
 
 
 
 
 

 

Access to Electronic Thesis 
 
 
Author: Ahmad Yusoff 

Thesis title:    Optimisation of variable helix end milling tools 

Qualification: PhD 

Date awarded: 22/09/10 

 
 

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.  
No reproduction is permitted without consent of the author.  It is also protected by 
the Creative Commons Licence allowing Attributions-Non-commercial-No 
derivatives. 
 
 
 
If this electronic thesis has been edited by the author it will be indicated as such on the 
title page and in the text. 
 
 
 
 
 



  

 

OPTIMISATION OF VARIABLE HELIX END 

MILLING TOOLS 
 

 

by 

 

Ahmad Razlan Yusoff 

Submitted for the degree of Doctor of Philosophy 

August 2010 

 

 

 

 

Department of Mechanical Engineering 

 

 

 

 

Supervisor:  Dr N. D. Sims and Prof K. Ridgway 



   ii

SUMMARY 

High productivity, low cost and high profits are important issues in aerospace, 
automotive and tool/die metal manufacturing industries.  Machining processes are 
widely used in manufacturing operations for metal manufacturing rather than casting 
and forming.  However, the dynamic deflection of tool and workpiece systems generates 
unstable cutting forces when machining with high material removal rate.  Here, sudden 
large vibration amplitudes occur when energy input exceeds the energy dissipated from 
the system, leading to self-excited vibration or chatter.  This thesis focuses on the 
avoidance of milling chatter by using variable helix milling tools. 
 
Since milling chatter is strongly influenced by the frequency response function of the 
dynamic system, a preliminary study is first presented to assess the feasibility of non-
contacting electromagnetic modal analysis for milling tools.  It is shown that this 
approach shows some promise for use in real machining problems where traditional 
modal hammers have some drawbacks.  In particular, the amplitude dependency of the 
frequency response function could be qualitatively illustrated. 
 
The main focus of this thesis is the optimisation of variable helix tool geometry for 
improved chatter performance.  A semi-discretisation method was combined with 
Differential Evolution to optimise variable helix end milling tools.  The target was to 
reduce chatter and maximise performance by modifying the variable helix and variable 
pitch tool geometry.  The performance of the optimisation routine was benchmarked 
against a more traditional approach, namely Sequential Quadratic Programming.  
Numerical studies indicated that the Differential Evolution optimisation performed 
much better than Sequential Quadratic Programming due to the nonlinearity of the 
optimisation problem.  The numerical study predicted total mitigation of chatter using 
the optimised variable helix milling tool at a low radial immersion. However, in 
practice, a five-fold increase in chatter stability was obtained, compared to traditional 
milling tools.  In addition to this practical contribution, this study has provided new 
insight into the experimental nonlinear dynamics of variable helix milling tools, which 
exhibit period-one bifurcations under certain conditions. 
 
There have been very few previous studies that have investigated variable helix milling 
tools.  However, one previous study proposed that the so-called ‘process damping’ 
phenomenon is particularly important for variable helix milling tools.  Consequently, 
the final contribution of this thesis is a study of process damped milling and the 
influence of different tool geometries.  Testing was performed for tools with different 
rake and relief angle, edge radius and variable helix/pitch.  It was found that variable 
helix/pitch had the greatest influence on the process damping phenomenon.
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Ω Spindle speed (rev/min) 

τ Time delayed (s) 

ε Phase angle (°) 

θ Angular position (°) 

Δ Vibration relative vector (-) 

β Helical angle (°) 

φ Pitch angle (°) 

Δφ Pitch angle different (°) 

ξ Damping ratio (-) 

χ Lagrange multiplier (-) 

γ Lagrange multiplier (-) 

σmax Maximum stress (N/m2) 

ρ Density (kg/m3) 

θst Entry angle of cutter (°) 

θex Exit angle of cutter (°) 

Φ Transition matrix (-) 



 

  

CHAPTER 1 

INTRODUCTION 

1.1   Background 

In the commercial application of advanced materials, almost 90 percent of the materials 

estimated to be used in 2010 will be metallic [1].  This indicates that despite advances in 

composite materials attention is still being given to metallic materials.  Trends towards 

monolithic metallic components are enabling efficient cost, weight and strength along 

with high dimensional accuracy even for complex parts.  For example, an aircraft made 

of 44 parts initially needed 53 die sets; currently the same section can be made with six 

segments without dies by machining [2].  In addition, machining will also produce a 

smoother surface finish where a hand finishing process is no longer needed, which will 

save time and improve the quality.  That is why machining processes are widely used in 

manufacturing operations for metal manufacturing rather than casting and forming.  It 

has been found that milling is a more popular machining process than turning and 

grinding for production of die cavities, slots, contours and profiles.  In the milling 

process, a milling cutter is held in a rotating spindle, while the workpiece clamped in 

the table is moved linearly towards the cutter, as shown in Figure 1.1.   

 

In the aerospace, automotive, mould/die and general manufacturing industries, there is 

great pressure to ensure lower cost, greater productivity and improved quality in order 

to encourage economic growth.  However, machining productivity using a high material 

removal rate is inhibited by the dynamic deflection of tool and workpiece systems, 

which generates an unstable cutting force.  This causes sudden large vibration 

amplitudes where energy input exceeds the energy dissipated from the system, 

producing chatter.  Chatter is a self-excited type of vibration that occurs in metal cutting 

if the chip width is too large with respect to the dynamic stiffness of the system, 

especially when machining with a high material removal rate.  In milling processes, the 

chip width is the axial depth of cut parameter.  This produces a poor surface finish and 

high tool wear and can even damage machine tools as a result of the regenerative effect, 

the loss of the contact effect and the mode coupling effect.  Regenerative chatter is 

perhaps the most common form of chatter [3] and will be the focus of this thesis.  The 
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regenerative chatter stability boundary is known as the stability lobe diagram and is a 

function of depth of cut and spindle speed, as shown schematically in Figure 1.2.  

 

To predict the stability diagram, researchers have created various types of chatter 

prediction models, particularly time domain simulation [4], analytical solution of delay-

differential equations with time periodic coefficients [5], time finite element analysis 

(TFEA) [6] and semi-discretisation method (SDM) [7].  For chatter suppression, passive 

and active methods including vibration absorbers, damping, varying spindle speed and 

others have been applied.  Passive methods are often suitable for a wide range of 

frequencies and machines compared to active methods.  

 

This thesis investigates a passive approach to chatter suppression that disrupts the 

chatter vibration by modifying the milling tool geometry, in particular the helix or pitch 

angles.  Figure 1.3 illustrates uniform helical end milling tools compared to non-

traditional variable helix and variable pitch designs.  Variable pitch tools was proposed 

by Slavicek [8].  Later,  Opitz et al. [9] studied irregular tooth pitches that produce a 

higher stable depth of cut. Only Stone [10] applied an irregular helix in the early period 

before the 1970s.  Variable pitch tools were re-considered by Altintas et al. [5] who 

used an invariant time constant and a non-uniform multiple regeneration time delay to 

optimise pitch geometry.  Meanwhile, Budak [11] modelled and optimised a non- 

constant pitch cutter, using an analytical stability model.  Recently, Olgac and Sipahi 

[12] maximised theoretically the material removal rate by applying an irregular pitch 

cutter that was optimised with the Cluster treatment of Characteristic roots (CTCR) as a 

mathematical objective function. 

 

The above review indicates that current research on chatter suppression methods takes 

into account variable pitch tools and has overlooked variable helix cutting tools.  

Besides reducing chatter, the helix angle can also break chip formation and change the 

line of contact between the tools.  Motivated by the success of variable pitch tools, a 

variable helix tool can be envisaged as an alternative method to suppress chatter and 

help to disturb the phase between the outer and the inner surface modulation left by 

previous cutting.   
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In this thesis, a semi-discretisation method will be combined with Differential Evolution 

to optimise the variable helix end milling tools.  The main target is to reduce chatter and 

Sequential Quadratic Programming is used to benchmark the simulation results before 

validating with experiments.  Huyanan [13] proposed a semi-discretisation method 

model for variable helix which was not, however, validated experimentally and also did 

not consider tool optimisation. 

1.2   Aims and Objectives 

The main aim for the current research is to design and produce optimised variable helix 

milling tools.  Two secondary aims are (1) to study the importance of amplitude 

dependency in the FRFs of milling tools, and (2) to investigate the importance of 

process damping phenomena for variable helix tools. 

These can be attained by pursuing the following objectives:  

• To investigate an amplitude dependency effect on the cutting tool FRF using 

non-contacting magnetic force excitation and to evaluate the performance of this 

method compared to traditional modal testing technique. 

• To implement the optimisation of chatter and chatter performance through semi-

discretisation method and Differential Evolution algorithm integration for 

variable helix milling tools.  

• To improve the optimised results by refining the Differential Evolution 

algorithm and objective function and by applying multi-objective optimisation. 

• To benchmark the Differential Evolution optimised results using a conventional 

Sequential Quadratic Programming algorithm, including variable pitch geometry 

comparison. 

• To verify experimentally the optimised variable helix tools in minimising chatter 

and evaluate the effectiveness of semi-discretisation method in predicting 

variable helix milling tools. 

• To evaluate and rank the effects of relief angle, rake angle, edge radius and 

variable helix/pitch on the performance of process damping when machining 

metal at low cutting speed. 

1.3   Thesis Overview 

The organisation of the rest of thesis is as follows and the thesis structure is shown in 

the diagram in Figure 1.4. 
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The next chapter will present a review of the literature, beginning with a historical view 

of chatter and numerical modelling.  Then, literature on the current chatter control 

technology research is reviewed.  The application of optimisation methods in machining 

and chatter will be emphasised.  

 

Chapter 3 presents a theoretical background for optimising variable helix tools.  This 

chapter describes chatter numerical modelling.  The development of optimisation 

routines from chatter numerical and optimisation algorithms are briefly discussed with 

an example. 

 

In Chapter 4, a non-contacting electromagnetic FRF measurement is carried out. 

Experiments on cutting tool with FRF will be measured using non-contacting 

electromagnet in static condition.  The resulting amplitude dependency of the FRF of a 

cutting tool is discussed and the implications for the remainder of the thesis are 

explored.  

 

Chapter 5 focuses on the theoretical optimisation algorithms. The formulation of 

optimisation approaches is described, specifically Differential Evolution, Sequential 

Quadratic Programming and epsilon constraint multi-objective methods.  In Chapter 6, 

objective functions and optimisation results of variable helix of chatter minimisation 

and chatter performance maximisation are presented.  The Differential Evolution 

algorithm and objective functions are refined.  In Chapter 7, experimental machining is 

performed to validate the predicted performance.  A further experiment is carried out to 

properly validate the variable helix semi-discretisation method prediction. 

 

The tool geometry effect on process damping is investigated and presented in Chapter 8.  

The rake and relief angles, edge radius and variable helix/pitch are evaluated 

experimentally under process damped milling.  

 

In Chapter 9, the research contributions and some suggestions for further work are 

presented.      
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Figure 1.2  Stability lobes diagram. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1   Chatter History 

Almost 100 years ago, Taylor  described machine tool chatter as the “most obscure and 

delicate of all problems facing the machinist” [14].  Merchant [15] presented the 

kinematics and mechanics of the metal cutting process in orthogonal cutting as 

represented in Figure 2.1.  The relationships between the forces and the cutting 

parameters (shear angle plane ϕ, rake angle α), the coefficient of friction Fs between the 

tool, the chip and the shear strength of the material ψ  are derived.  However, the 

relationship is only valid in the steady state cutting process.  In fact, metal cutting is a 

dynamic process where chatter needs to be taken into account as it causes serious 

problems in machining stability.  Furthermore, milling is an interrupted cutting process 

where the chip thickness changes as the tooth enters and leaves the workpiece.  

 

The development of numerical chatter modelling continued from 1960 till the present.  

Basic understanding about chatter was provided by Tobias and Fishwick [16] and Tlusty 

and Polacek [17] who developed an analytical method for predicting stability using a 

stability diagram.  Tobias and Fishwick [16] explored the stiffness increases between 

workpiece and cutting process which will decrease chatter.  They also considered 

damping, cutting speed, feedrate, tool geometry, workpiece material and machine 

structure which also play an important role in chatter.  Thus, chatter theory was 

introduced based on velocity or penetration rate and regenerative chatter.  Tlusty and 

Polacek [17] proposed a simple analysis when assuming the proportional relationship 

between dynamic cutting force and the undeformed chip thickness.  From these, the 

recognition of nonlinearities in machining process, the time domain simulation of the 

milling process was then developed to explore the additional complexities that occur 

when milling, compared to simpler turning and boring operations.  

 

Budak and Altintas [18, 19] then proposed the expansion analytical method of the 

periodic function coefficients to predict the stability diagram.  In recent times, a state 

transition matrix of finite size for passing period of one tooth has been proposed with 

three methods: Time finite element analysis (TFEA), semi-discretisation method (SDM) 
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and shifted Chebyshev polynomials.  The TFEA and SDM methods were proposed by 

Bayly et al. [6] and Insperger et al. [7], respectively.  A discrete map can be obtained by 

using SDM and TFEA, while the third method is presented by Butcher et al. [20] who 

applied shifted Chebyshev polynomials to make an approximation of the delay 

differential equation (DDE) in the stability analysis. 

 

In this chapter, numerical modelling of chatter in machining is introduced.  The chapter 

also discusses the previous work of other researchers in chatter mitigation methods.  

The last section focuses on optimisation of milling, in particular avoiding chatter by 

modifying tool geometry. 

2.2   Chatter Stability Prediction 

During the regenerative chatter process, variation of cutting force and chip thickness 

occurs due to surface undulation [21].  Instability of the cutting process or self-excited 

chatter limits the machine tool performance [22].  Tobias et al. [16] proposed  a 

graphical method of stability analysis using the Nyquist plot of the transfer function 

G(s) for the flexible system.  The frequency response at a certain chatter frequency is fc, 

which is slightly higher than the natural frequency.  

 

An analytical chatter prediction was presented by Tlusty [3, 21] who formulated the 

stability lobe diagram that describes the relationship between stability, depth of cut and 

spindle speed.  The analytical prediction was then reproduced based on control system 

theory [21] when Andrew and Tobias [23] criticised their work on applying only the 

real value of FRF.  From the ignorance between the dynamics of the tool and workpiece 

system at an early stage, a simplistic model was thus created to prepare the way for 

more advanced models.  The time domain simulations involve milling forces with 

changing directions (example as modelled by Tlusty and MacNeil [24]) due to a rotating 

cutter with helical flutes.  By using the improved formulation of the dynamic cutting 

forces, the stability limits showed significant improvement from the previous simple 

model [25]. 

 

Alternative analytical approaches have been proposed.  For example, Sridhar et al. [26] 

presented a graphical method for stability analysis of milling.  A root locus method with 

time delays was initiated by Olgac and Hosek [27].  From the point where the locus 

crosses the imaginary axis, critical stability was determined. 
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Various authors applied the Floquet theorem which obtained a finite sized state 

transition matrix for one period. Budak and Altintas [18, 19] developed a delay-

differential equation (DDE) with time-periodic coefficients for modelling stability of the 

milling process.  A single frequency solution was created from the tool motion in the x 

and y directions, along with a truncated Fourier series approximating the periodic 

coefficients to form a complete frequency domain analysis.  Milling modelling with 

non-linearity in the process was more appropriate than the Tobias’s and Tlusty’s model 

that can model only the turning process.  However, this model was inaccurate and 

inappropriate for low radial immersion. 

 

In order to solve the low radial immersion problem, Bayly et al. [6] introduced TFEA 

for complicated interrupted cutting in 2001 after extending work by Davies et al. [28].  

An exact solution for the tool that is not in contact with the workpiece used the system 

state transition matrix.  The time in the cut is divided into multiple elements and vector 

position and velocity in a single element when the tool contacts the workpiece.  The 

single element is a linear combination of polynomial trial functions.  The current 

element at the beginning and the previous at the end of the time element position and 

velocity are matched together.  The formula produces a discrete linear map relating 

coefficients of the solution to coefficients one tooth passage earlier, which is required 

for the surface regeneration found in milling.  The linear map eigen values will 

determine the stability.  Although this TFEA method can be applied to variable pitch 

[29] and uniform helix [30] tools, this method is still not ready for variable helix 

milling.   

 

Almost at the same time, Insperger and Stepan [7] proposed a method using the semi-

discretisation scheme to obtain discrete maps.  The delay term discretises with time 

coordinates to approximate the DDE.  The SDM analyses stability of linear retarded 

dynamical systems based on discretisation to produce a high dimensional linear discrete 

system.  This method is more effective in time and accuracy than fully discrete methods 

due to the delayed states and time-dependent coefficient.  To date, Sims et al. [29] 

applied SDM in a state space approach to model irregular helix and pitch.  DDE with 

time periodic coefficients, TFEA and SDM, were compared and analysed using 

experimental results from [30], including capability in predicting the high and low 
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immersion problem.  As well as predicting a low immersion stability, the stability of 

variable helix and variable pitch tools can be predicted using SDM.  As a result, SDM 

will be combined and integrated with optimisation algorithms for optimising a variable 

helix milling tool in the current study. 

2.3   Chatter Mitigation Technology 

Merrit [22] showed that regenerative chatter happens when there is an interaction 

between the structural dynamics of a machine tool and the dynamics of the cutting 

process.  Based on that interaction, various methods for suppressing chatter have been 

proposed such as damping, spindle speed manipulation or variation and vibration 

absorbers.  These methods are now described. 

2.3.1   Vibration control 

In vibration control, the aim is to suppress chatter instability by reducing the relative 

displacements between the tool and workpiece.  Methods can involve active, semi-

active or passive control.  

 

An auxiliary mass is added to absorb vibration energy in the absorber as a passive 

method.  For instance, Tobias [31] used a dynamic vibration absorber to improve 

stability as passive control.  He proposed the absorber should demonstrate the largest 

amplitude of motion with a mass ratio (between absorber and structure) as large as 

possible.  Liu and Rouch [32] proposed an optimal passive dynamic absorber for the 

milling process.  Sims [33] proposed a methodology for optimally tuning an absorber 

for chatter mitigation.  An impact damper proposed by Ema and Marui [34] as a    

passive method to mitigate the boring process.  This was extended by Semercigil and 

Chen [35] for milling process application.  An impact damper located inside a cutter to 

reduce stiffness, however changes the inertia of the cutting tools to cause instability 

during machining.  

 

An active control requires external power to counteract the unwanted vibration.  Linear 

Quadratic Regulator control of a boring bar was proposed by Tewani et al. [36] to 

suppress chatter using a piezoelectric actuator for exciting the absorber mass.  Tarng et 

al. [37] proposed  a tuned vibration absorber to suppress chatter in the turning process 

that modified FRF of tool structure or specifically at negative real part.  In the milling 

process, Huyanan [38] reduced chatter vibration with an active vibration absorber that 
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modelled using  virtual passive control based on a virtual passive absorber (VPA).  VPA 

was manifested from active feedback control of a mass spring damper in the boring 

process by Pratt and Nayfeh [39].  Although VPA is suitable for use as it is simple and 

robust to reduce chatter in milling, it is limited by actuator saturation.   

 

An active damper located at the machine headstock was applied by Chung [40] to 

reduce the negative part of the FRF of dynamic structure.  Ganguli [41] applied an 

active damping vibrator to dissipate chatter vibration in both milling and turning.  

Increased stability was illustrated in using a hardware-in-the-loop simulation approach.  

Zhang and Sims [42] applied a piezoelectric actuator to suppress chatter.  A positive 

position feedback control strategy was used.  A pole placement strategy using a state 

feedback controller, strain gauge sensors and electro-active actuators was proposed by 

Dohner et al. [43].  Glaser and Nachtigal [44] used a feed-forward approach as a 

controller to control chatter in lathe and boring operations.  A complex spindle speed 

modification was required by integrating active control into the spindle drive system.  

Also, a high torque spindle speed required a wide range of amplitude and frequency to 

ramp the spindle speed.   

 

Wang et al. [45] and Segalman et al. [46] used smart fluids as a semi-active method 

(electrorheological (ER) or magnetorheological (MR) fluids) for chatter suppression.  

To tune boring bar stiffness, electrorheology was used by Nigm [47] to control force 

based on  the change of electrorheology properties when electric current was applied to 

control chatter.  

2.3.2   Spindle speed control 

The machine’s spindle speed can also be used to avoid chatter in cutting either by the 

spindle speed selection or spindle speed modulation.  The spindle speed selection 

technique is described as offline, while spindle speed modulation is online technique.  

Spindle speed selection is an offline technique where knowledge of the dynamic system 

or previous cutting data is used to improve chatter stability by tuning the spindle speed.  

Spindle speed modulation is manipulated spindle speed or cutting conditions, i.e. axial 

or radial depth of cut based on chatter detection.  

 

Offline technique can be applied to reduce chatter instability by improving the spindle 

design.  Spindle stiffness and a larger diameter bearing were proposed by Wang and Lee 
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[48] to stabilise cutters in face milling.  This was integrated with chatter vibration 

stability, cutting process speed and depth of cut of the spindle drive configuration which 

are required to design and optimise spindle speed for reducing peak response as well as 

chatter.  Besides that, assigned eigenstructure can change model parameters to suppress 

chatter according to phase change.  As proposed by Chiou et al. [49], an eigen structure 

was used to predetermine and modify the parameters.  However, this requires extensive 

computer simulation to change cutting force variation when mode shape changes occur 

in the machine tools. 

 

Beside offline technique via structural modification, Tlusty [50] proposed cutting at the 

stable region border by referring to experimental results or numerical prediction.  

Changing the spindle speed can stabilise an unstable machining operation from unstable 

to stable in the stability lobe diagram especially the use of lobbing effect when 

machining with high speed cutting (Figure 1.2).  Kurdi et al. [51] applied TFEA as an 

analytical prediction tool to select suitable cutting parameters (spindle speed and depth 

of cut) when optimising material removal rate and surface location error simultaneously 

in order to search for stable cutting operation.  Relationships between spindle speed and 

phase angle difference of milling and drilling were studied by Tarng and Lee [52] who 

suggested 90 degree phase angle for largest stability.  Spindle speed selection is 

sometimes impractical to apply due to the power, torque, and speed limitations of the 

machine. 

 

A spindle speed modulation technique is an on-line method for chatter avoidance.  This 

technique manipulates cutting speed or reduces radial or axial depth of cut when chatter 

is detected.  Delio et al. [53] detected the dominant chatter frequency by sensing the 

sound with a microphone, then analysed its frequency. The speed was regulated to 

search for stable cutting after an audio signal detected the loud noise of an unstable 

milling process.  By using the same device to detect chatter integrated with a 

Knowledge Based System of machine tools, cutting tools and machinability data, Sim et 

al. [54] modified spindle speed and feedrate when chatter was detected.  However, this 

method required a directional method to cancel background noise for detecting chatter.   

 

Another popular online technique is using spindle speed variation.  By considering 

nominal spindle speed and frequency, a spindle servo system was proposed by Lin et al. 
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[55] for controlling variable speed in face milling.  Altintas and Chan [56] suggested 

continuous variable speed to suppress milling chatter.  By varying cutting speed, this 

modulates cutting force and static deflection of the tool when a chatter signal was 

detected to disturb wave generation.  Similar to Liao and Young [57], this variable 

spindle speed was demonstrated to reduce chatter experimentally by keeping the phase 

angle at 90 degrees.  In application to variable spindle speed, the analytical method is 

limited because of a variety of dynamics properties and invariant time delay in variable 

spindle speed chatter stability.  As a result, Sridhar et al. [58] used Tsao et al. [59] 

analytical stability that considers a variable speed system for face milling.  However, 

the method requires fast computational processor for monitoring of the signal from 

cutting force and spindle speed simultaneously. 

 

The spindle speed variation technique is costly, requires a high performance of the 

spindle and the inertia of the rotating parts of the machine is limited.  Additionally, 

speed variation can cause damage to motors and is impractical for the available 

machines, which have limited power and torque to adjust the spindle speed. 

2.3.3   Alternative methods 

Alternative methods have been proposed to improve the dynamics of the machine 

structure.  They consist of tool geometry modification and tool path modification, and 

are now presently used to overcome spindle speed control problems. 

 

The use of special tool geometry to control chatter has been proposed by various 

authors.  Hashimoto et al. [60] studied chatter vibration reduction by modifying relief 

angle and cutting edge radius in milling operation.  While in turning operation, Xiao et 

al. [61] and Mei et al. [62]  studied the effect of rake angle and clearance angle on 

stability limit, a basic principle of a turning tool with a single cutting point was 

presented.  Both of them observed that increasing tool rake and decreasing tool 

clearance angle suppress chatter dynamically.  Liu and Liu [63] demonstrated the effect 

of different rake and clearance angles on dynamic stability and proposed the concept of 

tool geometry control to suppress chatter vibrations.  Nevertheless, a large rake angle 

and a very small clearance angle cause increase of tool temperature, and flank wear 

affecting tool life and surface finish.   
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Instead of modifying rake and relief angles for turning processes, the effects of 

changing uniform helical angle can be applied for milling processes.  Zatarain et al. [64] 

extended a multi-frequency solution with a helix effect and compared the results with 

the SDM method.  The change effect of helical angle at low radial immersion produced 

unstable island due to period-doubling bifurcation, especially at high spindle speed.  

Meanwhile, Patel et al. [30] applied TFEA to the similar condition as Zatarain et al. 

[64] with complex Fourier series and a three piecewise model to describe force model.  

The effect of varying helical angle was clearly demonstrated and was useful for low 

radial immersion applications.  They found period-doubling and hopf bifurcation at low 

radial immersion for both types of milling exist at 30° and 45° helical angle.  These two 

instabilities of period-doubling and hopf-bifurcation, together with period-one 

bifurcation, will be explained later in the next chapter.  

 

Besides varying the helix in milling, variable pitch and variable helical angles also play 

an important role in geometry.  Variable pitch study was initiated by Slavicek [8] using 

Tlusty’s orthogonal cutting chatter, with the assumption of a rectilinear motion of tool 

and constant depth of cut, which caused constant vibration amplitude.  After that, Opitz 

[9] studied irregular tooth pitch that shifted towards a wide range with consideration of 

speed range, natural frequency and number of teeth and pitch ratio.  The irregular two 

pitch angles produced a higher depth of cut when phase angle was shifted to 90°.  

Irregular pitch angle led to the higher stability zone which was similar to the findings of 

Slavicek [8] where modulated inner and outer phase angle with nonlinear pitch 

evolution was used.  The application of variable pitch as a mitigation method was 

reconsidered by Altintas et. al [5], Budak [11] and Olgac and Sipahi [12].  Variable 

pitch milling tools succeeded in its applications, however, the researchers have 

overlooked the variable helix milling tool for suppressing chatter.   

 

Stone [10] investigated an irregular helix tool in the early period before the 1970s.  

Besides applying the variable helix cutter, different variable pitch spacing for face 

milling has been proposed by Varterasian [65].  Then, Tlusty [66] introduced irregular 

pitch, alternate helix and sinusoidal edge to help suppress chatter.  In addition, the 

variable helix tool increases pitch variation along axial depth of cut to reduce chatter at 

certain speed ranges.   
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Elbestawi et al. [67]  modelled machining dynamics including process damping when 

tool and  workpiece are interfacing but they neglected a runout effect.  Helical angle 

was found to facilitate the material flow past the contact zone and contributed to the 

reduction of the material recovery effect contributing to process damping in order to 

improve chatter stability.  Recently, Turner et al. [68]  investigated the variation of the 

variable helix and variable pitch angles to increase stability.  Nonlinear condition or 

process damping disturbed unstable phase between subsequent teeth, especially at low 

spindle speed.  In certain conditions, the variable helix reacts and behaves similarly to 

the variable pitch cutter and needs further study and clarification.   

 

Weck et al. [69] proposed an automatic chatter-free approach for tool path cutting based 

on a Computer Aided Design tool.  A tool path strategy using Numerical Control is 

required for adjusting axial or radial depth of cut but is restricted to a specific tool and 

workpiece.  Similar to Weck, Ariffin et al. [70] and Smith et al. [71] proposed a tool 

path strategy to avoid regenerative chatter when machining a thin walled workpiece.  

The workpiece stiffness was increased to reduce the magnitude of the real part of the 

FRF, to allow cutting at higher depths of cut.  In their work [70], the deflection 

workpiece was used as a fitness function to be evaluated using Finite Element Method.  

A Genetic algorithm was defined as a travelling salesman problem to find the tool path 

that gave the lowest deflection during machining.  The Genetic Algorithm was supplied 

the element sequence as input, and Finite Element Method was calculated the deflection 

of the machined element where the communication through data exchanged.  The 

processes were repeated until the optimal sequence or tool path was achieved.  Although 

Finite Element Method can be combined with Genetic Algorithm or other optimisation 

algorithm, this method requires a high performance processor and computational time 

effort to determine optimum path.   

 

It can be seen for the alternative method that both pitch and helical angles play a 

significant part in tools’ geometry parameter to reduce chatter as well as maximise 

material removal rate.  Research on alternative chatter control for tool modification paid 

lower attention for modifying the variable helical milling tools with a low radial 

immersion.  Variable helix suitable for a wide range of frequency and machines, and 
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appropriate for suppressing chatter, as well as overcoming the active method problems, 

are also applicable for a wide range of spindle speeds, tools and workpiece materials.  

Consequently, the variable helix should be optimised to search for the appropriate value 

by considering the maximum material removal rate and minimise the chatter behavior.  

Next, a suitable optimisation algorithm and problems will be presented and selected for 

current application in the variable helix milling tools. 

2.4   Optimisation in Machining 

Since Taylor developed machining techniques, researchers have shown a lot of interest 

in machining processes [14].  For the milling process, Figure 1.1 shows that process 

parameters in roughing or finishing operations are the axial depth of cut b, radial depth 

of cut r, spindle speed n, cutting velocity v and chip width h.  The interactions between 

the process parameters, machine tools and system cause machining problems such as 

low productivity, tool life, surface roughness, chatter and others.  To solve these 

problems, global optimum strategy is necessary and important to obtain.  All factors 

relating to each other must be considered at the same time to obtain optimal cutting 

parameters for producing high productivity, quality and higher profit margins in 

machining processes.  Recent practices based on operator experience and hand books as 

references were used to optimise process parameters.  In this section, optimisation in 

machining is introduced and the algorithms or methods that have been applied to 

various problems in machining are summarised with specific focus on optimisation for 

chatter problems.  

