations. 

The `goodness' of a PCA model can be determined by utilising internal cross- 

validation (CV). It is also useful to ensure that the model is not being over-fitted, 

given that there are up to (n - 1) PCs available. Internal CV works by removing 

observations (and their corresponding variable values) and using the developed 

model to predict the position of the removed observations in the scores plot. This is 

repeated as many times as there are removed observations. If the new model 

component that is generated enhances the predictive power, then that component is 

retained. There is a trade off between the fit of a model and its predictive ability; the 

R2 value is the 'goodness' of a fit, whilst the Q2 value the `goodness' of prediction. 
The optimal number of PCs can be determined by the relationship between the R2 

and Q2 values. If, as shown in figure 1.5.7, the R2 and Q2 values are close then that 
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PC can be considered to exhibit a good fit. When the number of PCs increases, so 
does the complexity of the model. When the Q2 value tails off, the model is beginning 

to become over-fitted and too complex. The ellipse in figure 1.5.7 highlights the 

optimal number of components; any further PCs would be over-fitted, as the Q2 

values decrease rapidly. 

1 

0 

Figure 1.5.7. Diagram to show how the fit of a model and its predictive ability must 
be controlled with respect to the number of PCs used. 

1.5.4.2. Partial least squares - discriminant analysis 

Partial least squares - discriminant analysis (PLS-DA) is a regression analysis, and 

as such is a discriminative function which seeks to separate two or more groups 

based upon a priori knowledge (Wold et al., 2001). As with PCA, PLS-DA represents 

each observation with a point in multi-dimensional space. PLS-DA seeks to obtain 

the greatest separation, which is obtained using the prior class knowledge. However, 

it can only be used to separate groups when there is a difference, which is why it is 

useful to analyse data with PCA first. 

In contrast to PCA, where all of the data are extracted into a single X matrix (the 

explanatory variables), PLS-DA allows the comparison of two blocks of data, X and 

Y, where the Y matrix contains `dependent' data, indicating class belonging. Latent 

variables (LVs, equivalent to PCs) are generated using both the X and Y matrices. 

PLS-DA seeks to maximise any inherent differences between the pre-defined classes 

in the Y matrix. Using this class knowledge, it is possible for PLS-DA to predict the 

class of one of the pre-defined classes in the Y matrix. Internal CV is once more 

essential in ensuring that any developed model is not being over-fitted. 
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Using PLS-DA to classify unknowns to groups requires that the model is trained on a 

representative dataset; the developed model should subsequently be tested (external 

CV) with data (an external test set) that were held back and not used to develop the 

discriminative model, and the developed model judged upon its classification 

success. The variables that are most influential and cause the separation of the 

groups can be found by using the loadings plots or by analysing the coefficients. 

1.5.4.3. Soft independent modelling by class analogy 

Soft independent modelling by class analogy (SIMCA) is useful when there are too 

many independent classes for PLS-DA (PLS-DA falls down when there are too many 

groups), but lacks any information on why the groups are different. SIMCA generates 

a localised PCA model for each defined group and is able to work with overlapping 

groups. Again, as with PLS-DA, there has to be a training set and a test set if a 

useful model is to be developed. The `localised' PCA models use residuals to 

determine which observations belong to which group. It is these residual values that 

are used to predict classes for the new (and test) data. 
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1.6. High performance liquid chromatography 

The development of high performance liquid chromatography dates back to 1906 

when Mikhail Tswett used glass columns of 50-500 cm in length, and 1-5 cm in 

diameter, to separate chlorophyll solutions in carbon disulfide (Tswett, 1906). Modern 

HPLC is a technique used to separate compounds within a solution according to a 

specific property, such as hydrophobicity/hydrophilicity. The compounds within a 

solution are separated according to the basis of their partitioning behaviour between 

a stationary phase and a mobile phase. The principle of partitioning can be shown as 
the equilibrium of a compound (C) between the mobile and stationary phases: 

C (Mobile Phase) C (Stationary Phase) Equation 1.6.1 

The equilibrium shown above (equation 1.6.1) can be described by a partition 

coefficient, which is defined as: 

[C (Stationery Phase)] 
kD 

C (Mobile Phase)] 
Equation 1.6.2 

A solution containing a mixture of compounds to be separated is injected' into a flow 

of liquid (mobile phase) that is pumped through a column containing a solid medium 
(stationary phase). When compounds come into contact with the stationary phase, 
they distribute between the stationary phase and mobile phase (equation 1.6.1). The 

mobile phase is continually passing thorough the column, causing compounds to 

distribute between the mobile and stationary phase many different times. 

Compounds with a higher kD (equation 1.6.2) spend a larger amount of time in the 

stationary phase, therefore taking longer to elute from the column than compounds 

with lower kD values; this is the basis upon which compounds are separated. 
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Figure 1.6.1. A schematic diagram illustrating how three different components 
migrate through a column and separate over time, as each different compound has a 
different partition coefficient. As each compound elutes from the column, they are 
detected using UV, with the area of each peak being proportional to the 
concentration. 

Figure 1.6.1 shows the separation of three compounds overtime. The compounds 

each migrate through the column at different rates, each having different partition 

coefficients (kD), before being eluted from the column and detected (here using UV). 

The resulting separation of the analytes produces a chromatogram containing peaks 

with areas that are related to the concentration of each of the separated compounds. 
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(0 

Figure 1.6.2. A schematic illustrating the chromatogram of a mixture of two 
compounds, A and B. tn, = unretained compound (dead volume); tRA = retention time 
of compound A, tRB = retention time of compound B; WA = baseline width of peak A 
and WB = baseline width of peak B, calculated by the intersection of an extension of 

tR B their point of inflection (shown); At = tR -A 

The capacity factor of a compound (k') can be used to describe the migration rate of 

a compound on a column, and is calculated according to equation 1.6.3 (using the 

terms shown in figure 1.6.2), which uses a compound's retention time (tR) and also 

the time that the mobile phase takes to pass through the column (tn, ). 

A 

k'A 
= 

tR - tm 

tm 
Equation 1.6.3 

The capacity factor for two compounds can be used to describe the selectivity factor 

(a), a measure of peak separation: 

kA 
a= 

kB 
Equation 1.6.4 

The efficiency and resolution that can be obtained using a column is of importance, 

and can be calculated using the peak widths, retention times and column length 

(figure 1.6.2). The efficiency of a column is measured by the number of theoretical 

plates, N, and is calculated using equation 1.6.5 (where HM = half maximum): 
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N =16 
tR 

A=5.545 
tR 

A 

WA WA(HM) 

2At 
R= 

WA + WB 

Equation 1.6.5 

Equation 1.6.6 

Resolution, R, can be calculated by the ability of a column to separate two peaks 
(equation 1.6.6 and figure 1.6.2). 

The ability of a column to separate two compounds is dependent upon any `band 

broadening' that occurs during separation, and leads to a reduced efficiency as fewer 

compounds can be separated. Plate height, H, can be used to describe the 

performance of a column independent of the columns length: 

H= 
L 
N 

Equation 1.6.7 

A column can be. considered to have a number of `theoretical plates' where the 

separation of a compound can be described as a series of independent, consecutive 

equilibration events occurring between the stationary phase and mobile phase. Each 

plate is the distance required for an `equilibration event' to occur; therefore the 

greater the number of plates, the more efficient the column. Plate height is 

dependent upon the linear flow rate, u, of the mobile phase, and can be explained 

using the van Deemter equation: 

H=A+B+Cu 
u 

Equation 1.6.8 

Where `A' relates to eddy diffusion, `B' to longitudinal diffusion and `C' to mass 

transport; these terms are described in further detail below: 
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0 Eddy diffusion (A) can be summarised as the different path lengths that 

compounds can take in a column. Whilst each molecule of a compound may 

start at the same position, they take different paths through the column as the 

mobile phase flows around the particles; this causes band broadening, but is 

independent of the velocity of the mobile phase. 

0 Longitudinal diffusion (B) creates band broadening, as molecules of a 

compound move from an area of high concentration (the centre of an analyte 
band) to an area of low concentration (the edges of the band). The extent of 
the diffusional band broadening depends upon the amount of time each 

compound spends on the column, thus band broadening is inversely 

proportional to the flow rate of the mobile phase. 

0 Mass transport (C) is the main factor that contributes to band broadening, 

particularly for silica particle based chromatography. During separation, 

molecules are partitioned between the stationary and mobile phase, 
depending upon their interaction with the stationary phase; this is much faster 

than the diffusion of a molecule into and out of a pore within a silica particle 

where there is no mobile phase flow. Due to the difference in partitioning and 
diffusion, band broadening occurs. The effects of mass transport are 

proportional to the velocity of the mobile phase, meaning that lower flow rates 
lead to better equilibration between partitioning and diffusion, leading to less 

band broadening. 

Various aspects of an LC system can be altered to increase the resolution and 

efficiency. The mobile phase composition can be altered to change the capacity 

factors of compounds. Gradient mobile phases change the composition of solvents 

over time, enabling a decrease in the capacity factor of compounds that are strongly 

retained, thus decreasing analysis time. Reducing particle sizes increases the 

surface area of the stationary phase, which leads to an increase in resolution and 

separation efficiency; although this is at the expense of backpressure, as increased 

pressure is required to force the mobile phase through a more tightly packed 

stationary phase. To decrease eddy diffusion, the internal diameter of a column can 

be reduced, giving better peak shapes. However, less analyte can be loaded onto a 

column with a small internal diameter compared to columns with a larger internal 

diameter. 
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The most commonly used separation mode is reversed phase (RP) chromatography, 

where components are separated based upon their hydrophobicity with the most 

hydrophobic compounds eluting last. The majority of RP columns utilise derivatised 

silica particles, typically (although not exclusively) with n-octyl and octadecyl 

functional groups, where a predominantly aqueous based mobile phase is used. 

1.6.1. Monolithic columns 

An important development in RP column technology has been the introduction of 

monolithic columns (Svec and Frechet, 1992). The word monolith derives from the 

Latin monolithus, meaning single stone; the stationary phase in a monolithic column 
differs greatly from a traditional packed silica-based column as they consist of a 

single, porous piece of polymerised material as the stationary phase. The porous 

nature of a monolithic column means that the mobile phase can pass through with 
less hindrance than a traditional packed column; this leads to a substantial decrease 

in back pressure, meaning that higher flow rates can be used (and therefore faster 

separation achieved). As the mobile phase flows through a highly porous structure, 
the mass transfer process is no longer limited by diffusion into pores on silica 

particles, but now occurs primarily by convection. 

The use of monolithic columns has allowed a reduction in analysis time and an 
increase in sensitivity and stability to be obtained for proteomic experiments 
(Premstaller et al., 2001; Wienkoop et al., 2004; Chen et al., 2005; Rodrigues, 2005; 

Ault, 2007; Sumpton, 2007). However, despite the use of monolithic columns for 

proteomic studies, their uptake has been much slower for metabonomic studies 

where only a handful of studies have discussed or utilised this type of stationary 

phase (Pham-Tuan et al., 2003; Tolstikov et al., 2003; Dunn and Ellis, 2005; Wilson 

et al., 2005; Cubbon et al., 2007). Due to the success of monolithic columns for 

proteomic research within the JTO group (Robinson and MacDonell, 2004; 

Rodrigues, 2005; Ault, 2007; Sumpton, 2007), a monolithic C18 column was used for 

all RP separations presented within this thesis. 
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1.6.2. Hydrophilic interaction chromatography 

The use of RP within the field of metabonomics is widespread, and may be caused 
by scientists using technologies that have been commonplace. However, for a field 

such as metabonomics, this could be a critical mistake given that many biofluids are 

predominantly aqueous and are thus likely to contain a wealth of polar content (that 

is poorly retained when using RP stationary phases, as discussed in chapter 3.2). 

The lack of `normal phase' separation use for metabonomic studies can be 

accounted for by its poor reproducibility and separation efficiencies (hence the 

popularity of RP stationary phases), but more importantly its incompatibility with MS 

due to the solvents typically employed (e. g. hexane). The void in polar analyte 

separation has been filled by the recent introduction of hydrophilic interaction liquid 

chromatography (HILIC). The principle of HILIC was first described in 1952 by 

Samuelson and Sjöström for the separation of monosaccharides using Amberlite 

IRA-4001 as a stationary phase (Samuelson and Sjöström, 1952), but the acronym 

and the functional stationary phase used today was first suggested by Alpert et al. 
(Alpert, 1990). 

H3 ;+ 
ýko 

CH3 0 

Figure 1.6.3. The zwitterionic bonded stationary phase for HILIC. 

Figure 1.6.3 shows the bonded stationary phase for HILIC, a zwitterionic functional 

group with a net charge of zero; there are two functional ion exchange groups that 

are pH independent2. HILIC is thought to work by the hydrophilic partitioning of 

compounds into the water rich stationary phase, and also weak electrostatic 

interactions (Hemström and Irgum, 2006). HILIC is an orthogonal separation method 

to RP (Wang et al., 2005), and as such the solvent strength is opposite to that of RP. 

The use of HILIC for metabonomic studies is not common at the present time, but a 

handful of studies (Idborg et al., 2005; Kind et al., 2007; Mawhinney et al., 2007) 

have shown that this technique shows great promise, and was therefore the focus of 

research within this thesis (chapter three). 

1 Amberlite IRA400 is an anionic exchange resin. 
2 Counter ions come from buffer contained within the mobile phase. The stationary phase remains 
hydrated. 
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1.7. Mass spectrometry 

1.7.1. History 

Mass Spectrometry (MS) began with experiments in 1899 by J. J. Thompson 

(Thompson, 1899); by 1913 he had described how rays of positive electricity could 
be applied to chemical analyses. Coming up to its centenary, MS has seen 

exponential growth in both its use and development; MS is widely used to aid the 

identification and quantification of unknown substances and to probe their physical 

and chemical properties, all with a high degree of sensitivity and selectivity. 

Sample Ion Mass 
introduction generation analyser ' Detectorr 

Figure 1.7.1. A schematic highlighting the components of an MS system. 

Data 
system 

The general principles of MS are shown in figure 1.7.1. Sample is introduced and 

transferred into the gas phase, creating positive or negatively charged gas phase 

ions. Ions are then separated according to their mass to charge ratio (m/z), and then 

detected, with ions' abundance being measured. The ionisation process can be at 

atmospheric pressure or under vacuum, while the mass analyser is under vacuum, 

as the gas phase ions require a mean free path so that they can traverse space. MS 

is a destructive analytical technique. However, utilising the latest techniques allows 

nanograms or less of an analyte to be used for analysis. 

1.7.2. Ionisation methods 

1.7.2.1. Electron ionisation 

Electron impact was first used by Dempster et al. in 1921 to study the isotopes of 

lithium and magnesium (Dempster, 1921). This method was subsequently improved 

by Bleakney (Bleakney, 1929) and then Nier (Nier, 1947), and is now referred to as 

electron ionisation (EI). 
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Figure 1.7.2. Schematic of an electron ionisation source. 

Figure 1.7.2 shows a schematic of an El source. The sample is introduced as a 

vapour into the source under vacuum; this is to ensure that unwanted ion-molecule 

collisions do not occur as well as maintaining a mean free path. Heating a cathode 

element causes the emission of electrons, which are accelerated into the source by 

an accelerating potential of ca. 100 V. The electrons then traverse the source. 

The interaction of the electron beam and the gaseous sample may cause the ejection 

of an electron from the sample to create a positively charged radical ion (equation 

1.7.1). This is achieved by the electron beam being associated with a particular 

wavelength, A, where h= Planck's constant, m= mass of electron and u= velocity 

(equation 1.7.2). 

M+ e- -'M+' +2e- 

A_ 
h 

my 

Equation 1.7.1. 

Equation 1.7.2. 

The typical kinetic energy of 70 eV used in the El source corresponds to a 

wavelength of 140 pm. This is sufficient to cause excitations within the gaseous 

sample that can cause the expulsion of an electron. 
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Figure 1.7.3. Ion intensity as a function of electron energy. The maximum ion 
intensity is less than 70 eV. 

The typical energy of 70 eV is used, as this is in the plateau region, away from the 

sharp drop in ion intensity at lower electron energies (figure 1.7.3). This allows a 

reproducible spectrum to be obtained, which is helpful for the comparison of spectra 

from different instruments, making the use of spectral libraries for the identification of 

unknowns feasible. Most molecules only require around 10 eV of energy to become 

ionised, but the number of ions generated is insufficient to gain any structural 

information. Using 70 eV produces ions with excess energy; this excess energy 

causes the fragmentation of the ion, which is useful, as structural information can be 

determined from the fragments obtained. One drawback of this fragmentation caused 

by the excess energy is that the molecular ion is not always observed. 

1.7.2.2. Chemical ionisation 

Chemical Ionisation (CI) was developed by Munson and Field in 1966 and is a softer 

ionisation technique than El, as ions are generated with little excess energy (Munson 

and Field, 1966). Cl therefore produces an easily recognisable MH+ peak. Ions are 

produced by the collision of a primary ion (formed in the source) with a molecule 

introduced into the source, the source being at a suitable pressure that allows 

collisions between the primary ions and gaseous sample to occur. 

A reagent gas, such as methane, is introduced into the source and is ionised by EI to 

create the primary ions; these primary ions collide with the gaseous sample 
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introduced into the source. A plasma is subsequently created where many different 

reactions can occur, causing both positive and negative ions to be formed by proton 
transfer, hydride abstraction, adduct formation or charge transfer. 

1.7.2.2.1. Methane as a reagent gas 

The reagent gas is ionised by means of a reaction with an electron beam, as in an El 

source, which creates a radical cation that can react further (equation 1.7.3): 

CH4 + e- --> CH4+* + 2e- 

CH4+' -> CH3+ +H' 
CH4+' - CH2+' + H2 

Equation 1.7.3. 

As the concentration of methane within the source is higher than that of the analyte, 

the most likely collision is the methane radical cation with methane (equation 1.7.4): 

CH4+" + CH4 - CH5+ + CH3" Equation 1.7.4. 

Collisions of methane with CH4+' or its breakdown product occur (equation 1.7.5): 

CH3+ + CH4 - C2H5+ + H2 

CH2+' + CH4 -' C2H3+ + H2 +H* 
C2H3+ + CH4 - C3H5+ + H2 

Equation 1.7.5. 

The reaction of CH5+ with the analyte molecule, M, ionises M by proton transfer 

(equation 1.7.6): 

CH5+ +M --' MH+ + CH4 Equation 1.7.6. 
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1.7.2.2.2. Proton Transfer 

Proton transfer is the most common ionisation reaction that occurs within the plasma 

and is effectively an acid/base reaction. The reagent gas forms a Brönsted acid, eg. 
CH4+', which donates a proton to the Brönsted base (the analyte molecule, M). The 

energetics of the acid/base reaction can be controlled by the use of different reagent 

gases such as ammonia and isobutane. 

1.7.2.2.3. Adduct formation 

Given the wide range of reactions that can occur in the plasma, adducts can be 

formed by a third body collision. A protonated molecule, [M+H]+, can form an adduct 

with another analyte molecule, M (or indeed a different analyte molecule, N), or 

fragment ions, F+; these reactions are useful in aiding the confirmation of the 

protonated molecule peak, or for assessing the purity of a compound by assessing 

the different molecular peaks in a spectrum (equation 1.7.7). 

MH+ +M- (2M + H)+ 

F++M-j(F+M)+ Equation 1.7.7. 

MH++N-(N+MH)+ 

1.7.2.2.4. Charge transfer 

As with El, radical cations can be obtained upon the use of rare gases. Xenon gas 

can be ionised to produce a radical cation that subsequently reacts with the analyte 

molecule, M, to transfer a charge. Xenon radicals transfer less energy to the analyte 

molecule compared to methane gas, meaning less fragmentation of the molecule 

occurs (equation 1.7.8). 

Xe+e- -> Xe+' +2e- Equation 1.7.8. 
Xe+' +M- M+' + Xe 
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1.7.2.3. Matrix assisted laser desorption ionisation 

Chapter One: Introduction 

Matrix Assisted Laser Desorption Ionisation (MALDI) is an ionisation technique that 

utilises short, intense laser pulses to produce gas phase ions from a mixture of an 

analyte with a matrix. Two groups developed different methods of laser desorption 

ionisation. Tanaka et al. used a fine cobalt powder in a glycerol matrix with the 

analyte added to it; a nitrogen laser at 337 nm was used to irradiate the mixture, 

producing intact ions that are generally singly charged species, the cobalt powder 

was used to reflect the laser irradiation onto the analyte (Tanaka et al., 1988). Karas 

et al. developed a similar method, where the laser irradiation used does not directly 

cause the ionisation of the analyte (Karas et al., 1987). They added picomolar 

amounts of an analyte to a solution containing an excess of an organic matrix that 

absorbs strongly at the wavelength of the laser. The mixed solution was spotted onto 

a target plate and allowed to dry, forming crystals. Laser radiation was directed onto 

the spot, where the organic matrix absorbs the laser energy. Tanaka was 

controversially awarded the Nobel Prize in 2002 for his work, but it is the technique 

described by Karas et al. that is generally used today. 

Laser irradiation 

... 

Desorption 

" 
" 

" 

H+ 

Proton transfer 
Figure 1.7.4. MALDI ionisation. The formation of gas phase ions from analyte 
dissolved in a liquid matrix by laser irradiation. 

The mechanisms of ion formation by MALDI are not fully understood, but it is 

generally accepted that upon laser pulsing (106 to 1010 W cm"2 of energy deposited) 

the matrix absorbs the laser radiation, causing rapid heating and subsequent 

expansion of the matrix and analyte into the gas phase in a plume. The matrix 

molecules are electronically excited, and can either transfer a proton to or from the 
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analyte molecule, yielding [M+H]+ or [M-H]-. Figure 1.7.4 shows the desorption of the 

analyte surrounded by matrix, but in addition other processes also take place, such 
as the ejection of single molecule aggregates and clusters of the matrix (which are 
evident in the resulting spectrum). 

MALDI is a soft ionisation technique that produces almost exclusively protonated 
(cationised) molecules. It is also a very sensitive technique, as millimolar (and lower) 

concentrations are typically spotted onto a target for analysis. MALDI allows the 

study of large, involatile and thermally labile species and is commonly used for the 

analysis of biological molecules. Its pulsed nature makes it a suitable ionisation 

device for time of flight mass analysis (section 1.7.3.7). 

1.7.2.4. Electrospray ionisation 

Developed by Fenn et al. in 1988 (Fenn et al., 1989), electrospray ionisation (ESI) 

was based on a concept proposed in 1968 by Dole et al. (Dole et al., 1968). ESI has 

since become one of the most versatile and widely used methods for the ionisation of 

an analyte. Initially, ESI was used for the analysis of proteins, but as interest 

increased, its applications widened to synthetic polymers and small molecules. Its 

broad applicability and high sensitivity were further enhanced by the ease with which 

it could be hyphenated to HPLC and capillary electrophoresis (CE). 

Potential gradient 

Taylor cone 
ý< 
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T 
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Orifice 
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Vacuum 

N2 drying gas 

Figure 1.7.5. Schematic of an electrospray ionisation source. 
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The analyte is dissolved in a suitable solvent, placed in a syringe, and pumped into 

the capillary by the use of a syringe driver. Alternatively, sample can be received 

from the output from HPLC or CE. A high voltage is applied to the capillary tip, 

creating a potential gradient between the capillary end and the orifice (figure 1.7.5). 

Given that the ESI source is at atmospheric pressure and the mass analyser is under 

vacuum, a series of lenses and skimmers exist, that act as a physical barrier; 

roughing pumps and turbo pumps are used to create a vacuum in the analyser. 

The voltage (0.5-5 kV) is required to induce charge accumulation at the end of the 

capillary, meaning that the liquid eluting from the capillary is highly charged. The 

potential has the effect of inducing a Taylor cone; this occurs at a specific voltage, 
the onset voltage, where surface tension is overcome causing the release of a plume 

of small charged droplets. At any voltage lower than the onset voltage, droplets are 

not emitted, as the charge is not sufficient to break the surface tension. Depending 

on the flow rate, sometimes a nebulising gas is applied around the capillary, which 

aids in the formation of the Taylor cone and the emission of droplets. The fine plume 

of charged droplets can be subjected to a flow of heated nitrogen gas, the drying gas, 

which causes the solvent to evaporate; the drying gas is not always heated and is 

sometimes not used at all, this is dependent on the flow rate and the source used. 

The formation of gas phase ions is proposed to occur by one of two mechanisms. 
Dole, who proposed the concept of an ESI source proposed the charge residue 

model (CRM) (Dole et al., 1968), whilst Iribarne and Thomson proposed an ion 

evaporation model (IEM) (Iribarne and Thomson, 1976). 
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Figure 1.7.6. (a) The charge residue model, as proposed by Dole, (b) the ion 
evaporation model, as proposed by Iribarne and Thompson. 

q2 = 81r2£0YD3 Equation 1.7.8. 

The Rayleigh limit (equation 1.7.8, where q= charge, co = permittivity of environment, 

y= surface tension, D= diameter of a droplet) occurs by the desolvation from the 

drying gas, causing the evaporation of the solvent, which decreases the volume of 
the droplet, causing charge to develop at the surface of the droplet. The CRM (figure 

1.7.6a) suggests that at the Rayleigh limit, the charges on the droplet coulombically 

repel each other and subsequently overcome the surface tension, causing a 

coulombic explosion. This explosion releases smaller droplets, which subsequently 

undergo the same process until single ions are produced. 

The IEM (figure 1.7.6b) involves desolvation by the drying gas; as the droplet shrinks 
due to the solvent evaporating, charge accumulates on the surface causing 

coulombic repulsion to occur. At the Rayleigh limit, instead of an explosion, ions are 
directly released from the surface of the droplet. 

If an analyte has ionisable sites, then it is usually protonated (deprotonated in 

negative mode). However, if the analyte lacks any ionisable sites it can still be 

ionised through the adduction of anions/cations such as sodium, potassium, 
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ammonium, chloride and acetate to name but a few. Large molecules tend to have 

more than one ionisable site, which can lead to multiply charged ions, and given that 

in a mass spectrometer, the mass to charge ratio is measured, the analysis of very 
high molecular weight compounds using ESI is possible. 

ESI is very sensitive to flow. At very low flow rates (nL min-) the sensitivity is much 

greater than at high flow rates (mL min"'). This has led to the development of various 
ESI sources to incorporate the vast diversity in obtainable flow rates. The various 
types of ESI source available are important as the flow rates used may be varied 
depending upon the amount of available sample, and whether the source is being 

coupled to HPLC or CE. 

1.7.2.4.1. Nanospray 

Wilm and Mann worked on the concept of the miniaturisation of the ESI source, 
initially developing a micro-electrospray source, which was later to be renamed the 

nano-electrospray source (Wilm and Mann, 1994). The setup is similar to that shown 
in figure 1.7.5, but there is reduced drying gas flow and no need for a nebulising gas. 
Nanospray uses a capillary with an internal diameter of 1-2 pm, compared to that of 
20-100 pm for ESI. Only 0.2 to 2 pL of sample solution is loaded onto the capillary, 

which can provide around 30 minutes of analysis time whilst only consuming -1 pL of 

sample. The capillary is positioned around 1-5 mm directly in front of the orifice, but 

slightly off-axis, with a potential being applied to the capillary. The potential alone is 

sufficient to induce the formation of a Taylor cone with a flow rate in the region of 20 

nL min-' (ESI originally used 1-10 pL s-1). 

Nanospray produces droplets that are less than 200 nm in diameter, compared to 

around 1 pm for droplets produced by ESI. The small and monodisperse droplets 

have a high surface to volume and charge to volume ratio, meaning that the 

generation of gas phase ions is almost instantaneous. Given the size of the droplets, 

Dole's charge residue process is the most plausible, as only one molecule per 

droplet is possible, meaning that only one fission step can occur (compared to 

multiple in ESI). Nanospray is up to 500 times more efficient at ion generation than 

ESI (Juraschek et al., 1999), and generally has a better signal to noise ratio and a 

reduced amount of clustering due to the direct emission of ions, which creates a 

higher tolerance to salts. 
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1.7.2.4.2. High flow rate ESI 

The ESI source used for this study was the Applied Biosystems TurbolonSpray 

(figure 1.7.7). Ionisation efficiency is increased at high flow rates (5-1000 pL min-) 

with a solvent composition that can vary from 100 % aqueous to 100 % organic. The 

main function is to allow the direct coupling to HPLC using analytical columns without 
the need for reduced flow or splitting of the flow post HPLC. 

Nebulising 
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Drying 
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Figure 1.7.7. 
study). 

The Applied Biosystems TurbolonSpray source (used for ESI in this 

The ionisation efficiency for high flow rates is increased by the addition of a second 
drying gas (figure 1.7.7). The capillary is set at 45° to the orifice and is offset so that 

the Taylor cone is not directed directly into the orifice. Perpendicular to the Taylor 

cone is the additional drying gas, which aids in the desolvation of the spray from the 

capillary. The additional drying gas can be heated to a temperature of 500 °C. 
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1.7.2.5. Atmospheric pressure chemical ionisation 

Atmospheric Pressure Chemical Ionisation (APCI) is a soft ionisation technique that 
is appropriate for coupling to HPLC; it is used for the analysis of compounds that are 

not ionised efficiently by other methods. Unlike Cl, which uses an electron beam, 

APCI uses a corona discharge to produce primary ions from the nebulising gas, 

which reacts with solvent molecules, forming reagent ions (secondary ions). 

Ionisation is achieved by proton transfer or abstraction from the secondary ions, and 

gas phase ions can also adduct to the analyte. 

Nebulising 
gas Heated sheath Skimmer 

Analyte 

Quadrupole 
Corona ýJº 

Orifice Vacuum 

Drying gas 

Figure 1.7.8. Schematic of the APCI source. 

The main features of an APCI source are shown in figure 1.7.8. The analyte, 

dissolved in a suitable solvent, is passed through a capillary and nebulised by 

nitrogen gas at high pressure. The sheath around the capillary is heated, causing the 

nebulised solvent to vapourise. A corona discharge needle produces electrons, when 

the vapourised sample comes into contact with the corona discharge needle, 

ionisation occurs. 
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1.7.3. Mass analysers 

In the mass analyser, ions are separated according to their mass to charge (m/z) 

ratio. Magnetic sector instruments were the first type of mass spectrometers (MS) 

used. Along with quadrupole MSs, these are scanning analysers, meaning that ions 

of different m/z ratios are transmitted over a period of time. Later inventions such as 
time of flight (ToF) separate ions in time, and ion traps (IT) in space. 

1.7.3.1. Resolution and mass accuracy 

A mass spectrometer's resolution and mass accuracy are of great importance if it is 

to provide reliable data that can be used for the identification of unknown compounds 
(Balogh, 2004). Mass accuracy is typically measured in parts per million (ppm) and is 

calculated using equation 1.7.9: 

Error (ppm) = 
bm 

x106 
m 

Equation 1.7.9. 

There are two methods for determining the resolution of an MS. Initially, resolution 

was defined as the ability of an MS to resolve two peaks of similar mass. With that 

definition, two peaks were usually considered resolved if the valley between the 

peaks is equal to or less than 10 % of the lowest intensity peak, as shown in figure 

1.7.9a. Figure 1.7.9b shows the full width half maximum (FWHM) method, which is 

now the most commonly chosen method of reporting a peak's resolution. 
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(a) 
Sm 

(b) 

100 
.r 
U) 
c 4) 

50 
a) 

10% a) 
Of 

Figure 1.7.9. (a) Two peaks are considered resolved, as the valley is at 10 % of the 
intensity of the weaker peak. The resolution, R, is given by the mass, m (where z= 
1), divided by the change in mass, bm (R = m/bm); (b) The full width half maximum 
(FWHM) definition takes the peak width at half maximum, or 50 % of the relative 
intensity. 

1.7.3.2. Magnetic sector analysers 

Magnetic sector instruments were the first type of commercially available mass 

spectrometer. Ions are generated (usually by EI) and subsequently accelerated from 

the source. The ions gain kinetic energy through the acceleration, which is given by 

equation 1.7.10 (where z= number of charges, e= charge of an electron, Vacc _ 

accelerating potential, m= mass and v= velocity of an ion. ) 

mv2 
ze Vacc =2 Equation 1.7.10. 
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Figure 1.7.10. A magnetic sector instrument. The magnetic field has a strength of B, 

given in Tesla; the ions traverse the field through a radius, r. 
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Once the ions have left the source, they enter the mass analyser region (figure 

1.7.10) where they traverse the magnetic field. The motion of the ion through the field 

is given by equation 1.7.11 (where B= magnet strength, in Tesla, r= radius, z= 

number of charges, e= charge of an electron, v= velocity of an ion), which, when 

combined with equation 1.7.10, forms equation 1.7.12: 

mv2 
= Bzev 

r 

m B2r2e 

Z 2V 

Equation 1.7.11. 

Equation 1.7.12. 

Equation 1.7.12 shows that by varying the values of B or V, different m/z values can 
traverse the field to reach the detector. Scanning is carried out as an exponential 
function beginning with the high masses. Magnetic sector instruments have a 

constant resolution over all masses, which means at lower masses, there is a low bm 

(greater separation) compared to a high öm for high masses. If the scanning were to 

be constant and not exponential, then not all of the ions at lower masses would be 

transmitted; hence the exponential scanning allows the detection of all of the ions at 
lower masses. The exponential scan mode function is given by equation 1.7.13 

(where m= mass at time t, mo = starting mass at t= 0) : 

m= moe-k` Equation 1.7.13. 
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1.7.3.3. Quadrupole analyser 

In 1953, Paul and Steinwedel developed the principle of the quadrupole which was 
subsequently developed and refined and is now an integral part of many modern 
mass spectrometers (Paul and Steinwedel, 1953). 

0 U 

i 
.......... 

- (U -V cos (tt) 
Figure 1.7.11. Schematic of a quadrupole. U= DC potential, V= amplitude, w= 
angular frequency (2rrv, where v= frequency). 

Quadrupoles consist of 4 parallel rods (figure 1.7.11) that have a circular or 

hyperbolic cross section. Opposite rods are electronically connected to one another; 

one pair is connected to a positive potential + (U - Vcoswt), and the other pair to a 

negative potential - (U - Vcoswt). U is a direct current (DC) component which is 

variable; an alternating radio frequency (RF) with amplitude V, and frequency w, is 

applied. The RF potentials that are applied to the two sets of rods are 1800 out of 

phase. Ions enter the quadrupole at a constant velocity where they are subjected to 

the alternating RF field, which is superimposed onto a constant field, the positive and 

negative DC potentials. Ions oscillate through the quadrupole along the z axis; 

depending on the ion's mass, the potentials U and V and the RF frequency applied. 

Ions of a certain m/z ratio have a stable trajectory and therefore pass through the 

quadrupole. Ions which do not have a stable trajectory are not transmitted as they 

are attracted towards the rods where they collide, losing their charge. Altering the DC 

and RF potentials, but maintaining a constant DC/RF ratio, allows the successive 

transmission of ions with different m/z ratios. 

E. Mathieu developed equations in 1866 that described vibrations across a stretched 

membrane; the equations were found to be applicable to the motion of an ion and are 

therefore used to determine the parameters required to allow an ion of a particular 
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m/z to be transmitted through the quadrupole with a stable trajectory (equation 

1.7.14, where z= charge on ion, e= charge of electron, m= mass, w= angular 
frequency, ro = radius from z-axis to quadrupole (diameter is 2ro)). 

8zeU 4zeV 
a� =22 and qu = Equation 1.7.14. 

mw ro mcw2ro2 

From equation 1.7.14, a mass stability diagram (figure 1.7.12) can be created. The 

areas where an ion is stable in the x and y dimensions according to the solutions to 

the Mathieu parameters are circled. The areas of ion stability can be used to provide 

mass discrimination; not all of the areas are commonly used in mass spectrometry 

due to the high potentials that are required. Therefore most mass spectrometers 

utilise the area that lies on the q� axis, as the potentials are suitable for use within a 

quadrupole. 

au 

able along x-axis 

able along y-axis 

Figure 1.7.12. Mathieu stability diagram for a quadrupole. Circled areas indicate 

where ions are stable in a quadrupolar field. Inset is an expansion of the area that is 

utilised in most mass spectrometers. Above the qu-axis corresponds to +U, and 
below to -U. 
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Providing that an ion's trajectory does not exceed the fixed ro value (where it would 

collide with a quadrupole and discharge) its trajectory is stable along the length of the 

quadrupole (z-axis) and is transmitted; when an ion moves away from the z axis of 
the quadrupole the potential field that the ion experiences is greater, causing the ion 

to be focussed back to the centre along the z-axis. 

A 

V 
Figure 1.7.13. Stability areas for positive ions of different masses (m, and m2) as a 
function of au and qu. Ions have a stable trajectory if the scan line (A and B) passes 
through the stability area; mass resolution is achieved by operating the scan line 
close to the apices of the stability areas, line A. 

Figure 1.7.13 illustrates how ions of different m/z values can be transmitted through a 

quadrupole, giving mass discrimination. Mass separation is achieved by altering the 

U and V values whilst maintaining a constant ratio between the two (U/V). Ions that 

have au and qu values that fall within the stable region are transmitted through the 

quadrupole; ions whose au and q� values lie outside the stable region have unstable 

trajectories and discharge against a rod. 

The scan lines A and B (figure 1.7.13) both pass though the stability areas for two 

ions of different m/z values, m, and m2, meaning that both ions are transmitted 

through the quadrupole. Line B has a shallow gradient and does not allow mass 

discrimination as both ions of m, and m2 have stable trajectories and are detected 

together and therefore not resolved. Line A has a steep gradient and passes through 

the apices of the stability areas for the two ions; these ions are resolved and 

discrimination between the two masses is now possible. 
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A quadrupole's resolution is controlled by altering the DC component, U. A high UN 

ratio has a higher resolution but reduced transmission; initial ion velocities (amount of 
kinetic energy) and the position of entry into the quadrupole means that operating 

close to the boundaries of stability are impractical, hence why quadrupoles usually 

only operate at unit resolution. 

1.7.3.4. Quadrupoles as a collision cell - MS/MS 

Soft ionisation techniques such as ESI, MALDI and APCI only produce mainly 

protonated molecules with little, if any, fragmentation. For structural information to be 

obtained, a molecule must be fragmented to yield structurally informative fragment 

ions. Molecules can be fragmented by their collision with an inert gas. Jennings and 
McLafferty described the concept of colliding ions with a collision gas in the 1960s 

(Jennings, 1968; McLafferty, 1968); originally called collision activated dissociation 

(CAD), it is now commonly referred to as collision induced dissociation (CID). If an 
ion collides with an inert gas then part of its kinetic energy is converted into internal 

energy. This internal energy, if sufficient, induces fragmentation. 

If a quadrupole is operated in RF only mode (U = 0), provided that V is still within the 

area of stability, all ions have a stable trajectory and pass through the quadrupole; 

they are thus focussed along the z-axis. Ions that enter an RF only quadrupole can 

fragment through metastable dissociation, or by their collision with an inert gas 

present at a low pressure, CID; when ions fragment within an RF only quadrupole it 

is referred to as a collision cell. 

The coupling of two mass analysers, such as quadrupoles, separated by a collision 

cell, allows the analysis of individual components from a mixture. The coupling of 

mass analysers creates a tandem mass spectrometer that is tandem in space; 

tandem in time instruments are described later (section 1.7.3.7). Tandem mass 

spectrometry enables a series of experiments that allows a wide range of information 

about an ion to be obtained (figure 1.7.14). 
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Figure 1.7.14. Summary of the four tandem mass spectrometry experiments. (a) 
product ion experiment. (b) precursor ion experiment. (c) neutral loss experiment. (d) 
selected reaction monitoring. 

1.7.3.4.1. Product ion experiment 

A product ion experiment (figure 1.7.14a) is where a precursor ion is selected in the 

first mass analyser and transmitted to the collision cell, where it fragments by 

metastable dissociation or by CID. The fragments are analysed in the second mass 

analyser, yielding the product ion spectrum. 

1.7.3.4.2. Precursor ion experiment 

The precursor ion experiment (figure 1.7.14b) is conceptually the opposite of a 

product ion scan. The second mass analyser is set to only allow ions of a specific 

m/z ratio to be transmitted. Ions are scanned through the first mass analyser and are 

fragmented in the collision cell; the detector gives a response if an ion transmitted 

through mass analyser one fragments to the product ion m/z value set in mass 

analyser two. 
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1.7.3.4.3. Neutral loss experiment 

A neutral loss experiment (figure 1.7.14c) identifies a precursor ion that loses a 

specific neutral fragment, such as water. As with the precursor ion experiment, the 

first mass analyser sequentially allows ions through to the collision cell to undergo 
fragmentation. Any product ion that has a mass corresponding to the constant mass 
difference gives a response at the detector. 

1.7.3.4.4. Selected reaction monitoring 

Selected reaction monitoring (figure 1.7.14d) records a specific precursor ion giving a 

specific fragment ion. The first mass analyser transmits specific precursor ions that 

are subsequently fragmented in the collision cell. The second mass analyser is set to 

transmit specific fragments; a signal is only given if the selected precursor ion yields 
the correct fragment ion. 

1.7.3.5. Ion traps 

The quadrupole Ion Trap (IT) was described by Paul et al. in 1953, and initially 

adopted by physicists to investigate the properties of trapped ions (Paul and 

Steinwedel, 1953). The initial problems of poor resolution, mass range and the ability 

to study (trap) only one m/z value at a time due to `mass selective stability' were 

eventually overcome by the work by Stafford's group (Stafford, 2002). Stafford 

developed the `mass selective instability mode', meaning that ions could be trapped 

and sequentially ejected from the trap and detected; the addition of helium gas to the 

trap was found to vastly improve the peak shape and resolution. 
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End cap electrodes 

Ions -- -- -> Detector 

Figure 1.7.15. A schematic of an ion trap. The ring electrode utilises a fundamental 
RF whereas the end caps utilise variable RF for the excitation or ejection of ions. 
Typical ion trap geometries are less than 1 cm3. 

The ion trap (figure 1.7.15) consists of a ring electrode and two end caps which are 

all hyperbolically shaped. Ions are received from a multipole (which has focussed the 

ions) where they enter the trap through the end cap (when a repelling potential on the 

gate lens is dropped) and are subjected to a multipole field. As with quadrupoles, 

ions are only stable within a certain field that is determined by solutions to the 

Mathieu equations. Since the ion trap is cylindrical with respect to the ring electrode, 

the x and y coordinates can be reduced to r2 (x2 +/=r 2). 

The stability of an ion can be expressed using only the z and r coordinates. The 

application of DC (U) and RF (V) is required and is applied in the Mathieu parameters 
(equation 1.7.15, where w= 2rrf). 

qz = 
4eV 

and aZ =- 
8eU Equation 1.7.15. 

mro 
2(02 

mr02(0 
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Figure 1.7.16. (a) The stability diagram for ions in an ion trap. Blue areas indicate 
stability on the r-axis (between the ring electrode) and the yellow areas indicate 
stability on the z-axis (between the end caps). The area of stability circled is the one 
generally utilised and is expanded and shown in (b). 

For an ion to be stable in an ion trap, it must be stable on both the r and z axis. The 

three areas of this stability are shown in figure 1.7.16a; the area circled (and shown 
in figure 1.7.16b) is the only one that can be practically utilised, as the parameters 
that would be required to use the other areas cannot be used as arcing between the 

ring and end cap electrodes would occur. The mass selective instability mode allows 
the maximum number of ions possible to be trapped; this is operated with no DC 

potential, meaning that U=0 and therefore aZ = 0. As aZ = 0, the ions in the trap 

effectively `sit' on the qZ axis with ions of high mass at low q, values and ions of low 

mass at high q� values. 

1.7.3.5.1. Injection and trapping of ions 

The gate lens at the entrance of the ion trap is pulsed from positive to negative (in 

positive mode) to allow a packet of ions from a quadrupole to enter the trap. The ions 

are subjected to an RF field that is applied to the ring electrode; the RF frequency is 

held constant but its amplitude (V) can be varied (discussed later). The RF field 

increases linearly from the centre of the trap, which causes the ions to be focussed 

into the centre of the trap, where they oscillate in a 'figure of eight' pattern (figure 
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1.7.15). Helium is an inert gas that is introduced at low pressures into the trap to aid 
focussing of the ions, as it reduces their excess kinetic energy by `collisional cooling'. 

The number of ions that enters the trap has to be carefully controlled to avoid a 

phenomenon called the `space charge effect'. Ions need to be at a concentration 

where ions do not 'see' one another, effectively existing in infinite space without 
interaction with another ion. Too many ions result in the ions being able to 'see' one 

another, causing a distortion of the quadrupole field and consequent loss of mass 

accuracy and resolution. 

1.7.3.5.2. Ion ejection 

A simple MS experiment requires the ejection and detection of the ions that are 

stored in the trap. Figure 1.7.16b shows a qZ value of 0.908, this is called the qeject 

and the q value at which ions stored in the trap become unstable in the axial direction 

(between the end caps) but remain stable in the radial direction (between the ring 

electrode). The ions are ejected from the trap when they reach this value by ramping 

the RF amplitude (V), but due to the geometry of the trap, only 50 % of the ions reach 

the detector as the ions pass towards both end caps, only one of which leads to the 

detector in the most commonly used IT design. 

In order to eject the ions, the RF amplitude (V) is sequentially ramped causing the 

ions to become unstable and be ejected in order of increasing m/z value. There is a 

problem that arises which means there is a limit to the potential that can be applied to 

the trap before arcing between the electrodes occurs; ions of a high mass are 

therefore not excited enough to become unstable and therefore remain in the trap 

(figure 1.7.17a, i, ii, iii). 

60 



Chapter One: Introduction 
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Figure 1.7.17. An expansion of the qZ axis to illustrate the problem of high mass ions 
remaining in the trap at the maximum RF amplitude. (a) i) The ions are collisionally 
cooled and focused and are at a low qZ value. ii) The RF amplitude has been 
increased, the low mass ions (pink) begin to move along the qZ axis as they become 
excited and unstable. iii) The amplitude has been increased to its maximum, the low 
mass ions have been ejected whereas the high mass ions remain in the trap. (b) A 
secular frequency creates an area of instability at lower qZ values (red elipse). i) The 
ions are cooled and focussed in the centre of the trap. ii) An increase in amplitude 
has ejected the ions of a low mass and intermediate mass (green) through the area 
of instability. iii) At maximum amplitude, all of the ions have been ejected from the 
trap by the creation of the area of instability at a qZ value sufficient to allow the high 
mass ions to be ejected. 

Trapped ions of a given m/z oscillate at a specific frequency, called the secular 

frequency. When ions are excited by a secular frequency, they gain energy, 

becoming unstable and move towards the end caps. Figure 1.7.17b, i, ii, iii, shows how 

the application of a secular frequency creates a `hole' where ions can be ejected from 

the trap and detected at a qZ values lower than 0.908; the position of the `hole' 

depends upon the amplitude of the frequency that is applied. This technique is called 

resonance ejection and is used to extend the mass range of the ion trap. 
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1.7.3.6. Ion traps as a collision cell - MS/MS and MS" 

Ion traps are tandem in time and allow not only for MS/MS experimentation, but for 

successive MS steps creating MSn capacity, thus allowing in-depth fragmentation of 
an analyte. MS" involves the selection of a particular m/z value, so that that only ions 

of selected m/z are present within the trap. The ions are then fragmented by collision 
induced dissociation (CID) and the fragments ejected (or specific fragments isolated 
in the trap and subjected to further CID). 

1.7.3.6.1. Ion isolation 

To produce a spectrum with a fragmentation that is specific for ions of a particular 

m/z value, ions of a specific m/z value must first be isolated in the trap. Once an ion 

has been chosen, for example the ion at m/z 573 in figure 1.7.18a, ions of other m/z 

values in the trap are ejected by the application of a multi frequency resonance RF 

across the end caps (except at the frequency that corresponds to the selected ion). 

The isolated ion is then isolated in the trap. 

(a) 

(b) 
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Figure 1.7.18. The isolation of an ion of a specific m/z value and the expulsion of 
ions of other m/z values. (a) A mass spectrum with the selected ion highlighted in 

green. The blue shading represents the multi frequency resonance RF that is applied 
to the end caps. (b) A simplified representation showing that the frequency is not 
applied to the q,, that corresponds to the selected ion (red). 
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1.7.3.6.2. Collision induced dissociation 

Once ions of a particular m/z have been isolated in the trap, an RF waveform that is 

specific to the isolated ions is applied to the end caps (lower RF than causes ejection 
to occur); this is sometimes referred to as a `tickle voltage'. The ions begin to 

oscillate in the trap and gain kinetic energy, the ions then collide with the helium gas 

causing some of the kinetic energy to be converted into internal energy, inducing 

fragmentation by CID. After CID has occurred, the precursor ion and its fragments 

are focussed into the centre of the trap before they are sequentially ejected and 
detected. 

q� = 0.908 
I 

Fragment ions 

ýý ý 
ýý 

Ejected ions 

Figure 1.7.19. Low mass cut off. Fragment ions of 25 % or less of the isolated ions 
m/z value are ejected and not detected. 

One limitation caused by fragmenting an ion is that not all of the fragment ions 

generated are stable in the q� direction, causing them to be expelled from the trap 

during the CID process. In order to effectively fragment an ion in a trap it has to be 

set at a q� of -0.25, at which the `low mass cut off' typically results in ions of less 

than 25 % of the initial parent ions m/z value to be ejected without detection (figure 

1.7.19). 
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1.7.3.7. Time of flight analyser 

Initially, Time of Flight (ToF) mass spectrometers were linear and first described by 
Stephens in 1946 (Stephens, 1946). The resolution and accuracy of the first 
instruments was low, but the advent of delayed extraction and reflectron increased 
both the resolution and mass accuracy greatly. 

1.7.3.7.1. Linear ToF 

A linear ToF is essentially a long tube under vacuum (figure 1.7.20). Ions are 

accelerated from the source by an electric field into a field free region; the ions 

traverse the field free region and are detected. A pulsed ion source such as MALDI is 

well suited to use with a ToF analyser as it produces discrete packets of ions; the 

starting time of the ions acceleration into the field free region can easily be recorded. 

Detector 
MALDI -25 kV 
source 

+25 kV 
ý.. _.. -. _- . -.. _.. _ _.. _.. ý 

d 

Figure 1.7.20. A schematic of a linear ToF. Ions are generated and accelerated into 
a field free region, d, where the time taken for ions to traverse this region is recorded 
and their mass determined. 

All ions of same charge gain the same kinetic energy. The velocity depends upon the 

mass, equation 1.7.16. Ions of a different mass therefore separate in space and time 

in a ToF analyser. If an ion's 'time of flight' can be recorded, then its mass can be 

determined. An ion leaves the source with a kinetic energy (Ek) described by 

equation 1.7.16 (where m= mass, q= total charge (q = ze), v= velocity, V= applied 

potential): 
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Ek = qV = 
mv 

2 

Equation 1.7.16. 
2 

t= Equation 1.7.17. 
V 

2 

t2 =m 
d 

Equation 1.7.18. 
z 2Vse 

Equation 1.7.18 is a combination of equations 1.7.16 and 1.7.17, and shows that 

measuring the time that it takes a particular ion to traverse the field free region allows 
its m/z value to be determined. The time taken to record a full spectrum, even at low 

resolution, was enough to ensure ToFs found wide application in research and were 

therefore developed to increase the resolution and accuracy that could be obtained. 

1.7.3.7.2. Delayed extraction 

MALDI forms discrete packets of ions that allow a definitive start time to be recorded 

compared to a continuous ionisation source such as ESI; ions are continuously 

formed and as such a definitive starting time cannot be recorded. The problems of 

low mass accuracy and resolution in linear ToFs are caused by the generation of 

ions of the same m/z value but different kinetic energies. The spread of kinetic 

energy causes ions of the same m/z to reach the detector at different times, as 

shown by the ions in figure 1.7.20. 
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Figure 1.7.21. Factors that reduce mass accuracy and resolution in ToFs: (a) 
temporal distribution, ions are formed at different times, (b) spatial distribution, ions 
are formed at different locations, (c) kinetic energy distribution, ions gain different 
amounts of kinetic energy. 

Temporal distribution (figure 1.7.21 a) involves the formation of ions at different times 

during the ablation process in MALDI; the ions arrive at the detector at slightly 

different times because of their different time of formation. The formation of ions at 

different locations either within the matrix or plume gives rise to a spatial distribution 

(figure 1.7.21 b); ions that remain in the accelerating field (between the grids) for 

longer periods of time gain more kinetic energy than ions that spend less time in the 

accelerating field. The range of kinetic energies that is imparted to the ions (figure 

1.7.21c) causes their arrival at the detector at different times; a combination of all 

three distributions causes a decrease in mass accuracy and resolution. 
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Figure 1.7.22. A linear ToF with a DE source. The two acceleration grids are initially 
at ground, the ions expand into a field free region before the acceleration potential is 
applied to the ions. 

