
The Engineering of an Object-Oriented
Software Development Methodology

Raman Ramsin

Submitted for the degree of Doctor of Philosophy

THE UNIVERSITY itro)*

YORK

UK

Department of Computer Science

April 2006

.
Ta Sftwd, .

Mil Dem Wife

gO41einq 11w aid, mcw compw ion, mif pa ttrz4m, , ncf (I fe

go- A4 Dcwt Ja unter

jat hievt arme ewed (cve and jappaxt

Ja J/ and

.t at thch p e't , and tf eit &we

2

Abstract

Software Engineering as a discipline has provided us with methodologies for

developing software systems, yet it can also be used for developing methodologies

themselves; after all, as observed and aptly stated by prominent researchers,

software development methodologies are software too.

In a bid to address the problems plaguing object-oriented software development

processes, this thesis presents a software engineering approach to methodology

development: that is, through the generic software engineering phases of Analysis,

Design, Implementation, and Test, applied in a risk-driven and iterative-

incremental lifecycle. This abstract methodology engineering process has been

used for developing an object-oriented methodology, and has thereby gradually

evolved into a concrete lifecycle and meta-methodology for developing object-

oriented methodologies.

As a further contribution of this thesis, the methodology that has been developed

through application of the above meta-methodology addresses several key

problems currently afflicting object-oriented software development processes.

Targeting information systems, the methodology is Feature-Driven and iterative-

incremental, and is based on smooth and seamless transition from real-world

problem domain models to system models, and ultimately to design models. The

system is initially designed as a homogeneous extension to the problem domain,

using the same types of elements seen in the problem domain, thus smoothing the

transition process. Seamless transition is achieved via the use of reengineering

patterns, design patterns and refactoring patterns for iteratively transforming the

system models into software design models through redistributing functionalities

and refining the structure. Typical anomalies resulting from real-world problem

domain modeling are thereby eradicated, while keeping the models tangible to both

users and developers.

3

Contents

ABSTRACT .. 3

CONTENTS .. 4

LIST OF FIGURES .. 9

LIST OF TABLES .. 12

ACKNOWLEDGEMENT ... 13

DECLARATION .. 14

CHAPTER 1. INTRODUCTION ... 15

1.1 MOTIVATIONS ...
16

1.1.1 THE NEED FOR A RETROSPECTIVE APPRAISAL
..

16

1.1.2 THE SOFTWARE ENGINEERING APPROACH TO METHODOLOGY DEVELOPMENT
................

19

1.1.3 RESEARCH ROADMAPS
..

23

1.2 OBJECTIVES AND SCOPE ... 24

1.3 RESEARCH METHODOLOGY ..
25

1.3.1 ANALYSIS
..

26

1.3.2 DESIGN
..

27

1.3.3 IMPLEMENTATION
...

28

1.3.4 TEST
..

28

1.4 RESEARCH OUTCOME .. 29

1.5 OVERVIEW OF THE THESIS ..
32

CHAPTER 2. BACKGROUND
... 34

2.1 BASIC DEFINITIONS
... 34

2.2 OBJECT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGIES 35

2.2.1 SEMINAL METHODOLOGIES: FIRST AND SECOND GENERATIONS
.......................................

36

2.2.2 THE UNIFIED MODELING LANGUAGE (UML)
..

38

2.2.3 INTEGRATED METHODOLOGIES: THIRD GENERATION
...

39

4

2
.
2.4 AGILE METHODOLO ; IES ...