2.4.1   Optimisation methods and problems  

The development of powerful computer tools has accelerated the optimisation method 

to solve machining problems. The optimisation problem consists of three basic 

parameters; like objective function, a set of unknowns or variables and a set of 

constraints.  For the machining problems, these can be solved by optimising the 

parameters in processes, tools and objective functions.  The problem functions consist 

of constraint parameters and operation conditions based on the problem to be solved.  

The objective function is called a cost function when its value is to be minimised, 

fitness function to maximise its value and error function to search its zero value [72].  

 

Computer optimisation methods for metal cutting operations can classified as 

traditional, modern and intelligent methods. The operational research or traditional 
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methods are Geometric Programming, Dynamic Programming and Sequential Quadratic 

Programming.  However, the traditional method is based on derivative technique when 

an objective function is used which cannot be differentiated.  In addition, an objective 

function can also be a computer program or experimental data that are very subjective 

and the constraint may also consist of differentiation parameters [73].  Therefore, 

modern technology is introduced to overcome the problems by applying the statistic 

methods such as the Taguchi Method, Design of Experiment and Response Surface 

Methodology.  Nevertheless, the statistical methods can suffer from problems such as, 

local optimal, premature population and not generalised due to equations that used 

obtained from experiment [73].  Thereby, intelligent technique overcome the problem 

by introducing Hill Climbing, Neural Network, Simulated Annealing, Tabu Search, 

Genetic Algorithms, Ant Colony Optimisation, Differential Evolution and Particle 

Swarm Optimisation.  Latest technology, optimisation can be applied in a virtual 

manufacturing environment, as proposed by Merdol and Altintas [74, 75]. 

 

Abuelnaga and El-Dardiry [76] reviewed mathematical approaches (Geometric 

Programming, Dynamic Programming and Sequential Quadratic Programming)  to 

solve optimisation problems in machining, while Aggarwal and Singh [77] only 

compiled turning machining optimisation problems according to the conventional and 

latest technology.  Meanwhile, Mukherjee [78] reviewed the advantages and 

disadvantages of machining optimisation methods used in current research.  In contrast, 

Table 2.1 summarises optimisation of machining problems literature into the problems, 

technique and parameters.  The machining problems can be classified into product 

quality, productivity, tool life and chatter.  In short, Genetic Algorithm and Sequential 

Quadratic Programming are the dominant methods to solve for most of the problems in 

machining.  It also indicates that machining problems can be faced and solved by either 

conventional or intelligent methods. Although Genetic Algorithm is more popular than 

Differential Evolution, for current research, Differential Evolution will be applied to 

optimise variable helix and variable pitch due to its robustness and its being faster than 

Genetic Algorithm [79].  For instance, Mayer et al. [80] used a small population of 

Differential Evolution to guarantee efficient, robust and better results than Genetic 

Algorithm in optimising a beef model.  Stochastic methods (Genetic Algorithm, Particle 

Swarm Optimisation, Differential Evolution, electromagnetic algorithm, stigmergy 

algorithm) comparison made by Tusar et al. [79] in optimising universal motor 
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geometries strongly agreed that Differential Evolution and stigmergy algorithm 

improved the loss of power of the motor better than other stochastic methods.   

 

In addition to those advantages, Differential Evolution is the only algorithm which can 

consistently find the optimal solution with a few function evaluations [81].  By using a 

small population size, Differential Evolution has the capability to escape from local 

optima during mutation process.  Additionally, Differential Evolution has a better 

exploration ability and can work with noisy data compared to Genetic Algorithm and 

Particle Swarm Optimisation to optimise several constraint problems [81].  Differential 

Evolution also is successfully applied in various applications [82]: digital design, neural 

network learning, fuzzy decision making and heat exchanger.  In machining 

optimisation, Saikumar and Shunmugan [83] applied Differential Evolution to select 

best cutting speed, feedrate and depth of cut to achieve optimum surface finish.  

Additionally, Krishna [84] applied Differential Evolution in grinding to search for a 

suitable process for minimising surface grinding.  Besides that, Sequential Quadratic 

Programming as a popular conventional method can be used to benchmark the result of 

Differential Evolution.  Kurdi et al. [51] applied SQP to optimise multi-objective 

function using a Pareto front approach where each time a single objective was solved, 

the second objective was constrained until an optimal front found.  Sequential Quadratic 

Programming can also transform the nonlinear optimisation problem into a quadratic 

sub-problem around an initial guess, showing a better performance than Particle Swarm 

Optimisation.  Therefore, based on the previous research and experience justfications, 

Differential Evolution and Sequential Quadratic Programming are used for optimising 

the current problems. 

2.4.2   Optimisation in chatter suppression 

Regenerative instability is affected by many factors such as workpiece, tool material, 

machine stiffness, tool geometry and cutting processes.  On the other hand, milling 

stability is more complex problem than turning and grinding due to rotating, multiple 

cutting teeth, periodic force, chip load direction and multiple degree of freedom 

structural dynamics [3].  In order to show the chatter of the system is mitigated, the 

stability limits should increase from the original dynamics machine tools system.  In 

suppressing chatter, certain methods require optimisation to be taken into consideration.  
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For example, in spindle design, tool path, cutting process and variable pitch require 

optimisation algorithm to be applied and are now reviewed.  

 

The chatter problem is directly related to the spindle stiffness.  An appropriate spindle 

design is required, especially in optimising the geometry to produce high productivity 

machining without chatter.  Maeda  et al. [85] optimised bearing distribution along the 

spindle shaft using Sequential Quadratic Programming.  The Finite Element Method 

was applied to predict FRF of the spindle speed based on Timoshenko beam theory.  

Integrated with chatter vibration stability, cutting speed and axial depth of cut, the 

spindle drive configuration was then designed and optimised.  Maximum critical depth 

of cut was included in the objective function which changes according to the bearing 

location FRF and the number of flutes.  Liu and Rouch [32] proposed an optimal 

passive dynamic absorber for the milling process.  Before carrying out the passive 

control, dynamic mass was to be connected with the optimised passive elements such as 

spring and damper.  The objective function was chosen as the optimal critical depth of 

cut that can apply in the wide range of spindle speeds.   

 

Chatter stability is represented by depth of cut in the spindle speed function (Figure 

1.2).  This involves cutting process parameters that should be optimised in order to 

minimise chatter.  Kurdi et al. [51] optimised spindle speed and depth of cut under 

stability condition of chatter to achieve high material removal rate and minimum surface 

location error using TFEA method.  Particle Swarm Optimisation (PSO) and Sequential 

Quadratic Programming (SQP) were applied to search for two objective functions under 

Pareto front approach where each time a single objective was solved, the second 

objective was constrained until the optimal front was found.  Both objective functions 

used spindle speed and depth of cut as parameters and constraint of dynamic map eigen 

values.  Material removal rate calculation also involved chip width besides depth of cut 

and spindle speed as constraint.  Epsilon constraint was easily applied to solve multi-

objective optimisations problem.  

 

On the other hand, Budak and Tekeli [86] maximised the material removal rate while 

optimising axial and radial depth of cut without sacrificing chatter using analytical 

method.  Maximum material removal rate can be achieved at certain combinations of 

axial and radial depth of cut while spindle speed and number of cutters are constant, and 
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is related to FRF of the cutting tool change.  From integrating the optimisation with the 

computer aided design/ computer aided manufacturing (CAD/CAM) system, machining 

time was reduced when applied to pocket machining  They used their own algorithm to 

optimise the machining process that maximised material removal rate and at the same 

time minimised chatter and machining time.  However, by maximising radial and axial 

depth of cut, it requires double optimisation approach and takes time to achieve 

optimum immersion conditions. 

 

Variable geometry can be optimised to reduce chatter in generating a low cutting force, 

high material removal rate and precise product using several approaches.  For example, 

Altintas et al. [5] emphasised to maximise axial depth of cut when the regenerative 

phase angle shifts to 90°.  The phase changes when using different spindle speed, 

chatter frequency fc and depth of cut.  To optimise variable pitch angles, a manual 

mathematical calculation was applied by considering specific spindle speed and chatter 

frequency that minimise chatter.  Using variable pitch tools, Shirase and Altintas [87] 

minimised the force and location error.  Not much variable pitch range can be modified 

due to phase angle constraint to maintain no chatter conditions.     

 

Meanwhile, Budak [11] modelled and optimised a non-constant pitch angle cutter model 

with an analytical stability model.  A simple equation based on Hill Climbing was used 

to determine optimal pitch angles from stability and pitch variation.  A linear pitch 

variation was used that gives higher stability rather than non-linear variation.  In 

addition, the non-linear variation also caused difficulties in manufacturing the tools.  

Thus, the spindle speed and chatter frequency need to be tuned to optimise pitch angles 

at constant depth of cut.  Phase difference and chatter frequency were set as constraints 

to ensure that higher stability was accomplished.  The variable pitch cutter is 

appropriate for low speed machining, besides reducing force this also does not increase 

cost and only needs measurement analysis.  On the other hand, at a certain pitch 

variation, this approach suits only a limited frequency and speed ranges.    

 

Olgac and Sipahi [88] maximised material removal rate in simultaneous machining with 

an irregular pitch cutter using Cluster treatment of Characteristic roots (CTCR) 

algorithm.  The algorithm has capability to optimise unstable variable pitch at certain 

axial depth of cut and spindle speed.  This is based on the characteristic equation of the 
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CTCR, at certain axial depth of cut, to represent two time delays in pitch ratio and 

spindle speed variation.  The characteristic equation depends on the number of flutes, 

spindle speed and different depth of cut to give different optimal value using the time 

delays.  For variable pitch results, the chip evacuation phenomena, which occurs at 

particularly small angles, as reported by [5], should be considered.  And Olgac and 

Sipahi [12] continued the same approach with a 6-flute cutter.  Nevertheless, no 

experimental implementation results are discussed.       

2.5   Summary 

The early and latest research on machining dynamics has been reviewed including the 

analytical and the approach to suppress chatter by either passive or active methods by 

applying absorber, damping, varied speed and alternatives.  The alternatives method of 

variable helix and variable pitch is highlighted reviewed, especially in suppressing 

chatter by optimising the tool’s geometry.  In the literature, it can be observed that the 

optimisation focuses on spindle design, tool path, cutting process and variable pitch.  

There are various algorithms which can be applied in optimisation of machining 

problems.  DE is the appropriate candidate that can solve time consuming, local optimal 

and more robust as compared to GA.  To benchmark the simulation results, SQP has 

widely applications and a famous conventional algorithm will be used.     

 

Stone [10] and Turner et al. [68] studied the effect of stability on irregular helical angle 

milling cutter.  Both investigated how chatter stability can be suppressed using irregular 

helix tools.  Currently, the variable pitch optimisation has mostly focused on modifying 

the milling tool for chatter suppression [5, 11, 12] and the current research related to 

variable helix and variable pitch milling tool as presented by Sims et al. [29].  However, 

Sims’s model only predicted the chatter stability of variable helix and variable pitch 

tools, and did not optimise the tool design for chatter suppression.  It can be seen that 

variable helix modification has received little attention and interest in the optimisation 

and mitigation of milling chatter.  As a result, an optimisation of variable helix milling 

tools using DE and SQP will be largely study in this thesis. 

 

A proper understanding of SDM algorithms in predicting a variable helical milling tool 

is required, so the initial background is studied on how the SDM algorithms solve 

irregular tool geometry.  Theory of DE and SQP algorithm are then presented with the 

numerical examples. Next, current research tendencies to maximise chatter performance 
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and minimise chatter are examined.  Before being applied to multi-objective problems, 

the current DE algorithm is refined to improve its performance.  The succeed 

optimisation are finally validated experimentally.   
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Table 2.1  Summary of problems, techniques and parameters used in optimisation 
problems in machining  

No  Problem Technique Parameters commonly used 

1 Production 
cost/time/profits 

Genetic Algorithms [89-91] 
Simulated Annealing [92] 
Sequential Quadratic Programming [85, 
93, 94] 
Specific algorithms [95] 
Hill Climbing  [89] 
Memetic Algorithm [89] 

Machine power [89-91, 93, 95] 
Chip width [89, 91-93, 95] 
Cutting force [89, 95] 
Surface roughness [89-91] 
Tool life [92] 
Cutting speed [90-93, 95] 
Spindle speed [89, 90] 
Axial depth of cut [85, 90-94] 
Radial depth of cut [94] 

2 Material 
removal rate 

Dynamic Programming [96] 
Neural Network [97]  
Sequential Quadratic Programming [98]  
Geometric Programming [99] 
Specific Algorithm [100] 

Chip width [96, 97, 99, 100]   
Cutting speed [97, 99]  
Axial depth of cut [97] 
Radial depth of cut [97]  
Tool life [99] 
Machine power [99] 
Surface roughness [98] 

3 Surface finish 

Genetic Algorithms [101-103] 
Differential Evolution [83] 
Taguchi Method [104] 
Response Surface Methodology [102] 
Design of Experiment [101, 105] 
Specific algorithms [106] 

Chip width [101-106] 
Cutting speed [101-105] 
Spindle speed [103] 
Axial depth of cut [83, 101-105] 
Radial depth of cut [102, 104, 
105] 
 

4 Tool life Specific algorithms [107]  
Chip width [107] 
Cutting speed [107] 
Axial depth of cut [107] 

5 Chatter 

Genetic Algorithms[70]  
Hill Climbing [11, 108] 
Specific algorithms [5, 12, 86, 88, 109, 
110]  

Material removal rate [86, 110] 
Spindle speed [5, 11, 12, 86, 88, 
108-110]  
Cutting speed  
Axial depth of cut [11, 12, 86, 88, 
108-110] 
Radial depth of cut [86, 110] 
Phase angle [11, 108] 
Chatter frequency [5, 11, 108] 
Tool path [70] 
Pitch angle [5, 11, 12, 88, 108, 
109] 

6 Combine 
problems 

Particle Swam Optimisation [51, 111] 
Sequential Quadratic Programming [51, 
111-113] 
Genetic Algorithms [113-117] 
Specific algorithms [118-122] 
Taguchi Method [123, 124] 
Differential Evolution [84] 
Simulated Annealing [114] 
Dynamic Programming [114] 
Tabu Search [115]   
Geometric Programming [125, 126] 

Machine power [113, 114, 117-119, 
122, 125, 127] 
Surface roughness [113, 116, 118, 
119, 122, 127] 
Tool life [113, 116] 
Cutting speed [112-114, 116-119, 
121, 123-127] 
Spindle speed [51, 111, 119, 120] 
Axial depth of cut [51, 111-113, 
116, 117, 123-125, 127] 
Chip width [112-114, 116-127] 
Radial depth of cut [116] 
Force [117, 119, 120] 
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Figure 2.1 Model of metal cutting by Merchant [15] 

 



 

  

CHAPTER 3 

THEORETICAL BACKGROUND 

3.1   Introduction 

In Chapters 1 and 2, various chatter mitigation technologies were described and it was 

argued that variable helix and variable pitch tools can provide an alternative.  In this 

chapter, the theoretical background of numerical chatter prediction and optimisation 

methods are properly explained.  

 

The semi-discretisation method (SDM) is an appropriate stability algorithm to apply 

when investigating variable pitch and variable helix tools as discussed in Chapter 2.  

This approach has the capability to predict stability limits with variable time delays 

arising due to variable helix and variable pitch conditions.  The method is appropriate 

for low radial immersion and has been verified (experimentally) by Patel et al. [30] and 

(numerically) Sims et al. [29].  In Chapter 2, various optimisation methods with 

different objective functions and constraints were discussed.  A single objective 

approach either maximises or minimises a function in a straightforward fashion, 

whereas multi-objective methods need other tools to operate with more than one 

objective function.   

 

This chapter is structured as follows.  Initially, basic chatter stability theory is 

introduced before the SDM algorithm is described in detail for variable helix and 

variable pitch tool geometry. The SQP optimisation algorithm will be used to 

benchmark the simulation results from the DE algorithm.  As an initial study, an 

analytical model is then used to optimise depth of cut using DE and SQP algorithms.   

3.2   Chatter Numerical Modelling 

As discussed in Chapter 1, the sources of chatter in metal cutting include mode 

coupling, loss of contact and regeneration of waviness [3].  The regenerative effect 

occurs most in the machining case and is the focus of this thesis.  Regenerative chatter 

will now be described and analytical chatter prediction algorithms discussed. 
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3.2.1   Regenerative chatter and basic stability lobes 

The cutting process affects the dynamics of the flexible cutting tool and the workpiece.  

During cutting, the tool starts to oscillate when it might face a hard spot on the metal 

surface, producing waviness on the workpiece surface.  The tool then faces the waves 

left during the previous pass after one full rotation leads to surface waviness, as shown 

in Figure 3.1.  Relative vibration between tool and workpiece results in a time–varying 

depth of cut h 

yyhh pm −+= ( 3.1)

where hm is the mean chip thickness due to workpiece feed and yp and y are the previous 

and current relative vibrations of the tool, respectively.  The vibration of the previously 

cut surface can be expressed as a time delayed  version of the current vibration: 

Where τ is the time delay between each tooth pass.  yp also can be represented in the 

Laplace domain as y(s)e-sτ.  Merrit [22] introduced a closed loop feedback diagram to 

represent regenerative chatter in a control perspective, as shown in Figure 3.2.  

Therefore the machine tool transfer function between two chip thicknesses can be 

derived as   

)1)((1
1

)(
)(

τs
sm esbGKsh

sh
−−+

=   ( 3.3)

where G(s) is the transfer function, Ks is the cutting stiffness and b is axial depth of cut.  

In Equation (3.3), the characteristic equation of the closed loop system is 1+Ksb(G(s)(1-

e-sτ)=0 and the time delay between two cutting processes with frequency f results in a 

phase shift ε=τf which can be represented by the factor e-jε.  The limit of stability for b 

value can be derived as 

)1(
1

εj
s eGK

b −−
−

=   ( 3.4)

The above formula is only satisfied if the term G(1-e-jε) is a real number.  Both 

imaginary terms, Im(G) and Im(Ge-jε) can be cancelled to present a real number as: 

)Re(2)1( GeG j =− ε   ( 3.5)

Thus Merrit [22], Tlusty [3], Tobias et al. [128] and Altintas [129] have demonstrated 

that the application of Nyquist’s stability criterion leads to an expression for critical 

depth of cut bcr above which chatter will occur: 

)( τ−= thy p ( 3.2)
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The critical depth of cut is inversely proportional to Ks and Re(G) according to  

Equation 3.6.  The limited critical depth of cut blim can be obtained from minimum value 

of Re(G) as follows:  

min
lim ))(Re(2
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=  ( 3.7)

Meanwhile, the frequency f of the self-excited vibration is given by 

Ω
=+

m
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π
ε

2
  ( 3.8)

where n is an integer number, Ω is spindle speed and m is number of teeth.  The phase ε 

can be represented as  
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Different ε can be obtained, as shown in Figure 3.3, from the relationship in Equation 

3.9.  Using Equations 3.7 and 3.8 from the critical chip width and the spindle speed, the 

stability limit can be constructed.  Combinations of depth of cut and spindle speed can 

produce a stable or unstable region, as shown in Figure 1.2.  More recently, various 

researchers have extended this model to consider the more complex cases of milling.  

From knowledge of the frequency response function G(jω), the stability limit can be 

derived as shown by Tlusty and Polacek [17], Merrit [22], Tobias et al. [128] and 

Altintas [129].  Thus, in any case it is apparent that the FRF G is required in order to 

determine chatter stability.  In Chapter 4, experiments are described that obtained this 

FRF using an electromagnet and the results are compared to those from an impact 

hammer. 

3.2.2   Semi-discretisation method algorithm  

SDM is a well known technique in Finite Element Method (FEM) of solid bodies and 

Computer Fluid Dynamics (CFD).  This delay system theory started in the 1950s and 

has solved many problems in engineering such as wheel shimmy, ship stabilisation, 

machine tool vibration and neural network model [7].  Compared with a fully discrete 

method, SDM is more effective in time and accuracy due to the delayed states and time-

dependent coefficients applied.  The details about SDM can be referred to in [7] and 

recently Sims et al. [29] applied SDM in a state space approach to model irregular helix 
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and pitch tools.  In this section, the summary of the important governing equations in 

[29] are presented before continuing with optimising the variable helix tools.  

 

In Figure 3.4, the engagement between a discretised axial layer of the milling cutter is 

considered.  Using a discrete time approximation, the sampling time period of one full 

rotation of the workpiece T equals 2π/NΩ, where N is the number of discrete time steps 

per revolution and Ω is the spindle speed in radians per second.  It can be assumed that 

for a circular tool path and a feed per tooth wo, the chip thickness for tooth j on layer l is 

given by [29] 
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where the relative vibration between the tool and workpiece is in x-direction ux and in y-

direction uy.  The static component ( )jlow ,sin θ  is neglected in the stability analysis due 

to non-contribution to the regenerative effect [129].  θ  is the periodic angular position 

of each axial layer of each flute given by 

( ) ( )
N

nTnT jljl
πθθ 20,, += Nn ,,2,1 K=                              ( 3.11) 

g is a unit step function with the value either unity or zero corresponding to flute j at 

layer l engaged or not in the workpiece. 
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For current time delay, τ is given by the time when the axial discrete tool engages with 

the workpiece, using the following relationship: 
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However, the chip thickness relates to current ux, uy and past displacement at the same 

point.  For each tooth or axial layer of variable pitch, τ is not steady or constant.  Thus 

an intermediate states variable Δ is valuable to describe the displacement difference for 

current and previous conditions. 

( ) ( ) ( )nTkTukTukTΔ yxyxynx −−= ///   ( 3.14)
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The vector { }T
yxΔΔΔ = describes the vibration relative to a previous sample time in 

tool revolutions for each element.  The chip thickness corresponds to tangential force Ft 

and normal force Fn at each flute to give 

jltjlt bwKF ,,, δ=   ( 3.15)

jltrjln FKF ,,,, =   ( 3.16)

where δb = b/L refers to the tool in L axial layer discretised into depth. The resultant 

forces Fx and Fy are summed from all teeth and all axial discretisation layers in x and y 

directions.  By using the variable Δ  that relates to matrix formulation can be developed 
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R is the periodic time varying matrix and the populated elements r are as follows   
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where h is a unit step function that defines the appropriate delay term 
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Referring to Figure 3.4, the equation of motion can be represented as  

mm
tFxxx )(2 2 =++ ωξω&&&   ( 3.20)

Where mm is modal mass, ξ is damping ratio, ω is frequency in rad/s and F(t) force 

function.  The first step in the state space approach is to write Equation 3.20 as the 

following state space equation (where xx =1 and xx &=2 ): 
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[ ][ ]xmu m 0/1=

It is straightforward to include additional modes of vibration in this formulation. The 

tool and workpiece relative motion in the x and y directions are now referred to as ux 

and uy, respectively.  These are assumed to be the same for all tool axial layers in the 

present study.  The state space form of relative motion is therefore: 
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  ( 3.22)

where the subscript s refers to the structural dynamics and D indicates the total number 

of states used to model the vibration in the x and y directions.  In Equation 3.22, As, Bs, 

Cs and xs define the state matrix, input matrix, output matrix and state variable for 

structural dynamics, respectively. 

 

The first term Equation (3.22) can be defined as ( ) ( ) ( )
t

ttt
t ss

ts Δ
−Δ+

=
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xx
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this derivative definition, t is divided by a small intervals Δt = T can be used to 

determine the value xs(t) as approximation of the derivative as  
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This equation can be substituted into first term Equation 3.22 to obtain 
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where t is divided into intervals of width T as sampling time.  Therefore, this t can be 

written as t = kT (k = 0, 1, 2, 3,…).  Then Equation 3.24 is written as  

  

( )[ ] ( ) ( )
( )
( )⎭

⎬
⎫

⎩
⎨
⎧

++≅+
kTF
kTF

TtkTTTk
y

x
ssss BxxAx 1 ( 3.25)

Note that As(T) and Bs(T) depend on the sampling period T.  However, the second term 

in Equation 3.22 does not depend on sampling period T.  Both terms become 
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  The continuous time dynamics Equation (3.26) is discretised to give 
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 xm, Am and Bm are the state variable, state matrix and  input matrix for the discretised 

structural dynamics, respectively.  Using the Matlab function c2d.m [130], this Am and 

Bm are given by the matrix exponential:   
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Where X and W are unused variable and purpose to introduce is to make balance right 

with other equations in the same matrix size.   

 

The relationship between the relative vibration u and the delay state Δ can also be 

represented state space as  
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where Ds is feedthrough matrix for the system delays.  Equation 3.29 can be solved 

using same method as Equation 3.22 to give in discrete-time state-space form as 
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xd, Ad, Bd, Cd and Dd are the state variable, state matrix, input matrix and feedthrough 

matrix of the system delays, respectively. This xd is used to determine the delay state Δ 

and other the terms in Equation (3.30) are 
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The three Equations (3.17), (3.27) and (3.30) are important to represent the time delay 

terms that arise especially on variable helix and variable pitch tools.  These terms can be 

combined to give  
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The regenerative chatter in milling can be represented as in Figure 3.5.  This compiles 

structural dynamics (Equation 3.27), regenerative effect (Equation 3.30) and dynamic 

cutting force coefficient (Equation 3.17) that relate to each other and are used for 

searching optimum variable helix and variable pitch. 

 

Let 
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)( .  Then the variation of 

states of the system between the revolution of one tool and its next revolution can be 

presented as follows: 
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Thus, the characteristic multiplier (CM) or eigen value of Equation (3.33) that governs 

the stability of the system.  This can be used to obtain the chatter frequency and stability 

limit for a given set of cutting conditions. 
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From Floquet theory, ii qΦq ⋅=+1  where q is the state vector matrix and Φ is the 

transition matrix.  The eigenvalues of the Floquet transition matrix (Equation 3.33) at 

the stability limit lie on the unit circle as shown in Figure 3.6. When the characteristic 

multiplier or eigen value is not located in the unit circles, this indicates self-excitation 

vibration loss of linear stability with frequency from parametric excitation and 

characteristic. There are three cases 

• Secondary Hopf-bifurcation. This kind of instability is the most common 

instability in milling, corresponding to the eigenvalue’s becoming modulus 

larger than 1.  At intervals of the tooth passing frequency, the chatter frequency 

exists at multiple values, using Equation 3.27.   

,
602

/2 HzΩksrad
T

kff c
chopf

⎭
⎬
⎫

⎩
⎨
⎧ +±=

⎭
⎬
⎫

⎩
⎨
⎧ +±=

π
ωπ

k = …, -1, 0, 1, …    ( 3.34)

It is associated with structural mode instability and refers to high unstable 

regions in the stability lobe diagram, as experienced by Davies et al. [28] and 

Gabor et al. [131]. 

• Period doubling or flip bifurcation happens when eigenvalue is less than -1 and 

the frequencies are  
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This kind of instability arises from the chatter frequency at harmonics of odd 

multiples of one half of the tooth passing frequency.  This mostly happens in a 

low radial immersion for the cutting process [28].  

• Period one (Saddle Node Bifurcation or cyclic fold) which can happen in turning 

is shown by Davies at al. [22] and in [29] for milling process.  This bifurcation 

behaviour corresponds to a real eigenvalue higher than 1.  The critical frequency 

becomes zero and the corresponding chatter becomes 
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Gabor et al. [131] discussed the multiple chatter frequencies which exist in the milling 

process.  For hopf bifurcation, the displacement signal always contains frequencies at 

multiples of the tooth passing frequencies for both stable and unstable milling 

operations.  However, for period doubling, the chatter frequency exists close to a modal 

frequency with side bands at the tooth passing frequency intervals.  
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Both techniques of TFEA and SDM can certainly demonstrate hopf bifurcations and 

period doubling and are characterised by plots of the eigenvalues in the complex plane.  

The analytical solution cannot accurately predict the period doubling-bifurcation 

regions [132].  The milling force with a large immersion milling has continuous and 

insufficient harmonics in the Fourier spectrum where the use of an average cutting force 

neglected the harmonic force in an analytical solution.  In contrast, an intermittent 

milling coefficient in a low immersion milling causes the higher harmonics in the 

Fourier spectrum that contribute to the force signal.  A repetitive cutter beating 

workpiece is modelled as impact where a strong force pulsation was relatively generated 

by a small and repetitive cutting to produce the vibratory energy in the Fourier 

spectrum.  Additionally, amplitude modulation is also developed by the dynamic force 

for each of the cutter beating workpiece in the TFEA and SDM numerical modelling. 

 

The present study will use the CM as the target for evaluating an objective function 

when applying the optimisation algorithm.  For the current study, chatter optimisation 

problems of three-flute variable pitch and helix tools are introduced.  Chatter is the main 

characteristic to be minimised by using the eigenvalues from SDM algorithms as 

objective functions.  The performance at specific spindle speeds and depths of cut can 

be optimised by modifying the tool’s variable helix and variable pitch.  A multi-

objective approach can be considered if the spindle speed and depth of cut are not 

constrained and productivity is considered as a second objective problem.  These cases 

of the objective functions and constraints are then presented.  Three approaches to this 

optimisation problem will be presented and explained in Chapter 6. 

3.3   Optimisation Procedures 

By combining with the analytical method for chatter stability prediction, the process of 

DE optimisation can be used to optimise tool/helix geometry.  Figure 3.7 shows the 

sequence of operations, namely optimisation setting process, SDM process, objective 

function evaluation process and DE optimisation process. DE parameters are first set to 

create an initial population in the optimisation process. To search for the optimum 

values, DE requires the predicted values from the SDM stability analysis with 

consideration of the input variables (i.e. helix angles βi and pitch angles φi). The fitness 

of each population member is evaluated in terms of the chatter stability; consequently, 

the DE process will strive to obtain tool geometry (helix and pitch angles) that 
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maximises the chatter stability. This process continues until the termination criteria are 

met.  