Delayed extraction (DE) was developed to try and correct for the kinetic energy 

spread and temporal distribution of ions with the same m/z value. Linear ToFs were 

modified (figure 1.7.22) to include a DE source. The ions initially expand into a field 

free region (the grids are temporarily held at earth); ions of greater kinetic energy 

move further towards the detector than those with less. After a short delay, the 

extraction potential is applied (to two grids); ions with a lower kinetic energy remain 

closer to the grids and are subsequently accelerated more than the ions with higher 

kinetic energy that are further away from the grids which are accelerated to a lesser 

degree. The DE of ions has the effect of correcting for the initial kinetic energy 

spread by focussing ions of the same m/z onto the detector, increasing the resolution 

and mass accuracy. 
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1.7.3.7.3. Reflectrons 

Mamyrin et al. first proposed the use of an electrostatic reflector or reflectron in 1973. 

A reflectron is a series of grids and ring electrodes that create an ion mirror or 

retarding field. The purpose of a reflectron is to correct for any initial energy 

dispersion that ions may have; as the energy dispersion is corrected for and the flight 

path is doubled, the resolution and mass accuracy are improved but at the cost of 

mass range and sensitivity. 

Reflectron (ion mirror) 
+1 kV 

Source """""""""""""""" 

.................... 

" 

" .. 

" Low KE ion """""""""""""""" 
Detector 0 High KE ion 

Figure 1.7.23. A schematic of a ToF analyser with a reflectron. The length of the ion 
path is doubled due to the ion's paths being inverted. KE = kinetic energy. 

Ions with high kinetic energy penetrate the reflectron more than an ion with low 

kinetic energy (figure 1.7.23). The ions do not gain or lose any kinetic energy as a 

result of the reflectron, it merely corrects for the difference in energy. Ions of high 

kinetic energy spend less time in the field free region and more in the reflectron, 

conversely low kinetic energy ions spend more time in the field free region and less 

in the reflectron; the result is that ions of the same m/z but different kinetic energies 

arrive at the detector at the same time. 

The combination of delayed extraction and reflectrons in some ToFs has been used 

in order to gain greater resolution. The reflectron can only account for the kinetic 

energy spread of ions; DE can correct for spatial and temporal distribution, causing 

ions affected by these factors to be focussed, allowing an increase in the resolution 

as the ions reach the detector with less spread in time. 
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1.7.3.7.4. Orthogonal acceleration ToF (Applied Biosystems QStar Pulsar 1) 

ToFs require discrete packets of ions, so a continuous ionisation source such as ESI 

requires the continuous ion beam to be pulsed to create discrete packets of ions. 
One way to create a pulsed ion beam is to effectively store the ions before creating a 
pulse that allows the stored ions to enter the ToF, or alternatively to pulse the ion 
beam into the ToF which is orthogonal to the ion beam (figure 1.7.24). 

Ions -- 

QO {! ST 
Collision cell 

(Q2) 

Pusher Detector 

--------- 

Grid o'o 

Puller 

Reflectron 
o 

iiý Curtain gas Skimmer 

Figure 1.7.24. A schematic of the Applied Biosystems QStar Pulsar i. ST = Stubbies, 

a small quadrupole. 

Ions enter the orthogonal acceleration ToF (oa-ToF) where they are focussed by an 

RF only quadrupole, QO which transmits all ions (figure 1.7.24); the ions are then 

transferred to the high vacuum area of the MS. The voltage that is applied to QO and 

ST is held at a constant fraction of the RF voltage that is applied to Q1, the mass 

filter quadrupole which has no DC potential applied for MS. The collision cell contains 

a collision gas at low pressures; the cell is operated in RF mode, which is stepped 

over several ranges to transmit a wide range of m/z values to the ToF. The ions enter 

the ToF where they are orthogonally `pushed' by an accelerating voltage, creating a 

discrete packet of ions, which allows a starting time for the time of flight to be 

recorded. The ions enter the field free region where they are separated according to 
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their m/z value before being detected; ions with a large m/z have a longer flight time 

than ions with a low m/z value. 

1.7.3.7.4.1. MS/MS 

oa-ToF is tandem in space as it has two mass analysers that are separated by a 

collision cell. The first mass analyser is a quadrupole that operates in RF only mode 
for MS, but uses a DC potential to allow mass discrimination. The second mass 

analyser is a ToF and is not a scanning analyser, which means that oa-ToF is only 

capable of precursor and product ion experiments. 

For product ion experiments, Q1 (figure 1.7.24) is operated in mass discrimination 

mode to allow ions of a particular m/z value to be transmitted to the collision cell. The 

ions enter the collision cell where they collide with a collision gas and fragment by 

CID; if a potential is applied to the exit lens of the collision cell then the ions are 

stored before being passed to the pusher where they are orthogonally pushed into 

the ToF. 

The precursor ion experiment involves Q1 scanning ions through into the collision 

cell where they are fragmented using CID. The ToF is set to only give a signal if 

fragment ions of a particular m/z value are detected. If the correct fragment ions are 
detected, then the precursor ion is identified. 

1.7.3.8. MALDI-ToF/ToF (Applied Biosystems 4700 proteomics analyser) 

The Applied Biosystems 4700 proteomics analyser is a MALDI linear tandem ToF 

mass spectrometer, which can perform high energy CID MS/MS experiments. The 

MALDI source utilises a Nd: YAG solid state laser, with a repetition rate of 200 Hz, 

and is equipped with delayed extraction optics. For MS, ions are extracted with a 

high potential (ca. 20 kV) and pass through the MS1 region, the collision cell and the 

MS2 region (figure 1.7.25); the ions' time of flight are calculated when they reach 

either the linear or reflectron detectors, depending upon which mode is chosen. 

For tandem MS experiments, the ions are subjected to DE and then accelerated 

using a high potential into MS1, where the timed ion selector is used to select a 

precursor ion. The timed ion selector is a dual stage electrode, where the first 
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electrode is switched on, retarding all ions; as the time of flight that corresponds to 

the precursor ion being selected occurs, the voltage is dropped allowing the 

transmission of the precursor ions before the second electrode is turned on to repel 

any subsequent ion transmission. The retarding lens decelerates the transmitted 

precursor ion to an energy of -1 keV where it enters the collision cell, which now 

contains a collision gas. After the precursor ion has been subjected to CID, the 
fragment ions are re-accelerated in the second source; pulsed ion acceleration 

provides a start point for ToF measurement of the fragment ions. 

Timed ion Target 

Nd: YAG selector gas Reflectron 
detector 

laser ; -; 
MS 1 MS 2 

'i 0000 aooo uii 
uuý ppoo ; ooao _ iii 

........... 
DE-MALDI 

Source 

Beam 1 Collision 
ion optics cell 

Retarding 
lens 

Reflectron 

111111111111111111 

1111111111111 

2nd source Beam 2 
ion optics 

Linear 
detector 

Figure 1.7.25. A schematic of an Applied Biosystems 4700 proteomics analyser with 
ToF/ToF optics. 

1.7.3.9. Detectors 

Given that ions can be separated according to their m/z value by mass analysers, 
they need to be detected for any structural information to be obtained. Initially, ions 

used to be detected directly by a photographic plate or a Faraday cup. Ions of the 

same m/z would reach the plate at the same place (the intensity of the spot would be 

proportional to the intensity); a scale could be applied that would determine the m/z 

of the spots. Faraday cages cause an ion to discharge upon a collision; the current of 

the discharge is amplified and then detected. Modern mass spectrometers use 

electron multipliers, photomultipliers or array detectors such as the microchannel 

plate. 
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1.7.3.9.1. Electron multiplier 

Positive or negative ions are attracted towards a conversion dynode where they 
impact causing the emission of secondary particles (figure 1.7.26). The secondary 
particles (electrons) are accelerated into a horn shaped device where they collide 
with a cathode, releasing more electrons which go on to collide again and again with 
further cathodes, causing a cascade of electrons. The cascade of electrons travels 
towards ground where their current can be measured (it is proportional to intensity). 
Typical amplification can reach 107; electron multipliers are commonly used for 

quadrupole and ion trap instruments. 

Ion 

Conversion 
dynode 

Current 
Figure 1.7.26. A schematic of an electron multiplier. 

1.7.3.9.2. Photomultiplier 

Ions are converted into electrons by their collision with a conversion dynode, as in an 
electron multiplier. The secondary particles are accelerated towards a 

phosphorescent screen, from which photons are emitted on impact of the electrons 
(figure 1.7.27). The photons are detected by a photomultiplier. The lifetime of a 

photomultiplier is longer than that of an electron multiplier as it is sealed in glass, 

preventing contamination; however the amplification is less, at 104 to 105. 
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Figure 1.7.27. A schematic of a photomultiplier. 

1.7.3.9.3. Microchannel plate 

Electrons 

Photons 

The microchannel Plate (MCP) is a plate that consists of many small (4-25 pm 

diameter) glass tubes (figure 1.7.28a), that have a geometry (figure 1.7.28b) which 

allows a cascade of electrons to occur (analogous to electron multipliers). Both faces 

of the disk are coated in metal so that each channel is electronically connected, with 

a potential difference applied across the plate. Ions of the same m/z value can arrive 

at a different location on the plate but can still all be detected at the same time with a 

typical amplification of 106. The connection of plates in series (figure 1.7.28 c-d) can 

increase the amplification up to 108. MCPs are commonly used in ToFs as they allow 

the simultaneous detection of ions over space. 

(a) 

(b) (c) 

Figure 1.7.28. (a) The microchannel plate detector. (b) Continuous dynode electron 
multiplier geometry. (c-d) The connection of MCPs together to increase the 
amplification of ion current. 
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1.8. Aims 

This thesis describes the application of LC-MS for the analysis of human urine 

samples. The objectives of the research described in this thesis were to critically 

assess current LC-MS metabonomic methodologies alongside a new separation 

method, hydrophilic interaction chromatography (HILIC), in an attempt to increase the 

coverage of metabolites within human urine samples. A further objective was to 

analyse an extract of Pseudomonas chlororaphis PCL 1391 using the same 

analytical methods as a metabonomic study, but in a completely different manner. 

Chapter Three thus discusses and evaluates the various analytical platforms 

available for metabonomic studies, comparing and contrasting different separation 

methods, ionisation methods and detection methods. It describes considerations 
involved in sample collection, storage and manipulation, as well as subsequent 

extraction of raw LC-MS data and the related statistical analysis of these data and 
their assessment and development. The main focus of the work described in Chapter 

Three is the development of HILIC as a complementary orthogonal separation 

method to reversed phase for an increased coverage of urinary compounds, and a 

proposal of the required elements of a robust LC-MS `metabonomic toolbox'. 

Chapter Four uses the methods discussed and developed in Chapter Three for the 

analysis of clinical urine samples obtained from patients who had suffered a fracture. 

Chapter Five discusses the structural determination of a Pseudomonad biosurfactant 

using ESI-MS(MS), MALDI-ToF/ToF and racemic amino acid analysis. 
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Chapter Two: Experimental methods 

2.1. Urine collection 

2.1.1. Samples collected from volunteers within the Department of Chemistry, 

University of York, UK 

An e-mail was sent to all academic, administrative and Ph. D. student members of the 

Department of Chemistry, University of York, UK, asking for volunteers to donate two 

urine samples. All potential volunteers were made aware of the purpose for collecting 
their urine samples (for the development of a `metabonomic toolbox'), and were 

guaranteed anonymity. They were informed that they would have to collect the first 

void of the day, and any subsequent void after 15: 00 on the same day, with a 

preference for `mid-stream' urine. Volunteers anonymously collected sealed bags 

containing two randomly labelled sample tubes (Bibby Sterilin), further instructions 

and two further sealable bags in which to place their filled sample tubes. The only 
information that was requested was gender, age (age groups were acceptable) and if 

they were a smoker; no restrictions were placed upon volunteers diet or lifestyle. 

Volunteers were asked to place their filled sample tubes into one of three boxes 

spread across the department within two hours of donation; all samples were 
transferred to -80 °C storage within two hours of donation, indicated by the majority 

of samples still being warm upon collection of the boxes. A total of 62 samples were 
donated, 39 from males and 23 from females. All data relating to the samples is 

presented in appendix A. 

2.1.2. Clinical urine sample collection 

Full ethical approval was obtained for the collection of urine samples from patients 

suffering bone fractures. A registrar orthopaedic surgeon collected clinical urine 

samples from patients suffering a fracture who were admitted to York District Hospital 

NHS Trust's accident and emergency department between October 2004 and 

February 2005. The inclusion criteria was that patients were between the ages of 18- 

45 to reduce any chance of pathological fractures or incomplete skeletal 

development; initially only long bone fractures were considered, but due to the lack of 

long bone fractures, the study was opened up to wrist and ankle fractures. Further 

exclusions were patients who had suffered multiple injuries, had malignancy, head 

injuries, spine/foot/hand fractures, pregnant or nursing mothers and any unconscious 

patients. A total of 61 patients were deemed suitable for inclusion into the study (45 
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males and 16 females); of these, 11 declined consent stating either lack of interest or 

a needle phobia', with a further two patients withdrawing consent at a later date, and 

one being transferred into the care of another health trust. This left a total of 48 

patients (36 males and 12 females, with an age range of 19 to 47 years old; average 

age = 29.5, standard deviation = 8.2), who each donated between one and four urine 

samples, ranging from a period of t=0 (time of fracture) to 133 days (19 weeks) after 
the initial fracture (average =6 weeks). 

A total of 12 different fracture types were included in the study, with the largest 

sample cohort being ankle fractures (51 urine samples). All obtained data relating to 

the clinical urine samples are presented within appendix B. 

2.2. Sample storage 

2.2.1. Samples collected from volunteers within the Department of Chemistry, 

University of York, UK 

Upon collection, donated urine samples were stored at -80 °C for a period of four 

weeks before being subject to further manipulations (section 2.3), and stored at -80 
°C after these manipulations. 

2.2.2. Clinical urine samples 

Clinical urine samples were stored at -80 °C at Smith & Nephew, York Science Park, 

UK. Samples were aliquotted (section 2.3) and stored at -80 °C until transport to the 

Department of Chemistry on dry ice for analysis. 

2.3. Sample manipulations 

All urine samples were defrosted at room temperature before being aliquotted into 

microcentrifuge vials (Sarstedt) and re-frozen at -80 °C prior to any further sample 

preparation and analysis. The samples collected from within the department were 

Serum samples were also collected for a parallel study by Smith & Nephew into serum markers related 
to fracture repair; any patients with needle phobia were excluded from the trial. 
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used to create a pooled reference sample by transferring 1 mL from each sample into 

a beaker before mixing and aliquotting this pooled reference sample. 

2.3.1. Samples separated using RP 

For analysis using RP-LC-MS, all urine samples were defrosted at room temperature 
before being centrifuged at 10,186 xg for 8 min (GenFuge 24D, Progen). The 

supernatant was collected and passed through a 0.45 pm PVDF syringe filter (VWR) 
into sample vials fitted with 250 pL deactivated glass inserts (Agilent Technologies), 

ready for analysis. 

2.3.2. Samples separated using HILIC 

For analysis using HILIC-MS, all urine samples were defrosted at room temperature 
before being mixed in a 1: 1 ratio with MeCN (Fisher Scientific). The samples were 
then centrifuged at 10,186 xg for 8 min (GenFuge 24D, Progen). The supernatant 
was collected and passed through a 0.45 pm PVDF syringe filter (VWR) into sample 
vials fitted with 250 pL deactivated glass inserts (Agilent Technologies), ready for 

analysis. 

2.3.3. Sample re-analysis using RP (clinical samples) 

To precipitate and remove the protein present in the clinical urine samples prior to 
RP-LC-MS analysis, the samples were treated as described in section 2.3.2. 

2.4. HPLC separations 

2.4.1. RP separation 

Urine samples were separated on a 100 x 4.6 mm Chromolith RP18e column 
(Merck), along with a guard column (5 x 4.6 mm), on an an Agilent 1100 LC (Agilent 

Technologies). Mobile phase A was 0.1 % (v/v) formic acid (Fisher Scientific), while 

mobile phase B was MeCN (Fisher Scientific) modified by the addition of 0.1 % (v/v) 

formic acid (Fisher scientific). The gradient started with 5% mobile phase B, 
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increasing to 20% B at 9 min, and then to 95% B at 21 min. The mobile phase was 
held isocratic for 3 min before returning to the starting conditions within 3 min (total 

run time was 30 min). The injection volume was 20 pL, and the column was eluted at 

a flow rate of 600 pL min-'. 

2.4.2. HILIC separations 

Urine samples were separated using a 3.5 pm, 100 x 4.6 mm ZIC-HILIC column 
(SeQuant), along with a guard column (20 x 2.1 mm), on an an Agilent 1100 LC 

(Agilent Technologies). Three gradients were developed, with gradient three (section 

2.4.2.3) being used for all HILIC separations in this thesis. 

2.4.2.1. Gradient 1 

Mobile phase A consisted of 0.1 % (v/v) formic acid (pH 4, Fisher Scientific), while 

mobile phase B consisted of MeCN (Fisher Scientific) modified by the addition of 0.1 

% (v/v) formic acid (Fisher Scientific). The gradient started with 5% mobile phase A 

increasing linearly to 20 % over a period of 9 min, with a further increase to 95 % 

over 12 min before being held isocratic for 3 min before returning to the starting 

conditions within 3 min. The mobile phase was kept at 5%A for the remaining time 

to allow equilibration (total run time was 30 min). The injection volume was 20 pL, 

and the column eluted at a flow rate of 600 pL min-'. 

2.4.2.2. Gradient 2 

Mobile phase A consisted of 0.1 % (v/v) formic acid (pH 4, Fisher Scientific), while 

mobile phase B consisted of MeCN (Fisher Scientific) modified by the addition of 0.1 

% (v/v) formic acid (Fisher Scientific). The gradient started with 5% mobile phase A 

increasing linearly to 95 % over a period of 15 min. The mobile phase was held 

isocratic for 4 min before returning to the starting conditions within 30 s. The mobile 

phase was kept at 5%A for the remaining time to allow equilibration (total run time 

was 30 min). The injection volume was 20 pL, and the column eluted at a flow rate of 

600 pL min-'. 
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2.4.2.3. Gradient 3 

Gradient 3 used the same parameters as shown in section 2.4.2.2 with the only 
difference being the addition of 5 mM ammonium acetate (Fisher Scientific) to mobile 
phase A. 

2.5. LC-MS(MS) analysis 

2.5.1. ESI parameters 

A TurbolonSpray source (Applied Biosystems) was used for all ESI analyses. The LC 
outlet from an Agilent 1100 series HPLC was directly coupled with no splitting. The 
capillary voltage was held at ±2500 V depending upon the ionisation mode; N2 

nebulising gas, 3.3 L min-'; and N2 drying gas, 6.0 L min-' at 300 °C. 

2.5.2. APCI parameters 

The LC outlet from an Agilent 1100 series HPLC was directly coupled to an APCI 

source (Applied Biosystems) with no splitting. The nebulising current was held at ±2 
(arbitrary units) depending upon the ionisation mode; N2 nebulising gas, 3.8 L min"'; 
and N2 drying gas, 1.5 L min-' at 425 °C. 

2.5.3. MS parameters 

ESI and APCI Q-o-ToF MS experiments were performed using an Applied 

Biosystems QStar pulsar / quadrupole orthogonal time of flight tandem MS. The MS 

was operated in full scan mode with m/z range of 40-1000 using the following 

parameters (depending upon the ionisation polarity being used): focussing potential = 

±145 V; declustering potential = ±45 V; declustering potential 2= ±15 V; quadrupole 
2 gas pressure =2 (arbitrary units). For positive ionisation mode the following 

additional parameters were used: mirror = +985 V; liner = -400 V; plate = +330 V; 

grid = -400 V; offset = -11.3 V, and for negative ionisation mode: mirror = -985 V; 

liner = +400 V; plate = -330 V; grid = +410 V; offset = -25.4 V. Data were recorded 
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using the Analyst QS v1.1 software (Applied Biosystems). 

2.5.4. MS/MS parameters 

All CID tandem MS experiments used the same conditions as those in section 2.5.3 
(except the quadrupole 2 gas which was set at 5 (arbitrary units)). In addition to these 

conditions, the independent data acquisition setting was used with the following 

settings: the four most intense peaks were selected for CID at collision energies of 20 

and 25 (arbitrary units), with dynamic exclusion set to 120 s to prevent the re- 
analysis of precursor ions already selected for CID. An `include list' was used to 
include any ions that should be automatically selected for CID should they appear in 

an MS survey `scan'. 

2.6. Data extraction and normalisation 

2.6.1. Data extraction 

Raw LC-MS data were exported using the metabolomics export script (Applied 

Biosystems). Peaks files were created prior to generating a 3D data matrix of m/z 

and tR versus intensity for each sample analysed. The following settings were used: 
tR tolerance, 0.5 min; LC peak width (min/max), 0.1/10 min; intensity threshold, 10 

counts s-1 for positive ionisation mode and 1 count s-1 for negative ionisation mode; 

mass accuracy, 200 ppm; maximum peak number, 5000. The data were exported as 

a text file (ASCII format), ready for import into Excel (Microsoft) for further data 

manipulation and the addition of sample information. 

2.6.2. Normalisation 

Extracted data were imported into Excel (Microsoft) and were either normalised to 

creatinine intensity or total ion count, depending upon the experiment. Normalisation 

to creatinine was performed by finding the most intense creatinine value, and dividing 

all other observations (samples) creatinine intensity by this value. The resulting scale 

factor for each observation was then used to multiply each variable within that 

observation. 
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Normalisation to total ion count was performed by summing the intensities of all 
variables for each observation (sample), with the resulting value for each observation 
being divided by the largest total ion count value. The resulting scale factor for each 
observation was then used to multiply each variable within that observation. 

All resulting data were saved as a text file in the ASCII format. 

2.7. Statistical analysis 

All statistical analyses used the SIMCA-P+ statistical software versions 11 and 11.5 
(Umetrics). 

2.7.1. Data import 

All datasets were imported as text files into SIMCA-P+, where they were transposed 

so that each column represented an observation. Any information such as sample 

name, sample data etc. were assigned one of the following formats: primary 

observation ID; secondary observation ID; X variable (all of the variable intensities), 

and Y variable (discriminatory variables). Once all formats were set, the resulting 
imported data were ready for statistical analysis. 

2.7.2. Principal component analysis 

For principle component analysis (PCA), all Y variables were excluded from the data 

and the resulting X matrix scaled using either mean centering, pareto scaling or unit 

variance. The number of principal components (PCs) developed was determined by 

R2 and Q2 values; these values relate to the explained variation and give an 

indication of the fit of the model and its predictive ability. Internal cross-validation 

(CV) was used to determine an optimal balance between fit and predictive ability and 

to determine the number of components used for each model. Data points in the 

resulting scores plot can be coloured according to any secondary observation IDs set 

(section 2.7.1). 
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2.7.3. Partial least squares 

For partial least squares (PLS) analysis -2/3 of any dataset were used for PLS model 
development (with the remaining -r1/3 being held back to form an external test set, 
section 2.7.4), with aY variable being included to indicate class belonging. The X 

matrix was scaled using either mean centering, pareto scaling or unit variance. The 

number of latent variables (LVs) developed was determined using the R2 and Q2 

values, as described in section 2.7.2. Variable importance for projection (VIP) scores 

were used to identify and assess unimportant variables that did not add any 
predictive ability to the developed model. Any unimportant variables were removed 
and the model rebuilt with the process repeated. Once a satisfactory PLS model has 
been built, the resulting scores plot can be coloured according to any secondary 
observation IDs or Y variables set (section 2.7.1). 

2.7.4. External classification 

To determine the `true' predictive ability of any developed PLS model, the remaining 

-1/3 of a dataset were imported as a secondary dataset and manipulated according to 

section 2.7.1, before being selected as a prediction dataset. The resulting predicted 
Y variable values were used to indicate the external classification rate based upon 
their closeness to their actual Y variable values. 

2.8. Proteomics 

2.8.1. Bradford assay 

Each of the clinical urine samples were diluted by adding 5 pL to 995 pL of HPLC 

grade water (Fisher Scientific). Eight diluted bovine serum albumin standards (0,50, 

125,250,500,750,1000 and 1500 pg/mL) were created. 10 pL of each of the 

standards and diluted clinical urine samples were pipetted into 96-well microtitre 

plates (Corning Inc. ). 200 pL of Coomassie brilliant blue dye (Sigma) was added to 

each of the standards or samples. A photometer microplate reader (Dionex 

Technologies) set to measure absorbance at 570 nm was used to determine protein 

concentration. 
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2.8.2.1-D gel electrophoresis 

For the separation of urinary proteins using 1-D SDS-PAGE analysis, 18 pL of diluted 

clinical urine samples (5 pL in 1000 pL water) and MW marker standards (Invitrogen) 

were added to 7.5 pL of NuPAGE buffer (Invitrogen) and 4.5 pL of 2- 

mercaptoethanol (Invitrogen), giving a total volume of 30 pL. These solutions were 
incubated at 75 °C for 10 mins before 20 pL of each sample were loaded onto a 1-D 

NuPAGE 4-12 % Bis-Tris 1 mm 10-well gel (Invitrogen). The gel was run at a 

constant voltage of 200 V for ca. 50 min. Once completed, the gel was washed in 

water for 20 min before being stained overnight using Coomassie brilliant blue dye 

(Sigma). 

2.8.3. In-gel tryptic digestion 

Protein bands were excised from the stained gel, chopped into smaller segments 

and placed into 0.5 mL microcentrifuge vials (Sarstedt). Each of the excised gel 

pieces were washed twice using 20 mM ammonium bicarbonate (Sigma) in MeCN 

(Fisher Scientific) for 20 min. The gel pieces were then washed for 5 min using 

MeCN, before being dried for 20 min in a SpeedVac (Savant) and then incubated at 

65 °C for 1h in 10 mM dithioerythritol (Sigma) in 100 mM ammonium bicarbonate. 

The gel pieces were then subsequently washed with 100 mM and then 25 mM 

ammonium bicarbonate for 15 min before being washed with MeCN for 5 min. The 

gel pieces were dried in a SpeedVac for 20 min before being digested overnight by 

incubating the gel pieces at 37 °C with 10 pL of 0.02 pg/pL trypsin (porcine trypsin, 

Promega) in 20 mM ammonium bicarbonate. The supernatant from each 

microcentrifuge vial was then extracted using C18 ZipTips (Millipore) before 0.5 pL 

was spotted onto MALDI plates, ready for analysis. 

2.8.4. MALDI-ToF/ToF analysis 

The 4700 proteomics analyzer (Applied Biosystems) was used to analyse the 

digested proteins from the clinical urine samples. To each of the spotted digested 

samples, 0.5 pL of a-cyano-4-hydroxycinnamic acid (Sigma) in 0.1 % TFA (Sigma) 
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were spotted and allowed to air dry. First, MS spectra were recorded for each sample 

spot to identify the ten most intense peaks for subsequent MS/MS analysis, using 
1500 laser shots and accumulating the resulting data. MS/MS data were acquired 

using the default 1 kV MS/MS method, with a maximum of 2000 laser shots being 

allowed for each spectrum; air was used as the collision gas. 

2.8.5. Protein identification by database searching 

Data obtained from MS/MS analyses were submitted for database searching using 
an in-house MASCOT server (Matrix Science). GPS Explorer v3.6. (Applied 
Biosystems) was used to submit the data for database searching using the following 

parameters: MS/MS ion search; trypsin enzyme; monoisotopic mass values; 

unrestricted protein mass; 200 ppm mass tolerance; ±0.1 Da fragment mass 
tolerance. All searches were performed against the NCBInr protein sequence 
database (06 July 2007 build). 

2.9. Lipopeptide analysis 

2.9.1. Sample information 

A HPLC fraction obtained from an ethyl acetate extract of Pseudomonas chlororaphis 
PCL 1391 spent growth medium was provided by the Department of Biology, 

University of Leiden, the Netherlands. The fraction was reconstituted in 300 pL of 
MeOH (Fisher Scientific) before being diluted to 25 % using MeOH modified by the 

addition of 0.1 % (v/v) formic acid (Fisher Scientific) for further analysis. 

2.9.2. ESI-MS(MS) analysis 

The same parameters were used as shown in section 2.5.3 and 2.5.4. 

2.9.3. MALDI-ToF/ToF analysis 

The same parameters were used as shown in section 2.8.4. 
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2.9.4. Chemical methods 

To cleave the ester bond to create a linear lipopeptide, 10 pL of diluted sample was 

added to a 1: 1 mixture of 35 % ammonia solution (Sigma) and MeOH, and left 

overnight at room temperature. The sample was reduced to dryness using a 
SpeedVac and reconstituted in MeOH with 0.1 % (v/v) formic acid. 

The above procedure was also undertaken using a 1: 1 mixture of 35 % ammonia 

solution and BuOH (Fisher Scientific). 

2.9.5. Racemic amino acid analysis 

Racemic amino acid analysis was performed with the assistance of Dr. Kirsty 

Penkman (Department of Chemistry, University of York). 10 pL of stock lipopeptide 

was added to 200 pL of 7M HCI (Fisher Scientific), the vial flushed with N2 gas, and 
then placed in an oven (Binder Ovens) for 24 h at 110 °C, to hydrolise the peptide 
bonds, releasing free amino acids into solution. The hydrolysed sample was reduced 
to dryness in a SpeedVac before being rehydrated in 40 pL 0.01 M HCI and 1.5 mM 

sodium azide (Sigma), containing the non-protein amino acid L-homo-Arg at a 

concentration of 0.01 mM. 

The rehydrated solution was analysed using RP-HPLC (C18 HyperSil BDS column, 5 

x 250 mm, Agilent 1100 series LC, Agilent Technologies) where 2 pl of sample was 

injected and mixed online with 2.2 pl of derivitising reagent (260 mM N-Iso-L-butyryl 

L-cysteine (Sigma), and 170 mM o-phthaldialdehyde (Sigma) in 1M potassium borate 

buffer (Sigma), adjusted to pH 10.4 with potassium hydroxide pellets). Mobile phase 

A consisted of 23 mM sodium acetate tri-hydrate, 1.5 mM sodium azide, 1.3 pM 

EDTA, adjusted to pH 6.00 with 10% acetic acid and sodium hydroxide (all Sigma), 

mobile phase C was methanol and mobile phase D was MeCN. Initially 95% A and 

5% C was used at a flow rate of 0.56 ml min-', changing to 50% C and 2% D after 95 

min. Fluorescence detection used a Xenon-arc flash lamp at a frequency of 55Hz, 

with excitation wavelength of 230nm and emission wavelength of 445nm. 
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Development of a `metabonomic 
toolbox' 

The work presented in this section formed part of the following publication: 

"Hydrophilic Interaction Chromatography for Mass Spectrometric 
Metabonomic Studies of Urine" 

Simon Cubbon, Timothy Bradbury, Julie Wilson, and Jane Thomas-Oates 

Analytical Chemistry, Volume 79, Number 23, pages 8911 - 8918. 



Chapter Three: Development of a `metabonomic toolbox' 

3.1. Introduction 

One of the earliest metabolite profiling experiments was performed by Pauling et al, 
in 1971 (Pauling et al., 1971); they quantitatively studied around 250 substances in a 

sample of breath and 280 substances in a sample of urine vapour using gas-liquid 

chromatography. The field now known as metabonomics, defined by Nicholson et al. 
in 1999 (Nicholson et al., 1999), is in its infancy today, and is very rapidly 

changing/developing direction. Many overlapping fields of medicine/biology, 

analytical science and statisticians are all bringing many different ideas to 

metabonomic studies; the literature is currently very patchy as some details are just 

not reported, so it cannot be found if the details were, or were not considered, or how 

they were undertaken. These problems are further confounded, as some 

considerations that are important to analytical scientists may be very different from 

those that are important to medics (e. g. replicates, appropriate controls, sample 

storage and analytical conditions). The metabolomics standards initiative (MSI) 

steering group (Sansone et al., 2007) seeks to standardise most aspects of 

metabolomic (metabonomic) experiments. However, as the MSI has only just 

published some draft guidelines (Metabolomics volume 3,2007), the existing 
literature studies are likely to be non-standard. 

It is therefore of great importance that all aspects of a metabonomic study are 

carefully considered and controlled to stand any chance of obtaining results that are 

both robust and informative. The main goal of a metabonomic study is to obtain as 

much information as possible. This may encompass the use of several different 

analytical platforms, as well as considering and employing methods specific to each 

analytical platform. The only fixed aspect of the study which is the subject of this 

PhD. was the use of HPLC-MS as the analytical platform, hence the need to develop 

LC methods that allow for the separation, and subsequent detection, of as broad a 

range of compounds within human urine samples as is possible. 
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3.1.1. Aims 

The purpose of the work described in this chapter was to develop a robust LC-MS 

platform for the analysis of human urine samples, as well as the full consideration 

and development of all components of every step of a metabonomic study, as shown 
in figure 3.1.1. 

Design of experiment II* Sample collection il* 

Which analytical platform? 
Data extraction fII it 

Data normalisation 
Making sense of the results 

Figure 3.1.1. Schematic representation of the steps involved in a metabonomic 
study. 

As the analytical platform was fixed (LC-MS was chosen as the platform for this 

study), the methods that were available at the start of this work, along with the 

problems associated with LC-MS are first highlighted. This is followed by the results 

of my in-depth study of all of the aspects involved in a metabonomic study (figure 

3.1.1). 

Considering all of the points of a metabonomic study should allow the development 

of a robust LC-MS method (or a metabonomic toolbox) that can be effectively used 

within a broader experimental protocol. To increase the coverage of the metabolite 

content within human urine, a hydrophilic interaction liquid chromatography method 

(HILIC) was developed and compared to the performance of a traditional reversed 

phase (RP) approach. 

System stability? 

Sample preparation/storage 

411 Sample analysis 

Careful model development 
II* Statistical analysis II$ t 
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3.2. Analytical Platform Considerations 

3.2.1. Introduction 

The analytical platforms used for this study were an Agilent 1100 series HPLC 

coupled to an Applied Biosystems QStar Pulsar i ESI-Q-o-ToF, however, other 

analytical platforms are available and should be compared to the platforms used here 

to allow the relative advantages and disadvantages for each to be assessed, as 
these can have a dramatic effect on the results obtained. The majority of 

metabonomic studies began using ' H-NMR, although LC-MS is now becoming more 

commonplace (Lenz and Wilson, 2007). Whichever platforms are utilised for a 

metabonomic study, no one single analytical technique can be considered to provide 

a completely comprehensive picture of the compounds contained within a biofluid. 

3.2.2. Analytical platforms and separation techniques 

Early metabonomic studies used'H-NMR as their analytical platform. 1H-NMR is a 

very reproducible technique that suffers less analytical bias than other platforms due 

to its universal detection of compounds, providing that they contain a proton. As LC- 

MS systems increased in reliability, and the field of metabonomics evolved, the 

increased sensitivity (superior to that of NMR) and stability afforded by the latest LC- 

MS platforms has led to its increased usage within the field. 

There are many different MS platforms available; the Q-o-ToF instrument used in this 

study has the capability to provide tandem MS data with resolutions approaching 
10,000 with a mass accuracy typically better than 20 ppm. However, the data 

collection rate is rather slow (typically 1s per `scan') compared to other MS 

techniques. Triple quadrupoles (QqQ) can also perform tandem MS (along with other 

MS experiments) but have lower levels of resolution and mass accuracy compared to 

ToFs. Ion traps (IT) can perform successive CID experiments, however, they typically 

have to perform many CID steps to gain similar data to those in a single step on a Q- 

o-ToF. IT's resolution and mass accuracy are poor compared to a Q-o-ToF, which is 

not desirable for accurate mass measurements - something that can be important for 

metabonomic studies. A recent `enhancement' of the IT is the orbitrap; it combines a 

linear IT with a subsequent IT where ions are maintained within the trap; their mass 

being recorded by the cyclic motion of ions passing between the ends of the trap. 
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This technique affords very high resolution, mass accuracy, data acquisition rates 

and in-depth structural characterisation properties comparable with a traditional IT. 

Whichever MS detection technique is used, some form of front-end separation is 

required for complex biofluid matrices. 

Gas chromatography (GC) coupled to MS was the traditional approach to 

metabonomic studies due to its high resolving power and reproducibility. Since as 

much information as possible is desired for metabonomic studies, GC as a 

separation method is largely unsuitable for biofluid analysis (Kopka, 2006). This is 

due to the fact that compounds need to be volatile in order to be separated and 
therefore analysed. As urine predominantly contains compounds of a polar nature, 
the majority of these would fail to be detected using GC as a separation technique. 

Derivatisation can be carried out in order to increase the number of volatile 

components, but can be a lengthly process that is not 100 % efficient and also 

changes the chemical structure of compounds being derivatised. Given the nature of 

metabonomic studies, high throughput experimentation is often required which 

cannot be obtained using GC due to the lengthly analysis times. 

One separation method which is gradually gaining more attention for metabonomic 

studies is capillary electrophoresis (CE) (Wang and Liao, 2004; ladarola et al., 2005; 

Pisitkun et al., 2006; Ullsten et al., 2006). CE has the ability to separate components, 
in urine for example, using an aqueous medium with only small injection volumes (in 

the nL range, compared to µL range used for GC and LC). Despite the apparent 

benefits that CE should offer as a separation technique, it has failed to make any 

appreciable mark in metabonomic research. Only a handful of papers have utilised 
CE (some coupled to MS) successfully (Ullsten et al., 2006; Monton and Soga, 2007; 

Soria et al., 2007), and even then the systems were targeted and therefore not 

comprehensive. The reasons behind the apparent failure of CE-MS to make 

headway in metabonomic research may be due to the poor reproducibility of 

migration times, as well as the problems associated with joining the capillary to an 

ES source successfully. Work previously carried out within the JTO and associated 

groups (Emma Edwards, Ed Bergstrom, Cristina Soria and Julie Wilson) has 

highlighted CE's current unsuitability for metabonomic studies. Undertaking statistical 

analysis using data generated by CE proved to be near impossible due to large 

deviations in migration time, baseline shifts, capillary degradation and instability of 

the capillary interface. As the technology advances, CE may become a viable 
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separation technique, but for now appears to be inappropriate for the separation of 

biofluids in large-scale metabonomic experiments. 

Separation using HPLC is now the most common method currently employed for the 

separation of components in biofluids prior to analysis by MS (Bajad and Shulaev, 

2007; Chen et al., 2007; Hodson et al., 2007; Lenz and Wilson, 2007; Wagner et al., 
2007). Using such a separation technique can reduce (but not remove) the effects of 

matrix suppression (Taylor, 2005; Chambers et al., 2007) when coupled to an 
ESI/APCI interface. Matrix suppression can reduce the number of compounds that 

can be detected within a sample, thus reducing the coverage of compounds present 

and increasing the selectivity of LC-MS as a metabonomic platform. Despite LC 

being the most common separation method used for MS studies, many fail to 

appreciate the importance of choosing a column, as this dictates the bias towards 

particular classes of compounds that can be retained and therefore detected. The 

overwhelming majority of metabonomic studies utilise a reversed phase approach; 

this discriminates against polar compounds, which are likely to be the main 

components of biofluids, due to their aqueous nature. Some studies have utilised 
hydrophilic interaction LC (HILIC) (ldborg et al., 2005; Hemström and Irgum, 2006; 

Mawhinney et al., 2007) as a complementary separation method. The development 

of a HILIC separation approach is assessed in section 3.6. 

Whilst reasonable analysis times can be obtained using HPLC', development of this 

method called ultra-performance LC (UPLC), which should perhaps more correctly 

be called small particle LC, is gaining attention within the literature (Wilson et al., 

2005; Crockford et al., 2006; Nordstrom et al., 2006; Bruce et al., 2007; Lenz et al., 

2007; Rainville et al., 2007). UPLC uses sub 2 pm particles, which enable far 

superior separation and resolution than particle sizes typically used in HPLC (> 2 pm) 

(Churchwell et al., 2005; Plumb et al., 2005; Wilson et al., 2005). HPLC has a 

maximum pumping pressure of less than 400 bar, whereas UPLC typically uses 

pressures that can exceed 700 bar (Churchwell et al., 2005), which is required when 

using sub 2 pm particles. At such high pressures, run times can be reduced to a 

fraction of those used in HPLC separations, whilst maintaining a greater resolving 

1 Monolithic columns (chapter one) have allowed reductions in analysis time and increases in sensitivity 

and stability to be obtained for proteomic experiments (Premstaller et al., 2001; Wienkoop et al., 2004; 

Chen et al., 2005; Ault, 2007; Sumpton 2007); their uptake in metabonomics seems much slower. 

90 



Chapter Three: Development of a 'metabonomic toolbox' 

power and increasing the possibility of allowing the detection of more compounds 
(Churchwell et al., 2005; Plumb et al., 2005; Wilson et al., 2005). 

Using UPLC separation methods does discriminate against certain MS platforms due 

to the peak widths that can be obtained (less than 1s at half-height). For example, 
the Q-o-ToF used in this study typically has an acquisition speed of 1 s, meaning that 

some peaks may go undetected. Lenz et al. utilised an orthogonal ToF MS with 
UPLC separation, obtaining peak widths of -3 s at half-height (Lenz et al., 2007); this 

would still be too short for tandem MS experiments where the total acquisition times 

can approach 10 s (again for the Q-o-ToF used in this study). 

3.2.3. Ionisation methods 

The output of CE and LC is in liquid form, and MS requires gas phase ions; as such, 
there are different sources that can generate gas phase ions from liquid. The most 

common and universal interface is electrospray ionisation (ESI) and its related 
techniques (micro ESI and nano ESI), the use of which is dependent upon the flow 

rate from CE/LC. The largest problem with ESI is the fact that it suffers from matrix 

effects (Taylor, 2005); this is where co-eluting compounds compete for the `ion- 

stream', generally resulting in a decrease in ionisation efficiency for some 

compounds (or the enhancement of other compounds). Whilst the exact mechanism 

of matrix effects are unknown, it is postulated that polar compounds fail to reach the 

surface of the charged droplets formed, therefore not being transferred into the gas 

phase (Bonfiglio et al., 1999; King et al., 2000). Given that most biofluids contain a 

high proportion of polar content, then the use of ESI as an ionisation method seems 

perhaps not ideal. APCI is a complementary method of ionisation that is analogous to 

ESI. 
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Figure 3.2.1. A comparison of the different methods of ionisation for the two 
complementary ionisation methods: ESI and APCI. 

Figure 3.2.1 compares the two mechanisms of ionisation in ESI and APCI. ESI 

creates many small, charged droplets. The polar more contents tend towards the 

centre of a droplet, away from the charged surface where the more hydrophobic 

content resides, therefore having a greatly reduced chance of being transferred into 

the gas phase as an ion. Conversely, APCI generates neutrals first, meaning that a 

mixture of polar and non-polar neutrals is created. After the generation of neutrals, 

molecules are charged (creating gas phase ions) by the production of electrons at a 

corona discharge needle, which in turn allows proton transfer (or adduction) to occur. 

This ionisation method does not discriminate against polar compounds to the extent 

that ESI does, therefore allowing greater ionisation efficiency for polar compounds. 

A recent advance by Shimadzu is the development of a dual APCI/ESI source which 

allows both methods of ionisation to occur at the same time, should increase the 

overall ionisation efficiency over a broad range of compounds, from highly polar to 

non-polar, thus making it potentially highly suitable for LC-MS metabonomic studies 

(Shimadzu). 

One final ionisation source that has recently been reported for use in metabonomic 

studies is desorption-ESI (DESI) (Pan et al., 2007). DESI-MS works by 'firing' a 

stream of gas phase ions (generated by ESI of a suitable solvent) at a target with a 
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sample on it, where secondary ions are formed by collisions of primary ions with the 

sample deposited on the target. Whilst this is a crude method where many non- 

volatile compounds may fail to be ionised (personal conference notes), Pan et al. 
have shown that the technique can provide a rapid analysis of many samples 
(acquisition times of less than 1 min per sample). This work parallels the work of 
Pauling et al. in 1971, which was one of the first metabolite profiling experiments 

undertaken (Pauling et a!., 1971). Despite this ionisation method being `snubbed' at 

conferences (personal conference notes) for its poor coverage of the metabolite 

content within biofluids, therefore technically not being a method suitable for 

metabonomics by definition, this simple approach may actually yield relevant 
biomarkers. Research by Willis et a!. showed that dogs could be trained to identify 

patients with bladder cancer "... on the basis of urine odour more successfully than 

would be expected by chance alone... " (Willis et a!., 2004). This suggested that 

volatile compounds related to tumours were present within the urine from cancer 

patients. There are many other stories of animals being able to detect illnesses much 

before any medical symptoms can be detected (BBC, 2007). As much of the 

research within the field of metabonomics concerns illnesses, as is so often the case 

with nature, maybe science can learn a lesson that sometimes simple methods may 

produce the best results? 

3.2.3.1. APCI validation 

In order to make a comparison of APCI and ESI sources for analyses of human urine 

samples, the only APCI source available for the Applied Biosystems QStar Pulsar i 

Q-o-ToF was used to analyse the urine samples obtained from volunteers from the 

Department of Chemistry, University of York. The urine samples were analysed using 

all of the considerations laid out in this chapter. From the first instance the APCI 

source proved unsuitable for metabonomic experiments, as any of the settings with 

respect to the positioning of the corona and nebulising source could not be 

maintained throughout data acquisition, due to the poor design of the source. 
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Figure 3.2.2. PLS scores plot for a gender response variable from positive mode RP- 
LC-APCI-MS data.  = samples from male volunteers, f= samples from female 
volunteers. 

Urine samples from volunteers within the Department of Chemistry were first 

analysed using RP-LC-APCI-MS. The PLS scores plot from analysing the positive 

mode RP-LC-APCI-MS data shows no clearly definable clusters based upon gender 
(figure 3.2.2). Clustering according to gender should have been observed, as was 

seen for PLS analysis of the same samples using RP-LC-ESI-MS (section 3.6), but 

proved impossible to obtain. This failure to obtain suitable data could be caused by 

the fact that the APCI source used was unable to cope with long data acquisition 

times (two to three days), as the corona discharge needle quickly became 

excessively dirty with deposits being formed, greatly reducing the ionisation efficiency 

over time; this was further highlighted when the urine samples were analysed using 

negative mode RP-LC-ESI-MS, as the corona again formed heavy deposits, 

completely reducing the ionisation efficiency, causing no data to be obtained for 

these analyses. The inability of the APCI source to produce robust data, along with 

the fact that any settings were hard to maintain with respect to the positioning of the 

corona and nebulising source made its further use impractical. Had a better APCI 

source been available, then APCI may have been appropriate for metabonomic 
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studies on the Q-o-ToF, especially in conjunction with a separation technique such 

as HILIC. 

3.2.4. Conclusions 

Given the vast array of different analytical techniques available for metabonomic 

studies, making the correct choice to obtain a `global fingerprint' of biofluid 

components is easier said than done. Despite this study being restricted to HPLC- 

ESI-Q-o-ToF MS, it is a platform that has the potential to provide sufficient, high 

quality, reliable data. As no single technique can provide a comprehensive analysis, 

combining platforms such as LC-NMR-(ESI/APCI)MS (Burton et al., 1997; Bajad et 

al., 2003) and fusion of complementary data (Kenney and Shockcor, 2003; Forshed 

et al., 2007a; Forshed et al., 2007b; Lenz et al., 2007; Zhengzheng and Daniel, 2007) 

should become the rule, rather than the exception. 
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3.3 Sample collection and analysis 

3.3.1 Introduction 

The design and implementation of a metabonomic study has to be very carefully 

considered if a successful output stands any chance of being achieved; that is 

achieving the original goals, or answering a hypothesis generated by analysing the 

data obtained. From the initial design of a study, to collecting the samples, and then 

their subsequent processing prior to analysis requires many different steps and 

challenges, all of which can have a considerable effect upon the end result. 

The main goal of a metabonomic study should be to produce a robust and 

comprehensive fingerprint of the biofluid chosen (Wilson et al., 2005; Lenz and 
Wilson, 2007; Sangster, TP et al., 2007), however, this is much easier said than 

done. Ideally, a broad range of analytical platforms (and techniques specific to each 

platform) should be encompassed to allow this idea of a `global' fingerprint to, at the 

very least, be considered. In reality, many studies, including this one, are limited by 

the available analytical platforms, amount of biofluid available, money and most 

important of all, time. 

3.3.2 Aims 

The aim of this section is to compare some of the methods currently used within the 

literature, and to highlight some of the many aspects of sample collection and 

analysis, which are all too often omitted from metabonomic studies. The data 

presented within this section was obtained by the analysis of urine collected from fit 

and healthy volunteers from the Department of Chemistry, University of York (unless 

otherwise stated). This section comprises initial considerations for sample collection, 

sample storage and pre-treatment, sample treatment prior to analysis, sample 

stability during analysis, repeat/blank injections, random analysis and importantly, 

system stability. 
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3.3.3 Results and discussion 

To begin a metabonomic study, it needs to be decided what question is trying to be 

answered; it is of no use collecting a biofluid from exclusively healthy 

donors/volunteers/animals if biomarkers related to kidney disease are sought for 

example (Dihazi and Muller, 2007). A carefully designed plan for collecting the 

desired biofluid should first be constructed. For the initial development work 

undertaken for this thesis, a broad cross section of urine samples that would ideally 

not be perturbed by influences of illness were sought. This was to both aid the 

development of a robust LC-MS system, highlighting some of the pitfalls that can be 

encountered with metabonomic studies, and to develop complementary LC 

techniques to attempt to increase the coverage of the urinary fingerprint by LC-ESI- 

MS methods (see section 3.6 - HILIC development). 

Members of the Department of Chemistry, University of York, UK, were contacted by 

e-mail requesting their help by donating two urine samples to aid methodology 
development. It was stressed that anonymity would be maintained throughout. Any 

volunteers were able to collect a sealed pack containing two randomly numbered 

sterile 25 mL sample tubes, two sealable bags and an instruction sheet informing 

them once more of anonymity and how to collect/deposit the donated urine samples. 
Volunteers were asked to provide the two mid-stream urine samples from the same 
day, the first being the first void of the day, and the second being any void after 15: 00 

(but before 18: 00). 

The only information requested from the volunteers was gender, time of collection, 

age and whether they were a smoker or not. All volunteers were advised that if they 

felt uncomfortable with providing age then they could provide an age range, similarly, 

they did not have to declare being a smoker if they did not wish to do so. After each 

sample was donated, the volunteers were asked to deposit them into one of three 

large, sealed, red boxes across the department as soon after donation as possible 

(confirmed by all samples still being warm upon collection). Any deposited samples 

were recorded and immediately stored at -80 °C until all samples were collected 

(appendix A contains all recorded data from the collection of these samples). 

The careful consideration of what samples were required, and their prompt collection 

and storage, is the initial priority towards obtaining good data. 
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3.3.3.1 Sample storage, stability and preparation 

Many metabonomic studies require time setted data, and as such, many samples are 

required to be stored for some time before all samples can be analysed. Some 

studies have added preservatives prior to storage, such as sodium azide', to inhibit 

bacterial growth (Saude and Sykes, 2007); immediate storage at -80 °C should be 

sufficient to inhibit bacterial growth (Lauridsen et al., 2007). The addition of 

preservatives prior to storage may have adverse effects upon the composition of the 

samples, and was therefore not used with samples collected for this study. 

Studies into the effects of urine storage at various temperatures have all come to the 

same general conclusions (LeBeau et al., 2001; Schneider et al., 2002; Fura et al., 
2003; Gika et al., 2007). Storing urine at room temperature without first filtering 

caused the concentration of some compounds such as benzoate, lactate and 

creatine to fluctuate, meaning that the urine samples were subject to degradation. 

Filtering the urine samples prior to storage at room temperature diminished the 

effects of degradation of benzoate and lactate, but failed to have any appreciable 

effect upon stopping the concentration of creatine from fluctuating (Saude and Sykes, 

2007). This suggests that filtering samples removes possible causes of degradation 

(such as bacteria) and can increase the stability of urine stored at room temperature. 

Whilst filtration may exclude some compounds from the samples (e. g. large proteins), 
filtering has a two-fold benefit, also removing sediment. 

Despite the centrifugation of urine samples collected from volunteers within York 

Chemistry Department at 10,186 g for 8 min, it was noticed that particulate matter still 

remained in some of the urine samples; injecting these samples onto an LC column 

would have quickly degraded its performance, as interparticulate spaces (or the 

guard column) could easily have become blocked, therefore increasing back 

pressure. Because of this, all samples were filtered through 0.45 µm PVDF syringe 

filters, removing any particulate matter and also helping to increase the stability of the 

samples at room temperature prior to analysis. Whilst the work by Saude and Sykes 

showed that for the short term (i. e. less than 8 hours), samples should be reasonably 

stable at room temperature and are therefore fine to be racked for analysis, it would 

be more suitable to store the samples in a temperature controlled rack to try and 

1 Sodium azide (NaN3) is a biocide that inhibits bacterial growth of gram-negative bacteria. 

98 



Chapter Three: Development of a 'metabonomic toolbox' 

diminish any degradation of compounds as much as possible (as was done by Gika 

et al. ). 

