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Abstract 

Bioremediation is a rapidly developing area of environmental biology, offering a 

cost effective method for large-scale contaminant removal. Many current 

methods of bioremediation involve the use of culturable organisms. Cultureable 

organisms account for only a small fraction of the microorganisms present in the 

soil, and thus potentially envirom-nentally relevant organisms may be going 

unnoticed that may offer more efficient results. Stable isotopes offer the potential 

to examine the role of unculturable organisms in bioremediation, with isotopic 

labelling of the lipid biomarkers, PLFAs, enabling organisms assimilating the 

label to the group level to be identified. DNA-SIP provides greater resolution of 

which organisms can be identified to the species level, whilst RNA-SIP further 

increases the resolution towards those species metabolically active independent 

of cell replication. The pollutant phenol's degradation pathways have been 

extensively studied. Culturable phenol degraders have been identified and here 

stable isotopes were used to examine what factors affect its degradation, 

encompassing the unculturable organisms. 

Field studies demonstrated that additions of nitrogen (N) and biocide do 

not affect the rate at which phenol is mineralized over a 24 hour period in soils, 

only lime (L) additions resulted in soils responding initially significantly slower 

to the addition of phenol, with a lower cumulative phenol-derivedC02flux over 

48 hours, tending towards significance. These differences became significant in 

treatments where vegetation was removed. PLFA analyses demonstrated only 

certain organisms were assimilating the phenol. Conversely, while control soils 

dominated the mineralization of phenol, the assimilation into PLFAs was 

dominated by the limed soils, by Gram-negative and fungal lipid biomarkers. 

A second study in the laboratory revealed that differences in 

mineralisation seen in the field were not carried through into the laboratory. The 

differences in assimilation however, were robust and prominent in both the 

laboratory and field experiments. These results suggest that C limitation is a 
driving factor in reducing the mineralisation rates in the limed soil, whilst it is a 

community shift of microorganisms responsible for the differences in C 

assimilation from phenol. 
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Chapter 1. Introduction 

1.1 Unculturable microbial populations and their role in biodegradation 

A culturable microorganism is defined as one that can be grown and maintained 

on culture medium in the laboratory, with different organisms requiring different, 

and sometimes complex, media to grow successfully in the laboratory. 

Unculturable microorganisms are those that cannot, to date, be cultured in the 

laboratory away from their natural habitat. 

Common methods of culturing microorganisms that degrade a particular 

substrate involve providing the substrate of interest as the only C or N source 

available to a dilution of putative microorganisms, derived as a suspension from 

an environmental sample. The organisms which subsequently grow on or in the 

culture medium are assumed to utilise the substrate of interest as their C or N 

source, and so can be identified as putative degraders of that substrate. 

The vast majority of microorganisms present in the soil are not culturable 

in the laboratory, and the use of traditional culturing and identification methods 

alone ignores a huge and potentially very important range of microorganisms; the 

circularity is that only culturable organisms, making up only a small fraction of 

organisms present in the soil (Torsvik et al., 1990), are only ever going to be 

identified. This inability to assess and realise the full potential of unculturable 

microbial populations is a recurring problem in the understanding, and 

application, of advances in the study of microbial ecology is the (Watanabe, 

2001). 

The relatively recent development of alternative molecular biological 

approaches is pushing through this traditional research barrier (see Watanabe and 

Baker, 2000). Modem molecular techniques have shown that microbial 

populations in the natural environment are much more diverse than 

microorganisms thus far isolated in the laboratory, (Boschker et al., 1998), yet 
developments in environmental biotechnology have been largely dependent on 

studies with pollutant-degrading bacteria isolated using conventional culture 

methods (Watanabe and Baker, 2000). Researchers have now started to use 

molecular methods to analyse microbial populations relevant to pollutant 
degradation in the environment (see section 1.1.2). These techniques can be used 
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either individually, or in combination with other molecular ecological and 

physiological methods for identifying so-called, environmentally relevant 

microorganisms (ERMs) Watanabe and Baker (2000). The conclusion is that 

information provided by such analyses will aid in the evaluation of the 

effectiveness of bioremediation and will lead to the formulation of strategies to 

accelerate bioremediation techniques (Watanabe, 2001). 

The increasing application of bioremediation approaches as a cost 

effective method for large scale contaminant removal is becoming one of the 

most rapidly developing fields of environmental restoration (Mishra et al., 2001). 

A number of bioremediation strategies have been developed for the treatment of 

contaminated wastes and sites, utilising microorganisms to reduce the 

concentration and toxicity of various chemical pollutants in the environment. In 

particular, recent advances in the molecular genetics of biodegradation are 

opening up new techniques for the in situ treatment of environmental 

contaminants (Mishra et al., 2001). With the large number of unculturable 

organisms present in ecosystems, it is therefore important that the potential of 

these organisms to be used in bioremediation research is explored. Methods to 

measure how such populations degrade substrates are of great use in determining 

the extent of their impact in such studies. 

1.1.1 Traditional techniques for estimating microbial populations in soil 

There are numerous traditional techniques available to quantify microbial growth 

and biomass. These traditional techniques are divided into four board categories: 
direct, microbial, respirometric and biochemical. 

1.1.1.1 Direct methods 

Direct method involves the counting of organisms, using a microscope, without 
subsequent growth or enrichment steps. The results are open to subjective 
interpretation and offer little resolution in terms of identifying the organism. 
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1.1.1.2 Microbial methods 

Microbial methods are the most common traditional method and include plate 

counts and most probable number estimations 

The agar plate technique, pioneered by Clarke (1965) is a common 

method, requiring a suspension of soil microorganisms to be plated onto growing 

medium in a dilution series and incubated for several days. The numbers are then 

counted on a dilution plate offering good resolution and the population estimated 

from that figure. The recipe for the medium can be adjusted to provide different 

nutrients, and alter the carbon source for example, however putative degraders 

may still be able to grow and the choice is limited by the available media and 

conditions that can be replicated. 

Direct observation can be used in the most probable number method 

(MPN), first used by Alexander (1965), when aliquots of a soil suspension are 

diluted or alternatively, changes in a chemical or biological indicator can be 

used. The number of microorganisms present in the original sample can then be 

estimated using statistical tables, however it has been shown by Atlas (1982) that 

with a small number of replicates, the validity decreases. The aforementioned 

traditional techniques do however rely on the organisms being culturable, a pre 

requisite which, as highlighted above, will exclude a high percentage of the soil 

microorganisms. 

1.1.1.3 Respirometric methods 

Respirometric methods utilise organisms' ability to remove or produce specific 

gases, includingO2, C02 and methane. The technique was pioneered by Wallis 

and Wilde (1957) to measure total C02 production from a forest soil. Whilst this 

doesn't give a measurement of biomass 
, it 

does indicate the level of microbial 

activity. 
Since then more complex techniques have developed including the 

fumigation incubation method (Jenkinson and Powlson 1976). Whereby soil 

samples are fumigated with chlorofon-n vapour to kill the microbial population. 

The choloroform vapour is then removed and a small sample of untreated soil is 
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added to the fumigated soil, which is then incubated. The amount Of C02 

evolved by unfumigated control samples is subtracted from the C02 evolved by 

the fumigated samples, giving an indication of the amount Of C02 being evolved 

by the microbial mineralisation of the killed population. The population's size 

can then be estimated. 

Substrate induced respiration (SIR) was pioneered by Anderson and 

Domsch (1974) and involves the addition of a substrate to soil to increase 

respiration. The evolved C02 can then be measured and estimations of 

population size can be made, using the values from known populations as 

calibration. This method was further developed by Anderson and Domsch (1978) 

to allow SIR response to be related to microbial biomass by calibrating their 

method with Jenkinson and Powlson's fumigation method (1976). 

1.1.1.4 Biochemical methods 

Biochemical techniques involve the measurement of cell constituents, products 

or reactions mediated by a constituent part of the cell. Cell constituents measured 
include protein determination (Lowry 1951; Bradford 1976), however this is 

unsuitable for environmental samples (Atlas 1982), as the relative levels of 

protein in such samples can vary due to changes in population state and micro 

environments within the soil, rather than just population size. 

Fatty acids and lipopolysaccharides, including phospholipid fatty acids 

(PLFAs) can be used as a measure of both population sie and cell type as 
different cell types contain different specific fatty acids in their cell membrane 
(Zelles et al. 1992). 
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1.1.2 Molecular methods 

Molecular methods enable a large range of soil microorganisms to be included, 

being independent of culturing. DNA or RNA extraction provides a specific 

measurement of microbial populations within soil samples. Functional gene 

probes can be used identify key enzymes involved in a function of interest 

through highly conserved regions in their gene sequences. Primer sets are used to 

amplify these conserved regions of DNA (McDonald et al., 1996), however these 

rely on the gene sequence for the function of interest having already been 

identified. 

Soil samples undergo then-nal shock, a sonic bath or microwave energy 

to lyse the cells. The DNA is then amplified using polymerase chain reaction 
(PCR) and visualised by electrophoresis on agarose gel containing ethidium 
bromide (Picard et al. 1992). Comparison of the band pattern with known 

microorganisms then allows microbes present to be identified. Picard et al. 
(1992) used this method to estimate the number of bacteria present in a soil 

sample. It is reliant on the primers being available for all the organisms of 
interest, otherwise they are excluded from the estimation. 

More recently denaturant-gradient gel electrophoresis (DGGE) has been 

developed, which involves running proteins across a varying urea concentration 
in order to investigate their unfolding/refolding in the presence of a chaotropic 

agent. This enables the separation of DNA products from polymerase chain 

reaction which are of similar size, and thus would not separate during traditional 

agarose gel electrophoresis. DGGE separates DNA fragments based on sequence 
differences that result in differential denaturing characteristics of the DNA. 

Resulting sequences can be matched to a library of known phylogenies, however the 

number of proteins to which this has been applied is limited (Gianazza et al., 
1998) 

Other modem methods to examine entire microbial populations include 

probing PLFAs (Boschker et al., 1998) and nucleic acids (Radajewski et al., 
2000) with stable isotopes and, most recently, bioluminescence, whereby 
luminescence-based bioassays are used to measure ecotoxicity, and has been 

found to offer complementary applications to traditional testing techniques 

(Trott et al., 2007). 
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1.2 The history of SIP using PLFAs 

1.2.1 SIP 

Stable isotopes of the same element differ only in the number of neutrons, they 

share the same chemical characteristics and behave almost identically, with 

fractionation occurring due to the slight variation in the overall mass. Unlike 

radioisotopes, which degrade, stable isotopes remain and do not pose any 

additional health risk. Stable isotope probing (SIP) involves the use of a stable 
isotope biomarker to trace substances and establish functional transfers through a 

system. It provides a unique method of being able to directly link an organism to 

a function, reducing the possibility that putative organisms are falsely linked to a 

particular process. The main advantage of stable isotopes over radioisotopes is 

that they can be freely used in field situations, since they do not pose any safety 

or contamination concerns,, other than the inherent ones associated with the 

compound under study. The use of radio labelled substrates (for example, 14C) in 

the field is greatly restricted due to safety and environmental regulations. The 

location of the SI and it's subsequent metabolism can be tracked both in the 

environment and within the organisms using the compound as part of it's 

metabolism (using IC-GC-IRMS) with different parts of the cell retaining the SI, 

including cell membranes and nucleic acids. 

Biomarkers are compounds that are unique to a limited number of 

organisms, with the presence or absence of such biomarkers indicating that an 

organism is active. In order to give an accurate indication of activity, a biomarker 

must quickly disappear from the system after cell death (White et al., 1979). 

Phospholipid fatty acids (PLFAs) are specific cell membrane components of 

microorganisms and account for a large proportion of the cell biomass and, as 

such, can be used to investigate and evaluate the activity of microbial 

communities (Zelles, 1999). Different phylogenies tend to have distinct PLFA 

'fingerprints' and a labelled PLFA trace fingerprint can be compared to the 

known library of PLFA fingerprints and a phylogeny accordingly assigned. 
The linking of these techniques to label PLFA's with SI's is an extremely 

versatile approach as, not only can it be used safely either in the laboratory or the 

field due to the absence of radioactive isotopes and associated restrictions, but 
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also the label can be introduced to the system of interest in a number of ways. 

For example, label can be presented as a gas, e. g. 13CO2, entering the system 

photosynthetically via a plant (Staddon, 2004), or alternatively it may be 

introduced as a compound, presented in solution (Padmanabhan et al., 2003). It is 

also possible to prepare labelled biologically-derived materials, such as litter, for 

decomposition studies, and there is a growing wide range of commercially 

manufactured compounds available (e. g. 99% 13 C6 phenol, Cambridge Isotope 

Laboratories, UK). These compounds tend to be expensive, but IC-GC-IRMS is a 

highly sensitive precision instrument and can detect and measure very small 

isotopic changes, thus reducing the amount of substrate needed. 

1.2.2 Development of the SIP/ PLFA technique 

Boschker et al. (1998) first used a stable isotope (13C) to directly link a microbial 

population to a biogeochemical process, using this approach. Active 

microorganisms turn over their cellular components, including cell membranes, 

and Boschker et al. (1998) showed that, by adding a substrate with an isotopic 

label, the organisms responsible for degrading either a part or a whole substrate 

incorporated the stable isotope label into the PLFAs. The PLFAs were then 

extracted and analysed using an individual compound gas chromatograph, 

coupled to an isotope ratio mass spectrometer (IC-GC-IRMS). Boschker et al. 
(1998) used this method to identify the degraders of 13 C acetate as being similar 

to Desuýfoltomaculum acetoxidans, a Gram-positive bacterium, rather than the 

more studied Gram-negative Desu4fobacter species, suggesting that the focus of 

research should include these Gram-positive bacteria in future work. In a second 

experiment, further pioneering this technique, Boschker et al. (1998) also added 
13C methane to the top layer of a freshwater sediment. The organisms that 

assimilated the methane and incorporated the label in to their PLFAs were 
identified as belonging to the type I genera Methylobacter and 
Methylomicrobium, therefore unambiguously linking these organisms to the 

process of methane assimilation. Since 1998 this technique has been widely used 

with 13 C both in the laboratory and in the field, utilising both natural variations in 
isotopic signal in compounds (Hinrichs et al., 1999), or introducing a strong label 

into the environment (Staddon, 2004).. 
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Carbon is not the only element to have been successfully used as an 

isotopic label in PLFAs. Alexandrino et al. (2001) used deuterated styrene (2 H8) 

to characterise styrene degrading populations from biofilters used for waste gas 

treatment. After three days incubation with 2 H8 styrene, the PLFAs in the 

degraders contained up to 90% dueterated molecules, with the largest amount of 

label incorporated into an organism with a Pseudomonas - like fatty acid profile 

in the experimental biofilter. However, in the full scale biofilter, the labelled 

PLFAs suggested an unknown styrene degrader, whilst the absence of label in 

certain PLFAs indicated that organisms belonging to the species Xanthomonas, 

Bacillus, Streptomyces and Gorgonia were not responsible for the degradation of 

styrene. 

It is important when examining degradation pathways that one can be 

confident the organism identified from the 1 3C PLFA profile is the primary 

degrader, responsible for metabolism of the labelled substrate. The timing of the 

sampling is therefore crucial to ensure that secondary organisms (i. e. those which 

consume primary organisms or secondary products) are not misidentified as 

primary. The turnover of PLFA, and therefore incorporation of label, can be 

quite rapid, depending on the level of microbial activity; Pombo et al. (2002), for 

example, found detectable 13C PLFA levels as little as 4 hours after incubation 

with a labelled substrate and, as mentioned above, Lu et al. (2004) found 13C 

PLFA enrichment in samples taken within an hour after the end of a6 hour 

13CO 
2 pulse. 

1.2.3 Laboratory use of SIP / PLFA 

Butler et al. (2003) pulse labelled annual ryegrass under 13 C02 in a greenhouse at 

two stages of development, the stage of transition between active and rapid root 

growth, and during rapid root growth. They analysed the PLFAs from the 

rhizosphere and bulk soil, and found that the fungal biomarker 18: 2(n-6) showed 

the fasted and highest incorporation of photo-assimilate, whilst the Gram- 

positive biomarkers i15: 0 and a15: 0 were most active during the first growth 

stage, and the Gram-negative biomarker, 16: 1(n-5), were found during the 

second grown stage. Similarly, Lu et al. (2004) used a 13 C02pulse for 6 hours to 

establish the links between rice plant photo- assimilate and the rhizosphere 
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microbial communities. In this microcosm experiment, replicate microcosms 

were pulsed at six different development stages of rice, and were then sampled 

destructively within an hour of the end of the pulse. The mean 13 C02 

concentrations inside the chamber during the pulses were between 180 and 270 

ppm, accounting for between 24 and 57% of the total C02 concentration inside 

the chamber. The incorporation of the 13C into the PLFAs was seen immediately 

(within I hour) demonstrating the tight link between the photo-assimilate and 

microbial activity. A higher proportion of the 13C was incorporated into the 

straight chain fatty acids, 16: 0,16: 1(n-7), 18: 1(n-7) and 18: 1(n-9), than the 

branched chain fatty acids, with a seasonal increase in the total PLFAs, most 

notably 18: 1(n-7), 18: 1(n-9) and 16: 0. These findings suggested that rice plants 

promoted increased microbial activity and specific shifts in the soil microbial 

community. 

This method of label introduction has also been used to examine the 

different responses of an organism under different conditions and the resulting 

variations in the use of plant-derived C. Gavito and Olsson'(2003) labelled 

Plantago lanceolata L. with 13 C02, in a greenhouse experiment, to examine how 

arbuscular mycorrhizal fungi (AMF) allocate photo- as simi late under different 

inorganic and organic nutrient amendments. They used the 16: 1(n-5) fatty acid 

biomarker to represent the AMF lipids being recognised as the dominant AMF- 

specific storage lipid. The incorporation of the label into this signature fatty acid, 

combined with measuring hyphal length density, demonstrated that the 

proliferation of the AMF extraradical mycelium occurred in all their amended 

treatments, relative to the unamended treatments. 

Hanson et al. (1999) used the technique of labelling the PLFAs with a 

stable isotope tracer to identify the populations responsible for the degradation of 

toluene, a widespread pollutant. Toluene has been well studied in the laboratory 

and its biodegradation pathways have been characterised, although most of the 

work has been carried out using Pseudomonas species. The aim of Hanson et al. 
(1999) was to use labelled toluene to identify the native populations of toluene 

degraders in Yolo silt loam. This soil was collected from the field and transferred 

to microcosms, pulsed with 13C toluene and the PLFAs extracted and analysed. 
Out of the 59 PLFAs detected, only 16 were labelled with 13 C and the results 
indicated that the degradation was carried out by a population with a similar 
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PLFA trace to the genera Rhodococcus, rather than Pseudomonas, and suggested 

further targeted research for possible bioremediatlon. 

1.2.4 Field use of SIP 

One example of field use is incorporating 13 C02, via photosynthesis, into plants 

and following the signal as it transfers, as exudates, to the below-ground 

community. This results in a microbial community that may be highly labelled 

(Staddon, 2004); a contrasting example is the direct addition of highly labelled 

commercially produced substrates to soils (Padmanahban et al., 2003). 

The naturally low level of enrichment of 
13C in methane was utilised by 

Hinrichs et al. (1999) to examine methane consumption in marine sediments. 

They took sediment samples from a methane seep in Northern California and 

compared the lipid biomarkers in the sediments with those of control sediments. 

PLFA analyses showed that two ether lipids were present in the methane seep 

sediments, which were specific to archea, and were not present in the control 

samples. The authors looked at the level of 13C in the archeal biomarkers, 

depleted by more than 70%o relative to primary products, and concluded that the 

only source of C, depleted sufficiently in 1 3C, was methane. These PLFA results, 

together with parallel gene surveys of small subunit ribosomal RNA (16S 

rRNA), suggested that the methane was consumed by archaebacteria that are 

phylo genetically distinct from known methanogens. This clearly demonstrated 

the use of 13C PLFA approaches at natural abundance labelling. 

Ostle et al. (2000) were the first to introduce in situ 
13C labelling to 

below-ground systems through the application of a pulse of 
13 C02 at 350 ppm, 

the photo as simi lated 13C entering the below-ground community by fixation in 

photosynthesis and subsequent exudation in plant roots. This provides the most 
direct approach to identifying which organisms in the below ground community 
directly utilise plant root exudates. 

The introduction of a 13C label into below-ground ecosystems via 

photosynthesis has also been successfully demonstrated in the field. In 2004, 

Treonis et al. used stable isotope probing to label grassland soils in situ with 
13 C02 for 5 hours at ambient concentration to identify which microbial groups 

were actively involved in the assimilation of root-denved C in limed grassland 
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soils. 13 C-enrichment of PLFAs was seen at 4 and 8 days after pulsing with 
13CO 

2, with the fungal biomarkers 18: 1(n-9) 18: 2(n-6), and Gram-negative 

bacterial biomarkers 16: 1(n-7), 18: 1(n-7) and 19: Ocy showing the highest 

enrichment, turning over more rapidly than the Gram-positive bacteria biomarker 

lipids (al8: 0, i15: 0 and 16: 0). Based on the 13 C-enrichment of these PLFAs, the 

conclusion was drawn that the imposed liming treatment had not affected the 

turnover rates of 
13C labelled C, or which organisms utilised the photo- 

assimilate. 
The most widely used method for introducing a stable isotope into a 

system is to introduce a highly labelled, commercially produced, substrate. The 

ability to provide compounds at enrichment levels of up to 99% increases the 

probability of sufficient quantities of the label being incorporated into the 

biomarkers to be detectable. Whilst, as mentioned above, these compounds are 

relatively expensive, the high level of label means that the amount of substrate 

needed is small. In a temperate forest soil it has been demonstrated by Bull et al. 
(2000), using the techniques pioneered by Boschker et al. (1998) with 13 CH4 as 

the substrate, that PLFA profile labelling can be achieved at high enrichment and 

low concentration; this particular study revealed a novel methanotroph, similar to 

type 2 methanotrophs, as an important microorganism in atmospheric methane 

oxidation in these soils. 