 

For the current study, the procedure adopted is as follows: 

1. First, DE selects the input parameter value together with optimisation 

parameters such as strategy, population size, number of generation (NP) 

crossover factor (CR) and scaling factor (SF). 

2. Optimisation setting process parameters are read by the numerical algorithm 

process through the DE optimisation process as new input parameters.   

3. Then analytical chatter stability will predict the output value to evaluate by the 

objective function evaluation process. 

4. The output generated from this prediction is evaluated and compared with the 

next output.   

5. These steps are repeated until the optimal input values of chatter stability are 

found. 

6. This is an iterative process at the end of which the DE arrives at the optimum set 

of input parameters, i.e. variable helix βi and variable pitch φi, which generate 

optimum output.   

 

In order to benchmark the DE optimisation method, a traditional gradient based 

optimisation method (SQP) was combined with the SDM to minimise chatter and 

optimise variable helix tool geometry.   

3.4   Optimisation Example: Chatter Stability with Analytical Method  

An optimisation procedure that combines chatter stability prediction and optimisation 

algorithm is now presented.  The analytical stability algorithm developed by Budak and 

Altintas [19] is used to predict chatter stability.  Details of the algorithm can be found in 

[19].  However, this example considers only a single degree of freedom dynamic 

milling model with the condition of milling tool, modal and cutting parameters as 

described in Table 3.1.  The condition for lower radial immersion was taken from [19] 

that was applied for a uniform pitch and uniform helical angle cutting tool.  This work is 

extended to consider optimising depth of cut.  Although this problem is trivial, it serves 

to demonstrate that the optimisation will work for a simple problem, before extending to 

complex problem. 
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For the current optimisation problem, the chatter stability limit using the analytical 

method is shown in Figure 3.8a.  DE and SQP algorithms are applied to optimise depth 

of cut b with chatter-free condition.  Single objective functions are carried out based on 

the maximisation of axial depth of cut with specific range of axial depth of cut b and 

spindle speed Ω.  The optimisation processes of the constraint condition of the chatter 

stability process are as follows: 

 

Objective function 

Maximise max)( bbf =   ( 3.37)

Subject to constraints 

Depth of cut 100 ≤≤ b  (mm) 

Chatter free [ ] ≤Ωb, bmin,Ω min  

 

Where the minimum axial depth of cut b and spindle speed Ω are given by the 

algorithm. Figure 3.8b shows the machining conditions for the current case specifically 

for certain axial depth of cut and spindle speed.  This justifies that certain machines 

have their speed limitation and wide variation in materials’ thickness.   

 

The DE optimisation algorithm is used from parameter settings as illustrated in Table 

3.2.  In the current research, the DE source code written by Markus Buehren, available 

at Matlab Central [133], was used.  The code is based on the DE algorithm of Storn and 

Price [134].  By combining with analytical method for chatter stability prediction, the 

processes on DE optimisation and chatter prediction are generated simultaneously.  

Figure 3.7 shows the sequence of operations to search for optimum evaluation values 

based on four processes.  To search for optimum value, DE requires the predicted value 

from the numerical algorithm of the analytical method of stability analysis.  The 

numerical method then uses DE to generate a new input in the DE optimisation process 

to estimate a new output value for objective function evaluation.  Consequently, both 

DE and analytical chatter stability prediction should be linked through function control 

in the Matlab environment to exchange data with each other.  

 

This is an interactive process, at the end of which the DE arrives at the optimum set of 

input parameters, i.e. axial depth of cut which generates optimum output.  Instead of 

DE, SQP was used to compare the results.  The general method of SQP to solve 



Optimisation of Variable Helix End Milling Tools                 Chapter 3  Theoretical Background 

 38

constrained optimisation is stated in [72].  In this research, the SQP in the Matlab 

Optimisation Toolbox was used with the constrained minimisation function [135].  In 

Chapter 5, DE and SQP are described in detail. 

 

A single objective to search for maximum b below 10 mm was predicted with DE and 

SQP.  Figure 3.9 shows the performance of the two algorithms in searching for 

maximum depth of cut.  In Figure 3.10, the SQP method shows the same optimal value 

as DE for maximising axial depth of cut.  SQP using gradient-based optimisation 

method is sensitive to local optimal whereas for the current case the prediction is used 

just as a constraint and objective function.  And SQP is always to search for maximum 

value of the constraint [72].  DE is a population-based algorithm needed to search for 

optimum values of the parameters within the design constraints.  Therefore, both 

methods can be applied and succeed in searching for the same optimum value and they 

can be used for optimising the variable helical end milling tools as complex problem. 

3.5   Summary  

In this chapter, the theoretical background was presented for optimising variable helix 

and variable pitch milling tools.  Using SDM for chatter stability prediction, the 

multiple time delays for variable helix and variable pitch tools can obviously be taken 

into account to calculate and evaluate CM as eigenvalue for the specific range of spindle 

speed and depth of cut.   

 

Feasibility of the optimisation procedure was applied where DE and SQP were tested to 

search for depth of cut by an analytical method with periodic coefficient.  Since a 

current optimisation methodology can be implemented for a simple case, further 

simulation to search for optimum variable helical/pitch tool geometry can be 

confidently applied.  The problem is regarded towards designing an optimum variable 

helix/pitch tools for a specific machining condition with chatter suppression target.   

 

In summary, this chapter has made an important initial step to exhibit the feasibility of 

the optimisation procedure for optimising depth of cut.  Nevertheless, DE and SQP 

algorithms need to be described in detail to understand their theory for optimisation in 

Chapter 5.  In addition, the optimum results were based on an analytical method with a 

periodic coefficient that limited uniform helix and uniform pitch.  Therefore, the SDM 

chatter stability prediction will be integrated and combined with optimisation algorithms 
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to optimise variable helix and variable pitch and this will be concentrated on in Chapter 

6.   

 

From this chapter, it can be seen that the FRF or G(jω) is a critical input parameters to 

the prediction or optimisation the chatter stability problem.  In practice, this FRF can be 

influenced heavily by tool/machine operating conditions.  Consequently, the next 

chapter assesses the feasibility of FRF measurement using non-contacting 

electromagnetic techniques.   
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Table 3.1  Modal and tool parameters for optimisation 

Tool and cutting parameters 

Tool diameter d (mm) 19.05 

Radial immersion RI (mm) 1.00 

Tangential cutting coefficient Kt (MPa) 550 

Normal cutting coefficient Kn (MPa) 200 

  

Modal property in x-direction mode 

Natural frequency fn (Hz) 169.3 

Modal effective mass. mm (kg) 6.5363 

Damping Ratio ξ 0.0056 

 

Table 3.2  DE parameters settings for example study 
Parameter Value 

Strategy 7- DE/rand/1/bin 

Number of Generation (NG) 50 

Population (NP) 10*RP 

Crossover factor (CR) 0.7 

Scaling factor (SF) 0.6 

 

Table 3.3  Optimum chatter stability optimisation results for single objective of 
maximum axial depth of cut 

Method DE SQP 

Spindle speed Ω (rev/min) 2200 2200 

Axial depth of cut b (mm) 10 10 
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a) Turning b)  Milling  

Figure 3.1  Regeneration process during metal cutting 
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Figure 3.2  Chatter in closed loop by Merrit [22] 
 

 

Figure 3.3  Transfer function of the system using Nyquist plot 
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Figure 3.4  Forces on axial slice of a milling tool 

 
Figure 3.5  Schematic block diagram in state space form for regenerative chatter 
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Figure 3.6  Stable and unstable behaviour in a)  Stability of discrete map and 
unstable behaviour  b)  Hopf-bifurcation  c)  Period doubling  d)  Period-one 
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Figure 3.7  The sequence operation of optimisation with Differential Evolution 
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a)  Spindle speed (2000-8000 rev/min) 
and depth of cut (0-35 mm) 

b)  Spindle speed (2200-3200 rev/min) 
and depth of cut (0-10 mm) 

Figure 3.8  Stability lobes diagram using analytical with periodic coefficient 
method 



Optimisation of Variable Helix End Milling Tools                 Chapter 3  Theoretical Background 

 44

 

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of iterations 

E
va

lu
at

io
n 

of
 o

bj
ec

tiv
e 

fu
nc

tio
n

2200 2400 2600 2800 3000 3200

0

2

4

6

8

10

12

14

16

Spindle speed (rpm)

D
ep

th
 o

f 
cu

t (
m

m
)

Figure 3.9  Performance of optimization 
between DE (⎯) and SQP (---) in 

maximising depth of cut. 

Figure 3.10  Optimal depth of cut result of 
analytical with periodic coefficient 

method using DE (‘o’) and SQP 
(‘×’).Stability limit is indicated by (⎯). 



 

  

CHAPTER 4 

PRELIMINARY EXPERIMENTS ON NON-CONTACTING FRF 

ESTIMATION 

4.1   Introduction  

In general, the frequency response function (FRF) of the structurally compliant system 

is needed in order to determine chatter-stability as discussed in Chapter 3.  

Traditionally, an impact hammer is used to excite the system at the tool tip and the 

response is measured with a co-located accelerometer.  However, this configuration has 

a number of disadvantages, such as: 

• The cutting edge of the tool can easily be damaged by the hammer strike. 

• On large machines, the test engineer must work inside the machine itself, which 

can entail exposure to a health and safety hazard. 

• The tool cannot rotate during the test.  The FRF during rotation could differ due 

to gyroscopic forces and bearing loads [136].  Furthermore, some computer 

numerical control (CNC) machines automatically modify the tool drawbar force 

as a function of spindle speed, which may influence the tool’s FRF. 

• In practice, the mechanical interfaces in the system lead to some nonlinearity in 

the FRF.  During machining, the tool load differs substantially from the forces 

induced by an impact hammer, so these nonlinearities cannot be considered. 

To date, non-contact excitation systems have been developed by Snyder et al. [137], 

Esterling et al. [133], Kiefer [138], Tatar et al. [139], Rantatalo et al. [140] and Sodano 

[141].   Snyder et al. [137] initially created a device for stable speed prediction, using a 

fixed electromagnetic field.  Esterling et al. [142] obtained FRF data using a compact 

electromagnet. Tatar et al. [139] and Rantatalo et al. [140] used laser Doppler 

vibrometry (LDV), an active magnetic bearing and capacitive sensors to measure 

dynamic vibration of the cutting with an optically smooth surface at different cutting 

speeds.  The mass loading and added stiffness in a traditional impact hammer can be 

eliminated by introducing a non-contact eddy current excitation method to preserve the 

structure mode shape from magnetic actuation [141].  Keifer [138] integrated the 

electromagnet with a receptance coupling substructure to predict chatter.  The 
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electromagnet demonstrated easy and accurate dynamic characteristic of cutting tool or 

FRF.   

 

However, this earlier work has in general not considered the amplitude dependency of 

the tool FRF.  Using a non-contacting electromagnet allows this amplitude-dependency 

to be investigated experimentally.  This will be the focus of the present chapter.  The 

chapter is organised as follows.  The experimental method is first described.  The results 

of cutting tool FRF from the impact hammer are shown and compared to non-contacting 

excitation systems.  Following a discussion of the amplitude dependent excitation 

behaviour, conclusions are drawn concerning the suitability of the device to measure 

milling tool chatter stability.  This chapter formed a conference paper and an abstract is 

given in Appendix A.I.  

4.2   Experimental Method  

The experimental approach involved three steps.  First, impact hammer testing was 

applied to measure cutting tool FRF.  Then, the magnetic force excitation was applied to 

measure the cutting tool in static condition. Signal processing was used to observe the 

FRF response of velocity and force.  Finally, the electromagnetic excitation was applied 

with various excitation amplitudes. 

 

The experimental apparatus consisted of a Siglab 20-22A two channel data acquisition 

system.  For impact testing, a normal force was applied at the tool tip using a PCB 

086C01 hammer with vinyl tip.  The acceleration response was captured by a PCB 

352C16 accelerometer placed opposite the hammer impact point. 

 

The force excitation by the impact hammer can be replaced by a magnetic force 

generation system.  A coil of length 205 mm was used with 224 turns surrounding an E 

type laminated ferromagnetic core, as shown in Figure 4.1a.  This can maintain a 

maximum current of 20 A at frequencies up to 1000 Hz and generate 100 N peak force 

for 1 A r.m.s. current supplied.  The electromagnet was driven by a Techron 7700 series 

power supply amplifier which could deliver instantaneous peak currents at 180 A and 

voltages up to 146 V.  Figure 4.1b shows an experimental configuration with a 6- flute 
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high speed steel ball nose cutting tool.  The SigLab system supplied a voltage signal to 

the Techtron amplifier configured in current-control mode to generate the magnetic 

field.  The current with a burst chirp signal from 0 to 1000 Hz is suitable to excite the 

structure.  The FRF was obtained using  a minimum of five averages.  

 

Two signal processing configurations were initially investigated.  In the first case, the 

current in the electromagnet was measured and the FRF estimated between this current 

and the resulting tool motion was obtained.  In the second case, the electromagnetic 

force was measured using the dynamometer (force transducer) so the FRF G(j�) could 

be estimated. 

4.3   FRF Amplitude Dependent Measurement Results 

To begin, the FRF of the tool was obtained using a modal hammer and co-located 

accelerometer.  This is shown in Figure 4.2.  The tool is expected to have a closed pair 

of dominant bending modes occurring at 635 and 655 Hz.  In Figure 4.3, the mobility 

FRF is shown, where the system input was the measured current in the electromagnet, 

whilst the system output was the velocity measured by the laser vibrometer. Two 

dominant frequencies can be observed in the FRF, which agree with the response 

obtained using the modal hammer. It should be noted that the electromagnet applies a 

distributed load to the tool, rather than a point load on the tool tip.  Consequently, the 

point FRF at the tool tip can not be directly determined but the natural frequencies of 

the structure can at least be observed. 

 

This result is now repeated using the electromagnet and laser vibrometer under various 

excitation amplitudes.  The results shown in Figure 4.4 were obtained by applying a 

chirp signal of a given rms amplitude with a dc offset.  This dc offset ensured that the 

current signal was always positive.  As the amplitude of the dc offset voltage is reduced 

(shown by the arrows in Figure 4.4), the FRF decreases in magnitude.  Furthermore, the 

location of the resonant frequencies is seen to increase.  This trend is observed for all 

four values of the chirp signal’s rms amplitude (Figure 4.4a-d).  However, at low chirp 

r.m.s. amplitudes (Figure 4.4a) the influence of signal noise can be more clearly 

observed. 
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The amplitude-dependency observed in Figure 4.4 can be attributed to two factors: the 

nonlinear relationship between electromagnetic current and excitation force and the 

nonlinear relationship between excitation force and resulting tool motion.  This latter 

scenario is of greater interest, since this nonlinearity can not normally be observed using 

a modal hammer.  

 

In Figure 4.5, this experiment is repeated for the case where the force measurement 

from the dynamometer was considered to be the system input.  These FRFs clearly 

include resonant frequencies (particularly above 700 Hz) that were not present in the 

impact hammer FRF (Figure 4.5a,b) or in the current-velocity FRF.  The additional 

resonant frequencies can be attributed to the force measurement substructure, i.e. the 

mass of the electromagnet mounted on the slightly compliant force measurement 

platform.  Strong amplitude dependency can be observed in these additional resonances.  

However, the natural frequency of the tool can still be observed in the region of 625 Hz 

(Figure 4.5b-d).  As for the current-velocity FRF, the resonant frequency increases with 

decreasing excitation amplitude and the FRF magnitude decreases. 

 

To further illustrate that the electromagnet can be used to induce amplitude-dependent 

behaviour, a series of step-response tests were made.  The electromagnetic current was 

switched between high and low constant currents, as indicated by the current-time 

measurement shown in Figure 4.6a.  The resulting tool velocity is shown in Figure 4.6b-

e and it can be seen that the vibration decay depends strongly on the magnitude of the 

electromagnetic current or preload on the tool. 

 

Some preliminary experiments on a rotating structure are shown in Figure 4.7.  Here, a 

steel rod was mounted in a non-CNC milling machine and rotated at 2000 rev/min.  The 

rod was chosen because it had a lower natural frequency than the tool, well below the 

natural frequencies of the force measurement substructure.  The same amplitude 

dependent behaviour can be observed.  The poor quality of the frequency response 

function can be attributed to tool runout effects (i.e. eccentricity) and slack in the 

machine bearings.  Although the laser vibrometer signal was degraded by the tool 

rotation, it is felt that better data would be obtained on a modern CNC milling machine 

with a better quality spindle system.  Furthermore, these tests did not use a dc offset for 
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the chirp excitation. Since the electromagnet can only induce attractive forces, the 

resulting measurement force would not have been a smooth chirp signal, which would 

also degrade the FRF estimate. 

 

To demonstrate how FRF estimation affects the sensitivity of chatter stability when 

amplitude dependency is applied for certain cutting tools, Figures 4.7 and 4.8 show the 

stability prediction of regular and optimal tools with 5 percent changing of the natural 

frequency.  It can be seen that when the natural frequency of the tools increased within 

5 percent, the chatter stability was also modified from a lower to a higher spindle speed.  

This is true for both the regular and optimum tools where the stability lobes also slightly 

increase in the function of depth of cut.  Consequently, the FRF measurement is 

generally significant to predict the stable, unstable or optimal cutting region when 

predicting the chatter stability.  Moreover, FRF estimation is more complex when 

considering amplitude dependency and spindle speed dependency to predict theoretical 

chatter stability.   

 

In practice, it is therefore important to obtain an accurate estimate of the FRF of the 

machining structure.  This can be difficult due to amplitude dependency and other 

effects, as shown in preliminary test results presented in this chapter.  A further 

complication that arises for variable helix tools is that the tool helix angle (which in 

being optimised) will influence the tool FRF.  This makes the optimisation problem 

considerably more complex. 

 

In order to circumvent these issues, the reminder of this thesis will focus on scenarios 

where the FRF of the tool/workpiece structure is assumed to be tune and amplitude 

independent, and independent of the tool helix angle.  Practically, this occurs with a 

single-degree of freedom flexible workpiece that is considerably more compliant than 

the tool, spindle, or machine structure.  

4.4   Summary 

This chapter has focused on alternative techniques for extracting the frequency response 

function of rotating milling tools for the purpose of regenerative chatter prediction. It 

has been argued that the traditional approach (i.e. a modal impact hammer and 
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accelerometer) suffers from a number of drawbacks. Although previous researchers 

have suggested electromagnetic techniques as an alternative, this research has not 

normally used the electromagnet to investigate amplitude dependent behaviour in the 

system. This is probably because a high electromagnetic force requires a large amplifier 

and results in a heavy actuator, making it difficult to measure the electromagnetic force 

accurately. 

 

In the present chapter, a high performance amplifier was used so that amplitude 

dependency of the structure could be investigated. However, it was found that the 

difficulties in measuring the resulting electromagnetic force meant that high quality 

frequency response function measurements were difficult to achieve. Despite this, it was 

shown that the device could be used to investigate qualitatively the changes in resonant 

frequencies with excitation magnitude for both stationary and rotating systems. From a 

milling chatter perspective, this means that the influence of tool preload during milling 

can be considered when predicting the chatter stability boundary.   

 

Up to now, the study has explored the effect of FRF to predict chatter stability for 

variable helix and variable pitch (optimum tool) in flexible tool condition.  It can be 

seen that the modal parameters of flexible tool are more complex and easily change 

when optimising the variable helix and variable pitch geometry.  However, the current 

case will consider flexible workpiece not flexible tool to avoid this problem.  

Consequently, the chatter stability is not affected by modal parameters’ change when 

optimising a variable helix and variable pitch tool using a combination of semi- 

discretisation method and optimisation algorithms (DE and SQP).  In the next chapter, 

the optimisation algorithms of DE and SQP with their numerical examples’ solutions 

are discussed.  Then, Chapter 6 presents and discusses the results of optimisation of 

variable helix for milling tools.  
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Figure 4.1  Experimental setting 
 

350 400 450 500 550 600 650 700
−70

−65

−60

−55

−50

−45

−40

−35

−30

Frequency (Hz)

dB
 In

er
ta

nc
e 

(m
s−

2 /N
)

 
 

Figure 4.2  FRF inertance (impact 
hammer - accelerometer) 

Figure 4.3  FRF mobility 
(electromagnet - laser vibrometer) 
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a) 2 A  b) 6 A 

  

c) 10 A d) 14 A 

Figure 4.4  Current FRF with output offset increasing at range 0 V to 8 V a) 2 A b) 
6 A, c) 10 A, d) 14 A    

 

  

a) 2 A  b) 6 A 

  

c) 10 A d) 14 A 

Figure 4.5  Force dynamometer FRF with output offset increasing  
at range 0 V to 8 V a) 2 A, b) 6 A, c) 10 A, d) 14 A    
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Figure 4.6  Square wave current excitation and velocity response from LDV 
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b) step response, 0 A to 38 A excitation  c) step response, 38 A to 20 A excitation 
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d) step response, 0 A to 58 A excitation e) step response, 58 A to 30 A excitation 
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Figure 4.7  FRF data (dynamometer force measurement, electromagnetic 
excitation) from rotating bar in milling machine running at 2000 rev/min. 

Electromagnetic current excitation-chirp signal with r.m.s. magnitude 
 4, 6, 8 and 10 A r.m.s. 
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Figure 4.8  Stability diagram with natural frequency increasing for regular tool 
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Figure 4.9  Stability diagram with natural frequency increasing for optimum 
(variable helix/pitch) tool 

 

 



 

  

CHAPTER 5 

NUMERICAL OPTIMISATION:  THEORY 

5.1   Introduction 

As discussed in Chapters 2 and 3, Differential Evolution (DE) and Sequential Quadratic 

Programming (SQP) algorithms can be used to mitigate chatter by optimising variable 

helix and variable pitch angles of the tools.  A theoretical background of the SDM 

algorithm was explained in detail in Chapter 3.  However, the DE and SQP algorithms 

were not combined with SDM numerical chatter stability.  Before combining with 

SDM, theoretical backgrounds of both optimisation algorithms are properly explained in 

this chapter.  

 

The optimisation approach focuses on modifying the milling tool’s geometry, namely 

variable helix and variable pitch angles, through optimisation.  This is unlike previous 

research [5, 11, 12] where only the pitch angle was optimised and modified.  To execute 

the optimisation procedures, two algorithms are used: DE and SQP.  The DE algorithm 

is based upon that developed by Markus [133] and SQP used a minmax function as in 

the Matlab Optimisation Toolbox [135].  Both DE and SQP algorithms are used to 

allow verification and benchmarks of the results.  Before application to chatter 

problems, DE and SQP are applied to famous mathematical functions, involving both 

single and multi-objective optimisation.  The Epsilon constraint method is applied for 

multi-objective optimisation because it is appropriate for both DE and SQP algorithms.  

Selected DE examples for single and multi-objective optimisation are used to explain 

the methodology.  

 

This chapter covers the methods used to optimise variable helix end milling tools.  First, 

the DE and SQP as optimisation algorithms are described with examples for solving 

mathematical problems for single objective optimisation.  Second, applications in multi-

objective using current DE and SQP are discussed.  Mathematical functions are used to 

verify the capability of two algorithms to solve multi-objective optimisation with the 

epsilon-constraint method.   
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5.2   Differential Evolution 

Various Evaluation Algorithm strategies have been developed, such as Genetic 

Algorithm, Evolutionary Programming and Evolution Strategy.  Differential Evolution 

was introduced by Storn and Price in 1996 [134].  Differential Evolution based on 

stochastic or non-deterministic approaches for solving polynomial fitting problems.  

Differential Evolution is developed from an improved Genetic Algorithm with different 

strategies for faster optimisation.  This is similar to other Evaluation Algorithm in 

which mutation plays the key role with real valued parameters to search for the global 

optimum.  A basic idea in Differential Evolution is that of adapting the search during 

the evolution process.  Differential Evolution advantages are simple structure, ease of 

use, speed and robustness.  In addition, Differential Evolution has been successfully 

applied in various optimisation applications [82] such as heat exchangers, robotic 

manipulator design, neural network training, turbo machinery design, production and 

scheduling, electric motor design, engine and wheel mount identification, diesel engine 

combustion and machining optimisation.  In machining applications, Saikumar and 

Shunmugan [134] applied Differential Evolution to select the best cutting speed, 

feedrate and depth of cut to achieve optimum surface finish, while Krishna [84] applied 

Differential Evolution in a grinding  process to search for suitable parameters in 

minimising surface grinding.  Before Differential Evolution can be applied in machining 

problems, the Differential Evolution algorithms will be described and used to solve 

numerical case studies.   

 

Differential Evolution can solve objective functions that are non-differentiable, non-

linear, noisy, flat and multi-dimension, with multi-local minima.  Such functions are 

difficult to solve analytically.  This algorithm begins by using initial samples at multiple 

random chosen initial points.  With simple algorithms, Differential Evolution can search 

for the optimal condition very fast with minimal control parameters such as mutation, 

crossover, selection and population.  The concept is evolved from Genetic Algorithm 

with a layer population and a special evolutionary strategy of self-adaptive mutation.  

Instead of a binary encoded population as for a Genetic Algorithm, Differential 

Evolution deals with a real coded population with its own processes of mutation and 

crossover.  The mutation process is created from three randomly selected population 

members, using the vector difference between individuals [51].  Although it uses the 

same evaluation as other Evaluation Algorithm during the crossover process, 
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Differential Evolution applied crossover between any individual population member.  

Moreover, the population has an equal opportunity to survive in the next generation 

based on its fitness value.   

 

Differential Evolution can be started by specifying algorithm real parameters (RP), 

population size (NP), number of generation (NG) and parameters vector xi which can be 

set as follows: 

[ ]gNGggggi xxxxx ,1,3,2,1, ,,, −= L  NGg ,,1,0 K=                                (5.1) 

The population will be initialised and will then continue assessing the objective function 

before the termination criteria will be considered.  It is suggested that the range of NP is 

between 5 and 10  but the minimum is 4, due to the crossover process to be described 

later.  At termination criteria stage, the algorithm decides either to accept or reject the 

population.  This process must proceed to the next process if the objective function 

value is rejected for improvement of the next population.  Figure 5.1 shows the 

population improvement processes, including mutation, crossover, objective function 

assessment and selection.  This takes several generations before the global optimal 

solution is achieved.  

5.2.1   Initialisation 

The limits of search parameters are always specified before the population is initialised.  

For instance, the lowest point can be defined as lower bound xi,l, while the highest point 

is known as upper bound xi,u.  After that, a randomised generator randi and H as a factor 

assign an initialisation value for every vector with the prescribed range in the limit as 

follows: 

( )( )uilijligi xxrandHxx ,,,, .1,0. −+= (5.2)

The initialisation of the random number generator produces real values as DE treats all 

variables as floating values in the range (0,1), not considering their type internally.  

Randomisation of the vectors in DE is greatly affected to overcome a premature 

population that converged when using a low population [82]. 

5.2.2   Mutation 

Mutation is a process to mutate and recombine the initialised population to create a 

donor vector with the same size as the initial population.  This concept borrowed from 
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Neader and Mead’s idea to use information from the vector to change search space [82].  

The donor vector is produced from the initialisation vector and mutant vector giv ,  that 

expands the search space xi,g into three vectors as xr1,g, xr2,g and xr3,g to be  

( )grgrgrgi xxSFxv ,3,2,1, −+=   (5.3)

Each of the vectors is randomly selected per mutant.  Figure 5.2 describes how to 

produce the mutation vector.  Scaling factor (SF) )1,0( +∈  is a positive real number to 

control the rate at which the population evolves.  It is suggested that SF effective value 

is 0.5 as initial start with effective range 0.4 to 1 [82]. 

5.2.3   Crossover 

Trial vector giu , , known as child vector, is a result of its parent vectors, either mutation 

vector giv ,  or target vector gix , .  Uniform crossover will inherit equal probability 

parameter values from parents while non-uniform crossover often takes parameters from 

one parent rather than the other.  Particularly, uniform crossover will decide which 

chromosome will be given to giu ,  either from giv , or gix , to crossover.  A random 

number is used to generate giu ,  and crossover factor (CR) definition will control the 

chromosomes.  In Figure 5.3, by evaluating CR to the output of the randomly generated 

number, uniform crossover decides the two parent vectors to contribute to each 

chromosome of giu , .  giu ,  is directly received from the gix ,  if the random number is 

greater than CR or else the parameter is taken from giv , .  This can be illustrated as  

( )1,,3,2,1, ,,, −= gNpggggi xxxxx L (5.4) 

( )gNpggggi vvvvv ,,3,2,1, ,,, L= (5.5)

⎪⎩

⎪
⎨
⎧

≠⋅⋅>⋅⋅
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=

randi

randi

IiorCRrandif

IiorCRrandif

gi,

 gi,
gi, x

v
u

(5.6)

( )gNpggggi uxvxu ,,3,2,1, ,,,, L= (5.7)

Crossover factor, CR ∈ [0, 1], is a positive real number that controlled the crossover 

process.  The CR value 0.5 is recommended for adequate choice, while 0.1 is too slow 

and very risky [82].  This gives an offer to both parent and child to compete in the 

selection process.  However, for a quick solution, value 0.9 to 1 is suitable CR .  
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5.2.4   Selection 

Selection is a process to select a point of reference between gix ,  and giu , .  This will 

determine whether either gix , or giu , will be preferred, depending on objective function 

value that needs to proceed to the next generation.  DE integrates more tightly crossover 

and selection by comparing between each giu ,  and gix , that takes over parameters.  In 

both processes of crossover and selection, the parents as gix , can always compete with 

their own offspring as giu ,  for the next generation.  As compared to GA, competition 

only happens during evaluation before mutation and crossover, to produce a new 

population.  The children replace the parents with some probability regardless of their 

fitness [143].  However, in DE, there is an equal opportunity for children and parents 

which depends on their fitness value as follows: 

⎪⎩

⎪
⎨
⎧

⋅

≤⋅⋅
=+ otherwisex

xufif
x gigi

gi,

,, gi,
1gi,

)()(u (5.8)

5.2.5   Generation 

The process of evolving mutation, crossover and selection through generations or new 

population is repeated until the optimum solution is achieved.  Similarly, when the 

population converged with only a few function solutions evaluated, the criterion is fully 

satisfied.  Figure 5.4 explains diagrammatically the whole process of generating from 

the old population to the new population.  A large population number could reach global 

optimum but increase the complexity and computation time [82, 143]. 