A study comparing endogenous urinary metabolites stored at room temperature and 

at -80 °C reported that the concentration of all metabolites studied altered 

significantly at room temperature, but remained reasonably stable over a four week 

period of storage at -80 °C (Saude and Sykes, 2007). Gika et al. reported that over a 

period of four weeks, storage at either -20 or -80 °C did not highlight any appreciable 
differences when the data collected from the LC-MS analysis of urine samples were 

compared by PCA. They do however, correctly point out that this is a `blunt analysis 
tool', and that some metabolites which do not have large influences upon the 

developed PCA model (heavily dependent upon the scaling method utilised) could in 

fact be subject to degradation, and not be highlighted by a change in the observed 

clustering shown by the PCA scores plot (Gika et al., 2007). 

As a result of earlier studies (LeBeau et al., 2001; Schneider et al., 2002; Fura et al., 
2003), it was decided that any samples collected for this study should be stored at - 
80 °C and allowed a period of at least four weeks for any degradation of urinary 

components to become consistent across the cohort, and only centrifuge and filter 

prior to analysis. More recent research specifically tailored for metabonomic 

experiments confirmed that the original choice to just store samples at -80 °C, and to 

centrifuge and filter prior to analysis were optimal (Gika et al., 2007; Saude and 

Sykes, 2007). 

After an initial four week storage period, aliquotting the urine samples collected from 

the Department of Chemistry into smaller portions was required to prepare aliquots 
for subsequent analysis and so minimise the number of freeze/thaw cycles required. 
Whilst Saude and Sykes recommend that the number of freeze/thaw cycles are kept 

to a minimum, Pisitkun et al. showed that up to four freeze/thaw cycles had little 

effect upon the composition of urine, and Gika et al. (again from PCA results) 

showed that up to nine freeze/thaw cycles did not effect clustering (Pisitkun et al., 

2006; Gika et al., 2007; Saude and Sykes, 2007). Despite the apparent stability of 

urine to freeze/thaw cycles, stored urine samples should be treated identically, and 

all possible manipulations should be undertaken at the first freeze/thaw cycle when 

samples are aliquotted; this should hopefully decrease the chances of any 

unnecessary degradation of urinary compounds. 
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3.3.3.2 System Stability 

Metabonomic studies were initially carried using NMR analytical platforms (Nicholson 

et al., 1999; Lenz et al., 2000; Robertson et al., 2000). NMRs are renowned for their 

reproducibility, not only from day to day, but also from laboratory to laboratory. These 

high levels of reproducibility are very desirable for metabonomic experiments. 
However, despite poorer levels of reproducibility, LC-MS metabonomic studies are 
becoming more common due to its higher sensitivity which should be more 

compatible for the large dynamic range and chemical complexity seen in a urine 

matrix (Want, EJ et al., 2005; Wilson et al., 2005; Want, E. J. et al., 2007). This is 

not to say that NMR is a redundant technique though; not everything can be detected 

by LC-MS (especially when ESI is utilised). NMR should be seen as a 

complementary method of analysis for metabonomic studies. However, it still remains 
that many changes within biofluids may be below the LOD obtainable from NMR 

studies. 

As LC-MS systems exhibit less reproducibility than NMR systems, the resulting data 

produced should be carefully scrutinised. There are many methods that can be used 

to increase and monitor the stability of an LC-MS system. 

LC-MS systems generally require some time to allow the whole setup (both the LC 

and MS side) to equilibrate. It is good practice to allow an LC column to equilibrate by 

first running a gradient (no sample injection) to condition the column. This initial 

gradient also allows the ESI chamber to heat up to the selected desolvation 

temperature (300 °C for all experiments described within this chapter), and 

electronics/optics to stabilise. 

During the aliquotting of samples collected from within the department, ca. 100 µL 

from each sample was held back to create a `pooled' sample that was representative 

of all the samples to be analysed. In order to evaluate system stability over a whole 

run, pooled samples were randomly included throughout any run with at least three 

pooled samples being run back to back at the beginning of the run, before the 

analysis of individual samples. 
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Figure 3.3.1. Five positive mode RP-LC-MS TICs from aliquots of pooled urine. The 
first three samples (A - C) were from run back to back at the beginning of data 
acquisition, with the remaining samples (D - E) being analysed throughout the run. 
Hashed red arrows indicate deviation from sample A. Inset shows a magnified 
portion of the TICs, highlighting a minor deviation in retention time. 

The data presented within figure 3.3.1 show five TIC traces from five replicate 

injections from pooled urine aliquots of the collected urine set from the Department of 

Chemistry. The first three traces were from back to back injections after the first initial 

conditioning gradient. The TIC traces generally appear to exhibit the same trend 

throughout the whole 30 min acquisition (only 20 min shown as this was the 

information rich section of TICs). The most noticeable deviations are for TIC A, the 

first sample analysed, and are highlighted by the hashed red arrows; all samples 

show some minor deviation in intensity. Inset into figure 3.3.1 is a magnified section 

of a low intensity peak at ca. 17.2 min. The first TIC (A) gave a retention time for this 

peak at 17.15 min, with the second subsequent TIC (B) at 17.18 min; despite the 

peak from TIC B having a retention time equal to all subsequent TICs, the intensity is 

slightly higher (and higher still for TIC A). The last sample from the back to back 

pooled urine injections (C) show a retention time of 17.18 min, which is consistent 

with the two further sample TICs (D & E) from pooled samples which were analysed 
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after individual samples had been analysed; the intensity of the three peaks (C to E) 

is also consistent. 

As the first and second TICs from the pooled urine aliquots differ from any 

subsequent pooled urine TICs, this suggests that the LC-MS system does indeed 

require time to equilibrate. The difference in retention time shown from 17.15 to 17.18 

min between the first and third (and subsequent) TICs correspond to <2 s, which is 

not a substantial deviation in retention time. To investigate these effects further, and 

to elucidate how different any eluting compounds were from TIC to TIC of the pooled 

urine aliquots, PCA was used to analyse the resulting data. 
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Figure 3.3.2. PCA scores plot using one principal component (y axis) comparing 
data from six LC-MS analyses of pooled urine aliquots. 

Figure 3.3.2 shows the resulting scores plot from the PCA analysis of six replicate 

LC-ESI-MS runs of pooled urine aliquots, with only one principal component being 

developed for the model (t[1] on the y axis). Point number one corresponds to the 

first injection, and resides just outside the green line, meaning that for this data point, 

it is over two standard deviations outside the average of the analysed data. All 

subsequent samples data (points two to six) are well within the two standard 

deviation lines and illustrate how each sample analysis was, statistically at least, 

equivalent to one another. 
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From the TIC traces (figure 3.3.1) and the PCA analysis of resulting LC-MS data from 

the analysed pooled urine samples, it is clear that the LC-MS system requires one to 

two samples to be injected and separated to enable the system to equilibrate. The 

reason why the LC-MS system does not produce reproducible results from the offset 

may lie with the chromatography itself. The LC column may require certain binding 

sites to be masked, or may just require conditioning to the type of compounds that 

are being analysed. The MS optics and electronics may heat up at the start of data 

acquisition, and therefore require a short period to reach equilibrium. 

The above data highlight the fact that LC-MS systems should be allowed to 

equilibrate by the injection of at least two pooled (or some other well defined 

standard) samples before analysis of samples from the test cohort. The inclusion of a 

pooled sample at random points throughout data acquisition can also act to serve as 

a marker for system stability, as the resulting TIC traces should be representative of 

stabilised TIC traces obtained at the beginning of data collection. PCA analysis of all 

pooled samples would easily highlight any anomalous pooled sample analyses, 

which would serve to identify any test sample data acquired around the anomalous 

pooled sample result that may need to be re-acquired, with this work coming to the 

same conclusions as Gika et al. and Sangster et al. (Sangster, T et al., 2006; Gika et 

al., 2007) (this PCA analysis could also be carried out on-line, immediately warning 

the operator of any deviation of system stability). 
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One further way to evaluate the ongoing stability and repeatability of an LC-MS 

system is to analyse a sample from the test cohort twice, with a number of other 

samples analysed inbetween each analysis. This method serves not only to evaluate 
the stability of the system, but to also evaluate the reproducibility of sample 

preparation methods, as any errors should become evident when the resulting data 

were processed. 
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Figure 3.3.3. PLS scores plot of positive mode RP-LC-MS data separated according 
to gender. The model utilised two latent variables and was optimised to methodology 
outlined in section 3.5. 

The data presented in figure 3.3.3 shows a PLS scores plot for the data from 

samples collected within the Department of Chemistry, separated according to 

gender using two latent variables. There is clear separation between samples 
donated by males and females, as was expected. The four points (all female) that lie 

outside the 95 % confidence margin (represented by the ellipse) were only found to 

be marginal outliers (see section 3.5). Four pairs of points correspond to the analysis 

of duplicate aliquots of four different samples, randomised throughout analysis. 

Samples 18a and 18b were analysed with ten other samples inbetween, which 

corresponds to 6.3 h between each sample being analysed; 7a and 7b had 11 

samples analysed inbetween, corresponding to 7.0 h between each sample; 58a and 

58b had 9 samples run inbetween, meaning 5.7 h inbetween each sample, and 
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samples 44a and 44b had 13 samples analysed inbetween, meaning 8.2 h lapsed 

between the replicate sample analysis. 

Each of the four pairs of points show the duplicate analyses residing within the same 

area on the PLS scores plot. Obviously, if the LC-MS system were highly 

reproducible, one would expect the two points to overlap exactly. The reason that 

each of the pairs of points are slightly offset from one another, can be explained by 

the ESI process. ESI is relatively unstable with respect to absolute reproducibility; 

minor fluctuations in the efficiency of ionisation occur. These fluctuations in ionisation 

efficiency can cause fluctuations with the recorded intensity of signal for compounds 

eluting when a fluctuation occurs. These minor variations in intensity can be 

translated into minor deviations from the values seen for a replicate analysis within 

the PLS scores plot, hence an imperfect overlap. Despite these minor variations, the 

observed overlap does suggest that the system as a whole was providing results that 

were repeatable. 

3.3.3.3. Sample Carryover 

Sample carryover can be a problem, as highly retained compounds may fail to elute 

during an LC run, and subsequently elute early during the analysis of a successive 

sample. Sample carryover is therefore an effect that is not desired for metabonomic 

studies as it could give rise to spurious results. To try and combat this problem, all 

LC gradients used for analysis within this project had extended wash cycles at the 

end of each gradient (see section 3.6 for more details). 

To evaluate the possibility of sample carryover, blank runs were randomly carried out 

during LC-MS data acquisition; this involved a gradient being run without the injection 

of any urine samples; only a 1: 1 mixture of McCN: H20 was injected. Any sample 

carryover from the previous sample injection should be visible in the resulting TIC 

trace of the blank run. 
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Figure 3.3.4. Two TIC traces from a positive RP-LC-MS analysis. The blue trace 
corresponds to a sample run before a blank gradient with no sample injection was 
recorded (red trace). 

Figure 3.3.4 shows comparison of a sample TIC and a subsequent blank injection of 

solvent; the red trace corresponds to the blank while the TIC from the sample that 

was recorded immediately before it, is shown by the blue trace. The baseline from 

the blank gradient does not show any appreciable deviation from the 1000 cps 

intensity value seen for both the sample (first two minutes, corresponding to the dead 

volume) and the blank. There is a sharp dip in intensity for both traces evident at ca. 

27 min, which may be caused by a persistent contaminant eluting from the column 

which causes suppression of ionisation (matrix effects); this could also be true for the 

only minor peak shown at ca. 29 min. The peak present in the blank TIC corresponds 

to a mass of 84.95 Da, and was also present in every TIC trace for all other blanks, 

pooled samples and samples, suggesting that it is a persistent contaminant in 

solvent. Clearly, the adopted cleaning strategy was sufficient to avoid sample 

carryover. 
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3.3.3.4. Random sample analysis 

Over time as many samples are analysed the levels of contaminants may alter, or 
more typically, the LC-MS system may develop a systematic drift. If all samples 
within a group were analysed consecutively, then any trends could falsely aid 
discrimination between different groups. Therefore, when performing a metabonomic 
study (or indeed any study) involving many samples, which is aimed at trying to 

elucidate some underlying factors, samples should be analysed in a random order. 

3.3.4. Conclusions 

To obtain results that enable robust statistical models to be generated, one has to 

ensure that all sources of possible error, or unwanted perturbations to data are 

controlled as much as is possible to ensure that the phrase `rubbish in = rubbish out' 
does not become a reality. 

All studies should begin with careful planning and preparation before samples are 

collected. The work presented within this section shows that a carefully constructed, 

logical approach to sample collection and data acquisition is required. From the 

literature, it is recommended that samples should be frozen at -80 °C as soon as 

possible, and be left for a period of at least one month before being aliquotted to 

allow the degradation of any compounds to be consistent across the sample cohort; 

the data presented herein suggest that this was suitable. Freeze/thaw cycles should 

be kept to a minimum, meaning that any sample manipulation should be undertaken 

during aliquotting to ensure that all samples are treated equally and subjected to the 

same minimal levels of freeze/thaw cycles and manipulations. 

As the goal of a metabonomic study is to obtain as representative a picture of the 

compounds present within the chosen biofluid as possible, any sample pre-treatment 

which could exclude compounds should be avoided unless absolutely necessary; this 

includes common clean-up steps such as SPE. Prior to analysis, samples should be 

centrifuged and filtered (minimal loss of compounds) to remove any particulate 

matter. 

Representative pooled samples should be created during sample aliquotting. Pooled 

samples should be analysed first (minimum of three) to allow the LC-MS system to 
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come to equilibrium. Throughout data acquisition, further random analysis of pooled 

samples, and also replicate analysis of some samples should be carried out make it 

possible to check whether the LC-MS system as a whole remains stable. The 

inclusion of blank runs where no sample is analysed should be undertaken to ensure 

that sample carryover does not occur. The random analysis of samples is an 

absolute must, especially given that scientists are creatures of habit and like things to 

be ordered! Randomisation of samples across the whole data acquisition helps to 

avoid any time related shifts in intensity of contaminants and to minimise the effects 

of any instrument drift. 

Overall, from sample collection, storage and pre-treatment, to its analysis, there are 

many different steps that are required in order to generate robust, reproducible 

(within run), and hopefully, meaningful results from an LC-MS analysis. 
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3.4 Data extraction 

3.4.1 Introduction 

Once the experimental data has been collected, one crucial step remains before the 
data can be statistically analysed: data extraction. This involves converting individual 
LC-MS data files into a single file that contains details of m/z and tR along with 
intensity for each component detected across all of the sample cohort. Whilst this 
step may appear to be trivial, it is of great importance that raw data (here, LC-MS 
data) be carefully extracted with much consideration for the many parameters that 

can be applied. It is pointless ensuring that raw LC-MS data was rigorously collected 
so that it was the best available, if poorly chosen parameters or data extraction 
algorithms are chosen. 

Unfortunately, there are relatively few data extraction algorithms available, as LC-MS 

vendors try to `force' the user to utilise their software. Some freely available data 

extraction software programs, such as XCMS (Smith et al., 2006), are available. 
However, non-proprietary extraction programs still require raw data to be extracted 
into a user-friendly format such as NetCDF, mzXML or mzData. Raw data files 

obtained from an Applied Biosystems QStar, used for obtaining all data presented in 

chapters three and four, are stored in a complex binary wiff format file. 

ProteomeCommons. org are currently offering a $1000 bounty for someone to create 

a wiff reader, thus highlighting the problem of non-standardised raw data output files. 

As the raw data generated for chapters three and four would have required 

converting from wiff into another file format before being extracted for statistical 

analysis, possibly losing data, it was decided to use the Applied Biosystems 

proprietary software, Metabolomics Export Script v1.0.0.3. 

Problems that are associated with LC-MS raw data extraction (and that/those from 

other separation/detection methods) are typically peak picking errors that are caused 

by peak shapes, shifts of retention times, mass and signal intensity, all of which can 

cause errors when peak picking parameters are poorly selected (Sangster et al., 

2007). 

The Metabolomics Standards Initiative (Fiehn et al., 2007; Sansone et al., 2007) aims 

to address some of the above issues relating to data extraction, along with the more 

important problem of standardising the raw mass spectrometric data reporting file 
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format by publishing a series of papers on standard reporting features (Metabolomics 

volume 3,2007). 

3.4.2 Aims 

The aims of this section were to explore problems that are encountered when using 
data extraction software, along with investigating some possible solutions and areas 
of new research, which should hopefully aid a more accurate representation of 

extracted raw LC-MS data. 

3.4.3 Results 

The metabolomics export script works by generating peaks files (containing 

information about each detected ion) from each sample's raw LC-mass spectrometric 
data file (wiff format). The generated peaks files are then converted into aligned 

peaks files based upon many parameters that are chosen. The most critical of 

parameters relate to the retention time tolerance, mass accuracy and LC peak 

window size. 

The retention time tolerance relates to how much retention time a particular m/z 

value can differ by and still be considered as deriving from the same peak. Studying 

TICs highlighted that the LC-MS system used in this study performs well, as there 

are not any notable deviations in retention time (this can be seen in figure 3.3.1 

(section 3.3), where TICs from pooled samples are overlaid to provide an idea of 

system stability). A retention time tolerance setting of 0.5 min (giving ± 0.25 min) was 

found to be more than sufficient, and is similar to that reported within the literature 

from groups who have also used the metabolomics export script (Gika et al., 2007; 

Sangster et at., 2007). 

Working alongside the retention time tolerance to determine what forms a peak, the 

mass tolerance setting is another important setting. As all of the datasets within 

chapters three and four average ca. 100 samples, the recording of all the data for 

each ionisation mode or separation method took around three days (each LC-MS run 

averages around 35 mins when the conditioning gradient and syringe cleaning step 

are included). During the three days of data acquisition, the mass spectrometer 
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cannot be expected to maintain a high level of mass accuracy (i. e. less than 10 ppm 
for a well calibrated QStar ToF MS). Without accounting for any drift in mass 

accuracy, extracting the raw data could force some genuine peaks to go undetected 

as their mass `drifts' past the tolerance set within the metabolomics export script. 
When accounted for, any drift within mass accuracy was not considered to be a 
problem. This was because there are known compounds (e. g. creatinine, hippurate) 

within urine which can be used to re-calibrate the recorded LC-MS data. A mass 

accuracy setting of 500 ppm was used within the metabolomics export script. This is 

equal to ± 0.08 Da at m/z 150, which should be sufficient to cover any drift 

encountered for a ToF MS. 

The last critical parameter, the LC peak window, is designed to remove any noise 
from each data file. Originally, this parameter was set to values of 0.1 and 3 min for 

the minimum and maximum values respectively. This meant that any peaks narrower 
than 0.1 min or wider than 3 min would not classify as a peak and therefore not be 

extracted. Upon studying the resulting extracted data matrix from the analysis of 

urine samples collected from within the Department of Chemistry, University of York, 

some abnormalities within the data were noticed. 

/Sample 
Name 

S1 
- 

S2 
- 

S3 
- 

S4 
- 

S5 
- 

S6 
- 

S7 
- 

S8 
- 

S9 
- 

/Yvar 1 1 2 1 2 2 1 2 1 
Nariablelist 
114.06 2.80 531.82 591.60 0.00 94.85 0.00 817.46 983.54 545.83 967.21 
114.08 3.20 0.00 0.00 232.85 0.00 641.14 0.00 0.00 0.00 0.00 
114.05 3.55 114.69 140.83 123.88 956.34 920.74 401.18 821.17 677.70 549.12 

Figure 3.4.1. An excerpt of the extracted data matrix where each column represents 
a sample, and each row a concatenated m/z and tR value (other than headers). 

The two highlighted cells within figure 3.4.1 are the only peak areas extracted for that 

specific variable (114.08_3.20); all other samples apparently yielded no peak at all 

for this variable. Examining the variable in the row above (114.06_2.80) shows that 

two corresponding cells are empty, meaning that no peaks have been extracted for 

this variable (1 14.06_2.80) for those particular samples (S_3 and S_5 from the 

`/Sample Name row'). As the missing peak values for the first variable (114.06_2.80) 

correspond to the two values for the second variable (shaded cells, 114.08_3.20), 

this highlighted the fact that there must be some problem with the parameters used 
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for extracting the data. Upon analysis of the raw data, it was noticed that there were 

slightly broader peaks (not returning to baseline) for the above extracted values at 

m/z 114. Increasing the LC peak window extraction parameters to 0.1 and 20 min for 

minimum and maximum values respectively caused the above effect to disappear. 

Because of the above problem, considering how extraction algorithms may treat 

peaks highlights some potentially important issues. 
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Figure 3.4.2. An extracted ion chromatogram of the peak cluster at m/z 114, 
highlighted within the previous figure. (a) XIC of m/z 114 from positive mode RP-LC- 
MS (b) Possible assignment of 4 peaks within the XIC (c) Peak area assignment not 
based on Gaussian peak distribution (d) Peak area assignment based upon 
Gaussian peak distribution. 

The XIC of mass m/z 114 (figure 3.4.2a) does not correspond to a single, Gaussian 

shaped peak. There are two well definable peaks present, with a small hump on the 

tail of the second peak, which could correspond to another, lower intensity peak. 

Figure 3.4.2b illustrates how there could be up to four peaks contributing to the XIC 

trace shown. The most intense peak (blue) has a slight shoulder, which could 

correspond to another peak (red), or could just be caused by peak tailing. Extraction 

algorithms may not be able to distinguish between peaks of close m/z values and 

retention times (without some form of dynamic algorithm that can utilise peak shape), 

even when given suitable parameter values. When peaks are extracted within the 

metabolomics export script, it is hard to know how they are being treated; does the 

extraction algorithm just drop a line to the baseline when a valley is found (figure 

3.4.2c), or does the algorithm try and force Gaussian style peaks (figure 3.4.2d)? 

Analysing the raw data does not give any clues as to which method the 

metabolomics export script uses, as the resulting extracted data matrix was scaled 
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by an unknown factor, meaning that peak areas from raw data do not directly 

correlate with their extracted peak areas. 

One further problem that may not be addressed by many extraction algorithms for 

LC-MS data, is baseline shifting. Where does, and should, a baseline be when 

extracting data? This baseline problem has been identified and addressed for NMR 

data (Chang et al., 2007), but does not appear to have been addressed within the 

literature for LC-MS studies, something which requires attention. 

Many metabolomic NMR studies choose to bin their spectra into 0.04 ppm bins (Antti 

et al., 2004; Constantinou et al., 2005; Williams et al., 2005; Kochhar et al., 2006), 

thereby reducing the relative resolution. Worryingly, 0.04 ppm bins correspond to 250 

fixed bins over a0- 10 ppm range to coincide with the fact that Microsoft Excel 

cannot cope with more than 256 columns; the fact that something as trivial as the 

number of available columns within one particular computer program dictates the 

method that has come to be accepted for a whole metabonomic study seems a little 

bizarre. Conversely, the metabolomics export script in effect utilises movable bins 

with no fixed m/z width (other than that constrained by carefully chosen parameters). 
As fixed bins have the potential to split peaks across two bins, novel methods such 

as using wavelet transforms (Davis et al., 2007) which are an adaptive binning 

process are now being reported for use with NMR data. Many of these new 

applications for NMR (adaptive binning, baseline correction) should hopefully cross 

the boundary and find a much-needed application in LC-MS data extraction and 

processing. 

3.4.4 Conclusions 

Despite the limited choice of data extraction software available, the metabolomics 

export script that was used for extracting all of the data within chapters three and four 

currently offers the best chance of obtaining useful LC-MS metabonomic data, 

provided that: the parameters used are suitable for the data being extracted and that 

once extracted, the data is carefully scrutinised for any errors, such as those pointed 

out within this section. Sangster et al. has published work which also highlights some 

of the problems that have been found within this section when using the 

metabolomics data export script, and has shown that an improvement to the original 

algorithm provided better statistical results over the previous algorithm (Sangster et 
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aL, 2007). Despite some improvements to data extraction algorithms, it is clear that 

this vital step within the field of metabonomic studies (be it NMR or MS research) 

requires much more attention than it is currently receiving. As the field of 

metabonomics expands, and a greater cross section of scientists begin to co-operate 

on projects (e. g. chemists, biologists and importantly, statisticians and computer 

scientists) it is hoped that greater emphasis is placed on correctly extracting raw 

data. 
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3.5. Multivariate data analysis 

3.5.1. Introduction 

Metabonomic studies which involve a reasonable sized study of ca. 100 samples 

generate vast amounts of high dimensionality data; this is further increased when 

studies utilise multiple separation methods, e. g. reversed phase and hydrophilic 

interaction chromatography, different ionisation methods (ESI, APCI, positive and 

negative ionisation), or indeed different detection platforms (MS and/or NMR). Given 

that resulting datasets contain large amounts of data, which may or may not be 

linked, it is impossible to manually interpret these vast sets of data. Whilst it is 

recommend that data are at the very least `visually checked' initially, the subsequent 

analysis has to involve some kind of multivariate data analysis. 

As modern computing power and storage capacity is cheap and easily obtainable, 
the field of metabonomics greatly utilises chemometrics to try and elucidate any 

useful information from the mountains of data that can all too easily be generated. 
There are many different statistical approaches that can be employed in order to 

analyse what has been described as `megavariate' rather than multivariate data 

(Griffin and Bollard, 2004) from metabonomic experiments. The overwhelming 

majority of studies use descriptive and discriminative statistics, these predominantly 
being principal components analysis (PCA) and partial least squares (PLS) 

respectively (Lu et al., 2006; Lutz et al., 2006; Ullsten et al., 2006; Gu et al., 2007; 

Hodson et al., 2007; Katajamaa and Oresic, 2007; Kell, 2007; Lenz and Wilson, 

2007; Pizzolato et al., 2007; Sanchez-Ponce and Guengerich, 2007; Trygg et al., 

2007; Zhengzheng et al., 2007). There are many other statistical methods that are 

available (genetic algorithms and ANOVA to name but two); whichever is chosen, the 

user must be acutely aware that statistics can (and does) show you what you want to 

see. 

Many metabonomic studies use both PCA and PLS without much consideration for 

both how to use the statistical methods, and what the resulting outputs mean. Kell 

summarises this rather eloquently: "... the literature is full of complete rubbish 

resulting from a combination of over-optimism in the face of ostensibly positive 

findings, statistical ignorance and the fear of journals to scrutinise data too carefully 

lest they find something unpleasant... " (Kell, 2007). 
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3.5.1.1. Aims 

Obviously, there is no substitute for `good' data to begin with, and it is with this in 

mind that great care has been taken with statistical analyses by investigating the 

many parameters (most of which are rarely, if ever, reported within the literature) and 
the effects that they have upon the resulting data. This work aimed to define optimal 

statistical settings using urine samples collected from healthy volunteers within the 

Department of Chemistry, University of York, UK. A thorough analysis of the 

collected data is reported in this chapter (chapter 3.6. ) using the developed optimised 

methods presented herein. 

3.5.1.2. Results 

All data presented within this section (unless otherwise stated) was generated by the 

analysis of urine samples collected from healthy volunteers within the Department of 
Chemistry, University of York. 

3.5.1.2.1. Initial data analysis: principal components analysis 

After `looking' at the raw data to ensure that nothing appears to be out of place (e. g. 

abnormal TICs or UV chromatograms), the initial steps should involve a global view 

of the data. That is, the data is analysed using an unbiased method. PCA is such a 

method as it is unsupervised; it does not require a priori knowledge of class 
belonging. The dataset(s) as a whole are considered and represented within a 

matrix, X. PCA groups observations that contain similar variables. The greatest 

variation is accounted for within the first principal component (PC), with subsequent 

PCs accounting for the remaining variation within the data (each successive PC 

accounts for less variation). 

3.5.1.2.2. Outlier detection 

PCA is very useful for finding observations from the dataset which do not fit well with 

the bulk of the data. Observations that fall outside the 95 % confidence limit 

(represented by an ellipse on the scores plot, figure 3.5.1) on the scores plot, e. g. 
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point A (figure 3.5.1), are classed as outliers. Outlying points are caused by 

abnormalities within the data, such that the outlying observation contains variables 
that are not present, or are of a different magnitude to those in the bulk of the data. 
Outliers cannot just be removed from the dataset; there has to be valid justification 
for doing so first. If a point falls just outside the 95 % confidence limit, it may not be a 
strong outlier. Studying the DModX' plot (figure 3.5.2) aids in determining whether an 
observation is a weak or strong outlier. 
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Figure 3.5.1. A PCA scores plot for three different classes of hypothetical data: 1,2 
and 3. The ellipse represents the 95 % confidence limit, any data outside this can be 
classed as an outlier. 

Point A is an outlier according to the scores plot (figure 3.5.1), but according to the 

DModX plot (figure 3.5.2a) it lies in plane with the majority of the data. Whilst point B 

is not classed as an outlier on the scores plot, it is 'out of plane' with the majority of 

the data, as it has a DModX value which is higher than the critical value (95 %). 

Figure 3.5.2b and c help to illustrate how point A is in keeping with the data, whereas 

point B is not. Point A is still an outlier, but is on the same plane as the rest of group 

1 (red data points). Point B now exists outside the 95 % confidence limits (grey 

sphere) and does not lie on the same plane as the rest of group 2 (green data 

points). Justification for removing outliers can only be complete when the loadings 

1 DModX is the distance each observation is from the model plane. 
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plot (and the raw data) has been examined to elucidate what is causing the 

observations to be classed as an outlier. 
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Figure 3.5.2. (a) DModX plot highlighting two points, A and B. Point B has a DModX 

value outside the 95 % confidence limit. (b) 3D scores plot highlighting how point A is 

not significantly `different' from the rest of group 1 (red points), whereas point B has a 
large distance from group 2 (green points), hence the high DModX value. (c) 3D 

scores plot from a different angle, illustrating how point A lies `in plane' with group 1, 
and how point B lies outside the plane of group 2. 
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The loadings plot (figure 3.5.3a) corresponds to the scores plot and shows how each 

of the variables relates to any clustering exhibited within the scores plot. Points within 

the red ellipse correspond to the clustering of group 1; analysing each of the three 

points showed that point A was classed as an outlier due to having an elevated 

response for variable `g'. Points within the green ellipse cause the clustering for 

group 2, and points within the grey ellipse the clustering for group 3. Studying the 

points `e and I' did not highlight any data that could cause point B to have a high 

DModX value. However, points within the blue ellipse only gave a response for point 
B, hence causing a high DModX value. The remaining points on the loadings plot do 

not have a high bearing on the clustering as they are close to the origin, meaning that 

the relative intensities across each of the three classes must be fairly even, not 

allowing any further differences between classes to be found. Figure 3.5.3b plots the 

intensities of the two points j and h' which cause point B to have a high DModX 

value. All other data points do not have any response for the two variables j and h', 

meaning that these variables are exclusively causing the perturbation of point B. 

In order to justify removing either point A or point B, the question "what is the 

hypothesis in question or being generated? " needs to be asked. Point B, having 

different variables from the bulk of the data may derive from a sample that is 

contaminated, or it may be a perturbation that is relevant to the hypothesis being 

drawn. Point A, containing the same variables as the bulk of the dataset, may be an 

outlier as the perturbation could be caused by something which is not consistent with 

the hypothesis. 

It is only once all avenues of such investigation have been followed that an outlying 

observation can be removed from the dataset, providing that the reasons for doing so 

are justifiable. 
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Figure 3.5.3. (a) Loadings plot explaining the clustering shown in the scores plot. (b) 
A plot of the intensities for two variables, h and j. These two variables cause the high 
DModX value for point B. 
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3.5.1.2.3. PCA for biomarker detection? 

The greatest variation within the dataset is accounted for in PC 1. For urinary 

metabonomics, this is likely to be due to gender difference or another significant 
factor such as diurnal variation, if the samples have not been subjected to external 

perturbation (e. g. drugs). However, if drugs (or some other external stimulus) have 

been administered, PCA may show this as the greatest source of the variation and 

may also exhibit deviation from a basal state towards an affected state, and then 

subsequent return to basal state (Bollard et al., 2005). Examining the loadings plot 
indicates what variables are responsible for any separation, or deviation from the 

basal state; this can lead to biomarker identification. Usually, a bias technique (such 

as PLS) that can be externally validated is preferred over PCA, as it leads to a more 

robust statistical model with less chance of spurious variables forming the model. 

3.5.1.3. Partial least squares (discriminant analysis) 

After PCA has been used to view the data in an unbiased fashion, and any outliers (if 

present) have been investigated and treated accordingly, then PLS-DA can be used 
to investigate the dataset(s) more thoroughly. 

PLS-DA uses a priori knowledge of class belonging, that is the data which were 

represented within the `X' matrix (the explanatory variables) has each observation 
linked to a discriminatory class in a separate `Y' matrix. PLS-DA seeks to maximise 
the separation, hence `discrimination', between two or more groups as designated 

within the `Y' matrix. Importantly, PLS-DA models should only be developed using ca. 
2/3 of the available dataset; this forms the `training' set. The remaining 1/3 of the 

dataset should be held back and not be used in model development; this forms the 

external test set. 

The use of training and test sets is of paramount importance. Internal cross-validation 

(typically venetian blind) can give models which fit the data exceedingly well; given 

that there may be many thousands of variables with which a model can be built, it is 

unsurprising to note that such models are easily obtained and should be treated with 

scepticism. It is only through proper model development and external validation using 

test sets that contain data that were not used to form the discriminative model, that 

potential biomarkers can confidently be obtained. 
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3.5.1.3.1. PLS model development - problems and solutions 

In order to highlight a problem with discriminative statistics, which is one of the points 

which Kell makes (Kell, 2007), data from positive mode ESI-RP-LC-MS study of the 

urine from healthy male and female volunteers within the Department of Chemistry 

were analysed using PLS. The data were randomly assigned to one of six classes, 

meaning that the `Y' matrix did not bear any resemblance to any 'real' possible 

groupings within the `X' matrix (such as gender, diurnal variation, age etc. ) 
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Figure 3.5.4. PLS scores plot illustrating how seemingly good models can be created 
given enough variables, despite there being no basis for the grouping shown. 

Figure 3.5.4 shows the resulting PLS scores plot after PLS model development; 

internal CV values were satisfactory. Both LVs are required to separate all of the 

seven groups, but it does highlight the fact that a seemingly good PLS model can be 

built, even when there should be no relationship between the `X' and `Y' matrices. 

Given that PLS models can be developed and effectively made to show the user 

what they were asking, it is of paramount importance that any developed model is 

treated with a great deal of scepticism. The PLS scores plot in figure 3.5.4 is 
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overfitted as it was developed using all of the available variables from the dataset 
(many thousands). The variables that direct the separation shown can be listed in 

order of importance to the model, this is termed the Variable Importance for 
Projection (VIP). 
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Figure 3.5.5. Schematic representing our method of PLS model development to 
ensure robust, reliable models are developed. 

Figure 3.5.5 summarises the methods that should be followed to develop a more 
robust and significant PLS model. After the first development of a PLS model, the 
VIP list gives all of the variables with their respective score. Any variable with a VIP 

score of less than one should be removed from the model, as these are not 

considered statistically significant. A subsequent PLS model is then developed using 

only the remaining variables with VIP scores greater than one. The whole process is 

repeated until a suitable number of variables remains and the internal CV is 

satisfactory'; the number of remaining variables should be decided using `common 

sense', as if too many remain, then the developed model still has a chance of 

overfitting (I typically aim to use less than 10 variables). As the PLS model's 

' Defined by R2 and Q2 values in SIMCA. R2 is the `goodness' of fit, or the explained variance and Q2 is 
the fraction of total variation of the X matrix that can be predicted by a component (as estimated by 
internal CV). 
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complexity is reduced by reducing the number of variables, it is also worthy to note 
that excessive latent variables should not be used in a model. The general rule is the 

fewer the better (as for PCA, the most variation should be contained within the first 

few components of the model). 

Once the PLS model has been deemed satisfactory, the true test of its predictive 

power is to import a secondary dataset, the test set (figure 3.5.5). The developed 

model uses the allowed variables from the test set (as dictated by the variables in the 

model) to predict class belonging. If the model is robust, then a high external 

classification rate should be obtained. 

When the PLS model reduction scheme (figure 3.5.5) is followed using the data 

shown to generate figure 3.5.4, a meaningful model cannot be developed. This is 

because a large number of variables were removed which, whilst having a low VIP 

value, were actually all being used to predict class belonging; once these were 

removed, a working model is no longer achieved. We are unaware of any literature 

where the authors have reported use of such a scheme of discriminant model 

development within their experimental sections, other than a few papers published to 

highlight the problems of poor use of statistics (Handl et al., 2005; Broadhurst and 

Kell, 2006; Kell, 2007). 

It is therefore of the utmost importance that for any discriminative study, a rigorous 

approach such as that highlighted above, is followed to ensure that any developed 

models genuinely relate to the hypothesis, rather than to `statistical junk'. 
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3.5.2. Data normalisation and scaling 

3.5.2.1. Introduction 

Metabonomic studies that use carefully controlled animal subjects should 
theoretically have fewer issues with large biological variation between urine samples 
(than that from using human subjects). Conversely, the majority of studies where 
human volunteers are involved do not have such a luxury, as the volunteers 

generally cannot be controlled to the same degree as animal subjects. This `large 

biological variation' between subjects requires to be corrected for if statistical 

analyses are to be less biased towards the largest biological variation; generally 

related to differences in the concentration of each individual urine sample. 

Normalisation is another area that is usually vaguely described within the literature, if 

at all; data is either not normalised, scaled to creatinine or most recently to the total 

ion count (TIC). Of the literature which does report its normalisation methods, the 

most common is to use scaling to creatinine (Woitge et al., 1999; Schoenau and 

Rauch, 2003; Huskovä et al., 2004; Idborg et al., 2004; Svoboda and Kasai, 2004; 

Obrant et al., 2005). Normalisation to TIC stems from NMR studies where 

normalising data to the total signal intensity is common (Kenney and Shockcor, 2003; 

Antti et al., 2004; Williams et al., 2005). LC-MS metabonomic studies have begun to 

adopt this method of normalisation (Plumb et al., 2003; Williams et al., 2005) as a 

means of accounting for concentration differences as well as some forms of 

analytical variation. 
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Figure 3.5.6. (a) Schematic representing how normalisation to creatinine works. (b) 
Schematic representation of normalisation to total ion count. 

Figure 3.5.6 shows schematics of two normalisation techniques: the more common 

normalisation to creatinine (figure 3.5.6a), and the newer normalisation to total ion 

count (figure 3.5.6b). Normalisation to creatinine involves each sample's creatinine 

intensity being extracted (m/z 114.07 = [M + H]+ and m/z 112.05 = [M - H]" with tR for 

RP = 2.7 min and HILIC = 8.2 min), represented by each observations column letter 

in lower case with a prime (e. g. A is a'), and used to create a scale factor by scaling 

each observation's creatinine value to the same value. The scale factor is then used 

to scale each variable within the original 'X' matrix (e. g. a' scales column A variables, 

b' column B variables etc. ). Normalisation by total ion count is undertaken using a 

similar method to that of creatinine normalisation. The sum of each observation's 

intensities (represented by 1A, 113 etc. in figure 3.5.6b) is used to create a scale 

factor, by dividing each TIC value by the largest value obtained from the sum of each 

observation. As with creatinine normalisation, the generated scale factors are then 

used to scale each variable (by the generated scale factor) within the 'X' matrix. 

For both normalisation methods, the scale factors should be visually checked to first 

ensure that the values are roughly consistent with one another, and that there are no 

inconsistent values. If the scale factors are consistent, then the X matrix data can be 

normalised by the relevant scale factor. 
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3.5.2.1.1. Aims 

Reading the literature relating to creatinine synthesis and excretion prompted the 

examination of the effects of no normalisation, normalisation to creatinine and 

normalisation using total ion count upon model development. This was because 

creatinine is considered to be relatively stable and related to an individual's mass 
(see chapter 1). However, we wished to test the relevance of creatinine scaling for 

metabonomic studies using the developed LC-MS approaches. 

3.5.2.2. No normalisation 

Leaving the data `as is' and not using normalisation means that any clustering 

evident upon PCA, would most likely be linked to the concentration of each individual 

sample (dependent upon any subsequent scaling methods used, see chapter 
3.5.2.4). Whilst this may be desired for some studies, it is evident that the majority of 

metabonomic studies require some kind of normalisation to account for any biological 

(and/or analytical) variation, so that any differences in the concentrations of individual 

urine samples are not the overriding factor directing clustering. 

One method that has been used in the literature, and is technically `no normalisation', 
is 24 h urine collection. The collection of each void of urine over a 24 h period should 

remove any effects caused by diurnal variation, and also minimise the effects of 

varying concentrations. Whilst 24 h urine collection has been described as the `gold 

standard', it suffers many disadvantages (Heavner et al., 2006). Generally, 24 h 

collection is completely unfeasible for a metabonomic study as it would involve 

volunteers/'patients' completing a full 24 h collection, where the sample integrity 

could be compromised by bacterial infection and incomplete sample collection for 

example (Woitge et al., 1999; Heavner et al., 2006). However, most obvious is the 

issue of storing many volunteers/'patients' 24 h urine samples (given that the 

average human produces 1-2 L of urine daily), especially for time-set metabonomic 

studies. 
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3.5.2.3. Creatinine normalisation 

A thorough analysis of literature relating to normalisation by creatinine suggested that 

normalisation using creatinine may not have been as robust as once thought. Whilst 

creatinine excretion is usually consistent, some of the literature suggests that the 

levels of excreted creatinine are easily altered by internal and external factors such 

as therapeutic interventions, disease and growth (Boeniger et aL, 1993; Schoenau 

and Rauch, 2003). These findings were consistent with the worry that levels of 

creatinine may be easily perturbed, hence the need to further research the literature 

on creatinine normalisation and alternative normalisation methods. 

If creatinine levels in urine are susceptible to large fluctuations caused by disease for 

example, then using the concentration of creatinine to normalise data would seem 

rather hazardous. Heavner et al. suggests that whilst using creatinine to normalise 

data appears "... to be a valid and effective method... ", its use would not improve 

correlation to exposure to dose, and could in fact make it worse (Heavner et al., 

2006). This is backed up by research undertaken by Antti et al.. Antti dosed Sprague- 

Dawley rats with differing amounts of hydrazine' to aid the design of experiment and 

data screening for adverse drug effects (Antti et al., 2004). Upon analysis of 1H NMR 

data, the resonance at 8 3.92 increased in positive correlation with increasing 

hydrazine dose. This resonance corresponded to that of creatinine, showing that 

creatinine levels were perturbed by induced disease. This effect may not have been 

noticed had the data been normalised to creatinine. Heavner et al. also state that 

creatinine exhibits variability due to gender, age, muscularity, physical activity, diet, 

disease state, pregnancy and creatinine intake (also noted by Scheonau and Rauch 

(Schoenau and Rauch, 2003)). 

Further to creatinine being perturbed by many factors, some literature suggests that 

creatinine is not as stable as once thought. Schneider et al. describe how after 

excretion, creatinine is influenced by variations in both pH and temperature 

(Schneider et al., 2002); the levels of creatinine decreased by around 20 - 25 % 

within the first 12 days of urine storage, stabilising after this initial period. This has 

also been noted by Saude and Sykes (Saude and Sykes, 2007) who also suggested 

that many urinary metabolites' concentrations fluctuate within the first 7- 14 days of 

storage at either - 20 or - 80 °C, again stabilising after this period. 

N2H4: a hepatotoxin which induces steatosis, lipid retention. 
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With the literature proving that using creatinine to normalise urinary metabonomic 
data is not ideal, it is clear that alternative methods should be utilised. A set of 

experiments to compare no normalisation, normalisation to creatinine, or to total ion 

count were designed. These results are discussed in section 3.5.2.5. 

3.5.2.4. Scaling techniques 

In addition to normalisation, some kind of scaling should also be applied post 

normalisation. Scaling is typically used to account for the large range in the 

concentrations between metabolites excreted in urine. Metabolites with a large 

concentration are not necessarily of greater importance than metabolites with a 

significantly lower concentration; without some kind of scaling, the dominant features 

(metabolites (variables) with large concentrations) would dominate any statistical 

model developed. 

A literature search highlights that scaling is another area of metabonomic studies that 

are scantily or not reported. Only van den Berg et al. (van den Berg et al., 2006) has 

conducted a study into different scaling methods for metabonomic / genomic data 

analysed by PCA. The general conclusions from van den Berg et al. can be applied 

to PLS, but this author suggests it is an area that requires more consideration from 

both statisticians and biologists working together. 

We chose to evaluate three scaling techniques (those being the only methods 

available in SIMCA P+ v11.5, Umetrics, Sweden): mean centring (ctr), pareto (par) 

and unit variance (UV). 

ctr = 

ýxv 
-x) 

par = 
SD 

UV= Xii 
SD 

Equation 3.5.1 

Equation 3.5.2 

Equation 3.5.3 
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Equation 3.5.1 represents how mean centring works. Each variable, )ý, has the 

mean, x,, for that variable subtracted from itself. This has the effect of converting the 

mean of all of the data to zero, centring the data around the origin in PCA and PLS 
analyses. Mean centring is not a true scaling technique, because the variation is only 
between the samples themselves with no variables being scaled. However, mean 
centring forms part of both pareto and unit variance scaling, as the data is first 
centered. 

Pareto and unit variance (equations 3.5.2 and 3.5.3 respectively) both utilise mean 
centring and also the standard deviation of each variable. Standard deviation is a 
measure of the spread of the data. As pareto uses the square root of the standard 
deviation, it reduces the effect of large intensities more than small, therefore making 
intense variables less dominating. Unit variance scales each variable to have a 
standard deviation of one (dividing each sample's response for a variable by the 
standard deviation for that variable), meaning that any differences are based upon 
correlations within the data, as all variables are now equally important. 

Pareto, and especially unit variance, requires normalised data to have been carefully 
extracted (from the raw LC-MS data). If any `noise' has been extracted then these 

scaling methods would enhance this. 

3.5.2.5. Results 

In order to evaluate each normalisation and scaling technique (no normalisation, 

normalisation to creatinine, normalisation using total ion count, mean centring, pareto 

and unit variance), we used datasets generated from urine samples collected from 

volunteers within the York Chemistry Department, who considered themselves to be 

generally fit and free from disease. As mentioned earlier, creatinine has been shown 
to be easily perturbed by illness or other states; it is with this in mind that we chose 

people who should have been free from anything that would have perturbed the 

basal levels of creatinine excretion, hence allowing a comparison using normalisation 

to creatinine. 
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For both positive and negative modes of ESI, and also for two complementary 
separation methods (RP and HILIC, the development of which is described later in 

chapter 3.5.6), discriminative PLS models were developed and optimised according 
to the methodology outlined earlier (figure 3.5.5). The optimised models were then 

evaluated with -- 1/3 of the initial data which were held back to form an external test 

set. 

PCA was used to first analyse each dataset to detect any outliers; no data points 

were considered to be outliers based upon the DModX values of any points outside 
the 95 % confidence limit, thus all data were retained for PLS analysis. Table 3.5.1 

shows all of the methods used to develop models for datasets obtained using 

separation techniques, ionisation modes, normalisation methods and scaling 

methods. For this study, gender was used as the discriminatory variable within the Y 

matrix. Gender was chosen as it should be the largest discriminatory variable 

amongst healthy volunteers, and therefore allow the generation of robust PLS 

models. 
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Table 3.5.1. All methods used to develop PLS models (totalling 36) to allow the 
comparison of different normalisation and scaling techniques. 

Separation 
Method 

Ionisation Mode Normalisation 
Technique Scaling Method 

ctr 
None par 

UV 
ctr 

Positive Creatinine par 
UV 
ctr 

Total Ion Count par 

rsed Phase R UV 
eve 

ctr 
None par 

UV 
ctr 

Negative Creatinine par 
UV 
ctr 

Total Ion Count par 
UV 
ctr 

None par 
UV 
ctr 

Positive Creatinine par 
UV 
ctr 

Total Ion Count par 
UV 

HILIC ctr 
None par 

UV 
ctr 

Negative Creatinine par 
UV 
ctr 

Total Ion Count par 
UV 
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Figure 3.5.7. Graphical representation of external classification results for all 36 
developed PLS models (as shown in table 3.5.1). 

The urine samples from the Department of Chemistry were analysed using both 

positive and negative ionisation mode RP- and HILIC-ESI-MS (discussed later within 
the RP and HILIC development section, chapter 3.5.6). After each dataset (±RP and 
±HILIC) was extracted into an X matrix, they were left as is, normalised by creatinine 

or normalised to total ion count before being imported into SIMCA. Each dataset was 
then scaled by one of three methods (ctr, pareto or UV) to generate a discriminative 

PLS model based upon gender using the earlier developed methods (figure 3.5.5). 

Once satisfactory PLS models had been developed, external test sets were imported 

to evaluate the external classification rates, and therefore the accuracy of the 

developed models. 

Comparing the external classification results as percentages across all 36 differently 

developed models shows that each different method used gave a different external 

classification result (figure 3.5.7). Analysing the data for each different scaling 

method for all modes of normalisation shows the general trend of ctr < par < UV with 

respect to the observed classification results. This may be caused by the fact that UV 

gives each variable an equal weighting, meaning that the models have in effect 

access to lower intensity metabolites, whereas par and ctr do not. The three 

normalisation methods (none, creatinine and TIC) all show comparable external 

classification results for each of the three scaling methods, with normalisation to TIC 

performing the best when combined with UV scaling. Evaluating positive and 
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negative ionisation modes across all normalisation, scaling and separation methods 
shows us that positive ionisation mode generally allowed the development of more 
robust PLS models for discrimination by gender. 

The results presented here are in agreement with that of van den Berg et al. who 
stated "... autoscaling and range scaling seem to perform better than other 
methods... " (where autoscaling is analogous to UV). I also agree that "... data pre- 
treatment is often overlooked or is applied in an ad hoc way... " (van den Berg et al., 
2006). 

As-such, care should be taken when applying scaling methods; the results obtained 
should be carefully scrutinised to ensure that variables with the highest VIP values 
are determined and identified so that they can be linked to the question being asked 
(this is discussed later in much greater detail within the RP and HILIC method 
development section, chapter 3.5.6). 

Analysis of the normalisation results for both modes of ionisation shows that no 

normalisation led to classification rates that were broadly comparable to 

normalisation to creatinine or TIC. This shows that for discrimination by gender, 

concentration differences do not play a major role. Providing that the volunteers were 

not ill or diseased, then the results for normalisation by creatinine were very 

comparable to TIC normalisation. This was very promising as it showed that if, for 

this example, normalisation to TIC was comparable to normalisation to creatinine, 

TIC is therefore a suitable normalisation method that can be used for normalising 

urinary metabonomic data. Normalisation to TIC should remove any problems that 

are associated with normalising to creatinine (perturbations due to illness, disease 

etc. ), which could affect studies such as the clinical study (chapter four) which was 

the ultimate overall aim of the work described in this thesis. 

3.5.2.6. Conclusions 

It has been shown that careful consideration has to be given to how data are 

manipulated prior to statistical analysis. Given that many papers confirmed our 

suspicion that normalisation to creatinine should no longer be considered the `gold 

standard', we have also shown that when data are normalised using TIC, it is highly 

comparable to normalising to creatinine (at least when there are expected to be no 
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perturbations to the creatinine levels). Our results showed that scaling by UV was 

most favourable for metabonomic studies, in agreement with research by van den 

Berg et al.. 

Overall, for either positive or negative ESI, we suggest that normalisation using TIC 

followed by scaling using unit variance should be employed for urinary metabonomic 

studies. However, other scaling methods should not be discounted and should 

always, at the very least, be considered during statistical analysis. 
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3.5.3. Data fusion 

3.5.3.1. Introduction 

The goal of a true metabonomic study should be to encompass a representative 
`fingerprint' which contains the largest amount of information that is available. Studies 
may collect NMR data, along with LC/GC/CE-MS data. Mass spectrometric data 
should at the very least contain data from positive and negative ionisation modes, but 
ideally data from more separation methods (e. g. RP and HILIC for LC) or different 
ionisation methods (e. g. ESI and APCI). 

Typically, each data cohort (i. e. RP+, RP-, HILIC+, HILIC- for ESI-LC-MS) is 

statistically analysed as a separate entity. Whilst this is a necessary step, the data 

should also be analysed as a whole. Data fusion has been described in a handful of 

papers (ldborg et a/., 2005; Forshed et al., 2007a; Forshed et al., 2007b) but has yet 
to find a place as a mainstream data analysis method within metabonomic studies. 