Pelz et al. (2001) combined tracing the incorporation of 13C into cell fatty 

acids with whole cell hybridisation to identify toluene-assimilating populations 

in PHC-contaminated freshwater aquifers under sulphate reducing conditions. 

The highest 13 C-enrichment was found in the PLFA 16: 1(n-5) and 13 C-enriched 

biomarkers, characteristic for the genera Delsu4fobacter and Desu4fobacula 

(cyl7: 0 and IOMel6: 0), rather than the other sulphate-reducing general 

Desuýfovibrio and Synthrophobacter, suggesting that it was the Delsufobacter 

and Desuýfobacula responsible for the assimilation of toluene in PHC- 

contaminated freshwater aquifers. This was supported by whole cell 

hybridisation work and provided important information regarding the use of 

Delsufobacter and Desu4fobacula populations in bioremediation of PHC- 

contaminated freshwater aquifers. 

Crossman et al. (2005) used SIP, combined with PLFA and 

bacteriohopanoid analyses to characterise methane-oxidi sing bacteria in soil, 
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after incubating sieved forest soils with 13 CH4. They found evidence to suggest a 

novel population of methane-oxidising bacteria related to the type 11 culturable 

methanotrophs Methlocapsa and Methylocella genera of bacteria with 18: 1 (n-7) 

being enriched, but also finding enrichment of i17: 0. Crossman et al. (2006) 

continued this work with methanotroph bacteria in soils, studying the effect of 

ammonium sulphate on the microbial population oxidising ambient methane in 

the field using SIP combined with PLFA analysis; they found that ammonium 

sulphate treatment reduced the amount of 13C incorporation in the majority of 

PLFAs, with the exception of i17: 0 in the presence of high concentrations of 

methane. This suggested a shift in the functional community, which could not 

have been detected using conventional non-isotopic apparatus. 

The use of stable isotope as a tracer, to investigate either element fluxes 

through ecosystems or degradation pathways of xenobiotics, offers the potential 

to move away from the constraints of studying these processes using culturable 

organisms only, and also enables field studies outside the laboratory. However, 

the main limitation of the techniques, as pioneered by Boschker et al. (1998), is 

the resolution of the tool in identifying the populations of interest. While PLFA 

profiles can generally be matched to those in a microbial group, who share 

characteristic PLFA patterns, they rarely offer the means to identify the 

responsible organisms down to the species level. To this end, techniques that rely 

on the higher resolution provided by nucleic acids are currently being developed 

(Radajewski et al. 2000, Manefield 2002a). 

1.3 SIP using nucleic acids 

Radajewski et al. (2000) developed a technique which they specifically named 

stable isotope probing (SIP). This used the same principles as Boschker, whereby 

a substrate with a stable isotope label is added to the potential organisms of 

interest but, whereas Boschker et al. (1998) looked at the label incorporation into 

the PLFAs, Radajewski et al. (2000) used DNA as the incorporation biomarker. 

The semi-conservative nature of DNA replication was revealed by Meselson and 
Stahl (1958), based upon the ready incorporation of 15 N into microbial DNA, 

followed by density ultra-centrifugation. Radajewski et al. (2000) used SEP to 

identify the organisms responsible for the assimilation of methanol as a carbon 
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source in a temperate forest soil. The technique relies on the separation of 13C 

labelled DNA from unlabelled 12 C DNA, by ultra-centrifugation using a self- 

fon-ning gradient, such as CsCl. The heavier carbon isotope labelled DNA, when 

bound to ethidium bromide in the ultra-centrifuge tube, separates from unlabelled 
12 C DNA, forming bands which can be removed by subsequent fractionation of 

the gradient down the centrifuge tube, See Fig. 1.1. 

Figure 1.1 Equilibrium centrifugation of isotopically labelled DNA in CsCI/ethidium 

bromide density gradients, pure fractions and a mixture of the DNA extracted from a M. 

extorquens AM 155 culture utilizing either "C- or "C-methanol as the sole carbon 

source. (Reproduced from Radajewski et al., 2000) 

Padmanabhan et al. (2003) used SIP to look at the in situ degradation of 

four compounds; glucose, phenol, caffeine, and naphthalene in the field using 

l6rRNA gene analysis of 13C labelled DNA. Using general bacterial primers for 

PCR, together with cloning, they retrieved sequences from II bacterial genera 

with overlapping niches (6 glucose, 6 phenol, 4 caffeine and 3 naphthalene). 

They identified 10 of the genera as known isolates of chemo-organotrophs found 

in soil, water and sewage, whilst the I Ith was already known from environmental 

samples. These data demonstrated a high degree of similarity between organisms 

that are known pollutant degraders, determined using culture dependant studies, 
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and those found by culture independent methods; this indicates that, although 

much of the soil DNA is not identified and is not from culturable organisms, the 

our environmentally important organisms involved in the degradation of these f 

compounds, on this occasion, were those which have already been isolated and 

cultured. 

However, the use of nucleic acid SLP is not without limitations. The 

separation of the labelled and unlabelled i. e. heavy and light biomarkers relies on 

density gradient ultra- c entri fugation and the biomarker must incorporate 

significant isotopic enrichment to achieve adequate separation. DNA is relatively 

slow to incorporate a strong signal relative to other cellular components and the 

incorporation of any enrichment is dependent on the organism actively 

replicating during the pulse (Manefield et al., 2002a; Radajewski et al., 2003). 

The use, therefore, of RNA as a biomarker poses obvious potential advantages 

over DNA. Due to its high turnover rate, RNA should incorporate a more rapid 

and stronger isotopic enrichment, leading to good separation from unlabelled 

biomarker during ultra-centrifugation. Also, because RNA replication is 

independent of cell replication, it offers a higher resolution of target organisms. 

Manefield et al. (2002b) used stable isotope probing with RNA to 

examine organisms involved in the degradation of labelled phenol in an aerobic 

industrial bioreactor by adding 13 C6 phenol into the bioreactor containing heavily 

polluted waste water (> 200 ýtg phenolic compounds per ml). The bacterial RNA 

was subsequently extracted from the reactor, and the light, unlabeled RNA was 

separated from the heavy labelled by equilibrium density gradient centrifugation. 

RNA samples from the heavy fraction were then reverse transcribed and the 

resulting PCR products were subjected to DGGE, followed by cloning and 

sequencing. The bacterial strains developing in the bioreactor were Pseudomonas 

putida BS564 and Pseudomonas chloroaphis BS523, both strains being known 

and culturable phenol degraders. The bacterial sequences produced from the 

clones revealed that, rather than the mixed Pseudomonas species being 

responsible for the majority of the phenol degradation, the degradation was in 

fact dominated by a Thauera species, clearly illustrating the potential advantages 

of using SIP for determining the role of unculturables. 
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Prosser et al. (2006) have since reviewed the use of DNA-SLP as a tool 

for studying plant-microbe interactions, highlighting It's potential for studying 

specific interactions combined with the use of RNA-SLP. 

1.4 The microbial degradation of phenol 

Phenol (C6H60; hydroxybenzene) is an aromatic hydrocarbon commonly 

extracted from the distillation of coal tar, and also synthetically produced through 

several processes, including the oxidation of cumene or toluene (van Schie and 

Young, 2000). Phenol also occurs naturally in all plant material, being a major 

constituent of lignin and, as plant material decays, the lignin is broken down and 

phenol is released. However, the amount released into the soil from natural 

sources is a fraction of that released from anthropogenic sources (van Schie and 

Young, 2000). Phenol is a common industrial pollutant, contaminating sites 

associated primarily, with the manufacture of plastics, the petrochemical 

industry, chemical storage, manufactured gas plants, the manufacture of steel, 

textiles and pharmaceuticals as well as sites involved with creosote and wood 

preserving (Guerin 1999). 

Phenol is highly mobile in the soil environment and most. commonly is 

transported into the soil environment through leaching into ground and surface 

water, for example it is discharged into the envirom-nent via wastewater effluent 

from a number of manufacturing processes, as well as the excessive use of 

pesticides (Jensen 1996). This leaching of phenol and phenolic compounds from 

industry presents a major biological problem, since many phenolics are known to 

be carcinogens and have been declared harmful pollutants. All industries that use 

or produce phenol will, at some point, inevitably release traces into the 

environment where it may taint potable water, producing an unpleasant aroma; it 

also reacts during chlorination or water, forming chlorophenols, which are 

suspected carcinogens (van Schie and Young 2000). Current methods of 

remediating areas contaminated with phenol include physiochemical processes, 

such as passing aqueous effluents containing phenol over activated charcoal, and 

also biological processes. With any of these processes there are also the 

associated risks of releasing secondary pollutants (Annadurai et al., 2002, Chen 

et al., 2002). 
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The concentration found on a background level in soil is poorly 

documented, which WHO (1994) suggested was due to phenol being unlikely to 

persist in soil because of rapid biodegradation or transport to either groundwater 

or air. This view was supported by the Agency for Toxic Substances and Disease 

Registry (ATSDR, 1998) who also considered that elevated soil concentrations 

of phenol are likely to be the result of localised spills of historic industrial use 
The WHO (1994) reported phenol concentrations up to 13 mg. kg-1 from surveys 

of lake and river sediments across the USA 

Phenol is acutely toxic to many organisms and it's relatively high water 

solubility (8.3g / 100 ml at 20'Q leaves aquatic ecosystems vulnerable. It is 

weakly acidic thus its. ionised fon-n is susceptible to electrophilic substitution 

chemical reactions, however the USEAP (1996) estimates that at a pH of 8, 

approximately 99 % of phenol will exist in the neutral form. Phenol has a 

relatively low vapour pressure, 48 Pa, at 20T, resulting in it being a highly 

volatile substance, though, to a limited extent it can sorb to soil organic matter, 

reducing both its transport and volatilisation. (Environment Agency 2005) 

Additionally, phenol has well known antimicrobial properties and is 

widely used as a topical antiseptic, with the main effect being on microbial cell 

membranes, disrupting them to increase fluidity and, potentially, resulting in cell 
death. However, a number of microorganisms have become resistant to the 

bactericidal effects of phenol, primarily as a result of changes in their cell 

membranes. These bacteria which are resistant to the bactericidal effects of 

phenol therefore offer a method of removing phenol contamination. 

Phenol is degraded by organisms both aerobically and anaerobically, 

under both these conditions the half life of phenol in soil and groundwater ranges 

considerably. USEPA (1999) reviewed a wide range of studies, many of which 

were conducted under optimal laboratory conditions and estimated the half life of 

phenol in soil to be 3.5 days. Whereas Mackay et al. (2000) reported a range of 

aerobic degradation half-life values from under 24 hours to 23 days in soils. In 

groundwater the Environment Agency (2002) reported aerobic degradation half- 

life values in groundwater ranging between 10 and 100 days and anaerobic 

degradation half-life values from 50 to 300 days and suggested that aqueous 

concentrations of phenol above 0.5 gl-1 would prove toxic to phenol degrading 

organisms. 
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The aerobic pathway of phenol degradation is now firmly established and has 

been well documented. The first step in the pathway is the conversion of phenol 

to catechol, by the enzyme phenol hydroxylase using mono-oxygenase. A 

hydroxyl group is added, ortho or para to the existing hydroxyl group and the 

resulting catechol can then be degraded by either the ring being cleaved between 

or outside the two hydroxyl groups (see Fig. 1.2). Intradiol cleavage (the ortho 

pathway) converts catechol by cleaving between the two hydroxyl groups, using 

the enzyme 1,2-dioxygenase to form cis, cis-muconate, which enters the Krebs 

cycle after further conversion. This is the phenol degradation pathway generally 

utilised by eukaryotes. The extradiol pathway is utilised by prokaryotes for the 

degradation of phenol. Extradiol or meta cleavage (the a-keto acid pathway) of 

phenol occurs outside the two hydroxyl groups, adjacent to one of them, 

catalysed by catechol 2,3-dioxygenase, forming 2 hydroxomuconate 

semialdehyde. This is then oxidised to form cis 2-hydroxypenta 2,4-dienoate, 

then 4 hyroxy-2-oxovalerate, before being converted into pyruvate and 

acetaldehyde, and entering the TCA cycle (Schlegel, 1993). The intradiol 

pathway was illustrated by NeuJahr and Gaal (1973) for Trichosporon cutaneum. 

These authors found that the addition of phenol to laboratory cultures of 

Trichosporon cutaneum resulted in activities 50-400 times higher than for non- 

induced cells, for phenol hydroxylase, catechol 1,2-oxygenase and cis, cis- 

muconate cyclase. The use of eukaryotes to degrade phenol on a commercial 

scale is currently an area of industrial development with Chang et al. (1998) 

reporting that in the yeast Candida tropicalis complete phenol inhibition of the 

fungus does not occur until 3,300 mgl-1 whilst Leitdo et al., (2007) also found 

Penicillium chrysogenum, a halotolerant fungus, capable of degrading phenol 

with no accumulation of toxic intennediates. Hinteregger et al., (1992) foundthat 

the addition of phenol to laboratory cultures of Pseudomonas putida EKII 

resulted in high levels of catechol 2,3-dioxygenase as well as smaller amounts of 

2-hydroxymuconic semialdehyde hydrolyase and catechol 1,2-dioxygenase, 

demonstrating it was the extradiol pathway being utilised. These pathways are 

shown in Fig. 1.2. 
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Figure 1.2 The aerobic pathways of phenol degradation. 
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van Schie and Young (2000) compiled a list of known microorganisms 

capable of aerobic phenol degradation, which identified five species of 

Pseudomonas, an Acinetobacter, a Bacillus, a Ralstonia and a Streptomyces. The 

list also contained two species of yeast; Candida tropicalis and Trichosporon 

cutaneum, whilst Rhodotorula glutinis, another yeast species, has also been 

reported as a phenol degrader (Walker, 1973). 

The initial step in the anaerobic degradation of phenol is the conversion 

to 4-hydroxybenzoate. This can be achieved via one of two pathways, depending 

on the organism(s) responsible for the degradation. In the denitrifying 

Pseudomonas, a phosphate group is added to phenol by phenol kinase and the 

resulting phenylphosphate is further metabolised to forni 4-hydroxybenzoate 

(Lack and Fuchs 1994). Another route is for phenol to be carboxylated by 4- 

hydroxybenzoate decarboxylase to forin 4-hydroxybenzoate (He and Weigel 

1995). Fig. 1.3 shows these pathways. 
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Figure 1.3 The anaerobic pathway for phenol degradation. 
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Known microorganisms, capable of anaerobic phenol degradation include 

bacteria from the Thauera, Azoarcus, Desu4fobacterium, Desulfomaculum, 

Desuýfbvibrio and Geobacter genera (van Schie and Young 2000). 

1.5 Summary and objectives 

Culturable microorganisms represent only a fraction of microorganisms present 
in soil, yet have already been a crucial source for discovering and developing 

organisms of immense value to mankind. There is no reason to believe that the 

unculturable pool will be of any lesser value, if only the full genetic and 

metabolic potential can be fully characterised and utilised. Stable isotopes offer a 

number of possibilities in increasing our ability to be able to detect which 

microorganisms are assimilating specific substrates, or carrying out specific 

functions within samples from the natural environment. For example, SIP can be 

performed on PLFAs, which account for a large proportion of a microorganisms 

cell membrane, identifying which groups of organisms are assimilating a 

substrate. DNA-SEP provides the ability to identify organisms that have 

incorporated the stable isotope to the species level, while RNA-SEP enables even 

higher specificity, highlighting organisms that are actively assimilating the label, 

independently of cell replication. 

Phenol, produced from many anthropogenic sources, presents an 

important environmental problem, particularly when spillages or leakages from 

industry occur. Methods for remediation of areas contaminated by phenol are 

needed, particularly utilising techniques which are effective at destroying the 

molecule without the risk of creating secondary pollutants. Within this context, 

SIP offers the potential of identifying novel phenol degraders, which may in turn, 

be utillsed in the bioremediation of phenol. This study aims to utilise the 1 3c 

stable isotope of C in the field, to examine both the factors and organisms which 

are important in controlling the degradation of phenol in soils. 
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The specific hypotheses to be tested in this thesis were: 

The experimental treatments at Sourhope affect the degradation 

of substances applied to the soil. 

2. The effect of treatments on the soil populations will be robust and 

not affected by vegetation. 

3. The microbial community will not respond universally to the 

addition of phenol. 
4. The behaviour of soils in laboratory incubations will complement 

in situ responses to phenol addition. 
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2. Examining the impact of lime, nitrogen and biocide on the degradation of 

substrates in situ using stable isotopes 

2.1 Introduction 

In 1997 the NERC Thematic Research Programme 'Biological Diversity and 

Function in Soils' established at an experimental upland grassland site on the 

Scottish borders, at Sourhope (55'28'32"N, 2'14'43"W, OS grid ref NT855197). 

There were six main aims of the programme. Firstly to quantify the taxonomic 

and metabolic diversity of key groups in the soil biota in a single ecosystem, 

sufficient to provide a basis for an experimental programme to determine the role 

of soil diversity in ecosystem processes. Secondly, to extend taxonomic 

understanding of the soil biota, especially by using isolation and molecular 

techniques to examine hitherto poorly characterised groups. The third aim was to 

characterise the roles played by all major groups within the soil biota (including 

root-microbe associations) in ecologically important processes in carbon (C) and 

nitrogen (N) cycles in soil, including the development of C sinks, determining 

the pathways and rates of movement of C through components of the soil 
foodweb. The fourth aim was to determine (both experimentally and by 

comparison of contrasting sites) the extent to which depauperation of the soil 
biota would reduce the ability of the soil to provide essential ecosystem services, 
including the ability to cope with anthropogenic inputs. The penultimate aim was 

to conduct parallel manipulations of major taxonomic groups of soil biota under 

controlled conditions. Finally, there was the sixth aim of determining the extent 

to which indicators of soil biodiversity can be used as measures of soil ecosystem 

resilience, relevant to land use management. 

Consequently, the Sourhope site has been the centre of extensive soil 

biological research over the last decade, resulting in a wealth of information on 

the abiotic and biotic status of this area of the UK uplands. Such upland 

grassland habitats represent a large proportion of hill ground in the UK and 

previous work, particularly by Bardgett et al. (1996,1997), has demonstrated 

that, compared to improved grasslands, unimproved grasslands (such as 
Sourhope) have a greater microbial diversity, making it more suitable for 

experiments examining the above- and below-ground communities. The 
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Sourhope site (see Plate 1), had not been subject to any additions of lime or 

fertilizer in recent history, and fencing has excluded grazing animals from the 

site since summer 1998. The treatments applied to the site were designed to be 

similar to those applied for pasture improvement or to specifically alter soil 
-2 biodiversity, resulting in four experimental treatments: lime (CaC03,600 gMy 

1), N (12 g M-2, twice a year), N and lime (same quantities as for individual 

applications) and biocide (Dursban 1.5 litres per hectare, 5 times a year, 36 cm 3 

in 10 litres water per plot). There were also two Control treatments, Control I 

and Control 2 which were identical (there being two purely to enable enough 
Control treatment area for all experiments) and had no additional treatments. 

Fitter et al. (2005) reviewed the findings from the experiments conducted 

at Sourhope focusing on biodiversity and ecosystem functioning in soils. 
Combining results from various studies at the site, Fitter et al. (2005) provided 

an overview of the high level of diversity of "small" organisms present at 
Sourhope with over 100 bacterial species (McCaig et al., 2001), 365 protozoan 

species (Finlay & Fenchel 2001), ca. 140 species of nematode (Floyd et al., 
2002) and 24 distinct types of arbuscular mycorrhizal fungi (AMF) 

(Vandenkoomhuyse et al., 2002). Interestingly, despite the extreme diversity of 

"small" organisms at Sourhope, this was not the case for the larger soil 

organisms (Davidson et al., 2002). 

Stable isotopes have already been used extensively at the site; 13 C02 

pulse labelling has also been utilised at Sourhope, with highly enriched 13 C02 at 

ambient concentration being used to trace the path of atmospheric C through the 

ecosystem (Staddon, 2004). Ostle et al. (2002) found that within 48 hours of the 

pulse, over 70% of the labelled C had been returned either through respiration or 

as plant exudates, Johnson et al. (2002) detected labelled C in AMF as little as an 

hour after a short pulse of 13 C02. Chapter 2 describes the application of a 13C_ 

phenol pulse to the soil surface in four treatments at Sourhope (Control, L, N and 

B) in order to determine the way in which the treatments influenced the 

degradation of an anthropogenically produced substrate applied in situ. Using the 

same approach the application of 13 C-glucose to the soil surface in the same four 

treatments under investigation, to determine if the treatments had the same 

influence on the degradation of a more natural C source. Finally, a 13 C02pulse 

37 



was applied to a darkened area of soil in Control and L treatments to determine If 

the chemical differences in the treatments influenced the return of the gas. 
The experiment described in this Chapter coincided with a major 

fieldwork campaign at the site, with a number of research groups working 

towards common objectives. Due to delays in its construction a new custom built 

mobile laboratory was deployed without extensive pre-testing and the work 
described here was the first experiment using the mobile laboratory. The unique 

opportunity of working in a campaign with other research teams during this 

campaign was felt to negate the potential risks of commissioning the laboratory 

in the field, when relatively untested. 