5.2.6   DE Strategies and algorithm 

The crucial idea behind DE is a scheme for generating giu ,  by adding the weighted 

difference between two population vectors into a third vector.  This is known as the DE 

strategy.  The key parameters in controlling DE are the NP, CR and SF.  Price et al. [82] 

initially suggested a single strategy, then six strategies and recently added another four 

strategies.  They also suggest that the robustness of DE depends on SF and CR values.  

There are 10 suggested strategies with the nomenclature DE/x/y/z. 

• Here the first column refers to DE as an optimisation algorithm 

• The second refers to the vector to be perturbed, either random rand, the best best 

or rand and the best, rand-best  
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• The third is the difference in vectors considered for perturbation of x in the 

mutation process    

• The last is type of crossover, either exponential exp or binomial bin.   

Strategy-1 has been explained earlier during the mutation process and all 10 strategies 

are as follows: 

1c DE/rand/1/exp, ( )grgrgrgi xxSFxv ,3,2,1, −+=  (5.9)

2 DE/best/1/exp, ( )grgrgbestgi xxSFxv ,3,2,, −+=  (5.10)

3 DE/rand-to-best/1/exp, ( ) ( )grgrgigbestgigi xxSFxxxv ,2,1,,,, −+−+= ϑ  (5.11)

4 DE/best/2/exp, ( )grgrgrgrgbestgi xxxxSFxv ,4,3,2,1,, −−++=  (5.12)

5 DE/rand/2/exp, ( )grgrgrgrgrgi xxxxSFxv ,4,3,2,1,5, −−++=  (5.13)

6 DE/best/1/bin, ( )grgrgbestgi xxSFxv ,3,2,, −+=  (5.14)

7 DE/rand/1/bin, ( )grgrgrgi xxSFxv ,3,2,1, −+=  (5.15)

8 DE/rand-to-best/2/bin, ( ) ( )grgrgigbestgigi xxSFxxxv ,2,1,,,, −+−+= ϑ  (5.16)

9 DE/best/2/bin, ( )grgrgrgrgbestgi xxxxSFxv ,4,3,2,1,, −−++=  (5.17)

10 DE/rand/2/bin, ( )grgrgrgrgrgi xxxxSFxv ,4,3,2,1,5, −−++=  (5.18)

The exponential and binomial crossovers are described as follows. The Exponential 

crossover performs single loop on the real parameter variable until crossover factor 

bound.  At first time, this will randomly pick up between 0 and 1 beyond the crossover 

factor value, so there is no crossover and the current real parameter variables remain.  In 

binomial crossover, however, the crossover randomly picked between 0 and 1 within the 

crossover factor value is performed on each of the real parameter variables.  The last 

variable always comes from the noisy vector to ensure different gix , .  Therefore, both 

the exponential and binomial crossovers yield similar results for very high crossover 

factor value.   
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A strategy is selected by trial and error and depends on the problems.  A strategy that 

works successfully for a specific problem may not work well when applied to a different 

problem [82, 143].  However, strategy 7 (DE/rand/1/bin) is the most successful and 

widely used in many applications [83, 84, 134].  In the current research, the DE source 

code written by Markus Buehren and available at Matlab Central [133] was used.  The 

code is based on the DE algorithm of Storn and Price [134]. 

The algorithm of DE is given as follows: 

1. Choose strategy.  

2. Initialise the independent parameters’ number of dimension, NP, CR, SF and 

maximum generation. 

3. Initialise randomly all the dimension with the given upper and lower bound 

(xj,L and xj,u). 

4. Evaluate each vector for its function value. 

5. Determine the vector with the optimum function value. 

6. For each gix , , select three vectors randomly from the current population from 

other than gix , to perform mutation.  

7. Create giu , for each gix ,  by the crossover with its noisy vector. 

8. After the mutation and crossover, the vectors are checked to ensure they are 

in the bound range.  This process will terminate if the vectors are out of 

bounds. 

9. Make selection for each gix ,  by comparing its function evaluation with giu ,  

produced from crossover process.  Selected and random gix ,  from current 

population compete with giu , based on evaluation value. For the next 

generation, select optimal function value for next generation 1, +gix .  

10. Repeat 4-9 if termination criteria not met. 

11. Print results. 

The flow process of DE is presented in Figure 5.1 and the detailed processes are shown 

in Figure 5.4. 

5.3   Sequential Quadratic Programming 

In order to verify the DE result, SQP will be applied.  SQP is widely used in machining 

applications [93, 94, 112, 144] and can solve nonlinear problems and search for local 
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optima.  The method has been successful in various fields such as structures, dynamics, 

materials, robotics, heat exchangers control systems and manufacturing processes, 

production and design.  In machining problems, Kurdi et al. [144] compared SQP with 

Particle Swarm Optimisation for optimising the surface location error and material 

removal rate (MRR).  SQP results showed as better than Particle Swarm Optimisation.  

In addition, SQP has been applied by Yeo et al. [112] in optimising a machinability data 

system,  while Chua et al. [93] minimised the production time of the multipass turning 

process and Stori et al. [94] optimised process parameters to maximise material removal 

rate. 

 

The main idea of SQP is to obtain a search direction from a quadratic program solution, 

together with its constraints.  Consider the problem: 

Minimise ( )xf (5.19)

Subject to
 

( )

ul xxx
H

xH

≤≤
≥
=
0

0

2

1

(5.20)

where f(x) is a function to be minimised, H1 and H2 are equality constraint and 

inequality constraint, respectively. 

  

The Equations 5.19 and 5.20 are converted to Lagrange equation as follows: 

( ) ( ) ( ) ( )xHxHxfxL TT
21,, γχγχ ++= (5.21)

where ( )γχ ,,xL  is the first order optimality condition that is to be zero, χ and γ are 

Lagrange multipliers.  pT is a positive approximation of the Hessian matrix of the 

Lagrangian function used to develop Quadratic Programming objective function from 

Equation (5.21) to be: 

Minimise ( ) ( )kkkx
T

kkkxx
T xLppxLpxf γχγχ ,,,,

2
1)( 2 ∇+∇=

(5.22)

Subject to constraint 
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( ) ( ) 0
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xpxx
pxHxH

(5.23)

The SQP algorithm generates search direction pk of the problem at xk iteration k for 

solving Equation 5.22.  In each line search of xk+1=xk+δkpk, the modified Broyden-

Flecher-Goldfarb-Sanno (BFGS) formula is used to update matrix Equation 5.21 .  The 

general method to solve constrained optimisation is stated in [72]. 

 

The algorithm starts as follows: 

1. Initialise starting value of the parameters as an initial guess and use the Hessian 

matrix from the previous step to update it. 

2. Solve the QP problem as in Equation (5.21), using the modified BFGS formula, 

at the same time linearise with constraints. 

3. At each iteration, solve the objective function value by linearised xk+1=xk+δkpk 

with initial value pk and δk together with xk  .   

4. Achieve optimal or repeat the iteration. 

The SQP efficiency, accuracy and changes of solution are fully tested against other 

standard algorithms in [145].  In this research, the SQP in Matlab Optimization Toolbox  

was used, employing the constrained minimisation function [135].  

5.4   Numerical Case Study for Single Objective 

To illustrate the applicability of DE in optimisation problems, four test problems 

proposed by different authors are solved.  Problems 1 and 2 minimise a single variable 

and two variables, respectively.  For maximising function, Problem 3 uses a single 

variable and Problem 4 deals with two.  Problem 5 was used for testing local minima 

behaviour of DE and SQP.  All problems incorporated equal constraints.    

5.4.1   Single objective case study 

Problem 1 

The sphere function (Equation (5.24)) is considered to be a very simple case for the 

minimisation method [82].  This function has a smooth, unimodal, strongly convex and 
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symmetric function and there should be no difficulty to find minimum value 

of ( ) 00 =f . 

( ) ∑
=

=
2

1

2
1

i
ixxf [ ]12.5,12.52,1 −∈x  (5.24)

Problem 2 

The Himmelblau function (Equation (5.25)) is another minimisation function to search 

two variables with wide constraints [143]. To find the global minimum is easy, due to 

the flat-shaped profile of the function. 

( ) ( ) ( )22
21

2
2

2
11 711 −++−+= xxxxxf  [ ]30,302,1 −∈x  (5.25)

Problem 3 

The initialisation bound is specified as (-5.12,5.12), as given in Price and Storn [82].  

Hyper ellipsoid (Equation (5.26)) will take the same bound to find the minimum point. 

( ) ∑
=

=
2

1

2
1 2

i
ixxf [ ]12.5,12.52,1 −∈x  (5.26)

Problem 4 

The famous Rosenbrock function [82] in Equation 5.27 is minimised in two dimensions, 

with bounds (-30,30).  This is a classical optimisation function known as the Banana 

function.  The global optimum is located inside a long, narrow, parabolic-shaped flat 

valley. 

( ) ( ) ( )2
1

22
121 1100 −+−= xxxxf [ ]30,302,1 −∈x  (5.27)

Problem 5 

To test the local minima problem, a function that has 4 local minima, named Six Hump 

Camel (Equation (5.28), is used as suggested by Storn and Price [134].  Two variables 

are used with the constraint (-1.9, 1.9) and (-1.1, 1.1). 
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( ) ( ) 2
2

2
221

2
1

4
12

11 44
3

1.24 xxxxxxxxf +−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=  

[ ] [ ]1.1,1.1;9.1,9.1 21 −∈−∈ xx  

(5.28)

Next, to demonstrate the DE procedures, Problem 2 was used with simplicity to give an 

understanding of how DE solves the optimisation problem and the solutions for current 

problems are also presented. 

5.4.2   DE with single objective example and solutions 

For example, the Himmelblau function (Figure 5.5a) is used to describe in detail how 

DE procedure works to optimise the function.  In order to make a simple and easy 

illustration, the constraint of Himmeblau function is [-6,6], as shown in the contour plot 

of the function in Figure 5.5b, and DE population is set as 4 and produces only for 10 

generations.  The other mutation factors and crossover values are the same as in the 

previous examples using DE strategy 1. 

 

An initialisation process which starts with four populations generated using Equation 

(5.2) is represented in Figure 5.5c.  Then, four sets of mutated vectors xr1,g, xr2,g, xr3,g 

and xr4,g are randomly selected from the population in initialisation.  In using Equation 

5.3, the mutated vectors are introduced and, for example in Figure 5.5d,  xr1,g, xr2,g and 

xr3,g are shown by ‘×’, ‘×’ and ‘ο’, respectively.  In this case, xr1,g and xr3,g are located at 

the same vector and vi,g ‘∗’ is out of boundary.  Consequently, in the crossover process 

of Figure 5.5e, the crossover selects ‘×’ as ui,g from randomised selection of the 

population as compared to vi,g, ‘ο’ according to Equation 5.6 to produce a trial 

population ‘∗’ from combination of two ui,g (‘×’ and ‘ο’). After that, a ui,g is needed to 

compete with other randomised vectors to be selected as a new population in the 

selection process (Figure 5.5f).  

 

This new vector is introduced into the current generation and each four populations of 

generation are evaluated, as shown in Figure 5.5g.  The processes in Figure 5.4, as 

illustrated before (mutation, recombination and selection), are continued until the 

criteria meet either maximum population or the fitness value.  Figures 5.5h, 5.5i and 

5.5j show generations 1, 5 and 10, respectively.  Due to the small number of population 

size and number of generations used, the final value is not achieved, as the purpose of 

the current example is only to illustrate how DE works.    
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For all the above problems, DE parameters are shown in Table 5.1 and Strategy 7 is 

selected.  In Table 5.2, the solutions of all functions from (5.24) to (5.28) are shown 

with their optimum parameter and function values.  For sphere function, both DE and 

SQP can search for minimum value.  However, SQP is sensitive to the initial value and 

can be easily trapped in local minima.  For example, the optimal value (zero) changes to 

7.45e-9 when an initial value of one is used instead of zero. It can be seen from results 

that to minimise sphere function is much easier than Himelblau function for both 

algorithms.  To sum up, DE shows better accuracy than SQP but requires large 

computational time.  

 

Similar cases occurred for minimising Hyper Ellipsoid and Rosenbrock.  Hyper 

Ellipsoid is simple compared to Rosenbrock.  The bound range also plays an important 

role for the optimisation for DE and SQP algorithms.  Both can handle the local minima 

occurring in the Six Hump Camel problems, although with different optimum value, the 

evaluation value is not much different.  

5.5   Multi-Objective Study 

Problems in engineering design, scientific experiments and business decision-making 

are introduced to find optimal solutions in practical applications.  However, most 

problems consist of several objectives which always conflict with each other.  As a 

result, in many cases, the multiple objectives are then conducted with one optimal 

objective.  The result strongly depends on how the conversion is made and causes 

difficulty in exploring a broad set of optimal solutions.  Pareto optimal concept was 

created by Vilfredo Pareto to trade off between the objectives [146].  For example,  

Abburi and Dixit [113], Sardinas et al. [147], Karpat and Ozel [148] and Wang [149] 

applied multi-objective optimisation in the turning process and Kurdi et al. [144] 

optimised the milling process under the chatter problem.  Before the multi-objective 

approach can be applied to the current problems, the concept of the approach and the 

choice of methods will be discussed.  
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5.5.1   Definition 

Optimisation problems with RRxf n →:)(  as a scalar vector objective function, 

( ) mn RRxH →:  as equality constraints, inequality constraints and lx  and ux  are 

described in the general form, the same as Equations 5.19 and 5.20.  

 

However, in a multi-objective problem, instead of a single objective f(x), there is a 

vector of objectives as follows: 

( ) ( ) ( ){ }xfxfxfxf nK,,)( 21 ⋅= (5.29)

Because ( )xf  is a vector, there is no unique solution to this problem when any 

component in Equation (5.29) competes with each other.  Thus, the concept of non-

inferiority or Pareto optimal can be used to represent the objectives’ characteristic.  

Therefore, the non-inferior solution improves one objective by degradation of the other 

objectives.  

 

An important concept in multi-objective optimisation is that of convex and non-convex 

problems.  Deb [146] defined the convex problem for multi-objective if all objective 

functions are convex and the feasible region is also convex.  However, a solution is 

trapped in the Pareto local optima if the method cannot handle the non-convex problem.  

Figures 5.6a-d show the Pareto front solution for all possible cases of minimisation min 

and maximisation max.  A utopian objective is an ideal objective but represents a non-

existent solution.  Figure 5.6a shows a Pareto front when minimising two objective 

functions f1 and f2.  Figures 5.6b, 5.6c and 5.6d show the Pareto front for max-f1 and 

max-f2, min-f1 and max-f2 and max-f1 and min-f2, respectively.  In addition, the concavity 

and continuity problems of non-Evaluation Algorithm function cause the introduction of 

multi-objective optimisation for Evaluation Algorithm algorithm [146]. 

5.5.2   Methods 

In solving multiple objective problems, there are several methods that can be classified 

into traditional and modern methods.  Traditional methods or a priori articulation 

methods [146] include weighted sum method, goal programming method, epsilon-

constraint method (ε-constraint), goal attainment method, value function method and 

Benson’s method. For modern methods, the updated Evaluation Algorithm algorithms 



Optimisation of Variable Helix End Milling Tools                         Chapter 5  Optimisation Theory 

 69

are [146] Non-Dominated Sorting Genetic Algorithms, Multi-Objective Struggle 

Genetic Algorithm, Niched Pareto Genetic Algorithm, Vector Evaluated Genetic 

Algorithm, Strength Pareto Evolutionary Algorithm, Multi-Objective Differential 

Evolution, Multi-Objective Genetic Algorithm and Neural Network. 

 

The ε-constraint as a non-dominated solution is easy to implement for a bi-objective 

problem which is suitable for the current study.  Additionally, the advantage of this 

method is its ability for both convex and non-convex problems.  Furthermore, this is 

simple to express, preference can be retained and easily controlled [146].  Particularly, 

in this research, both DE and SQP will be applied to create and solve multi-objective 

problems.  However, this method is capable to analyse only one optimum point and the 

disretisation has to be fine enough to prevent losing the Pareto solution.  So the 

constraint limits set should lie with the minimum and maximum limits of the considered 

objective function.  The successful applications of ε-constraint method have been 

reported in specific projects [146] such as brake-forming processes, multi-reservoir 

water supply systems, space heating and especially in machining processes [144] that 

also deal with the chatter problem.  The method has also been successfully applied with 

various optimisation algorithms such as DE [146], SQP [146] and Particle Swam 

Optimisation (PSO)  [144].  

5.5.3   ε-constraint algorithm 

The ε-constraint method was proposed by Haimes et al. [150] for generating a Pareto 

optimal solution by solving a sequence of constrained single objective problems.  With 

this method, one objective function is chosen while the remaining objective functions 

act as constraints. The different elements of the Pareto front can be obtained from a 

systematic and equal frequent variation of the constraint bounds.  The multi-objective 

problem can be transformed into several single objectives with constraints, using the 

following procedure:  

Minimise ( )xfn  (5.30)

Subject to ( ) jj xf ε≤  (5.31)

for all ,,,,2,1 njmj ≠⋅= K  
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where { }mn ,,2,1 K∈ and x is in the feasible region, which can be defined by any 

equality and inequality constraint.   m,,, 21 Kεεε =  is defined as the vector of the upper 

bounds the maximum value of each objective can have.  In Figure 5.7, the different 

points of Pareto are generated using different values of upper bound.  In order to obtain 

the entire set of the Pareto optimal solutions, the vector of upper bounds must vary 

along the Pareto front for each objective and make a new optimisation for each new 

vector.   

 

For application with the ε-constraint method, the previous SQP and DE sources were 

used.  Additionally, the objective function was converted into inequality constraint to 

optimise a single objective function.  For DE parameters, these are similar to the single 

objective problem. 

5.6   Numerical Case Studies for Multi-Objective Optimisation 

Investigation of the performance of the DE and SQP used benchmark test problems 

from Deb [146].  Problems 6-8 deal with two minimisation objective functions and the 

second problem needs to solve the maximisation multi-objective functions.  All 

solutions will be presented and the mechanism of applying the ε-constraint method to 

current algorithms (DE and SQP) is also described with an example. 

5.6.1   Case study 

Problem 6 

The first Problem 6 used simple functions with two variables that need to be minimised.  

For applying the ε-constraint method, f2(x) was used as a single objective function, 

while f1(x) was used as inequality constraint in the upper bound.  

Minimise ( ) 11 xxf =  (5.32)

Minimise ( )
1

2
2

1
x

xxf +
=  (5.33)

[ ] [ ]5,0;0.1,1.0 21 ∈∈ xx  

Problem 7 

Equations (5.34) and (5.35) were used to maximise a problem with two variables.  The 

single objective function used f2(x) and for the inequality constraint f1(x) was used and 

applied as lower bound instead of upper bound for minimising the problem.  
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Maximise ( ) 11 1.1 xxf −=  (5.34)

Maximise ( )
1

2
2

160
x

xxf +
−=

(5.35)

[ ] [ ]5,0;0.1,1.0 21 ∈∈ xx  

Problem 8 

Problem 8 needs to minimise the cantilever beam weight f1 and deflection behaviour f2 

that conflict with each other.  The two design variables are diameter d and length l.  

Beside that, the inequality constraints (5.38) and (5.39) also need to be considered.  The 

maximum stress σmax must be less than the allowable strength ψy and the end deflection 

δ is smaller than a specific limit of δmax.  For DE and SQP algorithms, the ε-constraint 

method was applied by setting the inequality constraint for f1(x) to be the lower bound 

and the single objective function used f2(x).   

Minimise ( ) 42 3
64,

dE
Plldf
π

δ ==
(5.36)

yS≤maxσ  (5.37)

3max
32

d
Pl

π
σ =

(5.38)

[ ] [ ]1000,200;50,10 ∈∈ ld  

where density ρ = 7800 kg/m3, force P = 1 kN, modulus of elasticity E = 207 G N/m2, 

allowable strength ψ = 300 MN/m2 and deflection δ = 5 mm. 

5.6.2   ε-constraint method with DE and SQP example and solutions 

To demonstrate how ε-Constraint method is applied to solve multiple-objective 

optimisation, Problem 7 was used as an example.  In Equation 5.34, f1 was functioned 

as an inequality constraint in lower bound because this problem dealing with 

maximisation becomes: 

jx ε≥− 11.1 (5.39)

In order to calculate jε , the limit or range of f1 should be considered from bound 

constraints (x1 and x2). This depends on the user to define how many discretisations are 

to be obtained.  For instance, in this problem, j = 11, and jε  can be calculated using 

Equation 5.41. 



Optimisation of Variable Helix End Milling Tools                         Chapter 5  Optimisation Theory 

 72

1
min1max1

−
−

=
j

ff
jε (5.40)

This equation was used as objective function to maximise the problem within the 

bounds, including the inequality constraint of Equation 5.40.  The problem then used a 

DE algorithm or SQP in a similar fashion as single objective problems.  This was 

repeated with a different value of jε  as a constraint to obtain the Pareto front, for 

instance as shown in Figure 5.7.  In Table 5.3, the second problem was solved to obtain 

the Pareto front by repeating use of 10ε  10 times to solve multi-objective for both f1 and 

f2 maximisation problems.    

 

Solutions for Problems 6-8 are now presented.  In Figure 5.8a, the solution for Problem 

6 obtained using DE is plotted compared with SQP, both using the ε-constraint method.  

The results show as similar for both methods to solve the multi-objective function 

problem.  A simple minimisation problem follows the same pattern of optimal Pareto, as 

shown in Figure 5.8a.  Figure 5.7b shows the solution for Problem 7 using DE and SQP 

which also duplicate each other at the same point and follow the Pareto optima for 

maximisation problem.  Thus, both methods can handle the maximisation problem using 

ε-constraint method.  The simulation results are applied for an engineering problem, as 

shown in Figure 5.8c.  This shows trade-off between the two objectives at the same 

point for both algorithms.  Both minimisations of Problems 6 and 8 illustrate the Pareto 

front as similar to Figure 5.6a.  Consequently, both methods with ε-constraint method 

can be applied for multi-objective optimisation in machining.  It is proved that ε-

constraint can give the same results as modern approaches. 

5.7   Summary 

The basic theory of the DE algorithm was reviewed and the SQP algorithm was also 

introduced.  After that, five well known problems were solved using DE and validated 

with SQP in the present work.  A single and double variable problem can be minimised 

or maximised for convergence to the global optimum.  Parameter numbers, upper and 

lower limits as bounds, are the factors affecting algorithm performance in searching for 

optimum values.  Both methods excelled in capturing and solving global optimal on the 

mathematical function.   
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As an alternative to single-objective optimisation that cannot solve two objectives 

simultaneously, the introduction of multi-objective optimisation has provided a way to 

overcome the problem, using the ε-constraint approach.  In theory, two objectives can 

be solved by assigning one of the objectives as a constraint.  By setting and changing 

constraint values, the Pareto front solution can be achieved by using either DE or SQP.  

The use of the ε-constraint method with DE and SQP was explored to solve three 

famous problems in multi-objective optimisation.  The results of ε-constraint of DE are 

similar to SQP to demonstrate the capability and ability of both methods to produce 

Pareto optimal point for the current case study.  Both methods, either DE or SQP, can 

be continued to solve optimised single and multiple objective functions for machining 

problems.  

 

Since the DE and SQP algorithms discussed above were applied with numerical 

problems, analytical stability will be considered in the following chapter.  In Chapter 3, 

SDM as a numerical algorithm is initially introduced and discussed on how to apply it 

in optimisation algorithms.  In the next chapter, DE and SQP optimisation algorithms 

are combined with SDM as chatter numerical modelling in Chapter 3 to search an 

optimal variable helix tools for chatter suppression. 
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Table 5.1  Typical DE parameter setting 

Parameter Value 

Strategy 7- DE/rand/1/bin 

Number of generation (NP) 60 

Crossover factor (CR) 0.7 

Scaling factor (SF) 0.8 

 

Table 5.2  Optimum numerical simulation results 

Function Optimum parameter value Optimum evaluation 

 Actual DE SQP Actual DE SQP 

Sphere  0,0 0,0 7.45e-9, 7.45e-9 0 0 5.51e-9 

Himelblau  3, 2 2.95, 
2.05 3, 2 0 0.084 0.051 

Hyper 
Ellipsoid 0, 0 0,0 0.44e-15, 0.89e-15 0 0 -1.97e-31 

Rosenbrock  1, 1 1, 1 1, 1 0 0 0 
Six Hump 
Camel  

-0.089, 
0.713 

-0.814, 
0.707 -0.897, 0.713 -1.031 -1.031 -1.032 

 

Table 5.3  ε-constraint method combined with DE to search for Pareto front of 
multi-objective of problem 7 

J εj f2 x1 x2 

1 0.1 50.00 0.1 0 

2 0.2 55.00 0.9 4.0 

3 0.3 56.66 0.8 3.5 

4 0.4 57.50 0.7 3.0 

5 0.5 58.00 0.6 2.5 

6 0.6 58.33 0.5 2.0 

7 0.7 58.57 0.4 1.5 

8 0.8 58.75 0.3 1.0 

9 0.9 58.75 0.2 0.5 

10 1.0 59.00 0.1 0 
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Figure 5.1  Flow process of DE optimisation 
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Figure 5.2  Process of mutation where x is Number of Population parameter vector 
from current 
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Figure 5.3  Process of crossover in recombination 

 

Figure 5.4  Process of generating one population to next 
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a)  Himmelblau surface b)  Himmelblau contour 
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c)  Initialisation d)  Mutation 
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e)  Crossover f)  Selection 
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g)  Generation 1 h)  Generation 2 
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i)  Generation 5 j)  Generation 10 

Figure 5.5  Typical Differential Evolution processes using Himmelblau function 
 

  

a)  Min-f1 and Min- f2 b)  Max- f1 and Max- f2 
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Figure 5.6  Pareto front solution for two-dimensional problem with two objectives 
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Figure 5.7  Generating different solution of Pareto front with ε-constraint method 
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Figure 5.8  Performance of DE (‘ο’) and SQP (‘×’) in ε-constraint multi-objective 
optimisation for numerical tests.    

 

 

 



 

  

CHAPTER 6 

NUMERICAL OPTIMISATION:  RESULTS 

6.1   Introduction 

The aim of this chapter is to present the results for optimising variable helix milling 

tools.  Based on the optimisation approach described in Chapter 5 and objective 

functions (minimise chatter, maximise chatter performance, and combined chatter 

reduction and maximised material removal rate), the tools’ geometry is modified.    

 
Before the results from integration of DE/SQP and SDM are presented, three objectives 

are properly explained.  Parametric study is then carried out to search for optimal 

parameters in DE, such as crossover, scaling factor, number of population and number 

of generations for minimisation of the chatter problem. Using these optimum 

parameters, the results of the minimisation of chatter and the maximisation of chatter 

performance for three-flute cutter results are presented.  After that, two approaches are 

applied to improve the current results: mixed population during population process and 

bounce back approach in mutation and crossover processes.  Besides the modified 

algorithm, objective functions are also modified for both problems.  The multi-objective 

problem of minimisation of chatter and maximisation of material removal rate is then 

considered to achieve Pareto front results.  Finally, the best results will be compared 

with the variable pitch tools approach.  The overall results’ structure is shown in Figure 

6.1.  The research results for chatter minimisation for this chapter formed a published 

conference paper [151] and an abstract for this work is given in Appendix A.II. 

6.2   Objective Function  

A SDM can be applied to calculate and optimise variable helix angle.  Optimal variable 

helix is suitable for a wide range of spindle speed, workpiece material and frequencies. 

Based on the optimisation of suppression chatter, objective function and variable 

included and constraints will be proposed.  For the current case, there are three 

problems which will be optimised, consisting of minimising chatter, maximising chatter 

performance and combining minimising chatter and simultaneously maximising 

material removal rate (MRR).  Before that, the constraint to variable helix and variable 

pitch are now discussed. 
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6.2.1   Constraints for variable helix and variable pitch tools 

Machine speed limits and workpiece thickness are two factors which need to be 

considered from a practical viewpoint.  A constrained spindle speed should be 

considered for a specific range of machine speed limits, while the workpiece thickness 

limits the axial depth of cut.  MRR varies when different radial depth of cut r, chip 

width h and number of teeth m were used, which affects the chatter frequency.  MRR is 

determined using following relationship: 

mhrbMRR **** Ω=   ( 6.1)

As stated before, variable helix and variable pitch were considered for the current study.  

Refer back to Figure 1.3 that illustrates the helix angle βi and pitch angle φi and other 

constraints variables in the optimisation.  The helical angle purpose is actually to break 

chip formation, change line of contact between tool and workpiece and reduce chatter 

[152].  By adjusting the helix randomly, the optimisation process will be more 

generalised, besides avoiding premature population and preventing local optimal 

problem in the optimisation processes.  βi is the helical angle value range from low 

helix (25°) to high helix (55°) conditions.  For variable pitch, the chip evacuation should 

be prevented when high chip removal is used [11, 12], particularly when higher value 

pitch angles are selected for the finishing process.  Without chatter frequency and phase 

angle as constraint, as suggested by Budak  [11] and Altintas et al. [5], the selection of 

the appropriate helical and pitch angles will be randomised.  During the optimisation 

process, however, the candidate values of tooth helix βi and pitch φi may result in 

milling cutters whose flutes intersect with each other.  This is clearly inadmissible from 

a practical viewpoint.  To prevent helical angles intersecting, the helical angle height 

different Δhβ is introduced as a constraint in the DE optimisation.  Δhβ calculations for 

variable helix and variable helix with variable pitch at its end are as follows: 
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  ( 6.3)

Here, Equation (6.2) relates to optimisation problems where the free end of the milling 

cutter has teeth uniformly spaced, but the variable helix of each flute means that the 

teeth are irregularly spaced along the rest of the cutter’s axial length.  Equation (6.3) 

relates to cutters with both variable helix and variable pitch at the free end.  The Δhβ  
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value is based on the parameters illustrated in Figure 1.3c, along with the number of 

cutter teeth m and cutter diameter d and pitch difference Δφ.  