3.5.3.2. Aims 

The aim of this `data fusion' study was to examine how fusing together four different 

LC-MS datasets (RP+, RP-, HILIC+ and HILIC-) would effect PLS model 
development. Each individual data cohort, once optimised, produces a list of VIP 

values for the variables forming the discriminative model. Developing a `fused' model 
involving several datasets should produce robust statistical models, as all variables 

across all datasets can now contribute to forming a single PLS model. 

3.5.3.3. Results 

Four sets of data were obtained by analysing the urine from healthy volunteers from 

the department, by RP and HILIC LC-MS in both positive and negative ESI modes. 
Each dataset was individually exported into Excel as a text file (in ASCII format) 

(Microsoft Excel 2004 for Mac) and normalised to TIC as described (chapter 3.5.2). 

Figure 3.5.8 illustrates how the individual datasets were concatenated together. All of 

the observations were ordered and aligned so that each column corresponds to data 

from the same urine sample. The variables for each dataset were labelled to identify 
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which dataset they belonged to (i. e. all variables from RP+ were subsequently 
labelled with `_RPpos'). The datasets were then concatenated, one below the other, 
to form one single X matrix of the data. 

I _I 

f --- 
,ý , ý: ý 
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Figure 3.5.8. Representation of data fusion of four different LC-MS datasets. 

Before PLS analysis, the data were analysed by PCA to determine if there were any 

anomalous data points. As the data appeared to be satisfactory, response variables 

based upon gender discrimination were assigned to the Y matrix. As the PLS model 

contained four times the usual number of variables, it was crucial to ensure that the 

model was optimised according to the methodology previously laid out (figure 3.5.5). 
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Figure 3.5.9. Graphical representation of external test set classification results for 
concatenated data normalised by TIC, using three scaling methods: mean centering, 
pareto and unit variance. 

The concatenated dataset was imported into SIMCA for analysis by PLS using three 

scaling methods (mean centring, pareto and UV). When satisfactory PLS models had 

been developed, external test sets were imported to evaluate the predictive ability of 

each of the three developed PLS models. What we see is that the external test set 

classification results (figure 3.5.9) from the optimised PLS models show that scaling 

to unit variance once again gave the highest classification rate, followed by pareto 

and then mean centring. UV scaling was expected to have the highest classification 

rate as each variable is given the same statistical significance, meaning that at the 

very least, the model should perform as well as the best single PLS model developed 

for the non-concatenated model. As the concatenated model contains information 

from two different separation methods and polarities, such an unbiased scaling 

method is required; each different analytical method may produce variables of 

varying intensities, which are not comparable between analytical methods. 
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Table 3.5.2. Comparison of the top five variables forming each PLS model for all 
three scaling methods. 

Scaling Rank Separation 
Method (VIP) Method Polarity 

1 RP + 
2 RP - 

ctr 3 RP - 
4 HILIC - 
5 RP + 
1 RP + 
2 RP + 

par 3 RP - 
4 RP - 
5 RP - 
1 HILIC + 
2 HILIC - 

UV 3 HILIC + 
4 RP - 
5 RP - 

Comparing the top five variables as determined from their VIP values for each 

scaling method, showed that a mixture of variables from across each of the four 

datasets formed the model (table 3.5.2). For scaling by mean centring and pareto, 

separation by reversed phase gave the top five variables (other than position four for 

mean centring which used a HILIC variable), with the positive ionisation mode 

providing the most important variable. This is interesting as it suggests that 

separation by reversed phase may give rise to variables that are more intense, and 

therefore more discriminating than HILIC variables - something which pareto scaling 

would enhance. Scaling by unit variance gave five completely different variables. The 

first three variables were from HILIC separation, with the last two from reversed 

phase separation. Once again, the top variable was from positive ionisation mode. 

A more in-depth discussion of these data fusion results, along with each variable's 

m/z and tR values, is presented in chapter 3.5.6 where the development of RP and 

HILIC LC-MS methods are discussed, along with a thorough analysis of the data 

used to develop these models. 
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3.5.3.4. Conclusions 

Whilst much information can be obtained through the statistical analysis of individual 

datasets, the concatenation (or fusion) of multiple datasets can enhance information 

obtainable from metabonomic studies. Even though the data presented here were 

purely LC-MS data, this additional method of data analysis is not exclusive to this 

analytical platform. Forshed et al. has evaluated different techniques for the fusion of 
1H-NMR data with LC-MS data (Forshed et. al., 2007a). 

Despite the example for data fusion using gender as a discriminatory factor which 

was easily modelled, we predict that data fusion may be of a greater use for more 

complex models where changes may be more subtle, or linked to a series of different 

compounds which are only detectable across different analytical platforms. Fusing 

the data and applying discriminative statistics may enable compounds which, in a 

single dataset model, would not form a robust model, to be combined with 

compounds from other datasets with similar poor classification results to form a 

single, more robust model. 

We feel that as the field of metabonomics progresses, data fusion should become a 

more common feature within the published literature. 
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3.6. Development of reversed phase and hydrophilic interaction liquid 

chromatographic methodologies for mass spectrometric metabonomic studies 
of urine 

3.6.1. Introduction 

Metabonomics comprises a suite of `omic' technologies and has seen substantial 
growth in recent years, perhaps due to its success within the pharmaceutical 
industry, where metabonomics is now used for the identification of potential markers 
of disease, efficacy and toxicity (Nicholson et al., 2002; Drexler et al., 2004; Lindon et 
al., 2004; Walgren and Thompson, 2004; Wilson et al., 2005; Robertson et al., 2007). 

It cannot be stressed enough, that a `true' metabonomic study should involve a 

comprehensive analysis with no pre-selection of analytes, in order to obtain as much 
information as possible. 'H-NMR spectroscopy is a non-discriminatory analytical 
technique (provided that there is a proton! ) and provides information about all of the 

metabolites above the limit of detection (LOD) within a biological sample. However, 

sensitivity is a problem in NMR, and metabolites present in low concentrations may 

not be detected. Mass spectrometry, on the other hand, has lower LODs (orders of 

magnitude) but is a more selective technique. When used in conjunction with HPLC, 

which is required to provide separation of the components within a chosen biofluid 

and to reduce selectivity, mass spectrometry allows detection and quantification of 

low-level metabolites (Dettmer et al., 2007). 

A comprehensive LC-MS study should utilise both positive and negative ionisation 

modes with a chromatographic method that allows the retention and separation of as 

many components as possible. However, many LC-MS metabonomic studies only 

use reversed phase chromatography, which instantly discriminates against highly 

polar analytes. Despite the fact that only non-polar and mildly polar analytes are 

retained, RP-LC-MS is still the most widely used metabonomic MS platform (Plumb 

et al., 2005; Williams et al., 2005; Wilson et al., 2005; Lu et al., 2006; Lutz et al., 

2006; Sumner, 2006; Tang and Wang, 2006; Hodson et al., 2007; Robertson et al., 

2007). As urine is predominantly aqueous, a significant proportion of the content is 

likely to be highly polar, and would typically be unretained using a traditional RP 

approach, and thus not contribute to the data obtained. 
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Hydrophilic interaction chromatography (HILIC) is analogous to normal phase 

chromatography in that it utilises a polar stationary phase, allowing the retention of 

polar analytes (Hemström and Irgum, 2006). However, unlike normal phase, HILIC 

allows the use of aqueous solvents, making this separation technique compatible 

with ESI-MS. In direct contrast to RP-LC, gradient elution HILIC begins with a low 

polarity organic solvent and elutes polar analytes by increasing the polar aqueous 

content. Compounds are retained by partitioning into a water rich layer which is 

partially immobilised on the stationary phase. MS compatible buffers are typically 

used to reduce any undesirable electrostatic interactions between the analytes and 

stationary phase (Hemström and Irgum, 2006). 

It is because of HILIC's compatibility with MS and ability to retain polar compounds, 
therefore possibly increasing the coverage of urinary compounds, that it was chosen 
to assess its suitability for application in LC-MS based metabonomic studies. 

3.6.2. Aims 

The aim of this work was to analyse urine collected from fit and healthy members of 
the Department of Chemistry, University of York, comparing a traditional RP-LC-MS 

approach with HILIC-LC-MS, using both positive and negative electrospray ionisation 

modes. Both RP and HILIC gradients were optimised to obtain a good separation of 

compounds over the analysis time. The resulting data were analysed by PCA and 
PLS to visualise the information-rich data, using the techniques developed and 

described earlier in this chapter. PLS discriminative models were developed and 

classified for gender, time of collection and age in order to compare the performance 

of HILIC-LC-MS with the traditional RP-LC-MS approach. Further to the analysis of 

each individual dataset (RP and HILIC in both ionisation modes), data fusion was 

performed to evaluate its potential for generating robust models based upon a more 

complete dataset. 
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3.6.3. Results and discussion 

3.6.3.1. RP and HILIC gradient optimisation 

So that a direct comparison could be made between reversed phase and hydrophilic 

interaction liquid chromatography separation methods, each column's dimensions 

were identical at 4.6 x 100 mm, and each gradient's total run time was set to 30 min. 
This allowed comparisons to be made under optimal developed conditions for each 

column. As RP-LC is the most commonly utilised separation method for LC-MS 

metabonomic studies, there are many gradients described in the literature that have 

been optimised. A stepwise gradient from 0% MeCN, increasing to 20 % then 95 % 

before returning to starting conditions appears to be one of the most common 

gradients described in the literature (Granger et al., 2003; Plumb et al., 2005; Gika et 

al., 2007); this gradient scheme was modified slightly to avoid a completely aqueous 

mobile phase, thus increasing ionisation efficiency and reducing viscosity (therefore 

reducing the back pressure), and is presented in table 3.6.1. 

Table 3.6.1. Gradient profile for RP-LC-MS metabonomic studies. Solvent A= H2O 
with 0.1 % v/v formic acid; B= MeCN with 0.1 % v/v formic acid. The additional steps 
from 30-35 min correspond to column washing and re-equilibration steps. 

Time min" %A%B 

0 95 5 

9 80 20 

21 5 95 

24 5 95 

27 95 5 

30 95 5 

31 0 100 

32 0 100 

34 95 5 

35 95 5 

30 min total run times were chosen to allow for as much separation as possible whilst 

allowing for a reasonable sample throughput. Obviously, non-academic institutions 
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would require much shorter analysis times, as very high throughput experimentation 

is demanded; in industry, time is money, whereas in academia, time is the students. 

1, 

Figure 3.6.1. (a) Typical UV254chromatogram obtained using RP separation of a 
urine sample. Inset shows an XIC for creatinine (m/z 114.07 = [M + H]+ with a 
retention time of 2.1 min. (b) Positive mode TIC of the same urine sample, 
normalised to the most intense peak. 

A typical RP-LC UV chromatogram is shown in figure 3.6.1 a for the separation of a 

urine sample. Despite many urinary components not having a chromophore, meaning 

that UV chromatograms do not contain many peaks, there are some intense peaks 

that are Gaussian shaped present within the chromatogram. The corresponding TIC 

(figure 3.6.1 b) is much more information rich, showing many more peaks than the UV 

chromatogram. Changing the gradient profile did not show any appreciable change to 

either the UV chromatogram or the TIC, suggesting that the gradient was suitable for 

the separation of urinary components. Both the UV chromatogram and TIC return to 

the baseline at the end of each run (only 20 min of gradient shown to highlight the 

information rich sections). The high organic content wash at the end of each run 

(table 3.6.1) was applied to remove any highly hydrophobic components, avoiding 

late eluting compounds being present in subsequent analyses. 
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Table 3.6.2. Gradient profile for HILIC-LC-MS metabonomic studies. Solvent A= 
MeCN with 0.1 % v/v formic acid; B= H2O with 0.1 % v/v formic acid. 

Time min' %A%B 

0 95 5 

9 80 20 

21 5 95 

24 5 95 

27 95 5 

30 95 5 

Only a handful of papers have been published regarding the use of HILIC (Idbarg et 

al., 2005; Kind et al., 2007; Mawhinney et al., 2007), and most of these utilise a 

gradient which was similar to that chosen for RP separation; this is because HILIC is 

in effect reversed-reversed phase, as the solvents used are the same, but the other 

way around. The first HILIC gradient used H2O and MeCN both modified by the 

addition of 0.1 % v/v formic acid (table 3.6.2). Whilst the separation achieved 

appeared to be similar to that obtained by RP-LC (figure 3.6.1a), repeat injections 

showed that retention times, peak shapes and intensities were not reproducible (not 

shown). As HILIC columns require longer equilibration times than RP-LC (Hemström 

and Irgum, 2006), a longer equilibration time was afforded at the end of the run (19.5 

to 30 min) at the expense of a shorter gradient elution profile (table 3.6.3). 
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Table 3.6.3. Gradient profile for HILIC-LC-MS metabonomic studies utilising a longer 
equilibration period (19.5 to 30 min). Solvent A= MeCN with 0.1 % v/v formic acid; B 
= H2O with 0.1 % v/v formic acid. 

Time min" %A %B 

0 95 5 

15 5 95 

19 5 95 

19.5 95 5 

30 95 5 

The resulting UV chromatogram (figure 3.6.2a) and the repeat analysis of the same 

urine sample (figure 3.6.2b) show that comparable peaks were obtained. However, 

as for the first HILIC gradient (table 3.6.2), retention times, peak shapes and intensity 

were not repeatable. The peak labelled `1' exhibited different intensities and retention 
times (tR c 3.0 and 2.4 min for the first and second analyses respectively). The 

poorly resolved peaks highlighted by arrow `2' show no comparable peak shapes or 

retention times, and the most intense peak in the UV chromatogram highlighted by 

arrow `3', despite being of comparable intensities in the two chromatograms, show a 

shift in retention time of ca. 1 min. 

These deviations in retention time, peak shapes and intensity were clearly 

unacceptable. As HILIC columns work using a zwitterionic stationary phase, and 

urine is a salty matrix, the reproducibility problems could have been caused by a 
build up of salt on the column, which was effecting how compounds were being 

retained. It was decided to add a buffer to the aqueous solvent; the addition of this 

buffer aids in stabilising the pH of the mobile phase and maintaining a constant salt 

content, buffering the zwitterionic stationary phase and avoiding any unwanted ionic 

interactions. 

The addition of 5 mM ammonium acetate to the aqueous phase of the gradient 

shown in table 3.6.3 yielded very reproducible results, as the retention times, peak 

shapes and intensities of all the peaks within the UV chromatograms were identical 

(figure 3.6.2c and d, cf. panels a and b). 
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Figure 3.6.2. (a - b) first and second UV254 chromatograms of the same urine sample 
using the gradient described in table 3.6.3, where the arrows refer to specific peaks 
(see comments within main text). (c - d) two replicate injections of the same urine 
sample using same gradient, but with the addition of 5 mM ammonium acetate to the 
aqueous phase. 
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Figure 3.6.3. (a) Typical UV254chromatogram obtained using HILIC separation of the 
same urine sample as used for figure 3.6.1. Inset shows an XIC for creatinine (m/z 
114.07 = [M + H]+ with a retention time of 8.3 min. (b) Positive mode TIC of the same 
urine sample, normalised to the most intense peak. 

The UV chromatograms and TICs shown in figure 3.6.3 possess fewer peaks than 

those of a RP analysis (cf. figure 3.6.1), however, there still appears to be an 

abundance of information present within the TIC. 

As suitable RP and HILIC gradients of comparable length were developed and 

shown to produce robust, reproducible results, the next steps allowing comparison of 

each column's ability to produce meaningful statistical results could be carried out. 
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3.6.3.2. Data acquisition and extraction 

All of the urine samples obtained from the volunteers from the Department of 
Chemistry were analysed positive and negative mode ESI and both RP and HILIC 
LC-MS methods. Before any samples were analysed, pooled urine samples were run 
to condition the LC-MS system. Throughout each of the four data acquisitions, 
pooled samples, blank runs and replicate sample analyses were carried out in 

accordance with the methodologies laid out earlier in this chapter. 

Upon extraction of the resulting data using the metabolomics export script (see 

chapter 3.4), it was noticed that for both separation methods, fewer peaks were 

extracted from negative ionisation mode compared to positive. This was not a 

surprise, as for positive ionisation mode, more compounds are generally ionised 

(general observation); however, negative ionisation mode tends to generate much 

clearer spectra than positive with fewer background peaks being observed. It was a 

surprise to find that more variables were generated from RP-LC-MS than HILIC-LC- 

MS data. This could be due to the fact that HILIC only retains mildly polar and polar 

compounds (of which it was hypothesised that there should be a substantial in urine). 
RP columns can retain mildly polar and hydrophobic compounds, but typically 

generate multiple peaks from the same compounds (due to salts); this fact may 

account for the increase in extracted data when using RP separation techniques. 

For both RP and HILIC separation, the most intense peak observed within TICs 

generally corresponded to creatinine. The intensity of the creatinine peak for each 

sample was plotted from the extracted data; this is presented in figure 3.6.4. 
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Figure 3.6.4. Graphical representation of the extracted creatinine peak intensity from 
positive mode data for both RP and HILIC separation. 

From the data presented in figure 3.6.4, it is clear that the intensity of the creatinine 

peaks are generally higher using RP separation than HILIC; this was expected as all 

samples analysed by HILIC-LC-MS were diluted 50: 50 with MeCN. It is evident that, 

on the whole, the extracted intensity of creatinine using both separation techniques 

generally follow the same trend. There are 10 samples where the difference in 

intensity does not follow the same trend as the majority of the data, with two samples 

(33 and 44) having the same intensity. The creatinine levels from HILIC-LC-MS are 

consistent across the majority of samples; it is the RP-LC-MS creatinine levels that 

appear to be lower than expected for the samples that do not follow the trend. As 

creatinine elutes from the RP column very close to the void, this apparent decrease 

in expected creatinine intensity could be due to ion suppression caused by 

particularly salty samples or co-eluting compounds which utilise the majority of the 

ion stream; this is consistent with the fact that creatinine is well retained using HILIC 

and does not exhibit any noticeable deviation from the expected intensity. 

Despite there being a few minor discrepancies between the extracted intensities for 

creatinine, it is evident that both RP and HILIC-LC-MS can produce comparable 

results in terms of detection and ionisation, based upon creatinine. 
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3.6.3.3. PCA 

Before each dataset was randomly split into training and test sets for discriminative 

analysis, they were analysed using PCA in an unbiased manner to identify any 
potential data points outside the 95 % confidence limits, which also had a large 
difference from the model (DModX in SIMCA). 
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Figure 3.6.5. PCA scores plots of the first two principal components for (a) positive 
mode RP-LC-MS analysis, (b) negative mode RP-LC-MS analysis, (c) positive mode 
HILIC-LC-MS analysis and (d) negative mode HILIC-LC-MS analysis. 

The four PCA scores plots presented in figure 3.6.5 show the first two principal 

components for each separation and ionisation method. Figure 3.6.5a shows positive 

mode RP-LC-MS data, with only a few data points outside of the 95 % confidence 

limit (shown by the ellipse), whereas for negative ionisation mode RP-LC-MS 

analysis (figure 3.6.5b) there are two data points (indicated by arrows) that are more 

substantial outliers than the other points just outside the 95 % confidence limit. For 

positive mode analysis by HILIC-LC-MS (figure 3.6.5c), the vast majority of the data 

points are within the confidence limit, with only two points outside this limit; 

conversely, negative mode HILIC-LC-MS analysis (figure 3.6.5d) shows many more 
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points outside the confidence limit, with the most extreme of these indicated by 

arrows. 

Comparing positive ionisation mode to negative for both separation methods shows 
that negative mode data appear to have more `outliers' than positive. The fact that 

there are more moderate outliers for negative mode than positive, may be accounted 
for by the fact that positive mode generates many more variables than negative. As 

models using negative mode data have fewer variables to form a model, any 

spurious variables will have a greater effect upon the model, therefore generating 
data points that appear to be outliers in the first two principal components of a PCA 

scores plot. 

Examining the distance from model (DModX) plots for each PCA model showed that 

for positive ionisation mode for both separation methods, the few data points that are 

outside of the confidence limits did not have a DModX value that was larger than the 

critical tolerance value of 0.05 (corresponding to 95 % confidence). For this reason, 

all of the data points from positive mode data (figure 3.6.5 a and c) were not classed 

as outliers, and were subsequently retained to form datasets for further analysis by 

discriminative statistics. 

The data points indicated by arrows in the negative ionisation scores plots (figure 

3.6.5 b and d) are reasonable outliers according to the confidence limits shown on 

the scores plots. When the DModX plots were examined, the data points highlighted 

by solid green arrows had DModX values which were higher than the critical value, 

meaning that these data points were not only outside the 95 % confidence limits, but 

were also not on the same plane as the bulk of the remaining data. The data point 

indicated by a hashed blue arrow (figure 3.6.5d) did not have a DModX value which 

was above the critical value meaning that this data point was only an outlier based 

upon its value for the second principal component. Studying the loadings plots for 

both negative ionisation mode scores plots failed to highlight any particular variables 

responsible for the outliers indicated, thus the outlying points must be caused by a 

combination of many variables, and are therefore not specific outliers. 

As the first few principal components failed to show any clustering based upon 

gender, time of collection, age or smoker status, and the outlying data points were 

not caused by any particular variables, all of the data points were retained and not 

discarded. However, the data points were recorded as being outliers and were to be 
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checked in any subsequent discriminative analysis to see if they once more were 

classed as outliers'. 

As none of the marked outliers were removed from either the RP-LC-MS or HILIC- 

LC-MS negative ionisation mode datasets, each of the four datasets were 

subsequently randomly split into training and test sets. For the subsequent PLS 

analyses the data were assigned the discriminatory variables gender, time of 

collection and age, and roughly one-third of the data were held back to form a test 

set. The test sets contained equal numbers of observations for gender and time of 

collection, with eight observations for each discriminatory class. For discrimination by 

age, there were fewer observations for the age groups 31-40 and 41-61 as the bulk 

of the samples donated were from the 21-30 age group (not surprising within a 

University environment). The test set therefore consisted of nine, four and three 

randomly chosen observations for the age groups 21-30,31-40 and 41-61 

respectively. The training and test sets were then normalised according to the 

methods laid out in section 3.5 before PLS analysis. 

1 Once discriminatory models were developed, the outliers indicated within figure 3.6.5 were not classed 

as outliers within any developed model. Further to this, the most important variables were checked to 

see if there was any correlation with the loadings plots from the PCA analysis; there were no 

correlations evident, suggesting that retaining these `outliers' was not detrimental to subsequent model 
development. 
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3.6.3.4. PLS analysis 

Each of the datasets were analysed by PCA, based on consideration of the results of 

which it was decided that all the data should remain without any data points being 

discarded. The next step to compare how HILIC separation compared to a traditional 

RP approach was to analyse each dataset using discriminative statistics. All of the 

data presented within this section were normalised to TIC and scaled using unit 

variance. However, the most important variables forming the models developed using 

no normalisation, normalisation to creatinine, as well as normalisation to TIC and all 
three scaling methods (mean centring, pareto and unit variance) as presented in 

section 3.5 are reported too for comparison. 

Development of all PLS models was undertaken using the scheme laid out in section 
3.5. The explained variation (in terms of R2 and Q2 within SIMCA P+) gave an 
indication of the fit of the model and its predictive ability (using internal venetian blind 

CV). The internal CV was used to determine the number of components in the 

developed models. VIP scores were used to ascertain the discriminating power for 

each variable, and also to identify and remove any unimportant variables that did not 

add any predictive power to a model. After the removal of unimportant variables, the 

models were re-developed and the process repeated until a satisfactory model was 
developed (typically less than 10 variables were used to form a PLS model). 

3.6.3.4.1. Positive ionisation mode data analysis 

For both separation methods, PLS plots for positive ionisation mode datasets 

afforded a clear separation in terms of discrimination by gender using LC-MS (figure 

3.6.6). It is clear that the discriminative power of the model using data from HILIC 

separation (figure 3.6.6b) is comparable to, if not better than, that produced from a 

more traditional RP separation approach (figure 3.6.6a). 
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Figure 3.6.6. PLS scores plots for a gender response variable (  = male training set, 
"= female training set, "= male external test set, s= female external test set) 
analysed in positive mode ESI-MS: (a) reversed phase data training set data. (b) 
HILIC data training set data. (c) reversed phase data with external test set overlaid. 
(d) HILIC data with external test set overlaid. 

To assess the predictive power of each developed PLS model, the external test sets 

were imported. The classification rates from the independent test sets were 94 and 
100 % for RP and HILIC datasets respectively (the lower classification rate for RP- 

LC-MS corresponds to one fewer external test set samples being correctly 

classified). Figures 3.6.6c and d show the PLS scores plots with the external test set 

data overlaid to highlight the predictive power of the developed models. Despite the 

scores plots being presented using two latent variables, both developed models for 

discrimination by gender only utilised one latent variable for prediction, with no gain 

in classification rates being observed by using two latent variables. 
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Figure 3.6.7. PLS scores plots for the response variables time of collection (a, b) 
where (f = AM training set,  = PM training set, f= AM external test set, "= PM 
external test set), and age (c, d) where (" = 21-30 age group training set, "= 31-40 
age group training set,  = 41-61 age group training set, 0= 21-30 age group 
external test set, = 31-40 external age group test set, Q= 41-61 external age group 
test set) analysed in positive mode ESI-MS with both the training and test set data 
shown. (a) FLS model for discrimination by time of collection using RP-LC-MS data, 
(b) PLS model for discrimination by time of collection using HILIC-LC-MS data, (c) 
PLS model for discrimination by age using RP-LC-MS data, (d) PLS model for 
discrimination by age using HILIC-LC-MS data. 

For further comparison of the two separation techniques using positive ionisation 

mode LC-MS, PLS was used to analyse data based on the time of sample collection 

(AM vs. PM) and age. Figure 3.6.7 shows scores plots with time of collection and age 

as discriminatory factors. Both RP-MS (figure 3.6.7a) and HILIC-MS (figure 3.6.7b) 

data exhibited good clustering for discrimination by time of collection (AM = first void 

of the day, PM = any subsequent void after 15: 00 h), although, as might be expected, 

the scores plots do show some overlap. This overlap is probably caused by the fact 

that some volunteers may not have donated the first void of the day, or may have 

donated earlier than the 15: 00 h collection time for the PM sample. Also, 

discrimination between AM/PM samples was not expected to give clear clustering, as 

some urinary profiles may not substantially differ over the course of the collection 

period. Despite the overlap, classification rates of the external test sets were 94 % for 
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RP and 87 % for HILIC. HILIC's lower classification rate was due to the fact that one 

of the samples in the external test set (a PM donation, highlighted by a red circle) lies 

well outside the 95 % confidence limit (figure3.6.7b) and was subsequently classed 

as a false positive. The PLS model for RP separation gave the highest classification 

when one latent variable was used, whereas the HILIC separation model gave higher 

classification results with two latent variables. 

For discrimination by age, the donors were split into three arbitrary classes: ages 21- 

30,31-40 and 41-61. A general trend with increasing age could be seen along the 

first latent variable for both RP and HILIC datasets, although the groups merge at 

age boundaries, as expected. This trend along the first principal component explains 

why for both RP and HILIC data models, only one latent variable was required to give 

the highest classification rates. The samples corresponding to the 21-30 age group 

are more tightly clustered those of the 31-40 and 41-61 age groups, which are less 

well defined. Classification results for the independent test sets were the poorest in 

this study, with classification rates of 71 and 86 % for RP (figure 3.6.7c) and HILIC 

(figure 3.6.7d) respectively. 

PLS models for both RP and HILIC data were able to predict samples from the 

younger age groups (21-30) reasonably well, but the models were unable to 

accurately predict samples from the older groups (31-40 and 41-61). Samples from 

the external test sets are overlaid onto the RP (Fig. 3.6.7c) and HILIC (Fig. 3.6.7d) 

scores plots and illustrate the poor prediction of class for the older age groups. 

158 



Chapter Three: Development of a `metabonomic toolbox' 

Table 3.6.4. Comparison of the top five variables for each developed model using 
gender as a discriminatory factor for positive ionisation mode LC-ECI-MS data, 
where GD = gender for which that variable was more discriminatory for. 

Separation Method 
ti li N Scalin Rank Ionisation on sa orma g 

Method Method Method (VIP) RP HILIC 
GD m/z tR GD m/z tR 

1 QM 310.22 15.83 QM 126.06 3.67 
2 F 229.16 3.88 QM 327.11 3.97 

ctr 3 fM 286.19 15.18 F 432.14 4.80 
4 F 290.16 8.32 QM 371.07 4.15 
5 QM 265.13 11.22 QM 126.07 5.28 
1 QM 310.22 15.83 jf F 126.06 3.67 
2 ¶F 114.06 2.63 QM 126.07 5.28 

None par 3 tM 100.09 7.57 QM 162.03 9.23 
4 QF 290.16 8.32 QM 327.11 3.97 
5 QM 286.19 15.18 jF 432.14 4.80 
1 QF 497.19 15.47 M 185.02 7.12 
2 ¶F 815.25 11.37 ji F 192.11 7.70 

UV 3 fF 83.05 9.23 M 428.01 2.63 
4 QM 182.07 5.73 QF 325.99 7.65 
5 QM 263.20 6.67 QF 206.04 2.55 
1 ji M 310.22 15.83 QM 327.11 3.97 
2 QM 114.07 3.52 QF 432.14 4.80 

ctr 3 M 286.19 15.18 QM 476.20 5.22 
4 QM 100.09 7.57 QM 371.07 4.15 
5 QM 302.24 16.12 QM 415.12 4.83 
1 QM 310.22 15.83 F 166.99 2.98 
2 QM 286.19 15.18 fr F 177.04 3.50 

Positive Creatinine par 3 F 290.16 8.32 M 529.14 4.48 
4 QM 100.09 7.57 QM 371.07 4.15 
5 M 202.11 5.75 F 401.95 7.03 
1 F 497.19 15.47 QF 182.05 2.48 
2 QF 815.25 11.37 QF 231.10 5.33 

UV 3 QF 90.05 2.70 QF 206.04 2.55 
4 jr F 492.22 15.50 QF 158.02 7.93 
5 F 290.16 8.32 F 105.02 2.73 
1 QM 114.07 3.52 QF 126.06 3.67 
2 QM 310.22 15.83 QM 529.14 4.48 

ctr 3 M 100.09 7.57 QF 166.99 2.98 
4 QF 229.16 3.88 QM 126.07 5.28 
5 QM 286.19 15.18 QF 265.08 2.92 
1 M 310.22 15.83 F 166.99 2.98 
2 QM 100.09 7.57 QF 177.04 3.50 

TIC par 3 QM 286.19 15.18 F 401.95 7.03 
4 QF 290.16 8.32 QF 265.08 2.92 
5 F 229.16 3.88 QM 126.06 3.67 
1 QF 171.10 6.92 F 206.04 2.55 
2 QF 497.19 15.47 QF 192.11 7.70 

UV 3 F 217.13 6.92 M 87.02 3.42 
4 QM 161.09 10.23 QF 325.99 7.65 

5 QF 815.25 11.37 F 182.05 2.48 
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It is evident that for positive ionisation mode, both separation methods allow the 

development of models that have comparable external classification results. Table 

3.6.4 shows the five most important variables (as determined by their VIP values) for 

the developed PLS models using gender as the discriminatory factor, for all 

normalisation and scaling methods. The shaded cells within table 3.6.4 highlight 

variables that are duplicated in other developed models for that particular separation 

method. Whilst there are some unshaded cells, meaning unique variables were used 

in that particular model, there is a large number of shaded cells for both RP and 

HILIC separation method models, suggesting that these variables are important for 

discrimination by gender. As there are only two groups to discriminate against, the 

`GD' column shows which gender each variable had an increased response for. 

The CID tandem MS analysis of the most important variables determined by PLS 

models for discrimination by gender, time of collection and age for positive (and 

negative) ionisation mode are presented in section 3.6.4. 

3.6.3.4.2. Negative ionisation mode data analysis 

Negative mode ESI-MS was also investigated for each separation method to 

determine whether further information could be obtained over that produced using 

positive mode, in order to provide as comprehensive an MS fingerprint as possible. 

Again PLS was carried out on the data sets with response variables assigned to 

gender, time of collection and age. 
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Figure 3.6.8. PLS scores plots for negative mode ESI-MS with the response 
variables: gender (a, b) where (  = male training set, f= female training set, "= male 
external test set, f= female external test set), time of collection (c, d) where (f = AM 
training set,  = PM training set, f= AM external test set, "= PM external test set), 
and age (e, f) where (f = 21-30 age group training set, "= 31-40 age group training 
set,  = 41-61 age group training set, 0= 21-30 age group external test set, = 31- 
40 external age group test set, Q= 41-61 external age group test set). (a) PLS model 
for discrimination by gender using RP-LC-MS data, (b) PLS model for discrimination 
by gender using HILIC-LC-MS data, (c) PLS model for discrimination by time of 
collection using RP-LC-MS data, (d) PLS model for discrimination by time of 
collection using HILIC-LC-MS data, (e) PLS model for discrimination by age using 
RP-LC-MS data, (f) PLS model for discrimination by age using HILIC-LC-MS data. 
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PLS scores plots for separation based on gender for RP (figure 3.6.8a) and HILIC 
(figure 3.6.8b) separation methods show clustering for the two groups. The results for 

both positive (figure 3.6.6a) and negative ionisation (figure 3.6.8a) are comparable 
for RP separation. However, the defined clusters seen with the positive ionisation 

HILIC-ESI-MS data (figure 3.6.6b) are lost when the polarity of ionisation is changed 
(figure 3.6.8b). For both RP and HILIC PLS models based upon gender, the 

classification rate of the independent test set was 88 %, with both models having the 

same classification rate when either one or two latent variables were used. This 

value is lower than those achieved for positive ionisation data from both separation 
techniques, where classification rates of 94 % and 100 % were obtained for RP and 
HILIC data respectively (section 3.6.3.4.1). 

Separation based upon time of collection for RP (figure 3.6.8c) and HILIC (figure 

3.6.8d) ESI-MS data in negative mode shows comparable clustering to that in 

positive mode (figures 3.6.7a and b). However, classification of time of collection was 

worse with negative ionisation data, giving 81 % correct classification of the 

independent test sets for both separation methods. This can be compared to the 

classification rates of 94 % and 87 % achieved for RP and HILIC respectively using 

positive mode ESI-MS. Both PLS models did not increase the classification rate 

when two latent variables were used over one, as the majority of the variation can 

again be accounted for using the first latent variable. 

The final PLS models correspond to discrimination by age. As with positive 

ionisation, both RP (figure 3.6.8e) and HILIC (figure 3.6.8e) negative mode ESI-MS 

data show overlap of the age groups, with the general trend of increasing age along 

the first latent variable. With negative ionisation data, the age group 31-40 appears to 

form a tighter cluster than was observed for positive ESI-MS data (figure 3.6.7c and 

d), although the oldest age group (41-61) again shows poor clustering. Even with the 

tighter clustering of the second age group (31-40), classification of the external test 

set for both separation methods using negative ESI-MS data was poor at 64 %. For 

RP separation, the use of two latent variables increased the classification rates, but 

for HILIC separation only one latent variable was required to gain the maximum 

classification rate. 
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Table 3.6.5. Comparison of the top five variables for each developed model using 
gender as a discriminatory factor for negative ionisation mode LC-ECI-MS data, 
where GD = gender for which that variable was more discriminatory for. 

ti i Normalisation Scalin R k 
Separation Method 

on sa Ion g an 
Method Method Method (VIP) RP HILIC 

GD m/z tR GD m/z tR 
1 F 186.99 13.60 F 186.98 2.92 
2 'ft M 211.99 11.53 M 211.98 5.80 

ctr 3 ji F 191.00 4.48 QM 367.12 2.13 
4 QF 263.07 11.33 M 263.08 4.57 
5 F 178.03 11.35 F 96.95 10.73 
1 F 191.00 4.48 QF 186.98 2.92 
2 QM 211.99 11.53 QM 211.98 5.80 

None par 3 ¶F 263.07 11.33 QF 96.95 10.73 
4 QM 331.14 17.02 QM 367.12 2.13 
5 QM 465.21 17.57 QF 107.04 2.97 
1 QM 158.08 7.82 ¶F 165.03 2.93 
2 QF 101.03 3.48 QM 263.08 2.87 

UV 3 ¶F 217.04 3.40 QM 88.03 9.35 
4 QF 145.01 3.47 if F 424.98 5.80 
5 QF 304.89 2.28 QF 74.02 5.40 
1 jý F 178.03 11.35 QF 186.98 2.92 
2 QF 263.07 11.33 QM 211.98 5.80 

ctr 3 ¶M 211.98 11.53 QF 161.97 3.02 
4 QM 191.00 3.93 jr M 367.12 2.13 
5 QF 191.00 4.48 M 263.08 4.57 

1 ¶F 178.03 11.35 F 186.98 2.92 
2 F 263.07 11.33 QM 211.98 5.80 

Negative Creatinine par 3 QF 191.00 4.48 ¶M 367.12 2.13 
4 QM 211.98 11.53 jr F 107.04 2.97 

5 M 191.00 3.93 QM 263.08 4.57 

1 ¶F 101.03 3.48 QF 74.02 5.40 

2 F 145.01 3.47 QM 145.01 6.75 

UV 3 QF 78.96 4.33 F 101.02 6.75 

4 QF 495.19 15.45 M 88.03 9.35 

5 QM 158.08 7.82 QM 151.01 6.08 

1 QF 263.07 11.33 F 186.98 2.92 

2 QF 186.99 13.60 QM 367.12 2.13 

ctr 3 QM 191.00 4.48 QF 107.04 2.97 

4 jf M 211.98 11.53 QM 263.08 4.57 
5 QM 191.00 3.93 QF 191.00 7.18 

1 QF 263.07 11.33 QF 186.98 2.92 
2 QF 186.99 13.60 QF 107.04 2.97 

TIC par 3 QM 191.00 4.48 M 367.12 2.13 
4 QM 465.21 17.57 M 172.98 2.97 

5 QF 283.06 13.30 QM 167.00 7.58 

1 F 101.03 3.48 QF 184.09 2.50 

2 QF 145.01 3.47 QF 186.98 2.92 

UV 3 QM 541.22 15.23 F 74.02 5.40 
4 F 495.19 15.45 QF 101.02 6.75 
5 I_# F 260.99 10.28 IF 107.04 2.97 
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As for positive mode of ionisation, the top five most important variables for the 

developed PLS models using gender as a discriminatory variable, again using all 

normalisation and scaling methods, shows that there are relatively few unshaded 

cells (table 3.6.5). The gender for which each variable gave the most discrimination 

for are shown in the `GD' column. The CID tandem MS analysis of the variables 

generated by negative ionisation mode data for discrimination by gender, time of 

collection and age is presented in section 3.6.4. 

3.6.3.4.3. Summary of discriminative analysis of data from positive and 

negative modes of ionisation 

Table 3.6.6. Comparison of external test set classification results for reversed phase 
and HILIC separation technique data from positive and negative mode ESI-MS 
studies. The value indicates the percentage of correct classification results. 

Ionisation Mode Y variable 
Separation Method 

RP HILIC 

Gender 94 100 

Positive Time of collection 94 87 

Age 71 86 

Gender 88 88 

Negative Time of collection 81 81 

Age 64 64 

Table 3.6.6 summarises the classification results for the independent test set. The 

two different chromatographic column chemistries allow comparable classification 

rates, showing that HILIC is a suitable separation technique to be employed for the 

analysis of human urine in metabonomic studies. It is clear that, for gender, diurnal 

variation and age, the classification rates obtained using positive mode ESI-MS are 

higher than for negative mode, suggesting that positive ionisation data generate 

more robust models. However, when a metabonomic study is undertaken, a 

comprehensive picture of the components present in the sample should be sought 

and both positive and negative ionisation considered. 
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Comparing tables 3.6.4 and 3.6.5 for the variables generated for discrimination by 

gender shows that it is clear that the variables used to construct the models from the 

positive and negative ionisation mode data are all totally different, as both the m/z 

and retention times (tR) are different. This shows that different compounds are 

contributing to the developed models, highlighting the fact that both modes of 

ionisation are important in increasing the urinary metabolome coverage. Further to 

this, comparing the variables for RP-LC-MS and HILIC-LC-MS also reveals that 

different compounds are contributing to the developed PLS models. This is entirely 

consistent with the initial expectation that different compounds would be retained on 

the different columns, and again reinforcing the need to utilise complementary 

separation methods when as much information as possible is sought from urinary 

samples. 
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3.6.3.5. Data fusion 

To evaluate how fusing the four datasets (±RP and ±HILIC) together alters the 

predictive ability of a PLS model for each of the three Y variables (gender, time of 

collection and age), the datasets were concatenated together as outlined in section 
3.5. As for each individual dataset, the fused dataset was first analysed using PCA to 
identify any outliers. As for the single datasets, there was no clustering within the first 

few LVs related to gender, time of collection or age. The majority of the data points 

were within the 95 % confidence limit; only three data points were outside the 

confidence limit, but did not have a DModX value above the critical value (95 %) and 

were therefore retained for subsequent analysis. 

The fused dataset was split into a training and test set. As the training set contained 

over 15,000 variables, optimising the PLS models based upon discrimination by 

gender, time of collection and age was of paramount importance to avoid any 

overfitting. 

The PLS scores plot based upon separation according to gender shows good 

clustering (figure 3.6.9a); this is reflected in the external classification rate of 100 %. 

The external test set data points are plotted onto the scores plot, which shows two 

latent variables. To obtain the 100 % classification rate, two latent variables were 

required. 
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Figure 3.6.9. PLS scores plots for the response variables: gender (a) where (  _ 
male training set, f= female training set, "= male external test set, f= female 
external test set), time of collection (b) where (f = AM training set,  = PM training 
set, f= AM external test set, "= PM external test set) and age (c) where (f = 21-30 
age group training set, "= 31-40 age group training set,  = 41-61 age group training 
set, 0= 21-30 age group external test set, = 31-40 external age group test set, Q_ 
41-61 external age group test set). 
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For discrimination by time of collection, the developed PLS model again showed 
some good clustering, but with overlap between the two groups as expected (figure 
3.6.9b). Using two latent variables did not increase the observed external 
classification rate of 90 % over using one latent variable. Similarly for discrimination 
by age, there is significant overlap between the three age groups (figure 3.6.9c). The 
21-30 age group exhibits a tight cluster between zero and minus two on the y-axis, 
with the 31-40 age group also showing little spread across the one latent variable. 
The 41-61 age group has a large spread from zero to five on the y-axis, showing 
much more variation between the samples. The external test set data (overlaid) 

shows that the 21-30 age group can be well predicted, but with increasing age the 
level of confidence in predictive ability is much lower as there is so much overlap 
between the 31-40 and 41-61 age groups; this is reflected in the external 
classification rate of 87 % (100 % for the 21-30 age group). As the 41-61 age group 
has poor clustering, only one latent variable was required, as using two did not 
increase the external classification rate. 

Table 3.6.7. Comparison of the external test set classification results for 
concatenated data and each of the four individual data sets (± RP and ± HILIC). 

Y Variable Classification Separation 
Rate (%) Method 

100 Data Fusion 
100 HILIC + 

Gender 94 RP + 
88 HILIC - 
88 RP - 
94 RP + 
90 Data Fusion 

Time of 87 HILIC + Collection 
81 HILIC - 
81 RP- 
87 Data Fusion 
86 HILIC + 

Age 71 RP + 
64 HILIC - 
64 RP - 

Table 3.6.7 compares the highest external classification results for each of the single 

datasets with the concatenated dataset. It should be expected that as the data fusion 

models use all of the available variables from each of the four single datasets, they 

should perform as well as, or better than, the best performing individual dataset. As 
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some of the original datasets had some samples missing due to insufficient urine 
donated, there were fewer samples available to form the aligned concatenated 

dataset, resulting in slightly smaller test sets, and therefore different external 

classification results. For both discrimination by gender and age, data fusion 

generated results that were equal to, or slightly better than, the best performing 
individual model. For discrimination by time of collection, the data fusion model 

performed as well as the positive ionisation mode RP dataset with only one sample 
being incorrectly classified; the decrease in classification rate was due to the 

differently sized external test set. 

Table 3.6.8. Comparison of the top five variables for each developed model 
highlighting which separation and ionisation mode generated each of the variables. 

Rank Separation Y Variable 
Y Variable (VIP) Method Polarity m/z tR Discriminative 

for 
1 HILIC + 428.01 2.63 ýF 
2 HILIC - 184.09 2.50 fm 

Gender 3 HILIC + 223.04 3.00 
4 RP - 101.03 3.48 
5 RP - 145.01 3.47 ýF 
1 RP + 121.06 3.95 f PM 
2 HILIC + 190.11 12.33 f PM 

Time of 3 RP + 114.90 2.45 f AM (PM = 0) Collection 
4 RP + 152.01 2.80 f PM 
5 RP + 283.16 5.57 iAM 

1 HILIC + 84.93 14.52 (31-40/41-61) 
> (21-30) 

2 RP - 231.01 4.12 (41-61) > 
(21-30/31-40) 

Age (41-61) > 3 RP + 433.23 6.42 (21-30/31-40) 
4 RP + 176.09 6.67 ft (31-40/41-61) 
5 RP + 217.13 6.92 ft(41-61) 

Each of the three developed PLS models all used a mixture of variables deriving from 

different separation and ionisation method data (table 3.6.8). The fact that each 

model utilises variables from each of the four single datasets, highlights the fact that 

by not attempting to increase the coverage of the components within a biofluid, there 

is the potential to miss many variables that may be important to a model's 

development, and therefore the question being asked. 
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3.6.4. Variable analysis using CID tandem MS 

Identifying the ions giving rise to the variables generated by each of the developed 

models in section 3.6 was carried out using CID tandem MS. A selection of four urine 

samples was chosen for analysis based upon differences in gender, time of collection 

and age. Each of the four samples were analysed using the two modes of ionisation 

and both separation methods, RP and HILIC. Each of the most important variables 
for each model were added to an `include list' within Analyst QS's independent data 

acquisition (IDA) setting, meaning that when an ion with a retention time and mass 
that corresponds to one in the `include list' is detected, it is isolated and subjected to 

CID product ion analysis. A total of the four most intense peaks could be analysed 

using two different collision energies from any one `survey scan'. 

Upon analysis of the resulting data for each of the samples from each separation and 

ionisation mode, it became clear that many of the masses added to the 'include list' 

did not fragment (or were not isolated at intensities sufficient for CID product ion 

analysis), leaving just the precursor ion present in the spectrum. Unfortunately, this is 

a problem with the QStar's Analyst QS software, where the most intense peaks are 

first selected for CID tandem MS analysis at the selected collision energies, with an 

MS 'survey scan' being run in between each tandem MS step; this can result in some 

ions not being selected for CID, despite being present on the 'include list'. 

The product ions that were generated on CID tandem MS analysis of the precursor 
ions from the variable lists, and the m/z values of ions identified as variables and 

corresponding to metabolites within the Human Metabolite Data Base (HMDB, 

(Wishart et al., 2007))' or Metlin2 database, are presented in table 3.6.9: 

1 http: //www. hmdb. ca (accessed November 2007). 
2 http: //metlin. scripps. edu (accessed November 2007). 
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Table 3.6.9. A table showing precursor ions that were isolated and subjected to CID 
tandem MS analysis, and m/z values of ions that were identified as variables and 
correspond to metabolites in either HMDB or Metlin. (n/d = not detected in CID 
analysis. n/r = not recorded, meaning no fragment ions were observed). 

Separation 
Method 

Statistical 
Model 

Ionisation 
Polarity R 

Precursor 
Ion Mass 

(Milz) 
Product Ions (miz) 

Product 
Ion 

Spectrum 
n 

Appendix 
C 

Posit e 15.47 497.2 321.1 303.2 186.1 1.0 
3.48 101.0 n1r - 

Gender i 3.47 145.0 n1r - ve Negat 15.23 541.2 429.1 145.1 2.0 
15.45 495.2 357.0 267.0 260.1 181.1 3.0 

Positive nid aid aid - 
RP Time of 2.95 173-0 n1r - Cotlection Negative 2.95 111.0 n1r - 

3.75 135.0 n1r - 
Positive 8.90 197-1 n1r - 

A 8.90 196-1 n1r - ge Negative 11.82 
1 

180.1 n1r - 
1- 3.92 391.1 291.1 195.1 129.0 97.0 69.0 4.0 

G d 
Positive 2.55 206.0 air - er en Ne ative 5.40 74.0 n1r - 
P 9.37 290.8 n1r - 

I IC 
rime of 

ll ti C 
osit ve 9.37 206-8 n1r - H L on o ec Negative aid aid n/d - 

3.33 197-0 aid - 
Age Positive 7.50 204.0 n1r - 

Negative 5.38 275.0 n/r - 

Appendix B contains the CID tandem MS spectra of any precursor ions which 
produced fragment ions upon CID. 

As the QStar Q-o-ToF MS can only provide accurate mass measurements to 2 d. p. 

at best for a well calibrated machine', it is not possible to confidently assign atomic 

compositions to precursor (and fragment) ion masses that do not correspond to a 

metabolite within one of the databases; this is often the case with metabonomic 

studies where, without the ability to obtain accurate masses (to 4 d. p. with mass 

accuracy below 1 ppm) or have access to comprehensive databases or search 

engines (such as those used for proteomic studies), the identification of metabolites 

remains the hardest goal to achieve. 

The unidentified precursor ion at m/z 497 (appendix B1) is accompanied by a peak 2 

Th higher, suggesting the presence of chlorine in the compound. The loss of 18 Th 

from one of the fragment ions at m/z 321 is consistent with the subsequent loss of 

water from this fragment ion. 

1 Using internal standards. 
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The precursor ion at m/z 101 did not produce any structurally diagnostic fragment 

ions at either collision energy used. However, upon searching the databases, a 

matching mass was found with 2-oxobutyric acid. This metabolite is involved in the 

metabolism of the amino acids Gly, Ser and Thr, and has previously been detected in 

human urine as an endogenous metabolite (Liebich et al., 1981). Another metabolite 

that failed to produce any fragment ions, but has a mass that corresponded to a 

metabolite found upon a database search was the precursor ion at m/z 145. This 

mass could correspond to the metabolite oxoglutaric acid. Oxoglutaric acid is 

involved in the Krebs cycle and also in amino acid metabolism and is an endogenous 

metabolite found in urine (Lee et al., 1998). 

The two ions at m/z 541 and 495 (appendix B2 and 3) both produced fragment ions. 

However, their masses did not correspond to any metabolites contained within either 

of the databases, and the lack of more accurate mass data means that it is not 

possible to assign atomic compositions to the fragment ions, making it very difficult 

for a structure to be postulated. 

Guneral and Bachmann have previously detected metabolites in human urine which 

gave deprotonated molecules at m/z 173 and 135 (Guneral and Bachmann, 1994). 

These corresponded to cis-aconitic acid, related to the Krebs cycle, and threonic 

acid, a by-product of the oxidation of ascorbic acid. The ion at m/z 111 could 

correspond to uracil, a compound that has many uses within the body. Uracil is found 

in RNA, can react to form nucleosides, and has previously been detected in urine as 

an endogenous metabolite (Jiang et al., 2001; Hofmann et al., 2003). 

A metabonomic study by Williams et al. of development and ageing of rats proposed 

two possible atomic compositions of C7H1704S and C4H13N405 (RMM = 197) for an 

ion they detected in negative ionisation mode that was discriminatory of age 

(Williams et al., 2005). The ion also detected in this study at m/z 196 (table 3.6.9) in 

negative ionisation mode (corresponding to a mass of 197 Da) as an important 

variable for discrimination by age, could correspond to the same component that 

Williams et al. detected. 

The remaining precursor ion at m/z 391 (appendix B4), which produced fragment 

ions, did not correspond to any metabolites within any of the databases; without more 

accurate mass data, no atomic structure can be postulated. 
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The precursor ion of m/z 206 could correspond to an ion of the same m/z value 
detected by Lenz et al., Plumb et al., and Hodson et al. (Lenz et al., 2004; Plumb et 

al., 2005; Hodson et al., 2007). Research by Plumb et al. and Hodson et al. showed 
that an ion of m/z 206 detected in positive ionisation mode contributed significantly to 

clustering based upon discrimination according to gender (Plumb et al., 2005; 

Hodson et al., 2007). The ion observed in this study at m/z 206 was detected in the 

positive ionisation mode, and was an important variable for discrimination according 
to gender, in agreement with the results of Plumb et al. and Hodson et al. Lenz et al. 
determined that the ion of m/z 206 corresponded to the metabolite 4,8- 

dihydroxyquinoline-2-carboxylic acid, which is part of the tryptophan catabolism 

pathway (Lenz et al., 2004). 

The only remaining precursor ion that corresponded to a metabolite within either of 
the databases gave a deprotonated molecule at m/z 74, which is postulated to 

correspond to the amino acid Gly, an endogenous metabolite in human urine (Bales 

et al., 1984). 