2.1.1 The mobile laboratory: research and development 

In 2000 the UK Natural Environment Research Council (NERC) agreed to fund 

the construction of a unique field-based laboratory system for the in situ 
deten-nination of carbon-13 stable isotope composition0f C02 air and soil fluxes. 

The system comprised a customised gas chromatograph isotope ratio mass 

spectrometer (GC-IRMS) dedicated for 13 C02deten-nination, customised to work 

under field conditions5 with continuous gas flow through 16 air sampling lines, 

designed to work automatically, without user intervention, allowing semi- 

continuous sampling for periods of up to several days. 

The resulting laboratory was the first mobile GC-IRMS ever to be 

constructed and involved the design and commissioning of an appropriate mobile 
housing for the GC-IRMS. The structure of the laboratory itself was a modified 

twin-axle trailer unit (Indespension Ltd., Bolton, U. K. ) fitted with temperature 

controlled heaters and wall extraction fans to maintain constant laboratory 

temperature (ca. 150C) for optimum GC/GC-IRMS operation. Reliable laboratory 

temperature regulation over a wide range of ambient conditions was possible, 

given adequate insulation and correct positioning of fans, heating and cooling 

systems within the laboratory. The laboratory had side and rear access doors, 

containing fixed conventional laboratory benching and anti-vibration mats to 

protect sensitive turbo-pumps and computers during transport. 

The GC-IRMS itself was constructed by Pro Vac Services (Crewe, UK), 

based around a standard laboratory gas chromatograph (GQ coupled to an 
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isotope ratio mass spectrometer (HýMS), with a flow rate of ca. 3.6 cm3 mm-, 

configured to automatically monitor C02, via 16 sequentially scanned input 

ports. The GC operated at a temperature of, 60'C and contained a 30 in fused 

silica plot column (Restek International) the HýMS was custom-made by Pro Vac 

services (Crewe, UK) being specifically custornised to enable towing of the 

equipment over rough terrain. Modifications to the construction of the GC-IRMS 

included the pennanent welding of the field magnet into place, silicone 

embedding of electronic components and ready access to vulnerable components 

to be removed during transit. Fig. 2.1 shows a flow diagram of the mobile 
laboratory components. 

Due to the laboratory being utilised in the field, it was also necessary to 

provide an adequate and reliable supply of electricity. A4 kW diesel generator 

carried on a separate vehicle was used to generate electricity on site, supplied to 

the laboratory via a 240V distribution board with residual circuit breaker (RCB) 

and conventional 13 amp sockets. During operation the generator was parked at a 

considerable distance from any experimental plots (usually 100 in) to prevent 

contamination with exhaust gases. A metal protected power cable was used to 

distribute the power. 

The raw data produced by the GC-IRMS in the forrn of a time-indexed (I 

Hz) digital data stream showed the amplified mV signals for the three mass 

collectors (beam 44,45 and 46; see Fig. 2.2). A custom designed computer 

program written in SAS software (V8 2000 SAS Institute Inc) structured the 

data, integrating the area underneath each of the mass peaks to calculate the 

amounts of 12 C and 13C in each injected gas sample. 
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Figure 2.1 Schematic of the GC-IRMS in the mobile laboratory showing air from each 

of 15 sample lines being drawn though a manifold to waste. Note the 16 port Valco 

multi-position flow-through valve electronic actuator which sampled each line in turn, 

diverting it to a sample loop, I em', prior to being injected into the GC and IRMS. 

Results were recorded on the PC. 
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Figure 2.2 Example of the Millivolt signals produced from the three collectors in the 

GC-IRMS, after amplification (- mass 45, mass 46, mass 44). This shows a trace for 

a normal (natural abundance) air sample, using a sample run of 250 seconds. 

Prior to use in the field, air was injected into the GC-M-MS system via a 

Valco gas sampling valve (GSV) and the efficiency of a range of sample loops of 

different sizes was tested. It was found that, from a range of sample loop sizes 

from 0.25 to 2 cm 
3, 

a loop size of I cm 
3 

produced the largest analytical peaks, 
3 

with minimum peak broadening; hence, a sample loop size of I cm was used for 

all the mobile laboratory measurements described here (data not shown). 
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2.2 Methods 

2.2.1 The mobile laboratory set up and site description 

The mobile laboratory was taken to the field site and installed on a level surface. 
Air from all 16 lines, with the exception of theC02 standard, which had a flow 

rate of zero unless being sampled, was continually drawn through the lines at a 

rate of 200 cm 3 min -1 using a low vacuum manifold. A 16 port Valco multi 

position flow-through valve controlled by the PC sequentially switched between 

channels. This, diverted the gas in each line in turn to the gas sampling valve 

where it filled the I cm 3 gas sampling loop. The gas in the sampling loop was 

then injected into the GC. Once in the GC, the carrier stream was directed to 

waste until immediately prior to carbon dioxide elution (approximately 140 

seconds). The carrier gas was then directed into the source of the IRMS for 

13 C02 isotope analysis, with mass beams 44,45 and 46 being measured and 

recorded. Data from the IRMS were stored on a PC with each single analysis 

taking a total of ca. 5 minutes. 
Closed-top chambers, diameter 20 cm, used for the experiment were 

made from Perspex, with a height of 30 cm. An inlet hole was situated on the 

side of the chamber, 3 cm from the bottom to which an air inlet pipe was 

connected, allowing air to be drawn into the chamber from a height ca. I in 

above ground (see Plate 2). The outlet hole was 2 cm from the top of the 

chamber on the opposite side to the inlet, to which PTFE tubing, with an internal 

diameter smaller than the inlet tube, was connected; this tubing then ran to the 

mobile laboratory in the field. Chambers were sealed onto the rings using 

sections of rubber car tyre inner tube. 

Sampling of gases up to 100 in radius from the GC-IRMS was achieved 

using PTFE tubing connected to flow-through chambers (see below) secured to 

the ground, previous work by McNamara et al. (2002) had established that there 

is no isotopic fractionation in a flow through line system of this design and 

length. Results of the analyses were automatically integrated, processed and 

digitised for storage on a hard disc. 
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The work was conducted at the Natural Environment Research Council 

(NERC) funded experimental Sourhope field site in the Scottish borders, UK., 

using the established biodiversity manipulation plots at the site (see section 2.1). 
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Figure 2.3 Experimental design of the biodiversity manipulation plots at Sourhope. 

(Reproduced from , N,, ww. niTiw. ac. ul-, /soilbio/Sourhope Desigrn. litni). The experiments 

within this thesis utilised blocks 1,2 and 3 (the bottom three rows in the figure). 
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Plate I Photograph of the field site at Sourhope with the mobile laboratory in place. The 

plate shows the slope of the plots and the positioning of the chambers, the height of the 

vegetation and the 'rigs and furrows'. 
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2.2.2 In situ degradation of phenol monitored USing 13 C02 

To measure the degradation of phenol in the field, 13 C6 phenol (Cambridge 

Isotope Laboratories, UK 99%, 50 ppm) in water, 300 cm 3, was applied within 

10 cm sections of 20 cm diameter drainage pipe, set into the ground (see Fig. 2.4) 

to the soil surface (314 CM) in each of the rings in 12 treated plots, four different 

treatment plots, and three replicate blocks of each treatment. An equal volume of 

water without phenol was added to other plots to provide two "natural 

abundance" chambers. The treatments were; control, lime (L) (600 g M-2 Y-1), 

nitrogen (N) (12 g M-2 , twice a year) and biocide (B) (Dursban 1.5 litres per 
hectare, 5 times a year, 36 cm 3 in 10 litres of water per plot). The mineralisation 

of phenol was monitored 'in-situ' as the 13 C02 evolved from the treated areas 

using the closed-top continuous flow-through chambers connected to the mobile 
laboratory described in section 2.1.1. 

Two chambers were placed, on rings, outside the treatment areas to 

measure the natural abundance Of C02 from soil at the site. Black bags were 

placed over the chambers, to exclude light, thus stopping theC02 evolved from 

being diluted with photosynthetically produced 
12CO2. Air from all 14 chambers, 

at a flow rate of 200 cm 
3 

min-', was drawn through PTFE lines to the mobile 
isotopic ratio mass spectrometer (IRMS) for semi-continuous measurement of 
13 C02. In addition a line carrying ambient air was also monitored. Gas was 

sampled from all chambers for 24 hours, enabling both the 1 3C 
value and the ppm 

C02 to be measured. 
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Plate 2 Photograph of the field site at Sourhope, showing the PTFE air sampling lines. 

Two chambers are shown lying on their sides, prior to being connected, as are the air 
intake pipes connected to two sampling chambers, prior to being covered with black 

bags. The plate is for demonstration purposes only and does not reflect the methodology 
in experiments where there was only one chamber per block. 
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Figure 2.4 Diagram of a chamber, showing the location of the inlet and outlet tubes 

relative to each other and the ground. 

2.2.3 In situ degradation of glucose monitored using 
13 C02 

To establish the 13 C02 flux from the addition of a substrate that does not possess 

antimicrobial properties, the experiment was repeated using glucose as a 

substrate Glucose is readily utilised as a carbon source by most soil organisms 

(Stotzky and Norman, 1961) and is involved in cellular respiration in both 

prokaryotes and eukaryotes. Killham (1994) reports that soil organic matter 

(SOM) exists in three main pools, the largest being inorganic carbon accounting 
for 90% of the total, followed by the carbon held in biomass, and less than 1% 

existing as soluble carbon. Soluble carbon comes primarily from, glucose, being 

produced by plants during photosynthesis and released into the soil through plant 

root exudates. Because glucose is metabolised so readily by soil organisms, it has 

a very high turnover rate in soil, with Killham (1994) stating turnover values of I 

day for glucose compared to 500 days for the more complex structure, lignin. 

Van Hees et al., (2005) also found a rapid flux through the relatively low 
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concentrations of low molecular weight compounds, reporting a mean residence 

time in the soil of I- 10 hours and attributed it to microbial removal. 

This experiment used the same experimental design, treatments and 

chambers, at different locations within the treatment areas, as the phenol 

degradation experiment. The rings where the chambers were to be placed were 

all pre-watered with 500 cm 3 water 24 hours prior to glucose application. 13 C6 

glucose solution, 500 cm 3 (5 g 1-1,1.69%), was added to each of the chambers in 

the treated plots with 500 cm 3 water being simultaneously added to the natural 

abundance chambers. Gas from all lines was sampled for 24 hours. 

2.2.4 13 C02pulse in the dark 

To establish whether any differences in the 13 C02released from the L and control 

treatments were the result of biological or purely chemical differences (e. g. 

absorbance at different pHs) a13 C02pulse experiment in the dark was conducted 

to eliminate photosynthetic uptake and compare simple physical phenomenon. 
Six chambers, identical to those used in the phenol and glucose 

degradation experiments, were used to measure the 13 C02 release from lime and 

control plots, three replicates of each. The six chambers were pulsed, in the dark, 

with 350 ppm 13 C02 (Spectra Gas) for 30 minutes at 100 CM3 min-. An 

additional chamber was used to measure natural abundance, which received no 
13 C02but was also darkened. The outlet lines were then connected to the mobile 

mass spec with a flow rate of 250 cm 3 min-' in order to remove and residual 
13 C02 from the lines. The chambers were opened and the head space allowed to 

'breathe' before the chambers were replaced and the second cycle of sampling 

commenced. 
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2.2.5 Statistical analysis 

The statistical analyses were performed using SPSS v. 14.0 (2005 SPSS. inc). 

ANOVA with repeated measures was used to analysis the 6 and flux 

measurements, with a posterori t tests. One-way ANOVA was used to compare 

the final cumulative 13C fluxes between the four treatments, followed by a post 
hoc Duncan's test. 

2.3 Results 

2.3.1 In situ degradation of phenol monitored using 
13 C02 

Phenol solution was added to the plots at 17: 15 on 09/09/03. Fig. 2.5 indicates 

that the lime treatment had an effect on the rate of phenol degradation in the 

field. The control, N and B treatments all responded to the phenol addition in a 

similar way with an immediate sharp rise in the 13 C02 evolved, reaching a peak 

six hours after phenol application. The L treatment showed a slower initial rise 
in the 5 13 C02 value, with a less steep gradient, reaching a peak after 12 hours. 

ANOVA, with repeated measures, showed no significant differences in the 
13 C02values between treatments prior to the addition of phenol. Similarly, there 

were no significant differences between the control, N and B treatments after the 

addition of phenol. However, when comparing the control and L treatments, the 

control treatment mineralised phenol significantly faster in the first eight 

analysis cycles following application of the labelled substrate, i. e. for the first 7 

hours (p=0.034). After 7 hours any apparent differences between the control and 

L treatments are not significantly different. At test on the 13 C02 values in the 

first 7 hours of the experiment showed significant differences within the first 7 

hours between 2 and 4 hours after phenol addition. 

A graph of the phenol derivedC02 flux, presented in Fig. 2.6, supports 

the data from the 13 C02 graphs, negating the possibility that the 5 values were 

masked by a higher overall rateOf C02 evolution in the L treatment. ANOVA 

with repeated measures showed iio significant differences in the phenol derived 

flux values between treatments prior to the addition of phenol. Again, there were 
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no significant differences between the control, N and B treatments after the 

addition of phenol, but in comparisons of the control and the L treatments, the 

control treatment showed a significantly higher flux in the first eight analysis 

cycles following application of the labelled substrate, i. e. for the first 7 hours 

(p=0.044). After this point there were no significant differences between the 

control and L treatments. At test on the first 7 hours of the phenol denvedC02 

flux showed the significant differences within the first 7 hours were between 2 

and 4 hours after phenol addition. 

An ANOVA on the cumulative phenol derived C02 flux, Fig. 2.7, 

revealed that by the end of the experiment, there was no significant difference in 

the total 13C flux between any of the treatments. 
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Figure 2.5 5 13 C02 in air following the application of 300 CM3 
13 C6phenol [50 ppm]. 
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L, AAN, *+ 

51 



2.3.2 In situ degradation of glucose monitored Using 13 C02 

Glucose solution was added to the plots at 18: 15 on 10/09/03. Figures 2.8 - 2.10 

illustrate the 613CO -- 11 2 in air values derived from the glucose addition, the glucose- 

derivedCO2 flux and the cumulative glucose-denvedC02 evolved, respectively. 

The addition of the substrate glucose caused similar treatment responses to those 

produced when phenol was added. The control, N and B treatments all 

responded in the same way, with an immediate rise in the 13 C02 evolved. The L 

treatment showed a slower rise in the 6 13 C02 in air value, with a less steep 

gradient and the glucose-derivedC02 flux (Fig. 2.9) in the L treatment was 

significantly lower than in the control treatment in the first 7 hours after I 3c 

glucose (p=0.04). At test on the first 7 hours of the glucose derivedCO2 flux 

showed the significant difference was around 4 hours after glucose addition. 
An ANOVA on the final cumulative 13C glucose-derivedCO2flux shown 

in Fig. 2.10 again revealed that, by the end of the experiment, there was no 

significant difference in the total 13C flux produced under any of the treatments. 

500 

400 

- 300 
co 0 0- 

200 
C 
0 
C) 

ý2 100 

0 

-100 

Time post pulse (hours) 

Figure 2.8 6 13 C02 in air following the application of 500 CM3 
13 C6glucose (5 g I-, 

1.69%). Error bars are one standard error of the mean (*-* control, 
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2.3.3 13 C02pulse in the dark 

Figure 2.11 shows the 6 13 C02 released by L and control treatments following a 

30 minute pulse of 350 ppm 13 C02. A paired Mest at the two time points revealed 

that there were no significant differences in 13 C02between the two treatments. 
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Figure 2.11 6 "CO-) values following the pulse of 350 ppm 
13 C02. Black blocks =L 

treatment, white blocks = control treatment. Error bars are one standard error of the 

mean. 
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2.4 Discussion 

The initial deployment of the mobile GC-ERMS system highlighted that further 

developmental work was needed. The work described in Chapter 2 was 

conducted during a field campaign, in conjunction with other institutes (see 

above) in July 2003.1he computer software both controlling and processing the 

data from the GC-fRMS was custom designed and produced, and consistent 

traces of the runs in real time were generated on the computer screen as each 

sample was processed. However, on returning from the field, an error in the 

program was found which had overwritten each data set as a new one was 

created. This resulted in the effective loss of all the data from the first run in the 

field. The software was altered to correct this error and a return trip was made to 

the field in September 2003 to repeat the experiment, which had been initially 

conducted in July of that year, producing the data shown in Chapter 2. 

The large amount of data generated by the GC-IRMS created problem on 
longer GC-IRMS runs as the computer memory was only sufficient to allow 

automatic operation for eight hours before exceeding the memory capacity and 

causing the computer and, consequently, the GC to fail. This problem was 

recognised and the computer memory and hard drive capacity upgraded, enabling 

the millions of raw data points from a typical run to be stored. 

The generator manufacturers strongly recommended an oil change every 

48 hours when run continuously. Obviously, this meant that the generator had to 

be switched off during oil changes and stopping electricity supply to the 

laboratory resulted in a loss of unsaved data together with the loss of system 

vacuum, This potential problem was overcome by installing a UPS 

(uninterruptible power supply) in the mobile laboratory, providing up to ten 

minutes of power when the mains supply from the generator was stopped. 

In 2004, when the samples for the PLFA analyses shown in Chapter 4 

were obtained, the aim had been to measure the 13CO2 in sample gas flow lines at 

the same time. The generator was parked, as previously mentioned, in a field 

adjoining the site, with the power cable running through a fence and to the 

laboratory. The field containing the generator was grazed by a large number of 

cashmere goats and, during the first night of the fieldwork in 2004, it later 

became apparent that the livestock had pulled out the cable carrying electricity 
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from the generator to the laboratory. This resulted in the laboratory losing all 

power, together with unsaved data, and immediate loss of mass spectrometer 

vacuum, blowing the source filament. Field repairs were performed immediately 

on realisation of the problem and the filament replaced, but by the time the GC- 

IRMS had regained sufficient vacuum, the 13 C02 from the pulse had passed. It 

was therefore necessary to return to the field in 2005 to repeat the work lost in 

2004. Subsequently, a fence was installed round the generator for all field studies 

at the site, protecting it from livestock, allowing safe passage for the cable to the 

experimental site. 

The mobile mass spectrometer was able to successfully detect 13 C02 

enriched air following the application of 300 CM3 13 C6 phenol (99%, 50 ppm) and 
13 C6 glucose solution, 500 CM3 (5 g 1-1,1.69%) to the soil surface. The 

concentration of phenol used in all the experiments throughout this thesis, 50 

ppm, was chosen following the work of Padmanablian et al. (2003) who found at 

those concentrations both theC02 evolved and the incorporation into the nucleic 

material was detectable. During further discussions with the authors regarding 

the choice of concentration they knew that such concentrations commonly occur 

in soil as a result of either pollution events or naturally occurring root exudation, 

and thus it was the most suitable concentration, being well beneath the published 

laboratory inhibitory concentrations (e. g. ca. 500 ppm, Kumar et al., 2005). 

The detection of 13 C enriched air after the addition of a liquid substrate to 

soil has been demonstrated by H6gberg and Ekblad (1996) who used the natural 

isotopic difference between a C3-plant ecosystem and C4-sucrose to study 

substrate-induced respiration in an in situ forest soil, with minimal disturbance to 

the ecosystem. H6gberg and Ekblad (1996) had initially proved this approach in 

the laboratory and then replicated the procedure in the field, where they produced 

consistent results, with the addition of sucrose causing a rise in substrate induced 

respiration ca. 1.5 to 2.5 times the basal respiration rate. Since then a variety of 
13C labelled substrates have been applied to soils at varying concentrations, 

ranging from pulsing with 13CO2 in the laboratory (Ostle et al., 2000; Butler et 

al., 2003; Yu et al., 2004; Gavito and Olsson, 2003), and in the field, (Treonis et 

al., 2004) through simple compounds such as glucose (Padmanahban et al., 

2003), methane (Boschker et al., 1998; Bull et al., 2000; Hinsrichs et al., 1999; 

Radajewski et al., 2000; Crossman et al., 2005; Crossman et al., 2006) and 
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acetate (Boschker et al., 1998; Pombo et al., 2005) to more complex substrates 

such as, phenol, (Padmanahban et al., 2003), toluene (Hanson et al., 1999), 

naphthelene, (Padmanahban et al., 2003) and caffeine (Padmanahban et al., 

2003). 

Padmanahban et al. (2003) applied solutions of phenol, glucose, 

naphthalene and caffeine to soil at concentrations of 50,50,2 and 50 ppm, 

respectively. All the solutions were labelled to 99 atm% 13 C and resulted in the 

detection of mineralization of the glucose, phenol and naphthalene toC02within 

24 hours. Glucose was the fastest to be metabolised, with almost 7% of the total 

13 C added returned as 13 C02within 2 hours, whilst 9% of the 13 C added as phenol 

in this study was returned after 8 hours; they were unable to detect any 13 C02 

from the addition of caffeine. The low solubility of naphthalene led to high 

variability in the results, whilst the 13C produced following the addition of 

caffeine was not significantly higher than the background flux. The other isotope 

of C, radioactive 14C 
, 

has also been used extensively to study substrate induced 

respiration with Topp et al. (2006) using 14C labelled caffeine additions to soil to 

detect the mineralization of caffeine in the laboratory, measuring the production 

of 14CO2. They found the mineralization of this substrate was strongly affected 

by soil temperature and moisture. 