6.2.2   Chatter minimisation 

For a single objective function that considers minimised chatter as target, where chatter 

relates to absolute characteristic multiplier or iegen values CM that must be less than 

one to fully eliminate chatter.  In the current case, the worst chatter indicated by eigen 

value is minimised by optimisation algorithms.  This occurs within a specific region of 

spindle speed and axial depth of cut.  The final optimisation problem can be specified as 

follows:  

Objective function:  Minimise CMf ii max),( =φβ   ( 6.4)

Subject to constraints: 

Helical angle 
ni

i

K3,2,1
5525

=
≤≤ β  (°) 

Pitch angle ni
i

K3,2,1
5.225.22

=
+≤≤+ φφφ  (°) 

Helical height difference 5≥Δ βh (mm) 

During optimisation, each point of specific spindle speed and axial depth of cut was 

evaluated on characteristic multiplier value to produce a matrix of characteristic 

multiplier.  A single value of characteristic multiplier is calculated after two 

determinations of maximum characteristic multiplier matrix.  The constraint on pitch 

angle φi (55°) is to ensure good chip evacuation  as suggested by previous work [11, 

12]. The DE needs to search for the suitable values of variable helix βi  and variable 

pitch φi that produce minimum chatter across the chosen spindle speed and depth of cut 

range (along with the additional constraints).  Helical angle height difference Δhβ  is 

constraint greater than 5 to prevent intersection. 

6.2.3   Performance maximisation  

Performance is defined by maximum of material removal rate divided by absolute value 

of character multiplier.  The worst performance with specific regions of depth of cut and 

spindle speed is maximised using DE and SQP algorithms.  The same as for the 

previous objective function, each point of spindle speed and depth of cut is evaluated 

but for this case is based on Equation 6.5 and constraint as follows:   

Objective function Maximise ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

CM
MRRf ii max),( φβ   ( 6.5)
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Subject to constraints 

Pitch angle 
ni

i

K3,2,1
5.225.22 maxmin

=
+≤≤+ φφφ

 (°) 

Helical angle 
ni

i

K3,2,1
5525

=
≤≤ β

 (°) 

Helical height difference 5≥Δ βh   (mm) 

A single value of Equation 6.5 is calculated after the maximum value.  A combination 

of spindle speed and axial depth of cut will be used to calculate material removal rate 

according to Equation 6.1.  At the same time, structural dynamics from the variable 

helix will be changed through characteristic multiplier evaluation either in stable or 

unstable condition at optimum performance.  The iteration will finish when the optimal 

variable helical angles have achieved the maximum performance. 

6.2.4   Multi-objective optimisation 

In the third case, multi-objective function is applied by considering maximisation of 

normalised MRR (
maxMRR

MRRMRRn = ) and minimisation of chatter.  MRRn is an 

important objective function by considering spindle speed and axial depth of cut to 

generate optimum productivity and easily compare with other specific spindle speed and 

axial depth of cut range.  A stable cutting generates a good quality surface roughness 

and a longer tool life to produce from a lower tool wear and cutting force were applied 

to the workpiece.  This unstable condition can be suppressed by minimised 

characteristic multiplier at the same time maximise normalised material removal rate 

MRRn.  The following is the objective function and constraints for the multi-objective 

problem:  

Multi-objective function 

Minimise  nii MRRbfCMf =Ω−= ),(),max(),( φβ   ( 6.6)

Subject to constraints 

Pitch angle 
ni

i

K3,2,1
5.225.22 maxmin

=
+≤≤+ φφφ

 (°) 

Helical angle 
ni

i

K3,2,1
5525

=
≤≤ β

 (°) 

Helical height difference 5≥Δ βh   (mm) 

To compromise two or more objectives, multi-objective function is considered a Pareto 

front concept.  In Figure 5.7, the Pareto front that connects a line X to Y is comprised of 
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a set of optimal points or nondominated points.  All possible values of the objectives for 

feasible design points consist in the function space.  The Pareto front is part of the 

feasible function space boundary where in that space one point relates to another in the 

set [146].  Any improvement in one of the objective functions comes to use at least one 

of the other objective functions.  According to definition, point Z is not on the Pareto 

front as compared to points X and Y that belong to the Pareto optimal set.  Thereby, the 

front will define a limit for the objectives that cannot be further improved 

simultaneously.  

 

In order to address the multi-objective problem, the epsilon constraint method is used as 

discussed in Chapter 5.  The two-objective problem is changed into a single objective 

problem by minimising one objective with a set of different limits on the second 

objective.  The second objective is constrained to a specific value until sufficient 

optimum points are found to produce the two objectives Pareto front [146].  At each 

time the single objective problem is solved, so the constrained form of the problem for 

specific spindle speed and axial depth of cut becomes: 

Minimise  )max(),( CMf ii =φβ    ( 6.7)

Subject to constraints 

Normalise material removal 
rate ki

Ωbf i

,,1

),(

K=

= ε
  

Helical Angle ni
i

K3,2,1
5525

=
≤≤ β

 (°) 

Pitch angle ni
i

K3,2,1
5.225.22 mamin

=
+≤≤+ φφφ

 
(°) 

Helical height different 5≥Δ βh   (mm) 

Equation 6.7 applied to calculate MRRn is more straightforward than characteristic 

multiplier. The reason to use a number of initial guesses for MRRn along the 

characteristic multiplier is because the characteristic multiplier needs to be found 

explicitly in the objective function.  Figure 6.2 illustrates the constraint in multi-

objective problem.  Instead of using a specific matrix of spindle speed and axial depth 

of cut for the previous problem, the current approach will apply an array of spindle 

speed and axial depth of cut from indicated maximum MRRn.  First, an array of 

combination of spindle speed and axial depth of cut is set for searching for the first 
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maximum MRRn.  Then, these sets of spindle speed and axial depth of cut values will be 

considered to search for minimum worst chatter by modifying the variable helix βi and 

variable pitch φi.  Next, the second optimal point can be calculated from the second 

maximum value of MRRn to produce an array of spindle speed and axial depth of cut 

values in order to minimise other worst chatter conditions.  The process is repeated until 

all value limits of constraints are used and should be similar to the theoretical result in 

Figure 5.6c.  Besides using maximum value of characteristic multiplier for calculation 

of the objective function, the second trial will use the average of characteristic 

multiplier values as objective function.  

6.3   Results for Chatter Minimisation and Chatter Performance Maximisation  

In this study, a single degree of freedom dynamic milling model with conditions of 

milling tool, modal and cutting parameters the same as in Table 6.1 is used, but the 

helical and pitch angles and other constraints need to be set before using DE and SQP as 

optimiser.  Each case is solved for variable helix tools and variable helix and variable 

pitch tools to investigate the influence on chatter stability limit.  Parametric study of DE 

parameters was made before analysis for chatter minimisation and chatter performance. 

6.3.1   Parametric Study of DE 

Before DE is applied, DE parameters, such as crossover (CR), scaling factor (SF), 

number of population (NP) and number of generation (NG) for each ‘strategy 7’, need 

to be determined.  For this purpose, the problem to minimise chatter (objective function 

in Equation 6.1) of three-flute variable helix and variable pitch was selected.  The 

parameter settings were evaluated based on the effects on DE performance. 

 

An initial study was made for different CR (0.2, 0.4, 0.5, 0.9), with other parameters 

kept constant, as shown in Table 6.2: 50 NG, 0.7 CR, 0.6 SF and 70 NP (10 multiplied 

by number of real parameter (7)).  The second attempt was for SF of 0.5, 0.6, 0.7, 0.8 

and 0.9, with other parameters kept constant.  The DE was executed for 50 generations, 

0.6 CR and 70 NP.  A similar setting of the DE parameter was used to examine the 

effect of population size or NP.  Various population sizes (4, 35, 40, 70 and 105) based 

on minimum NP, 5, 8, 10 and 15 times, respectively, with other parameters kept 

constant.  The fourth study used a maximum number of generations of 10, 50, 75, 100 

and 150, other parameters kept constant.   
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The optimum values of DE parameters summarised in the present work are given in 

Table 6.3. Crossover rate CR is 0.9, scaling factor SF is 0.9 and the number of 

population NP is 10 times the real parameter (10*RP) and 70 generations are employed 

in DE optimisation.  A ‘strategy-7’ (DE/rand/1/bin) methodology [82-84] was 

implemented in view of its wide application in the literature. This methodology involves 

random perturbation of a population vector (‘/rand’), perturbation of a difference vector 

for the mutation process (‘/1’) and binomial crossover (‘/bin’), as discussed in the 

previous chapter. 

6.3.2   Chatter minimisation results  

The result from a three-flute variable helix tool from Sims et al. [29] is presented 

initially. Milling cutter helix geometry is then optimised, based on variable helix and 

variable pitch modifications, to reduce chatter based on objective function in Equation 

6.1.  This considered only a single degree of freedom dynamic milling model with the 

condition of milling tool, modal and cutting parameters the same as in Table 6.1.  The 

numerical optimisation is based on the optimum settings in Table 6.4. Stability lobes 

and characteristic multiplier results of optimum cutting tools are illustrated and 

compared with the original design chosen arbitrarily. 

 

The original tool geometry consisted of a three-flute variable helix (25°, 30°, 35°) cutter 

with variable pitch (120°, 100°, 140°) at its free end.  In Figure 6.3, a large unstable 

region can be observed at a high depth of cut.  For this low radial immersion scenario 

three instability conditions are seen: period-one, hopf and period doubling bifurcations. 

The optimisation routines were used to adjust the tool helix to obtain the most stable 

chatter performance across the illustrated spindle speed range.  Two scenarios were 

considered: a variable helix with a uniform pitch at the tool’s free end (variable helix 

and uniform pitch) and a variable helix with a variable pitch at the tool’s free end 

(variable helix and variable pitch). 

 

The performance of the DE and SQP algorithms is summarised in Figure 6.4.  Note that 

the objective function is a maximum characteristic multiplier (CM) value, so a value 

less than unity represents complete stability over the chosen spindle speeds and depths 

of cut. 
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The DE algorithm achieved complete stability (maximum CM= 0.897) by the second 

generation. The corresponding variable helix (52°, 52°, 41°) and variable pitch (107°, 

169°, 90°) stability diagram is shown in Figure 6.5.  Since the maximum CM is less 

than unity, no chatter is observed. In comparison, the SQP algorithm achieved a 

maximum CM of 0.952 after 25 iterations.  The corresponding best-case stability 

diagram is shown in Figure 6.6.  Although this system is also completely stable, the CM 

are considerably greater than those obtained with the DE algorithm.  This indicates a 

lower margin of stability. 

 

For the scenario where the tool’s free-end pitch angle was uniform, Figure 6.4 shows 

that a poorer performance was obtained for both optimisation methods.  The DE 

algorithm converged at 50 generations with 1.005 evaluation value.  This refers to a 

variable helix geometry (53°, 27°, 54°).  The resulting stability prediction and CMs are 

given in Figure 6.7.  Meanwhile, for the SQP result, the maximum CM value is higher 

(1.071) and converges at 5 iterations, as shown in Figure 6.4.  The corresponding 

stability prediction is shown in Figure 6.8, indicating a very large unstable island in 

contrast to the DE (Figure 6.7) and the original (Figure 6.3b) results.  

6.3.3   Performance maximisation results  

To maximise chatter performance, similar settings in minimising chatter of variable 

helix tools were applied.  The performance is the objective function in Equation 6.2 to 

be evaluated and measured during the optimisation process. 

 

In Figure 6.9, the performance of the DE and SQP algorithms is summarised.  Note that 

the objective function is chatter performance, so a value cannot represent complete 

stability over the chosen spindle speeds and depths of cut as a minimisation problem. 

 

By generation 37, the DE algorithm achieved a maximum CM= 0.292.  In Figure 6.10, 

the corresponding variable helix (27°, 25°, 26°) and variable pitch (83°, 194°, 83°) 

stability diagram are shown where no chatter is observed.  In comparison to the SQP 

algorithm, the DE achieved a maximum CM of 0.174 after 4 iterations.  Unfortunately, 

it corresponds to a stability diagram the same as the original (Figure 6.3b).  

 

For the case where the tool’s free-end pitch angle was uniform, Figure 6.9 shows that a 

poorer performance was obtained for both optimisation methods.  The DE algorithm 
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converged at 34 generations with 0.74 evaluation value and refers to a variable helix 

geometry (43°, 25°, 55°).  The stability prediction is shown in Figure 6.11 where a large 

unstable island was predicted.  This is poorer than the original (Figure 6.3b) results.  

However, for the SQP result, the maximum CM value is larger (0.118) and converges at 

4 iterations, as shown in Figure 6.9.  This corresponds to a stability diagram the same as 

the original.  

 

Consequently, the performance maximisation approach is unsatisfactory, whilst the 

minimisation approach shows some promise.  However, the performance of the 

minimisation problem showed a very fast convergence at the second iteration.  This 

indicates that the performance converged to a premature population where the 

population can not be improved.  In the next section, the algorithm is refined to improve 

its performance. 

6.4   Refined DE Algorithm 

During the population process, it is desirable to produce a robust feature and a high 

convergence rate to create a population with high probability.  To achieve trade-off 

between convergence and robustness, a few attempts have been made by researchers by 

introducing modified DE, hybrid DE and combined with Particle Swarm Optimisation 

and Ant Colony Optimisation.   

 

In modified DE, instead of one array on population update, Babu and Angira [153] 

applied two population updates during the mutation and crossover process and the 

original population to ensure each population had equal opportunity.  To relocate the 

violated bound vector to the interior bound, a penalty function was used for avoiding 

local optimal.  A different approach was used by Lee et al. [84] to reduce search space, 

by applying the modified constraint and the local search approach to improve the 

population.  Meanwhile Nearchou and Omirou [154] and Zhang and Xu [155] used 

random keys encoding to handle discrete variables to produce high performance of the 

modified DE.  By adjusting of minimum space distance, a population’s being located in 

the same area was prevented, as proposed by Hendershot [156].  To accelerate the 

mutation process and exploration region, Kaelo and Ali [68] recommended a random 

uniform mutation factor and localisation around best vectors, respectively.   
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Migration and acceleration strategies were mainly added to the original DE to perform 

hybrid DE by Chiou and Wang [157] and Pedchote and Purdy [158].  Migration strategy 

is used to diversify a population that failed in certain tolerance besides escaping from 

local optimal and preventing premature convergence.  Acceleration reacts to generate 

fast convergence to improve fitness with population diversity.  However, fast 

convergence leads to obtaining a local optimal and a large population region that causes 

large computational time.   

 

To overcome convergence and robustness, Particle Swarm Optimisation was applied by 

Hendtlass [159] as a main rule for each individual, while DE reacts to search for a better 

individual.  Meanwhile, Ant Colony Optimisation was applied in combination with DE 

to accelerate search in the mutation process.  Besides that, Tasoulis et al. [160] and 

Chiou et al. [161] applied parallel processing to make computational time faster without 

compromising its performance.  In applying acceleration and migration region in hybrid 

DE [160], a local optimal and large population region obtained cause a large 

computational time.  When a violated vectors are modified to inside bound [161], this 

can solve a local optimal problem and a new population has a wide diversity of 

searching of the global optimal.          

 

For the current case, DE algorithm really needs to be changed and modified based on 

poor performance in minimising chatter.  Particularly for a case of a three-flute variable 

helix and variable pitch where the iteration converges at second generation and does not 

improve for the next 68 generations. Additionally, a mutation process causes a current 

algorithm to reject or remove the population vector when producing a violated vector of 

the boundary.  This was shown in the previous Himmelblau function example (Section 

5.4.2).  To overcome the problems, mixed population update and bounce back strategy 

are applied to modify and improve the current DE algorithm. 

6.4.1   Mixed population  

The initialisation process consists of uniform distribution, randomisation range between 

(0,1), Gaussian distribution with mean and standard deviation with 0.5 and random 

without restrictions [82].  Although randomised initialisation was used, the population 

for every generation is not guaranteed to be updated or changed as shown by previous 

result (chatter minimisation of variable helix and variable pitch tools’ population).  As a 

result, it is suggested that the current population be interrupted by a small amount of 
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random noise population to improve DE process for every generation by encouraging 

more search space to search for the global optimal and exploring to accelerate the 

convergence rate.  The other population is the best population from the previous 

generation. This mixed population has a feature of diversity and guarantees to produce a 

high probability of the global optimal from the introduction of some noise population to 

the current population as a mixed population.  

 

In every new generation, the next population will consist of 75 percent of the best 

current population and 25 percent from a randomised population.  This randomised 

population reacts as noise to improve the next population.  The pseudo algorithm for the 

current approach is shown in Figure 6.12.  In every generation, a 25 percent population 

with additional noise will improve DE performance to overcome premature problem of 

the population during the optimisation process.  

6.4.2   Bounce back boundary 

In constraint optimisation, several methods [82] have been proposed to solve the 

problem, such as penalty function, random initialisation, bounce back method and 

rejection of the vectors .  Previously, the rejection of the vector was applied; however, 

the point outside bounds may have a better solution but unfortunately not in the feasible 

region.  A bounce back method function can be used to modify an out of bounds trial 

parameter with one located on the boundary.  Besides escaping from the local optimal, 

especially at the boundary, this replaces out of bounds vectors to have a highly diverse 

population. 

 

Figure 6.13 illustrates the bounce back strategy in a two-dimensional search space.  

When the population moves outside the bounds, this strategy allows the generation of 

vectors close to bounds.  The pseudocode of the strategy is shown in Figure 6.14.  The 

violated vector at the upper and lower boundaries is relocated with a trial vector to the 

each of them, respectively. 

6.4.3   Himmelblau function example 

As in the example in Section 5.4.2, a Himmelblau function was used to demonstrate 

how a modified DE improves in optimising the function.  For simplicity, the constraint, 

DE population, number of generation, mutation factor, crossover and strategy are set as 
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in the previous example.  The mechanism of bounce back and randomised noise 

population approaches are now described for a Himmelblau function.  

 

An initialisation process of generating four populations was started similarly to Figure 

5.5c.  In the mutation process of Figure 6.15a, the three mutated vectors are introduced, 

such as xr1,g, xr2,g and xr3,g indicated by ‘×’, ‘×’ and ‘o’, respectively .  Due to ‘∗’’s 

having violated the boundary, the bounce back strategy takes action to propose ‘+’ as a 

substitute with the violated vector.  In Section 5.4.2, this violated vector was previously 

terminated.  A bounce back reacted to the violated boundary vector during the crossover 

process to substitute ‘•’ with ‘+’ (Figure 6.15b).  In the previous example, the violated 

boundary vectors had also been terminated.  Again, bounce back boundary approach 

made an action to replace the violated vector with the nearest boundary vector.  These 

mutation and crossover processes strongly represented how bounce back improved the 

DE algorithm for the Himmelblau example.  Figures 6.15b and 6.15c show the selection 

and generation process with substitution vectors during mutation and crossover 

processes.   

 

The mechanism of a random noise population approach is now presented.  Initially, a 

generation of four vectors is produced, as shown in Figure 6.15d.  Using a random 

noise, ‘+’ and 75 percent best population are introduced to update generation (Figure 

6.15e).  The 25 percent noise of the new vector is introduced into the current generation 

to improve optimisation as discussed before.  Previously, the generation is taken as 

proposed by the algorithm without any updating of a new random vector and best vector 

in the population.  Figures 6.15f, g and h show generations 2, 5 and 10, respectively.  

Despite a small population size and number of generations, the result of the current 

population is the 10th generation towards minimum coordinates at 3, 2 location 

(minimum value vectors).  The final value is better than the result in Section 5.4.2.  This 

example is only needed to show how bounce back and randomised noise population 

approaches improved the Himmelblau function when compared to previous example.  

Next, this refined DE algorithm is applied to the chatter minimisation problem. 

6.4.4   Chatter minimisation example 

The main problem which occurred was illustrated in the three-flute variable helix and 

variable pitch tool.  During the optimisation shown (Figure 6.4), the generation cannot 

be improved and performed after the second iteration.  In order to indicate that the 
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refined DE performs well and overcomes the previous problem, minimisation of chatter 

is reconsidered with the same DE settings and machining parameters. 

 

In Figure 6.16, the original DE and refined DE were compared in their performance in 

optimising chatter of three-flute variable helix and variable pitch tool.  It shows that the 

refined DE is significantly better than the original where generation improved during 

iterations although the population of refined DE showed improved maximum eigen 

value at the 63th generation converged at 0.8.  Characteristic multiplier CM value is 6-

fold greater than the previous optimisation.  This corresponds to a variable helix (41°, 

43°, 40°) and variable pitch (68°, 283°, 36°) that showed stable or unchattered 

behaviour (Figure 6.17).  By comparing with Figure 6.5, the refined DE is better than 

the original DE results, indicated by a larger gap in the stable border line in the CM 

diagram.  Moreover, the magnitude of the absolute eigen value contour for the refined 

DE is between 0.6 and 0.85 and for the original DE is between 0.8 and 0.9.  This not 

only represents that the CM value of the refined DE has a lower value or better than the 

original result, but also more damping behaviour from the original DE.   This clearly 

indicates the bounce back and mixed population can improve the DE result.  Next, the 

refined DE algorithm is reconsidered for previous problems. 

6.5   Modification of Current Objective Function 

Before considering the refined DE algorithm for the previous problem, the current 

objective functions are now modified to improve their performance.  The current 

objective refers to the maximum value of the objective function either for chatter 

minimisation or chatter performance maximisation.  The objective function was 

calculated from the matrix of spindle speed and depth of cut cutting range.  However, 

the current objective function did not represent the overall system as it evaluated the 

maximum value and, as a result, it is modified. 

 

It can be seen that average characteristic multiplier values in the characteristic multiplier 

diagrams of previous optimisations were plotted and scattered at higher eigen value.  

Even though the characteristic multiplier represents the stable condition, other higher 

values of characteristic multiplier can be minimised to ensure that the whole system as 

minimum as geometry can be modified.  To represent all eigen values, the maximum 

value is changed to an average value for representing average objective function in the 

matrix, as shown in Figure 6.1 (in minimise chatter box).  For the chatter minimisation 
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problem, maximum characteristic multiplier (Equation 6.3) is changed to average 

characteristic multiplier, while for chatter performance maximisation, maximum value 

changes to average value of Equation 6.4 , as shown in Figure 6.1 (in maximise chatter 

performance box). 

 

The performance maximisation results for the previous objective function showed all 

SQP solutions were trapped in local optima.  To solve this problem, a random 

initialisation is used in the next solution.  During optimisation, the objective function of 

Equation 6.2 was optimised by considering depth of cut and spindle speed as main 

process variables, so this cannot be compared with other operating processes.  To 

represent and compare with other systems, the normalisation of MRR (MRRn) is 

introduced.  Thus, by combining with the average objective function and normalising 

with average of Equation 6.3, the equation becomes the modified objective function as 

follows: 

 ⎟
⎠
⎞

⎜
⎝
⎛=

CM
MRR

meanf n
iiMRR ),( φβ  ( 6.8)

The function of MRRn is to ensure the optimum MRR as unity within the maximum of 

the spindle speed and depth of cut.  If the MRRn searches the maximum value, it 

represents 1/CM for Equation 6.8.  Each point is evaluated based on the average of 

MRRn and eigen value.  The average objective value is calculated to achieve a greater 

value by modified variable helical and variable pitch angles.  Current modified 

objective functions and refined DE algorithm are now used for previous problems. 

6.5.1   Improved chatter minimisation results  

The performance improved chatter minimisation of the DE and SQP algorithms is 

summarised in Figure 6.18.  Note that the objective function is the average value for a 

characteristic multiplier, so a value less than unity cannot represent complete stability. 

  

The DE algorithm achieved an average CM = 0.76 at 67 generations. The corresponding 

variable helix (46°, 35°, 43°) with variable pitch (67°, 233°, 60°) stability diagram is 

shown in Figure 6.19.  Since the system is completely stable, the contour for values 

lower than unity is used here.  This indicates the CM range of 0.55 to 0.9, which is 

better than previous optimisation.  In comparison, the SQP algorithm achieved a mean 

CM of 0.82 after 4 iterations.  The corresponding stability diagram is shown in Figure 

6.20.  This system shows lower CM where stability contour is between 0.75 and 0.9 
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than previous optimisation, as shown in Figure 6.6.  This indicates larger damping 

behaviour in the stability contour. 

 

For the scenario where the tool’s free-end pitch angle was uniform, Figure 6.18 shows 

that a poorer performance was obtained for both optimisation methods.  The DE 

algorithm converged at 65 generations with 0.98 evaluation value, corresponding to a 

variable helix of (55°, 25°, 55°), as shown in Figure 6.21.  The resulting stability 

prediction and characteristic multipliers are given in Figure 6.21.  It can be observed 

that the stable area is better than the previous result (Figure 6.7).  Meanwhile, for the 

SQP result, the mean CM value is (0.99) and converges at 4 iterations (Figure 6.18).  

The corresponding stability prediction of variable helix (55°, 53°, 29°) is shown in 

Figure 6.22.  This shows a larger unstable island than DE, but better than the previous 

result (Figure 6.8) that was trapped in local optimality when random initialisation was 

used. 

6.5.2   Improved performance results  

The performance of improved chatter performance maximisation with the DE and SQP 

algorithms is summarised in Figure 6.23.  Note that the objective function is the average 

value for Equation 6.8, so a value less than unity cannot represent complete stability. 

 

The DE algorithm achieved complete stability (average MRR/CM= 0.77) by the 50th 

generation.  The corresponding variable helix (29°, 34°, 33°) and variable pitch (66°, 

228°, 66°) stability diagram is shown in Figure 6.24.  The characteristic multiplier CM 

contour for less than unity is plotted with range 0.5 to 0.95.  In Figure 6.10, although the 

original DE result used a different objective function, the stable contour is plotted with a 

range 0.65 to 0.95.  Not only is there a lower range of stable contour, but also the 

currently optimised cutter showed larger gap toward the unit circle (CM diagram).  In 

comparison, the SQP algorithm achieved an objective function of Equation 6.8 of 0.58 

after 18 iterations.  Although the value is lower than DE, stability of systems (Figure 

6.25) is better than in the previous case (Figure 6.3b).  Again, this shows how random 

initialisation can escape local optimal for SQP optimisation. 

 

For the case where the tool’s free-end pitch angle was uniform, Figure 6.23 shows that a 

poorer performance was obtained for both optimisation methods.  The DE algorithm 

converged at 54 generations with evaluation value 0.54, corresponding to variable helix 
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(50°, 25°, 55°).  The resulting stability prediction and characteristic multipliers are 

given in Figure 6.26.  It can be seen that better stability is achieved since there is a 

lower unstable region than in the previous result (Figure 6.11).  On the other hand, for 

the SQP result, objective function value is 0.55 and converges at 7 iterations, as shown 

in Figure 6.23.  The corresponding tool geometry of the variable helix is 25°, 55°, 42° 

(Figure 6.27).  Randomised initial parameters can escape from the local optimal 

problem but the result is still poorer than DE and almost similar to Figure 6.21.  

 

In the present study, numerical optimisations are made to optimise the chatter stability 

with the original and the improved strategy (algorithm and objective function) for 

different tool geometries (variable helix tools and variable pitch and variable helix 

tools), algorithms (DE and SQP).  The results can be summarised and ranked based on 

chatter stability, as shown in Table 6.4.  A refined DE algorithm and variable helix/pitch 

for chatter minimisation is most significantly followed by chatter performance 

maximisation.  In addition, variable helix and variable pitch tools geometry to 

moderately improve chatter performance for both algorithms and objective functions.  A 

smaller effect caused by variable helix tools (refined algorithm and modified objective 

function) for improving chatter performance. 

6.6   Multi-Objective Optimisation   

A main key issue is robustness to minimise chatter and performance to maximise MRR.  

To solve these, a Pareto front concept was introduced to overcome and fulfil the two 

objectives or problems by combining chatter minimisation and performance 

maximisation.  Epsilon constraints, as described in Chapter 5, are suitable for both DE 

and SQP algorithms and are now presented to solve the multi-objective optimisation 

problem. 

6.6.1   Current approach 

Minimised chatter and maximised MRR were stated and introduced as a single objective 

function for modifying variable helix and variable pitch tool geometry.  Both objectives 

are important for the machining process and need to be combined and referred to as 

multi-objective.  To manage both objectives, multi-objective optimisation was applied 

to solve and overcome the problem.  Pareto front optimal makes trades off between 

robustness of chatter and performance of material removal rate.  For the multi-objective 

problem, epsilon constraint method as conventional was applied due to its applicability 
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to convex and non-convex problems and easy to implement and suit both DE and SQP 

as optimisation algorithms.  Using DE and SQP, the ε-constraint method was used to 

modify variable helix and variable pitch of three-flute milling tools.   

  

Objective function offers multi-objective optimisation as stated in Equation 6.7.  For ε-

constraint value, MRRn relates to normalised MRR (0.1, 0.2, 0.3, …, 1) which refers to 

ε value (1, 2, 3, …, 10), as shown in Figure 5.7.  In each ε-constraint applied, chatter or 

CM is minimised by modified variable helix and variable pitch geometry. Figure 5.6c 

also indicates robustness as CM and performance as MRRn in vertical and horizontal 

axis.  Theoretically, the robustness always increases with increase in performance.  CM 

is not indicated as stable when the eigen value is less than unity and both end points 

represent the maximum and minimum extreme solutions. 

  

The results for variable helix tool, variable helix and variable pitch tool will be 

illustrated in a Pareto front solution and angle distribution for DE and SQP.  Pareto 

front solution shows the convergence value at each of MRRn for both algorithms in 

maximum and average CM.  The distribution of helical angles and pitch angles 

corresponds to the convergence and CM diagram.  For example, in optimising a three- 

flute variable helix and variable pitch, MRRn = 0.5 converges at 0.67 average CM value, 

as shown in Figure 6.28a.  This was evaluated and calculated from intersecting of MRRn 

= 0.5 line and average CM value.  In the intersection line, CM values varied from 0.65 

to 1 to give 0.67 average CM value.  Similarly, for MRRn = 0.9 that converges at 0.73.  