3.6.4.1. Discussion 

Despite the lack of more accurate mass data which may have led to an increased 

confidence in the postulated metabolites identified within this study, the postulated 

metabolites that were identified as discriminatory for gender, time of collection and 

age have all previously been identified as endogenous metabolites in urine. The ion 

at m/z 206 that was highly discriminatory for gender, which has previously been 

identified as a metabolite that can be used to discriminate based upon gender in two 

studies (Plumb et al., 2005; Hodson et al., 2007), suggests that the models 

developed were robust and consistent with previously published metabonomic 

research. 
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3.7. Discussion 

The work presented in Chapter Three covers many topics that are involved in an LC- 

MS metabonomic study. The various platforms available for a metabonomic study 

were discussed and evaluated for the contributions that each method can provide. It 

is clear that whilst the majority of studies choose to focus on one particular method, 
be it LC-MS (Wilson et al., 2005; Sumner, 2006; Chen et al., 2007) or NMR (Lenz et 

al., 2000; Constantinou et al., 2005; Bertram et al., 2007), the future of metabonomic 

studies lies with the use of both NMR- and MS-based analyses where all of the data 

generated are compared together to provide the most comprehensive analysis 

possible (Forshed et al., 2007a; Forshed et al., 2007b). 

As metabonomic studies tend towards a `comprehensive' fingerprint of the biofluid 

chosen for analysis (Lenz and Wilson, 2007), the consideration of how samples are 

collected, stored and manipulated is of paramount importance. However, this is an 

area that is often overlooked or poorly considered within the literature. The results 

presented within section 3.3 are in good agreement with similar studies described in 

the literature (LeBeau et al., 2001; Schneider et al., 2002; Fura et al., 2003; Gika et 

al., 2007; Saude and Sykes, 2007). Samples should be stored, preferably at -80 °C, 

as soon as possible after collection and allowed to remain frozen for a period of at 
least one week to allow the degradation of compounds to be consistent across the 

sample cohort (Saude and Sykes, 2007), with any sample manipulation kept to an 

absolute minimum. Samples should just be centrifuged and filtered prior to LC-MS 

analysis to maximise the metabolite content of urine samples (avoiding the inevitable 

loss of analytes using extraction methods such as solid phase extraction) (Gika et al., 
2007). 

As LC-MS systems are renowned for poorer reproducibility than NMR, the system as 

a whole should be allowed to equilibrate by the analysis of a minimum of three 

reference samples (e. g. aliquots of a urine pool), and continually monitored by the 

inclusion of reference samples throughout the run; this was also proposed in very 

recently published research by Gika et al. (Gika et al., 2007). 

Despite being a vitally important step, the approaches to extraction of raw data into a 

usable format for subsequent statistical analysis has received comparatively less 

attention than the rest of the field of metabonomics. Research by Sangster et al. 

showed that problems with extraction algorithms led to problems with the resulting 
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extracted data (Sangster et al., 2007); this was also clear in this study in the results 
presented in section 3.4. 

The statistical analysis of metabonomic data (section 3.5) is one of the most 
important steps in a metabonomic study, after producing `good' data in the first 
instance. Statistical tools such as PCA and PLS have made the analysis of large, 

complex datasets easier, and available to all. Because of the ease of use of 
statistics, spurious results can be easily generated where naivety leads to the 

generation of a hypothesis being generated that is proved using poor, undeveloped 
statistical models. At the very least, discriminative models built using PLS should be 
developed using only -2/3 of the data, and subsequently refined by the removal of 
unimportant variables. Once a statistical model has been refined and developed, the 

remaining -r1/3 of the withheld data should be analysed using the developed model to 

evaluate the `true' predictive ability of the developed model. However, there are many 
other considerations that need to be evaluated when statistics are involved, ranging 
from scaling methods to normalisation. 

Many metabonomic studies have used creatinine to provide some degree of 

normalisation of differences in the concentration of urine samples prior to statistical 

analyses (Woitge et al., 1999; Schoenau and Rauch, 2003; Huskov6 et al., 2004; 

Idborg et al., 2004; Svoboda and Kasai, 2004; Obrant et al., 2005). However, 

normalisation using total ion count (originating from NMR studies (Kenney and 
Shockcor, 2003; Antti et al., 2004; Williams et al., 2005)) appears also to be 

becoming a more accepted method of normalisation in LC-MS studies (Plumb et al., 
2003; Williams et al., 2005). Reading the literature, it became very evident that very 

little consideration has been given to the consequences of using creatinine for 

normalisation, as studies into the effects of internal and external factors showed that 

excreted levels of creatinine are easily perturbed (Boeniger et al., 1993; Schoenau 

and Rauch, 2003; Antti et al., 2004; Heavner et al., 2006). This was evidence that the 

use of creatinine to provide normalisation for metabonomic studies may be an 

outdated way of doing so, and is an area that definitely requires further research. 

The main aim of Chapter Three was to evaluate a HILIC separation method for the 

retention of more polar compounds from urine samples. HILIC is an orthogonal 

separation method to RP, and was shown to provide an increased coverage of 

different metabolites from urine by the development of robust statistical models that 

used completely different variables than models developed using RP-LC-MS data. 
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This highlighted the fact that much information has potentially been missed when 

only RP as a separation method has been employed for metabonomic studies. The 

use of HILIC is quite rightly beginning to find a place in metabonomic studies (ldborg 

et al., 2005; Kind et al., 2007; Mawhinney et al., 2007) as the field demands an 

increasing amount of information from biofluids. 

Despite the lack of more accurate mass measurements, variables being identified 

and the poor success rate of CID tandem MS analysis, there were a number of 

masses that were identified from both database searches and previous metabonomic 

studies into urine samples. Each of the putative assignments correlated well with 

components previously identified in human urine, with two variables being detected in 

this metabonomic study as being important for discrimination by age and gender, that 

have also been identified in other studies. 
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3.8. Conclusions 

The work presented in this chapter has highlighted the fact that metabonomics is still 
an immature field, with much potential for important scientific discoveries to be made. 
However, due to the immaturity of the field, there is still much that needs to be 

researched and standardised if LC-MS-based metabonomics is to stand a chance of 
becoming a mature, robust and commonly utilised `omic' approach. 

It has been shown that metabonomic experiments are typically poorly reported within 
the literature, with many vitally important experimental aspects either not reported or 

not carried out at all. The recommendations from this chapter are that metabonomic 

studies are first carefully thought through before sample collection begins. When a 

study has been developed, samples should be carefully collected, stored 

appropriately for a pre-determined period of time (at least one week to allow the 

degradation of compounds to be consistent across all samples), and subjected to 

minimal freeze/thaw cycles and manipulations. 

Samples should only be centrifuged and filtered prior to analysis using LC-MS. For 

LC separation, orthogonal separation methods (RP and HILIC) should be utilised to 

increase the coverage of the urinary metabolome and thus the amount of information 

obtained. LC-MS systems should be allowed to equilibrate by the initial analysis of at 

least three reference samples (e. g. aliquots of a urine pool), and subsequently 

monitored by the inclusion of reference samples throughout the randomised urine 

samples. 

Data should be not be normalised according to creatinine concentrations, due to the 

perturbation to concentrations caused by internal and external factors (such as 

therapeutic interactions, disease and growth), but instead to total ion count. The 

resulting normalised data should be carefully analysed using both PCA and PLS 

statistical methods. The data should first be analysed using PCA to view the 

maximum variation in the dataset, and to explore any outliers that may be present. 

Subsequent discriminative analysis by PLS should be undertaken on _2/3 of the 

dataset, with any unimportant variables being removed from the model. The 

optimised PLS model should then be evaluated using the remaining _1/3 of the 

dataset that was held back and not used to build the model; this determines the 

model's 'true' predictive ability. 
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As the field develops, a more comprehensive `global' analysis of biofluids should be 

sought, where all of the data generated are integrated together and analysed as a 

whole, becoming the norm, rather than the exception. 

The conclusions from the work presented in this chapter were used for the 

subsequent LC-MS metabonomic analysis of clinical urine samples from patients 

who had suffered a fracture. 

3.8.1. Retrospective view 

From the work undertaken within this chapter, and with the knowledge gained, it has 

become clear that obtaining larger sample cohorts would be a benefit allowing a 

greater number of samples to be held back to form the external test set. Holding back 

roughly 1/3 of a small data set means that the data available to build a robust model 

may not be sufficient, let alone large enough to allow the external test set to 

thoroughly test any developed model. 

Obtaining more information from the volunteers would have allowed further 

investigation into the potential information contained within this biofluid: 

" Dietary intake prior to donation 

" Height / weight 

" Physical activity levels 

" Ethnic origin 

" Drug intake 

The use of NMR for the analysis of the samples would have allowed a further 

orthogonal detection approach, and would have allowed an interesting comparison of 

any results obtained to be undertaken. 

Collaborating with statisticians to analyse any resulting data more thoroughly would 

be of great benefit, as a more critical approach to the analysis of metabonomic data 

could then be sought. 
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Chapter Four: Clinical urine sample analysis 

4.1. Introduction 

The skeletal system within the human body performs a vital role, as it supports 

muscle, protects vital organs and stem cells, and is a vast reserve of ions. Despite 

their strength, given the very nature of human activity, bones do fail and fractures 

occur. As bones are continuously being renewed, they exhibit an amazing ability to 

repair themselves and regain their original strength, usually without scarring. In spite 

of the body's ability to repair itself after a fracture, there are times when a fracture 

takes much longer to heal than normal (delayed fracture), or may not heal at all (non- 

union). 

Fractures that are delayed or go to non-union (failed fracture healing) require further 

medical intervention, putting patients through further stress and increasing the time 

until their fracture has successfully healed. Whilst much research has been 

undertaken studying biofluids for biomarkers that relate to pathological fractures such 

as osteoporosis (Calvo et al., 1996; Woitge et al., 1998; Chapurlat et al., 2000; 

Ebeling and Akesson, 2001; Srivastava et al., 2002; Garnero and Delmas, 2003), 

there have been very few studies published regarding non-pathological fractures 

(Severns et al., 2003; Henle et al., 2005; Zimmermann et al., 2005). Of the research 

undertaken to attempt to elucidate biomarkers of bone resorption/formation, the 

overwhelming majority use serum samples and try to identify biomarkers (Chapurlat 

et al., 2000; Yu-Yahiro et al., 2001; Srivastava et al., 2002, Henle et al., 2005; Li et 

al., 2005; Asaba et al., 2006); few papers describe studies that have used urine as a 
biofluid, but those that have, are targeted studies of known breakdown products of 
large proteins e. g. telopeptides and collagen cross-links (Chapurlat et al., 2000; Yu- 

Yahiro et al., 2001; Qvist et al., 2002; Srivastava et al., 2002; Garnero and Delmas, 

2003; Lamers et al., 2005). 

To my knowledge, no research has been undertaken using a metabonomic approach 
for the analysis of clinical urine samples from patients whom have sustained a non- 

pathological fracture. In collaboration with Smith & Nephew (Research Centre, York 

Science Park, York, UK) and York NHS Hospital Trust (York, UK), urine samples 

were collected from patients who had suffered a fracture, with a view to analysing the 

samples to hopefully identify biomarkers that relate to failed fracture healing. The 

ultimate aim was to identify candidate biomarkers that could be tested as early 

urinary predictors of fracture healing in order to investigate the possibility of early 

identification of patients whose fracture will result in delayed/non-union. 
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To avoid any chance of pathological fracture patients being included in the study, or 
those with incomplete skeletal development, all recruited patients were between the 

ages of 18-45. Initially, only long bone fractures were considered, but due the slow 

recruitment of patients suffering from long bone fractures, wrist and ankle fractures 

were also included in the study as it progressed. Further exclusions were any 

patients who had suffered multiple injuries, had malignancy, head injuries, 

spine/foot/hand fractures, pregnant or nursing mothers and any unconscious 

patients. 

During the recruitment period (October 2004 to February 2005) a total of 61 patients 

were deemed suitable for inclusion into the study (45 males and 16 females); of 
these, 11 declined consent stating either lack of interest or a needle phobia', with a 
further two patients withdrawing consent at a later date, and one being transferred 

into the care of another health trust. This left a total of 48 patients (36 males and 12 

females, with an age range of 19 to 47 years old; average age = 29.5, standard 
deviation = 8.2), who each donated between one and four urine samples, ranging 
from a period of t=0 (time of fracture) to 133 days (19 weeks) after the initial fracture 

(average =6 weeks). All of the samples were labelled randomly, shuffled, 
transported from York Hospital to Smith & Nephew, where they were stored in a 

semi-organised, partially catalogued state at -80 °C until the recruitment period 
finished. 

1 Serum samples were also collected for a parallel study by Smith & Nephew into serum markers related 
to fracture repair; any patients with needle phobia were excluded from the trial. 
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Table 4.1. Summary of fracture types, breakdown by gender and number of samples 

obtained. 

Fracture Type 
I No. of 

Patients 
Gender Total No. 

of Urine Male Female Samples 
Ankle 21 15 6 51 
Wrist 10 6 4 24 
Fibula 2 2 0 5 
Radius 2 2 0 5 

Tibia/Fibula 3 2 1 4 
Tibial Plateau 1 1 0 4 

Clavicle 3 3 0 3 
Radial Head 2 2 0 3 

Ulna 1 1 0 3 
Radius/Ulna 1 1 0 2 

Gr. Tuberosity of 1 0 1 2 Humerus' 
Pilon 1 1 0 1 
Total 48 36 12 107 

The largest sample cohorts obtained were not from long bone fractures, but from 

ankle and wrist fractures (table 4.1), with a total of 51 and 24 samples obtained 

respectively. After all of the samples were collected and (de)coded, they were each 

defrosted at room temperature before being aliquotted into 0.5 mL microcentrifuge 

vials and then refrozen to await analysis by ESI-LC-MS. Some samples were of 

sufficient volume to allow up to 13 aliquots to be produced, whereas some only 

afforded three aliquots (average number of aliquots from each of 107 samples = 8). 

All obtained data relating to the clinical urine samples are presented within appendix 

C. 

1 Greater tuberosity of humerus refers to the fracture of the head of a humerus. 
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4.2. Aims 

The aim of this work was to utilise all of the developed `metabonomic tools' described 

in chapter three to comprehensively analyse the obtained clinical urine samples by 

both positive and negative ionisation modes and reversed phase and hydrophilic 

interaction LC-ESI-MS. The resulting data were analysed using PCA and PLS to 

attempt to elucidate potential biomarkers that could be putatively linked to failed 

fracture healing', hopefully generating candidates for further research into the field, 

with an envisaged end goal of developing early tests for possible failed fracture 

healing, thus allowing earlier intervention and shorter healing times. 

1 Unfortunately, post-analysis of the clinical urine samples, it was found out that none of the recruited 

patients fractures went to non-union, or suffered delayed healing. Despite this, the resulting data 

obtained was analysed to attempt to elucidate potential biomarkers that could putatively be related to 

the fracture healing process instead. 
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4.3. Results from RP-LC-ESI-MS analysis of clinical samples 

Prior to analysis by positive and negative RP- and HILIC-LC-ESI-MS, the aliquotted 
clinical urine samples were removed from storage at Smith & Nephew (-80 °C) and 
placed in a container with dry ice, for transport to the Departments of Chemistry or 
Biology. As there were limited aliquots available from the clinical samples, pooled 
urine samples were created from the urine samples collected from volunteers from 

within the Department of Chemistry. These 'pool' samples were used for system 
equilibration and ongoing system stability monitoring. All optimised methods from the 
'metabonomics toolbox' (chapter three) were employed for all analyses described 

within this section. For the RP-LC-MS analysis of clinical urine samples, each sample 
was defrosted at room temperature, vortex mixed, centrifuged and then filtered to 

remove any remaining sediment before being transferred into LC autosampler 
sample vials, ready for analysis. 

4.3.1. Positive mode RP-LC-ESI-MS analysis of clinical urine samples 

The LC-MS system was equilibrated by the injection and separation of three identical 

pooled urine aliquots. The TICs shown in figure 4.3.1 all follow the same trend, 

except the first TIC (blue line) that shows some deviations in peak intensity (indicated 

by arrows) from subsequent pooled sample TICs. The observed deviation for the first 

pooled sample was expected from previous results (chapter 3.3) as the LC-MS 

system equilibrates; as subsequent TICs all followed the same trend with no 
deviation in intensity or retention time, the system was considered equilibrated and 
thus ready for the analysis of clinical urine samples. 
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Figure 4.3.1. Five overlaid TICs from positive mode RP-LC-MS analysis of five 
pooled urine samples; three back-to-back analyses carried out at the very start of the 
analysis to monitor system equilibration, and two subsequent analyses for ongoing 
system stability monitoring. The arrows indicate areas where the first pooled samples 
TIC (blue line) deviate from subsequent TICs. 

So that samples suffered minimal possible degradation, only 10-14 samples were 

defrosted and prepared for analysis at any one time. Subsequent sample batches 

were prepared and loaded into the autosampler as the analysis proceeded. Pooled 

samples and random repeats of clinical samples were included throughout data 

collection, meaning a total of 130 samples were analysed (3.5 days of analyses). 

After the analysis of all samples, the raw data were extracted using the metabolomics 

export script (Applied Biosystems) to form a matrix for import into Excel (Microsoft 

Excel for Mac 2004), where data relating to each sample were added into a 

spreadsheet, before being subsequently imported into SIMCA P+ v11.5 (Umetrics, 

Sweden) for statistical analysis. 
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Figure 4.3.2. (a) PCA scores plot of positive mode RP-LC-MS data (  = samples 
from males, "= samples from females and "= pooled samples). (b) PCA scores 
plot of pooled samples only, the arrow indicates the first sample analysed, with the 
hashed line indicating the order of sample analysis. 

The initial PCA of all samples analysed by positive mode RP-LC-MS is shown in 

figure 4.3.2a. The PCA scores plot shows a tight cluster between 0 and -20 on both 

axes (PC 1 and PC 2), with all female data points within this cluster (red diamonds, 

masked by male data points), and the majority of the male data points (black 

squares). The remaining male data points are either outside the 95 % confidence 
limit (shown by an oval in the scores plot) or are far away from the bulk of the data in 

the tight cluster. The pooled samples (blue dots) appear to cluster apart from the 

samples analysed before any of the clinical samples (grouped at -100 on PC 1 and 

-50 on PC 2). This trend was unexpected, as the pooled samples should reside 

within the same area upon a PCA scores plot, given that they are the same sample 
just analysed a number of times. 

PCA analysis of the data from just the pooled samples displayed a 'U' shape in the 

resulting scores plot (figure 4.3.2b) when the points were joined up in order of 

analysis (shown by a hashed line). The arrow indicates the three initial equilibration 

injections, which all form a tight cluster, with subsequent pooled samples moving 

away from this point. Visual inspection of the TICs of the initial injections did not 

highlight any substantial differences (figure 4.3.1), which is why the initial samples 

form a tight cluster. However, TICs of later injections of the pooled samples illustrate 

the reason for the `U' trend observed in the scores plot. 
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Figure 4.3.3. Three TICs from positive mode RP-LC-MS analysis of pooled urine 
samples. The blue TIC was from the initial analysis, with the green and red TICs 
obtained towards the end of sample analysis. The hashed double-headed arrow 
shows a large shift in the retention time of the most intense peak, and the solid arrow 
shows the severe reduction in intensity for an intense set of peaks. 

Figure 4.3.3 shows superimposed TICs from three injections of the pooled sample. 
The blue TIC is from one of the initial injections run prior to the analysis of clinical 
samples, and the green and red TICs correspond to analyses towards the end of 
data acquisition (-3.5 days) to highlight the large shifts in retention time and peak 
intensity. The green and red TICs show a significant difference from the original TIC, 

with substantial deviation (-3 min) in retention time of the most intense peak 
indicated by the hashed double-headed arrow, and the disappearance of an intense 

set of peaks highlighted by the solid arrow. The large deviations in retention time and 
intensity occurred gradually, with a systematic drift in both the retention time and 
intensity of the peaks over the 3.5 day acquisition period; this means that some 

peaks that were present in the extracted data for the initial pooled sample injections 

would fail to be present in subsequent injections (an increasing number of peaks 

were `lost' as time progressed). The systematic deviation in retention time and peak 
intensity explains the `U' shaped trend present in the PCA scores plot for the 

analyses of the pooled sample (figure 4.3.2b). 
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The cause of the shifts in retention time and intensity was consistent with column 
degradation/contamination, which would cause large shifts in the retention time and 

peak intensities. Despite the trend observed for the pooled sample analyses, the 

male `outliers' in the scores plot in figure 4.3.2a do not correspond to samples 

analysed later in the run, nor do they follow any time related trend (sample analysis 

order shown by numbers along the x-axis in figure 4.3.4b); the random analysis of 

samples controls for this, meaning that these samples did not form part of the tight 

cluster for another reason. 
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Figure 4.3.4. (a) PCA scores plot of positive mode RP-LC-MS data (  = samples 
from males, f= samples from females), with all samples outside of the tight cluster 
labelled (see appendix B). (b) Corresponding DModX plot of the data, where data 
points above the red line (95 % confidence limit) have large distances from the 
model. 

PCA of the clinical samples (without the pooled sample data) results in more data 

points lying outside the 95 % confidence limit (figure 4.3.4a), compared to PCA of all 

analyses (figure 4.3.2a); again, there is a tight cluster containing the bulk of the data. 

When the data presented in figure 4.3.4a were viewed in 3D (not shown), the tight 

cluster containing the bulk of the data points formed along the same plane, with 13 

data points lying outside of (or close to) the 95 % confidence limit on a different plane 

to the bulk of the data. This is highlighted by the many data points above the 95 % 

confidence limit (red line) in the corresponding DModX plot (figure 4.3.4b), where the 

majority of the labelled data points correspond to those labelled in the scores plot 

(figure 4.3.4a); the few additional data points above the confidence limit correspond 

to a few samples that were not outliers in the PCA scores plot, but were slightly 'out 

of plane' from the bulk of the data. 
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Figure 4.3.5. (a) PCA scores plot of positive mode RP-LC-MS data (  = samples 
from males, f= samples from females), with all data points that were labelled in 
figure 4.3.4a removed. (b) Resulting PLS analysis of positive mode RP-LC-MS data 
(again with all data points that were labelled in figure 4.3.4a removed) for a gender 
response variable (  = samples from males, f= samples from females). 

To further investigate these trends, the data points with large DModX values (above 

the 95 % confidence limit, figure 4.3.4b) that also corresponded to the labelled data 

points in figure 4.3.4a were removed; thus PCA was performed on the data sets 

forming the tight cluster. The resulting PCA scores plot (figure 4.3.5a) shows a well 

defined trend within the data; many data points cluster together, with some data 

points tailing off at values lower than -10 along PC 1. Nothing in the information 

obtained on the patients could be used to explain the effects observed in the first two, 

and any subsequent, PCs. The clustering observed even with the `outlying' samples 

removed, shows a systematic drift of the data. This was further shown when PLS 

analysis of the whole data set (excluding pooled samples) failed to discriminate by 

gender (figure 4.3.5b); this should have been easily obtained as was shown in 

chapter 3.6. 

As for PCA, there is a cluster containing the bulk of the data (both male and female 

data points), with other data points moving away from the cluster and spreading out. 

Surprisingly, even when all variables were used to build the PLS model, there was no 

apparent clustering based upon discrimination by gender. The data points from 30 to 

110 along the first latent variable (LV) correspond to the 13 data points that had large 

DModX values and were close to, or outside of, the 95 % confidence limit in the 

original PCA scores plot (figure 4.3.4). 

Given that the data obtained were unsuitable for subsequent analysis due to the 

unacceptable drifts in both retention times and peak intensity, shown by the 
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systematic drift in the pooled urine sample injections upon PCA (figure 4.3.2b), and 

the inability to obtain clustering according to gender using PLS. The unfortunate 

conclusion was that the analysis was flawed, probably due to degradation of the 

HPLC column. Therefore, It was decided to analyse the clinical samples using a new 

RP column. 
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4.3.2. Negative mode RP-LC-ESI-MS analysis of clinical samples 

The new column (and LC-MS system) was equilibrated and tested by the analysis of 
five aliquots of the pooled urine sample before the analysis of any clinical urine 

samples. As for positive mode RP-LC-MS analysis, the first aliquot analysed 

exhibited a TIC that was marginally different from the four subsequent near-identical 
TICs (not shown). 
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Figure 4.3.6. (a) PCA scores plot of negative mode RP-LC-MS data (  = samples 
from males, "= samples from females and "= pooled samples). (b) PCA scores 
plot of pooled samples only, the solid black arrow indicates the first sample analysed 
and the hashed red arrow the sixth, with the hashed line indicating subsequent 
sample analysis. 

The PCA scores plot for the analysis of extracted negative mode RP-LC-MS data is 

shown in figure 4.3.6a, and includes both the clinical and pooled sample data. The 

pooled sample data points cluster in the lower left hand side of the scores plot, with 

far less variation between samples than for the positive mode RP-LC-MS data (figure 

4.3.2a); this suggests that whilst there is some variation between repeat injections of 

the pooled sample, on the whole, the system was more stable than observed in the 

positive mode RP-LC-MS analysis. The clinical data show two distinct clusters, a 

small tight cluster (centered around 20 and 0 on PCs 1 and 2 respectively) that 

contains the bulk of the data points (all female samples and the majority of the male 

samples), with the remaining samples forming a loose cluster between -40 and -80 

onPC1. 

Analysing the data points from the pooled urine sample injections by PCA shows a 

trend within the data (figure 4.3.6b); the first few analyses (before the analysis of any 

clinical samples, with the first sample indicated by the solid black arrow) were similar, 

due to their close proximity to one another in the scores plot. The subsequent pooled 
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urine sample data points (indicated by a hashed red arrow) show an instant shift in 

position from the initial data points; after the initial shift, a more stepwise trend is 

observed. The PCA of positive mode RP-LC-MS data from pooled samples (figure 

4.3.2b) showed a more stepwise pattern from the beginning, than that observed for 

negative mode RP-LC-MS data. 

Despite the trend observed upon PCA of the pooled sample data, the initial cluster 

observed in the PCA scores plot of all data analysed by negative mode RP-LC-MS 

was much tighter than that observed for positive mode RP-LC-MS data, suggesting 

that negative mode RP-LC-MS data analysis produced slightly more reliable results 
(the TICs over the whole run exhibited less shifting in retention time and intensity 

than for the previous analysis). Analysing the pooled sample aliquots by PCA on their 

own only gives an idea of any trends, as PCA by definition seeks to find the most 

amount of variation between data points. Given that there are many thousands of 

variables in each dataset, the pooled sample injections' data points would not overlay 
due to minor variations within the dataset; PCA maximises these variations, thus 

'increasing' the observed variation when pooled sample data are analysed using 
PCA. 
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Figure 4.3.7. (a) PCA scores plot of negative mode RP-LC-MS data (  = samples 
from males, f= samples from females), with all samples outside of the tight cluster 
labelled (see appendix B). (b) Corresponding DModX plot of the data, where data 
points above the red line (95 % confidence limit) have large distances from the 
model. 

When only the clinical sample datasets were analysed using PCA, the resulting 

scores plot (figure 4.3.7a) shows a tight cluster and a loose cluster, with samples 

spread over a broad range of values along the second PC. The majority of the 

labelled samples are outside, or very close to, the 95 % confidence limit. The labelled 
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data points all correspond to those labelled in the PCA from positive mode RP-LC- 

MS data (figure 4.3.4a). The corresponding DModX plot (figure 4.3.7b) shows many 

samples above the confidence limit; these samples correspond to those labelled in 

the corresponding PCA scores plot, again showing that these data points are 
`different' to those in the tight cluster. 
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Figure 4.3.8. (a) PLS scores plot of negative mode RP-LC-MS data for a gender 
response variable (  = samples from males, f= samples from females), with all 
clinical data points included. The shaded ellipse contains all 12 samples that are 
`different' from the bulk of the data. (b) Resulting PLS analysis of negative mode RP- 
LC-MS data (with all data from the shaded area in (a) removed) for a gender 
response variable (  = samples from males, f= samples from females). 

The PLS scores plot for negative mode RP-LC-MS data (two thirds of all clinical data 

points, but not the pooled urine injections included) shows one long cluster between - 
10 and 20 along the first LV, and a large cluster below -50 along the first LV, 

highlighted by a shaded ellipse (figure 4.3.8a). The long cluster corresponds to the 

bulk of the data and contains all of the data points that also fell within the tight cluster 

observed in the PCA scores plot (figure 4.3.7a). In contrast to the PLS analysis of 

positive mode RP-LC-MS data, the PLS scores plot of negative mode RP-LC-MS 

data shows some degree of clustering based upon gender. The data points within the 

shaded ellipse all correspond to the labelled 'outliers' within the corresponding PCA 

scores and DModX plots (figure 4.3.7a and b). 

Figure 4.3.8b shows the resulting PLS scores plot for a gender response variable 

when the initial model (figure 4.3.8a) was optimised by the removal of unimportant 

variables; there are two overlapping clusters that relate to samples obtained from 

male and female patients (in contrast to the PLS analysis of positive mode RP-LC- 

MS data, where no developed model could discriminate by gender). The data points 

from the shaded ellipse (figure 4.3.8a) no longer cluster apart from the bulk of the 
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data, but now form part of the cluster containing data points corresponding to male 

patients. 

The external classification using the third of the dataset that was held back gave an 

external classification rate of 42 %, which is very low compared to 88 % obtained 

using negative mode RP-LC-MS analysis of urine samples collected from within the 

Department of Chemistry (chapter 3.6). This suggests that the variables used to 

develop the PLS model, yielding the separation shown in figure 4.3.8b, are not overly 

predictive of gender. However, despite the poor external classification rate for 

discrimination by gender, the fact that clustering based upon a gender response 

variable was observed showed some promise for the further analysis of the clinical 

samples. 

When HILIC-MS was used for the analysis of the clinical samples (section 4.6), the 

possible cause of the issues observed during the positive and negative mode RP-LC- 

MS analyses of the clinical samples became evident, and was thus investigated 

further. 
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4.4. Proteomic analysis of clinical urine samples 

Upon preparation of the clinical samples for analysis by HILIC-ESI-MS, they were 
diluted by addition of an equal volume of MeCN for injection onto the HILIC column. 
This had the effect of producing large amounts of precipitate in the majority of 

samples, something that was not observed with any of the pooled samples, or indeed 

any other urine samples analysed during the course of my PhD. Given that the RP 

gradient used for the analysis of the clinical samples utilised MeCN to elute 

hydrophobic compounds, the clinical samples, once injected onto the column, would 

have precipitated in the same manner on the column. This is proposed to be the 

cause of the systematic degradation of column performance seen as drifts in 

retention time and peak intensity over time observed on analysis of the clinical, but 

not the healthy volunteer samples (chapter three); the effects were most likely less 

evident for the negative mode RP-LC-MS analysis as this was carried out on a new 

column, which had therefore not suffered as much on-column precipitation as the 

column used for positive mode RP-LC-MS analysis. The level of precipitation caused 

by the addition of MeCN explained why, for the clinical samples, filtering was much 

harder (sometimes impossible) due to the increased viscosity; differences in surface 

tension were also observed between the clinical and pooled samples when 

transferring filtered urine into sample vials (clinical samples had a higher surface 

tension, clinging to the vials much more than the pooled urine sample). 

To test if the precipitate was protein, 10 pL of each of a random cross section of 

clinical samples were added to 200 pL of Coomassie solution (see 4.4.1); an 

immediate change from dull red to bright blue was observed, suggesting protein was 

present. To further test whether the clinical urine samples contained protein, 1D 

Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis (SDS-PAGE) was run, 

with only 5 pL each from two samples loaded onto the gel. 
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Figure 4.4.1. Coomassie stained 1D SDS-PAGE of two clinical urine samples (colour 
altered for clarity, red = higher concentration of protein). 

Following Coomassie brilliant blue staining, the 1D SDS-PAGE of the two clinical 

urine samples shows a heavily overloaded gel; positively staining material in both 

lanes has spread outside of their lane due overloading (figure 4.4.1). As bands 

relating to different proteins could not be resolved, the samples required dilution 

before any protein identification could take place. To allow dilution of the clinical urine 

samples to the correct concentration for SDS-PAGE analysis, each of the clinical 

samples was analysed using a Bradford assay to determine the concentration of 

protein present. 

4.4.1. Bradford assay of clinical urine samples 

The Bradford assay was first described by M Bradford in 1976 (Bradford, 1976), and 

is a semi-quantitative colourimetric protein assay. The principle behind a Bradford 

assay is the colour shift of Coomassie (a dye) from a dull red at 465 nm, to a bright 

blue at 595 nm upon binding of protein. Coomassie binds to protein through different 

interactions such as van der Waals forces and ionic interactions; hydrophobic 

aromatic amino acids such as Phe, Try and Pro also aid in binding, as does 

hydrophilic Arg (Compton and Jones, 1985). 

As the binding of Coomassie to protein occurs in a stoichiometric manner, the 

increase in absorbance at 595 nm is proportional to the concentration of protein 

within a sample. However, time related shifts in intensity occur, so the assay must be 
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completed in a timely fashion to avoid inducing error into the results obtained. 
Bradford assays are only linear over a small range of protein concentrations; typically 
125-1500 pg/mL dependent on the protein being bound (Zor and Selinger, 1996). A 
dilution series of a random selection of clinical urine samples showed that 5 pL in 
1000 pL H2O was sufficient for the majority of samples to fall into the linear range, 
thus highlighting how concentrated the protein was in some of the clinical samples. 

Two 10 pL portions of each diluted clinical sample were loaded into wells on a 96- 

well plate (providing a duplicate), along with duplicates of eight protein standards 
ranging from 0-1500 pg/mL, meaning a total of four 96-well plates were analysed 
(each 96-well plate therefore containing a full set of standards and a subset of clinical 
urine samples). 200 pL of Coomassie was loaded into each cell containing 10 pL of 

sample or standard, and then agitated for 30 s before being analysed by UV-Vis 

absorbance at 595 nm. 
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Figure 4.4.2. Standard curves for all four 96-well plate standard protein samples. 

Figure 4.4.2 shows four standard curves used for the determination of the 

1600 

concentrations for each clinical sample present on each 96-well plate. Each of the 

standard curves goes through the origin and yields the same y= mx equation (where 
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m=0.0003), as well as having R2 values greater than 0.99, indicating an acceptable 
`goodness of fit'. 
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Figure 4.4.3. A graph plotting the protein concentrations of each clinical urine 
sample, as determined using the equation from each of the standard curves (figure 
4.4.2). 

Using the four standard curve equations (figure 4.4.2) to determine the protein 

concentration for each of the clinical samples, produced the graph shown in figure 

4.4.3. There are two tiers of protein concentrations observed for the clinical samples 
(figure 4.4.3); the bulk of the samples have a total urinary protein concentration in the 

range of -150 to 250 mg/mL, which corresponds to a -40 fold increase between the 

12 samples with urinary protein concentrations below 5 mg/mL. When the total 

urinary protein concentrations were further analysed, the 12 samples with 

concentrations less than 5 mg/mL corresponded to the samples that were `outliers' in 

both the positive and negative mode RP-LC-MS data PCA and DModX plots (figures 

4.3.4 and 4.3.7). The bulk of the data in the tight clusters on the positive and negative 

mode RP-LC-MS data PCA scores plots (figures 4.3.4a and 4.3.7a) correspond to 

the clinical samples with protein concentrations above 75 mg/mL (figure 4.4.3). 

Values for normal urinary protein excretion rates reported in the literature vary 

greatly. The most common value found was -150 mg/day total urinary protein 

excretion (Pisitkun et al., 2006; Tyan et at., 2006; Gonzalez-Buitrago et al., 2007). 

This clearly means that the level of protein excretion observed for the majority of the 

clinical samples was far from normal. In order to determine if there were one or more 
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types of protein present within the clinical samples, 1D SDS-PAGE analysis of a 
cross section of samples was performed. 

4.4.2.1-D SDS-PAGE analysis of clinical urine samples 

The 1-D SDS-PAGE analysis of proteins works by using polyacrylamide gel and a 

potential gradient to separate proteins based upon their charge and molecular weight 
(size). The polyacrylamide gel is cross-linked, with pore sizes determined by the 

amount of cross-linking; larger proteins take longer to migrate than smaller proteins, 

and the molecular weight (MW) range that can be separated is determined by pore 

size. Sodium dodecyl sulfate (SDS) denatures proteins by interacting with 
hydrophobic chains, and applies an overall negative charge to the protein; the 

negative charge is proportional to the mass of the protein, which is why 

polyacrylamide gel is used to `sieve' the proteins, giving separation; further 

denaturing is achieved by the addition of 2-mercaptoethanol and heating to near 
boiling, this reduces disulfide linkages and has the effect of creating a linear shaped 

protein. 

After protein denaturing, the sample is loaded into a cell at the top of the 

polyacrylamide gel (submerged in an SDS running buffer), and then subjected to a 

voltage. The proteins migrate towards the anode at rates proportional to their charge 

and mass, with the largest proteins migrating the least due to their resistance in 

migrating through the gel structure. 

After separation is achieved, the gel is stained using Coomassie brilliant blue 

(Chrambach et al., 1967), which visualises bands of protein within the gel. MW 

markers are typically run in one of the lanes to allow the MW of protein bands 

observed to be estimated. A flow chart of the SDS-PAGE protocol used to analyse 

the clinical urine samples is summarised in figure 4.4.4: 
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7.5 pL NuPAGE Buffer 4x 
To 18 pL (max) of diluted urine add: 0. + 

4.5 pL 2-mercaptoethanol 

Incubate at 75 °C (10 min) 

1 Load 20 p l- into well 

Run SDS gel at 200 V (ca. 50 min) 

Wash in H2O (20 min) 

Stain with Coomassie (Overnight) 

Figure 4.4.4. SDS-PAGE protocol for analysis of protein. 

To obtain a representative picture of the protein content over all the clinical samples 

(to see if different proteins were present at different concentrations), three samples 

were chosen from three different protein concentration ranges for SDS-PAGE 

analysis. The most concentrated samples were F67, F94 and F78 (248,258 and 253 

mg/mL), with F11, F5 and F74 having median protein concentrations (156,79 and 

135 mg/mL) and F2, F89 ad F17 for the lowest concentration samples (5,2 and 4 

mg/mL). 
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Figure 4.4.5. SDS-PAGE analysis of six randomly chosen clinical urine samples from 
three different concentration levels. The two outside lanes on each gel contained MW 
markers, the weight of which (kDa) is labelled in the right hand lane on each gel. 
Colour altered for clarity. (a) Highest protein concentrations of 248,258 ad 253 
mg/mL for samples F67, F94 and F78. (b) Median protein concentrations of 156,79 
and 135 mg/mL for samples F11, F5 and F74. (c) Lowest protein concentrations of 5, 
2 and 4 mg/mL for samples F2, F89 and F17. 

Each of the three clinical urine samples from the three different levels of protein 

concentrations were analysed on separate gels, with MW markers used in each of 

the outside lanes to aid in estimating the MWs of the different protein bands that 

were present (figure 4.4.5). The most concentrated urine samples (figure 4.4.5a) 

show that different proteins were present in these clinical urine samples, with a MW 

spread from -25 to 250 kDa suggesting the presence of some large proteins. The 

median (-125 mg/mL) and low concentration (<5 mg/mL) cohorts (figure 4.4.5b and 

c) show the same bands are present, but at lower intensities. The most intense band 

across all samples is at -70 kDa. 

Pisitkun et al. reported "... a myriad of proteins and peptides can be detected in 

normal urine... " (Pisitkun et al., 2006); they found the presence of more than 1000 

different protein gene products and many more peptides in human urine, suggesting 
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that the presence of many proteins is normal. However, the concentrations observed 
in the clinical samples would be considered nephrotic (Dihazi and Muller, 2007). 

The majority of plasma protein should be retained, as the glomerulus acts as a 

physical and electrical charge barrier to most proteins. Any proteins that pass 
through the glomerulus into the proximal tubule are generally small proteins, less 

than 40 kDa (Gonzalez-Buitrago et al., 2007), or are those which are very 

concentrated within plasma. Despite this, lots of proteins and peptides that pass into 

the proximal tubule are scavenged/proteolysed, and therefore reabsorbed (Pisitkun 

et al., 2006); for example, the most abundant plasma protein, albumin, is reabsorbed 

at rates exceeding 99 % (Sarti et al., 2001). 

Around 30 % of urinary proteins originate from plasma, with the remaining 70 % 

coming from kidneys (Tyan et al., 2006; Dihazi and Muller, 2007). Roughly 49 % of 

protein excreted in urine is in the form of soluble proteins, 48 % consist of sediments, 

and the remaining 3% are exosomes' (Pisitkun et al., 2006). 

The next step in the proteomic analysis of the clinical urine samples was to analyse 

the bands observed in the stained polyacrylamide gels, with the intention of 

identifying the proteins present. 

1 Sub 80 nm vesicles. 
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4.4.3. Protein identification by MALDI-ToF/ToF analysis 

Proteomic identification is usually carried out by one of two different approaches, top- 
down and bottom-up. Top-down proteomics involves the analysis of intact proteins 

using high accuracy mass measurements and subsequent CID or other 
fragmentation method and tandem MS analyses. Bottom-up proteomics (used in this 

study) first involves the digestion (either separated or as a mixture) of proteins into 

peptide fragments (typically of 5-30 AA residues), usually using trypsin that cleaves 

on the C-terminal side of Lys and Arg (as long as they are not followed by Pro). The 

resulting peptide fragments are then analysed by MS and CID tandem MS. A 

summary of the bottom-up proteomics approach is shown in figure 4.4.6: 

Excise Band 
(Cut into small pieces) 

4' 

Coomassie Destain 
Wash with ammonium bicarbonate (25 mM) for 20 min 

Repeat once 

Wash with MeCN (5 min) 

i Dry in Speed Vac (20 min) 

i Incubate at 65 °C (1 h) 
(With 10 mM dithioerythritol in ammonium bicarbonate (100 mM)) 

4' 
Add 100 pL of 50 mM iodoacetamide 

(Incubate in dark for 30 min) 
4' 

Wash with 100 mM ammonium bicarbonate (15 min) 

i Wash with 25 mM ammonium bicarbonate (15 min) 

i Wash with MeCN (5 min) 

i Dry in SpeedVac (20 min) 

i Add 10 pL of 0.02 pg/pL trypsin 
Incubate at 37 °C (Overnight) 

4, 

Wash with 25 mM ammonium bicarbonate 

4, 
Spot onto MALDI plate for analysis 

Figure 4.4.6. Flow chart of the bottom-up proteomic analysis of proteins. 
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Whichever proteomic approach is used, a database search is undertaken to compare 

the exported MS and/or MS/MS data with data expected from tryptic peptides of any 

of the protein sequences held in a database. A common search engine called 

MASCOT, used in this study', was developed by Perkins et al. in 1999 (Perkins et 

al., 1999) as an update of the original MOlecular Weight SEarch (MOWSE) search 

engine and scoring algorithm developed in the early 1990s by Pappin et al. (Pappin 

et al., 1993). The MOWSE search engine functioned by assigning a statistical weight 

to each peptide matched, which was based upon the frequency of other peptide 

masses in a protein with a certain MW range. MOWSE now forms part of MASCOT 

and is still the basis used to assign statistical confidence in any peptides matched. 

MASCOT uses a mathematical approach to compare theoretical fragment ions to the 

fragment ions recorded; confirmation of expected protein identification is obtained by 

linking the protein identified from a database to the mass observed in the original gel, 

as well as using the significance provided by the MOWSE score returned2 and linking 

the role of the protein back to the biological system. 
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Figure 4.4.7. SDS-PAGE gel of three clinical samples F67, F94 and F78. Ten bands 

were excised for proteomic analysis using a bottom-up approach. 

Ten of the most intense protein bands from the gel shown in figure 4.4.7 were 

excised for proteomic analysis using a bottom-up approach. Before each digested 

sample was spotted onto a MALDI plate for analysis, they were extracted using C18 

ZipTips to remove any excess salts, with the aim of improving the S/N ratio. 

1 The database used for all searches was the NCBInr database, updated on 06/07/2007. 
2 An event is considered significant if it occurs at random with a frequency of less than 5 %, giving p< 
0.05. 
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0.5 pL of each extracted sample was spotted onto a MALDI plate and covered with 
0.5 pL of a solution of «-cyano-4-hydroxycinnamic acid and allowed to air dry. The 

resulting MS and MS/MS data were imported into GPS Explorer v3.6 (Applied 

Biosystems), which uses the MASCOT search engine to attempt to match any of the 

peptides present within each sample with those generated in silico from proteins in 

the NCBlnr database. 
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Figure 4.4.8. Probability based MOWSE score plots for each of the ten excised 
protein bands. (a) band 1, (b) band 2, (c) band 3, (d) band 4, (e) band 5, (f) band 6, 
(g) band 7, (h) band 8, (i) band 9 and (j) band 10. 
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Chapter Four: Clinical urine sample analysis 

A probability based MOWSE score plot shows any hits below the assigned 

confidence limit (p < 0.05) in a hashed green area, any other hits (red bars) above 
this green area are considered significant; the higher the MOWSE score the better. 
Each of the probability based MOWSE score plots shown in figure 4.4.8 shows hits 

above the significance level, meaning that convincing protein identifications were 

obtained from each of the ten excised bands MS and MS/MS data. 

Table 4.4.1. Summary of each protein identified by MASCOT from the ten excised 
bands, along with the estimated mass from the gel. 

Number Mass of 
Excised MOWSE of 

Estimated protein 
Band Protein ID from MASCOT Score peptides mass from from 
Label gel (kDa) MASCOT Identified (Da) 

1 Alpha-2-macroglobulin precursor 332 6 -170 164600 

2 Chain B, human complement 246 5 -115 114238 
comp onent C3b 

3 Complement factor H 132 6 -150 143710 

4 Ceruloplasmin 149 5 -120 116197 

5 Transferrin 567 12 -80 79280 

Alpha-l-antitrypsin 229 7 -50 46848 
6 

Immunoglobulin G 165 3 -50 52687 

7 Fibrinogen gamma chain 276 6 -48 47971 

8 Preprohaptoglobin 285 6 -40 38940 

9 Human serum albumin A 704 16 -70 67988 

10 Apolipoprotein A-I 85 3 -25 28061 

Table 4.4.1 summarises the results obtained from the bottom-up proteomic analysis 

of the most intense bands excised from the SDS-PAGE analysis of the clinical urine 

samples. From the MOWSE scores, and the closeness of each identified protein's 

mass to those observed in the gel, the protein identifications can be considered as 

confident assignments. 

Alpha-2-macroglobulin precursor (band 1) is a binding host for foreign peptides and 

particles, and also functions as a barrier against pathogens (Borth, 1992), meaning 

that the protein subunit identified (165 kDa) forms part of the body's immune 

response. Band 2 corresponds to chain B- human complement component C3b, 

which is a single chain glycoprotein that is expressed in a large number of cells, and 

also has as immunological role. C3b is involved in clearing pathogens from an 
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organism by aiding cell lysis (Hamer et al., 1998), and is mainly synthesised in the 
liver. The presence of C3b in human urine has been noted before by Pascual et al., 

where it was present in low concentrations, showing that it was released by 

glomerular podocytes' (Pascual et al., 1994). C3b is linked to both factor H and 
immunoglobulin, which were also detected in the clinical urine samples and 

correspond to excised bands 3 and 6 respectively. 

Complement H (band 3) is a crucial fluid phase regulator that interacts with C3b, 

effectively deactivating C3b's function (Jokiranta et al., 1999), thus regulating the 

body's immune response. The protein identified in band 6 corresponded to 

Immunoglobulin G, again an immune system protein. Immunoglobulin G provides the 

majority of antibody-based immunity against any invading pathogens. 

Cerruloplasmin (band 4), transferrin (band 5) and antitrypsin (band 6) are all 

glycoproteins. Cerruloplasmin is synthesised in the liver and functions to transport 

-90 % of the copper within plasma; similarly, transferrin is involved in the delivery of 
iron ions within plasma. Antitrypsin is a serine protease inhibitor that plays a key role 
in controlling the coagulation of blood, and is also related to controlling inflammation 

in the body. Linked to antitrypsin, is fibrinogen (band 7) that is also a blood clotting 

agent, which is produced within the liver. 

Preprohaptoglobin (band 8) functions to provide a physiological defence against 
haemoglobin-induced toxicity (Ngai et al., 2007). The by-product of 

preprohaptoglobin is haptoglobin, which binds to free haemoglobin to stop glomerular 

filtration of haemoglobin, preventing oxidative injury to the kidneys. 

The presence of human serum albumin (HSA) was expected once protein was 

confirmed within the clinical samples, as it is the most abundant protein present in 

serum at a concentration of -40 mg/mL HSA's function is to maintain osmotic 

pressure, and also the proper distribution of body fluids within serum; HSA also 

transports fatty acids, hormones and other physiologically important, compounds 

around the body. In each of the three gels (figure 4.4.5), the band at -70 kDa was 

the most intense, suggesting that HSA was the most abundant protein within all of 

the clinical urine samples. 

1 Glomerular epithelial cells. 
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The final protein identified was apolipoprotein A-I (band 10), which functions to 

extract cholesterol from body tissues and subsequently transport it to the liver where 
it can either be excreted or recycled (Lahoz et al., 2003). 

4.4.4. Discussion 

The results presented within this section (4.4) were certainly a surprise, given all 

previously analysed urine samples did not show any precipitation upon the addition 

of MeCN prior to analysis by HILIC-ESI-MS. Research into urinary protein is not new, 

and is typically related to some physiological process such as glomerular diseases 

where increased levels of protein are excreted into urine (Sarti et al., 2001; Christian 

and Watson, 2004; Pisitkun et al., 2006; Barratt and Topham, 2007; Dihazi and 

Muller, 2007; Gonzalez-Buitrago et al., 2007; Ngai et al., 2007). The proteins 

identified within the clinical urine samples have all previously been reported in the 

literature, suggesting that the observation of these proteins is nothing new. However, 

what was in contrast to the literature was the sheer amount of protein detected within 

the clinical urine samples. Despite the semi-quantitative nature of Bradford assays, 

the levels of protein detected here (average = 166 mg/mL) were significantly higher 

than the average value excreted daily (despite the various different values reported in 

the literature) of -150 mg/day (Pisitkun et al., 2006; Gonzalez-Buitrago et al., 2007). 

Given that a normal person produces 1-2 L of urine a day, the average protein 

concentration of 166 mg/mL found in the clinical samples would correspond to a daily 

total excretion of over 150 g/day, 1000 times the reported average daily excretion. 

However, many of the clinical samples were very concentrated from the observed 

colour (dark yellow), meaning that the patients may not have produced as much urine 

on the day of collection. 

Other than benign causes of increased levels of protein in urine, such as fever/post 

exercise and also just having an upright posture (meaning an increased amount of 

protein present in urine towards the end of the day) (Newman et al., 2000; Christian 

and Watson, 2004), a few papers have reported increases in urinary protein 

excretion caused by trauma or stress (Yu et al., 1983; DeGaudio et al., 1999; Sarti et 

al., 2001). DeGaudio et al. reported an increase in capillary permeability, and 

therefore an increase in protein excretion with trauma, that was also associated with 

a systematic inflammatory response (as found in this study by the presence of 

immune system proteins); a range of different traumas were included in the 
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DeGaudio study, bone fractures being one of them (DeGaudio et al., 1999). Yu et al. 
reported that after a severe burn, kidney function was altered, causing impaired 

glomerular filtration and also the concentrating ability of the distal renal tubule, 

causing an imbalance of H20/salt and an increase in urinary protein excretion (Yu et 
al., 1983). Research by Sarti et al. concluded that there was a direct correlation 
between surgical stress score' and capillary permeability; they state that the rate of 
albumin loss can reach 5% per hour in healthy adults, but can increase to 300 % per 
hour in adult septic shock (Sarti et al., 2001). 

Even though stress can cause an increase in the excretion of protein in urine, the 
levels observed in the clinical samples still appears to be very high. The majority of 
the clinical samples with normal levels of urinary protein (the `outliers' labelled in 

figures 4.3.4a and 4.3.7a) were obtained at time = 0, therefore possibly being 

collected before protein passed into the bladder in large amounts. The largest period 
between collected urine samples was 18 weeks for patients number 16 (sample F36 

at t= 18 weeks) and 19 (sample F43 at t= 18 weeks) who both suffered ankle 
fractures (see appendix B for full details). This should have meant that their fracture 

was well into the reparative phase and strong enough for load bearing, meaning little 

stress should have been present. However, the two samples from 18 weeks after the 

initial fracture had urinary protein concentrations of 169 and 173 mg/mL (F36 and 
F43 respectively), which is still high, suggesting that stress/trauma or some other 

physiological factor may also have been present. 

Clearly, no firm conclusions as to the reason for the high levels of protein observed 

can be drawn from the information available for each sample (appendix B), but it is 

evident that this is an area of research that requires much more consideration due to 

the lack of consistent literature. 