Similarly, at the Sourhope experiment, the addition of phenol and glucose 
had an effect on C release, evident in the consequent flux Of 13CO 

2. Whilst 

glucose is well known as aC source for microbes, phenol is more widely 

recognised for it's antibacterial properties and it is perhaps surprising that these 

two substrates produced similar responses in respiredC02 fluxes. The overall 

time course for phenol degradation at Sourhope was consistent with the results of 

Padmanabhan et al. (2003), who found that nearly all the 13 C02 derived from a 
13C phenol addition to soil had occurred within 24 hours of application, peaking 

at around eight hours. 

In the Sourhope experiment two of the treatments, N and B, did not have 

a significant effect on the 
13 C02 flUX, when compared to the control treatment or 

on the cumulative amount of 
13 C02 produced by either the phenol or glucose 

addition experiment. The addition of N to plots at Sourhope had a slight but 

s effect on the pH of the upper section of the soil profile, raising it from igni 

a mean value of pH 4.7 in 1998 to pH 4.8 in 2002, whilst the application of the 
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biocide had no signIficant impact on soil pH. The amount of above-ground 

biomass, measured in 2002, was significantly higher in the N treatments than the 

control, whilst the biocide had no significant effect on the above-ground biomass 

(Burt-Smith, 2003). 

Lime was the only treatment to have a significant effect at Sourhope on 

the 513 C02 signal in respiredC02 and the 
13 C02 flux dynamics for both the 

phenol and glucose addition experiments. The 13 C02 pulse in the dark negated 

the possibility that the differences observed between the control and lime 

treatments was due to an abiotic factor, such as differences in pH affecting the 

solubility and subsequent re-release Of C02. Rather, these results suggest that 

differences in the fluxes resulting from substrate addition experiments between 

the L and control treatments were the result of biological differences. These 

differences may be the result of changes in the microbial community pH, with 

Grayston et al. (2001) reporting that, in a similar soil, a raised pH (from pH 4.1 

to pH 6.0) resulted in an increase in both soil microbial biomass and soil 

microbial activity. Fuentes et al. (2006) reported that the addition of lime to no- 

till soil had the effect of raising the pH of the soil whilst also increasing the 

amount of soil nitrate, indicating that lime application favoured N-mineralisation 

and nitrification. These authors also attributed greater respiration rates and 

microbial biomass C to the increase in pH caused by the liming and also found 

that, when compared to unlimed soil, limed soil had faster C turnover rates and 

increased mineralization of organic matter. However, Treonis et al. (2004) 

pulsed lime and control treatments at the Sourhope field site with 

photo sythetically assimilated 13 C02 and, from the 13 C-enrichment of the PLFAs, 

concluded that liming did not affect the turnover rates of 13C labelled carbon, or 

which organisms were utilising the recent photoassimilate. 

The addition of lime to plots at Sourhope significantly affected the pH of 

the upper section of the soil profile, raising it from a mean value of pH 4.6 in 

1998 to pH 6.7 in 2002 and there was a strong negative correlation between soil 

moisture content and soil pH, with the more acidic plots showing higher soil 

moisture content, (Burt-Smith, 2003). The rise in the upper soil profile pH at 

Sourhope was also strongly positively correlated with biomass productivity 

(Burt-Smith, 2003). The results of a point analysis survey in 2002 found 

differences in vegetation between the lime plots and the control, with Festuca 
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rubra and Poa pratensis, two species commonly associated with improved 

pastures, accounting for 30% of the hits in the lime plots, but never accounting 

for more that 10% in the controls. Conversely, Festuca ovina and Anthoxanthum 

odoratum, two species commonly associated with unimproved pastures, were 

more abundant in the control plots, accounting for up to 30% of hits, while only 

accounting for 16% of hits in the limed plots (Burt-Smith, 2003). 

When phenol was added to the treatments at Sourhope, the L plots 

responded more slowly to the addition of the substrate with a lower initial rate of 

sub strate- induced respiration (SIR); the SIR continued to rise even after the 

control treatment had reached a peak and was in decline. A very similar different 

treatment response was seen after the glucose addition. This may simply be that 

the control plot has metabolised the substrate to a degree where it is now 

substrate limited. 

The underlying question remains as to which changes in the L plots were 

responsible for the clear and significant differences in the processing of added 

substrates. It could be the change in vegetation composition, and/or the 

associated changes in the microbial community that are responsible for the 

differing activities of the microbial populations under the different treatments; 

alternatively, a direct treatment-induced shift in the community (not connected 

with vegetation changes) may be at the root of these observations. In order to 

differentiate between these underlying causes, ideally plots would be created 

which were vegetation free, to test whether vegetation needs to be present for the 

observed changes in substrate utilisation to occur. 
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Chapter 3. Investigating the effect of vegetation on the degradation of 

phenol in soils in situ using stable isotopes 

3.1 Introduction 

The results from Chapter 2 indicated that, out of the three treatments, lime (L), 

nitrogen (N) and biocide (B) applied at Sourhope, the L addition was the only 

treatment that appeared to have a significant effect, relative to the control, on the 

flux Of 13 C02 from both 13C phenol addition and 13C glucose additions. The 

13 C02 flux from the L plots (Fig. 2.4) peaked approximately 11 hours after the 

addition of phenol, occurring around 5 hours after the peak responses in the 

control, N and B treatments. As discussed in Chapter 2, the addition of lime to 

the soil at Sourhope had both direct chemical effects and indirect biological 

effects (e. g. vegetation change) on the treated areas. The addition of lime directly 

affected the soil chemistry, raising the pH of the upper section of the soil profile 

from pH 4.6 in 1998 to pH 6.7 in 2002, and also led to a lowering of the water 

content of the soil, probably through a vegetation change (Burt-Smith, 2003). 

Other indirect effects on soil may have been exerted via the changes in 

vegetation, with the flora in the L plots having a greater proportion of Festuca 

rubra and Poa pratensis with less Festuca ovina and Anthoxanthum odoratum 

than in the control, typical of the vegetation changes associated with improved 

grasslands (Burt-Smith, 2003). So, from Chapter 2, it is still unclear whether it 

was a direct or indirect effect of the lime addition which caused the observed 

difference in respired 13 C02 seen after substrate addition. To distinguish between 

the two possible mechanisms, experiments were perfonned at the Sourhope field 

site designed to compare two new treatments, namely, with and without 

vegetation. Hence, the work described here repeated the experiments described in 

Chapter 2 but included additional long-terin treatments where vegetation had 

been removed in order to examine the link between plant cover and microbial 

substrate processing. The unvegetated or 'bare' treatments were achieved by the 

manual removal of all vegetation, with subsequent prevention of vegetation re- 

growth over a two year period prior to the second labelled substrate addition 

experiment described here. The time length for monitoring 13 C02 release from 
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these field addition experiments in Chapter 3 was also increased from 24 hours to 

48 hours, based upon the results from the first field experiment. 

3.2 Methods 

3.2.1 Site description and treatment preparation 

The experiment was performed at the Sourhope field site, but was restricted to 

the L and control plots. Within each of these plots, areas were rendered 

vegetation free two years prior to the actual substrate addition experiment being 

performed. Vegetation was manually removed from one meter square plots, 

which were then covered with a double layer of black porous fabric (Weed 

Control Fabric, B&Q), to prevent any regeneration of the vegetation. This 

procedure avoided the addition of any herbicides to the vegetation in the plots, 

whilst the choice of porous fabric enabled full ingress of precipitation. 
Galvanized steel sheets were inserted into the ground to fully isolate these plots, 

preventing any roots from surrounding vegetation from colonising the 

vegetation-free areas. The steel sheets were galvanized to prevent corrosion and 

the plots were checked regularly during the two years for any signs of plant re- 

growth. 

3.2.2 In situ degradation of phenol monitored using 
13CO2 

The experimental approach repeated that described for Chapter 2, with slight 

modifications. To measure the degradation of phenol in the field, 13 C6 phenol 

(Cambridge Isotope Laboratories, UK) 300 CM3 13 C6 (99%, 50 ppm), was applied 

to the soil surface (314 cm 2) in each of the 12 treated plots in the four different 

treatments, with three replicates of each treatment. An equal volume of water 

was added to provide two "natural abundance" chambers which were monitored 

to provide the background 13 C ratio of soil respiration. The treatments were; 

control with vegetation (CV), control with vegetation removed, i. e. 'bare' plots 

(CB), lime with vegetation intact (LV) and lime with the vegetation removed 

(LB). The data from the 2003 pulse suggested that it would be preferable to 
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monitor the addition experiment for slightly longer to allow for the elevated 
13 C02 signal from the limed plots to decrease further towards natural abundance 

levels; therefore, theC02flux was measured for 48 hours in these experiments. 

3.2.3 Statistical analysis 

All statistical analyses were performed using SPSS (v. 14.0 2005 SPSS. Inc). 

ANOVA with repeated measures was used to analysis the 6 and flux 

measurements, with appropriate a posterori t testing, where significance 

differences were established.. Conventional one-way ANOVA was used to 

compare the final cumulative single 13C fluxes between the four treatments, 

followed by a post hoc Duncan's test. All treatments were included and 

compared in the analyses but, for clarity of presentation, the treatments are 

frequently shown as pair-wise comparisons for graphical purposes. 
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Plate 3 Photograph of the field site at Sourhope, showing a vegetation free plot in block 

1, with the plastic collar inserted into the ground and two chambers connected to the air 
intake and PTFE pipes prior to being covered with black bags. This plate is for 

illustrative purposes only, since all the addition experiments used only one chamber per 
block. 
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3.3 Results 

Phenol, 300 cm 3 13 C6 (99%, 50 ppm) was added at 17: 45 GMT on the 24/10/05 

to the treatments. For clarity, Figs. 3.1 to 3.4 show the comparisons between 

individual pairs of treatments since, when all treatments are displayed on a single 

graph, the overlapping error bars create confusion. 

When comparing the LV and CV treatments (Fig. 3.1), similar to the 

experiments perforined in Chapter 2, the CV treatment showed a faster and 

greater response than the LV treatment; the 5 13 C02 air and phenol-derivedCO2 
fluxes peaked ca. 6 and ca. 8 hours after phenol addition in the CV and LV 

treatments, respectively. The LV treatment peaked shortly after the CV treatment 

and then remained lower than for the CV treatment over the remaining ca. 40 

hours. However, ANOVA with repeated measures revealed no significant 
differences for the 6 13 C02 in air, or for the phenol-derivedC02flux between these 

two treatments. 

Comparing the CB and LB treatments (Fig. 3.2), again the CB treatment 

responded more rapidly to the addition than for the LB, peaking at ca. 6 hours 

and 7 hours in the 6 13 C02 and phenol-derivedCO2 flux, respectively. Indeed, 

somewhat surprisingly, there was no definite peak in the LB treatment and 

ANOVA with repeated measures, showed the CB 6 13 C02 in air to be 

significantly higher than the LB treatment in the first ca. 6 hours after phenol 

addition (p=0.045); a posterori t tests revealed the significant differences within 

the first 6 hours were between 2 and 6 hours after the phenol addition. The 

phenol-derivedCO2 flux in the CB treatment was also significantly higher than the 

LB treatment between ca. 2 hours and II hours after phenol addition (P=0.033); 

on this occasion a posterori t tests showed the significant differences within this 

time were at 2 hours and between 8 and 10 hours after phenol addition. 
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Figure 3.1 a, b, c6 13 C02 air values, phenol-derivedCO2 flux values and cumulative 

phenol-derived CO, values following the application of 300 CM3 13 C6phenol [50 ppm] to 

the control (e-O CV), and limed LV) vegetated plots. Error bars are one 

standard error of the mean. 
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Figure 3.2 a, b, c6 13 C02 air values, phenol-derived CO, flux values and cumulative 

phenol-derived CO, values following the application of 300 CM3 
13 C6phenol [50 ppm] to 

the control (o- -o CB), and limed (-- LB) bare plots. Error bars are one standard 

error of the mean. 
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Similarly, Fig. 3.3 shows a comparison of the CV and CB treatments. 

While both treatments responded to the addition of phenol in the same way, the 

CB treatment gave higher 6 13 C02 air and phenol-derivedCO2 fluxes. The 6 13 C02 

in air for the CB treatment was significantly higher than the CV treatment 

between 13: 45 hours and 26: 25 hours after phenol addition. A posterori t tests 

found the differences to be significant at 17: 05 and between 19: 45 and 22: 25 

hours after the substrate addition. A comparison between the LV and LB 

treatments is shown in Fig. 3.4, showing that both treatments responded to the 

phenol addition in the same way and, whilst the LB treatment appeared to have a 

mean higher 5 13 C02 air and phenol-derivedC02 flux, there were no significant 

differences. 

ANOVA of the final cumulative total phenol-derivedC02flux (Fig. 3.5) 

revealed significant differences between the treatments (p=0.012), with the post 
hoc test revealing significant differences between the CB treatment and LV and 

LB treatments. However, there was no significant difference between the CV and 

LV treatments, (p=0.05 1). 

The mass balance for the added phenol was calculated to determine the 

percentage of 13 C in the added substrate that was found in the phenol-derived 

C02 in each of the four treatments; these vaned between treatments ranging from 

0.03% in LV to 0.29% in CB (Table 3.1). Clearly, since these are a direct linear 

reflection of the data shown in Fig. 3.5, the same significant differences apply. 
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Figure 3.3 a, b, c6 13 C02 air values, phenol-derivedCO2 flux values and cumulative 

phenol-derived CO, values following the application of 300 cm 3 13 C6phenol [50 ppm] to 

the vegetated (e-9 CV), and bare (o- -o CB) control plots. Error bars are one standard 

error of the mean. 
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Figure 3.4 a, b, c5 "CO, air values, phenol-derivedCO2 flux values and cumulative 

phenol-derived CO--, values following the application of 300 CM3 13 C6phenol [50 ppm] to 

the vegetated LV), and bare LB) limed plots. Error bars are one standard 

error of the mean. 
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Figure 3.5 Total phenol-derivedCO2 flux in the four treatments: CV, CB, LV and LB, 

Error bars are one standard error of the mean, with bars with different letters being 

significantly different (p < 0.05). 

Table 3.1 Mass balance showing percentage of added 
13 C released as 

13 C02. For 

significant differences, refer to Fig. 3.5. 

Treatment % of 
13 C released 

cv 0.16 

CB 0.29 

LV 0.03 

LB 0.13 
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3.4 Discussion 

The mobile laboratory again successfully detected isotopic enrichmentOf C02 in 

air sampled from the experimental additions of 13C labelled phenol, effectively 

operating as had previously been demonstrated in Chapter 2. However, on this 

occasion, the monitoring period was extended to a period of 48 hours, rather than 

24 hours. For the initial 24 hours the trends in the vegetated plots were very 

similar to those presented in Chapter 2. 

From Chapter 2, following the application of 
13C 

phenol to soil, the 

phenol-derived 13 C02 flUXwas initially higher in the control treatment than the 

lime. This difference was not, however, seen in the total cumulative phenol- 

derived 13 C02 fluxes, with no significant difference in the total cumulative 13C 

flux between treatments. These comparative responses to substrate addition by 

the control and lime plots were also similar when the applied substrate was 

glucose. 

Results presented here in Chapter 3, examining the differences between 

the CV and LV treatments were much the same as reported in Chapter 2. 

Although the monitoring was extended to twice the previous length of time, this 

did not result in a significant difference between the total cumulative phenol- 
derived 13 C02 fluxes between the treatments, although the CV treatment 

consistently responded faster to the addition of the phenol than the LV treatment. 

The differences between the responses of the control and lime treatments 

to phenol additions appeared robust across the two experiments which probably 

reflect the long-term changes in soil pH and vegetation cover, already discussed 

in Chapter 2 (Burt-Smith, 2003). The increase in pH, as a result of liming, is 

known to increase microbial biomass and activity (Frostegard et al., 1993; 

Stenberg et al., 2000). Gray et al., (2003) studied the effects of lime of the 

bacterial community structure and soil processes at Sourhope and also reported a 

significant increase in soil pH from 4.9 in the control to pH 7.1 in the lime 

treatment. Additionally, comparisons between treatments of the above-ground 

biomass, an indication of plant productivity, showed greater biomass in the lime 

treatment (also supported by Rangel-Castro et al., 2004). Gray et al. (2003) also 

used temporal temperature gradient electrophoresis (TTGE) to examine to 

composition of the soil biota and lime was found to have a significant effect on 
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the composition of the bacterial community, saprotrophic fungi and enchytraeid 

worms. However these authors did not detect any differences in the basal 

respiration rate, concluding that the addition of lime had little effect on the 

overall metabolic activity of the soil biota, supported by Kuan et al. (2006). 

Staddon et al. (2003) reported, after pulsing lime and control treatments at 

Sourhope with 13 C02 that the concentration of the soil respired 13 C02was 

significantly higher in the lime treatments, yet this difference disappeared after 

one day post labelling. 

In the plots studied here, with long-term vegetation removal, the same 

effects of lime were found again, with the initial response to phenol addition 

responding more slowly in the limed treatment when compared to the control. 
However, the effect on the cumulative phenol-derived 13 C02 flux appeared 

exaggerated for these plots, as the LB treatment was significantly lower than the 

CB treatment. This effect did not appear to be as a result of a reduction in the 

phenol mineralization rate in the L treatment after the removal of vegetation, but 

rather an increase in the rates in the control plots. The relative effect of liming in 

reducing the phenol-derived 13 C02 flux appeared greater in the vegetated 

treatments, suggesting that there is an interaction between the lime treatment and 

the presence of vegetation. 

The time trends for 13 C02 release in the bare plots generally followed 

those in the vegetated plots, but at higher absolute enrichment values, typically 

around 50% higher in the control plots and 100% higher in the lime plots, when 

compared to the vegetated plot equivalents. This could be due to the fact that 

there were fewer available C substrates in the soil where live vegetation was 

excluded, since plants release C substrates from their roots, Which are available 

as a substrate supply for the organisms in the soil. It is known that the population 

of microorganisms in the soil are normally C limited, (Raynard et al., 2006; 

Yoshitake et al., 2007) and it is hypothesised that the phenol was more rapidly 

utilised in the absence of other, alternative, C sources. 

The percentage of 
13 C released as 

13 C02 indicated that the greatest 

mineralization (0.29%) of the phenol added was seen in the CB treatment, but 

this still left over 99% of the original substrate unaccounted for. This again 
highlights the sensitivity gained from the use of stable isotopes in soil research, 
demonstrating the ability to detect very small amounts of substrate degradation 
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difficult to detect using unlabelled phenol. There are three possible explanations 

for the small percentage of label appearing in the respired 13 C02; firstly, either 

the organisms degrading the phenol are largely assimilating the C into microbial 

tissue as well as mineralising some of the substrate toC02, secondly, the phenol 

is remaining largely undegraded in the soil, or thirdly, most of the phenol is 

volatilising into the atmosphere. 

Clearly, the addition of lime to the soil at Sourhope results in detectable 

changes the microbial community (Treonis et al., 2004; Grayston et al., 2001; 

Fuentes et al., 2006). Whilst there is no other information available on the effect 

of this microbial community shift on the ability to degrade added C sources, it is 

clear from the results reported here that the organisms degrading phenol in the 

lime plots reacted differently to those in the control plots, mineralising a smaller 

percentage of the added substrate in the short term. One possibility is that the 

organisms in the lime plots are degrading the labelled substrate more slowly that 

those in the control plots, another is that the organisms in the lime and control 

treatments are assimilating the label into tissues to differing extents. The 

monitoring of 13C incorporation into microbial tissue could potentially resolve 

which of these processes is dominating with the analysis of 13C incorporation 

into PLFAs also offering great potential in respect of identifying the actual 

organisms responsible for these differences between treatments (Treonis et al., 
2004). 
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Chapter 4. Nucleic acid and PLFA SIP; tools for identifying in situ phenol 

degraders in soils 

4.1 Introduction 

The 13 C02 evolved from soils exposed to 13C labeled phenol in Chapters 2 and 3 

demonstrated that liming the soil at Sourhope had an effect on phenol degradation as 

did vegetation coverage on the amount of 13 C02returned 48 hours after an addition 

of highly labelled 13C phenol. Unfortunately, this approach alone does not offer any 

reason as to why those differences were seen. 

Stable isotope probing (Radajewski et al., 2000) of nucleic acids can assist in 

functional identification of organisms, having the ability to identify a species 

carrying out a specific function. Nucleic acids in organisms that assimilate a 

substance of interest, for example in the degradation of labelled phenol, will have 

the label present in the phenol incorporated. Ultracentrifugation can be used to 

separate the enriched, heavy nucleic material from that containing isotopes at natural 

abundance levels. The technique, using DNA as a labelled biomarker, was first 

perforined by Radajewski et al. (2000) and identified the organisms responsible for 

the assimilation of methanol as a carbon source in a temperate forest soil. Manefield 

et al. (2002b) have subsequently used RNA SIP to identify a non-culturable bacterial 

Thauera sp. important in phenol degradation in a bioreactor. 

At the time of the experiment outlined in this Chapter there had only been 

one published account of the use of RNA-based SIP (Manefield et al., 2002b) unlike 

DNA SIP which had been used by several workers (Radajewski et al., 2000; 

Padmanabhan et al., 2003; Manefield et al., 2002a; Radajewski et al., 2003). 