In Figure 6.28b, MRRn line intersected with contour range from 0.7 to 1.  Due to the 

CM contour being located at an unstable region, a higher average CM was evaluated.  

To conclude, the CM converged value depends on the intersection between MRRn and 

the CM contour. 

6.6.2   Results  

A variable helix and variable pitch cutter was optimised based on a multi-objective 

approach to perform a Pareto solution of DE and SQP, as shown in Figure 6.29.  It can 

be clearly seen that DE results for average and maximum give comparable solutions.  

However, both SQP (mean and max) converge towards poorer results with a fluctuating 

pattern.  Moreover, SQP(max) follows the same pattern as the theory in Figure 5.6c.  At 

MRRn = 0.5, DE shows minimum CM value of 0.67.  In comparison to SQP, DE 
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converges at 0.59 as the lowest CM value which is almost double the SQP convergence 

at maximum performance.  This Pareto front solution corresponds to the variable helix 

and variable pitch angles showed by Figure 6.30.  In variable helix angle, as 

performance increases the geometrical value is more highly modified than variable 

pitch.  This clearly indicates the greater robustness of DE than SQP and separates DE 

and SQP into global and local convergence curves, respectively.  

 

For the scenario where a variable helix is considered, the multi-objective approach 

using ε-constraint produces a Pareto front solution of DE and SQP, as shown in Figure 

6.31.  It can be clearly seen that both algorithms give comparable solutions at MRRn 

between 0.1 and 0.4.  When performance increases, the large difference happens at 

MRRn = 0.6 and 0.7.  At MRRn = 1, DE can search for minimum CM value 0.92 which 

is lower than the SQP results.  This Pareto front solution corresponds to the variable 

helix and variable pitch angles showed by Figure 6.32.  The minimum CM for MRRn 

0.6 and 0.7 relates to β1, β2 and β3 values.  This clearly indicates the robustness of the 

DE algorithm although the results used only the variable helix as modified geometry.  

Theoretically, chatter behaviour is proportionate to the material removal rate.  However, 

it can be observed that the chatter area can be located at any place of spindle speed and 

depth of cut that causes high CM value to be produced.   

6.7   Comparison of Variable Pitch and Uniform Helix Tool 

Previous approaches as discussed in Chapter 2 that optimised uniform helix and variable 

pitch [29, 151] should be considered and compared with the current approach.  

Therefore, current approach with objective function to minimise chatter, maximise 

chatter performance and combine both single objectives are now presented to optimise 

uniform helix and variable pitch tools.  These results are then compared with current 

optimised tools. 

 

For minimising chatter, the performance of the variable helix and variable pitch tool and 

uniform helix and variable pitch tool using refined DE algorithms and average value of 

objective function of Equation 6.4 is shown in Figure 6.33.  The uniform helix and 

variable pitch cutter achieved complete stability (average CM = 0.77) by the 57th 

generation.  This corresponds to uniform helix (30°, 30°, 30°) and variable pitch (69°, 

146°, 145°).  It can be seen that the variable helix and variable pitch perform better than 

the variable pitch tool.  This system is not completely stable where the characteristic 
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multipliers are considerably higher than those obtained for variable helix and variable 

pitch tools. 

 

For the case with the objective function that maximises performance, the tool’s variable 

pitch angle shows result in Figure 6.34.  The uniform helix and variable pitch tool 

converged at 26 generations with 0.75 evaluation value, corresponding to a uniform 

helix (30°, 30°, 30°) and variable pitch (68°, 147°, 145°).  This is poorer than variable 

helix and variable pitch and almost similar to variable pitch geometry for chatter 

minimisation result.  

 

A uniform helix and variable pitch tool is optimised based on ε-constraint of multi-

objective to perform the Pareto front solution DE, as shown in Figure 6.35.  As 

performance value or normalised material removal rate increases, both results showed 

decreased robustness.  It is clearly seen that the uniform helix and variable pitch tool 

result shows a similar pattern to the variable helix and variable pitch tool.  Similar 

results clearly occur particularly at MRRn = 0.1 and 0.9.  However, at MRRn = 0.5 and 

1, variable helix and variable pitch tool performs better than uniform helix and variable 

pitch tool.  The largest difference happens at maximum performance.  Overall, it can be 

clearly seen that the variable helix and variable pitch Pareto front solution is better than 

uniform helix and variable pitch cutter.  The corresponding pitch angle for both 

approaches is shown in Figure 6.36.  It can be seen that the influence of helical angle 

contributes to minimise chatter for variable helix and variable pitch tool.   

6.8   Discussion  

To recap, the DE algorithm was able to design a variable helix tool (with variable pitch 

at its free end) that showed a great improvement in chatter stability.  However, the 

importance of also allowing a variable pitch at the free end of the tool has been 

highlighted.  Without this variable pitch at the free end, the variable helix geometry is 

much less effective because there is less potential to ‘disrupt’ the time-delay parameters 

in the governing stability equations, for both single and multi-objective problem.  For 

multi-objective problems, variable helix angle values proportionately change when 

chatter performance increases, as shown in Figures 6.30 and 6.32.   

 

Both the DE and SQP algorithms were able to improve the chatter stability.  However, 

by referring to the maximum objective function value, the optimisation results for the 
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DE algorithm are consistently better than for the SQP algorithm.  For the variable helix 

tool with a uniform helix at the free end, the SQP algorithm is clearly trapped in a local 

optimum. Furthermore, the performance strongly depends on the chosen initial value 

that uses gradient-based optimisation where randomised initialisation improved the SQP 

results.  In multi-objective optimisation, both the DE (max and mean) and SQP (mean) 

algorithms were able to improve the chatter stability when increasing material removal 

rate.  DE algorithm converges to global Pareto front, while the SQP algorithm clearly 

converges in local Pareto front.  The comparison between theoretical and multi-

objective solution showed that different pattern except for SQP (max).  With decreasing 

performance, the robustness or eigen value should increase, however the nonlinearities 

of unstable region of robustness (CM) contour causes this to happen.  In Figure 6.28a, b, 

at certain performance (MRRn) can be seen to intersect with the high robustness contour 

(CM) resulting higher chatter performance.  

 

In comparison with the original objective function, modified objective function 

performed better when the objective function applied average objective function and 

normalised material removal rate.  Table 6.4 shows a lower range of stable contour and 

a large unstable region reduced to be a small region for both single objective functions.  

Similar results were obtained for chatter performance maximisation problem.  

Additionally, SQP using random initialisation can escape local optima particularly for 

improved chatter performance maximisation results but not for chatter minimisation 

results.   

 

Different objective functions can search for different optimal geometry values.  From 

current results, improved chatter minimisation (Figures 6.19) is the most significant 

compared to chatter performance maximisation (Figures 6.24).  Therefore, this objective 

function (average (CM)) is applied for optimising variable helix and variable pitch tool 

in experimental validation in the next chapter.  When comprised with lower material 

removal rate, lower stability can be achieved for multi-objective problems.  At optimum 

material removal rate, DE performed better convergence than SQP the same as single 

objective function due to its global and evolution-based optimisation algorithm. 

 

Optimum uniform helix and variable pitch stability performed poorer than the current 

approach (variable helix and variable pitch) for the problems of chatter minimisation 
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and performance maximisation.  Although showing the same Pareto front solution 

pattern, the convergence values for variable helix and variable pitch are a better and 

more robust solution when increasing performance (multi-objective optimisation).  It 

can be observed that the convergence of both results actually depends on unstable 

behaviour at high depth of cut.  In comparison with the previous method used by the 

researchers that applied only variable pitch, outstanding performance can be achieved 

after using variable and variable pitch.  Use of a variable helix and variable pitch tool is 

suggested for a great performance for chatter suppression. 

 

An optimised variable helix and variable pitch tool can suppress chatter and all 

nonlinear instability (secondary hopf bifurcation, period doubling bifurcation and cyclic 

fold bifurcation) in the original condition becomes extinct.  However, cyclic fold and 

period doubling bifurcation still occur for the variable helix tool due to use of low radial 

immersion conditions.   

6.9   Summary 

It can be observed that optimised variable helix and pitch milling tools can totally 

eliminate chatter for both algorithms, but DE outperformed SQP when compared with 

the CM diagram where a larger gap to unity indicates higher damping properties.  In 

other cases, implementing variable helix cannot beat the variable helix and variable 

pitch results.   

 

The maximisation of performance has exhibited poor results compared to chatter 

minimisation.  SQP offers a poor solution for all the cases, where the solutions became 

trapped in local optimal near the original tool geometry.  Better maximisation results 

can be achieved using randomised initialisation.  From the results, DE that optimised 

variable helix and variable pitch milling tools using chatter minimisation that 

demonstrated a larger damping behaviour and a larger margin of stability is considered 

for experimental validation.   

 

The introduction of mixed population and bounce back approach improved the current 

DE algorithm. A refined DE algorithm and modified objective function can solve and 

improve the results of chatter minimisation and performance maximisation.  Multi-

objective optimisation of minimisation of chatter and maximisation material removal 

rate simultaneously is considered to achieve a Pareto front solution.  All optimisation 
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results showed DE is better than SQP in a single and multi-objective strategy.  When 

compared to uniform helix with variable helix as in the previous approach, a better 

solution is for variable helix and variable pitch tool in all types of objective function, 

both single and multi-objective optimisation.   

 

In this chapter, three problems in minimising chatter, maximising chatter performance 

and multi-objective optimisation have been demonstrated and optimised.  DE and SQP 

algorithms have been considered in optimising variable helix and variable pitch milling 

tools, with cases for in [29].  In the next chapter, experimental validation of optimised 

the variable helix and variable pitch milling will be used for chatter minimisation 

objective function (average CM). 
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Table 6.1  Cutting, modal and tool parameters for optimisation 

Tool and cutting parameters 

Tool diameter d (mm) 19.05 

Radial immersion RI (mm) 1.00 

Tangential cutting stiffness Kt (MN/m2) 550 

Tangential cutting stiffness Kn (MN/m2) 200 

  

Modal property in x-direction mode 

Natural frequency fn (Hz) 169.3 

Modal effective mass mm (kg) 6.5363 

Damping Ratio ξ 0.0056 

 

Table 6.2  DE parameter settings for machining optimisation 

Parameter Initial value Optimum 

Strategy 7- DE/rand/1/bin 

Number of Generation (NG) 50 70 

Number of Population (NP) 10*RP 10*RP 

Crossover factor (CR) 0.7 0.9 

Scaling factor (SF) 0.6 0.9 

 

Table 6.3  Parametric study of DE to optimise variable helix for ‘strategy 7’ 

Performance of DE DE parameters 
Crossover rate (CR) 

0.2 0.4 0.5 0.7 0.9 

Minimum CM 0.7533 0.7481 0.7489 0.7487 0.7481 

Scaling factor (SF) 
0.5 0.6 0.7 0.8 0.9 

Minimum CM 0.7543 0.7490 0.7532 0.7487 0.7486 

Number of Population (NP) 
4* RP 5* RP 8* RP 10*RP 15* RP 

Minimum CM 0.7711 0.7489 0.7491 0.7487 0.7487 

Maximum Number of Generation (NG) 

10 50 70 100 150 

Minimum CM 0.7514 0.7487 0.7470 0.7470 0.7470 



 

  

Table 6.4  Chatter stability summary and ranking during numerical optimisations 

Figure Parameter Chatter Stability 
Result Rank 

 Algorithm Modification of 
Algorithm 

Objective 
Function Tool geometry 

Unstable 
area 
(%) 

Stable 
contour 
range 
(CM) 

 

 DE SQP Original Improved Chatter 
minimisation

Chatter 
performance 
maximisation

Variable 
helix 
and 

variable 
pitch 

Variable 
helix    

6.6        0 0.80-0.90 5 
6.7        0 0.90-0.95 6 
6.8       15 - 11 
6.9       50 - 16 
6.11        0 0.65-0.95 3 
6.12        25 - 14 
6.4b       10 - 9 
6.4b       10 - 9 
6.20       0 0.55-0.90 1 
6.21       0 0.75-0.95 4 
6.22      1 - 7 
6.23      15 - 11 
6.25       0 0.50-0.95 2 
6.26       17 - 13 
6.27      1 - 7 
6.28      25 - 14 



Optimisation of Variable Helix End Milling Tools                         Chapter 6  Optimisation Results 

 104

 

Minimise 
chatter

Maximise  chatter 
performance

Optimisation: Variable helix milling tools

Refined optimisation algorithm  

Multi-objective

RESULT AND DISCUSSION

( )( )CMmaxmax
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

CM
MRRmaxmax

( )( )CMmeanmean
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
CMMRR

MRRmeanmean
*max

( )( )CMmeanmean

max)(MRR
MRR

Uniform helix and
variable pitch

Compare  results

3 flute tool
variable helix and variable pitch
variable helix and uniform pitch

( )( )CMmaxmax

 

Figure 6.1  Structure of numerical optimisation results 
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Figure 6.2  Constraint arrangement for multi-objective optimisation 

 

  

a)  Depth of cut (0-45 mm) b)  Depth of cut (0-10 mm) for current 
study 

Figure 6.3  Original stability prediction for three-flute variable helix (25°,30°,35°) 
and variable pitch (120°, 100°, 140°) [29]. ( ) hopf bifurcation ( ) period 

doubling bifurcation ( )period one bifurcation 
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Figure 6.4  Performance of DE and SQP 
in chatter minimisation. (▬) DE variable 
helix and variable pitch, (-.-)DE variable 
helix, (---) SQP  variable helix and (…) 
SQP  variable helix and variable pitch 

Figure 6.5  Optimised stability 
prediction for chatter minimisation of 

three-flute variable helix (52°, 52°, 
41°) and variable pitch (107°, 163°, 

90°) using DE. ( ) stability 
contour 
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Figure 6.6  Optimised stability 
prediction for chatter minimisation of 

three-flute variable helix (25°, 38°, 55°) 
and variable pitch (120°, 105°, 135°) 
using SQP. ( ) stability contour 

 

Figure 6.7  Optimised stability 
prediction for chatter minimisation of 

three-flute variable helix (53°, 27°, 
54°) using DE. ( ) hopf bifurcation 

( ) period doubling bifurcation 
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Figure 6.8  Optimised stability 
prediction for chatter minimisation of 

three-flute variable helix (28°, 32°, 37°) 
using SQP. ( )hopf bifurcation 

( )period one bifurcation 

Figure 6.9  Performance of DE and 
SQP for maximising performance of 

three-flute variable helix. (▬) DE 
variable helix and variable pitch, (-.-

)DE variable helix, (---) SQP  variable 
helix and (…) SQP  variable helix and 

variable pitch 
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Figure 6.10  Optimised stability 
prediction for maximising chatter 

performance of three-flute variable 
helix (27°, 25°, 26°) and variable pitch 

(83°, 194°, 83°) using DE. ( ) 
stability contour 

 

Figure 6.11  Optimised stability 
prediction for maximising chatter 

performance of three-flute variable helix 
(43°, 25°, 55°) using DE. ( )hopf 

bifurcation 
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D = size (pop,2); 

For n = memIndex; 

Pop(n,:) = 0.75 * baseMem + 0.25 *rand (1,D) * (XVmax-XVmin); 

Figure 6.12  Introduction of random noise of population to next generation 
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trial point
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1x

xx *

Lx ,1

Ux ,0

Ux ,1

base point

trial point

 

Figure 6.13  Bounce back strategy of trial vector to replace out of bounds trial 
from base vector and violated bound trial point   

 

For k = 1 : I_NP % population filled with best member of last generation 

For j =1:I_D 

If (u(j,i) < XVmin) % if parameter exceeds lower bound 

u(j,i) = Xvmin; 

End 

If (u(j,i) > XVmax) % if parameter exceeds upper bound 

u(j,i) = XVmax; 

End 

End 

Figure 6.14  Pseudocode for bounce back strategy 
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Figure 6.15  Typical example of how improved DE works on Himmelblau function 
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Figure 6.16  Performance of DE and 
improved DE on optimising three-flute 
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Figure 6.17  Optimised stability 
prediction for improved chatter 

minimisation of three-flute variable 
helix (41°, 43°, 40°) and variable pitch 

(68°, 225°, 87°) using DE. ( ) 
stability contour 
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Figure 6.18  Performance of three-flute of 
DE and SQP using improved chatter 

minimisation. (▬) DE variable helix with 
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Figure 6.19  Optimised stability 
prediction for improved chatter 

minimisation of three-flute variable 
helix (46°, 35°, 43°) and variable helix 

(67°, 233°, 60°) using DE. ( ) 
stability contour 
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Figure 6.20  Optimised stability 
prediction for improved chatter 

minimisation of three-flute variable helix 
(54°, 40°, 49°) and variable pitch (142°, 
143°, 85°) using SQP. ( ) stability 

contour 

Figure 6.21  Optimised stability 
prediction for improved chatter 

minimisation of three-flute variable 
helix (55°, 25°, 55°) using DE. ( ) period 

doubling bifurcation 

 

 

 

Spindle speed (rpm)

D
ep

th
 o

f 
cu

t (
m

m
)

2300 2400 2500 2600 2700 2800 2900 3000
0

2

4

6

8

10

−1 0 1
−1

0

1

Real

Im
ag

 
0 10 20 30 40 50 60 70

0.45

0.55

0.65

0.75

Number of generation 

E
va

lu
at

io
n 

of
 c

ha
tte

r 
pe

rf
or

m
an

ce

Figure 6.22  Optimised stability 
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Figure 6.23  Performance of DE and 
SQP of improved performance of three- 
flute milling tools. (▬) DE variable helix 
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Figure 6.24  Optimised stability 
prediction for improved chatter 

performance of three-flute variable 
helix (29°, 34°, 33°) and variable pitch 

(66°,228°, 66°) using DE. ( ) 
stability contour 

 

Figure 6.25  Optimised stability 
prediction for improved chatter 

performance of three-flute variable helix 
(25°, 53°, 29°) and variable pitch (121°, 

178°, 61°) using SQP. ( )hopf bifurcation 
( )period one bifurcation 
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Figure 6.26  Optimised stability 
prediction for improved chatter 

performance of three-flute variable 
helix (55°, 25°, 55°) using DE. ( ) 

period doubling bifurcation. 

Figure 6.27  Optimised stability 
prediction for three-flute variable helix 
(25°, 55°, 42°) using improved chatter 

performance of SQP. ( )hopf 
bifurcation. 
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Figure 6.28  Typical stability limit of DE multi-objective optimisation of ε-
constraint for optimising three flute variable helix and variable pitch. ( ) 

normalised material removal rate ( ) stability contour. 
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Figure 6.29  Pareto front solutions of 
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optimising three flute variable helix 

and variable pitch. 

Figure 6.30  Distribution of optimised 
helical angle for three-flute variable helix 
and variable pitch from multi-objective 

optimisation. 
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Figure 6.32  Distribution of optimised 
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Figure 6.33  Performance of DE for 
optimising three-flute variable pitch 

and variable helix/pitch by 
minimisation of CM. (…) uniform helix 

and variable pitch (⎯) variable helix 
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Figure 6.34  Performance of DE for 
optimising three-flute variable pitch and 
variable helix/pitch by maximisation of 
performance...(…) uniform helix and 
variable pitch (⎯) variable helix and 

variable pitch 
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CHAPTER 7 

EXPERIMENTAL VALIDATION: OPTIMISED AND VARIABLE 

HELIX MILLING TOOLS 

7.1   Introduction 

The objective of this chapter is to demonstrate experimental validation of optimised 

variable helix and variable pitch milling tools based on Differential Evolution (DE) 

minimisation of self excited vibration or chatter as described in [151].  The focus of the 

current application is to suppress unwanted chatter vibrations during milling operations 

using a flexible workpiece.  Chapter 6 optimised the helix and pitch angles by 

combining the SDM and DE algorithms.  The present chapter will describe 

experimental work to demonstrate the performance improvements of the optimum tool.  

In addition to validation experiment of the optimisation procedure, a further 

experimental study is performed to better validate the modelling procedure of variable 

helix tools.  

 

The chapter is structured as follows.  The optimisation and modelling procedure is first 

summarised for the sake of completeness.  An experimental procedure and results for 

optimised tool are then described.  Further experiments are carried out for variable helix 

tools to validate the current SDM modelling.  Following results on overall discussion is 

then presented.  

7.2   Experimental Validation for Optimised Tool 

The present section will investigate the performance of such an optimised tool in 

machining experiments.  Both tools of regular helix/pitch geometry and optimised 

geometry using the procedure outlined in next section were used.  An experimental 

procedure is then described where a highly flexible workpiece is used to induce severe 

chatter instability, and an optimally designed variable helix tool is used to avoid chatter.  

Current experimental results formed a conference paper [162] and the abstract in 

Appendix A.III. 
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7.2.1   Optimisation method 

A brief overview of the chatter modelling and optimisation of variable helix and 

variable pitch milling tools is now described.  A more detailed account is given in [151] 

and previous chapter.   

 

Chatter stability modelling was implemented using SDM as proposed by Insperger and 

Stepan [7] and implemented by Sims et al. [29].  This approach involves discretisation 

of the structural dynamics so that the time delay effect, that arises from the tool rotation, 

can be represented as a discrete delay.  This leads to an eigenvalue problem that defines 

the stability for a given set of cutting conditions. 

 

In Chapter 6 and [151], a DE optimisation procedure was combined with SDM to 

modify and optimise the variable helix/pitch tool geometry.  Constraints of helix/pitch 

must be taken into account to ensure a realistic cutter geometry is produced for 

fabrication.  This optimisation process is summarised schematically in Figure 7.1, while 

DE parameter settings, as shown in Table 6.2.  The objective function of average value 

of Equation 6.4 and its constraints are used for chatter minimisation of three-flute 

milling tool. 

7.2.2   Experimental procedure 

In Figure 7.2, an experimental flexure is illustrated that was designed to behave with 

compliance in a single dominant mode of vibration.  Cutting, modal and tool parameters 

are summarised in Table 7.1.  This was used for cutting experiments on a 5-axis CNC 

vertical milling machine, the Haas VF6.  The flexure consists of a flexible steel base 

that was machined from a rectangular cross-section beam welded to a rigid steel bases 

and cutting specimen mounted on top as used by Huyanan and Sims [38, 163].  A 50.0 x 

50.8 x 25.5 mm3 aluminium (7075-T6) cutting specimen was mounted on the flexure.  

This was to be down-milled at 10 percent radial immersion using a 16 mm diameter 3 

flute end mill cutter.  The tool was either of regular helix/pitch geometry, or optimised 

geometry using the procedure outlined previously.  To maintain static milling force 

magnitudes and to prevent large free vibration amplitude because of the interrupted 

cutting that was applied on the workpiece, a nominal chip thickness of 0.04 mm per 

tooth was used.  A set of spindle speeds and axial depths of cut were tested to determine 

if the cutting was stable or unstable.  At the end of each cutting test, it was necessary to 

perform a clean-up pass to ensure a sufficient free surface for a later test.  
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During each cutting test, the flexure acceleration was measured the occurrence of 

chatter, using a piezoelectric accelerometer (PCB 352C68) connected to a DSPT Siglab 

20-22A and laptop as shown in Figure 7.3.  To capture a periodic pulse signal matching 

the tool revolution, a Hall-effect probe triggered by 2-equally space slots on the rotating 

tool holder was used.  This allowed once per revolution samples (1/Rev) of the 

accelerometer signal for post-processing.  Then, using 1/Rev acceleration samples and 

its cycle delay, two-dimensional Poincaré maps were constructed [164].  In addition, a 

Fast-Fourier Transform (FFT) method in Matlab was applied to the acceleration time 

samples to illustrate the acceleration spectra, using a Hanning window to reduce signal 

leakage.   

 

The cutting tests were evaluated as either stable or unstable based on the acceleration 

signal, 1/Rev samples and spectrum analysis.  If 1/Rev samples approached a fixed 

point with a variance less 10-3 m/s2 and the FFT-amplitude was dominated by tooth 

passing harmonics, the test was declared stable.  Not clear or unstable cutting was 

indicated from the 1/Rev variant between 10-3 to 10-2 m/s2 or cutting runout harmonics 

dominating the FFT-amplitude.  Secondary hopf-bifurcations and period-doubling 

bifurcations were indicators of unstable cutting.  Hopf-bifurcation instability was 

indicated by the unstable orbit on the 2-D Poincaré map and period-doubling bifurcation 

instability was specified from two fixed points of 1/Rev and 2-D Poincaré map.   

7.3   Optimised Tool Results 

The results for regular and optimised tool will be now presented to measure the 

effectiveness of current method to mitigate chatter.  Optimised tool results from 

numerical optimisation are first presented.  The identification for vibration signals of 

workpiece are then presented before the cutting experiment for stability results are then 

performed. 

7.3.1   Optimised tool geometry 

The corresponding three flute of regular cutter with uniform helix (30°,30°,30°) and 

uniform pitch (120°,120°,120°) is shown in Figure 7.5a,c.  A variable helix and variable 

pitch milling cutter was first designed using the optimisation procedure described in 

Section 7.2.1 and an average value of Equation 6.3 was used as objective function.  
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From numerical optimisation in Figure 7.4, the performance achieved an average CM 

=0.923 at 47 generations.  This corresponds to the optimised tools of variable helix 

(43°,44°,48°) and variable pitch (84°,221°,55°), as shown in Figure 7.5b,d.  Both cutters 

were ensured to have 10-times stiffness when compared with the dominant frequency of 

the flexure to test chatter vibration behaviour under specific spindle speeds and depths 

of cut. 

7.3.2   Acceleration signal identification 

For the down-milling operation of the regular 3-flute end mill, the acceleration signals 

were measured for regular and optimised tools performance.  Figure 7.6 shows the 

cutting tests were carried out in 5 cases for regular tool: A (2000 rev/min, 0.8 mm), B 

(2700 rev/min, 0.8 mm), C (3000 rev/min, 0.5 mm), D (3300 rev/min, 0.2 mm) and E 

(3900 rev/min, 0.8 mm).  For the optimised tool where variable helix and variable pitch 

were used, Figure 7.7 shows the results for 4 cases: F (2000 rev/min, 1.0 mm), G (2800 

rev/min, 0.6 mm), H (3600 rev/min, 0.9 mm) and I (3300 rev/min, 0.9 mm). 

 

Stable or chatter free cutting is demonstrated in cases D and F, as shown in Figures 7.6 

and 7.7, respectively.  A small acceleration variance is shown with the Poincaré section 

approaching a fixed point.  The FFT spectrum shows the frequency is dominated by 

tooth passing frequencies.  These frequencies are lower than the flexure frequency, 

which related to cutting forces for each tooth beating the workpiece.   

 

In cases A, C and I in Figures 7.6 and 7.7, unstable Hopf-bifurcation instability was 

determined in theory is capable to analyse the chatter frequencies.  For example of FFT 

spectrum in Figure 7.6(cases A and C), the chatter frequency was closed to the flexure 

natural frequency.  For this instability behaviour, the 1/Rev acceleration samples are 

interacting with the spindle frequency to clearly produce an unstable circular orbit on 

the Poincaré section.    

 

Unstable period-doubling behaviour is confirmed by the 1/Rev samples and the 

Poincaré section approached two fixed points as shown case B in Figure 7.6.  According 

to the FFT spectrum, the chatter frequency was closed to the flexure natural frequency 

as previously described for Hopf-bifurcation.   
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The resonance corresponds to chatter frequency and the tooth passing frequency located 

closed each other, where the tooth passing frequency beats the raising of chatter 

frequency, as shown on cases E, G and H of Figures 7.6 and 7.7.  A large vibration 

signal dominated in FFT spectrum and 1/Rev samples.  This unstable period-one 

behaviour is confirmed by the 1/Rev samples and the Poincaré section approached 

single fixed points outside stable boundary.  

7.3.3   Chatter stability results 

From identification of acceleration signal, cutting condition during experiment for each 

case is then obtained.  Both theoretical prediction and experimental results were 

compared for both tools and their chatter stability diagrams are now presented. 

 

Using SDM, the original cutter chatter stability was predicted and superimposed with 

experimental stability results at 10 percent radial immersion, as shown in Figure 7.8a.  It 

can be clearly seen that there is an unstable area at high depth of cut, with critical depth 

of cut 0.3 mm, mostly at high spindle speed (2800-4000 rev/min).   

 

For the down-milling operation of the regular 3-flute end mill, the result indicates a 

good agreement between predicted stability and experiment, as shown in Figure 7.8b.  

Stable or chatter free cutting conditions were shown outside the boundary of unstable 

regions.  There are three unstable regions with hopf-bifurcation, period-one bifurcation 

and period-doubling bifurcation based on acceleration identification approach.  The 

unstable behaviours were observed either by hopf-bifurcation or period-doubling which 

were located inside instability region, whilst not clearly stable condition happened 

around stability lobes.  However, at high spindle speed, resonance occurred due to 

similarities of the chatter and spindle frequencies.  Theses cutting test disagree with the 

theoretically stability predictions as indicated by ‘Δ’ and other 5 cases occurred in 

Figure 7.8b.  It can be seen that the critical depth of cut for regular or original cutter was 

experimentally confirmed to be less than 0.3 mm.  

 

Figure 7.9a illustrates the effectiveness of modeling and optimisation algorithm for the 

variable helix and variable pitch tool.  The optimised cutter is predicted to totally 

suppress chatter at three unstable regions in the regular cutter.  The critical depth of cut 

increases 8-fold when compared with the regular cutter.  In simulation, the optimised 
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cutter has the capability to cut the workpiece with 1800 to 4000 rev/min without facing 

any chatter vibrations.  

 

In Figure 7.9b, experimental work shows the stability results for the optimised cutter.  

In comparison to the regular cutter, at least 5-fold increase in stable cutting with critical 

depth of cut of 0.8 mm to enhanced high material removal rate.  On the other hand, not 

clearly stable cuttings were significantly observed at the critical depth of cut.  The 

unstable hopf-bifurcation and period-one bifurcation are observed at high depth of cut 

and spindle speeds.   