1 The Oxford surgical stress score is used to relate stress on a scale of 1 to 14 (where 1= the least 

amount of stress, and 14 = the most amount of stress). 
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4.5. Re-analysis of clinical samples using RP-LC-ESI-MS 

The demonstration of protein in the majority of clinical urine samples very probably 
explains the large shifts in both retention time and peak intensity that were evident in 
both positive and negative mode RP-LC-MS data (sections 4.3.1 and 4.3.2) from the 
clinical samples, as the MeCN in the mobile phase would have caused the 
precipitation of proteins onto the column, reducing the separation efficiency of the 
column. To avoid any subsequent precipitation of any protein onto the RP column, all 
clinical samples (and pooled samples) were diluted with an equal volume of MeCN to 
precipitate the protein present, before centrifugation and filtration prior to analysis. 

7.7e4 
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4.0e4 

3.0e4 

2.0e4 

I. 0e4 

0.0 

Figure 4.5.1. Three overlaid positive mode RP-LC-MS TICs of pooled urine aliquots 
from the beginning of data acquisition (blue TIC), mid-way through data acquisition 
(red TIC) and at the end of three days of data acquisition (green TIC). 

Figure 4.5.1 shows three TICs from positive mode RP-LC-MS analysis of aliquots of 

pooled urine obtained following addition of MeCN, centrifugation and filtration. The 

blue TIC corresponds to a pooled urine aliquot that was analysed before any clinical 

samples, the red TIC corresponds to the analysis of a pooled urine aliquot carried out 

mid-way through data acquisition, and the green TIC corresponds to the analysis of 

an aliquot of pooled urine run at the end of data acquisition after three days of 

continual analysis. The three TICs all follow the same trend, although there are some 
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slight shifts in retention time and peak intensity evident. The most intense peaks 
(indicated with an arrow) show a retention time of -2.75 min for the first two pooled 

samples analysed (blue and red TICs), and -2.8 min for the final TIC. This gives a 
deviation of -3 s, which is well below the retention time tolerance of ±0.5 min used 
for the metabolomics export script. Although the system appears to be much more 

stable after the precipitation of protein, the TICs shown in figure 4.5.1 exhibit fewer 

peaks than were originally observed for the pooled urine sample (without MeCN 

added) in the initial RP-LC-MS analyses (figure 4.3.1); this may be caused by using 
MeCN to precipitate protein, which could cause the co-precipitation of urinary 

metabolites. 

4.5.1. Positive and negative mode RP-LC-ESI-MS analysis 

All clinical urine samples (diluted with MeCN to precipitate protein) were re-analysed 
by positive and negative mode RP-LC-ESI-MS, with the random inclusion of aliquots 

of pooled urine and the analysis of multiple aliquots of some samples, chosen at 

random. The resulting raw data were extracted using the metabolomics export script 
(Applied Biosystems) to form a matrix for import into Excel (Microsoft Excel for Mac 

2004), where information relating to each sample were added, before being 

subsequently imported into SIMCA P+ v11.5 (Umetrics, Sweden) for statistical 

analysis. 
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Figure 4.5.2. (a) PCA scores plot of positive mode RP-LC-MS data (  = samples 
from males, f= samples from females and "= aliquots of pooled urine). (b) PCA 
scores plot of pooled samples only, the arrow indicates the first sample analysed, 
with the hashed line indicating subsequent sample analysis. (c) PCA scores plot of 
negative mode RP-LC-MS data (  = samples from males, "= samples from 
females and "= aliquots of pooled urine). (d) PCA scores plot of aliquots of pooled 
urine only, the arrow indicates the first sample analysed, with the hashed line 
indicating subsequent sample analysis. 

The PCA of both positive and negative mode RP-LC-MS data are shown in figure 

4.5.2a and c respectively. Both PCA scores plots show a tight cluster near the centre 

of each plot that contains the bulk of the data, and another cluster of 12 samples (13 

samples for figure 4.5.2a due to the analysis of two aliquots of one of the samples) 

spread out over a broad range. The pooled urine samples (blue dots) form clusters 

around the 95 % confidence limit for both positive and negative RP-LC-MS data PCA 

score plots. Compared to the initial PCA from positive mode RP-LC-MS data prior to 

protein precipitation (figure 4.3.2), the pooled urine aliquot data points exhibit a much 

tighter cluster, suggesting less variation between the samples; this further suggests 

that the precipitation of protein removed some of the original effects that were 

observed. The pooled urine samples analysed using negative mode RP-LC-MS show 

a tight cluster in the resulting scores plot (figure 4.5.2c), which, as for positive mode, 

was even tighter than the initial PCA of negative mode RP-LC-MS data (figure 
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4.3.6a). The broad cluster of samples again correspond to those clinical urine 

samples with `normal' amounts of urinary protein (< 5mg/mL), showing that despite 

the precipitation and removal of protein from all samples, these samples remain 

significantly different to the bulk of the samples. 

PCA of just the datasets from analysis of the different aliquots of the pooled urine in 

both positive and negative mode RP-LC-MS (figures 4.5.2b and d) both show a trend 

moving away from the first aliquots of pooled urine analysed (indicated by arrows). 

This implies that there were still systematic drifts evident within the data, most likely 

caused by shifts in intensity that were observed in the TICs (figure 4.5.1). However, 

as the pooled urine aliquot data points in figures 4.5.2a and c cluster tightly, this 

suggests that the replicate analysis of samples gave more similar than in the initial 

analysis, prior to protein precipitation (section 4.3.1 and 4.3.2). As too little sample 

remained for a complete re-analysis following use of alternative methods to remove 

the protein, the resulting acquired data were analysed using PLS analysis. 

For analysis using PLS, the datasets (clinical samples with protein concentrations of 

less than 5 mg/mL were removed as these influenced the PLS models) were 

assigned two sets of different Y-variables. The first Y-variable split the dataset into 

two response variables: any samples from t=0 (admittance to A&E), and all other 

post-fracture samples (t=1 to 133 days), and was termed 'frac2'. The second Y- 

variable assigned three response variables to the dataset: those samples collected at 

t=0, any samples collected within the first three weeks post-fracture (t=1 to 21 days) 

and all remaining samples from 22 to 133 days post-fracture, with the Y-variable 

being termed 'frac3'. As ankle fractures formed the largest number of fractures (21 

patients with a total of 51 samples), these were used to create a separate dataset for 

further analysis. The 'ankle' dataset were split into two response variables: samples 

from t=0 and all other samples obtained post-fracture (t=1 to 133 days). The resulting 

PLS analyses of positive and negative mode RP-LC-MS data with three different Y- 

variable-assigned datasets were optimised according to the scheme presented in 

chapter 3.5, and are presented in figure 4.5.3. 
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Figure 4.5.3. (a) PLS scores plot of positive mode RP-LC-MS data with the response 
variables 'frac2":  = samples from time = 0, "= samples from time =1 to 133 days 
post-fracture. (b) PLS scores plot of positive mode RP-LC-MS data with the response 
variables 'frac3':  = samples from time = 0, "= samples from time =1 to 21 days 
post-fracture, and "= samples from time = 22 to 133 days post fracture. (c) PLS 
scores plot of positive mode RP-LC-MS data with the response variables 'ankle':  _ 
samples from time = 0, "= samples from time =1 to 133 days post-fracture. (d) PLS 
scores plot of negative mode RP-LC-MS data with the response variables 'frac2":  = 
samples from time = 0, "= samples from time =1 to 133 days post-fracture. (e) PLS 
scores plot of negative mode RP-LC-MS data with the response variables 'frac3':  _ 
samples from time = 0, "= samples from time =1 to 21 days post-fracture, and "_ 
samples from time = 22 to 133 days post fracture. (f) PLS scores plot of negative 
mode RP-LC-MS data with the response variables 'ankle':  = samples from time = 
0, f= samples from time =1 to 133 days post-fracture. 
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Good clustering of the data was observed for separation according to `frac2' 

response variables for both positive and negative RP-LC-MS data (figures 4.5.3a and 
d). All of the samples from t=0 (black squares), and the later samples (red diamonds) 

show some degree of separation between the two different response variables when 

either polarity was used to record the RP-LC-MS data. Importing external test sets 
into each developed model gave external classification results of 25 % (using one 
latent variable (LV)) for positive mode RP-LC-MS data (figure 4.5.3a), and 35 % 

(using two LVs) for negative mode RP-LC-MS data (figure 4.5.3d). The low external 

classification rates imply that the variables used to form each model are not overly 

predictive for discrimination between the two response variables. However, as there 

is overlap between the two clusters of data, and some of the external test set 

samples had LV values that placed them in the region of overlap between the two 

clusters, this would have somewhat reduced the external classification result. 

When `frac3' response variables were assigned, the resulting PLS scores plots for 

positive and negative mode RP-LC-MS data show a general trend across the first LV, 

where samples from t=0 (black squares) cluster on the left-hand side, samples from 

t=1 to 21 days post-fracture (red diamonds) cluster around `0', and the remaining 
datasets (t=22 to 133 days post-fracture, blue circles) cluster on the right-hand side 

of the scores plots (figure 4.5.3b for positive and figure 4.5.3e for negative mode RP- 

LC-Ms data). Importing external test sets for both models generated external 

classification rates of 45 % using one LV for positive mode RP-LC-MS data, and 75 

% using two LVs for negative mode RP-LC-MS data, improving the predictive ability 

over the `frac2' model. 

The RP-LC-MS data for ankle fracture samples were assigned response variables for 

t=0 and t=1 to 133 days post fracture, due to the reduced number of samples 

available. The resulting PLS scores plots for the two ionisation mode RP-LC-MS 

datasets are shown in figures 4.5.3c (for positive mode) and 4.5.3f (for negative 

mode). Both models show clustering according to the assigned response variables, 

with samples from t=0 (black squares) clustering on the right-hand side, and samples 

from t=1 to 133 days post-fracture (red diamonds) clustering on the left-hand side. 

The external classification rates for the ankle fracture models were 90 % for positive 

mode RP-LC-MS data and 60 % for negative mode RP-LC-MS data, with both 

external classification rates being highest when one LV was utilised for prediction. 
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Table 4.5.1. Comparison of the top five variables for each developed model. Shaded 
cells show variables that are present for more than one developed model (coloured 
according to polarity). 

Separation Polarity Statistical Rank 
mlZ tR 

Y Variable 
Discriminative Method Model (VIP) 

for 
1 86.05 12.89 if for t=0 
2 107.95 1.33 ft fort >0 

frac2 3 105.02 14.32 if for t=0 
4 86.05 11.87 ft fort >0 
5 367.14 2.95 ft fort >0 
1 100.02 1.98 ft for t=0 
2 90.52 9.12 jt for t=0 

Positive Ankle 3 171.13 17.75 ¶ for t=0 
4 205.12 16.02 ¶ fort=0 
5 392.96 13.15 ft for t=0 
1 198.05 28.16 ft for t=0 
2 500.26 21.54 jtfort>21 

frac3 3 105.02 14.32 ft for t> 21 
4 299.11 2.90 ft fort > 21 
5 120.07 11.04 ¶ fort > 21 

RP 1 448.34 20.17 if for t=0 
2 473.02 1.57 ft for t>0 

frac2 3 528.30 21.69 ft fort =0 
4 326.11 10.19 ftfort>0 
5 446.09 10.17 ft fort >0 
1 169.00 28.87 ft for t>0 
2 448.34 20.17 ftfort=0 

Ankle 3 464.34 18.64 ft for t=0 
Negative 

4 465.29 18.59 ft for t=0 
5 516.35 20.17 ft for t=0 
1 448.34 20.17 ft for t=0 
2 476.32 21.46 if fort >22 

frac3 3 477.32 21.47 ¶ for t> 22 

326.11 10.19 
1t for t=0 

4 (>0 = 0) 
5 276.02 29.04 ft for t=0 

Table 4.5.1 presents the top five variables that gave the highest VIP values for each 

of the three developed PLS models using the two ionisation polarities, along with the 

Y variable they were discriminative for. For each of the statistical models, there are 

few variables present which are consistent across each model (shaded cells). The 

CID tandem MS analyses of the most important variables generated by each PLS 

model are presented in section 4.8. 
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4.6. Analysis of clinical samples by positive and negative mode HILIC-ESI-MS 

All of the clinical samples were diluted by addition of an equal volume of MeCN, 

centrifuged and filtrated prior to analysis, then analysed by positive and negative 
mode HILIC-LC-ESI-MS, with the random injection of aliquots of a pooled urine 
sample and the random re-injection of aliquots of clinical urine samples. The resulting 
raw data were extracted using the metabolomics export script (Applied Biosystems) 
to form a matrix for import into Excel (Microsoft Excel for Mac 2004), where data 

relating to each sample were added, before being subsequently imported into SIMCA 
P+ v11.5 (Umetrics, Sweden) for statistical analysis. 
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Figure 4.6.1. Three overlaid positive mode HILIC-MS TICs of aliquots of pooled urine 
samples from the beginning of data acquisition (green TIC), mid-way through data 
acquisition (red TIC) and at the end of three days of data acquisition (blue TIC). 
Arrows indicate areas where there are changes in intensity between the samples. 

Figure 4.6.1 shows three superimposed TIC traces from positive mode HILIC-MS 

injections of aliquots of a pooled urine sample. The green TIC corresponds to an 

injection of an aliquot of pooled urine prior to the analysis of any clinical samples, the 

red TIC corresponds to the injection of an aliquot of pooled urine mid-way through 

data acquisition, and the blue TIC corresponds to the injection of an aliquot of pooled 

urine at the end of three days of data acquisition. The three TICs follow the same 
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trend, but there are some minor deviations in retention time, along with some shifts in 
the intensity of the peaks indicated by arrows. Any deviations in retention time are 
less than ±6 s, which is within the tolerance of ±0.5 min used in the metabolomics 

export script; normalising to total ion count should minimise the observed differences 
in intensity. Comparing the TICs of pooled samples from positive mode HILIC-MS 
data (figure 4.6.1) to that obtained using positive mode RP-LC-MS (figure 4.5.1), 

shows that HILIC separation provided a more `information rich' chromatogram. 
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Figure 4.6.2. (a) PCA scores plot of positive mode HILIC-MS data (  = samples from 
males, f= samples from females and "= aliquots of pooled urine). (b) PCA scores 
plot of aliquots of pooled urine only, the arrow indicates the first sample analysed, 
with the hashed line indicating subsequent sample analysis. (c) PCA scores plot of 
negative mode HILIC-MS data (  = samples from males, f= samples from females 
and "= aliquots of pooled urine). (d) PCA scores plot of aliquots of pooled urine 
only, the black arrow indicates the first sample analysed, the red arrow indicates 
subsequent samples analysed prior to the analysis of clinical samples, with the 
hashed line indicating subsequent sample analysis. 

The PCA of both positive and negative mode HILIC-MS data are presented in figure 

4.6.2a and c respectively. Both PCA scores plots show a cluster containing the bulk 

of the data, with positive mode HILIC-MS data generating a larger `linear' cluster 

(figure 4.6.2a) compared to a small tight cluster for negative mode HILIC-MS data 
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(figure 4.6.2c). The remaining clinical samples for both ionisation modes' HILIC-MS 

data form a loose cluster containing 12 data points (black squares) that, as for RP- 

LC-MS data, correspond to each of the clinical samples with low concentrations (less 

than 5 mg/mL) of urinary protein. 

The datasets for clusters of pooled samples (blue dots) for each PCA scores plot 

show some differences. Positive HILIC-MS datasets for aliquots of pooled urine show 
two distinct clusters (figure 4.6.2a), meaning that there are two types of samples that 
have some different characteristics. The negative HILIC-MS datasets for aliquots of 

pooled urine show a tight cluster with only one data point deviating from the cluster 
(blue dot in the bottom right hand corner, outside the 95 % confidence limit, of the 

scores plot shown in figure 4.6.2c). When PCA of just the aliquots of pooled urine 

sample was undertaken, those from positive mode HILIC-MS (figure 4.6.2b) show a 
`U' shaped trend from the first sample analysed (indicated by an arrow). For the PCA 

of negative mode HILIC-MS aliquots of pooled urine sample, the only observation 

present as an outlier from the tight cluster observed in figure 4.6.2c can be 

accounted for by the fact that it was the first aliquot injected before the LC-MS 

system had equilibrated (indicated by a black arrow in figure 4.6.2d). The red arrow 
in figure 4.6.2d shows the subsequent aliquots of pooled urine sample that were 
injected prior to the analysis of any clinical samples, with subsequent data points 

showing less deviation then originally observed. 

For analysis by PLS, the same response variables were assigned as for the RP-LC- 

MS data (clinical samples with protein concentrations of less than 5mg/mL were 

removed as these influenced the PLS models). The first Y-variable split the dataset 

into two response variables: any samples from t=0 (admittance to A&E), and all other 

post-fracture samples (t=1 to 133 days), and was termed `frac2'. The second Y- 

variable assigned three response variables to the dataset: those samples collected at 

t=0, any samples collected within the first three weeks post-fracture (t=1 to 21 days) 

and samples collected 22 to 133 days post-fracture, with the Y-variable being termed 

'frac3'. As ankle fractures formed the largest number of fractures (21 patients with a 

total of 51 samples), these were used to create a separate dataset for further 

analysis. The `ankle' dataset was split into two response variables: samples from t=0 

and all other samples obtained post-fracture (t=1 to 133 days). The resulting PLS 

analyses of positive and negative mode HILIC-LC-MS data with three different Y- 

variable assigned datasets were optimised according to the scheme presented in 

chapter 3.5, and are presented in figure 4.6.3. 
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Figure 4.6.3. (a) PLS scores plot of positive mode HILIC-MS data with the response 
variables `frac2":  = samples from time = 0, f= samples from time =1 to 133 days 
post-fracture. (b) PLS scores plot of positive mode HILIC-MS data with the response 
variables `frac3':  = samples from time = 0, "= samples from time =1 to 21 days 
post-fracture, and "= samples from time = 22 to 133 days post fracture. (c) PLS 
scores plot of positive mode HILIC-MS data with the response variables `ankle':  _ 
samples from time = 0, "= samples from time =1 to 133 days post-fracture. (d) PLS 
scores plot of negative mode HILIC-MS data with the response variables `frac2":  = 
samples from time = 0, f= samples from time =. 1 to 133 days post-fracture. (e) PLS 
scores plot of negative mode HILIC-MS data with the response variables `frac3':  _ 
samples from time = 0, f= samples from time =1 to 21 days post-fracture, and "_ 
samples from time = 22 to 133 days post fracture. (f) PLS scores plot of negative 
mode HILIC-MS data with the response variables `ankle':  = samples from time = 0, 
f= samples from time =1 to 133 days post-fracture. 
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Separation according to `frac2' response variable for positive and negative HILIC-MS 

data shows good clustering of the two groups (figures 4.6.3a and d). Samples 

corresponding to t=0 (black squares), and samples from any time post-fracture (red 

diamonds), show some degree of separation, although there is some overlap present 
between the two clusters. External classification of the developed models for positive 

and negative HILIC-MS data using an independent test set generated results of 60 

and 30 % for each model respectively, both using two LVs to gain maximum 

classification. 

When response variables corresponding to `frac3' were assigned, the resulting PLS 

scores plots for positive and negative mode HILIC-MS data show a general trend 

along the first LV (figure 4.6.3b and e). Samples from t=0 (black squares) cluster on 
the left-hand side, samples from t=1 to 21 days post-fracture (red diamonds) cluster 

around `0', and all remaining data (t=22 to 133 days post-fracture, blue circles) 

cluster on the right-hand side of the scores plots (figure 4.6.3b for positive and figure 

4.6.3e for negative mode RP-LC-Ms data). Importing external test sets into each 
developed model generated external classification rates of 65 % using two LVs for 

positive HILIC-MS data, and 50 % for negative mode HILIC-MS data, using one LV. 

PLS analysis of the ankle fracture sample cohort by positive and negative mode 

HILIC-MS, generated the scores plots shown in figures 4.6.3c and f. Clustering 

according to the assigned response variables t=0 (black squares) and t=1 to 133 

days post-fracture (red diamonds) was observed. The external classification rates 

were the highest obtained for any PLS model using HILIC-MS data, with 70 % for 

positive mode HILIC-MS data and 80 % for negative mode HILIC-MS data, both 

using two LVs for maximum classification. 
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Table 4.6.1. Comparison of the top five variables for each developed model. Shaded 
cells show variables that are present for more than one developed model (coloured 
according to polarity). 

Separation Statistical Rank Y Variable 

Method Polarity Model (VIP) mlZ tR Discriminative 
for 

1 198.05 3.45 ft for t>0 
2 254.14 2.35 ft for t>0 

frac2 3 168.06 2.95 ft fort >0 
4 392.03 8.92 ft fort >0 
5 198.05 5.33 ft for t>0 
1 142.09 9.38 ft fort >0 
2 350.18 6.73 Q fort >0 

Positive Ankle 3 450.30 2.90 ¶ for t=0 
4 451.31 2.90 jt for t=0 
5 86.091 19.55 ft for t>0 
1 198.05 3.45 ft for t>0 
2 254.14 2.35 ft fort >0 

frac3 3 152.06 7.57 ft for t=0 
4 239.20 7.30 jI fort < 21 

HILIC 5 796.55 6.55 ¶ for t=0 
1 448.33 2.90 fI fort >0 
2 562.33 2.90 ft for t>0 

frac2 3 276.02 5.53 ft for t=0 
4 498.32 5.88 ¶ fort >0 
5 243.06 7.38 ft for t=0 
1 448.33 2.90 ft for t>0 
2 464.31 5.52 ft for t>0 

Negative Ankle 3 464.31 3.00 ft for t>0 
4 186.12 2.63 ft fort >0 
5 562.33 2.90 ft fort >0 
1 151.06 6.93 t=0>1>2 
2 448.33 2.90 t= 0> 1>2 

frac3 3 562.33 2.90 ft fort >0 
4 498.32 5.88 ft fort >0 
5 243.06 7.38 ft for t=0 

Table 4.6.1 presents the top five variables that gave the highest VIP values that were 

generated by each of the three PLS models for each ionisation polarity, and also 

each Y variable each variable is discriminatory for. For each of the three PLS models 

developed using data obtained from positive ionisation, there are two variables that 

were consistent between each of the 'frac2' and 'frac3; models (shaded cells). For 

the models developed using negative ionisation mode HILIC-MS data, there are 

more variables that are consistent throughout the models (blue shaded cells). One 

variable at m/z 448.33 with a retention time of 2.90 min was present in all three 

221 



Chapter Four: Clinical urine sample analysis 

models, and also had a mass that could correspond to a variable from the negative 
mode RP-LC-MS data at m/z 448.35 (44.6 ppm difference) with a retention time of 
26.17 min. The shifts in retention time from 2.90 min (HILIC) to 26.17 min (RP) would 
appear to support the initial theory that this mass corresponds to the same 
compound, as a strongly retained compound on an RP column would be expected to 
elute very early from an HILIC column (2.90 min is close to the void). The variables 
presented in table 4.6.1 were analysed by CID tandem MS, and the results presented 
in section 4.8. 

4.7. Analysis of ±RP and ±HILIC data by data fusion 

Each of the four datasets (±HILIC- and ±RP-LC-MS) were imported into Excel 
(Microsoft Excel for Mac 2004) and concatenated one below the other, as outlined in 

chapter 3.5.3. 
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Figure 4.7.1. (a) PCA scores plot of concatenated data (  = samples from males, 
= samples from females). (b) PCA scores plot concatenated data with all samples 
having normal levels of protein (less than 5 mg/mL, corresponding to the labelled 
samples in (a)) being removed. 

Figure 4.7.1 a shows the PCA of the concatenated dataset. The bulk of the data 

cluster in a tight group near the centre of the scores plot, whilst the remaining 

samples form a loose cluster in the left hand side of the scores plot. All of the labelled 

data points correspond to clinical samples with normal urinary protein concentrations 

(less than 5 mg/mL), as was observed for the PCA of each individual dataset (±RP, 

figures 4.5.2a and c, and ±HILIC, figures 4.6.2a and c). When the samples with 

normal protein concentrations were excluded from the dataset, the resulting PCA 

scores plot (figure 4.7.1 b) shows no clear separation based upon gender (or any 
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other information available). There are only three data points outside the 95 % 

confidence limit, and none of these exhibited a large DModX value, and so remained 
to form the dataset for subsequent PLS analyses. 

For analysis by PLS, the following response variables were assigned: The first Y- 

variable split the dataset into two response variables: samples from t=0 (admittance 

to A&E), and all post-fracture samples (t=1 to 133 days), and was termed `frac2'. The 

second Y-variable assigned three response variables to the dataset: those samples 

collected at t=0, any samples collected within the first three weeks post-fracture (t=1 

to 21 days) and all samples collected 22 to 133 days post-fracture, with the Y- 

variable being termed `frac3'. As ankle fractures formed the largest number of 
fractures (21 patients with a total of 51 samples), these were used to create a 

separate dataset for further analysis. The `ankle' dataset was split into two response 

variables: samples from t=0 and all post-fracture samples (t=1 to 133 days). The 

resulting PLS analyses of the concatenated dataset with three different Y-variables 

assigned were optimised according to the scheme presented in chapter 3.5, and are 

presented in figure 4.7.2: 
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Figure 4.7.2. (a) PLS scores plot of concatenated data with the response variables 
'frac2":  = samples from time = 0, "= samples from time =1 to 133 days post- 
fracture. (b) PLS scores plot of concatenated data with the response variables 'frac3': 
 = samples from time = 0, "= samples from time =1 to 21 days post-fracture, and 
"= samples from time = 22 to 133 days post fracture. (c) PLS scores plot of 
concatenated data with the response variables 'ankle':  = samples from time = 0, 
= samples from time =1 to 133 days post-fracture. 
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PLS analysis of the concatenated data according to `frac2' response variables where 
t=0 (black squares) and t=1 to 133 days post-fracture (red diamonds) shows distinct 

clusters of the two groups (figure 4.7.2a). The external classification rate of 50 % 

using one LV was comparable to the best performing single dataset (positive mode 
HILIC-MS data at 60 %). When `frac3' response variables were assigned, the 

resulting PLS scores plot (figure 4.7.2b) shows a trend across the first LV, where 
samples from t=0 (black squares) cluster on the left-hand side, and those from t=1 to 

21 days (red diamonds) and 22-133 days post-fracture (blue dots) cluster on the 

right-hand side of the scores plot. The external classification rate of 50 % was equal 
to that for the `frac2' model, but required two LVs for the highest classification rate. 

The final PLS model was for the ankle dataset (figure 4.7.2c), where two clusters 
according to the assigned response variables were observed. Data points from t=0 
(black squares) and t=1 to 133 days post-fracture (red diamonds) cluster apart with 

no overlap. The external classification rate of 80 % using one LV was the highest 

obtained using the concatenated dataset. 

Table 4.7.1. Comparison of the top five variables for each of the three developed 
models. Shaded cells show variables that are present for more than one developed 
model (coloured according to polarity). 

Statistical Separation Rank Y Variable 

Model Method Polarity (VIP) m/z tR Discriminative 
for 

HILIC + 1 198.05 3.45 ft for t>0 
HILIC + 2 392.03 8.92 ft for t>0 

frac2 RP - 3 448.34 20.17 ft for t=0 
HILIC - 4 448.33 2.90 ft for t>0 
HILIC - 5 230.02 6.90 ft for t>0 
HILIC + 1 450.30 2.90 ft for t=0 
HILIC + 2 451.31 2.90 ft for t=0 

Ankle RP + 3 171.13 17.75 fj fort >0 
RP + 4 205.11 17.29 ftfort>0 

HILIC + 5 350.18 6.73 ft fort >0 
HILIC + 1 198.05 3.45 Q for t>0 
HILIC + 2 254.14 2.35 ftfort>0 

frac3 RP - 3 448.34 20.17 ft for t=0 
HILIC - 4 448.33 2.90 t=0<1<2 
HILIC - 5 243.06 7.38 ft fort < 21 

Table 4.7.1 presents the five most important variables from each of the three different 

statistical models. Each of the three models uses variables from each of the 
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separation methods and both ionisation polarities, along with the Y variable that each 

variable was discriminative for. The shaded cells represent variables that were found 

in all PLS models; each of the variables was observed in the individual PLS models 

for the separation method and polarity shown (tables 4.5.1 and 4.6.1). The CID 

tandem MS analysis of the variables presented in table 4.7.1 are discussed in section 

4.8. 
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4.8. Variable analysis using CID tandem MS 

Identifying the ions giving rise to the variables generated by each of the three 
developed PLS models (frac2, frac3 and ankle) for the two ionisation modes using 
both RP- and HILIC-MS in this chapter was carried out using CID tandem MS. A 

selection of four urine samples was chosen for analysis, based upon time of 

collection during fracture healing, and also type of fracture. As for the CID tandem 
MS analyses of data in chapter 3.6.4, the IDA setting was used in the Analyst QS 

software to analyse any variables added to the `include' list. 

When each of the variables detected was searched for in the HMDB1 (Wishart et al., 
2007) and Metlin2 databases, only one variable corresponded to a plausible 

metabolite; m/z 120 could correspond to the amino acid Thr. All other variables did 

not return any hits from either database search. The lack of more accurate mass 

measurements, along with only one potential metabolite structure from database 

searches, meant that both precursor and fragment ions shown in table 4.8.1 cannot 
be assigned atomic compositions. The only ion that was found in the literature was 
that at m/z 465, which in research by Lutz et al. (Lutz et al., 2006), was postulated to 

correspond to a glucuronidated steroid. 

1 http: //www. hmdb. ca (accessed November 2007) 
2 http: //metlin. scripps. edu (accessed November 2007) 
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Table 4.8.1. A table showing precursor ions that were isolated and subjected to CID 
tandem MS, and m/z values of ions that were identified as ariables and corresponded 
to metabolites in either HMDB or Metlin. (n/d = not detected in CID analysis. n/r= not 
recorded, meaning no fragment ions were observed). 

Separation 
Method 

Statistical 
Model 

Ionisation 
Polarity tR Precursor Ion 

Mass (M. -"- 
Product Ions fmiz; 

Product Ion 
Spectrum in 
A endfix D 

Positive n. '. ý NO Vd - 
frac2 

ti N 20.17 443.4 nfr - ve ega 21. E9 528.3 478.4 155.0 113.0 1 
21.54 500.3 457.3 4392 361.2 216.1 193.0 164.0 2 

f 3 
Positive 2.90 299.1 253.1 164.9 90.1 72.1 45.0 3 RP rac 11.04 120.1 103.0 93.1 88.0 - 
Negative 21.46 476.3 279.3 253.3 5 
Positive n1d n, d r/d - 

ank e N i 20.17 516.4 448.4 427.0 385.0 249.0 205.0 155.0 6 
egat ve 18.59 465.3 113.0 7 

Positive n/d n/d n/d - 
frac2 

N ti 
2.90 448.3 n/r - ega ve 2.90 562.3 448.4 113.0 8 

Positive 6.55 796.6 184.1 
HILIC frac3 2.90 448.3 yr Negative 

2.90 562.3 448.4 113.0 8 
Positive 2.90 450.3 433.2 415.3 10 

ankre N ti 2.90 443.3 n. ýr - ve ega 2.9D 562.3 448.4 113.0 8 

Appendix D contains the CID tandem mass spectrums of precursor ions that 
produced fragment ions upon CID. 

The precursor ion at m/z 528 shows a fragment ion at m/z 113 (appendix D1), 

suggesting that this compound is a glucuronide (Levsen et al., 2005). Subtracting 

176 Da (the mass increment corresponding to glucuronic acid) from the metabolites 

mass gives an RMM of 353 Da for this compound. Searching either database or the 

literature for this mass did not yield any results, making it impossible to propose an 

identity for this compound. 

Appendix D2 shows the CID tandem MS of m/z 500; the precursor ion shows a peak 

at 2 Th higher, suggesting the presence of chlorine in the structure of this compound. 

There are two losses from fragment ions that could correspond to loss of water; the 

fragment ions at m/z 457 and 216 both have peaks 18 Th less. The fragment ion at 

m/z 90 from the precursor ion at m/z 299 also loses 18Th, suggesting a loss of water 

from this ion too (appendix D3). However, no further information can be extracted 

from the data. 

The fragment ion 17 Th lower than the precursor ion at m/z 120 could correspond to 

the loss of NH3 from the compound (appendix D4). High energy CID tandem MS of 

Thr fragments to lose water from the precursor ion (giving m/z 102), then a 

subsequent loss of CO and CH202 from the fragment ion at m/z 102 to give m/z 74 

and 56 respectively (Heerma and Kulik, 1988). However, at low energy CID tandem 
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MS, the loss of NH3 from peptides/amino acids is more common. No plausible loss 

could be postulated for the fragment ion 27 Th lower than the precursor ion, although 
the loss of 32 Da (fragment ion at m/z 88) could correspond to the elements of 
MeOH. 

The CID tandem MS of m/z 516 (appendix D6) shows six fragment ions. The 

fragment ion at m/z 448 could correspond to the precursor ion at m/z 448 that has 

the same retention time in negative mode RP-LC-MS data in the frac2 PLS model, 

suggesting that the ion at m/z 448 in the frac2 PLS model may be an in-source 

fragment of m/z 516. It is not possible to assign atomic compositions to the fragment 

ions, making it very difficult for a structure to be postulated. 

The presence of m/z 113 in the CID tandem MS spectrum of the precursor ion at m/z 

465 suggests that this compound may be a glucuronide (appendix D7). Lutz et al. 

used MS/MS transitions to the molecular anion of m/z 113, which is a characteristic 

fragment of glucuronic acid, to detect putative steroid glucuronides (Lutz et a/., 2006). 

A mass at m/z 465 was postulated to correspond to one of the following steroid 

glucuronides: androsterone, dihydrotestosterone, 3ß, 17ß-dihydroxy-5-androsterone 

or epiandrosterone (Lutz et al., 2006). 

The negative ion mode CID tandem MS analysis of the precursor ion at m/z 562 

(appendix D8) also produce an intense fragment ion at m/z 113, suggesting that this 

compound is also a glucuronide. The very low intensity fragment ion at m/z 448 

corresponds to a loss of 114 Th, corresponding to the neutral loss of a glucuronide 

fragment. The precursor ion eluted at 2.9 min, which is the same retention time as 

the precursor ion at m/z 448, suggesting m/z 448 may have been an in-source 

fragment of a compound with an RMM of 563 Da. Interestingly, the positive mode 

CID tandem MS analysis of m/z 450 (appendix D10) eluted at 2.9 min, the same as 

m/z 448 (postulated in-source fragment) and 562; this could mean that m/z 450 is the 

positive ion in-source fragment (loss of 114 Th, a neutral glucuronide fragment) from 

the compound with an RMM of 563 Da. The fragment ions at m/z 433 and 415 could 

correspond to further losses of NH3 and water from the positive mode in-source 

fragment. 

The final product ion at m/z 796 (appendix D9) shows one fragment ion at m/z 184, 

due to the loss of 612 Th, meaning that the product ion spectrum was very 

uninformative for this compound. 
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4.8.1. Discussion 

The CID tandem MS analysis of the most important variables from the developed 

PLS models produced some tandem MS spectra (of variable quality) containing 
fragment ions. However, the databases searched did not identify any possible 

compounds, and the lack of more accurate mass measurements means that 

assigning structures was not possible. The only tentative assignment is based upon 

work by Lutz et al. who postulated that the transition m/z 465 to 113 (as seen in the 

spectrum in appendix D7) corresponded to one of the following steroid glucuronides: 

androsterone, dihydrotestosterone, 3ß, 17ß-dihydroxy-5-androsterone or 

epiandrosterone (Lutz et al., 2006). 

It is interesting that identical retention times for many of the precursor ions (most 

important variables) in both the RP- and HILIC-MS dataset PLS models were 

observed. The fragment ion mass of m/z 448 (from the precursor ion m/z 562), 

corresponding to the loss of 114 Th (neutral glucuronide fragment) suggests that m/z 

448 (as a precursor ion) was formed as an in-source fragment of m/z 562 (also 

highlighted by the comparable importance of m/z 562 and 448 (in-source fragment) 

from the PLS models). 
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4.9. Discussion 

The original aim of the work presented in this chapter was to profile the body's 

response to long-bone fractures, specifically to attempt to find biomarkers related to 
failed or delayed fracture healing. Unfortunately, at an early stage in sampling, a lack 

of long-bone fractures led to the largest sample cohort being from patients with ankle 
fractures. 

The initial RP-LC-MS analysis of the clinical urine samples generated poor results, 

the reason for which only became apparent when the clinical samples were prepared 
for analysis by HILIC-MS. Upon addition of MeCN to the clinical urine samples, a 
large amount of precipitate formed, meaning that the RP column used would have 

been saturated with precipitate with the MeCN present in the mobile phase. The 

Bradford assay of all clinical samples confirmed that the precipitate was protein, with 

concentrations from 1-258 mg/mL (average = 166 mg/mL), compared to an average 
daily protein excretion of 150 mg (Pisitkun et al., 2006; Gonzalez-Buitrago et al., 
2007). Proteomic analysis of the clinical urine samples identified 11 proteins, some of 

which were expected, but others were not, particularly those with high MWs related 

to an immunological response. Research by Gonzalez-Buitrago et al. showed that a 

"... myriad of proteins... " have been detected in urine, meaning that the presence of 

protein should not have been a surprise (Gonzalez-Buitrago et al., 2007); what was a 

surprise was the very high levels of protein present in the clinical urine samples. After 

the precipitation of protein from the clinical urine samples, the RP- and HILIC-MS 

analyses generated much more satisfactory data for the metabonomic analysis. 

Prior to the statistical analysis of the resulting data, it was revealed that none of the 

recruited patients' fractures had gone to non-union or had suffered delayed healing. 

Despite this, the data were still analysed to see if a metabonomic approach could 

profile the body's response to fracture healing. To add to the initial disappointment, 

the cohort of clinical samples obtained contained no clear groupings of time-setted 

samples. After the initial urine samples collected at t=0, any subsequent urine 

samples were collected anything from 7 to 133 days post-fracture, with no separation 

into more discrete groups; the samples were spread more or less evenly from 7 to 

133 days. Because of this, the whole dataset was split into three groups, those at t= 

0, those under 21 days post-fracture, and all remaining samples post-fracture. For 

the ankle cohort, only two groups could be generated (those from t=0, and all other 

samples post-fracture) due to the lack of samples. 
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Statistical analysis of each of the three models generated from the two ionisation 
modes and using both RP- and HILIC-MSs data (as well as the concatenated data) 
produced some variables that were consistent across the models. 

Despite the many setbacks that limited the potential success of the work presented 
within this chapter, there were some results that show some promise for further 

analysis of clinical samples from fracture patients. Further to this, the proteomic work 
produced some very interesting results, which should be investigated further. 

4.10. Conclusions 

The work presented within this chapter used the `metabonomics toolbox' generated 
in Chapter Three in an attempt to profile the body's response to a fracture. Despite 

none of the recruited patients' fractures going to non-union, the study was flawed 

from the offset by the lack of proper time-setted samples, something which was 

beyond my control. However, after the initial cause of poor RP analyses was found to 

be caused by large amounts of protein being present in the majority of the clinical 

urine samples, subsequent RP- and HILIC-MS analyses provided some PLS models 

with reasonable external classification results, as summarised in figure 4.10.1: 
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Figure 4.10.1. A graph comparing the external classification rates for each 
developed PLS model. 

The external classification results are not as high as those presented in Chapter 

Three for the healthy volunteer samples, but the models relate to a more complex 

question than discrimination according to gender, time of collection and age, and 

would also be expected to be lower due to the lack of more discrete time-setted 

groups. Despite the high levels of protein, which was unexpected and has not been 

described in metabonomic literature before on the scale shown here, and the lack of 

many metabolite identifications (other than the possible detection of a steroid 

glucuronide), this work has produced some candidate biomarkers that could be 

related to the fracture healing process; obviously, the biomarkers are tenuous at 

best, due to the lack of clear, time-setted samples. 

This work has also highlighted the conclusions in chapter 3.3, that proper design and 

implementation of a metabonomic study is vital if the end results are to stand any 

chance of being robust and of significance for hypothesis generation. 
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4.11. Retrospective view 

Despite the original aims of the work undertaken within this chapter not being met, 
there are lessons that have been learnt. An `ideal' experimental design can be 

proposed from the shortcomings highlighted: 

" Thorough initial design of study 

" Development of correct ethical guidelines 

" Involvement of all parties before study commences 

" Recruitment of patients 

o More patients required 

o More patient information obtained (as outlined in Chapter 

3.8.1) 

" Samples collected in the same manner 

o All samples treated in the same manner 

o Frozen within the same timescale 

" Analysis of samples using a broad range of analytical methods 

" Thorough statistical evaluation of resulting data 

" Consultation with all parties of results obtained 

" Re-analysis depending upon outcome 

" Clinical testing based upon results obtained 
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Chapter Five: Lipopeptide analysis 

5.1. Introduction 

5.1.1. Introduction to Pseudomonas chiororaphis PCL 1391 and tomato foot 

and root rot 

Many plants have an intimate association with soil microorganisms in the 

rhizosphere'; some interactions can cause plant disease, whilst others can 

conversely protect against disease. Tomato foot and root rot is such a disease, which 

results in leaf yellowing, loss of turgidity and ultimately the death of the plant. Foot 

and root rot in tomato plants is caused by the fungal pathogen Fusarium oxysporum 

f. sp. radicis-lycopersici; the fungus colonises the xylem within plants and affects the 

transport of water throughout the plant, causing Fusarium wilt. The use of synthetic 

fungicides can (partially) suppress the effects of foot and root rot, however, there are 

both environmental and human/animal health questions about the desirability of long 

term usage of such synthetic fungicides. Beneficial plant-microbe interactions are 

therefore of interest, as these can provide in situ protection against pathogens, which 

could reduce man's reliance upon synthetic fungicides to aid the promotion of a 

healthy rhizosphere, increasing plant/crop productivity. 

Various strains of Pseudomonas bacteria have been shown to possess biocontrol 

properties (Thomashow and Weller, 1995; Haas and Defago, 2005); pathogens are 

generally not completely removed from the rhizosphere by the actions of the 

biocontrol agents, but show reduced growth and lack/reduction of disease symptoms. 

A bacterial library isolated from the tomato rhizosphere from a commercial field in 

Andalucia, Spain has been analysed for the potential ability to cause disruption to the 

fungal pathogen that causes foot and root rot (Chin-A-Woeng et al., 1998). The most 

active strain isolated was Pseudomonas chlororaphis PCL 1391, which was found to 

secrete many secondary antifungal metabolites (AFMs) such as hydrogen cyanide, 

chitinases, proteases and a hydrophobic compound, identified as phenazine-1- 

carboxamide (PCN) (Chin-A-Woeng et al., 1998). 

Phenazines are heterocyclic nitrogen-containing molecules that exhibit broad- 

spectrum antibiotic activity by inhibiting growth/metabolism (Turner and Messenger, 

1986), and have been shown to be toxic to many organisms including bacteria, fungi 

and algae (Toohey et al., 1965). 

1 The zone in soil immediately surrounding plant roots. 
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The effectivity of AFMs (such as PCN) for plant protection requires a delivery to the 
fungal pathogen for which bacteria need to be efficient colonisers of plant roots. More 

recently, Pseudomonas species have been shown to produce biosurfactants that are 
generally cyclic lipopeptides (CLPs) (Nielsen et al., 2002). CLPs can be likened to 
the shape of a magnifying glass, where the handle corresponds to a fatty acid (FA) 

chain, and the glass to an amphiphilic ring structure consisting of amino acids (AAs). 
CLPs are thought to aid in the biocontrol of disease by causing disruption to lipid 

membranes/outer membrane structures (Coraiola et al., 2006) by creating 
transmembrane pores, which when combined with AFMs, actively decrease fungal 

pathogen activity. CLPs have a broad range of structures (Desai and Banat, 1997), 

which explains the large and varied number of biological properties of Pseudomonas 

biosurfactants (Nielsen et al., 2002). 

5.1.2. CLP production 

Whilst the ribosomal synthesis of proteins and peptides is template driven by the use 

of messenger and transfer RNA, the synthesis of CLPs by gram negative bacteria is 

non-ribosomal, and is catalysed by large peptide synthetases (Marahiel et al., 1997; 

Nielsen et al., 2002). Polypeptide chains are `grown' using a thiotemplate 

mechanism, where 'domains' allow the sequential addition of specific AAs onto a 

growing product (lipopeptides or other antibiotics such as vancomycin). Many 

reactions, such as adenylation, thiolation, condensation and epimerisation (to name 

but a few) also occur, and allow modifications such as the cyclisation of polypeptide 

chains through the formation of an ester bond, or the addition of FA moieties 

(Marahiel et al., 1997). 

236 



Chapter Five: Lipopeptide analysis 

5.1.3. CLP analysis by CID tandem MS and amino acid analysis 

Both CLPs and AFMs can be analysed using a variety of methods such as LC, 

MS(MS) (Yakimov et al., 1999; Yang et al., 2006), LC-MS(MS) (Chin-A-Woeng et al., 
1998), GC-MS (Yang et al., 2007), NMR (Ptak et al., 1980; Chin-A-Woeng et al., 
1998; Scott et al., 2007), amino acid analysis (AAA) (Rodrigues, 2005) and by 

chemical tests (Wang et al., 2003). As for metabonomics, no single technique can 

provide a complete picture of a CLP structure, rather a combination of approaches 
has to be utilised in determine to obtain the full structure. 

The analysis of peptides (such as CLPs) using MS methods is well established', with 

peptide structural information being obtained upon CID, where bond cleavage occurs 

(principally the peptide bonds). The nomenclature for the fragmentation of peptides 

was originally proposed by Roepstoff and Fohlman (Roepstorff and Fohlman, 1984), 

with a subsequent modification to the nomenclature proposed by Johnson et al. 

(Johnson et al., 1987). 

a2 '*-l a3 

b2'- I b3 

H2N 

'ý` 1I Ic2i3I I C, 

JH 

R2 LX21I [ý 
X1 

Z3 y Z2 

NI- 

Y3 I Y2 I '-º) 
ý1 

Figure 5.1.1. Peptide fragmentation nomenclature. (Johnson et al., 1987) 

OH 

Upon fragmentation of a peptide, if the charge remains on the N-terminus, the 

resulting fragments are described as either an, bn or cn ions; if the charge remains on 

the C-terminus after fragmentation, then the ions are described as either x, yn or Zn 

ions. The subscript `n' refers to the number of AAs in the fragment. For spectra of 

1 22,062 search results for the phrase 'peptide mass spectrometry' using http: //www. pubmed. com 
(accessed November 2007) 
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peptides obtained by low energy CID tandem MS of protonated peptides, the ions 

that are most commonly observed, correspond to b and y fragmentation pathways 

due to the peptide bond being the weakest, and therefore the easiest to break. 
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Figure 5.1.2. Proposed formation of b and y ions by CID tandem MS from many 
papers, principally (Thorne et al., 1990; Kenny et al., 1992; Yalcin et al., 1995; 
Summerfield and Gaskell, 1997). 
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Figure 5.1.2 shows the proposed mechanism for the formation of b and y ions from 

singly protonated peptides, as developed over a range of literature, but principally 
(Thorne et al., 1990; Kenny et al., 1992; Yalcin et al., 1995; Summerfield and 
Gaskell, 1997). The use of high energy CID (> 1 keV, such as that afforded by ToF- 

ToF MS) allows the formation of other fragment ions, which arise from cleavages of 
the side chains of AAs to form dn, vn or wn fragments. 
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Figure 5.1.3. Proposed fragmentation scheme for the isomeric AAs Leu and lie, 
showing their differentiation by the formation of different wn fragment ions (Johnson 
et al., 1988). 

Under the correct conditions, the formation of wn fragment ions from the relevant yn 

ion can be very useful, as isomeric AAs Leu and Ile can be differentiated by the 

formation of different wr, fragment m/z values (figure 5.1.3). 
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There are other fragment ions that can typically be found at low m/z values in tandem 

mass spectra (below m/z 150), namely immonium ions. 
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Figure 5.1.4. Immonium ion formation. 
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R4 
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Immonium ions (figure 5.1.4) are formed by a double cleavage of the peptide chain 
(an and yn type cleavage), and are indicative of the individual AAs that form the 

peptide chain. Some immonium ions are much less stable and thus less often 

observed than others. 

0 
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The most commonly-utilised precursor ions are protonated, however, the use of 
sodiated molecules as precursors has been reported (Grese et al., 1989; Teesch and 
Adams, 1990; Lin et al., 2001; Feng et al., 2003; Newton and McLuckey, 2004; 
Bensadek et al., 2007). Metal cationised species can often be considered a nuisance 
for peptide sequencing for the following reasons as described by Bensadek et al.: 

1. Sensitivity is reduced, as the total ion signal is distributed across several 
molecular species rather than just one. 

2. Metal cationised species require increased collision energy to obtain 
fragmentation. 

3. `Suboptimal' fragmentation patterns can be obtained'. 

Despite this, many papers have reported the low energy CID tandem MS analysis 
(mainly using quadrupole ion traps) of metal cationised peptides providing diagnostic 

fragment ions (Lin et al., 2001; Feng et al., 2003; Newton and McLuckey, 2004; 

Bensadek et al., 2007). Typically, very different fragmentation spectra are obtained 

upon CID analysis of cationised species when compared to that obtained from 

protonated molecules; much simpler spectra can be obtained, as fragmentation 

usually occurs by losses from the C-terminus, yielding predominantly b ions. Simple 

spectra were obtained using an ion trap, which has MS" capabilities, repeating the 

CID process, producing structural information by sequentially generating b ions (Lin 

et al., 2001; Feng et al., 2003; Newton and McLuckey, 2004; Bensadek et al., 2007). 

Analysis using a Q-o-ToF provides a much different fragmentation spectrum when 

compared to that obtained using an ion trap; increased fragmentation is usually 

obtained as the MS/MS step allows the generation of many more fragments, 

however, this can lead to harder spectra to interpret. 

For C-terminus sequencing using cationised species, peptides of less than ten 

residues are generally used as it has been shown to be harder to obtain cationised 

species above 1 kDa using ESI. The use of MALDI has been reported for the 

ionisation of peptides up to 16 residues in length, but again, difficulty in forming 

cationised molecules generally results in protonated species fragmented instead 

(Newton and McLuckey, 2004). 

1 Meaning that fragment ions cannot be interpreted or are structurally uninformative. 
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5.1.4. Amino acid analysis 

Amino acid analysis (AAA) is a process that can determine the quantities of individual 
AAs in a sample. The sample is first hydrolysed using a strong acid for a period of 24 
h at a temperature of 110 °C. This releases free AAs into solution by hydrolysing the 
peptide bonds. After hydrolysis, the sample is dried and reconstituted in a rehydration 
fluid that contains L-homo-Arg (0.01 M) as internal standard. 

Any free AAs within the reconstituted solution cannot be detected using fluorescence 

without first being derivatised. 
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Figure 5.1.5. Reaction scheme for the derivatisation of free AAs (Bruckner et al., 
1994). 

The derivatisation is carried out prior to reversed phase analysis of the resulting 

derivatised AAs using a C18 column. Free AAs in solution are reacted with N-iso-L- 

butyryl-L-cycteine (IBLC) and o-phthaldialdehyde (OPA) (figure 5.1.5); this is carried 

out on-line within the HPLC system. This method of AAA allows the routine detection 

of the L and D isomers of the following 12 AAs: Asp, Glu, Ser, Thr, Arg, Ala, Tyr, Val, 

Met, Phe, Leu and Ile. 
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5.1.5. Aims 

The aims of this work were to identify the components in a fraction isolated using 
HPLC of an ethyl acetate extract of P. chlororaphis PCL 1391 spent growth medium, 

provided by the Department of Biology, University of Leiden, the Netherlands. This 

fraction was selected for the presence of surface tension reducing ability. Here, the 

same methods as used in a metabonomic study were exploited, but in a very 
different manner. Both ESI- and MALDI-MS and tandem MS (along with chemical 

methods) were used for structural identification. In addition, racemic amino acid 

analysis was used to provide extra information on amino acid composition of the 

compounds in the fraction. 
A 

244 



Chapter Five: Lipopeptide analysis 

5.2. Results 

5.2.1. Sample information 

A sample collected following HPLC fractionation of the supernatant obtained from an 

extract of Pseudomonas chlororaphis PCL 1391 was provided by the Institute of 
Biology, Leiden University, the Netherlands. Researchers at Leiden are studying PCL 

1391 in an attempt to unravel the mode of action of the antifungal metabolite 

phenazine-1-carboxamide, which is produced by this strain of bacteria; it was 
discovered that PCL 1391 also produced an unknown biosurfactant. 

Analysis of the HPLC fraction was undertaken as part of a long-standing 

collaboration between the JTO group at the University of York and Leiden University 

in the area of plant-microbe interactions. Initial findings by Leiden suggested that the 

unknown biosurfactant may be similar to the cyclic lipopeptide massetolide C (figure 

5.2.1), as a BLAST' search in Leiden had suggested that the PCL 1391 synthase 

sequence was similar to that of the synthase that produces massetolide C. 