Although it was recognised that RNA-SIP presented a much more difficult 

challenge, the advantages of being able identify active organisms meant that work 

was concentrated on the RNA approach. The potential disadvantages of using RNA 

are in the far more stringent conditions necessary for successful application of RT- 

PCR, together with the avoidance of RNAase contamination. 
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As discussed in Chapter 1, the pathways of phenol degradation result in the 

formation of substrates, which may enter the Krebs cycle and are therefore available 

for incorporation into, cellular structures, including nucleotides and, subsequently, 

nucleic acids. 
Stable isotope probing of PLFAs also offers general identification of active 

organisms, though only to the group level, rather than the species as with DNA or 

RNA SIP. There are advantages of using PLFAs as a functional biomarker, above 

nucleic acids, namely the robustness of the technique, and the reliability of the 

results produced. DNA and, especially, RNA SIP is still very much an emerging 

technology, and while results using these apparatus are impressive, they pose a 

technical challenge in terms of optimising conditions and the reproducibility of 

results. In contrast, SIP using PLFAs has been used for several years now, being first 

pioneered by Boschker (1998), and has become widely used because of reliability, 

simplic ity and low costs, when compared with DNA or RNA SIP. 

Both SIP techniques, lipid or nucleic acid, offer an insight into the changes in 

the microbial community that are responsible for the differences in phenol 
degradation as seen in chapters 2 and 3. 

4.2 Methods 

4.2.1 RNA Extraction 

Root and soil samples from aC labelling experiment at Sourhope were used to 

optimise and perfect the processes of RNA extraction, separation and subsequent 

RT-PCR, prior to using any experimental samples. 

4.2.1.1 Soil RNA Extraction 

Soil, 0.3 g dry weight, was placed in an Eppendorf tube, together with CTAB buffer 

(5% CTAB/ phosphate buffer (120 mM pH 8) mix 50/50 (10% CTAB in 0.7M 
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NaCl) and (240 mM potassium phosphate buffer pH 8), 0.5 ml, and P: C: I (phenol: 

chloroform: isoamyl alcohol, pH 8 25: 24: 1), 0.5 ml. Two I mm glass beads were 

placed in the Eppendorf, which was sealed and vortexed for 30 seconds at high 

speed to lyse the cells. The tubes were incubated on ice before being centrifuged at 

185000 G (14,000 rpm) at 4'C, for 10 minutes. The top layer was removed and 

placed into a new Eppendorf tube containing an equal volume of chloroform: 
isoamyl alcohol (24: 1). This was vortexed for 30 seconds to form an emulsion, 
followed by centrifugation at 18,000 G for 10 minutes at room temperature. The top 

layer was removed and nucleic acids precipitated by adding 2 volumes of PEG 

solution and vortexing for 30 seconds. The tubes were then left at room temperature 

overnight. Samples were subsequently centrifuged at 18,000 G for 10 minutes at 

room temperature, the supernatant was removed and the pellet washed with 70% 

ethanol, 500 ýtl. The ethanol was removed and the pellet of nucleic acids was left to 

air dry for 20 minutes before being resuspended in TE buffer, 30 ýd. This nucleic 

extract was run on a gel, 1% agarose (Sigma, UK) in TBE buffer, to check extraction 

was successful. DNA was removed by digestion with a DNAse kit, (Promega) 

leaving only RNA. Samples were then re-run on a 1% agarose gel, in TBE buffer, to 

check for the presence of RNA. 

4.2.1.2 Root RNA Extraction 

Root, length 2 cm, was placed in a glass pestle and ground in liquid nitrogen. CTAB 

buffer, 500 ýtl, was added and the root ground again as the CTAB thawed. The 

sample was transferred to an Eppendorf tube and CTAB, 300 ýtl, was added to the 

pestle, to maximise sample recovery. This was then added to the Eppendorf, which 

was then incubated at 65'C for 60 minutes, and extracted with an equal volume of 

phenol: CHC13: isopropanol(25: 24: 1). The sample was centrifuged at 18,000 G for 5 

minutes at room temperature and extracted again with an equal volume of CHC13, 

and further centrifuged at 18,000 G for 5 minutes at room temperature. The nucleic 

acids were precipitated using isopropanol, 1.5 volumes and incubated on ice for 10 

minutes, prior to being centrifuged at 14,000 rpm for 15 minutes. The isopropanol 
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was removed and the pellet washed with 70% ethanol, and this was centrifuged at 

14,000 rpm for 5 minutes, the ethanol removed and the pellet allowed to air dry 

before being resuspended in deionised H20,100 ýtl. The nucleic extract was run on 

an electrophoresis gel, 1% agarose in TBE buffer, to check that extraction was 

successful. The nucleic acids were purified using a kit for the purification of PCR 

products (Qiagen, UK) and the DNA was removed by digestion with a DNAse kit, 

(Promega), leaving RNA. Samples were then re-run on an electrophoresis gel, 1% 

agarose in TBE buffer, to check for the presence of RNA. 

4.2.1.3 Separation of 
12 C and 

13C 

A spectrophotometer, X=260 nm, was used to quantify the amount of RNA present 

in 6 samples, 3 from soil extracts, 3 from root extracts. Deionised water, 50 ýtl, was 

placed into a 50 ýtl cuvette and the spectrophotometer set to zero absorbance. The 

calibration was tested with another cuvette containing 50 ýtl of deionised water 

before the RNA samples were measured. Soil RNA sample, 2 ýd, was added to 

deionised water, 78 ýtl, to give aI in 40 dilution. Each soil dilution, 50 ýtl was then 

placed in the cuvette and the absorbance measured. This was repeated for each of the 

root samples but, as their nucleic acid yield appeared to be less than the soil, based 

on the eletrophoresis gel (Plate 4), 4 ýd of root RNA sample was added to 76 ýtl of 

deionised water to give aI in 20 dilution. The amount of RNA digest required to 

load into centrifuge tubes was 0.45 ýtg (based on Gornall, 2000) and was calculated 

using the following equation. 

Volume to load (mls) = 0.45 x (I / ýLg RNA / ml) 

Caesium trifluoracetate (CsTFA) was added to 6 13 cm 3 Quick Seal 

centrifuge tubes ultraclear 15 x 76 mm, (Beckman Coulter, Switzerland), until they 

were approximately '/4 full. The tubes had been sterilised, and any nucleic acids on 

them degraded, prior to use by irradiation with UV light. The RNA sample was 
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added to the tube and more CsTFA was added until the level reached almost the top 

of the tube. Each sample was then weighed and more CsTFA was added drop wise, 

until all 6 tubes were within 0.1 g of each other and tapping the side of the tube 

gently removed any air bubbles in the CsTFA. The tubes were then heat-sealed 

using a Beckman tube sealer, the CsTFA above the RNA sample protecting it from 

the brief period of heat, and placed into a Beckman fixed angle, 70.1 TI rotor with 

the closest in weight being opposite pairs. The rotor with samples was sealed and 

placed into a Beckman L8-70M ultracentrifuge and spun at 43,000 rpm (320,000 G) 

at VC for 36 hours with no brake applied. Once spun the tubes were carefully 

removed and secured upright between two bosses on a clamp stand. (Fig. 4.1) 

A template, made from the side of a tube identical to the one with the sample 
in with 23 small holes vertical holes 2 mm apart, was stuck to the side of the tube 

with double-sided tape, having been irradiated prior to use with UV light. (Fig 4.1) 
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Fig 4.1 Visualisation of the arrangement of the ultracentrifuge tube in the clamp stage for 

fractionation and the template used to deliver fractions after ultracentrifugation. 
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After a needle had been inserted into the top of the tube to prevent a vacuum 

fon-ning, fractions were collected though each 2 mm hole in the template from the 

top to the bottom of the tube using a Microlance needle, 0.5 x 25 Nr. 18, and 2 cm 3 

syringe, placed into the centrifuge tube horizontally, A total of 24 fractions were 

collected and placed into individual sterile Eppendorf tubes. The gradient is known 

to remain stable for approximately two hours, and all fractions were collected within 

one hour and stored immediately at -80'C. 
Once thawed, an equal volume of isopropanol was added to each fraction and 

centrifuged at 14,000 rpm 4'C for 30 minutes and the liquid removed. The pellet 

was washed with isopropanol, 40 - 50 ýtl, centrifuged at 14,000 rpm VC for 10 

minutes, the liquid removed and the pellet of RNA resuspended in 20 ý11 pure H20 

for reverse transcription polymerase chain reaction (RT-PCR). The electrophoresis 

gel of the RNA in each sample (Plate 5) indicated which samples were most likely to 

be successful for RT-PCR, and these were used for RT-PCR using a Qiagen 

OneStep RT-PCR Kit. The products were subsequently run on a 1% agarose gel, in 

TBE buffer. 

4.2.2 Locating the RNA from roots using IRMS after ultra centrifugation 

The above procedure was repeated on further pulse labelled samples using 0.6 ýtg 

RNA and included some highly labelled Ranunculus roots. The fractions were 

extracted using the same methods as previously described and, after 

ultracentrifugation, a sub sample, 25 ýtg of each fraction was taken for analysis using 

an isotope ratio mass spectrometer (IRMS). IRMS is a powerful tool to detect 

isotopic label, as it can detect enrichments of only a few per mil, and so presented an 

opportunity to identify the position with any 13 C enriched RNA within the tube. A 

tube containing only CsTFA was subject to all the above treatments and analysed to 

act as a control. 
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4.2.3 Locating the RNA from E. coli using IRMS after ultracentrifugation 

There was no detectable label present, in either roots or soil, from the pulse 
described in Section 4.2.1. In order to isolate the more likely reason for the inability 

to detect the label it was decided to establish that the application of the basic 

molecular methodology was not the reason. In order to test this it was decided to 

produce labelled standard laboratory material with all nucleic acids unambiguously 

and heavily labelled with 13 C. By growing E. coh, a readily culturable bacterium, on 

a medium with 99% 13 C6 glucose as the sole C source, all resulting cellular 

components, including RNA, would be highly enriched; an approach analogous to 

the classical conservative and semi -conservative 
15 N studies performed by Meselson 

and Stahl (1958). 

In order to determine the optimum amount of RNA to load onto the CsTFA 

gradient and to check that the 12 C and 13C labelled RNA samples separated on the 

CsTFA gradient, E. coli was cultured on LB broth containing either 12 C or 99% 1 3c 

glucose as the carbon source, thus producing unlabelled and highly enriched nucleic 

acid material. RNA from the E. coli was extracted using a Qiagen RNeasy Kit and 

DNase Option with four different total amounts of RNA: 0.3 ýtg, 0.6 ýtg, 1.2 ýtg and 

2.4 ýtg, (50% 12 C 50% 13 Q, being loaded onto CsTFA tubes for ultracentrifugation. 

The fractions were collected in the same manner as in sections 4.2.1 and 4.2.2 and 

were analysed using the IRMS to look for enrichment, as in section 4.2.2. 

4.2.4 Sourhope 2004 soil sampling for PLFA work 

To measure the degradation of phenol in the field 13 C6phenol (Cambridge Isotope 

Laboratories, UK) 600 cm 3 13 C6 (99%, 50 ppm), was applied to soil (628 CM2) in 

each of the 12 treated plots, across four different treatments, with three replicates of 

each treatment. Water, 300 cm 3, was added to two "natural abundance" rings (314 

cm 2) and the treatment plots were; control with vegetation (CV), control without 

vegetation or 'bare' (CB), lime with vegetation (LV), and lime without vegetation 

(LB). 
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Soil samples, 6 cm diameter, 4 cm depth were taken for PLFA analysis at 3, 

6,9) 12,18,24,36, and 48hours after application. Samples were also taken from the 

natural abundance plots. The treated areas were then covered over with black plastic 

sheeting. This served two purposes; it reduced the photosynthetic 12C input into the 

system and prevented any precipitation from washing the phenol from the system. 
Once the samples were taken they were immediately frozen in liquid N2 to halt any 

microbial activity. 

4.2.5 PLFA Extraction 

PLFAs were extracted using a modified Bligh-Dyer extraction (White et al., 1979). 

The samples, stored at -80'C, were freeze-dried, with roots and small stones being 

removed by hand. The resulting samples were ground using a pestle and mortar to 

ensure the full PLFAs recovery and maximise yield. Each sample, 2 g, was then 

added to a Pyrex screw top tube, 35 cm 3, and the same volume of 
DCM/MeOH/citrate buffer (5: 10: 4 v/v/v; citrate buffer 0.15M adjusted to pH 4 

using NaOH pellets), was added to each sample. A screw cap sealed the tube and the 

sample was mixed and placed in an ultrasonic bath, 15 minutes, and then centrifuged 

at 1000 rpm for 3 minutes. The supernatant was transferred to another Pyrex screw 

top tube, 35 cm 3 and the soil extracted with fresh solvent twice more. Citrate buffer, 

2 cm 3 and DCM, 2 cm 3 were added to the supernatant, to break the organic and 

aqueous phases of the combined solvent extracts, then mixed and centrifuged at 
1000 rpm for 3 minutes, and the organic layer removed. The aqueous was layer 

washed with DCM, 2 cm 3,3 times and the combined extracts were then placed on a 

heated block at 40'C and blown down with OFN until dry. 

An aminopropyl solid phase extraction cartridge (Bond Elut NH2, Varian, 

Surry UK) was used to separate the PLFAs from the other lipids. The column was 

conditioned with DCM: IP, 2: 1,6 cm 3, and the dry sample added to the column re- 

suspended in DCM: IP, 2: 1 3xI ml. DCM: EP, 2: 1,6 cm 3 was then added to the 

column to elute neutral lipids, followed by 2% glacial acetic acid in diethyl ether, 8 

cm 3, to elute the acidic lipids. Methanol, 8 cm 3, was then added to he column and the 
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eluted polar lipids, including PLFAs, were collected in a Pyrex culture tube. The 

sample was then placed on a heated block at 50'C and blown down with OFN until 

dry. 

A known concentration of internal standard, Nonadecane, was added to the 

samples to enable the quantity of PLFAs to be calculated. The samples were then 

saponified by the addition of 0.5M NaOH in methanol, 2 cm 3, and a few drops of 

DCM-extracted water and susequently sealed, mixed and placed on a heated block at 

70'C for 90 minutes. Samples were then acidified to pH 1-2 with 0.5M HCI 

(analytical grade), and the lipids were extracted using 3x2 cm 3 DCM and blown 

down on a heated block at 40'C with OFN until dry. Fatty acids were derivatised to 

produce fatty acid methyl esters (FAMEs) using BF3-MeOH, 8 drops, and sealed 

samples placed on a heated block at 70'C for 10 minutes. DCM-extracted water, 6 

drops, quenched the reaction and the FAMEs were extracted using 3xI cm 3 hexane. 

The samples were then placed on a hot block at 40'C, blown down with OFN until 

dry, sealed and stored in a fridge until analysis, at which stage they were redissolved 
in an appropriate amount (depending on the amount of PLFA in the sample, 

calculated by analysing first on a GQ of hexane for analysis by gas chromatography 
(GQ and gas chromatography-mass spectrometry (GC-MS). 

4.2.6 PLFA Profiles 

The conventional way to designate PLFAs is by the number of C atoms, then a 

colon, followed by the number of double bonds and the position of the first double 

bond from the methyl end of the molecule. A prefix of 'i' or 'a' designates branched 

chain PLFAs, representing iso and anteiso branching respectively, whilst a prefix 

'cy' denotes a cyclopropane fatty acid and Br and Me denote a branch at an 

unknown location and a methyl group respectively. For example 18: 2(n-6) is a 

PLFA with 18 carbon atoms and 2 double bonds, the first of which is 6 carbon atoms 

away from the methyl end of the molecule. The PLFAs were assigned to groups as 

per the identifications reported by Phillips et al. (2002). 
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4.2.7 Statistical analysis 

ANOVA with repeated measures was also used to analyse all the grouped PLFA 

data with the data being logged if necessary to normalise it, using SPSS (v. 14.0 2005 

SPSS. Inc). A post hoc Tukey was then applied. 
SAS (V8 2000 SAS Institute Inc) was used to perforrn ANOVAs on each of the 

individual PLFAs for the compositions, 513 C and ng. It is recognised that doing high 

numbers of ANOVA increased the likelihood of Type 11 statistical errors. Principal 

components analysis (PCA) was then perfon-ned on the compositions, 513 C and ng, 

also using SAS. 

4.3 Results 

4.3.1 RNA Extraction and separation of 
12 C and 

13C 

Plate 4 shows successful nucleic extraction from all samples. More nucleic material 

was obtained from the soil samples than the roots, indicated by the amount of 

fluorescence. Traces of possible RNA were seen on the electrophoresis gel in 3 soil 

samples, so these were selected for RT-PCR. 

The fractions collected after ultra centrifugation from each of the 3 samples selected 

all failed to yield any detectable nucleic material after RT-PCR. 
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Plate 4 Total nucleic extraction from all samples. L represents a nucleic ladder at each end. 

4.3.2 Locating the RNA from roots using IRMS after ultracentrifugation 

Figure 4.2 demonstrates that the IRMS detected an isotope gradient within the 

CsTFA after ultracentrifugation. The IRMS did not detect any enriched RNA in any 

of the samples. 

RT-PCR on the fractions also failed to produce any nucleic material. 

4.3.3 Locating the RNA from E. coli using IRMS after ultracentrifugation 

Figure 4.3 indicates that the IRMS detected an isotope gradient within the CsTFA 

after ultracentrifugation. The IRMS did detect apparent enrichment in some 

fractions, although this was not consistent throughout the series, which would have 

been expected. RT-PCR on the fractions failed to produce any nucleic material. 
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4.3.4 Sourhope 2004 PLFA analyses 

Over time, the compositions of the individuals PLFAs changed between the four 

treatments (Fig 4.4, Table 4.1). At 24 hours post phenol addition, of those 

characterised, there were 8 PLFAs that varied significantly in their concentrations 
between the four treatments. For 3 of the PLFAs, namely brl7: 0 (p=0.0276), i17: 0 

(p=0.0002) associated with Gram-positive bacteria, and 7,8cy-19: 0 (p=0.0001) the 

CV treatment had significantly more than all of the other treatments. The CV 

treatment had significantly higher concentrations than either of the L treatments in a 
further 4 PLFAs; 16: 1(n-5) (p=0.0484), associated with Gram-negative bacteria, 

7,8cy-17: 0 (p=0.0166), 18--I(n-7) (p=0.00161), associated with Gram-positive 

bacteria and 19: 1 (p=0.01 18). For the general bacterial PLFA 18: 0, there were 

significantly more in the control treatments than the L treatments (p=0.0035) 

After a further 12 hours, at 36 hours post phenol addition, the number of 
PLFAs that had significant different concentrations between the four treatments had 

risen to 17, of which 8 were significantly higher in the control treatments than in the 

L treatments, namely; a15: 0, i17: 0, a17: 0, associated with Gram-positive bacteria, 

18: 1(n-7), 7,8cy-19: 0, associated with Gram-negative bacteria, 18: 0, a general 
bacterial PLFA and 17: 1(n-8), 19: 1 which have not as yet been assigned to any 

group. A further 8 PLFAs were present in higher concentrations in the CB treatment 

than in either of the L treatments; i15: 0, i16: 0, associated with Gram-positive 

bacteria, 16: 1,16: 1(n-7), 16: 1(n-5), 7,8cy-17: 0 associated with Gram-negative 

bacteria and 7mel7: 0,18: 1(n-5). The PLFA 18: 1(n-9), associated with fungi was 

significantly higher in the CV treatment than in any other treatment (p=0.0254). 

At 48 hours post phenol addition, 14 PLFAs had significantly different 

concentrations between treatments, 10 of which were present as significantly higher 

concentrations in the control treatments; a15: 0, i17: 0, a17: 0, associated with Grain- 

positive bacteria, 16: 1,7,8cy-17: 0,18: 1(n-7), 7,8cy-19: 0, associated with Grain- 

negative bacteria, general bacterial PLFA 18: 0 andrion specific 17: 1(n-8), 18: 1(n-5). 

Whilst different PLFAs either became or stopped being significantly different 

between treatments, the interaction between the treatment and time resulted in 
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significance for only 2 PLFAs; 14: 0 (p==0.0481) and the Gram-positive bacterial 

PLFA 117: 0 (p=0.0349). It can therefore be concluded that phenol had an effect on 

these 2 PLFA. 
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Table 4.1 ANOVA and post hoc Duncan's of PLFA compositions in the four treatments 

over time, and the treatment* time interaction. 