 

The surface finish for regular cutter and optimised tool is shown in Figure 7.10. This 

has clearly seen that the improvement when optimised variable helix and variable pitch 

compare with original cutter at 3400 rev/min.  The chatter mark on workpiece existed 

when machining at unstable condition of original cutter. 

7.4   Further Experimental Validation for Variable Helix Tool 

From previous experiment results, it can be clearly seen a good agreement between 

prediction and experiment for regular tool, but only moderate agreement for optimised 

or variable helix and variable pitch tools.  Although the optimised tool can increase 

material removal rate compare to regular tools, further experiments are really important 

to have a proper validation of the SDM modelling procedure for variable helix tools.  In 

addition to that, the transition between vibration conditions between stable to unstable 

behaviour as marginal stable are not clearly identified.  To identify the marginal 

stability in milling process, a displacement sensor will be used to replace accelerometer.  

Before continue with theoretical prediction and cutting experiment validation of the 

chatter stability, cutting force of four flute variable helix/pitch coefficients should be 

initially determined by cutting force tests.  The results for this experiment formed a 

conference paper, and abstract is given in appendix A.IV. 

7.4.1   Experimental procedure  

The cutting force coefficient tests were conducted on a Mori Seiki SV500 3 axis CNC 

vertical milling machine.  A 12 mm 4 flute end milling variable helix (37° ,40° ,37° 

,40°) and variable pitch (78.4° ,80.4° , 78.4° ,80.4°) tool, as shown in Figure 7.11 was 

cut 6061-T6 aluminium workpiece, the force responses data were acquired using a 
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Kistler 3-component dynamometer (9257B).  Cutting condition of 2 mm axial depth of 

cut and fully radial immersion were used from 0.02 to 0.16 mm/tooth in steps of 0.02 

mm/tooth with spindle speeds of 2500 rev/min.  

 

Photograph of variable helix validation experimental on same milling machine for 

cutting force tests is shown in Figures 7.12.  Figure 7.13 shows the corresponding 

diagram of experimental arrangement where an aluminium (7075-T6) cutting specimen 

block (50.0 mm, 50.8 mm and 25.8 mm) mounted on the highly flexible workpiece 

condition.  This was 5 percent radial immersion down-milled using above milling cutter 

to reduce static deflection when applying high axial depth of cut than previous 

experiment.  In order to maintain the static milling force magnitude, the chip load of 

0.04 mm per tooth was maintained at any spindle speed.  At each set of spindle speed 

and axial depth of cut, the tests were conducted to examine either the cutting stable or 

unstable.  It was essential to have a clean-up pass to guarantee a clean free surface for a 

previous test at the end of each cutting test. 

 

In Figure 7.12, the eddy-current displacement (ECL 100 series) sensor signal was used 

to measure the onset of chatter vibrations of the flexure while acceleration was used 

only to verify the signal.  To measure the vibration signal from stable to marginal stable, 

then toward unstable condition, displacement vibration signal was used with anti-alias 

filter at a sampling rate 5.12 kHz using a DSPT Siglab 20-22A connected to a laptop 

computer.  As discussed in previous section, the stability in milling test experiment was 

examined based on the 1/Rev samples, the Poincare section and frequency spectra.  A 

pulse signal was produced from a Hall-effect probe triggers the slots on the rotating tool 

holder to produce the 1/Rev samples and the displacement Poincare section versus its 

half-cycle delay [164].  At the similar time, the displacement frequency spectral was 

obtained from the raw displacement signal Fast-Fourier transform using a Hanning 

window. 

 

The cutting experiment was analysed as either stable or unstable by referring to the 

displacement sensor, 1/Rev samples and spectrum analysis.  The test can be declared as 

stable behaviour when root mean square (RMS) displacement signal approached less 

than 5 μm toward a fixed point and the FFT-amplitude was dominated by tooth passing 
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harmonics.  For marginal stable cutting, this was declared when the RMS displacement 

signal range between 5 to 15 μm or cutting force harmonics dominates in the FFT-

spectrum.  If displacement 1/Rev higher than 15 μm, the unstable cutting behaviour was 

indicated either secondary hopf-bifurcations or period-doubling bifurcations or period-

one.  Hopf-bifurcation instability was represented by the unstable orbit on the 2-D 

Poincaré map, period-doubling bifurcation instability was determined from two fixed 

points of 2-D Poincaré map and two lines of 1/Rev during cutting, while period-one 

bifurcation instability was specified from single fixed points of 2-D Poincaré map and 

single lines of 1/Rev during cutting period outside stable boundary.   

7.4.2   Cutting force coefficient determination 

It is necessary to identify the relationship between the cutting forces and uncut chip area 

that can be expressed as a product of the axial depth of cut and feed per tooth in order to 

predict cutting behaviour.  During one tooth period, the average milling force in x and y 

direction [129] as follows.    
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where Kte and Kne represent the tangential and normal edge cutting force coefficient, 

while Kt and Kn represent the tangential and normal cutting force coefficient, 

respectively.  The entry and exit angles of the cutter are θ st = 0 and  θ ex = π,  

respectively.  These cutting coefficients can be determined through cutting 

measurement with a force dynamometer and cutting certain conditions.  Therefore, the 

average force per tooth period to be found 
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In function of chip load c, Equation 7.2 can be written as 
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qeqcq FcFF += (q = x, y, z)   ( 7.3)

The experiment completes for a multiple cutting test with a range of chip loads to 

recorded the cutting force values in x and y direction.  A linear regression was then 

performed on the mean force values to determine cutting coefficient in Equations 7.1 

and 7.2 as given: 
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Fye and Fxe are determined from intersection at force axis for x and y-force data 

direction, while Fyc and Fxc are determined from the gradient at force axis for x and y-

force data directions.   

7.5   Further Variable Helix Validation Results 

The results for variable helix tools experimental validation are now presented. 

7.5.1   Cutting force results and experimental condition 

From cutting force procedure, the average cutting forces in x dan y-direction were 

plotted to obtain the linear regression, as shown in Figure 7.14.  The average force 

corresponds to a particular feed rate for each point.  Using relation in Equation 7.4 and 

linear regression, the cutting force coefficient results can be calculated and summarised 

in Table 7.2.  The result shows the tangential cutting force coefficient Kt more than 

twice normal cutting force coefficient Kn.  This trend indicates different cutting force 

stiffness for previous experimental validation due to different tools was used here.  

However, these values can be used for current stability prediction in the experiment.   

 

The specific cutting coefficients were above estimated to be Kn =283.2 MN/m2 and Kt 

=143 MN/m2.  The following flexure dynamic properties were obtained from impact 

hammer: the modal mass of 1.41 kg, the natural frequency of 200 Hz and the damping 

ratio 0.0078.  Theoretical stability diagram of variable helix (37°,40°,37°,40°) and 

variable pitch (78.4°,80.4°, 78.4°,80.4°) was then predicted using these parameters and 

compared with uniform helix (40°,40°,40°,40°) and variable pitch 

(78.4°,80.4°,78.4°,80.4°). 
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Figure 7.15 shows the theoretical stability diagram of variable helix and variable pitch 

with uniform helix and variable pitch superimposed onto diagram.  It can observed in 

Figure 7.15a that the variable helix and variable pitch tools has almost similar stability 

to uniform helix and variable pitch for the specific range of spindle speed (1500-7500 

rev/min) and depth of cut (0-10 mm) used.  However, an unstable island has been 

observed for variable helix and variable pitch tool clearly in Figure 7.15b.  Beside an 

isolated island in the specific range, it can clearly been seen the variable helix and 

variable pitch tool lobe is smaller than uniform helix and variable pitch tool.  Based on 

the dissimilarities, current spindle speed (1800-3900 rev/min) and depth of cut (0-5 

mm) conditions is used to conduct the experimental validation for variable helix with 

higher depth of cut than previous experiment.  This is practically to ensure that the 

variable helix has an engagement between tool and workpiece. 

7.5.2   Displacement sensor identification 

During milling operation of the variable helix/pitch of 4-flute end mill, the vibration 

signals from displacement sensor are evaluated and used to identify the cutting 

behaviour as either stable, marginally stable or unstable.  The cutting experiment were 

identified in 4 cases for increasing depth of cut: J (1975 rev/min, 1.5 mm), K (1975 

rev/min, 2.0 mm), L (1975 rev/min, 3.0 mm) and M (1975 rev/min, 4.0 mm), as shown 

in Figure 7.16.  Figure 7.17 represents the results for increasing spindle speed indicating 

by 3 cases: N (2050 rev/min, 2.5 mm), O (2100 rev/min, 2.5 mm) and P (2200 rev/min, 

2.5 mm). 

 

In Figures 7.16 and 7.17, cases J, M and N indicate stable or chatter free cutting.  A 

small displacement variance is shown by raw RMS vibration signal less than 5 μm and 

displacement 1/Rev, including a fixed point was approached on Poincaré section.  In the 

FFT spectrum, the frequency was shown dominating by tooth passing frequencies, 

which are lower than dominant frequency of the flexure structure.  These frequencies 

referred to cutting forces for each tooth was beat by workpiece.   

 

A marginal stable in case K and O is shown by Figures 7.16 and 7.17, respectively.  

These were indicated by a moderate RMS displacement variance in vibration signal 

(between 6 to 15 μm) and 1/rev displacement samples, while a Poincaré section 
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approached not as a fixed point as case J.  Frequency spectrum is dominated by tooth 

passing frequencies at the beginning, as shown by Figures 7.16K.i and 7.17O.i.  

However, at end of the cutting, Figures 7.16K.ii and 7.17O.ii shows the chatter 

frequency was grown and closed to the flexure natural frequency.  Certainly, this 

indicates the transition behaviour from stable to unstable cutting named marginal stable 

cutting.  This behaviour can be identified using FFT-spectrum and 1/Rev results for two 

cases: increasing depth of cut and increasing spindle speed.  A raw displacement signal 

cannot distinguish the transition for increasing depth of cut case, but not for increasing 

spindle speed.  For a case where spindle speed increased (case o), a raw displacement 

signals suddenly was increased at the end of cutting, resulting larger displacement 

variance in 1/Rev displacement sample and 2-D Poincaré section was noticed.  Further 

explanation about this case related to either higher spindle speed or depth of cut for that 

particular cutting condition.  Both higher depth of cut and higher spindle speed indicates 

to hopf-bifurcation instability as indicating by its Poincaré section, as shown in Figure 

7.17o.  It can be seen the Poincaré section consist of a combined of fixed point and 

circular orbit where hopf-bifurcation caused a larger vibration displacement. 

 

Unstable period-one behaviour is confirmed by the 1/Rev samples and the Poincaré 

section approached a single fixed point outside stable region as shown case L in Figure 

7.16.  The chatter frequency was close to the flexure natural frequency as shown by FFT 

spectrum.  In FFT-spectrum, the resonance happens when chatter frequency located 

closed to the tooth passing frequency.  A large vibration signal dominated in FFT 

spectrum.   

 

In case P in Figure 7.17, unstable Hopf-bifurcation instability was determined which 

can be referred according to the chatter frequencies.  FFT spectrum shows the chatter 

frequency was closed to the flexure natural frequency.  For this instability behaviour, 

the spindle frequencies in the 1/Rev displacement samples intersected chatter frequency 

to produce an unstable circular orbit on the Poincaré section as similar to previous 

experiment for optimised tool.  Nevertheless, the orbit pattern is not as clear as regular 

tool in Figure 7.6 (case C).  This is due to 1/Rev analysis for variable geometry tool 

analysis that capture one tooth per revolution.  Moreover, this unstable orbit has been 

earlier detected during a marginal stable cutting in case O.  To have a clear orbit, it is 

suggest to have longer cutting period to produce more data captured data. 
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7.5.3   Displacement and stability results 

In Figure 7.18a, the variable helix/pitch tool chatter stability contour was predicted from 

values of eigen value (CM) less than one.  There is range between 0.8 to 1 where the 

contour higher than one indicating unstable area.  When closed to this unstable island, it 

is bordered by contour values or CM of 0.95.  The purpose for introducing contour 

stability is to compare with the displacement vibration signal measurement during 

cutting experiment.   

 

The vibration signals can identify its cutting behavior: Stable (less than 5 μm), marginal 

stable (larger than 6 μm and less than 15 μm) and unstable (larger than 16 μm).  For the 

down-milling operation of the variable helix/pitch 4-flute end mill, the result indicates a 

good agreement between predicted stability contour and RMS displacement 

measurement, as shown in Figure 7.18b.  Stable or chatter free cutting conditions were 

observed outside the boundary of CM = 1.  The unstable behaviours were observed 

when RMS displacement larger than 16 which were located inside instability region, 

whilst marginal stable condition (6 μm<RMS displacement<15 μm) happened around 

stability lobes (CM = 1).  It can be seen that the unstable chatter island for variable helix 

was experimentally confirmed when increasing depth of cut for 1975 rev/min in the 

identification approach.  

 

The scattered instability of hopf-bifurcation, period doubling bifurcation and period-one 

bifurcation were theoretical predicted in Figure 7.19a.  This illustrates the different 

types of instability when modeling SDM algorithm for the variable helix/pitch.  These 

instabilities are predicted at two unstable regions.  It can be seen these instabilities 

associated with RMS displacement larger than 16 μm. 

 

Experimental work shows the stability results for the variable helix/pitch based on the 

identification of displacement signal, as shown in Figure 7.19b.  The results indicate a 

good agreement when superimposed with theoretical prediction where the tool stability 

representing variable helix and not uniform helix.  The unstable hopf-bifurcation are 

predicted and observed at larger lobe.  However, at high spindle speed, resonance 

occurred due to similarities of the chatter and spindle frequencies and tool runout effect.  

Theses cutting test disagree with the theoretically stability predictions as indicated by 

‘Δ’.  Besides validation with larger lobe, the important instability border for isolated 
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period-one island is proven experimentally at 1975 rev/min spindle speed.  In 

comparison to theoretical prediction, all cases exhibit period-one behavior for a case 

where the largest magnitude eigenvalues are positive and with real parts of magnitude 

larger than one.  The stable cutting behaviors in between that isolated unstable island 

also ensure the effectiveness of current SDM in modeling variable helix tool.  Overall, 

the experimental of variable helix compares well with the theoretical prediction and can 

be used for optimising variable helix and variable pitch tools. 

7.6   Discussion 

It can be seen that the optimised tool experimental stability results have been accurately 

predicted by SDM algorithm.  In Figure 7.8, unstable Hopf-bifurcation and period-

doubling instabilities were determined in theory which can be referred according to the 

chatter frequencies.  These frequencies are lower than the flexure frequency, which 

related to cutting forces for each teeth beating workpiece.  The resonance corresponds to 

chatter frequency and the tooth passing frequency located close to each other. 

 

The optimised variable helix and variable pitch cutter has clearly demonstrated 

experimentally as effective suppression of the chatter vibration of the workpiece during 

milling.  The SDM prediction underestimates the experiment, however, better than 

variable pitch cutter prediction, as shown in Figure 7.9.  Additionally, low radial and 

axial immersion cutting with variable pitch also create an inconsistently cutting force of 

each tooth hitting the workpiece. 

 

A further experiment was carried out with high depth cut condition to validate variable 

helix tools chatter stability prediction.  Unstable cutting tests around chatter island show 

a good agreement with theoretical prediction.  This undoubtedly demonstrates that the 

current SDM modeling procedure matches with experiment.  In addition to the 

instability condition identification, there is a large region of that is associated with hopf-

bifurcation also captured, as found in classical machining chatter.   

 

It is visibly observed that the marginal stability identified by RMS displacement and 

FFT spectrum and quantity by 1/Rev displacement signal.  With a small increasing 

depth of cut or spindle speed, both conditions can change stability results to unstable 

cutting condition either hopf-bifurcation or period-one bifurcation for this variable helix 
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tool.  Previous work [30, 64] on regular helix milling tools has identified regions of 

period doubling instability, but the existence of period-one bifurcations has previously 

only been associated with tool runout [165].  The present contribution predicts that 

period-one bifurcation can also arise for variable helix tools. 

7.7   Summary 

Practical implementation of an optimised cutter with variable helix and variable pitch 

has been shown to improve milling stability of a flexible workpiece.  It has been 

indicated that for a uniform helix and uniform pitch (regular cutter), the stability limit of 

the milling process was verified experimentally with a very good agreement with SDM 

simulation.  Using an optimised variable helix and variable pitch, stability margin can 

be gained by at least a factor of 5 in suppressing chatter.  Optimum material removal 

rate can be easily applied using current optimised cutter.   

 

The variable helix and variable pitch tool was performed for cutting at higher depths of 

cut and validate the modelling procedure.  From series of very low down-milling cutting 

experiment, theoretical predictions are validated to confirm the occurrence of isolated 

chatter island and other hopf-bifurcation instability in a large unstable lobe.  SDM 

modelling can used to optimise variable helix and variable pitch as discussed in this 

chapter and previous chapter.  This contribution has confirmed experimentally that 

period-one bifurcations can occur for variable helix milling tools.  However, the 

identification of this behavior is not straightforward, since the vibration characteristics 

are similar to those for stable forced vibrations.  Moreover, the transition between stable 

to unstable or marginally stable zone that almost border to unstable island and lobe were 

also observed by using displacement sensor.   

 

There have been very few previous studies that have investigated variable helix milling 

tools as described in Chapter 2.  However, Turner et al. [68] proposed that the so-called 

‘process damping’ phenomenon is particularly important for variable helix milling 

tools.  Consequently, the following chapter presents the effect of tool geometry in 

process damped milling for chatter suppression chatter experimentally, including 

variable helix/pitch influence to process damping performance. 

 



Optimisation of Variable Helix End Milling Tools                   Chapter 7  Experimental Validation 

 130

Table 7.1  Cutting, modal and tool parameters for optimisation 

Tool and cutting parameters 

Tool diameter d (mm) 16 

Radial immersion RI (mm) 1.60 

Tangential cutting stiffness Kt (MN/m2) 1250 

Radial cutting stiffness Kr  0.15 

  

Modal property in x-direction mode 

Natural frequency f (Hz) 200 

Modal effective mass ms (kg) 1.41 

Damping Ratio ξ 0.0078 

 

Table 7.2  Cutting and tool parameters for variable helix/pitch verification 

Tool and cutting parameters 

Tool diameter, mm 12 

Radial immersion, mm 0.6 

Tangential cutting stiffness Kt (MN/m2) 283.2 

Normal cutting stiffness Kn (MN/m2) 143.0 

Tangential edge cutting stiffness Kte (MN/m2) 0.398 

Normal edge cutting stiffness Kne (MN/m2) 2.325 

 

 

Figure 7.1  Design of tool geometry 
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Figure 7.2  Frequency response function for flexure 

 
a)  Schematic diagram  

b)  Sensor location  

Figure 7.3  Arrangement for optimised tool experimental validation 
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Figure 7.4  Performance of Differential Evolution for optimising a three flute 
variable helix and variable pitch  

 

 

Figure 7.5  Tool geometry for experimental validation 
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Figure 7.6  1/Rev, Poincare sections and FFT-spectrums for points A, B, C, D and 
E  
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Figure 7.7  1/Rev, Poincare sections and FFT-spectrums for points F, G, H and I 
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a)  Stability diagram of 1800 to 4000 rev/min. (⎯) stability region, ( ) secondary 
hopf bifurcation (∇) period doubling bifurcation 
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b)  Experimental results for original cutter 

Figure 7.8  Regular tool predicted stability and experimental results 
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a)  Stability diagram 1800 to 4000 rev/min 
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b)  Experimental results for optimised cutter 

Figure 7.9  Optimised tool stability prediction for a three flute variable helix 
(43°,44°,48°) and.variable pitch (84°,221°,55°) 
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a)  Original cutter for line x b)  optimised cutter for line y 

Figure 7.10  Workpiece surface difference between original cutter and optimised 
cutter at spindle speed 3400 rev/min and depth of cut 0.4 to 0.8 mm(bottom to up) 

 

 

Figure 7.11  Tool geometry for variable helix/pitch milling tool validation 
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Figure 7.12  Configuration of displacement sensor for variable helix experimental 
validation 
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Figure 7.13  Experimental arrangement for variable helix experimental validation 
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a)  Average force in x-direction b)  Average force in y-direction 

Figure 7.14  Cutting force stiffness determination 
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Figure 7.15  Stability diagram comparison of 5 percent radial immersion for 
variable helix  (37°,40°,37°,40°) and variable pitch (78.4°,80.4°,78.4°, 80.4°) and 

uniform helix (40°,40°,40°,40°) and variable pitch (78.4°,80.4°,78.4°, 80.4°) 
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Figure 7.16  1/Rev, Poincare sections and FFT-spectrums for points J (stable), K 
(marginal stable), L (unstable) and M (stable) when increasing depth of cut  
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Figure 7.17  1/Rev, Poincare sections and FFT-spectrums for points N (stable), 
O(marginal stable) and P (unstable) when increasing spindle speeds. 
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b)  Experimental results for RMS displacement and contour prediction 

Figure 7.18  Contour stability and RMS displacement comparison of 5 percent 
radial immersion for variable helix (37°,40°,37°,40°) and variable pitch 

(78.4°,80.4°,78.4°, 80.4°.) 
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b)  Experimental results for variable helix and variable pitch 

Figure 7.19  Stability diagram of 5 percent radial immersion for variable helix 
(37°,40°,37°,40°) and variable pitch (78.4°,80.4°,78.4°, 80.4°). 



 

   

CHAPTER 8 

EFFECT OF TOOL GEOMETRY ON PROCESS DAMPING IN 

MILLING 

8.1   Introduction 

Besides the damping produced from the structure of machine tools, as shown in 

Chapters 6 and 7, the machining process itself can add damping to the system through a 

phenomenon known as process damping.  The term process damping or resistance force 

was introduced by Tobias and Fishwick [16].  They proposed that such force occurs 

when the tool flank face or rake angle rubs against the wavy workpiece surface at low 

spindle speeds.  The stability diagram shown in Figure 8.1 illustrates the relationship 

between spindle speeds, depth of cut and chatter stability.  At high spindle speeds, 

stability lobes can be observed, and this allows high productivity cutting to be 

performed on easy-to-machine materials such as aluminium alloys.  Unfortunately, the 

resulting high surface speeds are incompatible with more difficult-to-machine materials 

such as titanium and nickel-based alloys.  In this case, the practitioner is limited to low 

spindle speeds, where the chatter stability is strongly influenced by the process damping 

phenomenon.  However, the understanding of process damping remains an unsolved 

problem in chatter research [166]. 

 

There have been many attempts to study process damping in turning operations, using 

simulation or experimental methods (or both).  Recent examples include [167] and 

[168].  However, there have been fewer studies that have investigated milling processes.  

For example, Montgomery and Altintas [169] used a model-based approach to 

investigate ploughing forces.  Delio et al. [170] considered the wavelength of chatter 

vibration and the loss of process damping behaviour at higher spindle speeds.  Elbestawi 

et al. [67] modelled process damping effects when cutting aluminium and showed that 

the model could produce additional damping forces due to the tool flank / workpiece 

interference. Ranganath et al.  [171] also developed a time-domain model of process-

damped milling and compared the results to experimental data from an aluminium alloy 

workpiece. Huang and Wang [172]  proposed a model that considered the consequences 

of chatter vibration on the effective rake and relief angles. They included additional 
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empirical parameters in their model so that the cutting stiffness became a function of 

these effective angles and thereby produced a process damping effect. 

 

Despite this previous work on process damping in milling, there is limited experimental 

activity that has considered the effect of milling tool geometry when cutting difficult-to- 

machine materials such as titanium alloys. From a practical and industrial perspective, 

understanding the effect of these tool parameters on process damping is clearly of great 

importance, because it allows the practitioner to choose better tooling for specific 

machining problems. Consequently, the aim of the present chapter is to perform 

experimental milling experiments so that different tool geometries (edge radius, rake 

and relief angles and variable helix/pitch angles) can be ranked in terms of their positive 

influence on process damping in milling. 

 
The remainder of the chapter is organised as follows.  The process damping theory is 

first described, followed by the experimental procedure.  Then, the results for the 

experiments are presented and parameters are ranked in terms of their influence on 

process damping performance.  Finally, conclusions are drawn and recommendations 

are made for further work.  This chapter formed a journal paper and an abstract is given 

in Appendix A.V. 

8.2   Theory of Process Damping  

Chatter is produced from self-excited vibration during cutting, resulting in a high 

amplitude unstable motion.  The amplitude of this motion is limited by nonlinearities 

such as tool loss of contact, nonlinear cutting force coefficients and nonlinear stiffness 

of the machine tool structure.  The chatter frequency is very close to a natural frequency 

of the system but differs from the tooth passing frequency to produce waves that are 

longer and deeper on the machined surface.  At low speeds, the wavelength λ  of these 

surface waves is much smaller, since the wavelength is proportional to surface velocity 

v and inversely proportional to regenerative vibration frequency fc, as follows:  

 
cf

v
=λ  ( 8.1) 

As the spindle speed (and hence surface velocity) is reduced, the process damping 

phenomenon becomes sufficient for the regenerative chatter to be stabilised or 
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suppressed.  This situation is shown by the asterisk (for particular depth of cut) in 

Figure 8.1.  The corresponding surface vibration wavelength is given by Equation (8.1) 

and is referred to as the process damping wavelength cλ . 

 

The commonly proposed mechanism of process damping is shown schematically in 

Figure 8.2.  As each tooth removes the chip from the wavy surface, process damping 

forces are generated that excite the structure.  The damping force corresponds to 

inference between tool flank face and wavy surface, where more damping force occurs 

at point ‘B’.  A ploughing force can be produced from the workpiece’s being deformed 

by the tool, while the surface angle changes the tool’s effective shear angle.  

Interference is minimised when the tool travels upwards on the wave (position ‘D’ in 

Figure 8.2) due to the positive slope of the machined surface.   

 

According to this concept, low relief angles should produce high ploughing forces from 

the interference between tool and workpiece.  Consequently, different rake and relief 

angles should be considered in the evaluation of process damping.  Furthermore, Figure 

8.2 assumes a perfectly sharp tool, which is unrealistic in practice.  Consequently the 

bluntness of the tool tip, which can be characterised as an edge radius, should also be 

considered. 

 

In the stability of high speed milling, axial depth of cut b is the most influential factor, 

since the cutting forces are often considered to be given by the relationship 

 )( yybkF ps −=   ( 8.2)

where F is the cutting force and (yp-y) is the surface thickness difference between 

current and previous cuts.  In theory, the stability boundary is then independant of the 

feedrate despite the influence of the feed rate on the mean chip thickness.  However, 

under process-damped cutting conditions, the effect of feed rate has been observed to be 

more significant [173].   

 

It is useful to express the feedrate in terms of the maximum chip thickness hmax : 
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max
24

⎟
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⎞

⎜
⎝
⎛−=

d
r

d
rwh  ( 8.3) 

Here, r is the radial depth of cut of the tool and d is the tool diameter. The feed per tooth 

w is related to the machining feed rate fr, number of teeth m and spindle speed Ω by: 

 Ω××= wmfr  ( 8.4)

Using a high depth of cut at low cutting speed is a very effective way to encourage 

process damping, as shown on the left side of the stability diagram in Figure 8.1.  

Meanwhile, using a low radial depth of cut helps to reduce the total machining forces 

and improve tool life.  This approach will be employed in the present chapter in order to 

determine the process damping wavelength cλ  under different tool geometry and feed 

rate conditions. 

8.3   Experimental Setup 

Two experimental configurations were used in this chapter, and these will now be 

introduced.  It should be pointed out that the majority of experiments were performed 

on difficult-to-machine titanium alloy, where process damping is frequently 

encountered. These tests involved a four-flute tool that was considered to be the flexible 

component in the machine-tool system.  However, this configuration does not allow 

quantitative acceleration data to be collected because the flexible component is the 

rotating cutting tool.  Consequently, one set of data, using three-flute regular helix and 

variable helix tools, was collected using a workpiece mounted on a flexure.  This also 

ensured that the tool helix angle did not influence the relevant modal parameters of the 

system.  However, the extreme flexibility of the flexure configuration meant that an 

easier-to-machine workpiece material (aluminium alloy) was needed for this set of tests. 

8.3.1   Flexible tool condition  

For the flexible tool setup, 16 mm 4-flute solid carbide tools were used to cut titanium 

Ti6 Al4V to evaluate the influence of feed rate, tool edge radius, rake angle and relief 

angle on process damping.  Before the machining test, each tool was measured to 

determine the average edge radius, using a Mahr Perthometer with a stylus tip.  One 

edge from four was selected to measure the cutting edge radius.  With reference to 

Figure 8.3, the cutting edge radius was measured at 3 mm from the bottom and the 

middle of the axial depth of cut b.  The measurement was repeated three times and then 
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repeated at the same location for the second, third and fourth flutes (Figure 8.3b) 

counted clockwise from the bottom. 

 

The experiment was started by determining the frequency response function (FRF) of 

the tool to recognise the expected dominant chatter frequency for initially selecting the 

spindle speed Ω and feedrate fr.  A normal force was applied at the tool tip using a PCB 

086C01 modal hammer with steel tip.  The acceleration response was captured by a 

PCB 352C16 accelerometer opposite to the hammer impact point.  A Siglab 20-22A 

two-channel data acquisition system was connected to the hammer and accelerometer to 

determine the FRF.   

 

From the FRF, the resonant frequency was used to choose a starting value for spindle 

speed based so that the expected wavelength of vibrations was λ= 0.1 mm.  This was 

achieved using Equation (8.1) and the relationship between tool diameter, spindle speed 

and surface speed.  Based on previous experience [174], this initial wavelength was 

expected to be below the process damping wavelength cλ .  For the desired maximum 

chip thickness, the feed per tooth and hence the initial feed rate were then determined 

using Equations (8.3) and (8.4).  A low radial width of cut (r = 1 mm) and large axial 

depth of cut (b = 30 mm) were used to minimise forced vibration, reduce tool wear and 

prevent damage to the tool if severe chatter occurred. 