L-Leu 

D-a/lo-lie D-Ser 

CH3(CH2)8CH(OH)CH2CO - L-Leu - D-GIu - D-allo-Thr L-Leu 

0 D-Ser 

L-Ile 

Figure 5.2.1. Structure of the CLP massetolide C. 

1 Basic Local Alignment Search tool that finds regions of similarity between nucleotide or amino acid 

sequences. 
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5.2.2. ESI-Q-o-ToF MS analysis of PCL 1391 extract 

The HPLC fraction was received in a glass vial and had been dried under vacuum in 

a centrifugal evaporator. The sample was reconstituted in 300 pL of MeOH before a 
dilution series was created. Initial positive ion mode ESI-Q-o-ToF MS studies showed 
that a dilution to 25 % of the original stock solution gave a satisfactory signal. 

PCL 1391 had already been shown to produce the secondary antifungal metabolite 

phenazine-1-carboxamide (PCN) (Chin-A-Woeng et al., 1998), this was expected to 

be present in the reconstituted solution as it co-eluted with the unknown biosurfactant 

(shown by HPLC UV chromatograms, in Leiden). Chin-A-Woeng et al. identified PCN 

by MS and NMR; their MS/MS analysis of a protonated molecule at m/z 224 

produced two fragment ions at m/z 207 and 179, which were identified as losses of 
NH3 and the carboxamide group respectively. A peak at m/z 224 was identified in the 

ESI-MS of the reconstituted solution and was postulated to correspond to PCN, 

which has a nominal mass of 223. 
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Figure 5.2.2. Product ion spectrum of proposed PCN peak at m/z 224. 

[M + H] 
224.07 

220 

The product ion spectrum of m/z 224 contained only two fragment ion peaks (figure 

5.2.2). The peak at m/z 207 corresponds to a loss of 17 Th, which is equivalent to the 

loss of NH3; the less abundant fragment ion at m/z 179 corresponds to the loss of the 
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carboxamide group, leaving the very stable phenazine ring. These MS/MS results are 
identical to those of Chin-A-Woeng et al., suggesting that the antifungal metabolite 
PCN was present in the HPLC fraction. 
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Figure 5.2.3. ESI-MS of putative biosurfactant from PCL 1391. 

The MS obtained upon the analysis of the diluted solution also exhibits a series of 

peaks above m/z 1000 (figure 5.2.3). The signals at m/z 1126,1148 and 1164 

correspond to a protonated, sodiated and potassiated molecule of nominal mass 

1125. This was in contrast to the expected protonated molecule at m/z 1168, 

suggesting that the fractionated surfactant did not correspond to massetolide C with 

a nominal mass of 1167, but to another compound. 

Analysing the literature for other known cyclic lipopeptides (CLPs) of nominal mass 

1125 gave three possibilities (Gross et al., 2007): 
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Table 5.2.1. CLPs reported within the literature with nominal mass 1125 (Gross et 
al., 2007). Each of the three CLPs cyclise through an ester bond between the AAs in 
positions 3 and 9. The pink shaded cells highlight the only differences between the 
three CLPs. 

AA Sequence Number 

FA 
CLP 1 2 3 4 5 6 7 8 9 

Moiety 

Massetolide C101 
L-Leu o-GIu D-a//o-Thr D-Val L-Leu D-Ser L-Leu D-Ser L-Leu 

F 3-OH 

C10, 
Viscosin L-Leu D-Glu D-a/lo-Thr D-Val L-Leu D-Ser L-Leu D-Ser L-Ile 

3-OH 

White line 

inducing C, o, 
L-Leu D-Glu D-a//o-Thr D-Val D-Leu D-Ser L-Leu D-Ser L-Ile 

principle 3-OH 

(WLIP) 

(Leu = Leucine, Glu = Glutamic acid, Thr = Threonine, Ser = Serine, lie = Isoleucine. ) 

The protonated molecule observed at m/z 1126, which could correspond to 

massetolide F, viscosin, WLIP or to an as yet unreported CLP, was analysed by CID 

tandem MS to produce fragment ions to aid in elucidating the structure of the 

unknown molecule. 
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Figure 5.2.4. Product ion spectrum of the protonated molecule at m/z 1126, with both 
y and b ion AA losses identified ('AA' in the sequence indicates unknown amino 
acid). 

On CID product ion tandem MS, many fragment ions were generated across a broad 

range of m/z values, with the structural interpretation of the fragment ions not being 

straightforward due to the cyclic nature of the putative CLP at m/z 1126 (figure 5.2.4). 

Two bond cleavages must occur to generate the y and b ions, with ring opening 

occurring principally at the ester bond. Losses corresponding to the AAs Leu and/or 

Ile, Glu, Thr, Val and Ser were found within the spectrum. Starting with the 

protonated precursor ion at m/z 1126, losses corresponding to Leu/Ile, Ser, Leu/Ile, 

Ser, Leu/Ile, Val, Thr and Glu are observed, which correspond to the b ions shown 

from b8 to b, and a,. A complementary partial y ion series from y8 to y2 was also 

observed. A common feature of positive ionisation, low energy CID, is the facile loss 

of water during fragmentation across a peptide backbone (Ballard and Gaskell, 
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1993); this can account for many of the peaks 18 Th less than the b or y series ions. 
The presence of an immonium ion at m/z 86 corresponds to the isomeric AAs Leu 
and lie, further suggesting the presence of either or both of these AAs within the CLP 
structure. 

955.54 843.44 714.40 613.36 514.30 401.22 314.19 201.11 114.09 

FA Leu* Glu Thr Val Leu* Ser Leu* Ser Leu* 
(113) (129) (101) (99) (113) (87) (113) (87) (113) -; 

171.14 41 284.22 413.24 514.30 613.36 726.42 813.67 41 926.52 411013.61 

------------------------------- 
Figure 5.2.5. Proposed structure of fragment ions (proposed cyclisation shown by 
hashed line and values in parenthesis correspond to AA residual masses) and 
assignment of biosurfactant from the CID tandem MS analysis of m/z 1126. Leu* 
could either be Leu or Ile and FA corresponds to fatty acid. Values in bold and blue 
indicate the fragment ions present in the product ion spectrum; values in black were 
not seen. 

From the structural information obtained upon the fragmentation of the precursor ion 

at m/z 1126 (figure 5.2.4), an AA sequence was proposed (figure 5.2.5). Each of the 

three published CLP structures (table 5.2.1) are known to cyclise between the AAs in 

position nine and three (corresponding to Leu/Ile and D-alto-Thr). For an ester bond 

to be formed, an -OH group needs to be present on one of the AA side chains in 

order for condensation to occur. This means that given the proposed structure (figure 

5.2.5), cyclisation could occur through the AAs Ser or Thr in positions three, six and 

eight. Condensation through Ser in positions six and eight is unlikely due to steric 

hindrance, leaving only three as the most likely site for cyclisation. From the product 

ion spectrum (figure 5.2.4), the C-terminal fragments y8 and y7 are more intense than 

lower m/z y ions; this suggests that the cleavage between Leu-Glu (positions one 

and two) and Glu-Thr (positions two and three) was easier than that of Thr-Val 

(positions three and four). This would require cleavage of two bonds, rather than one, 

consistent with cyclisation occurring between the C-terminal carboxylic acid and the 

OH in the side chain of Thr (as in the three reported CLP structures). 

As the literature relating to sodiated peptide fragmentation suggests that the 

fragmentation obtained is simpler to interpret than protonated peptide fragmentation 

(Grese et al., 1989; Teesch and Adams, 1990; Ballard and Gaskell, 1993; Lin et al., 

2001; Feng et al., 2003; Newton and McLuckey, 2004), the sodiated molecule at m/z 
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1148 was analysed by CID tandem MS to try and simplify the resulting product ion 

spectrum of the cyclic CLP. 
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Figure 5.2.6. Product ion spectrum of the sodiated molecule at m/z 1148. 

The product ion spectrum of the more intense sodiated molecule at m/z 1148 

contains many fragments across a broad range of m/z values, which at first glance 

yields an even more complex spectrum than that of the protonated molecule (figure 

5.2.4). In contrast to the literature, where sodiated peptides produce fragment ions 

almost exclusively from the C-terminus, there are many peaks present that cannot be 

readily identified, with the exception of a few b and y ions that correspond to the 

sodiated mass of the fragment ions already identified in figure 5.2.4. 

As more evidence was required to assign the structure of the CLP, and given the 

complexity of the resulting product ion spectrum from subjecting the CLP to CID 

tandem MS in its cyclic form, it was decided to open the ring to form a linear peptide, 

hopefully simplifying the resulting product ion spectrum. 
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5.2.3. ESI-Q-o-ToF MS analysis of CLP after treatment with base 

Research by Kuiper et al. into biosurfactants produced by other Pseudomonas 

strains, used MS analysis before and after mild base treatment followed, to 
demonstrate cyclisation by an ester bond (as in the structures massetolide F, 

viscosin and WLIP) and to subsequently provide a linear peptide, which provided a 
simpler tandem MS spectrum to interpret (Kuiper et al., 2004). Upon the MS analysis 
of the treated surfactant, Kuiper et al. observed an increase of 17 Da to the mass of 
the biosurfactant, consistent with the addition of ammonia across the ester bond; C- 

terminal fragment ions were also shifted by 16 Th. 

The putative CLP with nominal mass 1125 was therefore treated with mild base (1: 1 

35 % NH4OH: MeOH) overnight, which would be expected to cleave the proposed 

ester bond, creating a linear peptide with a protonated molecule at m/z 1143. 
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Figure 5.2.7. ESI-Q-o-ToF MS of CLP after treatment with ammonium hydroxide. 

The resulting MS analysis of the base treated CLP shows five intense peaks at m/z 

1126,1143,1148,1158 and 1180 (figure 5.2.7). From the previous MS analysis of 

untreated CLP (figure 5.2.3), the peaks at m/z 1126 and 1148 correspond to the 

protonated and sodiated molecules of cyclic CLP with nominal mass 1125. The peak 
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at m/z 1143 is 17 Th higher that the protonated untreated CLP peak, meaning that 
despite the presence of unreacted CLP, the addition of ammonia across the ester 
bond appeared to have been partially successful. The two remaining peaks at m/z 
1158 and 1180 have an increase of 32 Th from the protonated and sodiated 
untreated CLP peaks; this has been described before by Joao Rodrigues from the 
JTO group, where an increase of 32 Th corresponded to the addition of MeOH 
across the ester bond of a related CLP, rather than ammonia as expected 
(Rodrigues, 2005). 
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Figure 5.2.8. Product ion spectrum of the CLP treated with base. 

The product ion spectrum resulting from CID tandem MS analysis of m/z 1143 (figure 

5.2.8) showed a more complex spectrum than was expected for a ring-opened CLP. 

Upon isolation of the precursor ion at m/z 1143 with no collision energy (CE) applied, 

the peak immediately disappeared to yield the peak at m/z 1126 (figure 5.2.8). When 

the CE was increased, the fragmentation was extensive, generating a spectrum 

almost identical to that of the untreated CLP at m/z 1126 (figure 5.2.4). 
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As the peak at m/z 1126 was immediately observed upon isolation of the supposed 
ring opened CLP at m/z 1143, it suggests that the increase of 17 Th was caused by 
an ammonium adduct, rather than a ring-opened compound in which ammonia is 
added across the ester bond. Kuiper et al. did not isolate an ammonia adduct, as 
subsequent CID tandem MS analysis of their treated biosurfactant showed an 
increase of 16 Th for any observed C-terminus fragment ions (Kuiper et al., 2004). 
Conversely, no change in any of the observed b and y fragment ions was observed 
here; the isobaric fragments b3 & y5, and b4 & Y6 should have not been present in the 

resulting spectrum, as the y5 and y6 fragment ions increased from m/z 514 and 613 to 

m/z 530 and 629 respectively. 
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Figure 5.2.9. Product ion spectrum of protonated lipopeptide observed at 32 Th 

higher than the cyclic lipopeptide. 

CID product ion analysis of the protonated molecule at m/z 1158 (figure 5.2.9) 

yielded a much simpler spectrum, with easily assignable b and y ion series (as 

expected for a linear peptide). The increase of 32 Th arising from transesterification, 

which results in the addition of elements of methanol across the ester bond, can be 
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confirmed by a shift of 32 Th for each of the observed y ions. Despite the addition of 
methanol being an unintended side reaction, it was of use, providing a ring opened 
CLP. Even though incomplete b and y ion series were observed, the presence of b3_8 

and y5_7 ions aids in strengthening the proposed AA sequence assignment (figure 
5.2.5). 

CID tandem MS analysis of the sodiated ring opened CLP at m/z 1180 did not yield 
any additional information than the protonated precursor. To confirm the proposed 
AA sequence (and to attempt to elucidate the Leu/Ile uncertainty), a full range of 
fragment ions (including w ions) should be obtained to assign all of the AAs present, 
along with the FA moiety mass. For this reason, high energy CID using a MALDI- 
ToF/ToF was undertaken. 

5.2.4. High energy MALDI-ToF/ToF MS analysis of the CLP 

For analysis using high energy (HE) CID MALDI-ToF/ToF, an aliquot of both the 

untreated CLP and the CLP treated with mild base were analysed using MALDI-MS, 

using x-cyano-4-hydroxycinammic acid as the matrix. As for ESI-MS, MALDI-MS 

produced both protonated and sodiated molecules. 

HE-CID tandem MS analysis of the protonated molecule of CLP at m/z 1126 and that 

of the CLP treated with base at m/z 1158 did not yield any additional fragment ions 

than those already observed using LE-CID tandem MS. Because of this, peaks for 

the sodiated molecules were analysed to see if their resulting product ion spectra 

were more informative than those obtained at low energy using ESI-Q-o-ToF MS 

analysis. 
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The HE product ion spectrum from the sodiated molecule at m/z 1148 yielded a 
simpler spectrum than the LE-CID analysis, with fewer fragment ion peaks being 
observed (figure 5.1.10). Whilst this should have made interpretation easier, there 

were some fragment ions present for which no plausible structure could be proposed. 
An extensive search of the literature failed to highlight any previous studies where 
MALDI-ToF/ToF had been used for the analysis of sodiated peptides by HE-CID 

tandem MS. Following the literature on LE-CID analysis of sodiated peptides, it was 

expected that much structural information would gbe obtained, possibly from the C- 

terminus (Grese et al., 1989; Teesch and Adams, 1990; Lin et al., 2001; Feng et al., 

2003; Newton and McLuckey, 2004); however, the lack of any particularly structurally 

useful ions observed here may perhaps be accounted for by the closed ring 

structure. 
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Figure 5.2.11. HE-CID tandem MS of sodiated CLP treated with base at m/z 1180. 

Interestingly, the HE-CID tandem MS analysis of the sodiated CLP treated with base 

at m/z 1180 produced a very informative spectrum, with many C and N-terminal 

fragment ions being present across a broad range of m/z values (figure 5.2.11). HE- 

CID causes less intense ions arising by loss of water from AAs, therefore reducing 
the complexity of resulting product ion spectra. However, other so called `satellite 

ions' formed from side chain cleavages can be observed; this can be of great benefit 

when differentiation between isobaric AAs Leu and Ile is sought. 

A full series of fragment ions from the N-terminus (a, series) were obtained, which 

when combined with the near complete y,, series (from the C-terminus), shows that 

the AA sequence corresponds to that proposed earlier (figure 5.2.5). The FA moiety 
has a mass of 171 Da, which is consistent with a saturated hydroxylated C, o FA 

chain (Gross et al., 2007). 

Perhaps even more surprising from a sodiated spectrum (given the literature), was 

the presence of three fragment ions that correspond to a loss of 59 Th from y9, y5 and 

y3, which is consistent with the positioning of three Leu/Ile AAs in the proposed 

sequence (figure 5.2.5). A loss of 59 Th giving w9, w5 and w3 fragment ions, is 

consistent with side chain losses from Leu. If the AAs present were Ile, then the 

losses from they ions y9, y5 and y3 would have been 15 and 41 Th (Johnson et al., 

1988). 
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Despite the demonstration that three out of the four possible Leu/Ile combinations 
were Leu, the remaining terminal AA was not identified due to no yi or w, peaks 
being observed in the HE-CID spectrum. In order to ascertain if the remaining AA 

was Leu or lie, it was decided to attempt to add a larger group during ester cleavage, 
with the intention of shifting the yi ion to slightly higher m/z. 

5.2.5. HE-CID MALDI-ToF/ToF tandem MS analysis of CLP treated with base 

and butanol 

The use of mild base would be expected to cleave an ester bond, adding ammonia 

across the bond and giving an increase of 17Th in the resulting MS (Kuiper et al., 
2004); in this case, however, the addition of MeOH was observed with an increase of 
32 Th being evident. In order to attempt to obtain a y, ion upon HE-CID tandem MS 

analysis of a ring opened CLP, it was decided to add a larger group that would 
hopefully allow the generation a more stable yi fragment ion. 

The CLP was treated overnight with mild base (35 % ammonium hydroxide), this time 

mixed with butanol (BuOH) instead of MeOH. An increase of 74 Th would be 

expected in the resulting MS, consistent with ring opening and the addition of BuOH 

across the ester bond. 
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Figure 5.2.12. MALDI-ToF/ToF MS of CLP treated with mild base and butanol. 
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The resulting MALDI-MS of the CLP treated with mild base and BuOH exhibits more 
peaks than were expected. The most intense peak at m/z 1148 is consistent with 
sodiated CLP (the corresponding protonated peak at m/z 1126 has a very low 
intensity), with other sodiated molecules at 17,32 and 74 Th higher, corresponding to 
the addition of ammonia, MeOH and BuOH respectively. The addition of BuOH gave 
rise to a low intensity peak at m/z 1222, suggesting that perhaps the bulky nature of 
the alkyl chain prevented the efficient addition of BuOH across the ester bond due to 
too much steric hindrance. The peak at m/z 1180 corresponds to the addition of 
MeOH across the ester bond; as only 5 pL of a methanolic solution of CLP had been 
added to 1 mL of mild base and BuOH mixture, it was thought that BuOH would react 
with much greater efficiency. The sodiated molecule at m/z 1166 again corresponds 
to the adduction of ammonia, which has a much higher intensity than for the previous 
ring cleavage using methanol (figure 5.2.7). 

HE-CID tandem MS analysis of the three peaks at m/z 1166,1180 and 1222 failed to 
produce any spectra with increased levels of fragmentation (not shown). As the 

species deriving from the addition of BuOH was least intense, the ion was too weak 
to allow a reasonable signal to noise ratio in the product ion spectrum, meaning that 

adding a larger group did not aid in obtaining the necessary yi ion needed for 
differentiation between Leu and Ile in position nine. 

5.2.6. Amino acid analysis 

In order to fit the final pieces of the jigsaw, it was decided to use amino acid analysis 
(AAA) to elucidate both the AA composition, and to determine the configuration of 

each of the AAs (either D or L). This requires that each of the AAs present be free in 

solution; the CLP was therefore hydrolysed to free the AAs. The free AAs in solution 

were then derivatised to allow their detection using fluorescence. The RP analysis of 
the hydrolysed and derivatised AAs using the method by Penkman (Penkman, 2005) 

lasted for 95 minutes, with seven substantial peaks present in the resulting 

chromatogram (figure 5.2.13). From the three reported CLPs (massetolide F, viscosin 

and WLIP), there could have been up to nine peaks present from the different 

possible AA combinations. 
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Figure 5.2.13. Resulting UV fluorescence chromatogram from the AAA of the CLP. 

From the retention times of each of the seven substantial peaks, the following AAs 

are present within the CLP structure: D-GIu, D-Ser, D-alto-Thr, D-Val, L-Ile, L-Leu and 

D-Leu. The internal standard at 49.5 min was used to calculate the concentrations of 

each of the AAs present in order to evaluate the stoichiometry (figure 5.2.14). 
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Figure 5.2.14. Graphical representation of the amount of each AA detected. 

Despite there being some fluctuations between the absolute amounts of the AAs 

shown in figure 5.2.14, it is clear to see that two of the AAs (D-Ser and L-Leu) are 

present at higher concentrations than the other AAs. Dividing all of the amounts by 

the smallest, gives the ratio of AAs to be 1.1 : 2.0: 1.21.11.02.3: 1.2, which 

when rounded to the nearest whole number is 1: 2: 1: 1: 1: 2: 1 (totalling nine 

AAs), giving the stoichiometry to be one of each of the AAs D-Glu, D-alto-Thr, D-Val, 

L-Ile, and D-Leu with two of each of the AAs D-Ser and L-Leu; WLIP has the same AA 

composition as that determined here. 
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5.3. Conclusions 

An RP-HPLC fraction containing a surfactant (initially proposed by our collaborators 
to be similar to massetolide C on basis of the preliminary mass) and an AFM 

extracted by collaborators from the culture supernatant of Pseudomonas chiororaphis 
PCL 1391 were supplied for analysis and subsequent structural identification. CID 

tandem MS of the AFM using ESI-Q-o-ToF was consistent with phenazine-1- 

carboxamide, which has previously been reported as produced by this strain (Chin-A- 
Woeng et al., 1998). The identification of the surfactant was less straightforward than 

that of the AFM. The initial LE-CID tandem MS of the surfactant yielded substantial 

structural information consistent with a CLP, but was difficult to fully interpret due to 
the ring structure. 

Treating the CLP with mild base to cleave the ester bond gave an addition of 32 Th 

across the ester bond, which was due to the addition of methanol (Rodrigues, 2005) 

rather than ammonia as expected (Kuiper et al., 2004). LE-CID tandem MS analysis 

of the ring-opened lipopeptide gave a simpler spectrum with fewer fragment ions than 

the cyclic structure, so that structural information was incomplete. 

HE-CID-MALDI-ToF/ToF allowed differentiation between Leu and Ile for three out of 

the four possible Leu or Ile assignments from the loss of 59 Th (wn fragment ions), as 

well as providing a complete series of a,, ions and near-complete series of yn ions. 

These results were in contrast to the literature on sodiated peptides (Grese et al., 

1989; Teesch and Adams, 1990; Lin et al., 2001; Feng et al., 2003; Newton and 

McLuckey, 2004; Bensadek et al., 2007), where C-terminal fragment ions were 

reported to be the predominant species. To the author's knowledge, the observation 

of wn fragment ions from sodiated precursor ions has not previously been described 

in the literature, perhaps due to the difficulty in obtaining sodiated peptides with a 

free amino terminus, which would preferentially protonate. 

As the yi ion, which would have allowed the differentiation of the final Leu/Ile AA, 

was not observed (even after the addition of BuOH to increase the mass of the y, 

fragment ion), it was decided that AAA be used to attempt to complete the 

identification of the CLP produced by PCL 1391. 
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Table 5.3.1. Comparison of MS and AAA results. 

* Differen 

Detection Method 
Amino Acid AAA MS 
Glutamic acid 1 1 

Serine 2 2 
Threonine 1 1 

Valine 1 1 
Isoleucine 1 0 

1* Leucine 3 

fiation between one AA (elfhPr A�III º ýn�ý. ý 

3 
nn+ An nh+ ý; jw4 -- - -- -i ---. ý ..,. ... ......,.,..... 

Table 5.3.1 shows the complementary results obtained by the MS and AAA methods. 
The use of AAA allowed the Leu/Ile in position nine to be identified as lie, as well as 
the D and L configurations of the AAs in the CLP. Combining all of the information 

obtained from both analysis methods allows the structure of the CLP to be proposed 
(figure 5.3.1). 

D-Leu 

D-Val D-Ser 
/1 

CH3(CH2)6CH(OH)CH2CO-L-Leu-D-GIu-D-a//o-Thr L-Leu 

0 o-Ser 

L-IIe 

Figure 5.3.1. Structure of the CLP as determined by MS and AAA. The position of 
the hydroxy group was not determined, but is proposed to be a 3-hydroxylated FA by 
homology. (Coraiola et al., 2006). 

The structure as proposed from MS and AAA, corresponds to the structure of white 

line inducing principle (WLIP). WLIP has previously been reported by Coraiola et al. 

(Coraiola et al., 2006) as being produced by Pseudomonas chlororaphis, having the 

ability to permeabilise membranes; something that is likely to be required if PCL 

1391 is to counteract the effects of tomato foot and root rot caused by the fungal 

pathogen Fusarium oxysporum f. sp. radicis-lycopersici. 
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6.1. Conclusions 

The primary focus of the work presented within this thesis was the development of a 
robust LC-MS `metabonomic toolbox', where all current thoughts for metabonomic 

studies were brought together and critically compared and evaluated. A to date 

rarely-used HILIC separation technique was successfully applied for the 

metabonomic analysis of both cohorts of human urine samples (those obtained from 

volunteers within the Department of Chemistry, and those from patients who had 

suffered a bone fracture), showing that different compounds were detected when 

using this method compared to the commonly-employed RP separation approach. 
This was an expected result, and confirmed the fears that the sole use of RP 

separation for metabonomic studies of urine is likely to mean that a potentially large 

wealth of information has been missed and not detected. As more metabonomic 

studies utilise a HILIC separation method, it can only be hoped that the wider 

scientific community (not restricted to metabonomics) adopts this technology to 

increase the coverage obtained for the analysis of biofluids when using LC-MS 

analytical methodologies. 

It was shown that concatenating LC-MS datasets (±RP-LC-MS and ±HILIC-MS data) 

together generated robust statistical models according to the external CV values, and 
by also comparing the individual PLS models to the concatenated PLS models. This 

is a method that shows great promise for future metabonomic studies, where LC-MS 

and NMR platforms are used (or even combined) to obtain a more representative 

picture of the compounds contained within a biofluid. The use of such a data analysis 

method may highlight potential metabolites, or groups of metabolites, that may fail to 

be found when only statistically analysing data from a single dataset (e. g. +RP-LC- 

MS); further to this, data concatenation also provides an idea of which variables are 

the most influential across all models, rather than just one. One problem that data 

fusion could encounter is the use of variables from different datasets to form a model 

when, in fact, they correspond to the same compound; the resulting variables should 

therefore be checked for any similarities in retention times and m/z values to identify 

any such variables. 

Other conclusions from the work presented in Chapter Three are that the popular use 

of normalising to creatinine could potentially skew results, as the levels of excreted 

creatinine have been shown to be easily perturbed by many factors, such as illness. 

Comparing normalisation to creatinine (from healthy volunteers) to normalisation 
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using total ion count, showed that the two methods were comparable in as much as 
the most important variables for each discriminatory model developed were 

consistent. Overall, the work presented in Chapter Three has shown that the field of 

metabonomics is still very much in its infancy and lacks a common theme whereby 

samples are carefully obtained, analysed and reported; this is something which will 
hopefully come with maturity. 

The use of the developed metabonomic toolbox for the analysis of clinical urine 

samples to profile the body's response to bone fractures (with the goal of identifying 

potential biomarkers of delayed or failed fracture healing) did develop discriminatory 

models, which highlighted potential biomarkers that could be related to the fracture 

healing process. However, the study was flawed from the offset by the lack of time- 

setted samples, and the fact that none of the patients suffered failed fracture healing. 

Drawing together the conclusions from Chapters Three and Four, as well as the 

retrospective views, highlights that careful planning is required before samples are 

collected to ensure that any subsequent analysis stands the greatest possible 

chance of being a success. 

Perhaps the most interesting piece of work from Chapter Four stemmed from the 

sample issues, which was found to correspond to very high levels of protein within 

the clinical urine samples. The protein corresponded to a broad range of molecular 

weight and function. The larger proteins corresponded were related to the body's 

immune system, which suggests that the presence of the large amounts of protein 

found in the clinical urine samples may have been caused by some kind of 

immunological response to either stress or resulting treatment. This is certainly an 

area where more research needs to be undertaken in an attempt to understand why 

so much protein was detected. 

Both Chapters Three and Four showed that the most common problem of 

metabonomic analyses is the subsequent identification of potential biomarkers 

highlighted from statistical studies. This `poor' biomarker identification could have 

been resolved by the combination of higher mass accuracy instrumentation and NMR 

after the fractionation and purification of potential biomarkers. For biomarkers that 

were proposed, the analysis of standards using LC-MS/MS would have confirmed if 

the proposed compounds were correct, allowing further justification to be sought by 

relating the identified biomarker to the biological process in question. 
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An additional, piece of work is also presented in this thesis. An ethyl acetate extract 
(provided by the Department of Biology, University of Leiden, the Netherlands) of 
Pseudomonas chlororaphis PCL 1391 spent growth medium, containing an unknown 
biosurfactant, was successfully analysed using ESI-Q-o-ToF MS(MS), MALDI- 

ToF/ToF MS(MS) and racemic amino acid analysis. The in-depth study elucidated 
both the amino acid sequence and the stereochemistry of the amino acids present 

within the cyclic lipopeptide. The high energy MALDI-ToF/ToF CID tandem MS 

analysis of the sodiated cyclic lipopeptide molecule generated characteristic wn 
fragments, which allowed the differentiation between the isomeric amino acids Leu 

and Ile; the use of sodium cationised non-tryptic peptides has seldom been reported 
in the literature, as sodiated tryptic peptides are commonly considered as a nuisance 

rather than a benefit. All of the analytical methods together allowed the structure of 
the cyclic lipopeptide to be postulated as corresponding to white line inducing 

principle, WLIP. 
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6.2. Future work 

Future work that could stem from the work presented in this thesis is as follows: 

0 An in-depth study into normalisation methods: is the use of normalising to 

total ion count acceptable? Are there any other endogenous metabolites that 

could be used which are not perturbed by illness or other factors? 

0 The statistical models presented within Chapters Three and Four should be 

studied in more depth. The sole use of external classification results does not 

give an in-depth view of the data; the number of variables that were used to 

develop each model should be assessed, along with their relative weightings. 
A further way of probing the variables detected is to quantify which variables 

are most persistent, not only for each model, but across all models. 

0 The refinement and development of data fusion techniques for the analysis of 

LC-MS data, and also for the inclusion of complementary NMR data is 

needed. However, LC-MS datasets cannot just be concatenated to NMR data 

as the data is different. Hierarchical analysis works by first generating PLS 

models for data which is the same, so there would be two different models for 

LC-MS and NMR data for example, and then compares the scores (linear 

combinations of the original data) from each developed model by PLS. This 

allows the comparison of two different types of data and should allow more in- 

depth metabonomic studies to be achieved where all of the data obtained 

from multiple platforms can be analysed both separately and together, 

hopefully giving a global metabolite profile. 

" The use of higher mass accuracy MS/MS and also NMR to elucidate the most 

important variables as produced by each of the developed models from both 

Chapters Three and Four. 

" The unexpectedly high levels of protein detected in the clinical urine samples 

should be investigated further. The data presented in Chapter Four should 

first be linked back to the original patient files to see if there is anything that 

can be correlated to an increase in the excretion of protein. Further simple 

tests could be carried out: for fracture patients admitted to accident and 

emergency, their levels of protein could be detected using a simple dip-stick 
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method. This would allow a comparison of the levels found within this study to 

other samples; it would be very interesting to see if there is a correlation, or if 

the clinical samples were unique in their protein concentrations. 

0 The study of urine samples from patients suffering a bone fracture should be 

re-designed as outlined in the conclusions/retrospective work from Chapter 

Four to obtain biofluids from patients at multiple, regularly spaced time points 

with the inclusion of more patients who suffered delayed fracture healing. It 

would also be interesting to analyse serum samples using metabonomics to 

see if the same conclusions can be drawn. 

0 The work presented in this thesis has prompted a joint study with Hull 

University into the metabonomic study of properly time-setted urine, serum, 

plasma, saliva and cancer cells from patients at various stages of colonic 

cancer. 

268 



References 



References 

Al-Dehaimi, A. W., A. Blumsohn and R. Eastell (1999). Clinical Chemistry 45(5): 
676-681. 

Albert Koulman. (2007). Rapid Communications in Mass Spectrometry 21(3): 421- 
428. 

Alpert, A. J. (1990). Joumal of Chromatography A 499: 177. 
Anderson, H., 0. N. Jensen, E. P. Moiseeva and E. F. Eriksen (2003). Joumal of Bone Mineral Research 18(2): 195-203. 
Antti, H., T. M. D. Ebbels, H. C. Keun, M. E. Bollard, 0. Beckonert, J. C. Lindon, 

J. K. Nicholson and E. Holmes (2004). Chemometrics Intelligent Laboratory 
Systems (73): 139-149. 

Asaba, Y., K. Hiramatsu, Y. Matsui, A. Harada, Y. Nimura, N. Katagiri, T. 
Kobayashi, T. Takewaka, M. Ito, S. Niida and K. Ikeda (2006). Bone 39(6): 
1276-1282. 

Ault, J. (2007). PhD. Thesis (University of York). 
Bajad, S., M. Coumar, R. Khajuria, 0. P. Suri and K. L. Bedi (2003). European 

Joumal of Pharmaceutical Sciences 19(5): 413-42 1. 
Bajad, S. and V. Shulaev (2007). Trends in Analytical Chemistry 26(6): 625-636. 
Bakhtiar, R., L. Ramos and L. Tse (2002). Journal of Liquid Chromatography and 

Related Technololgies 25(4): 507-540. 
Bales, J. R., D. P. Higham, 1. Howe, J. K. Nicholson and P. J. Sadler (1984). 

Clinical Chemistry 30(3): 426-432. 
Ballard, K. D. and SA. Gaskell (1993). Joumal of the American Society for Mass 

Spectrometry 4(6): 477-48 1. 
Balogh, M. P. (2004). Spectroscopy 19(10): 44-52. 
Bandu, M. L., T. Grubbs, M. Kater and H. Desaire (2006). International Joumal of 

Mass Spectrometry 251(l): 40-46. 
Barraft, J. and P. Topham (2007). Canadian Medical Association Joumal 177(4): 

361-368. 
Beattie, I., K. Joncour and K. Lawson (2005). Separation Science Redefined: 22- 

30. 
Becker, J. M., G. A. Caldwell and E. A. Zachgo (1996). Biotechnology (Second 

Edition). San Diego, Academic Press: 119-124. 
Behnam, K., S. S. Murray, J. P. Whitelegge and E. J. Brochmann (2002). Joumal 

of Orthopaedic Research (20): 1190-1196. 
Bensadek, D., F. Monigatti, J. A. J. Steen and H. Steen (2007). Intemational 

Joumal of Mass Spectrometry 268(2-3): 181-189. 
Berkel, G. J. v., K. G. Asano and P. D. Schnier (2001). Joumal of the American 

Society for Mass Spectrometry: 853-862. 
Bertram, H. C., C. Hoppe, B. 0. Petersen, J. Duus, C. M. lgaard and K. F. 

Michaelsen (2007). British Joumal of Nutrition 97(04): 758-767. 
Bischoff, R. and B. Barroso (2002). Recent Applications in LC-MS: 2-8. 
Bischoff-Ferrari, H. A. and B. Dawson-Hughes (2007). Bone 41(l, Supplement 1): 

S13-19. 
Bleakney, W. (1929). Physical Review 34: 157-160. 
Bock, K., C. Kohle, S. Helmut and L. Packer (2005). Methods in Enzymology, 

Academic Press. Volume 400: 57-75. 
Boeniger, M. F., L. K. Lowry and J. Rosenberg (1993). American Industrial 

Hygiene Association Joumal 54(10): 615-627. 
Bollard, M. E., E. Holmes, J. C. Lindon, S. C. Mitchell, D. Branstetter, W. Zhang 

and J. K. Nicholson (2001). Analytical Biochemistry 295(2): 194-202. 
Bollard, M. E., H. C. Keun, 0. Beckonert, T. M. D. Ebbels, H. Antti, A. W. 

Nicholls, J. P. Shockcor, G. H. Cantor, G. Stevens and J. C. Lindon 
(2005). Toxicology and Applied Pharmacology 204(2): 135-151. 

Bonfiglio, R., R. C. King, T. V. Olah and K. Merkle (1999). Rapid Communications 
in Mass Spectrometry 13: 1175-1185. 

269 



References 

Borth, W. (1992). Federation of American Societies for Experimental Biology 
Journal. 6(15): 3345-3353. 

Bradford, M. M. (1976). Analytical Biochemistry 72(1-2): 248-254. 
Brinkman, J. W., D. d. Zeeuw, J. J. Duker, R. T. Gansevoort, I. P. Kema, H. L. 

Hillege, P. E. d. Jong and S. J. L. Bakker (2005). Clinical Chemistry 51(11): 
2181-2182. 

Broadhurst, D. and D. Kell (2006). Metabolomics 2(4): 171-196. 
Brown, M., W. B. Dunn, D. 1. Ellis, R. Goodacre, J. Handl, J. D. Knowles, S. 

O'Hagan, 1. Spasic and D. B. Kell (2005). Metabolomics 1(1): 39-51. 
Bruce, S. J., P. Jonsson, H. Antti, 0. Cloarec, J. Trygg, S. L. Marklund and T. 

Moritz (2007). Analytical Biochemistry 372(2): 237-249. 
Bruckner, H., S. Haasmann, M. Langer, T. Westhauser, R. Wiftner and H. Godel 

(1994). Journal of Chromatography A 666(1-2): 259-273. 
Burton, K. I., J. R. Everett, M. J. Newman, F. S. Pullen, D. S. Richards and A. G. 

Swanson (1997). Journal of Pharmaceutical and Biomedical Analysis 15(12): 
1903-1912. 

Byles, M., M. Rantalainen, 0. Cloarec, J. K. Nicholson, E. Holmes and J. Trygg 
(2006). Journal of Chemometrics 20(8-10): 341-351. 

Byrd, G. D. and M. W. Ogden (2003). Journal of Mass Spectrometry(38): 98-107. 
Calvo, M. S., D. R. Eyre and C. M. Gundberg (1996). Endocrine Reviews(l 7): 333- 

368. 
Castro-Perez, J. M (2007). Drug Discovery Today 12(5-6): 249-256. 
Chambers, E., D. M. Wagrowski-Diehl, Z. Lu and J. R. Mazzeo (2007). Journal of 

Chromatography B 852(1-2): 22-34. 
Chang, D., C. D. Banack and S. L. Shah (2007). Journal of Magnetic Resonance 

187(2): 288-292. 
Chapurlat, R. D., P. Garnero, G. Brart, P. J. Meunier and P. D. Delmas (2000). 

Bone 27(2): 283-286. 
Chen, C., F. J. Gonzalez and J. R. Idle (2007). Drug Metabolism Reviews 39(2): 

581 -597. 
Chen, H. s., T. Rejtar, V. Andreev, E. Moskovets and B. L. Karger (2005). 

Analytical Chemistry 77(8): 2323-2331. 
Chen, M. and R. Hofestadt (2005). J Biomedical Informatics 38(3): 173-175. 
Chin-A-Woeng, T. F. C., G. V. Bloemberg, 1. H. M. Mulders, L. C. Dekkers and B. 

J. J. Lugtenberg (2000). Molecular Plant-Microbe Interactions 13(12): 1340- 
1345. 

Chin-A-Woeng, T. F. C., G.. V. Bloemberg, A. J. van der Bij, K. M. G. M. van der 
Drift, J. Schripsema, B. Kroon, R. J. Scheffer, C. Keel, P. A. H. M. Bakker, 
H. -V. Tichy, F. J. de Bruijn, J. E. Thomas-Oates and B. J. J. Lugtenberg 
(1998). Molecular Plant-Microbe Interactions 11 (11): 1069-1077. 

Chrambach, A., R. A. Reisfeld, M. Wyckoff and J. Zaccari (1967). Analytical 
Biochemistry 20(l): 150-154. 

Christian, M. T. and A. R. Watson (2004). Current Paediatrics 14(7): 547-555. 
Churchwell, M. I., N. C. Twaddle, L. R. Meeker and D. R. Doerge (2005). Journal 

of Chromatography B 825(2): 134-143. 
Churms, S. C. (1996). Journal of Chromatography A(720): 75-91. 
Compton, S. J. and C. G. Jones (1985). Analytical Biochemistry 151(2): 369-374. 
Constantinou, M. A., E. Papakonstantinou, M. Spraul, S. Sevastiadou, C. 

Costalos, M. A. Koupparis, K. Shulpis, A. Tsantili-Kakoulidou and E. 
Mikros (2005). Analytica Chimica Acta 542(2): 169-177. 

Constanzer, M. L., C. M. Chavez-Eng, 1. Fu, E. J. Woolf and B. K. Matuszewski 
(2004). Journal of Chromatography B. 807(2): 243-250. 

Coraiola, M., P. Lo Cantore, S. Lazzaroni, A. Evidente, N. S. lacobellis and M. 
Dalla Serra (2006). Biochimica et Biophysica Acta (BBA) - Biomembranes 
1758(11): 1713-1722. 

270 



References 

Cordero, M. M., J. J. Houser and C. Wesdemiotis (1993). Analytical Chemistry 
65(11): 1594-1601. 

Creaser, C. S. and J. W. Stygall (1998). Trends Analytical Chemistry 17(10): 583- 
592. 

Crockford, D. J., J. C. Lindon, 0. Cloarec, R. S. Plumb, S. J. Bruce, S. Zirah, P. 
Rainville, C. L. Stumpf, K. Johnson, E. Holmes and J. K. Nicholson 
(2006). Analytical Chemistry 78: 4398-4408. 

Davis, R. A., A. J. Charlton, J. Godward, S. A. Jones, M. Harrison and J. C. 
Wilson (2007). Chemometrics and Intelligent Laboratory Systems 85(1): 144- 
154. 

Dawson, P. H. and C. Lambert (1975). International Journal of Mass Spectrometry 
and Ion Physics (16): 269-280. 

de Bruijn, I., M. J. D. de Kock, M. Yang, P. de Waard, T. A. van Beek and J. M. 
Raaijmakers (2007). Molecular Microbiology 63(2): 417-428. 

DeGaudio, A., R. Spina, A. DiFilippo and M. Feri (1999). Critical Care in Medicine 
27(10): 2105-2108. 

DeLaurier, A., B. Jackson, D. Pfeiffer, K. Ingham, M. A. Horton and J. S. Price 
(2004). Research in Vetinary Science(77): 29-39. 

Dempster, A. J. (1921). Physical Review 18(6): 415-422. 
Desai, J. D. and I. M. Banat (1997). Microbiology and Molecular Biology Reviews 

61(1): 47-64. 
Dettmer, K., P. A. Aronov and B. D. Hammock (2007). Mass Spectrometry 

Reviews 26(1): 51-78. 
Dihazi, H. and G. A. Muller (2007). Expert Review of Proteomics 4(1): 39-50. 
Dimitriou, R., E. Tsiridis and P. V. Giannoudis (2005). Injury 36(12): 1392-1404. 
Doblare, M., J. M. Garcia and M. J. Gomez (2004). Engineering and Fracture 

Mechanics(71): 1809-1840. 
Dole, M., L. L. Mach, R. L. Hines, R. C. Mobley, L. D. Ferguson and M. B. Alice 

(1968). Journal of Chemical Physics(49): 2240-2247. 
Drexler, D. M., J. H. M. Feyen and M. Sanders (2004). Drug Discov Today 1(1): 17- 

23. 
Dunckley, T., K. D. Coon and D. A. Stephan (2005). Drug Discovery Today. 10: 

326-334. 
Dunn, W. B. and D. I. Ellis (2005). Trends Analytical Chemistry(24): 285-294. 
Ebeling, P. R. and K. Akesson (2001). Best Practices in Research in Clinical 

Rheumatology 15(3): 385-400. 
Edwards, E. (2007). PhD. Thesis (University of York). 
Einhorn, T. A. (2005). Journal of Orthopaedic Trauma 19(10): 4-6. 
EI-Faramawy, A., K. W. M. Siu and B. A. Thomson (2005). Journal of the American 

Society for Mass Spectrometry(16): 1702-1707. 
Eyre, D. R. (1996). Biochemistryical Basis of Collagen Metabolites and Bone 

Turnover Markers. Principles of Bone Biology, Academic Press. 
Felitsyn, N. M., G. N. Henderson, M. O. James and P. W. Stacpoole (2004). 

Clinica Chimica Acta(350): 219-230. 
Feng, W. Y., S. Gronert, K. A. Fletcher, A. Warres and C. B. Lebrilla (2003). 

International Journal of Mass Spectrometry 222(1-3): 117-134. 
Fenn, J. B., M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse (1989). 

Science(246): 64-71. 
Fiehn, 0., J. Kopka, P. Dörmann, T. Altmann, R. N. Trethewey and L. Willmitzer 

(2000). Nature - Biotechnology(18): 1157-1161. 
Fiehn, 0., D. Robertson, J. Griffin, M. van der Werf, B. Nikolau, N. Morrison, L. 

Sumner, R. Goodacre, N. Hardy, C. Taylor, J. Fostel, B. Kristal, R. 
Kaddurah-Daouk, P. Mendes, B. van Ommen, J. Lindon and S. -A. 
Sansone (2007). Metabolomics 3(3): 175-178. 

271 



References 

Finch, J. L., A. J. Brown and E. Slatopolsky (1999). Journal of the American 
Society for Nephrology(l 0): 980-985. 

Finch, J. L., A. S. Dusso, T. Pavlopoulos and E. A. Slatopolsky (2001). Journal of 
the American Society for Nephrology(l 2): 1468-1474. 

Fisher, M. C., C. Meyer, G. Garber and C. N. Dealy (2005). Bone 37: 741-750. 
Fledelius, C., A. H. Johnsen, P. A. C. Cloos, M. Bonde and P. Qvist (1997). 

Journal of Biological Chemistry 272(15): 9755-9763. 
Fligge, T. A., K. Bruns and M. Przybylski (1998). Journal of Chromatography 

B(7 06): 91 -10 0. 
Fong, K. W. Y. and T. W. D. Chan (1999). Journal of the American Society for Mass 

Spectrometry(l 0): 72-75. 
Forbes, M. W., M. Sharifi, T. Croley, Z. Lausevic and R. E. March (1999). Journal 

of Mass Spectrometry(34): 1219-1239. 
Forina, M., S. Lanteri and M. Casale (2007). Journal of Chromatography A 1158(1 - 2): 61-93. 
Forshed, J., H. ldborg and S. P. Jacobsson (2007a). Chemometrics and Intelligent 

Laboratory Systems 85(l): 102-109. 
Forshed, J., R. Stolt, H. ldborg and S. P. Jacobsson (2007b). Chemometrics and 

Intelligent Laboratory Systems 85(2): 179-185. 
Fridman, E. and E. Pichersky (2005). Current Opinions in Chemical Biology(8): 

242-248. 
Fura, A., T. W. Harper, H. Zhang, L. Fung and W. C. Shy (2003). Journal of 

Pharmacological and Biomedical Analysis(32): 513-522. 
Garnero, P. and P. D. Delmas (2003). Bone 32(l): 20-26. 
Gavaghan, C. L., J. K. Nicholson, S. C. Connor, 1. D. Wilson, B. Wright and E. 

Holmes (2001). Analytical Chemistry 291(2): 245-252. 
Geeraerts, F., L. Schimpfessel and R. Crokaert (1978). Journal of 

Chromatography A(l 45): 63-71. 
George, S. K., M. T. Dipu, U. R. Mehra, P. Singh, A. K. Verma and J. S. 

Ramgaokar (2006). Journal of Chromatography B 832: 134-137. 
Gika, H. G., G. A. Theodoridis, J. E. Wingate and 1. D. Wilson (2007). Journal of 

Proteome Research6(8): 3291-3303. 
Gill, S., M. Pop, R. DeBoy, P. Eckburg, PTurnbaugh, B. Samuel, J. Gordon, D. 

Reiman, C. Fraser-Liggett and K. Nelson (2006). Science 312(5778): 1355- 
1359. 

Gonzalez-Buitrago, J. M., L. Ferreira and 1. Lorenzo (2007). Clinica Chimica Acta 
375(1-2): 49-56. 

Goodacre, R. (2007). Journal of Nutrition 137(l): 259S-266. 
Gottfries, J., M. Sjogren, B. Holmberg, L. Rosengren, P. Davidsson and K. 

Blennow (2004). Chemometrics and Intelligent Lab Systems(73): 47-53. 
Grazioli, V., E. Casari, M. Murone and P. A. Bonini (1993). Journal of 

Chromatography A(615): 59-66. 
Grese, R. P., R. L. Cerny and M. L. Gross (1989). Journal of the American 

Chemical Societyl 11(8): 2835-2842. 
Griffin, J. L. (2006). Philisophical Transactions B361: 147-161. 
Griffin, J. L. and M. E. Bollard (2004). Current Drug Metabolism 5(5): 389-398. 
Gritti, F. and G. Guiochon (2006). Journal of Chromatography A 1136(2): 192-201. 
Gross, H., V. 0. Stockwell, M. D. Henkels, B. Nowak-Thompson, J. E. Loper and 

W. H. Gerwick (2007). Chemistry & Biology 14(l): 53-63. 
Gu, H., H. Chen, Z. Pan, A. U. Jackson, N. Talaty, B. Xi, C. Kissinger, C. Duda, D. 

Mann, D. Raftery and R. G. Cooks (2007). Analytical Chemistry 79(l): 89- 
97. 

Gullberg, J., P. Jonsson, A. Nordstrom, M. Sjostrom and T. Moritz (2004). 
Analytical Biochemistry 331(2): 283-295. 

Guneral, F. and C. Bachmann (1994). Clinical Chemistry 40(6): 862-866. 

272 



References 

Haas, D. and G. Defago (2005). Nature - Review of Microbiology3: 307-319. 
Hamer, I., J. P. Paccaud, D. Belin, C. Maeder and J. L. Carpentier (1998). 

Biochemistry. J. 329(l): 183-190. 
Handl, J., J. Knowles and D. B. Kell (2005). Bioinformatics 21(15): 3201-3212, 
Heavner, D. L., W. T. Morgan, S. B. Sears, J. D. Richardson, G. D. Byrd and M. 

W. Ogden (2006). Journal of Pharmaceutical and Biomedical Analysis 40(4): 
928-942. 

Heer, M., N. Baecker, C. Mika, A. Boese and R. Gerzer (2005). Acta Astronautica 
56(9-12): 801-808. 

Heerma, W., J. Boon, C. Versluis, J. Kruijtzer, L. Hofmeyer and R. Liskamp 
(1997). Journal of Mass Spectrometry 32(7): 697-704. 

Heerma, W. and W. Kulik (1988). Biological Mass Spectrometry 16(1-12): 155-159. 
Heldon, S., J. Cals, F. Kessels, P. Brink, G. J. Dinant and P. Geusens (2006). 

Osteoporosis Internationall7: 348-354. 
Hemstrdm, P. and K. Irgurn (2006). Journal of Separation Science 29(12): 1784- 

1821. 
Henle, P., G. Zimmermann and S. Weiss (2005). Bone 37(6): 791-798. 
Herrmann, M., D. Klitscher, T. Georg, J. Frank, 1. Marzi and W. Herrmann (2002). 

Clinical Chemistry 48(12): 2263-2266. 
Hilliard, L. M., T. M. Osicka, S. P. Clavant, P. J. Robinson, D. J. Nikolic-Paterson 

and W. D. Comper (2006). Journal of Laboratory and Clinical Medicine 
147(l): 36-44. 

Hodson, M. P., G. J. Dear, A. D. Roberts, C. L. Haylock, R. J. Ball, R. S. Plumb, 
C. L. Stumpf, J. L. Griffin and J. N. Haselden (2007). Analytical 
Biochemistry 362(2): 182-192. 

Hofmann, U., M. Schwab, S. Seefried, C. Marx, U. M. Zanger, M. Eichelbaum and 
T. E. Murdter (2003). Joumal of Chromatography B 791(1-2): 371-380. 

Hogendoorn, E., P. v. Zoonen and F. Hernandez (2003). Recent Applications in 
Multidimensional Chromatography: 2-9. 

Hopfgartner, G. and E. Varesio (2005). Trends Analytical Chemistry 24(7): 583- 
589. 

Hotelling, H. (1933). Journal of Educational Psychology 24: 417-441. 
Hu, J., K. R. Coombes, J. S. Morris and K. A. Baggerly (2005). Brief in Functional 

Genomics and Proteomics 3(4): 322-331. 
Huebner, J. L. and V. B. Kraus (2006). Osteoarthritis and Cartilage 14: 923-930. 
Hulme, A. N., H. McNab, D. A. Peggie and A. Quye (2005). Phytochemistry 66(23): 

2766. 
Huskovii, R., P. Chrastina, T. Adam and P. Schneiderka (2004). Clinica Chimica 

Acta(350): 99-106. 
ladarola, P., G. Cetta, M. Luisetti, L. Annovazzi, B. Casado, J. Baraniuk, C. 