24 hours 36 hours 48 hours Interaction 
Duncan's Multiple Duncan's Multip le Duncan's Multip le 
Range Test Range Test Range Test 

PLFA P CV CB LV LB P CV CB LV LB P CV CB LV LB 
14: 0 0.1392 0.2014 0.0268 a ab be C 0.0481 

i 15: 0 0.0681 0.0077 ab a C be 0.0754 0.6823 
a15: 0 0.0608 0.0012 a a b b 0.0051 a a b b 0.5602 
15: 0 0.5668 0.0661 0.0726 0.9278 
116: 0 0,3747 0.0204 ab a b b- 0.0390 ab a C be 0.5155 
16: 1 0.2711 0.0015 b a C be 0.0027 a a b b 0.3055 

16: 1(n- 0.3329 0.0364 ab a b b 0.1414 0.5383 
7) 

16: 1(n- 0.0484 a A b b 0.0397 b a b b 0.3720 0.2768 
5) 

16: 0 0.7168 0.5281 0.1778 0.7885 
17: 1 (n- 0.0521 0.0004 a a b b 0.0009 a a b b 0.6276 

8) 
7me- 0.0637 0.0101 b a b b 0.2100 0.6506 
17: 0 

brI 7: 0 0.0276 a b b b 0.0551 0.0764 0.4366 
117: 0 0.0002 a b b b 0.0036 a a b b 0.0002 a a b b 0.0349 
a17: 0 0.0552 0.0031 a a b b <. 0001 a a b b 0.3212 
7,8cy- 0.0166 a ab b b 0.0089 A a C be 0.0020 a a b b 0.1592 
17: 0 

18: 2(n- 0.9104 0.0573 0.0171 b a b ab 0.7421 
6) 

18: 1(n- 0.1043 0.0254 a b b b 0.0639 0.3577 
9) 

18: 1(n- 0.0161 a A b b- 0.0009 a a b b <. 0001 a a b b 0.7094 
7) 

18: V 0.1369 0.0263 ab a C be 0.0002 a a b b 0.7239 
18: 0 0.0035 a a b b <. 0001 a a b b 0.0002 a a b b 0.9218 
19: 1 0.0118 a ab b b 0.0012 a a b b 0.0011 a a b b 0.5340 

'7,8cy- 0.0001 a b be C 0.0255 a a b b <. 0001 a b C C 0.2486 
19: 0 
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Liming resulted in a significant decrease in the total amount of PLFAs 

present per gram DW soil compared to the control treatment (Fig 4.5, Table 4.2) 

(p=0.0001), the presence or absence of vegetation made no significant difference. 

Within the total PLFA concentration liming caused a significant decrease in 

the fungal PLFA concentration (Fig. 4.6, Table 4.3) (p<0.000) and the bacterial 

PLFA concentration (Fig. 4.7, Table 4.4) (p=0.0001). Post hoc Tukey revealed the 

decrease in the bacterial PLFA concentration in the lime treatments was significant 
in both the LV (p=0.002) and LB (p=0.005) treatments. The fungal PLFA 

concentration was also significantly affected by the removal of vegetation (p=0.038) 

Over time the fungal PLFA concentration increased (p=0.01) with the concentration 

at 48 hours after the addition of phenol significantly higher than at 24 hours. This 

increase was significant when comparing the vegetated and bare treatments over 

time, (p=0.04) post hoc Tukey revealed the same trend in the bare treatments as seen 
in the total fungal PLFA concentrations over -time approaching significance 
(p=0.057). 

The bacterial / fungal ratio (Fig. 4.8, Table 4.5) was significantly lower in the 

vegetated treatments than the bare ones (p=0.002), with the post hoc Tukey showing 

the bacterial / fungal ratio in the LB treatment was significantly higher than all other 

treatments. The ratio also varied significantly over time (p=0.04) with the ratio at 36 

hours after phenol addition being significantly higher than at 48 hours, but not at 24 

hours. This was still significant when comparing the vegetated to bare treatments 

over time in the bare treatments having a significantly higher bacterial / fungal ratio 

at 36 hours after phenol addition than at 48 hours. 
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Figure 4.5 Total PLFA concentrations in the four treatments at 24 hours m, 36 hours , 48 

hours o, CB = control bare, CV = control with vegetation, LV = lime with vegetation, LB = 
lime bare). Error bars are one standard error of the mean. 

Table 4.2 Results of the ANOVA of total PLFA concentrations comparing the four 

treatments over time. 

Source 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Intercept 738764.4 1 738764.4 397.7623 0.000000 
Vegetation 191.3 1 191.3 0.1030 0.757615 

Lime 115119.3 1 115119.3 61.9820 0.000101 
Vegetation*Lime 236.8 1 236.8 0.1275 0.731555 

Error 13001.1 7 1857.3 
TIME 5699.7 2 2849.9 1.4833 0.260445 

TIME*Vegetation 9285.8 2 4642.9 2.4166 0.125435 
TIME*Lime 6915.8 2 3457.9 1.7998 0.201543 

TIME*Vegetation 4606 0 2 2303.0 1.1987 0 330725 *Lime . . 
Error 26897.4 14 1921.2 
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Figure 4.6 Fungal PLFA concentrations in the four treatments at 24 hours m, 36 hours 
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48 

hourso, CB = control bare, CV = control with vegetation, LV = lime with vegetation, LB = 
lime bare). Error bars are one standard error of the mean. 

Table 4.3 Results of the ANOVA of fungal PLFA concentrations comparing the four 

treatments over time. 

Source 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

IntercePt 19.38163 1 19.38163 448.7399 0.000000 
Vegetation 0.27779 1 0.27779 6.4316 0.038887 
Lime 1.63404 1 1.63404 37.8326 0.000467 
Vegetation*Lime 0.02633 1 0.02633 0.6095 0.460557 
Error 0.30234 7 0.04319 
TIME 0.27645 2 0.13823 6.5113 0.010019 
TIME*Vegetation 0.17248 2 0.08624 4.0625 0.040618 
TIME*Lime 0.14826 2 0.07413 3.4919 0.058845 
TIME*Vegetation* 0.11964 2 0.05982 2.8179 0.093661 
Lime 
Error 0.29720 14 0.02123 
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Figure 4.7 Bacterial PLFA concentrations in the four treatments at 24 hours m, 36 hours 
, 

48 hoursE: i, CB = control bare, CV = control with vegetation, LV = lime with vegetation, LB 

= lime bare). Error bars are one standard error of the mean. 

Table 4.4 Results of the ANOVA of bacterial PLFA concentrations comparing the four 

treatments over time. 

Source 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Intercept 197274.2 1 197274.2 463.8320 0.000000 
Vegetation 1100.5 1 1100.5 2.5876 0.151739 

Lime 26689.7 1 26689.7 62.7529 0.000097 
Vegetation*Lime 7.1 1 7.1 0.0167 0.900808 

Error 2977.2 7 425.3 
TIME 2457.9 2 1228.9 1.6485 0.227567 

TIME*Vegetation 3472.6 2 1736.3 2.3290 0.133917 
TIME*Lime 2966.3 2 1483.2 1.9895 0.173597 

TIME*Vegetation* 1642.8 2 821.4 1.1018 359430 0 Lime . 
Error 10437.0 14 745.5 
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Figure 4.8 Bacterial / fungal PLFA ratios in the four treatments at 24 hours 0,36 hours 

48 hourso, CB = control bare, CV = control with vegetation, LV = lime with vegetation, LB 

= lime bare). Error bars are one standard error of the mean. 

Table 4.5 Results of the ANOVA for bacterial / fungal PLFA ratios in the four treatments 

over time. 

Source 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Intercept 7833.474 1 7833.474 166.6685 0.000004 
Vegetation 1099.028 1 1099.028 23.3834 0.001887 

Lime 198.673 1 198-673 4.2271 0.078831 
Vegetation*Lime 121.358 1 121.358 2.5821 0.152116 

Error 329.002 7 47.000 
TIME 383.268 2 191-634 4.1644 0.038092 

TIME*Vegetation 398.544 2 199.272 4.3304 0.034354 
TIME*Lime 120.905 2 60.453 1.3137 0.300004 

TIME*Vegetation* 134.912 2 67.456 1.4659 0.264228 Lime 
Error 644.241 14 46.017 
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Increases in the a 13C values of some PLFAs were observed 24 hours after 

phenol addition, with further increases observed in PLFAs after 36 and 48 hours 

(Fig. 4.9, Table 4.6)., Only six of the PLFAs extracted from the soils showed 

significant increases in PLFA 5 13C values, namely the general bacterial PLFAs, 

16: 0 and 18: 0, two associated with Gram-negative bacteria, 16: 1 (n-7) and 18: 1 (n-7) 

and two fungal PLFAs, 18: 2(n-6) and 18: 1 (n-9). 

Whilst it appears at 24 hours post phenol addition that the L soils are 
incorporating more label than the controls, there were no significant differences 

between any of the treatments for these 6 PLFAs at that time. 

By 36 hours post phenol addition there were significant differences between 

the treatments in all of the 6 PLFAs. The highest 5 13C values were observed in LV 

soils in each of the 6 PLFAs. In both of the fungal PLFAs, and the bacterial PLFAs, 

18: 1 (n-7) and 16: 0, the LV soil had resulted in significantly higher 5 13C values than 

in any other treatments, and whilst the LB treatment exhibited lower PLFA 6 13C 

values than LV, PLFA a 13C values in this treatment were significantly higher than 

either of the control treatments. The 5 13C values in 16: 1(n-7) were significantly 
higher in the L treatments than the control. Incorporation of the 13C label into the 

18: 0 PLFA was significantly higher in the LV treatment than in either of the bare 

treatments, whilst not being significantly higher than the CV soil. 
After 48 hours post phenol addition four of the six PLFAs that had shown 

incorporation of the 13C label were significantly different between treatments. 

Surprisingly, the differences were no longer dominated by the LV soil. In all of the 

PLFAs showing significant differences, 16: 1 (n-7), 16: 0,18: 2(n-6) and 18: 1 (n-7), the 

LB soil had resulted in significantly higher 5 13C values than any other treatments. 
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Figure 4.9 a, b, c. PLFA 6 13C values across the four treatments at times (a) 24 (b) 36 and 

(c) 48 hours post phenol addition. Error bars are one standard error of the mean. (9 CV, o 

CB, m LV, Ei LB ). 
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Table 4.6 ANOVA and post hoc Duncan's of PLFA 5 13C values across the four treatments 

over time, and the treatment* time interaction. 

24 hours 36 hours 48 hours Int 
Duncan's Multiple Duncan's Multiple Duncan's Multiple 
Range Test Range Test Range Test 

PLFA P CV CB LV LB P CV CB LV LB P CV CB LV LB 
14: 0 0.1641 

i15: 0 0.7417 
al 5: 0 <. 0001 aba 
15: 0 0.1686 
116: 0 0.0177 a ab b 
16:. 1 0.4240 

16: 1 (n- 0.2456 
7) 

16: 1 (n- <. 0001 ab 
5) 

16: 0 0.2320 
17: 1 (n- 0.2157 

8) 
7me- 0.8252 
17: 0 

brl 7: 0 0.5822 

b 

b 

ab 

i17: 0 0.0255 a b ab b 
a17: 0 0.0457 a ab ab b 
7,8cy- 0.0258 a ab a b 
17: 0 

18: 2(n- 0.2305 
6) 

18: 1 (n- 0.2326 
9) 

18: 1 (n- 0.1861 
7) 

18: V 0.1073 
18: 0 0.1977 
19: 1 0.3754 

'7,8cy- 0.0019 ab 
19: 0 

ac 

0.2335 
0.3522 
0.0550 
0.0361 aa 
0.0152 a 
0.7758 
0.0002 aa 

0.2482 

<. 0001 aa 
0.0024 aa 

0.0710 

0.4980 

b 
b 

b 

b 
b 

0.0055 a ab c 
0.0074 a a b 
0.4993 

0.0017 a a b 

<. 0001 a a b 

<. 0001 a a b 

0.0003 a a b 
0.0214 ab a b 
0.0571 
0.0756 

0.0122 ab a 
0.2213 
<. 0001 a b 

b 0.0147 a b 
ab 0.0009 a b 

0.0375 a b 
b 0.0010 a a 

0.0007 a b 

c 0.0144 a a 
b <. 0001 a c 

0.0009 a b 

0.0626 
bc 0.5267 
b 0.0262 ab a 

0.0588 

c 0.0137 a a 

c 0.1441 

c 0.0124 a a 

c 0.1205 
a 0.4821 

0.0005 a a 
0.0455 a b 

bc c 0.4265 
0.2234 

c d 0.0003 
a a 0.0043 
c a 0.0037 
a ab 0.0079 
a b 0.0052 

c c 0.5094 

a b 0.0120 
b c <. 0001 

a b 0.0054 

0.1371 
0.5332 

b b 0.1864 
0.0866 

ab0.0014 

0.0058 

ab0.0097 

0.2485 
b 0.1308 

ab ab 0.0043 
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The amount of 13C incorporated into individual PLFAs ( Fig 4.10, Table 4.7) 

was significantly higher in those PLFAs which had significantly higher 6 13C values, 

with the exception of 18: 0, with a maximum value of 12 ng g-1 soil seen In the LB 

treatment 48 hours after phenol addition. 
Within those 5 PLFAs, 4 showed significant differences between treatments 

36 hours post phenol addition. 16: 0 and 18: 1(n-7) were significantly higher in the 
lime soils than the controls, whilst 16: 1 (n-7) revealed a significantly higher amount 

of 13C in the LB soil relative to all other treatments. The fungal PLFA 18: 2(n-6) had 

a greater amount of incorporation in the LV treatment with ca. 7 ng 13C g-1 dw soil. 
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Figure 4.10 a, b, c. 13 C incorporation into PLFAs across the four treatments at times (a) 24 

(b) 36 and (c) 48 hours post phenol addition. Error bars are one standard error of the mean. 

(m CV, a CB, Ei LV, LB) 
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Table 4.7 ANOVA and post hoc Duncan's of 13C incorporation into PLFAs across the four 

treatments over time, and the treatment* time interaction. 
24 hours 36 hours 48 hours Int 

Duncan's Multiple Duncan's Multiple Duncan's Multiple 
Range Test Range Test Range Test 

PLFA P CV CB LV LB P CV CB LV LB P CV CB LV LB 
14: 0 0.1329 0.3186 0.2083 0.3781 

i 15: 0 0.0087 a a b b 0.4375 0.8268 0.5647 
al 5: 0 0.0016 ab c a b 0.0551 0.0005 ab c a b 0.0005 
15: 0 0.2853 0.1064 0.0019 a b a a 0.0031 

i 16: 0 0.0092 a b b b 0.0855 0.0034 a b a a 0.0008 
16: 1 0.1672 0.3147 0.0032 a b a a 0.0233 

16: 1 (n- 0.2582 0.0053 a a a b 0.0510 0.2028 
7) 

16: 1 (n- 0.0023 a b a a 0.2659 0.0046 a b a a 0.4985 
5) 

16: 0 0.2588 0.0049 a a b b 0.1508 0.2085 
17: 1 (n- 0.0200 a ab b b 0.0591 0.0315 a b a ab 0.0051 

8) 
7me- 0.0573 0.2825 0.0072 a b a a 0.0015 
17: 0 

br17: 0 0.0770 0.0738 0.0267 a b ab b 0.0010 
117: 0 0.0092 a b b b 0.4434 0.5259 0.7020 
a17: 0 0.0129 a b b b 0.0434 a ab b b 0.0028 a b a a 0.0170 
7,8cy- 0.9181 0.5418 0.0222 a b a a 0.6403 
17: 0 

18: 2(n- 0.3634 0.0016 a a b a 0.2304 0.0141 
6) 

18: 1 (n- 0.2484 0.0873 0.3290 0.0387 
9) 

18: 1 (n- 0.1992 0.0042 a a b b 0.0623 0.1011 
7) 

18: 1, 0.0949 0.1602 0.2464 0.0745 
18: 0 0.2010 0.0488 a b ab b 0.2923 0.0857 
19: 1 0.1427 0.6871 0.0610 0.1143 

'7,8cy- 0.3048 0.0886 <. 0001 a b a a <. 0001 
19: 0 
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613C values were combined with PLFA concentrations to estimate the total 

amount of phenol-derived 13C present in the PLFAs (Fig. 4.11; Table 4.8). The total 

amount of 13C in the PLFAs was not affected by the presence or absence of 

vegetation, but was significantly higher in the L treatments compared to the controls 
(p=0.033). The removal of vegetation has the same effect in both the L and control 

treatments, resulting in an increase in the amount of 13C in the PLFAs. 

Unsurprisingly, the amount of the 1 3C label increases significantly over time 

(p=0.018). However, interestingly, comparing L treatments, the amount of 13C in the 

PLFAs increases throughout the experiment in the LB soil, while peaking in the LV 

treatment at 36 hours post phenol addition. 
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Figure 4.11 Total amount of "C PLFA across the four treatments over time. Error bars are 

one standard error of the mean. (CB = control bare, CV = control with vegetation, LV = 
lime with vegetation, LB = lime bare) 

Table 4.8 Results of the ANOVA of total amount of "C PLFA comparing the four 

treatments over time. 

Source 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Intercept 5960.306 1 5960.306 27.27667 0.001222 
Soil 1518.317 1 1518.317 6.94841 0.033619 
Plant 230.095 1 230.095 1.05300 0.338964 
Soil*Plant 41.534 1 41.534 0.19008 0.675982 
Error 1529.591 7 218.513 
TIME 826.638 2 413.319 5.41795 0.018086 
TIME*Soil 263.011 2 131.505 1.72382 0.214160 
TIME*Plant 414.935 2 207.467 2.71956 0.100498 
TIME*Soil*Plant 195.662 2 97.831 1.28241 0.308027 
Error 1068.018 14 76.287 
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4.4 Discussion 

4.4.1 RNA Extraction and separation of 
12 C and 

13C 

The RNA extraction from soils and roots appeared successful yet the subsequent 
failure to detect RNA after ultra-centrifugation raised two questions. Firstly, it is not 

really known if the amount of total RNA loaded into the CsTFA filled tube, 

calculated from Gomall (2000), was of sufficient quantity; secondly, there may not 
have been sufficient enrichment in the samples for the labelled RNA to have gained 

sufficient density to be separated by ultracentrifugation. The amount of RNA loaded 

into the tube is considered precise; insufficient RNA would result in (once separated 

into the heavy and light bands) a failure to achieve successful RT-PCR, whilst 
loading too much RNA increases the risk of the 12 C and 13 C RNA bands becoming 

merged in the tube, failing to achieve clear separation during ultracentrifugation. If 

the labelling of the RNA was inadequate, then it would not be dense enough for 

clear separation from the unlabelled material during ultracentrifugation and 

confirmation of the extent of labelling was attempted using IRMS analysis of the 

separated bands. IRMS is very sensitive and precise and capable of detecting 

extremely small changes in the isotopic composition of C within a -sample (normally 

to 0.1 per mil) and even if relatively small traces of 13C were present in the isolated 

gradient fractions, which failed to yield and RNA using RT-PCR, the 13 C should still 
be detectable. The failure to detect any peaks of 13C on the IRMS did not assist in 
differentiating whether a suboptimal amount of RNA had been loaded or there was 
insufficient label in the samples, but indicates either that insufficient label had 

incorporated into the RNA to enable detection or that the underlying methodology, 
from culturing through RT-PCR, was in some way flawed. 

Since completion of the experiments described here, SIP has been more 

widely utilised as a tool for degradations studies including, for example, anaerobic 
13 C-benzene degradation (Kunapuli et al., 2007). These authors reported that 

although organisms maintained their populations during enrichment, there was large 

variation within the microbial consortia involved in benzene degradation, revealed 
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by the uptake of labelled carbon. Manefield et al. (2007) added 13 C6 phenol to an 

activated sludge micro-reactor to examine the resulting distribution of the labelled C. 

They found that within the first 100 minutes after addition, most of the phenol had 

been metabolically converted, with 49% being incorporated into microbial biomass 

and 6% respired as C02, Interestingly, less than 1% of the total 13C labelled C 

supplied was incorporated into microbial RNA and DNA, with RNA labelling 

occurring 6.5 times faster than DNA, confirming that whilst RNA incorporated the 

label more efficiently that DNA, only a very small percentage (less than 1%) was 

incorporated into nucleic acids. It is clear that, for detection of the label incorporated 

into nucleic material, the level of enrichment has to be significant. 

However, even with highly labelled E. coli RNA the labelled RNA, at a 

range of differing amounts, was undetectable using the highly sensitive IRMS. The 

dilution of the 13 C carbon by the acetate in the gradient may have obscured the 

isotope signal, which would be much less of a problem with an inorganic gradient 

matrix, such as CsC1 used in DNA ultracentrifugation (see Manefield et al., 2002). It 

is likely that the material was not enriched to a sufficiently high degree meaning that 

RT-PCR failed to produce the appropriate amplifications. However, given the failure 

to amplify fully labelled E. coli it seems likely that it was neither of the reasons 

suggested above that totally accounted for the inability to detect any RNA after 

ultra-centrifugation; indeed, it would have been more cautious to have attempted to 

repeat the technically less-demanding DNA SIP work before using RNA. Stable 

isotope probing of nucleic acids is clearly a technique which, while elegant and 

precise, is still an emerging technology and one which requires a considerable 

amount of protocol development and manipulation before becoming routine. 

4.4.2 Sourhope 2004 PLFA analyses 

The addition of lime to plots at Sourhope significantly affected the pH of the upper 

section of the soil profile, raising it a mean value of 2.1 over 4 years (Burt-Smith, 

2003). The rise in the upper soil profile pH in the lime treatments at Sourhope was 

also strongly positively correlated with changes in biomass productivity (Burt- 
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Smith, 2003). It was surprising, given that Grayston et al. (2001) had reported that a 

raised pH (from pH 4.1 to pH 6.0) for a similar soil, had resulted in an increase in 

both soil microbial biomass and soil microbial activity, that the total PLFA 

concentrations were significantly lower in the L treatments in the current work, 

which was seen in both the fungal and bacterial concentrations. This may have been 

a result, for the LV treatment, of differing changes in vegetation associated with the 

liming, resulting in lower soil moisture amongst other effects (Burt-Smith, 2003). 