 

Machining was done on a Haas VF6 vertical milling machine, as shown in Figure 

8.4a,b.  During cutting, the vibration signal was recorded using an accelerometer (PCB 

Piezotronics 352C68).  The spindle speed Ω and feed rate fr were increased 

simultaneously to maintain constant w and hmax, until chatter was detected.  Process 

damping performance was then evaluated in terms of λc from Equation (8.1).  Here, the 

chatter frequency was obtained from Fourier analysis of the vibration signal and the 

surface speed v was determined based upon the spindle speed at which chatter occurred.  

The procedure was repeated for four hmax values between 0.03mm and 0.1mm and for 

each tool. 
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8.3.2   Flexible workpiece condition  

A separate sequence of experiments evaluated the influence of variable pitch and helix 

angles on process damping performance.  Here, a block of aluminium (7075-T6) was 

mounted on a flexible structure as used by Huyanan and Sims [38, 163] (Figure 8.4c,d).  

Two 16 mm 3-flute cutters were used: one with a regular pitch (120°, 120°, 120°)and 

uniform helix (30°, 30°, 30°), and one with a variable pitch (84°, 221°, 55°) and 

variable helix (43°, 44°, 48°).  These are similar cutters and experiment configuration to 

those in Chapter 7.   

 

A similar procedure was repeated to determine the initial Ω and f based on the FRF of 

the flexure.  Again, n was gradually increased whilst maintaining the w until chatter was 

detected.  The process damping wavelength λc was then evaluated as before.  Both 

regular and variable helix/pitch milling tools were used for down-milling at 1 mm radial 

and 2 mm axial depth of cut.  The low stiffness of the flexure ensured process damped 

cutting conditions despite the low axial depth of cut.  Due to the aluminium being easier 

to machine than the titanium workpiece, four values of maximum chip thickness hmax 

from 0.04 mm to 0.12 mm were used.  Flexure acceleration was detected with an 

accelerometer as before.  In addition, a Hall-effect probe triggered by 2-equally spaced 

slots on the tool holder was used (Figure 8.3c,d) to measure the spindle rotation.  This 

allowed once per revolution samples (1/Rev) and two-dimensional Poincaré maps to be 

constructed [164] so as to illustrate the nonlinear response.  Stable behaviour was 

detected from 1/Rev accelerometer samples approaching a fixed point with a variance 

less 10-3 m/s2.  The procedure was repeated for each of the hmax values for regular and 

variable helix/pitch tools. 

8.4   Results 

The results of both experimental configurations are now presented to investigate the 

influence of tool geometry on process damping performance.  First, edge radius 

measurements and FRFs of tool and workpiece are presented.  Repeatability tests are 

then shown in order to include a basic error analysis in the main experimental results. 
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8.4.1   Preliminary tests 

The measurements of the cutting edge radius of the tools are first presented in Table 8.1.  

The relatively high standard deviations indicate that the edge radius varied somewhat 

between the measurements on individual tools.  Nevertheless, there is a significant 

variation in edge radius between one tool and the next.  This allows the process 

damping performance to be characterised in terms of the tool’s average edge radius. 

 

As previously mentioned, the FRF of the tools was used to select initial values for the 

spindle speed and hence feedrate.  The FRF measurement is shown in Figure 8.5, where 

2358 Hz is the major resonant frequency of the tool.  The FRF was found to be very 

similar for all the tools used in the flexible tool experiments, so only one set of data is 

included here.  Using the procedure previously described, the required initial feed rate 

and spindle speed was determined.  This led to an initial spindle speed of Ω = 281 rpm, 

and at hmax = 0.03 mm and initial feedrate fr = 70 mm.  A similar procedure was 

repeated for other hmax and tools.   

 

Figure 7.2 (Chapter 7) shows the frequency response function for the flexible 

aluminium workpiece used in the second experimental configuration. Here, a single 

resonant frequency is observed at 200 Hz.  For these tests, the use of a flexible 

workpiece has avoided the issue of the tool helix angle’s influence on the dominant 

modal parameters of the system. 

 

In the machining experiments, the spindle speed was increased smoothly and 

continuously under constant feed per tooth until chatter was found.  A typical result to 

demonstrate this method is shown in Figure 8.6.  Here, the accelerometer signal is 

plotted for different analysis regions from the duration of the cut.  Near the beginning of 

the cut (Figure 8.6a), the vibration level is very low.  As the spindle speed is increased 

(Figure 8.6b, c), the vibration magnitude starts to grow and a Fourier analysis indicates 

that the peak frequency is close to the natural frequency of the tool.  Eventually, the 

vibration magnitude at the chatter frequency is deemed unacceptable (Figure 8.6d).  

Based on this result, the corresponding process damping wavelength can then be 

determined.  A corresponding image of the workpiece surface is shown in Figure 8.6e.  
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This procedure was repeated for each cutter, for four different values of maximum chip 

thickness. 

 

Clearly, the procedure outlined above is somewhat subjective because it involves an 

arbitrary threshold for determining the onset of chatter vibrations of unaccepted 

amplitude.  Furthermore, small variations in the setup from one experiment to the next 

could have an influence on the observed behaviour. Consequently, at the end of the 

experiments, a selection of tests was repeated to assess the influence of process 

variability and also to confirm that the threshold-based analysis approach gave 

consistent results. Making the repeated tests after the other experiments also meant that 

there would be a slight amount of tool wear, so its influence could be compared to the 

influence of the other process parameters.  Some repeatability tests are presented in 

Figure 8.7.  It can be seen that all tools indicate a repeatability error of less than +/-5 

percent between the original test/analysis and the repeated test/analysis.  It is clear that 

even considering this repeatability error, the maximum chip thickness (and 

consequently the feed per tooth) has a very significant effect on the process damping 

wavelength.   

 

A further check on the accuracy of the data involved a comparison with previous tests 

[173] performed using the same tool and workpiece specifications.  In these earlier 

experiments, tool edge measurement facilities were not available and the process 

damping wavelength was determined only for hmax = 0.03 mm. Nevertheless, there was 

reasonable agreement between the two sets of data.  Consequently, in the following 

sections, the role of tool geometry will be considered, using error margins of +/- 5 

percent on the experimental data. 

8.4.2   Cutting edge radius 

Figure 8.8 show the process damping performance results for all tools.  It can be seen 

that tools with identical rake and relief geometries have different process damping 

performance due to the edge radius of the tool.  In all cases, the process damping 

performance improves when the cutting edge radius is increased.  In some cases, this 

variation was as significant as that obtained due to change in the maximum chip 

thickness.  However, for some tools, particularly PD8, the change in edge radius has a 
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marginal effect compared to the magnitude of the experimental error.  Closer inspection 

reveals that tool PD8 had similar edge radii for all three tools and the standard deviation 

for individual tools was also high.  Consequently, the fact that all three PD8 tools had 

similar performance is less surprising. 

8.4.3   Rake and relief angles 

In comparison to Section 8.4.2, the task of assessing the influence of tool rake and relief 

angle becomes more complex.  In order to isolate the effect of tool rake and relief angle 

from the tool edge radius, the tools were first re-classified in terms of their edge radius.  

Three groups were formed based on a low (5-10 μm), medium (11-15 μm) and high 

(16-20 μm) edge radius.  These groupings are shown in Table 8.2.  It can be seen that 

only two tools, PD5(2) and PD11(4), were classified as having a high edge radius.  

Nevertheless, based on this classification, it is possible to compare tools that have a 

similar edge radius but different rake and relief angles. 

 

In Figure 8.9, a comparison of λc is made according to the average cutting edge radius 

classification, and a clear pattern can be seen.  Figures 8.9a,c,e show that process 

damping performance decreased when the rake angle was increased for a relief angle of 

6 degrees.  In contrast, process damping performance increased when the rake angle 

was increased for a relief angle of 12 degrees (Figures 8.9b,d).  Again, this variation 

was more significant than the 5 percent repeatability error of the experiment.  To 

summarise, a low relief angle gave better process damping performance with smaller 

rake angles, while at high relief angles, better performance was obtained with higher 

rake angles.  This was true for all the available edge radius classifications.  

8.4.4   Variable helix/pitch angles 

Regular and variable helix/pitch cutters were evaluated and their process damping 

performance compared, as shown in Figure 8.10.  It should be reiterated that this 

experiment concerned the machining of an aluminium alloy block on a very flexible 

workpiece.  Consequently, the measured process damping wavelengths were markedly 

different to those of the previous experiment (involving a titanium workpiece).  In fact, 

the process damping wavelength for this study was an order of greater.  This could be 

attributed to the different workpiece material or the considerably lower axial depth of 

cut used in these experiments.  Despite this, Figure 8.10 shows the variable helix/pitch 
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tool has a very high process damping wavelength compared to the standard tool.  In 

fact, the process damping wavelength is almost doubled, which is a far more significant 

effect than that of the tool geometries considered in the previous experiment. 

 

It is worth pointing out that the measurements from the flexible workpiece experiments 

allow a more detailed and less subjective analysis of the vibrations, based on once-per-

revolution samples of the accelerometer signal. However, this advantage is at the 

expense of requiring easy-to-machine workpiece material (aluminium rather than 

titanium alloy) and a very low depth of cut. 

8.5   Discussion 

The results have demonstrated some interesting and useful relationships between tool 

geometry and processing damping performance. A number of points are worthy of 

further discussion. 

 

The experimental data shown in Figure 8.6 indicate that the vibration during machining 

grew quite steadily as the spindle speed was increased. This makes it difficult to identify 

a discrete transition from stable cutting to unstable cutting (i.e. chatter). Conversely, 

previous experiments [170] and models [175] usually suggest a swift transition from 

stable to unstable cutting.  The gradual increase in vibration amplitude observed in the 

experiments has two implications.  First, that the process damping phenomenon has a 

more complex nonlinear influence on the chatter stability boundary since there is no 

clearly definable transition from stable machining (with low vibration amplitude) to 

unstable machining (with excessively high vibration amplitude).  This is in constrast to 

early work on ‘dynamic cutting force coefficients’ [16] which implies that there is a 

clearly defined stability boundary even under process damping cutting conditions.  

Second, the gradual growth in vibrations makes it more difficult to determine reliably 

the boundary between acceptable and unacceptable cutting indicated by the process 

damping wavelength.  In the first set of experiments, this was addressed by repeatability 

tests.  In the second set of experiments, the use of a flexible workpiece enabled a more 

quantitative analysis of the machining vibrations based on the variance of the once-per-

revolution acceleration samples.  Clearly, the quantification and classification of process 

damped milling performance remains an issue for further research. 
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Also for discussion are the possible mechanisms that have given rise to the behaviour 

observed in these experiments.  Considering the influence of feedrate, it is clear that 

increasing the maximum chip thickness has increased the tool’s penetration into the 

workpiece.  It could be argued that such changes in chip thickness could exacerbate any 

nonlinearity in the cutting force coefficients.  However, a related set of experiments 

[173] suggests that this was not the case here.  Consequently, alternative explanations 

are needed to explain the significant increase in process damping performance obtained 

by increasing the feedrate. 

 

Meanwhile, the influence of tool edge radius is more readily explained by returning to 

the conceptual explanation illustrated in Figure 8.2.  If this figure were redrawn to 

include a tool radius, then flank/workpiece interference and tool/workpiece ploughing 

would clearly be increased.  However, the complex interaction between rake and relief 

angle, along with their smaller influence on process damping performance cannot be 

explained by the Figure 8.2.  Likewise, the dramatic influence of variable pitch/helix 

angles cannot be easily explained.  To summarise, the focus of this study has been to 

illustrate experimental observations of process damped milling.  Further work is needed 

to explain some of these findings using realistic models of milling dynamics and chip 

mechanics. 

 

The present study has focused on the role of the tool’s angular geometry in process 

damping but the maximum chip thickness has also been considered and this was varied 

by increasing the machining feed rate.  In practice, the chip thickness is also a function 

of tool diameter and machining radial depth of cut, as shown in Equation 8.3.  Further 

work could investigate whether varying the tool radial depth of cut/diameter ratio has an 

equivalent effect to varying the machining feed rate.  However, in practice, other factors 

may influence the chosen radial depth of cut.  For example, tool life is a critical factor 

under process damped conditions and for a given material removal rate, tool wear can 

be spread across more of the tool’s length by using a large axial and low radial depths of 

cut. 
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It is useful to briefly compare the findings of this study with some of the previous 

literature on process damped turning and milling that has considered tool geometry.  

Much of the earlier research has considered easy-to-cut-materials (steel and aluminium), 

whereas the present study used titanium alloy when considering the tool rake, relief and 

edge radius. Additionally, previous studies concerning increased edge radius have often 

focused on turning operations.  In turning experiments, Budak and Tunc [167] identified 

similar results concerning the edge radius, along with increased performance from a low 

relief angle and smaller rake angles.  However, the present study has also indicated that 

high relief angles coupled with higher rake angles can contribute to better performance. 

Furthermore, to the author’s knowledge, previous studies have not considered the role 

of variable helix/pitch angles in process damping behaviour. 

 

Finally, as with any experimental investigation of machining chatter and process 

damping, experimental accuracy and repeatability needs to be properly considered 

before drawing conclusions from the collected data. In the present study, these 

experimental errors were addressed as follows.  First, measurement and classification of 

tool edge radius involved an average of 12 measurements for each tool. Second, of the 

18 tools tested, five were subjected to a repeat test as described in Section 8.4.1.  The 

repeatability tests showed variations of less than 5 percent and so appropriate error bars 

were included in the subsequent analysis.  Third, a subset of experiments involved a 

repetition of previous tests reported in Turner [173].  There was close agreement 

between the data sets, despite the use of different experimental equipment and different 

operating personnel. Consequently, the authors have sufficient confidence in the present 

results to draw general and industrially relevant conclusions from the data.  

Nevertheless, future efforts to provide a more statistically detailed analysis would be of 

value, particularly from a modelling and model calibration perspective. 

8.6   Summary 

This chapter has presented experimental results demonstrating the influence of edge 

radius, rake and relief angles and variable helix/pitch angles on process damping 

performance in low speed milling.  It has revealed variable helix/pitch angles played a 

more significant role in increasing performance compared to cutting edge, rake and 

relief angles and feed rate.  Increasing the edge radius also tended to increase the 

process damping performance to a significant extent.  This has important implications 
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because of the difficulties in controlling edge radius during tool manufacture and the 

inevitable influence of tool wear on the tool edge geometry.  

 

The effect of rake and relief angles was less significant and more complex.  A low relief 

angle tool increased process damping performance when the rake angle was also low.  

However, for high relief angles, better performance was achieved with high rake angles.  

Both of these parameters were less significant than the variations in maximum chip 

thickness used in the present study. 

 
From a practitioner’s standpoint, these conclusions can be used to make informed 

decisions regarding tool choices, when other constraints require low-speed milling.  In 

particular, variable helix/ pitch tooling should be considered, as well as using a high 

feedrate. Inconsistent behaviour between nominally identical tools could be attributed to 

poor control of the tool’s edge geometry, due to either manufacturing variability or tool 

wear.
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Table 8.1  Milling tools’ geometry 
 

 

 

 

 

 

 

 

 

Table 8.2  Classification of milling tools' average edge radius 
 

 

 

 

 

 

 

 

 
 

 

Figure 8.1  Stability lobes for process damping.  * shows the spindle speed and ---
→cutting test configuration 

Tool Rake 
angle, γ 

(°) 

Relief 
angle, α 

(°) 

Average cutting edge radius, µm  
(standard deviation)  

Tool 1 Tool 2 Tool 3 
PD5 0 6  16.9(7.8) 9.9(2.6)  8.3(3.1)  

PD6 0 12 11.4(5.4) 12.8(3.7) 13.5(3.3) 

PD8 6 6 9.7(4.6) 12.8(3.6) 12.4(5.2) 

PD9 6 12 9.3(2.5) 7.1(1.9) 8.2(2.0) 

PD11 12 6 8.0(1.5) 11.4(3.4) 17.0(8.3) 

Class Low Medium High 

Range (µm) 6-10 11-15 16-20 

PD5 

PD6 

PD8 

PD9 

PD11 

PD12 

Tool 2, 3 

 

Tool 1 

Tool 1, 2, 3 

Tool 1 

Tool 2 

 

Tool 1, 2, 3 

Tool 2, 3 

 

Tool 2 

Tool 1, 3 

Tool 1 

 

 

 

Tool 3 
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Figure 8.2  Process damping mechanism 
 

 

 
                        a)  Edge location                          b)  Flute location 

Figure 8.3  Milling tool measurement location 
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a)  Schematic diagram of flexible tool b)  Sensor location of flexible tool

 

 
c)  Schematic diagram of flexible 

workpiece 
d)  Sensor location of flexible workpiece 

Figure 8.4  Experimental process damping arrangement 
 

 

Figure 8.5  Frequency response function for PD5(1) tool in x-direction 
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e)  Workpiece surface at condition d). 

Figure 8.6  FFT level and workpiece surface for PD11(3) at hmax= 0.075mm 
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Figure 8.7  Repeatability of selected tools  
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Figure 8.8  Effect of tool edge radius on process damping wavelength 
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Figure 8.9  Effect of rake and relief angles on process damping wavelength.  
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Figure 8.10  Effect of variable helix and variable pitch angles on process damping 
wavelength 



 

   

CHAPTER 9 
CONCLUSIONS 

9.1   Summary of Thesis 

Chapter 1 introduced the background, motivation and objectives of the current study.  

The chatter stability prediction, chatter suppression technologies and chatter 

optimisation algorithms which have been used in machining are comprehensively 

reviewed in Chapter 2.  In Chapter 3, a semi-discretisation method for analytical chatter 

stability was mathematically formulated and an optimisation scheme briefly introduced.  

 

In Chapter 4, preliminary experiments were made of amplitude dependence in 

determining frequency response functions (FRF).  Experimental modal analysis using a 

non-contacting actuator was compared to the results from impact hammer testing.  The 

force and current were used as excitation input to estimate FRFs of cutting tools with 

amplitude dependent conditions.  This FRF amplitude dependency analysis was then 

extended to study the time response when applying a square wave of different excitation 

magnitudes.  The amplitude dependency of milling tools was shown to be a potential 

problem for the optimisation of milling tools from a chatter perspective. 

 

Optimisation algorithms of Differential Evolution (DE) and Sequential Quadratic 

Programming (SQP) were theoretically described in Chapter 5.  In Chapter 6, an 

optimisation approach of the semi-discretisation method (as described in Chapter 3) and 

optimisation algorithms (in Chapter 5) were combined by the targeting of chatter 

minimisation and chatter performance maximisation.  The DE algorithm was then 

refined by introducing the bounce back and mixed population approach, including 

modified objective functions.  Chatter minimisation and material removal rate 

maximisation were then combined to introduce a multi-objective optimisation using the 

Pareto trade approach of epsilon constraint.  The numerical optimisation solutions were 

benchmarked by the SQP algorithm and compared to variable pitch tool optimisation.   

 

Chapter 7 presented the practical application of optimisation of variable helix and 

variable pitch to minimise chatter using the DE algorithm.  Although the cutting tests 

were successful in validating and improving the stability margin during the cutting 

operation with an optimised variable helix and variable pitch tool, its performance has 
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been limited by low engagement of variable helix geometry.  This issue was resolved by 

using higher depth of cut to properly validate the SDM chatter stability modelling for 

variable helix tools. 

 

In Chapter 8, experimental testing was conducted for process damped milling.  Process 

damping performance was compared and considered with different milling tool 

geometry such as edge radius, rake and relief angles and variable pitch.   There were 

two experimental configurations used.  A flexible tool condition was first study for edge 

radius and rake and relief angles effects.  For variable helix/pitch (Chapter 7) geometry 

effect, a flexible workpiece condition was used to compare the process damping 

performance to that for regular tool.   

 

The conclusions and contributions will now be listed and recommendations for future 

works suggested. 

9.2   Conclusions    

From the thesis summary, the conclusions for this research are as follows: 

• Variable helix tools can be optimised to avoid chatter and improve productivity. 

• This has been both theoretically predicted and experimentally validated. 

• Differential Evolution algorithms find better solutions than Sequential Quadratic 

Programming especially when refined to include bounce back and mixed 

population approaches. 

• For all the cases considered, tools with variable helix and variable pitch always 

performed better than those with only a variable pitch, or only a variable helix. 

• Variable helix tools can exhibit period-one instability.   This has been observed 

experimentally for the first time. 

• Optimisation of tool helix angle has been shown to be sensitive to the FRF of the 

system.  Unfortunately it has been shown that tools exhibit small changes in 

FRF dependency upon excitation amplitude.  This nonlinearity is not presently 

considered in stability analysis and remains a topic for further work. 

• Finally, under certain conditions, variable helix/pitch tool has a very significant 

role in increasing process damping performance, compared to cutting edge, rake 

and relief angles and feedrate.  
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9.3 Contributions from Current Work 

The aims of the current study were to design and produce optimised variable helix 

milling tools.  In addition to this chatter suppression method, the current research also 

studied the importance of amplitude dependency in the FRF estimation, and investigated 

the importance of process damped milling for variable helix tools.  The following 

summarises the original contributions for this research:  

• Combined the semi-discretisation method with Differential Evolution (DE) 

algorithm for optimising variable helix tools using chatter minimisation and 

chatter performance maximisation objective functions. 

• Introduced refined (mixed population and bounce back approach) Differential 

Evolution algorithm and modified objective functions to improve optimisation 

results. 

• Implemented variable helix and variable pitch at its end tools geometry to 

completely mitigate chatter compared to other tool geometries. 

• Compared optimised variable helix and variable pitch tools with previous 

research of variable pitch tools geometry based on current methodology. 

• Applied multi-objective optimisation based on ε-constraints Pareto front optimal 

solution to optimise chatter performance and material removal rate 

simultaneously. 

• Experimentally validated the optimised variable helix and variable pitch tools 

based on Differential Evolution optimisation solution to suppress chatter with a 

5-fold increase under low radial immersion and flexible workpiece condition. 

• Experimentally verified variable helix tools chatter stability prediction based on 

the semi-discretisation method using higher axial depth of cut condition. 

• Identified period-one chatter instability islands experimentally for variable helix 

tools. 

• Experimentally verified nonlinear response behaviours when exciting the cutting 

tools with an electromagnetic actuation system. 

• Ranked the influence of tool geometry (variable helix/pitch, edge radius and 

rake and relief angles) to improve process damped milling. 

9.4   Suggestions for Future Work  

The following suggestions can be made for future research:  
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• A non-contacting electro-magnetic actuator is proposed to be applied under 

conditions of spindle speed dependency and amplitude dependency.  Then 

investigating FRF and stability lobe effects due to spindle speed and amplitude 

dependency before can be applied in optimising variable helix and variable pitch 

for flexible tools condition. 

• Applying the current optimisation procedure by considering uncertainty and 

sensitivity of variable helix and variable pitch.  Another candidate which can be 

proposed for multi-objective problem is non-sorted Genetic Algorithms instead 

of using ε-constraint multi-objective optimisation. 

• Experimental validation for other objective functions such as performance 

maximisation and multi-objective problems to validate the optimisation 

procedure.  Instead of the flexible workpiece applied for the study, future work 

on the current method needs to be based upon the flexible tool condition in order 

to make real industrial applications.   

• Further work in process damping is needed to explain these trends with 

physically realistic models of process damped milling.  It should be suggested to 

be re-iterated that the present study benchmarked variable helix/pitch tools using 

a flexible aluminium workpiece rather than a rigid titanium workpiece.  

Experiments are proposed to investigate the performance of these tools when 

cutting titanium and other difficult-to-cut materials. 
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ABSTRACT 

This paper explores the use of non-contact electromagnetic actuators to measure the 
frequency response of milling tools.  Milling is one of the most common manufacturing 
processes, but its productivity is limited by the onset of regenerative chatter.  This is a 
form of unstable self-excited vibration that occurs when the volume of material 
removed is too large for a particular spindle speed.  This form of chatter is undesirable 
because it results in premature tool wear, poor surface finish on the machined 
component and the possibility of serious damage to the machine itself. 
 
The chatter stability of a milling process can be determined using well-established 
theory, provided that the frequency response of the flexible structure can be determined. 
In practice, this usually involves excitation of a stationary (non-rotating) milling tool 
with a modal hammer, and measurement of the response of the tool with a co-located 
accelerometer.  However, this measurement is not necessarily accurate due to amplitude 
dependency factor consideration.  There is anecdotal evidence that structural 
nonlinearity can have a significant effect on the chatter stability of some milling 
machines. 
 
The present study investigates the use of non-contacting electromagnetic actuators to 
excite the milling tool.  Although this approach is well documented for general rotating 
machinery problems, there are relatively few reports that focus on metal machining 
problems.  In principle, this approach enables frequency response measurements whilst 
the tool is rotating and proper setting of both amplitude and output offset effects can be 
appropriately determined.  The article describes the practical application of this 
approach and discusses its amplitude dependency and output offset dependency for both 
current and force excitation during FRF measurement using magnetic force generation. 
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ABSTRACT 

During machining, self-excited vibrations known as regenerative chatter can occur. This 
instability can be avoided by modifying the tool geometry, thereby influencing the time 
delay terms that arise in the governing equations. The present study uses Differential 
Evolution (DE) to optimise the tool helix geometry, so as to avoid chatter. The results 
are compared to those from Sequential Quadratic Programming (SQP).  It is shown that 
the DE approach can significantly increase the chatter stability, and substantially out-
performs the SQP algorithm. The performance of the DE approach is due to its ability to 
perform global optimisation in the presence of significant nonlinearities. 
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ABSTRACT 

The occurrence of self-excited vibrations during machining is known as regenerative 
chatter, and this phenomenon can severely limit the machining productivity.  By 
modifying and optimising the tool’s pitch and helix geometry, this regenerative chatter 
can be suppressed to increase material removal rate. In this paper, experimental 
verification of an optimised variable helix and variable pitch tools is presented.  The 
geometry was optimised using a Differential Evolution (DE) algorithm.  Based on 
stability diagrams of original and optimised milling tools, the experiment was conducted 
and the results were compared when chatter occurred.  The optimised cutter 
significantly outperformed the original cutter in term of chatter suppression. 
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Period-one instability of variable pitch milling tools 

 
Ahmad R Yusoff and Neil D Sims 
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ABSTRACT 

The onset of regenerative chatter limits machining productivity when machining with a 
larger materials removal rate.  This unstable self-excited vibration should be avoided as 
it can accelerate tool wear, cause poor machined surfaces and reduce the spindle 
lifetime.  Several studies have discovered regions (or ‘islands’) of unstable period-
doubling island chatter when the helix angle of a tool is properly considered  This paper 
contribution concerns the experimental occurrence of period-one chatter instability for a 
special class of milling tool that has a variable helix angle.  This builds upon earlier 
work which focused on theoretical modeling of such tools 
 
A four-flute variable helix (37°, 40°, 37°, 40°) and variable pitch (78.4°, 80.4°, 78.4°, 
80.4°) commercially available milling tool was used in the present study.  This was used 
to down-mill (at 5 per cent radial immersion) an aluminium 7075-T6 block mounted on 
a flexible that could be modeled as a single-degree-of-freedom systems.  The cutting 
stiffness of the tool/workpiece was estimated to be Kn= 283 MN/m2 and Kt= 143 MN/m2 
and the flexure dynamic properties were obtained from impact test as m=1.41 kg, fn=200 
Hz and ζ = 0.0024. 
 
The experimental configuration is shown in Figure 1. An eddy-current displacement 
sensor signal was used to measure the onset of chatter vibrations.  A pulse signal 
produced from a hall-effect probe monitoring the milling spindle was to produce once-
per-revolution samples of the eddy-current measurement.  The response of the system 
could be then analysed in terms of the frequency domain, the once/rev vibration 
samples, and the Poincaré section in delayed coordinates.   
 
Figure 2a illustrates the predicted chatter stability using the approach described in.  
There is a large region that is associated with hopf-bifurcation, as found in classical 
machining chatter.  However, in addition, there are isolated regions of period doubling 
and period-one instability.  Previous works on regular helix milling tools has identified 
regions of period doubling instability, but the existence of period-one bifurcations has 
previously only been associated with tool runout.  The present contribution predicts that 
period-one bifurcation can also arise for variable helix tools. 
 
In Figure 2b, experimental results are summarised, and the theoretical prediction is 
superimposed as a solid black line.  The theoretical prediction is also repeated for a tool 
with regular helix and variable pitch (dashed black line).  This differs from the variable 
pitch tool because there is no isolated region of period-one instability at 1975 rev/min.  
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Experimental measurements are shown on Figure 2b as markers.  For each experimental 
test, chatter stability was evaluated using the analysis procedure illustrated in Figure 3.  
Hopf-bifurcations were associated with pseudo-periodic motion on the Poincaré section, 
and high variance of the once per revolution samples.  Period-one bifurcations were 
associated with significantly higher vibration levels than the stable cuts within the 
immediate neighborhood.  The example shown in Figure 3 corresponds to a period-one 
bifurcation.  Note that the tool was engaged in the workpiece between time 5 s and 9 s, 
corresponding to revolution 150 and revolution 300 of the tool.  The Poincaré section is 
misleading at first sight, because it contains data when the tool was not cutting. 
 
To summarise, this contribution has confirmed experimentally that period-one 
bifurcations can occur for variable helix milling tools.  However, the identification of 
this behavior is not straightforward, since the vibration characteristics are similar to 
those for stable forced vibrations. 
 
 

Variable helix/pitch

One per revolution Aluminium block

Flexure

Accelerometer

Displacement sensor

Target

 

a)  Sensors’ location  b)  Schematic diagram   

Figure 1  Experimental arrangement 
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a)  Theoretical prediction b)  Experimental validation 

Figure 2  Chatter stability for variable helix and variable pitch 
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ABSTRACT 

The complex interaction between machining structural systems and the cutting process 
results in machining instability, so-called chatter.  In some milling scenarios, process 
damping is a useful phenomenon that can be exploited to improve the limited 
productivity due to chatter.  In the present study, experiments are performed to evaluate 
the performance of process damped milling under different tool geometries (edge 
radius, rake and relief angles and variable helix/pitch).  The results clearly indicate that 
variable helix/pitch angles most significantly increase process damping performance.  
Additionally, increased cutting edge radius moderately improves process damping 
performance, while rake and relief angles have a smaller and closely coupled effect. 
 

 
 

 