Zanone and S. Vigilo (2005). Electrophoresis(26): 1-15. 
Idborg, H., P. Edlund and S. P. Jacobsson (2004). Rapid Communications in Mass 

Spectrometry 18: 944-954. 
Idborg, H., L. Zamani, P. Edlund, 1. Schuppe-Koistinen and S. Jacobsson 

(2005a). Journal of Chromatography B 828(1-2): 9-13. 
Idborg, H., L. Zamani, P. Edlund, 1. Schuppe-Koistinen and S. P. Jacobsson 

(2005b). Journal of Chromatography B(828): 14-20. 
Igarashi, A. and M. Yamaguchi (2001). International Journal of Molecular 

Medicine(8): 433-438. 
Igarashi, A. and M. Yamaguchi (2002). International Journal of Molecular 

Medicine(9): 503-508. 
Ikegami, T. and N. Tanaka (2004). Current Opinions in Chemical Biology(8): 527- 

533. 
Iribarne, J. V. and B. A. Thomson (1976). Journal of Chemical Physics(64): 2287- 

2294. 

273 



References 

Ishizuka, N., H. Kobayashi, H. Minakuchi, K. Nakanishi, K. Hirao, K. Hosoya, T. 
lkegami and K. Tanaka (2002). Journal of Chromatography A 960: 85-96. 

lzquierdo, P., M. Roses and E. Bosch (2006). Joumal of Chromatography A 1107: 
96-103. 

Jennings, K. R. (1968). International Journal or Mass Spectrometry and Ion Physics 
1(3): 227-235. 

Jiang, C. and L. Luo (2004). Analytica Chimica Acta 506(2): 171-175. 
Jiang, H., J. Jiang, P. Hu and Y. Hu (2002). Journal of Chromatography B: 

Analytical Technologies in the Biomedical and Life Sciences 769(l): 169-176. 
Johnson, R. S., S. A. Martin and K. Biemann (1988). International Journal of Mass 

Spectrometry and Ion Processes 86: 137-154. 
Johnson, R. S., S. A. Martin, K. Biemann, J. T. Stults and J. T. Watson (1987). 

Analytical Chemistry 59(21): 2621-2625. 
Jokiranta, T. S., A. Solomon, M. K. Pangburn, P. F. Zipfel and S. Meri (1999). 

Journal of Immunology 163(8): 4590-4596. 
Jones, A. W. and L. Karlsson (2005). Human & Experimental Toxicology24: 615- 

622. 
Jones, C. B. (2005). Journal of Orthopaedic Trauma 19(10): 1-3. 
Jonscher, K. R. and J. R. Yates (1997). Analytical Biochemistry(244): 1-15. 
Jordan, A. (1994). Contraception 49(3): 189-201. 
Juraschek, R., T. Dulcks and M. Karas (1999). Journal of the American Society for 

Mass Spectrometry(10): 300-308. 
Kakonen, S., J. Hellman, M. Karp, P. Laaksonen, K. J. Obrant, H. K. Vaananen, 

T. Lovgren and K. Pettersson (2000). Clinical Chemistry 46(3): 332-337. 
Karas, M., D. Bachmann, U. Bahr and F. Hillenkamp (1987). Intemational Journal 

of Mass Spectrometry and Ion Processes(78): 53-68. 
Katajamaa, M. and M. Oresic (2005). BMC Bioinformatics(6): 179-186. 
Katajamaa, M. and M. Oresic (2007). Joumal of Chromatography A 1158(1-2): 318- 

325. 
Katja Dettmer, P. A. A. B. D. H. (2007). Mass Spectrometry Reviews 26(l): 51-78. 
Kato, A., E. G. Seo, T. A. Einhorn, J. E. Bishop and A. W. Norman (1998). Bone 

23(2): 141-146. 
Kazmi, S. A., S. Ghosh, D. Shin, D. W. Hill and D. F. Grant (2006). Metabolomics 

2(2): 75-83. 
Kell, D. B. (2004). Current Opinions in Microbiology(7): 296-307. 
Kell, D. B. (2007). Expert Review of Molecular Diagnostics 7(4): 329-333. 
Kenney, B. and J. P. Shockcor (2003). PharmaGenomics. November/December: 

56-63. 
Kenny, P., K. Nomoto and R. Orlando (1992). Rapid Communications in Mass 

Spectrometry 6(2): 95-97. 
Kettaneh, N., A. Berglund and S. Wold (2005). Computational Statistics & Data 

Analysis 48(l): 69-85. 
Keun, H. C. (2005). Pharmacology and Therapeutics 109(1-2): 92-106. 
Kind, T., V. Tolstikov, 0. Fiehn and R. H. Weiss (2007). Analytical Biochemistry 

363(2): 185-195. 
King, R., R. Bonfiglio, C. Fernandez-Metzler, C. Miller-Stein and T. Olah (2000). 

Journal of the American Society for Mass Spectrometry(l 1): 942-950. 
Kluge, H. J. and G. Bollen (1992). Nuclear Instruments and Methods(70): 473-481. 
Knott, L. and A. J. Bailey (1998). Bone 22(3): 181-187. 
Kochhar, S., D. M. Jacobs, Z. Ramadan, F. Berruex, A. Feurholz and L. B. Fay 

(2006). Analytical Biochemistry 352(2): 274-281. 
Kopka, J. (2006). Joumal of Biotechnology124: 312-322. 
Koppenaal, D. W., C. J. Barinaga, M. B. Denton, R. P. Sperline, G. M. Heiftje, G. 

D. Schilling, F. J. Andrade and J. H. Barnes (2005). Analytical 
Chemistry(l): 419-427. 

274 



References 

Korner, R., M. Wilm, K. Morand, M. Schubert and M. Mann (1996). Journal of the 
American Society for Mass Spectrometry(7): 150-156. 

Kuiper, I., E. L. Lagendijk, G. V. Bloemberg and B. J. J. Lugtenberg (2004a). 
Molecular Plant-Microbe Interactions 17(l): 6-15. 

Kuiper, I., E. L. Lagendijk, R. Pickford, J. P. Derrick, G. E. M. Lamers, J. E. 
Thomas-Oates, B. J. J. Lugtenberg and G. V. Bloemberg (2004b). 
Molecular Microbiology 51(l): 97-113. 

Kulik, W. and W. Heerma (1991). Biological Mass Spectrometry 20: 553-559. 
Lafontaine, M., C. Champmartin, P. Simon, P. Delsaut and C. Funck-Brentano 

(2006). Toxiology Letters 162(2): 181-185. 
Lahoz, C., R. Pefia, J. Mostaza, J. Jim6nez, E. Subirats, X. Pint6, M. Taboada 

and A. L6pez-Pastor (2003). Atherosclerosis 168(2): 289-295. 
Lamers, R., J. v. Nesselrooij, V. B. Kraus, J. M. Jordan, J. B. Renner, A. D. 

Dragomir, G. Luta, J. v. d. Greef and J. DeGroot (2005). Osteoarthritis and 
Cartilage 7: 56-62. 

Lauridsen, M., S. H. Hansen, J. W. Jaroszewski and C. Cornett (2007). Analytical 
Chemistry 79(3): 1181-1186. 

LeBeau, M. A., M. L. Miller and B. Levine (2001). Forensic Science 
International(l 19): 161-167. 

Lee, S. H., S. 0. Kim and B. C. Chung (1998). Journal of Chromatography B: 
Biomedical Sciences and Applications 719(1-2): 1-7. 

Lenz, E., J. Bright, R. Knight, 1. Wilson and H. Major (2004). Analyst 129: 535- 
541. 

Lenz, E. M., R. E. Williams, J. Sidaway, B. W. Smith, R. S. Plumb, K. A. Johnson, 
P. Rainville, J. Shockcor, C. L. Stumpf, J. H. Granger and 1. D. Wilson 
(2007). Journal of Pharmaceutical and Biomedical Analysis 44(4): 845-852. 

Lenz, E. M. and 1. D. Wilson (2007). Journal of Proteome Research6(2): 443-458. 
Lenz, E. M., 1. D. Wilson, J. A. Timbrell and J. K. Nicholson (2000). Biomarkers 

5(6): 424-435. 
Leu, C., E. Luegmayr, L. P. Freedman, G. A. Rodan and A. A. Reszka (2006). 

Bone 38: 628-636. 
Levsen, K., H. -M. Schiebel, B. Behnke, R. Dotzer, W. Dreher, M. Elend and H. 

Thiele (2005). Journal of Chromatography A 1067(1-2): 55-72. 
Li, X., R. J. Quigg, J. Zhou, J. T. Ryaby and H. Wang (2005). Journal of Cell 

Biochemistry (95): 189-205. 
Liebich, H. M., A. Pickert and J. Woll (1981). Journal of Chromatography 217: 255- 

262. 
Lin, T., A. H. Payne and G. L. Glish (2001). Journal of the American Society for 

Mass Spectrometry 12(5): 497-504. 
Lindon, J. C., E. Holmes, M. E. Bollard, E. G. Stanley and J. K. Nicholson (2004). 

Biomarkers 9(1): 1-31. 
Lindon, J. C., J. K. Nicholson, J. C. Lindon and J. K. Nicholson TrAC Trends in 

Analytical Chemistry In Press, Accepted Manuscript: 246. 
Lofman, 0., P. Magnusson, G. Toss and L. Larsson (2005). Clinica Chimica 

Acta(356): 67-75. 
Lopes-Virella, M., G. Virella, M. Debeukelaer, C. J. Owens and J. A. Colwell 

(1979). Clinica Chimica Acta 940): 73-81. 
Lu, G., J. Wang, X. Zhao, H. Kong and G. Xu (2006). Chinese J Chromatgraphy 

24(2): 109-113. 
Lugtenberg, B., A. deWeger and B. Schippers (1994). BCPC Monograph 57: 293- 

302. 
Lutz, U., R. W. Lutz and W. K. Lutz (2006). Analytical Chemistry 78: 4564-4571. 
Mamyrin, B. A. (2001). International Journal of Mass Spectrometry(206): 251-266. 

275 



References 

Mandelin, J., M. Hukkanen, T. Li, M. Korhonen, M. Liljestrom, T. Sillat, R. 
Hanemaaijer, J. Salo, S. Santavirta and Y. T. Konttinen (2005). Bone 
38(6): 769-777. 

Mann, M. and M. Wilm (1995). Trends in Biochemical Sciences (20): 219-224. 
Marahiel, M. A., T. Stachelhaus and H. D. MOOtz (1997). Chemical Reviews 97(7): 

2651-2674. 
Matsumoto, 1. and T. Kuhara (1996). Mass Spectrometry Reviews (15): 43-57. 
Mawhinney, D. B., E. 1. Hamelin, R. Fraser, S. S. Silva, A. J. Pavlopoulos and R. 

J. Kobelski (2007). Joumal of Chromatography B 852(1-2): 235. 
McLafferty, F. (1968). Journal of the American Chemical SocietY90(17): 4745-4746. 
Metabolornics volume 3 (2007). Metabolomics 3(3): 175-256. 
Miller, M. G. (2007). Journal of Proteome Research6(2): 540-545. 
Miller, P. D. (2005). Current Osteoporosis Reports (3): 103-110. 
Minakuchi, H., K. Nakanishi, N. Soga, N. Ishizuka and K. Tanaka (1997). Joumal 

of Chromatography A 762: 135-146. 
Minakuchi, H., K. Nakanishi, N. Soga, N. Ishizuka and K. Tanaka (1998). Joumal 

of Chromatography A 797: 121-131. 
Minakuchi, H., K. Nakanishi, N. Soga, N. Ishizuka and N. Tanaka (1996). 

Analytical Chemistry 68: 3498-3501. 
Minshull, J., J. E. Ness, C. Gustafsson and S. Govindarajan (2005). Current 

Opinions in Chemical Biology(9): 202-209. 
Monton, M. R. N. and T. Soga (2007). Journal of Chromatography A 1168(1-2): 237- 

246. 
Moravcova, D., P. Jandera, J. Urban and J. Planeta (2004). Journal of Separation 

Science 27: 789-800. 
Moro, L., C. Modricky, N. Stagni, F. Vittur and B. d. Bernard (1984). Analyst 109: 

1621-1622. 
Mukherjee, A. K. Letters in Applied Microbiology 45(3): 330-335. 
Mukhopadhyay, R. (2006). Analytical Chemistry: 4255-4259. 
Munson, M. and F. Field (1966). Journal of the American Chemical Society88: 

2621-2629. 
Nancollas, G. H., R. Tang, R. J. Phipps, Z. Henneman, S. Guide, W. Wu, A. 

Mangood, R. G. G. Russell and F. H. Ebetino (2006). Bone 38: 617-627. 
Need, A. G. (2006). Clinica Chimica Acta 368: 48-52. 
Newman, D. J., M. J. Pugia, J. A. Lott, J. F. Wallace and A. M. Hiar (2000). Clinica 

Chimica Acta 294(1-2): 139-155. 
Newton, K. A. and S. A. McLuckey (2004). Joumal of the American Society for 

Mass Spectrometry 15(4): 607-615. 
Ngai, H. H. Y., W. H. Sit, P. P. Jiang, V. Thongboonkerd and J. M. F. Wan (2007). 

Journal of Proteome Research6(8): 3313-3320. 
Nicholson, J., J. Conelly and E. Holmes (2002). Nature Reviews - Drug Discovery 

1(2): 153-161. 
Nicholson, J., E. Holmes, J. Lindon and 1. Wilson (2004). Nature - Biotechnology 

22(10): 1268-1274. 
Nicholson, J., E. Holmes and 1. Wilson (2005). Nature Reviews - Microbiology 3(5): 

431-438. 
Nicholson, J. K., J. C. Lindon and E. Holmes (1999). Xenobiotica 29(11): 1181- 

1189. 
Nicholson, J. K. and 1. D. Wilson (2003). Nature Reviews - Drug Discovery 2(8): 

668-676. 
Nielsen, J. and S. Oliver (2005). Trends in Biotechnology 23(11): 544-546. 
Nielsen, T. H., D. Sorensen, C. Tobiasen, J. B. Andersen, C. Christophersen, M. 

Givskov and J. Sorensen (2002). Applied Environmental Microbiology 68(7): 
3416-3423. 

276 



References 

Nielsen, T. H., C. Thrane, C. Christophersen, U. Anthoni and J. Sorensen (2000). 
Journal of Applied Microbiology 89(6): 992-1001. 

Niemela, 0. (2007). Clinica Chimica Acta 377(1-2): 39. 
Nier, A. (1947). Reviews of Scientific Instrumentation 18: 398-411. 
Niessen, W. M. A. (2003). Journal of Chromatography A 1000: 413-436. 
Nordstrom, A., G. O'Maille, C. Qin and G. Siuzdak (2006). Analytical Chemistry 78: 

3289-3295. 
Nork, S. E. (2005). Journal of Orthopaedic Trauma 19(10): 7-9. 
Nourse, B. D. and R. G. Cooks (1990). Analytica Chimica Acta (228): 1-21. 
Obrant, K. J., K. K. lvaska, P. Gerdhem, S. L. Alatalo, K. Pettersson and H. K. 

Vaananen (2005). Bone(36): 786-792. 
Oldiges, M., S. LUtz, S. Pflug, K. Schroer, N. Stein and C. Wiendahl (2007). 

Applied Microbiology and Biotechnology 76(3): 495-511. 
Oliver, S. G., M. K. Winson, D. B. Kell and D. B. Baganz (1998). Trends in 

Biotechnology (16): 373-378. 
Pan, Z., H. Gu, N. Talaty, H. Chen, N. Shanaiah, B. Hainline, R. Cooks and D. 

Raftery (2007). Analytical and Bioanalytical Chemistry 387(2): 539-549. 
Papale, M., M. C. Pedicillo, B. J. Thatcher, S. Di Paolo, L. L. Muzio, P. Bufo, M. 

T. Rocchetti, M. Centra, E. Ranieri and L. Gesualdo Journal of 
Chromatography B 856(1-2): 205-213. 

Pappin, D., P. Hojrup and A. Bleasby (1993). Current Biology 3(6): 327-332. 
Pascual, M., G. Steiger, S. Sadallah, J. P. Paccaud, J. L. Carpentier, R. James 

and J. A. Schifferli (1994). Journal of Experimental Medicine 179(3): 889- 
899. 

Paul, W. and H. Steinwedel (1953). Naturforsch(8a): 448-451. 
Pauling, L., A. B. Robinson, R. Teranishi and P. Cary (1971). Proceedings of the 

National Academy of Sciences 68(10): 2374-2376. 
Pearson, K. (1901). Philosophy Magazine 2(11): 559-572. 
Penkman, K. (2005). Ph. D. Thesis (University of Newcastle). 
Perkins, D., D. Pappin, D. Creasy and J. Cottrell (1999). Electrophoresis 20(18): 

3551-3567. 
Pham-Tuan, H., L. Kaskavelis, C. A. Daykin and H. -G. Janssen (2003). Journal of 

Chromatography B 789(2): 283-301. 
Pisitkun, T., R. Johnstone and M. A. Knepper (2006). Molecular Cell Proteornics 

5(10): 1760-1771. 
Pizzolato, T. M., M. J. L. de Alda and D. Barcelo (2007). TrAC Trends in Analytical 

Chemistry 26(6): 609-624. 
Plumb, R. S., J. H. Granger, C. L. Stumpf, K. A. Johnson, B. W. Smith, S. 

Gaulitz, 1. D. Wilson and J. Castro-Perez (2005). Analyst(l 30): 844-849. 
Plumb, R. S., C. L. Stumpf, J. H. Granger, J. Castro-Perez, J. H. Haselden and G. 

J. Dear (2003). Rapid Communications in Mass Spectrometry 17: 2632-2638. 
Politi, L., L. Morini, A. Groppi, V. Poloni, F. Pozzi and A. Polettini (2005). Rapid 

Communications in Mass Spectrometry(l 9): 1321-133 1. 
Premstaller, A., H. Oberacher, W. Walcher, A. M. Timperio, L. Zolla, J. P. 

Chervet, N. Cavusoglu, A. van Dorsselaer and C. G. Huber (2001). 
Analytical Chemistry 73(11): 2390-2396. 

. 
Price, K. E., S. S. Vandaveer, C. E. Lunte and C. K. Larive (2005). Journal of 

Pharmacological and Biomedical Analysis 38(5): 904-909. 
Ptak, M., A. Heitz, M. Guinand and G. Michel (1980). Biochemistryical and 

Biophysical Research Communications 94(4): 1311-1318. 
Qvist, P., S. Christgau, B. J. Pedersen, A. Schlemmer and C. Christiansen 

(2002). Bone 31(l): 57-61. 
Rainville, P. D., C. L. Stumpf, J. P. Shockcor, R. S. Plumb and J. K. Nicholson 

(2007). Journal of Proteome Research6(2): 552-558. 

277 



References 

Ramadan, Z., D. Jacobs, M. Grigorov and S. Kochhar (2006). Talanta 68(5): 
1683-1691. 

Ramsay, S. L., P. J. Meikle, J. J. Hopwood and P. R. Clements (2005). Analytical 
Biochemistry(345): 30-46. 

Rassi, Z. E. (1996). Journal of Chromatography A(720): 93-118. 
Rezzi, S., Z. Ramadan, L. B. Fay and S. Kochhar (2007a). Journal of Proteome 

Research6(2): 513-525. 
Rezzi, S., Z. Ramadan, F. P. J. Martin, L. B. Fay, P. vanBladeren, J. C. Lindon, J. 

K. Nicholson and S. Kochhar (2007b). Journal of Proteome Research6(1 1): 
4469-4477. 

Robertson, D. G., M. D. Reily and J. D. Baker (2007). Journal of Proteome 
Research6(2): 526-539. 

Robertson, D. G., M. D. Reily, R. E. Sigler, D. F. Wells, D. A. Paterson and T. K. 
Braden (2000). Toxicological Sciences 57(2): 326-337. 

Robins, S. P. (1995). Acta Orthopaedica Scandanavica, (66): 171-175. 
Robinson, P. and M. MacDonell (2004). Environmental Toxicology 

Pharmacology(l 8): 201-213. 
Rodrigues, J. (2005). PhD. Thesis (University of York). 
Roepstorff, P. and J. Fohlman (1984). Biological Mass Spectrometry 11(l 1): 601- 

601. 
Roy, S. M., M. Anderle, H. Lin and C. H. Becker (2004). International Journal of 

Mass Spectrometry(238): 163-171. 
Rubinacci, A., R. Melzi, M. Zampino, A. Soldarini and 1. Villa (1999). Clinical 

Chemistry 45(9): 1510-1516. 
Bonfiglio, R., T. Olah, R. King and K Merkle (1999). Rapid Communications in 

Mass Spectrometry 13(12): 1175-1185. 
Ryan, D. and K. Robards (2006). Analytical Chemistry 78(23): 7954-7958. 
Ryu, H., H. D. Rosas, S. M. Hersch and R. J. Ferrante (2005). Pharmacology and 

Therapeutics(108): 193-207. 
Samuelson, 0. and E. Sjdstrdm (1952). Sven. Kem. Tidskr. 
Sanchez-Ponce, R. and F. P. Guengerich (2007). Analytical Chemistry 79(9): 3355- 

3362. 
Sanders, B. D., R. L. Slotcavage, D. L. Scheerbaum, C. J. Kochansky and T. G. 

Strein (2005). Analytical Chemistry 77(8): 2332-2337. 
Sangster, T., H. Major, R. Plumb, A. Wilson and 1. Wilson (2006). The 

Analyst(l 31): 1075-1078. 
Sangster, T. P., J. E. Wingate, L. Burton, F. Teichert and 1. D. Wilson (2007). 

Rapid Communications in Mass Spectrometry 21(18): 2965-2970. 
Sansone, S., T. Fan, R. Goodacre, J. L. Griffin, N. W. Hard, R. Kaddurah-Daouk, 

B. S. Kristal, J. Lindon, P. Mendes, N. Morrison, B. Nikolau, D. 
Robertson, L. W. Sumner, C. Taylor, M. v. d. Werf, B. v. Ornmen and 0. 
Fiehn (2007). Nature - Biotechnology 25(8): 846-848. 

Sarti, A., A. DeGaudio, A. Messineo, M. Cuttini and A. Ventura (2001). Critical 
Care in Medicine 29(8): 1626-1629. 

Satoh, T., H. Tsuno, M lanaga and Y. Kammei (2005). Journal of the American 
Society for Mass Spectrometry(l 6): 1969-1975. 

Saude, E. J. and B. D. Sykes (2007). Metabolomics 3(l): 19-27. 
Schmidt, C. W. (2004). Environmental Health Perspectives 112(7): 411-415. 
Schneider, U., E. A. Schober, N. A. Streich and S. J. Breusch (2002). Clinica 

Chimica, Acta(324): 81-88. 
Schnell, N., K. -D. Entian, U. Schneider, F. Gotz, H. Zahner, R. Kellner and G. 

Jung (1988). Nature 333(6170): 276-278. 
Schoenau, E. and F. Rauch (2003). Journal of Laboratory Medicine(27): 32-42. 
Schram, K. H. (1998). Mass Spectrometry Reviews (17): 131-25 1. 
Scott, C. D. (1974). Science(l 86): 226-233. 

278 



References 

Scott, W. R. P., S. -B. Baek, D. Jung, R. E. W. Hancock and S. K. Straus (2007). 
Biochimica et Biophysica Acta (BBA) - BiomembraneS 1768(12): 3116-3126. 

Seebeck, P., H. J. Bail, C. Exner, H. Schell, R. Michel, H. Amthauer, H. Bragulla 
and G. N. Duda (2005). Bone(37): 669-677. 

Severns, A. E., Y. Lee, S. D. Nelson, E. E. Johnson and J. M. Kabo (2003). 
Clinical Orthopaedics and Related Research (424): 231-238. 

Shirley, D., D. Marsh, G. Jordan, S. McQuaid and G. Li (2005). Journal of 
Orthopaedic Research (23): 1013-1021. 

Simpson, R. C., W. B. Emary, 1. Lys, R. J. Cotter and C. C. Fenselau (1991). 
Journal of Chromatography A(536): 143-153. 

Siuzdak, G. (1994). Procedures of the National Academy of Science 91: 11290- 
11297. 

Smith, C. A., E. J. Want, G. O'Maille, R. Abagyan and G. Siuzdak (2006). 
Analytical Chemistry 78: 779-778. 

Smith, M. T., R. Vermeulen, G. Li, L. Zhang, Q. Lan, A. E. Hubbard, M. S. 
Forrest, C. McHale, X. Zhao, L. Gunn, M. Shen, S. M. Rappaport, S. Yin, 
S. Chanock and N. Rothman (2005). Chemical-Biological Interactions (153- 
154): 123-127. 

Soria, A., B. Wright, D. Goodall and J. Wilson (2007). Electrophoresis 28(6): 950- 
964. 

Srivastava, A. K., S. Mohan, F. R. Singer and D. J. Baylink (2002). Bone 31(l): 
62-69. 

Stafford, G. (2002). Journal of the American Society for Mass Spectrometry(l 3): 
589-596. 

Stokvis, E., H. Rosing and J. H. Beijnen (2005). Rapid Commun. Mass 
Spectrom. (19): 401-407. 

Sturm, G., H. Haberlein, T. Bauer, T. Plaum and D. J. Stalker (1991). Journal of 
Chromatography: Biomedical Applications 562(1-2): 351-362. 

Summerfield, S. and S. Gaskell (1997). International Journal of Mass Spectrometry 
and Ion Processes 165-166: 509-521. 

Sumner, L. W. (2006). Biotechnology in Agricultural Forestry 57: 21-32. 
Sumner, L. W., P. Mendes and R. A. Dixon (2003). Phytochemistry(62): 817-836. 
Sumpton, D. (2007). PhD. Thesis (University of York). 
Svante Wol d, N. K. K. T. (1996). Journal of Chemometrics 10(5-6): 463-482. 
Svec, F. (2004). Journal of Separation Science(27): 747-766. 
Svec, F. and J. M. J. Frechet (1992). Analytical Chemistry 64(7): 820-822. 
Svoboda, P. and H. Kasai (2004). Analytical Biochemistry(334): 239-250. 
Tambong, J. T. and M. H6fte (2001). European Journal of Plant Pathology 107(5): 

511-521. 
Tanaka, K., H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida (1988). Rapid 

Communications in Mass Spectrometry(2): 151-153. 
Tang, H. and Y. Wang (2006). Progression in Biochemistry & Biophysics 33(5): 401- 

417. 
Tang, L. and P. Kebarle (1993). Analytical Chemistry 65(24): 3654-3668. 
Tang, S., W. Zhou, N. S. Sheerin, R. W. Vaughan and S. H. Sacks (1999). Journal 

of Immunology 162(7): 4336-4341. 
Taylor, P. J. (2005). Clinical Biochemistryistry 38(4): 328. 
Teahan, 0.., S. Gamble, E. Holmes, J. Waxman, J. K. Nicholson, C. Bevan and H. 

C. Keun (2006). Analytical Chemistry 78: 4307-4318. 
Teas, J., J. E. Cunningham, J. H. Fowke, D. Nitcheva, C. P. Kanwat, R. J. 

Boulware, D. W. Sepkovic, T. G. Hurley and J. R. Hebert (2005). Cancer 

Detection and Prevention Journal 29(6): 494-500. 

Teesch, L. M. and J. Adams (1990). Journal of the American Chemical 

Societyll2(11): 4110-4120. 
Terpos, E., M. Politou and A. Raherntulla (2005). Blood Reviews (19): 125-142. 

279 



References 

Thomashow, L. and D. Weller (1995). Current concepts in the use of introduced 
bacteria for biological disease control: mechanisms and antifungal 
metabolites., Chapman & Hall. 

Thompson, J. (1899). Philosophical Magazine 48(5): 123-126. 
Thorne, G. C., K. D. Ballard and S. J. Gaskell (1990). Journal of the American 

Society for Mass Spectrometry 1(3): 249-257. 
Tolstikov, V. V., A. Lommen, K. Nakanishii, N. Tanaka and 0. Fiehn (2003). 

Analytical Chemistry 75(23): 6737-6740. 
Toohey, J. I., C. D. Nelson and G. Krotkov (1965). Canadian Journal of Botany 43: 

1151-1155. 
Tran, H., A. Ficke, T. Asiimwe, M. Hofte and J. M. Raaijmakers New Phytologist 

175(4): 731-742. 
Trygg, J., E. Holmes and T. Lundstedt (2007). Journal of Proteome Research 6(2): 

469-479. 
Tswett, M. (1906). Berichte der Deutschen botanischen Gesellschaft: 316.323. 
Turner, J. M. and A. J. Messenger (1986). Advanced Microbiology and Physiology 

27: 211-275. 
Tyan, Y. -C., H. -R. Guo, C. -Y. Liu and P. -C. Liao (2006). Analytica Chimica Acta 

579(2): 158-176. 
Ullsten, S., R. Danielsson, D. Backstrom, P. Sjoberg and J. Bergquist (2006). 

Journal of Chromatography A 1117: 87-93. 
van den Berg, R., H. Hoefsloot, J. Westerhuis, A. Smilde and M. van der Werf 

(2006). BMC Genomics 7(l): 142-151. 
van Ravenzwaay, B., G. C. -P. Cunha, E. Leibold, R. Looser, W. Mellert, A. 

Prokoudine, T. Walk and J. Wiemer (2007). Toxicology Letters 172(1-2): 
21-28. 

Various (1999). Primer on the Metabolic Bone Diseases and Disorders of Mineral 
Metabolism - American Society for Bone and Mineral Research, Lippincott 
Williams and Wilkins. 

Verhoeven, N. M., G. S. Salomons and C. Jakobs (2005). Clinica Chimica 
Acta(361): 1-9. 

Vidotto, C., D. Fousert, M. Akkermann, A. Griesmacher and M. M. Muller (2003). 
Clinica Chimica Acta(335): 27-32. 

Viguet-Carrin, S., P. Garnero and P. D. Delmas (2006). Osteoporosis International 
17: 319-336. 

Villas-Boas, S. G., S. Mas, M. Akesson, J. Smedsgaard and j. Nielson (2004). 
Mass Spectrometry Reviews (24): 613-646. 

Vortkamp, A., S. Pathii, G. M. Peretti, E. M. Caruso, D. J. Zaleske and C. J. Tabin 
(1998). Mechanical Developments (71): 65-76. 

Wagner, S., K. Scholz, M. Sieber, M. Kellert and W. Voelkel (2007). Analytical 
Chemistry 79(7): 2918-2926. 

Walgren, J. L. and D. C. Thompson (2004). Toxiology Letters(l 49): 377-385. 
Wang, S. and C. Liao (2004). Journal of Chromatography A(l 051): 213-219. 
Wang, W., Q. Li, L. Hasvold, B. Steiner, D. A. Dickman, H. Ding, A. Clairborne, 

H. -J. Chen, D. Frost, R. C. Goldman, K. Marsh, Y. -H. Hui, B. Cox, A. 
Nilius, D. Balli, P. Lartey, II Plattner and Y. L. Bennani (2003). 
Bioorganic & Medicinal Chemistry Letters 13(3): 489-493. 

Wang, X., W. Li and H. T. Rasmussen (2005a). Journal of Chromatography A 
1083(1-2): 58-62. 

Wang, X., X. Zhang, Z. Li and X. Yu (2005b). Journal of Zhejiang University 
Science 9: 926-930. 

Want, E. J., B. F. Cravatt and G. Siuzdak (2005). ChemBiochemistry 6(11): 1941 - 
1951. 

Want, E. J., A. Nordstrom, H. Morita and G. Sluzdak (2007). Journal of Proteome 
Research 6(2): 459-468. 

280 



References 

Weckwerth, W. and K. Morgenthal (2005). Drug Discovery Today Targets(22): 
1551-1558. 

Weisman, S. M. and V. Matkovic (2005). Clinical Therapy (27): 299-308. 
Wienkoop, S., M. Glinski, N. Tanaka, V. Tolstikov, 0. Fiehn and W. Weckwerth 

(2004). Rapid Communications in Mass Spectrometry 18(6): 643-650. 
Williams, R. E., E. M. Lenz, J. S. Lowden, M. Rantalainen and 1. D. Wilson (2005). 

Molecular Biosystems 1(2): 166-175. 
Willis, C. M., S. M. Church, C. M. Guest, W. A. Cook, N. McCarthy, A. J. 

Bransbury, M. R. T. Church and J. C. T. Church (2004). British Medical 
Journal 329(7468): 712-720. 

Wilm, M. and M. Mann (1994). International Journal of Mass Spectrometry and Ion 
Processes (136): 167-180. 

Wilm, M. and M. Mann (1996). Analytical Chemistry (68): 1-8. 
Wilson, 1. D., R. Plumb, J. Granger, H. Major, R. Williams and E. M. Lenz (2005). 

Journal of Chromatography B (817): 67-76. 
Windig, W. and W. F. Smith (2007). Journal of Chromatography A 1158(1-2): 251. 
Wishart, D. S., D. Tzur, C. Knox, R. Eisner, A. C. Guo, N. Young, D. Cheng, K. 

Jewell, D. Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M. -A. 
Coutouly, 1. Forsythe, P. Tang, S. Shrivastava, K. Jeroncic, P. Stothard, 
G. Amegbey, D. Block, D. D. Hau, J. Wagner, J. Miniaci, M. Clements, M. 
Gebremedhin, N. Guo, Y. Zhang, G. E. Duggan, G. D. Macinnis, A. M. 
Weljie, R. Dowlatabadi, F. Bamforth, D. Clive, R. Greiner, L. Li, T. Marrie, 
B. D. Sykes, H. J. Vogel and L. Querengesser (2007). Nucleic Acids 
Research. 35(Supplement 1): D521-526. 

Woitge, H. W., M. Pecherstorfer, Y. Li, A. Keck, E. Horn, R. Ziegler and M. J. 
Seibel (1999). Journal of Bone Mineral Research (14): 792-801. 

Woitge, H. W., C. Scheidt-Nave, C. Kissling, G. Leidig-Bruckner, K. Meyer, A. 
Grauer, S. H. Scharia, R. Zeigler and M. J. Seibel (1998). Journal of Clinical 
Endocrinology Metabolism 83: 68-75. 

Wold, S., M. Josefson, J. Gottfries and A. Linusson (2004). Journal of 
Chemometrics 18(3-4): 156-165. 

Wold, S., M. Sjostrom and L. Eriksson (2001). Chemometrics and Intelligent 
Laboratory Systems 58(2): 109-130. 

Wraighte, P. J. and B. E. Scammell (2006). Surgery 24(6): 198-206. 
Wuhrer, M., C. A. M. Koeleman, A. M. Deelder and C. H. Hokke (2004). Analytical 

Chemistry(76): 833-838. 
Yakimov, M. M., W. -R. Abraham, H. Meyer, G. Laura and P. N. Golyshin (1999). 

Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 
1438(2): 273-280. 

Yalcin, T., C. Khouw, 1. G. Csizmadia, M. R. Peterson and A. G. Harrison (1995). 
Journal of the American Society for Mass Spectrometry 6(12): 1165-1174. 

Yamashita, M. and J. B. Fenn (1984). Journal of Physical Chemistry (88): 4451 - 
4459. 

Yang, J., G. Xu, Y. Zheng, H. Kong, C. Wang, X. Zhao and T. Pang (2005). 
Journal of Chromatography A (1084): 214-221. 

Yang, S. -Z., D. -Z. Wei and B. -Z. Mu (2006). Journal of Biochemistry and Biophysical 
Methods 68(l): 69. 

Yang, S. -Z., D. -Z. Wei and B. -Z. Mu (2007). Journal of Biochemistry and Biophysical 
Methods 70(3): 519. 

Yokoyama, Y., K. Yamasaki and H. Sato (2005). Journal of Chromatography B 

(816): 333-338. 
Yu, H., E. H. Cooper, J. A. Settle and T. Meadows (1983). Bums 9 (5): 339-349. 

Yu-Yahiro, J. A., R. H. Michael, N. H. Dubin, K. M. Fox, M. Sachs, W. G. Hawkes, 

J. R. Hebei, S. 1. Zimmerman, J. Shapiro and J. Magaziner (2001). Journal 

of the American Geriatrics Society 49(7): 877-883. 

281 



References 

Zerefos, P., J. Prados, S. Kossida, A. Kalousis and A. Vlahou (2007). Journal of 
Chromatography B 853(1-2): 20-30. 

Zhengzheng, P. and R. Daniel (2007). Analytical and Bioanalytical Chemistry 
V387(2): 525-527. 

Zhengzheng, P., G. Haiwei, T. Nari, C. Huanwen, S. Narasimhamurthy, E. H. 
Bryan, R. G. Cooks and R. Daniel (2007). Analytical and Bioanalytical 
Chemistry V387(2): 539-549. 

Zhou, H., P. S. T. Yuen, T. Pisitkun, P. A. Gonzales, H. Yasuda, J. W. Dear, P. 
Gross, M. A. Knepper and R. A. Star (2006). Kidney International 69(8): 
1471-1476. 

Zimmermann, G., P. Henle, M. Kusswetter, A. Moghaddam, A. Wentzensen, W. 
Richter and S. Weiss (2005). Bone(36): 779-785. 

Zor, T. and Z. Selinger (1996). Analytical Biochemistry 236(2): 302-308. 

282 



Appendices 



Appendices 

Appendix A 

Randomly 
Age Number 

Assigned Initial Code Sex Age Smoker Time of 
Code Group 

Aliquots 
004 F01A FEMALE 38 NO 36-40 AM 12 
005 F01 B FEMALE 38 NO 36-40 PM 12 
019 F02A FEMALE 22 NO 21-25 AM 16 
023 F02B FEMALE 22 NO 21-25 PM 15 
018 F04A FEMALE 24 NO 21-25 AM 16 
024 F04B FEMALE 24 NO 21-25 PM 10 
007 F05A FEMALE 51-55 NO 51-55 AM 10 
015 F05B FEMALE 51-55 NO 51-55 PM 10 
051 F09A FEMALE 27 NO 26-30 AM 10 
038 F10A FEMALE 26-30 NO 26-30 AM 7 
039 F1OB FEMALE 26-30 NO 26-30 PM 10 
012 Fl 3A FEMALE 40 NO 36-40 AM 16 
013 F13B FEMALE 40 NO 36-40 PM 16 
037 Fl 5A FEMALE 47 YES 46-50 AM 16 
047 F15B FEMALE 47 YES 46-50 PM 10 
049 F20A FEMALE 24 NO 21-25 AM 10 
050 F20B FEMALE 24 NO 21-25 PM 16 
009 M01 A MALE 23 NO 21-25 AM 14 
010 M01 B MALE 23 NO 21-25 PM 10 
034 M02A MALE 39 NO 36-40 AM 14 
043 M02B MALE 39 NO 36-40 PM 15 
030 M03A MALE 34 NO 31-35 AM 12 
041 M03B MALE 35 NO 31-35 PM 11 
035 M04A MALE 42 NO 41-45 AM 10 
042 M04B MALE 42 NO 41-45 PM 10 
008 M05A MALE 41-45 NO 41-45 AM 9 
011 M05B MALE 41-45 NO 41-45 PM 10 
031 M07A MALE 35 NO 31-35 AM 10 
036 M07B MALE 35 NO 31-35 PM 14 
057 M09A MALE 22 NO 21-25 AM 10 
058 M09B MALE 22 NO 21-25 PM 12 
055 M11 A MALE 30 NO 26-30 AM 10 
056 M11 B MALE 30 NO 26-30 PM 10 
022 M12A MALE 28 NO 26-30 AM 10 
028 M12B MALE 28 NO 26-30 PM 14 
002 M13A MALE 30 NO 26-30 AM 16 
053 M13B MALE 30 NO 26-30 PM 10 

016 M14A MALE 23 NO 21-25 AM 10 
027 M14B MALE 23 NO 21-25 PM 14 

017 M15A MALE 26-30 NO 26-30 AM 14 

026 M15B MALE 26-30 NO 26-30 PM 16 

060 M20A MALE 22 NO 21-25 AM 16 

061 M20B MALE 22 NO 21-25 PM 10 

045 M21 A MALE 26 YES 26-30 AM 10 

046 M21 B MALE 26 YES 26-30 PM 8 

048 M22A MALE 36 NO 36-40 AM 10 

054 M22B MALE 36 NO 36-40 PM 10 

021 M23A MALE 52 NO 51-55 AM 10 

029 M23B MALE 52 NO 51-55 PM 14 
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Randomly Age Number 
Assigned Initial Code Sex Age Smoker Group Time of 

Code Aliquots 
032 M24A MALE 23 NO 21-25 AM 10 
044 M24B MALE 23 NO 21-25 PM 15 
062 RAND1400 MALE 25 NO 21-25 PM 14 
033 UNK2A FEMALE UNK NO UNK AM 14 
040 UNK2B FEMALE UNK NO UNK PM 14 
003 UNK4A MALE 61 NO 61-65 PM 15 
001 UNK4B MALE 61 NO 61-65 AM 9 
006 UNK5A FEMALE 45 NO 41-45 AM 16 
014 UNK5B FEMALE 45 NO 41-45 PM 10 
020 X03A MALE 25 NO 21-25 AM 10 
025 X03B MALE 25 NO 21-25 PM 14 
052 X06A FEMALE 50 YES 46-50 AM 10 
059 X06B FEMALE 50 YES 46-50 PM 10 
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Appendix B 
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Appendix B1. Positive mode CID tandem MS of precursor ion m/z 497 from RP-LC- 
MS data gender PLS model. The presence of peaks at 2 Da higher, suggests that 
this metabolite contains chlorine. 
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Appendix B2. Negative mode CID tandem MS of precursor ion m/z 541 from RP-LC- 
MS data gender PLS model. 
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Appendix B3. Negative mode CID tandem MS of precursor ion m/z 495 from RP-LC- 
MS data gender PLS model. 
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Appendix B4. Negative mode CID tandem MS of precursor ion m/z 391 from RP-LC- 
MS data age PLS model. 
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Appendix C 

Internal Actual Patient New Fracture Days Weeks Protein 
S&N SAN ID Code Type Gender Age after after Concentration 
Code Code Fracture Fracture (mg/mL) 

72/04 073/04 001 Fl Pilon Male 26 0 0 4 
74/04 075/04 002 F2 Ankle Male 27 0 0 5 
98/04 099/04 002 F3 Ankle Male 27 39 6 166 
76/04 077/04 003 F4 Ankle Male 47 0 0 3 
78/04 079/04 003 F5 Ankle Male 47 7 1 79 
80/04 081/04 004 F6 Ankle Male 33 0 0 nr 
100/04 101/04 004 F7 Ankle Male 33 34 5 165 
82/04 083/04 005 F8 Radius Male 35 0 0 1 
102/04 103/04 005 F9 Radius Male 35 28 4 236 
84/04 085/04 006 F10 Ankle Male 33 0 0 2 
130/04 131/04 006 F11 Ankle Male 33 40 6 156 
86/04 087/04 007 F12 Ankle Male 22 0 0 1 
132/04 133/04 007 F13 Ankle Male 22 35 5 nr 
88/04 089/04 008 F14 Ankle Male 28 0 0 1 
205/05 206/05 008 F15 Ankle Male 28 61 9 192 
193/05 194/05 008 F16 Ankle Male 28 79 11 221 
90/04 091/04 009 F17 Ankle Male 24 0 0 4 
96/04 097/04 009 F18 Ankle Male 24 22 3 160 
248/05 249/05 009 F19 Ankle Male 24 83 12 178 
92/04 093/04 010 F20 Ankle Male 20 0 0 1 
181/05 180/05 010 F21 Ankle Male 20 48 7 197 
104/04 105/04 011 F22 Ankle Female 23 0 0 179 
173/05 174/05 011 F23 Ankle Female 23 31 4 192 
195/05 196/05 011 F24 Ankle Female 23 74 11 131 
106/04 107/04 012 F25 Ankle Female 43 0 0 179 
134/04 134/04 012 F26 Ankle Female 43 29 4 198 
187/05 188/05 012 F27 Ankle Female 43 70 10 181 
108/04 109/04 013 F28 Wrist Female 24 0 0 186 
136/04 136/04 013 F29 Wrist Female 24 unk unk 183 
110/04 111/04 014 F30 Clavicle Male 35 0 0 223 
118/04 119/04 015 F31 Ankle Male 26 0 0 148 
179/05 179/05 015 F32 Ankle Male 26 33 5 186 

120/04 121/04 016 F33 Ankle Female 23 0 0 196 
135/04 135/04 016 F34 Ankle Female 23 16 2 224 

151/05 155/05 016 F35 Ankle Female 23 44 6 nr 
323/05 324/05 016 F36 Ankle Female 23 123 18 169 

122/04 123/04 017 F37 Ankle Male 35 0 0 161 

136/04 330/05 017 F38 Ankle Male 35 133 19 159 

124/04 125/04 018 F39 
Radial 
Head 

Male 20 0 0 182 

126/04 127/04 019 F40 Ankle Male 23 0 0 167 

177/05 178/05 019 F41 Ankle Male 23 28 4 170 

189/05 190/05 019 F42 Ankle Male 23 56 8 173 

345/05 346/05 019 F43 Ankle Male 23 126 18 173 

128/04 129/04 020 F44 Ankle Female 20 0 0 202 

152/05 153/05 020 F45 Ankle Female 20 35 5 175 

256/05 257/05 020 F46 Ankle Female 20 77 11 151 

209/05 210/05 021 F47 Ankle Female 23 0 0 148 

215/05 215/05 021 F48 Ankle Female 23 39 6 191 

343/05 344/05 021 F49 Ankle Female 23 95 14 nr 
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Internal Actual Patient Fracture Days Weeks Protein 
S&N S&N ID 

New Type Gender Age after after Concentration 
Code Code Code Fracture Fracture (mg/mL) 

207/05 208/05 022 F50 Wrist Male 23 0 0 211 
201/05 202/05 023 F51 Ankle Male 19 0 0 169 
254/05 253/05 023 F52 Ankle Male 19 35 5 172 
337/05 338/05 023 F53 Ankle Male 19 91 13 165 
166/05 167/05 024 F54 Wrist Male 20 0 0 nr 
246/05 247/05 024 F55 Wrist Male 20 29 4 217 
156/05 169/05 025 F56 Wrist Male 22 0 0 160 
197/05 198/05 025 F57 Wrist Male 22 7 1 203 
262/05 263/05 025 F58 Wrist Male 22 35 5 205 

156/05 157/05 026 Radial Male 25 0 0 204 F59 Head 

249/05 241/05 026 Radial 
Male 25 14 2 242 F60 Head 

160/05 161/05 027 F61 Ankle Male 24 0 0 158 
162/05 163/05 028 F62 Tib/Fib Male 26 0 0 157 
164/05 165/05 029 F63 Ankle Male 44 0 0 2 
315/05 316/05 029 F64 Ankle Male 44 50 7 185 
170/05 216/05 030 F65 Tib/Fib Male 29 0 0 164 
273/05 273/05 030 F66 Tib/Fib Male 29 21 3 238 
199/05 200/05 031 F67 Wrist Male 36 0 0 248 
303/05 304/05 031 F68 Wrist Male 36 unk unk 206 
331/05 332/05 031 F69 Wrist Male 36 unk unk 217 
158/05 159/05 032 F70 Clavicle Male unk 0 0 205 
191/05 192/05 033 F71 Tib/Fib Female 33 0 0 124 
211/05 212/05 034 F72 Ankle Male 30 0 0 3 
213/05 214/05 035 F73 Ankle Female 36 0 0 177 
301/05 302/05 035 F74 Ankle Female 36 41 6 135 
202/05 204/05 036 F75 Wrist Female 44 0 0 224 
242/05 243/05 036 F76 Wrist Female 44 unk unk 215 
266/05 267/05 036 F77 Wrist Female 44 unk unk 214 
311/05 312/05 036 F78 Wrist Female 44 45 6 253 
327/05 328/05 036 F79 Wrist Female 44 73 10 200 

185/05 184/05 037 F80 Wrist Male 42 0 0 191 

244/05 245/05 037 F81 Wrist Male 42 10 1 213 

254/05 255/05 037 F82 Wrist Male 42 24 3 218 

183/05 183/05 038 F83 Fibula Male 32 0 0 185 

301/05 301/05 038 F84 Fibula Male 32 28 4 nr 

175/05 176/05 039 F85 Ulna Male 24 0 0 183 

299/05 300/05 039 F86 Ulna Male 24 28 4 161 

335/05 336/05 039 F87 Ulna Male 24 42 6 180 

270/05 271/05 040 F88 Radius/Ulna Male 20 0 0 217 

264/05 265/05 040 F89 Radius/Ulna Male 20 18 3 2 

272/05 272/05 041 F90 Wrist Male 19 0 0 197 

321/05 322/05 041 F91 Wrist Male 19 27 4 188 

260/05 261/05 042 F92 Wrist Female 41 0 0 175 

250/05 251/05 043 
Tibial 
Plateau 

Male 38 0 0 174 
F93 

317/05 318/05 043 
Tibial 
Plateau 

Male 38 8 1 258 
F94 

347/05 348/05 043 
Tibial 
Plateau 

Male 38 15 2 180 
F95 

333/05 334/05 043 
Tibial 
Pl teau 

Male 38 43 6 235 
F96 a 
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Internal Actual Patient Fracture Days Weeks Protein 
S&N S&N ID New 

Type Gender Age after after Concentration 
Code Code Code Fracture Fracture (mg/ml-) 

268/05 269/05 044 F97 Radius Male 30 0 0 177 
325/05 326/05 044 F98 Radius Male 30 13 2 233 
339/05 340/05 044 F99 Radius Male 30 41 6 192 
258/05 259/05 045 F100 Fibula Male 25 0 0 195 
305/05 306/05 045 F101 Fibula Male 25 7 1 201 
341/05 342/05 045 F102 Fibula Male 25 35 5 180 
274/05 274/05 046 F103 Wrist Female 32 0 0 206 
307/05 308/05 046 F104 Wrist Female 32 unk unk nr 

Gr. 
274/05 314/05 047 Tuberosity Female 40 0 0 217 

F105 of Humerus 
Gr. 

317/05 320/05 047 Tuberosity Female 40 48 7 200 
F106 of Humerus 

309/05 310/05 048 F107 Clavicle Male 34 00 193 

Where unk = no data available, and nr = not recorded due to lack of sample. 
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Appendix D1. Negative mode CID tandem MS of precursor ion m/z 528 from RP-LC- 
MS data frac2 PLS model. The peak at m/z 113 suggests the presence of a 
glucuronide, which would give the RMM of this metabolite to be 353. 
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Appendix D2. Positive mode CID tandem MS of precursor ion m/z 500 from RP-LC- 
MS data frac3 PLS model. The presence of peaks at 2 Da higher suggests that 

chlorine is present within this metabolite. 
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Appendix D3. Positive mode CID tandem MS of precursor ion m/z 299 from RP-LC- 
MS data frac3 PLS model. The peak at 18 Da less than the fragment ion at m/z 90 
corresponds to the loss of water from this ion. 
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Appendix D4. Positive mode CID tandem MS of precursor ion m/z 120 from RP-LC- 
MS data frac3 PLS model. The peak at 17 Da lower than the precursor ion could 
correspond to the loss of NH3. 
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Appendix D5. Negative mode CID tandem MS of precursor ion m/z 476 from RP-LC- 
MS data frac3 PLS model. 
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Appendix D6. Negative mode CID tandem MS of precursor ion m/z 516 from RP-LC- 
MS data ankle PLS model. The fragment ion at m/z 448 could correspond to the 

precursor ion of the same mass and retention time seen in the negative mode RP- 
LC-MS data for the frac2 PLS model, suggesting that the ion is in fact an in-source 
fragment. 
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Appendix D7. Negative mode CID tandem MS of precursor ion m/z 465 from RP-LC- MS data ankle PLS model. The fragment ion at m/z 113 could correspond to a fragment from a glucuronide moiety. 
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Appendix D8. Negative mode CID tandem MS of precursor ion m/z 562 from HILIC- 
LC-MS data frac2, frac3 and ankle PLS models. The fragment ion at m/z 113 could 
correspond to a fragment from a glucuronide moiety, and the very low intensity 
fragment ion at m/z 448 is 114 Da less than the precursor ion, corresponding to a 
neutral loss of a glucuronide moiety. The fragment ion at m/z 448 could also 
correspond to an in-source fragment, as other precursor ions of the same mass and 

retention time were detected in negative ionisation mode data from both RP- and 
HILIC-MS data. 
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Appendix D9. Positive mode CID tandem MS of precursor ion m/z 796 from HILIC- 
LC-MS data frac3 PLS model. 
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Appendix D10. Positive mode CID tandem IVIS of precursor ion m1z 450 from HILIC- 
LC-MS data ankle PLS model. The mass of the precursor ion is 2 Da higher than rrvz 
448 fragment ion (and possible in-source fragment) detected from negative mode 
HILIC-MS data (see appendix D8); this could correspond to a protonated in-source 
fragment from the anionic glucuronide compound detected at m1z 562 (adding a loss 
of 114 Da to m1z 450, would correspond to an RMM of 563). The fragment ions at 
m1z 433 and 415 could correspond to the loss of NH3 and water respectively. 
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