The timing and pattern of incorporation of the isotopic label into six distinct 

PLFAs was apparent after 24 hours. This provides a major indication that the 

specific groups of organisms containing these PLFAs were in fact degrading the 

phenol, rather than being secondary degraders, which were mineralizing substrates 
from phenol-degrading microorganisms. The time at which the isotopic label can be 

seen varied greatly between substrates, for example when Treonis et al. 2004 pulsed 

grassland soils in situ with 13 C02 for 5 hours, the enrichment in the PLFAs was seen 

after 4 and 8 days post pulse. Interestingly, out of the six PLFAs which incorporated 

the 13C label, four (the fungal and Gram-negative lipid biomarkers) were also 

reported by Treonis et al. (2004) as showing the highest enrichment, turning over 

more rapidly than the Gram-positive biomarkers, attributing 16: 0 as a PLFA 

assigne d by Phillips et al. (2002) as a general bacteria biomarker lipid. Whilst 

Treonis et al. (2004) concluded that liming had not affected the turnover rates of 13C 

labelled C, or which organisms utilised the photo-assimilate, the results presented 
here in Chapter 4 concluded that liming had significantly increased the rate of 

incorporation of 13C labelled C from phenol into PLFAs. This finding is supported 

by Grayston et al. (200 1) and Fuentes et al. (2006) who attributed greater respiration 

rates and microbial biomass C to the increase in pH caused by the liming and also 

found that, when compared to unlimed soil, limed soil had faster C turnover rates 

and increased mineralization of organic matter. 
The difference in incorporation of the 13C from phenol into the PLFAs over 

time between the two lime treatments was of interest. It is possible that, in the LV 

treatment, after the initial rise in incorporation between 24 and 26 hours post phenol 

addition, other C substrates such as plant root exudates are comparatively more 
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n'11 abundant, and easier to degrade than the phenol and so resulting in the decrease in 

assimilation, In contrast, in the LB treatment soil in the absence of plants, resulting 
in the removal of an important competing C source, resulted in the increased 

assimilation of phenol. 
In conclusion, Gram-negative and fungal lipid biomarkers were the primary 

degraders of phenol. Known phenol degraders include Gram-negative bacteria 

(Sakia et al., 2003) namely 5 species of Pseudomonas, and a species of Ralstonia. 

van Schie and Young, 2000) and, from 13C incorporation into the fungal biomarker 

18: 2(n-6), fungi have been found dominate the phenol degradation in one soil 

microbial community (Brant et al., 2006). Liming is known to increase the leaching 

of dissolved organic carbon (DOC) (Andersson and Nilsson, 2001) and so, as limed 

soils may be more limited in readily available C than the in the control soils, liming 

may dominate the assimilation of the C from phenol through indirect effects. The 

significant effect on the rate at which phenol is assimilated in both the vegetated and 
bare treatments may be as a result of C limitation. 

The Gram-negative PLFA 16: 1 (n-7), whilst being present at a higher 

concentration in the control treatments, incorporated a significantly higher amount 

of 13C in the limed treatments, indicating that it is not all Gram-negative bacteria 

with the PLFA 16: 1(n-7) that are assimilating the phenol. The amount of phenol 

assimilated is small, with a maximum amount of ca. 40'ng g-1 dw soil incorporated 

in the LB treatment after 48 hours. 

In order to gain a better understanding of the different destinations of 13C 

from the phenol, the current results need to be combined with the results described 

in Chapters 3 and 4 to provide an overview of the allocations of 13 C derived from the 

phenol to the different parts of the soil system and this is discussed further in 

Chapter 6. 
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Chapter 5. Combining gas mass-spectrometry with PLFA SIP in the laboratory 

to examine phenol degradation in soils 

5.1 Introduction 

The mobile mass spectrometer has enabled the in situ monitoring of labeled 13C 

substrates under natural conditions, as shown in Chapters 2 and 3. In situ monitoring 
in this way creates minimal disturbance to the treated plots and so has the 

advantages over laboratory-based studies where cores are taken and the system 

potentially disturbed. There are situations, however, when field testing is 

impracticable, for example when a substrate's toxicity is too high to be permitted in 

the field, when the terrain is not compatible with access by a mobile laboratory or 

when the treatments cannot be controlled efficiently in the field. Laboratory 

incubations themselves also have a number of advantages over field-based studies, 

with the potential for more treatment options, frequent monitoring, removing 

potentially confounding factors (e. g. moisture and temperature) and reducing the 

variability between replicate units. For this purpose the field experiment described 

in Chapter 3 was repeated in the laboratory. Cores from the field site were placed 
into a specially constructed laboratory incubator, held at a constant temperature in 

the dark with either phenol or water being added to examine whether phenol, at the 

same concentration used in the field, affected the rate of soil respiration. Following 

this initial laboratory experiment, a second set of cores from the Sourhope field site 

were placed into the same incubator system and 13 C-labeled phenol applied at the 

same concentration and to the same treatments as for the field experiment described 

in Chapter 3. This would demonstrate whether effects witnessed in the laboratory 

really represented the in situ behaviour and, if so, enable a more efficient and rapid 

turnaround of experimental designs. 
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5.2 Methods 

The laboratory work described here used cores from the same treatments described 

Chapter 3, taken from the Sourhope field site. Cores (diameter 6.5 cm, depth 10 cm) 

were taken in mid March '05 and transported to the laboratory where they were kept 

under cover out of doors prior to being placed in the laboratory respiration system. 

5.2.1 Ex situ degradation of phenol monitored using 12 C phenol 

The laboratory measurements were made using a flow-through system similar to that 

used in the field. Compressed air was introduced into the system, passing through 

Nalgene tubing into a 45 gallon drum to ensure the air was thoroughly mixed and to 

dampen any fluctuations in concentration in the source air. From there, the air was 

passed into a 24 way manifold, below a set water level in the manifold (controlled to 

be 5 'C warmer than the chamber incubator to minimise water loss from the soil) 

with an outlet above the water level, acting as a 'constant head' device. This ensured 

that air at a constant pressure was being delivered to the incubation chambers and 

that the volume of air drawn through the lines by the pump in the mobile laboratory 

did not exceed that being delivered by the compressed air supply, which would 

result in a negative pressure being developed within the chambers. The air left the 

manifold via 24 Nalgene tubes, each line entering a dark, sealed chamber. The 

sealed chambers, capacity 2 1, used for the experiment were made from plastic, and 
held precisely at 15 'C in an incubator. The inlet hole was situated on the top of the 

chamber, the outlet hole was on the top of the chamber, away from the inlet, to 

which PTFE tubing, with an internal diameter smaller than the inlet tube, was 

connected, which ran to the 24 channel gas handler unit. Air from all 24 chambers, 

at a flow rate of 50 cm 3 min-' per line, was drawn through PTFE lines to the 24 

channel gas handler and subsequently into an infra red gas analyser (IRGA) for 5 

minutes in sequence (see Fig. 5.1) The data were collected and stored using a 

PICOLOG analogue-digital converter and software (Pico Technology Ltd. 

Cambridgeshire, UK) connected to a laboratory computer. 
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To measure the degradation of phenol in the laboratory, phenol (30 cm 3 50 

ppm aqueous solution) was applied to a soil core (33 cm 2) from each of the 12 

treated plots, with four different treatments and three replicates of each treatment. 

The treatments to which phenol was added were; control vegetated (CVP), control 

non-vegetated or 'bare' (manual removal of vegetation and prevention of regrowth 

over a year prior to the experiment) (CBP), lime (600 g M-2 y-1) vegetated (LVP) and 
lime non-vegetated (LBP). Water, 30 cm 3, was added to two each of the 12 treated 

plots, across the four different treatments (CVW, CBW, LVW, LBW). Four 

chambers did not contain soil cores, enabling theC02 concentration of the inlet air 

to be measured. 
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Figure 5.1 Schematic diagram of the laboratory incubation system. Air from a compressor 

passed into a 45 gallon drum and into a 24 way manifold, maintained at a slight positive 

pressure and 5 degrees wanner than the water bath which hold the soil cores. 24 lines left 

the manifold and each passed through a water trap and into a sealed container containing a 

soil core in a 3-compartment water bath, with each compartment holding 8 containers, 

controlled at the same temperature. Air from the containers then entered a gas handling unit 

(GHU) where the line was either diverted to waste or the infra red gas analyzer (IRGA). The 

GHU cycled through the lines with each line being diverted to the IRGA for 5 minutes per 

cycle. 
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5.2.2. Ex situ degradation of phenol monitored using 13C phenol 

The laboratory incubations involving 13C labelled phenol used a flow-through 

system identical to the one described in Section 5.1 except for the following 

modifications: the manifold was 15 port (rather than 24; since the mobile lab has 

only 15 lines), not including a standard, and air from all 15 chambers, at a flow rate 

of 100 cm 3 min-, was drawn through PTFE lines to the mobile isotopic ratio mass 

spectrometer (IRMS) for semi-continuous measurement of 13 C02, enabling both the 
13C value and the ppmC02 to be measured (Fig 5.2). 

To measure týe degradation of phenol in the laboratory 30 cm 3 of a 50ppm 

solution 13 C6 phenol was applied (99% atm enrichment, Cambridge Isotope 

Laboratories, UK), to soil cores (33 CM) from each of the 12 treated plots, with four 

different treatments and three replicates of each treatment. Water, 30 cm 3, was also 

added to two additional chambers to provide the signal of soil respiration "natural 

abundance". The treatments were; control vegetated (CV), control non-vegetated 
(manual removal of vegetation and prevention of regrowth over a year prior to the 

experiment, CB), lime (600 g M-2 y-) vegetated (LV) and lime non-vegetated (LB). 

A fifteenth chamber remained empty, allowing the 5 13 C value and C02 

concentration of the incoming air to be measured. The degradation of phenol was 

measured as 13 C02 evolved from treated cores using the sealed chambers connected 

to the mobile laboratory. 
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Figure 5.2 Schematic diagram of the laboratory incubation system used in conjunction with 

the mobile laboratory. See Fig. 5.1 for details. Air from the chambers entered the mobile 
laboratory, where they sequentially pass into the MMS for 13 C02analysis. 
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5.2.3 PLFA analysis 

The cores used in the experiment described in Section 5.2.2 were removed from the 

incubator after 48 hours and placed directly into a -80'C freezer to halt microbial 

activity. They were subsequently freeze-dried and PLFAs were extracted using the 

method described in Section 4.2.5, with 4 treatments (CV, CB, LV and LB) and 3 

replicates of each treatment. The PLFAs were assigned, as in Chapter 4, to the 

groupings reported by Phillips et al. (2002). 

5.2.4 Statistical analysis 

Statistical analyses were performed using SPSS (v. 14.0 2005 SPSS. Inc). ANOVA 

with repeated measures was used to compare the 5 and flux measurements from the 

different treatments, followed by a posterori t tests, where appropriate. One-way 

ANOVA was used to compare the final cumulative fluxes, followed by a post hoc 

Duncan's test. A factorial ANOVA was also used to compare all the grouped PLFA 

data across treatments with the data being transformed (logio), if necessary, for 

normalisation; a post hoc Tukey test was then applied. 

SAS (V8 2000 SAS Institute Inc) was used to perfonn ANOVAs on each of 

the individual PLFAs for the compositions, 613 C and ng. It is recognised that these 

high numbers of ANOVA comparisons (> 100) will result in Type 11 statistical 

errors (i. e. the likelihood of five false positive significant treatment impacts out of 

every 100 ANOVAs performed), but any consistent significant treatment effects 

would be detected.. Principal components analyses (PCA) was also applied to the 

PLFA data, both concentrations and 513C content, using SAS. 

115 



5.3 Results 

5.3.1 Ex situ degradation of phenol monitored using 12 C phenol 

Fig. 5.3 compares theC02flux between CV and LV treatments after the addition of 

either phenol (CVP / LVP) or water (CVW / LVW). The mean flux from the CVW 

treatment was slightly higher than for the CVP treatment and remained consistent 

after the phenol and water were added, and then throughout the remaining 

experiment. Whilst the LVW treatment had a higher C02 flux than the LVP 

treatment, the increase in the flux began before the phenol was added and an 
ANOVA with repeated measures found no significant differences between any of 

the treatments. 

TheC02fluxes from the bare treatments after the addition of phenol (CBP 

LBP) or water (CBW / LBW) are shown in Fig. 5.4. Although the mean C02 flux 

from the CVW treatment flux appeared higher than the mean CVP flux, whilst the 

LVW mean flux appeared lower than the LVP flux, there were no significant 

differences between the four treatments. 
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5.3.2 Ex situ degradation of phenol monitored using 1 3C phenol 

Figure 5.5 compares the responses in phenol degradation in the CV and LV 

treatments. The CV treatment reacted faster to the phenol addition than the LV 

treatment; the CV 613 C02 air and phenol-derivedCO2 flux both peaked ca. 4 hours 

after phenol addition, whilst the LV treatment peaked approximately 11 hours after 

the CV treatment, at ca. 15 hours after phenol addition. The 613 C02 air and phenol- 

derived C02 flux from the LV treatment intercepted the CV treatment at 

approximately 11 and 9 hours after phenol addition, respectively, and remained 

higher than the CV treatment for the remaining duration of the experiment. 6 13 C02 

in the air was significantly higher for the LV treatment than for the CV treatment in 

the last 4 hours of the experiment (p=0.048), with an a posterori t test showing the 

differences occurring at 42 hours after the addition of phenol. The analyses also 

revealed that the phenol-derivedCO2 flux under the LV treatment was significantly 

higher than for the CV treatment in the second half of the experiment, from 30 hours 

after phenol addition to the end of the experiment at 46 hours (p=0.014). An a 

posterori t test showed the significant differences at between ca. 31 and 43 hours 

after the addition of phenol. There were no significant differences in the total 

cumulative phenol-derivedCO2flux from the two treatments. 

Comparing the CB and LB treatments (Fig. 5.6), the 513 C02 in air and 

phenol-derivedCO2 fluxes in the CB treatment peaked at ca. 3 hours after phenol 

addition, responding to the addition faster than the LB treatment, which peaked at 

ca. 15 hours, II hours after the CB treatment had peaked. As seen for the vegetated 

treatments, the fluxes of 513 C02 in air and the phenol-derivedCO2 flux for the LB 

treatment intercepted the CB treatment approximately 9 hours after phenol addition, 

and remained higher than the CB treatment, returning to similar values in both 

treatments by 30 hours after phenol addition. ANOVA with repeated measures 

reveled that, between ca. 13 and 20 hours after phenol addition the 6 13 C02 in air for 

the LB treatment was significantly higher than for the CB treatment (p=0.045) and 

that between ca. 13 and 23 hours after phenol addition the LB treatment phenol- 

derived C02 flux was significantly higher than the CB treatment (p=0.016). A 
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posterori t tests found the significant differences to be between ca. 14 and 19 hours 

after phenol addition. There were no significant differences in the total cumulative 

phenol-derivedCO2flux between the CB and LB treatments. 
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Figure 5.5 a, b, C 613 C02 air values, phenol-derivedCO2flux values and cumulative phenol- 

derivedCO2 values following the application of 30 CM3 13C6 phenol [50 ppm] to the control 

(e-e CV), and hi-ned LV) vegetated plots. Error bars are one standard error of the 

mean. 
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phenol -derivedCO2values following the application of 30 CM3 13 C6phenol [50 ppm] to the 

control (0- -0 CB), and limed (-- LB) bare plots. Error bars are one standard error of the 

mean. 
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Figure 5.7 compares the impact of the two lime treatments, LV and LB, on 

the 5 13 C02 in the air, the phenol-derivedC02 flux and the cumulative phenol-derived 

C02 flux. The LB treatment responded more rapidly to the addition of phenol than 

the LV treatment. Whilst both treatments peaked at ca. 15 hours after addition, the 

513 C02 in air for the LB treatment peaked at approximately twice the absolute 
513 C02 value of the LV treatment and the phenol-derivedCO2 flux for the LB 

treatment peaked at around two thirds higher that the LV treatment. The LV 

treatment then crossed the LB 5 13 C02 air and phenol-derivedCO2 flux as the LB 

values decreased, with the graphs crossing at approximately 26 and 24 hours 

respectively after phenol addition. The 613 C02 in air derived from the LB treatment 

was significantly higher than for the LV treatment (p=0.009) between ca. 2 and 24 

hours post phenol addition, and a posterori t tests revealed the significant 
differences within this time period to be between 2-4 and 14-22 hours after phenol 

addition. Comparisons of the phenol-derivedC02 flux values between the treatments 

revealed that the LB treatment was significantly lower than the LV treatment for the 

last 16 hours of the experiment, between ca. 30 and 46 hours after phenol addition; 

an a posterori t test located the significance within this period to be between ca. 35 

and 46 hours after phenol addition. However, ANOVA revealed that the total 

cumulative phenol-derived C02 flux was not significantly different between the 

treatments. 

As shown in Fig. 5.8, the 613 C02 air and phenol-derivedC02 fluxes in the two 

control treatments, CV and CB, were very similar, peaking at the same time of ca. 3 

hours after phenol addition. The CB treatment peaked at higher 513 C02 values than 

the, CV treatment, approximately 50% higher for the 513 C02 in air and just over a 

third higher for the phenol-derivedCO2 flux. The CB treatment remained continually 

higher than the CV treatment, before converging towards the end of the experiment, 

yet there were no significant differences between the CV and CB treatments in either 

the 513 C02 in air or the phenol-derivedCO2 flUX- Similarly, the total cumulative 13 C02 

flux was not significantly different between treatments (shown for all treatments in 

Fig. 5.9). 
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A mass balance was calculated to determine the percentage of 
13C in the 

substrate that was mineralised to C02 in each of the four treatments and this is 

presented in Table 5.1, showing the variation between treatments from 0.22% in CV 

to 0.3 1% in LB. 

Table 5.1 Mass balance showing percentage 
13C 

phenol iriinerallsed to 13 C02. No significant 
differences were found between treatments. 

Treatment % of "C phenol Mineralised to 
13 C02 

cv 0.22 

CB 0.26 

LV 0.26 

LB 0.31 
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Figure 5.7 a, b, C 613 C02 air values, phenol-derived C02 flux values and cumulative phenol- 
3 13 

derived C02 values following the application of 30 CM C6 phenol [50 ppm] to the 

vegetated LV), and bare LB) limed plots. Error bars are one standard error of 

the mean. 
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the mean. 
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Figure 5.9 Total phenol-derivedCO2flux in the four treatments: CV, CB, LV and LB. Error 

bars are one standard error of the mean. Treatments with the same letter are not significantly 
different (p<0.05). 
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5.3.3 PLFA analysis 

The PLFA composition of soils from the four treatments were generally similar (Fig. 

5.10). However, there were significantly greater concentrations of the PLFAs brl7: 0 

(p=0.0182), 18: 1(n-7) (p=0.0439), and 18: 1(n-5) (p=0.0050) in the CB treatment 

than in any other treatments, and significantly greater concentrations of the PLFA 

7,8cy-19: 0 in the CB treatment than in either of the L treatments (p=0.0433) (Table 

5.6). PLFAs 18: 1 (n-7) and 7,8cy- 19: 0 have been shown to be associated with Grain- 

negative bacteria (Philips et al. 2002). A PCA was performed on the individual 

PLFA compositions across the four treatments to reveal if any PLFAs clustered 

together, however none were found to do so (analyses not shown). 

The total PLFA concentration was significantly higher in the control soils 

than for the lime soils (p=0.036) and this was not significantly affected by the 

presence or absence of vegetation (Fig. 5.11; Table 5.3). There were no significant 
differences in the concentrations of fungal PLFA across any of the treatments (Fig. 

5.12, Table 5.4). However, the bacterial PLFA concentrations (Fig. 5.13, Table 5.5) 

were significantly higher in the control treatments than in the lime, (p=0.027), yet 

the difference was not sufficient to cause a significant change in the bacterial / 

fungal PLFA ratios (Fig. 5.14, Table 5.6). Therefore, whilst the total amount of 
PLFA was significantly higher in the control soils than the lime soils, this was 
dominated by the significantly higher concentrations of bacterial PLFAs in the 

control treatments. 
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Figure 5.10 PLFA composition in the four treatments. Error bars are one standard error of 

the mean. (m= CV, v=CB, o= LV, = LB). 

Table 5.2 ANOVA and post hoc Duncan's of logged PLFA compositions (logio 

transfornied) in the four treatments. Treatments with different letters across a row denote 

significant treatment differences. 

Duncan's Multiple Range Test 
PLFA p cv CB LV LB 

14: 0 0.6895 
115: 0 0.6729 
al 5: 0 0.1742 
15: 0 0.3446 
J 16: 0 0.2554 
16: 1 0.2098 

16: 1 (n-7) 0.6382 
16: 1 (n-5) 0.3526 

16: 0 0.1406 
17: 1 (n-8) 0.1282 
7me-17: 0 0.2143 

br17: 0 0.0182 a baa 
t 17: 0 0.1938 
a 17: 0 0.4617 

7,8cy- 17: 0 0.1285 
18: 2(n-6) 0.6544 
18: 1 (n-9) 0.0574 
18: l(n-7) 0.0439 a baa 

18: 1' 0.0050 a baa 
18: 0 0.1410 
19: 1 0.1348 

17,8cy-19: 0 0.0433 ab bAa 
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Figure 5.11 Total PLFA concentrations in the four treatments (CB = control bare, CV = 

control with vegetation, LV = lime with vegetation, LB = lime bare). 

Table 5.3 ANOVA table for total PLFA concentrations, comparing the four treatments. 

Source 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Corrected Model 23259.505(a) 3 7753.168 2.885 . 103 
Intercept 220974.890 1 220974.890 82.214 . 000 
Vegetation 1819.424 1 1819.424 . 677 . 434 
Lime 16994.796 1 16994.796 6.323 . 036 
Vegetation * Lime 4445.285 1 4445.285 1.654 . 234 
Error 21502.372 8 2687.797 
Total 265736.767 12 
Corrected Total 44761.877 11 

aR Squared = . 520 (Adjusted R Squared = . 339) 

129 

CB cv LV LB 



14 

12 

(7) 10 =L 

C/) 
C: 
0 

LL 

-j 4 0- 

-Fu 

0) 
C: 
Z3 2 

LL 

0 

CB cv LV LB 

Figure 5.12 Fungal PLFA concentrations in the four treatments. Error bars are one standard 

error of the mean. (CB = control bare, CV = control with vegetation, LV = lime with 

vegetation, LB = lime bare). 

Table 5.4 ANOVA table of fungal PLFA concentrations comparing the four treatments. 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 38.167(a) 3 12.722 . 563 . 654 
Intercept 334.345 1 334-345 14.799 . 005 
Vegetation 14.241 1 14.241 . 630 . 450 
Lime 20.484 1 20.484 . 907 . 369 
Vegetation 3.442 1 3.442 . 152 . 706 
Lime 
Error 180.742 8 22.593 
Total 553.254 12 
Corrected Total 218.909 11 

aR Squared = . 174 (Adjusted R Squared = -. 135) 
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Figure 5.13 Bacterial PLFA concentrations in the four treatments. Error bars are one 

standard error of the mean, (CB = control bare, CV = control with vegetation, LV = lime 

with vegetation, LB = lime bare). 

Table 5.5 ANOVA table for bacterial PLFA concentrations, comparing the four treatments. 

Type III Sum Mean 
Source of Squares df Square Sig. 
('nrrpr-tpri Mnripl 1'91; '17 nl; Qtn 

Intercept 102051.688 
Vegetation 1044.241 
Lime 8710.928 

3 4179.020 3.491 . 070 

1 102051.688 85.252 . 000 
1 1044.241 . 872 . 378 
1 8710.928 7.277 . 027 

Vegetation 2781-890 1 2781-890 2.324 . 166 Lime 
Error 9576.436 8 1197.054 
Total 124165.182 12 
Corrected Total 22113.494 11 

aR Squared = . 567 (Adjusted R Squared = . 405) 
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Figure 5.14 Bacterial/fungal PLFA ratios in the four treatments. Error bars are one standard 

error of the mean, (CB = control bare, CV = control with vegetation, LV = lime with 

vegetation, LB = lime with bare). 

Table 5.6 ANOVA table for bacterial/fungal PLFA ratios in the four treatments. 

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Corrected Model 670.607(a) 3 223.536 2.245 . 160 
Intercept 5800.781 1 5800.781 58.246 . 000 
Vegetation 213.264 1 213.264 2.141 . 182 
Lime 259.499 1 259.499 2.606 . 145 
Vegetation * Lime 197.844 1 197.844 1.987 . 196 
Error 796.725 8 99.591 
Total 7268.113 12 
Corrected Total 1467.332 11 

aR Squared = . 
457 (Adjusted R Squared = . 

253) 
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5.3.4 13 C PLFA analysis 

Significant increases in PLFA 613C values were observed for only some of the 

PLFAs extracted from the soils (Fig. 5.15; Table 5.7). 513C values were 

significantly higher in the LB treatment than for any other treatment in the bacterial 

PLFAs 15: 0 (p=0.0032), 16: 0 (p=0.0139), a17: 0 (p=0.0195) and in the fungal 

PLFAs 18: 2(n-6) (p=0.0007) and 18: 1(n-9) (p=0.0098). The 513C values were also 

significantly higher in the LB treatment in the bacterial PLFA 16: 1 (n-7) that for any 

of the control treatments (p=0.0347) but, conversely, the 513C values in the PLFA 

7,8cyl9: 0 were significantly higher in the CV treatment than any of the L treatments 

(p=O. 0 12 5). 

613C values were combined with PLFA concentrations to estimate the total 

amount of phenol-derived 13C present in the PLFAs (Fig. 5.16; Table 5.8). The total 

amount of 13 C in the PLFAs was not affected by the presence or absence of 

vegetation, or the presence or absence of lime. However, the interaction between 

vegetation and liming tended towards significance (p=0.058), with a pattern of 

removal of the vegetation resulting in a decrease of 13C in PLFAs in the control 

treatments, with a mean decrease of ca. 3 fold, whilst having the opposite effect in 

the lime treatments, with a mean increase of ca. 3 fold. 

Further statistical analyses were carried out on the PLFAs for which 

increases in 6 13C values were observed (Fig. 5.17). Within this smaller number of 

PLFAs, 'there were significant differences in the amount of phenol-derived 13C in the 

different PLFAs. Five distinct PLFAs, namely the bacterial PLFA 16: 0, the Grain- 

negative bacterial PLFAs 16: 1 (n-7) and 18: 1 (n-7) and the fungal PLFAs, 18: 2(n-6) 

and 18: 1(n-9), incorporated significantly more 13C than all other PLFAs. Within 

these five PLFAs, there was a significantly greater amount of 13C in the fungal 

PLFA 18: 2(n-6) in the LB treatment than in any other treatments (p=0.024). The LB 

treatment also incorporated significantly more 13C than any other treatments in the 

Gram-positive PLFA 15: 0 (p==0.005), although this incorporation was very small. 
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A PCA was performed on the PLFA 8 13C values across the four treatments 

and the amount of incorporation of 13 C however, yet it did not reveal any significant 
treatment clusters for PLFAs (analyses not shown). 
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Figure 5.15 PLFA VC values in the four treatments. Error bars are one standard error of 

the mean, (o-o CV o- -o CB LV - LB ). 

Table 5.7 ANOVA and post hoe Duncan's of individual PLFA VC values across the four 
treatments. Treatments with different letters across a row denote significant treatment 
differences. 

Duncan's Multiple Range Test 
PLFA p Cv CB LV LB 

14: 0 0.0798 
115: 0 0.3126 
al 5: 0 0.6655 
15: 0 0.0032 a a a 
116: 0 0.4772 
16: 1 0.4512 

16: l(n-7) 0.0347 a a ab b 
16: 1 (n-5) 0.0669 

16: 0 0.0139 a a a b 
17: 1 (n-8) 0.1955 
7me- 17: 0 0.3029 

brl 7: 0 0.8914 
117: 0 0.3516 
a17: 0 0.0195 a a a b 

7,8cy- 17: 0 0.3264 
18: 2(n-6) 0.0007 a a a b 
18: l(n-9) 0.0098 a a a b 
18: 1 (n-7) 0.1729 

18: 1' 0.0184 a a a b 
18: 0 0.5879 
19: 1 0.0524 

17,8c>, -19: 0 0.0125 a ab b b 
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Figure 5.16 Total phenol-derived "C in PLFAs in the four treatments. Error bars are one 

standard error of the mean, (CB = control bare, CV = control with vegetation, LV = lime 

with vegetation, LB = lime bare). 

Table 5.8 Results of the ANOVA of total phenol-derived "C in PLFAs across the four 
treatments. 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 3263.949(a) 3 1087.983 1.999 . 193 
Intercept 7806.323 1 7806.323 14.342 . 005 
Lime 484.126 1 484.126 . 889 . 373 
Vegetation 129.717 1 129.717 . 238 . 639 
Lime * Vegetation 2650.107 1 2650.107 4.869 . 058 
Error 4354.474 8 544.309 
Total 15424.746 12 
Corrected Total 7618.424 11 

aR Squared = . 428 (Adjusted R Squared = . 214) 
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Figure 5.17 Phenol-derived "C incorporation into those PLFAs observed to show increases 

in d 13C values across the four treatments. Error bars are one standard error of the mean, (M= 

CV, iý=CB, E: i = LV, = LB). 

Table 5.9 ANOVA and post hoc Duncan's for normalised PLFA compositions across the 

four treatments. Treatments with different letters across a row denote significant treatment 

differences. 

Duncan's Multiple Range Test 
PLFA p Cv CB LV LB 

14: 0 0.3197 
15: 0 0.3239 

al 5: 0 0.7276 
15: 0 0.0046 aaab 
116: 0 0.3875 
16: 1 0.3486 

16: 1 (n-7) 0.1180 
16: 1 (n-5) 0.1720 

16: 0 0.3869 
17: 1 (n-8) 0.1261 
7me-17: 0 0.3033 

bi-I 7: 0 0.6879 
117: 0 0.4267 
al 7: 0 0.0525 

7,8cy- 17: 0 0.2810 
18: 2(n-6) 0.0236 aab 
18: 1 (n-9) 0.3001 
18: 1 (n-7) 0.4346 

18: 1, 0.5539 
18: 0 0.4006 
19: 1 0.0820 

'7,8cy- 19: 0 0.1181 

137 

14: 0 15: 0 06: 0 16: 1(n- 16: 0 a17: 0 7,8cy- 18: 2 18: 1(n- 18: 1(n- 18T 18: 0 
7) 17: 0 (n-6) 9) 7) 



5.4 Discussion 

The concentration of phenol used in all the experiments (50 ppm) neither appeared 

to inhibit nor increase soil respiration. Although phenol is well-known for it's 

antibacterial properties, the concentrations used here are well beneath the published 
laboratory inhibitory concentrations (e. g. ca. 500 ppm, Kumar et al., 2005). 

Of the phenol applied, across all treatments described above, ca. 99.7% of 

phenol was not mineralisedtO C02. This is a high percentage and suggests there is a 
large pool of phenol derived C in the chamber. Looking at the work by Manefield et 

al. (2007), they found that, of the 13 C6phenol added to a activated sludge micro- 

reactor within the first 100 minutes after addition, most of the phenol added had 

been metabolically converted, with 49% being incorporated into microbial biomass, 

6% respired asC02 and less than 1% of the total 13C labelled C incorporated into 

nucleic acids. The remainder of the added 13C was adsorbed and/or complexed to 

suspended solids within the sludge. This would suggest that the amount incorporated 

into nucleic acids in this experiment would be negligible with the two largest pools 
being in microbial biomass and adsorbed to the soil. The percentage mineralised in 

the experiment in Chapter 5 is noticeably less that that cited by Manefield et al. 
(2007), however, there are several explanations for this. Firstly, the method of 

application. In Manefield et al. (2007) inlet liquor with phenol was added the 

activated sludge and then labelled phenol added after, allowing a priming effect, 

whereby a soil previously challenged with a substrate will respond faster to that 

substrate if exposed a second time than a naYve soil, (Betts 1991) such as the cores 
from Sourhope. Secondly the soils from Sourhope were exposed once in a relatively 
large volume of water, thus promoting both increased volatilisation than if added in 

small quantities, as in Manefield et al. (2007). Also, as mentioned in Chapter 1, 

phenol is highly mobile leaches readily into groundwater, thus making it likely that 

much of the phenol went through the cores to the bottom of the core, below the 

active organic layer where the sampling occurred. Finally, in the study by Manefield 

et al. (2007) the bioreactors were incubated overnight initially at 30 'C and 

subsequently maintained at 25 'C throughout the incubation and sampling periods, 
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which is around twice the temperature that the cores were incubated in this Chapter. 

The small percentage mineralised and detected as C02 again demonstrates the 

sensitivity of the GC-IRMS. 

At the time of the experiment the question posed related purely to 

mineralisation and assimilation of the labelled substrate between the four treatments 

under investigation, and it was considered, primarily when conducting the 

experiments in the field, that the error term associated with calculating a mass 
balance, due to the leaching and volatilisation, would have greatly reduced the 

validity of the results. On reflection, a mass balance of the work carried out in the 

laboratory would have been interesting, and should the study be repeated or 
developed then it would be an area to be considered. 

Somewhat surprisingly, it is clear that the results from the current experiment 
in the laboratory utilising labelled phenol were not the same as those found in the 

field experiments described in Chapter 3. In the laboratory, both the limed bare and 

the vegetated treatments showed a 13 C02 cumulative flux which rose above that of 

the control whilst for the same experiment performed in the field, the limed flux 

remained lower than the control at all times. The total phenol-derived flux in the field 

experiments was significantly different between the treatments, with the LB 

treatment being significantly lower than the CB treatment and the LV being lower 

than the CV, tending toward significance. This could be as a result of the cores in the 

laboratory experiment being incubated at a higher temperature of 15T rather than 

the field temperature during the experiment in Chapter 3, which was ca. 10*C. 

However, a more likely explanation for the differences between the responses to 

phenol in the field and the laboratory is disturbance. 

The cores taken for the laboratory incubation will have resulted in severed 

roots and the leaching of carbon. Since limed soils tend to being more strongly C 

limited (Andersson and Nilsson, 2001) the addition of an available C source may 
have increased microbial respiration and turnover in the limed soils in the time 

between the cores actually being removed from the field and subsequently 
incubated, which was several days. The total cumulative phenol-derived 13 C02 in the 

LB treatment was ca. twice as high in the laboratory when compared to the field 
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data, with the respective increase in total cumulative phenol-derived 13 C02in the LV 

treatments being ca. 6 fold. These discrepancies between the results of the field and 

laboratory experiments were only seen in the limed soils, supporting the above 

theory. 

This change in behaviour of the limed soils sounds a cautionary note when 

extrapolating data obtained in the laboratory into the field. For example, 

Padmanabham et al., (2003) removed samples from the field, sieved them and added 

substrates in the laboratory and extrapolated the results to in situ additions. If the 

level of disturbance experienced by the samples in the study described here in 

Chapter 5 resulted in up to a. 6 fold increase in mineralization of a substrate, then 

this should not be ignored when constructing microcosm experiments. 
The PLFA composition in the soils from Sourhope had been significantly 

affected by the liming treatment, with a significant reduction in the bacterial 

population, whilst no significant change in the fungal population was detected. In the 

field the lime resulted in a significant decrease in the fungal population and again, 

the differences may be attributed to the input of C from root exudates. 
The vegetation removal appeared to have a reverse effect on the total amount 

of 13C in PLFAs in the limed treatments compared to the control treatments with an 
increase in LB compared with LV, and the converse occurring in CB compared to 

CV. If control soils are not as available-C limited as limed treatments, and with the 

LV treatment receiving the products of root cutting during collection, LB will be the 

most C limited treatment and therefore may have greatest demand for the phenol, as 

an exogenous available C source. Parallel changes in the microbial communities 

underpinning the observed changes in phenol mineralisation are unlikely, given that 

the label was incorporated into the PLFAs 16: 1 (n-7), 16: 0,18: 2 (n-6), 18: 1 (n-9), 

18: 1 (n-7), which were the same as those seen in the field. Again, the assimilation of 

phenol was dominated by Gram-negative bacteria and fungi, given the labelling 

profile of the PLFAs. 

140 



Chapter 6. General Discussion 

The overall aim of this thesis was to examine the impact of different soil 

treatments on the ability of microorganisms within soil to degrade substrates, 

largely using stable isotope approaches under in situ conditions. This lead to a 

consideration of the importance of vegetation in influencing soil microbial 

communities and the ability to degrade added pollutants. This was achieved 

largely by focussing on phenol as a substrate and aimed to establish the extent to 

which the addition of lime and the manipulation of vegetation affected the 

mineralization and assimilation of added phenol. 

The main findings of the study were that: (1) the developed mobile mass 

spectrometer was able to very successfully detect 13 C02 enriched air following 

the application of 300 cm 3 13 C6phenol (99%, 50 ppm) and 13 C6glucose solution, 

500 cm 3 (5 g 1-1,1.69%) to the soil surface under field conditions (Chapters 2,3 

& 5). (2) In the field, the addition of lime to the soil was the only treatment to 

have any major effect on the initial rate at which microorganisms mineralised 

phenol and glucose, with N and biocide showing no significant effect (Chapter 

2). Also, from field experiments, it was shown that the addition of lime 

significantly reduced the initial rate of phenol mineralization whilst the lime 

treatment did not appear to have any short ten-n significant effect on the total 

cumulative phenol-derived 13 C02 produced. When the vegetation had been 

removed, there became a significant effect of the liming treatment not only on 

the dynamics but also the total cumulative phenol-derived 13 C02produced; lime 

reduced the overall rate of mineralization to 13 C02 (Chapter 3). (3) Forty-eight 

hours after the addition of 13 C6phenol in the field, a maximum of only 0.3% of 

the added had been mineralised to 13 C02 (Chapter 3). (4) These changes in 

mineralisation were associated with a lower concentration of microbial PLFAs in 

limed soils (Chapters 4& 5). (5) The assimilation of 13C from phenol, and 

subsequent incorporation into microbial PLFAs in the field, was dominated by 

the liming treatments. (Chapter 4). (6) Both the rates of mineralization of phenol 

and the effects of the liming treatment were not the same when studied in 

compared iii situ and in the laboratory (Chapters 3& 5). 

The world's first mobile IR spectrometer has successfully detected 13 C02 

from highly enriched substrates both in the field, and in the laboratory. This is an 
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important technical breakthrough and removes the constraint of laboratory 

incubations and the associated artefacts. Chapter 5 clearly demonstrated that the 

behaviour of soils in situ is not always the same as when samples are taken and 

the same experiment performed in the laboratory; thus the opportunity to 

measure systems with minimal disturbance in the field allows the nature of these 

laboratory artefacts to be thoroughly investigated. Since the construction of the 

mobile mass spectrometer used in this work, another mobile mass spectrometer 
has been constructed and successfully used to measure the 513 C and 6180 of air 

sampled above a grassland canopy (Schnyder et al., 2004). The technique will 
become of increasing importance in years to come. 

The field study at Sourhope showed that the addition of lime significantly 

affected the initial rate at which phenol and glucose were mineralised, though did 

not significantly affect the total cumulative amount of phenol mineralized 
(Chapter 2). This was surprising as lime treatments at Sourhope showed greater 
biomass productivity, (Burt-Smith, 2003) and Grayston et al. (2001) and Fuentes 

et al. (2006) have attributed greater respiration rates and microbial biomass C to 

the increase in pH caused by the liming. They have demonstrated that, when 

compared to control unlimed soil, limed soils had faster C turnover rates and 
increased mineralization of organic matter. In the current work the removal of 

vegetation resulted in the total cumulative-phenol derived 13CO 2 in the lime soil 

being significantly lower than that in the control soil after 48 hours. The total 

cumulative-phenol derived 13 C02 in the LV treatments was also tending towards 

significance. A possible explanation for the slower response in the limed plots to 

the phenol addition is evidenced by the lower microbial PLFA concentrations in 

the limed treatments (Figs. 4.5,5.11) suggesting that the observed delay in 

mineralizing phenol may be due to the relatively smaller population size of 

phenol degraders in the limed soils, possibly caused by C limitation, as L 

addition results in increased leaching of DOC (Andersson and Nilsson, 2000). 

Only very small amounts of the 13 C applied to the soil as 13 C6-phenol 

were traced into either the respired C02 or assimilated into the PLFAs. A 

maximum of 0.3 1% was accounted for in the field treatment (Chapters 3&4, see 

Fig. 6.1) whilst the treatment least able to degrade phenol was the LV treatment, 

at 0.05%. Looking purely at the in situ study, conclusions may be drawn that 

liming is detrimental to phenol degradation. However, when a similar 
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comparison was performed in the laboratory (Chapter 5, Fig. 6-2), the LB 

treatment showed the greatest rate of phenol degradation, with 0.37% being 

traced and the amount of label mineralized and assimilated having increased ca. 

5 fold in the LV treatment. The removal of the cores and placement in the 

laboratory will have resulted in the release of C into the cores from damaged and 

cut roots; also, the limed treatments were the only ones to be affected. These 

observations, coupled with those of Andersson and Nilsson (2000) leads to the 

conclusion that it was not the shift in the microbial community, associated with 

the lime treatment that was responsible for the different response to phenol 

addition by the lime treatments, but rather the resulting C limitation caused by 

the liming, 

The success of the mobile laboratory raises the possibility for use in 

future work at enriched levels. With further fine tuning of sensitivity, it will be 

possible for the laboratory to detect isotopic differences at natural abundance 

levels. This will enable the mobile laboratory to be use in a far wider range of 

studies. 

RNA SIP was not achieved. during this work, however at the time the 

technique was in its infancy. It is now more widely used, and in conjunction with 

the PLFA SIP and work using the mobile laboratory would be able to provide a 

fuller picture of the degradation of substrates, down to the genus level. 

The differences in phenol degradation are robust between the L and 

control treatments. The success in detecting enrichment in both mineralised 
13 C02 and PLFAs demonstrates the possibility to develop the work further to 

include more compounds of interest, such as Dichloro-Diphenyl-Trichloroethane 

(DDT). Whilst it is known that there are some species of bacteria capable of 

degrading DDT (or it's derivative DDE) the identities of many of these bacteria 

are not known (Foght et al., 2001). In future the mobile laboratory combined 

with the SIP technique could be used to identify the organisms responsible for 

the degradation of DDT, with a view to enhancing bioremediation. The ability to 

take the mobile lab anywhere where there is vehicular access in the world means 

that, in the above example of future work with DDT, the soils could be studied in 

situ in Africa, avoiding the 'lab artifact' and thus resulting in any findings being 

of greater relevance to the areas affected. 
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Figure 6.1 Field studies. Overview of the allocation of mineralised and assimilated 13C 

following the application of 300 cm' 13 C6phenol (99%, 50 ppm) to the soil surface of 4 

treatments in the field. 
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Figure 6.2 Laboratory study. Allocation of mineralised and assimilated "C following 

the application of 3300 cm' 13 C6phenol (99%, 50 ppm) to the soil surface of 4 treatments 

in the laboratory. 
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