40

2.3 OBJECT-ORIENTED PROCESS PATTERNS AND PROCESS METAMODELS 42

2.4 METIIOD ENGINEERING .. 42

CHAPTER 3. ANALYSIS ..
45

3.1 ANALYSIS APPROACH ..
46

3.2 ANALYSIS PROCESS ...
47

3.3 PROCESS-CENTRED REVIEW ...
49

3.3.1 PROCESS-CENTRED DESCRIPTION TEMPLATE
... .

50

3.3.2 METHODOLOGIES: SEMINAL
... .

51

3.3.2.1 Shlaer-Mellor (1988,1992)
51

3.3.2.2 Coad-Yourdon (1989,1991) .. .
56

3.3.2.3 RDD (/ 990)
59

3.3.2.4 Booch (1991,1994)
62

3.3.2.5 OMT(1991)
... .

66

3.3.2.6 OSA (1992) .. .
69

3.3.2.7 OOSE (1992) ..
70

3.3.2.8 BON (1992,1995) .. .
75

3.3.2.9 Hodge-Mock (1992)
81

3.3.2.10 Syntropy (1994)
88

3.3.2.11 Fusion (1994) 91

3.3.3 METHODOLOGIES: INTEGRATED
.. ..

96

3.3.3.1 OPM (1995,2002) 97

3.3.3.2 Catalysis (1995,1998) ..
100

3.3.3.3 OPEN (1996) ..
105

3.3.3.4 RUP/USDP (1998,1999,2000,2003) ..
110

3.3.3.5 EUP (2000,2005) ...
115

3.3.3.6 FOOM (2001) ...
119

3.3.4 METHODOLOGIES: AGILE
..

126

3.3.4.1 DSDM (1995,2003) ..
126

3.3.4.2 Scrum (1995,2001)
..

134

3.3.4.3 XP (1996,2004)
..

139

3.3.4.4 ASD (1997,2000)
...

147

3.3.4.5 dX (1998) ..
153

3.3.4.6 Crystal (1998,2004) ...
156

5

3.3.4.7 FDD (1999,2002) ..
162

3.3.5 PROCESS PATTERNS
...

170

3.3.5.1 Introduction
..

170

3.3.5.2 Types of Process Patterns (Ambler) ...
170

3.3.5.3 Object Oriented Software Process (Ambler) ..
171

3.3.6 PROCESS METAMODELS
..

172

3.3.6.1 The Software Process Engineering Metamodel (SPEM)
..

172

3.3.6.2 Process Structure (SPEM)
..

172

3.4 CRITERIA-BASED EVALUATION ..
173

3.4.1 BASIC: CRITERION SET (SEED)
...

174

3.4.2 EVALUATION RESULTS
..

175

3.4.2.1 Seminal Methodologies ...
176

3.4.2.2 Integrated Methodologies (Third Generation)
...

183

3.4.2.3 Agile Methodologies ...
189

3.4.2.4 Process Patterns
...

197

3.4.2.5 Process Metamodels
...

198

3.5 FINAL CRITERION SET ...
199

3.6 REQUIREMENTS ...
200

3.7 SUMMARY ...
208

CHAPTER 4. DESIGN ...
210

4.1 ALTERNATIVE DESIGN METHODS ...
210

4.2 THE HYBRID DESIGN PROCESS ...
211

4.3 DESIGN RESULTS ..
215

4.3.1 ITERATIONS
...

215

4.3.1.1 First Iteration ...
215

4.3.1.2 Second Iteration ..
217

4.3.1.3 Third Iteration ..
218

4.3.1.4 Fourth Iteration
..

222

4.3.2 THE DESIGNED METHODOLOGY
..

223

4.3.2.1 Feasibility Analysis and Preliminary Planning ..
224

4.3.2.2 Domain Modeling and Requirements Elicitation
..

224

4.3.2.3 System Specification
...

226

4.3.2.4 Architectural Design
...

228

6

4.3.2.5 Planning by Feature ...
228

4.3.2.6 Feature-Driven Iterative-Incremental Development ..
229

4.3.2.7 Transition ..
230

4.4 REQUIREMENTS-BASED REVIEW OF THE DESIGN ... 230

4.5 SUMMARY ... 231

CHAPTER 5. IMPLEMENTATION ... 235

5.1 IMPLEMENTATION PROCESS ... 235

5.2 END RESULT: METHODOLOGY USER GUIDE ..
237

5.2.1 OVERALL PROCESS ..
238

5.2.1.1 Lifecycle: Subprocesses and Their Order of Execution ..
238

5.2.1.2 Work Products ..
240

5.2.1.3 Roles and Teams ...
243

5.2.2 PROCESS-CENTRED DESCRIPTION OF THE METHODOLOGY
...

244

5.2.2.1 Preliminary Analysis (Feasibility Analysis and Preliminary Planning)
244

5.2.2.2 Real-World Domain Modeling and Requirements Elicitation
249

5.2.2.3 System Specification ...
253

5.2.2.4 Architectural Design ...
260

5.2.2.5 Planning by Feature ...
264

5.2.2.6 Feature-Driven Iterative-Incremental Development ..
267

5.2.2.7 Transition ..
274

5.2.3 WORK-PRODUCT-CENTRED DESCRIPTION OF THE METHODOLOGY
278

5.2.3.1 Feasibility Analysis Package: ...
280

5.2.3.2 Project Plan ..
283

5.2.3.3 Context Model ...
287

5.2.3.4 System Model ..
293

5.2.3.5 Software Model ...
296

5.2.4 ROLE-CENTRED DESCRIPTION OF THE METHODOLOGY
...

301

5.2.4.1 Roles: Responsibilities throughout the Process ..
301

5.2.4.2 Teams: Constitution and Responsibilities ...
302

5.3 REQUIREMENTS-BASED REVIEW OF THE IMPLEMENTATION 304

5.4 SUMMARY ... 305

CHAPTER 6. TEST
308

7

6.1 TEST PROCESS ...
308

6.2 CASE STUDY 1: BOOK LIBRARY SYSTEM ... 311

6.2.1 CONTEXT MODEL ..
312

6.2.1.1 Context Object Models ..
313

6.2.1.2 Context Interaction Models ..
313

6.2.1.3 Context Features List ..
319

6.2.1.4 Glossary of Terms ...
319

6.2.2 SYSTEM MODEL
..

322

6.2.2.1 System Object Models ...
322

6.2.2.2 System Interaction Models ..
327

6.2.2.3 System Features List ...
329

6.2.3 SOFTWARE MODEL ..
330

6.2.3.1 Software Object Models ..
331

6.2.3.2 Software Interaction Models ...
335

63 CASE STUDY 2: ESTATE AGENCY SYSTEM ...
337

6.3.1 CONTEXT MODEL ..
339

6.3.1.1 Context Object Models ..
339

6.3.1.2 Context Interaction Models ..
339

6.3.1.3 Context Features List ..
346

6.3.1.4 Glossary of Terms ...
349

6.3.2 SYSTEM MODEL ..
349

6.3.3 SOFTWARE MODEL ..
353

6.4 REQUIREMENTS-BASED REVIEW OF THE TEST PHASE
356

6.5 SUMMARY AND CONCLUSION .. »............. 356

CHAPTER 7. CONCLUSION ..
360

7.1 A SUMMARY OF RESEARCH RESULTS ..
360

7.2 OBJECTIVES ACHIEVED ..
361

7.3 SHORTCOMINGS ...
363

7.4 SUGGESTIONS FOR FURTHER RESEARCH ...
364

ABBREVIATIONS ...
367

REFERENCES ..
370

8

List of Figures

FIGURE 1. GENERAL METHODOLOGY DEVELOPMENT LIFECYCLE USED IN THIS THESIS
25

FIGURE 2. THE EVOLUTION TIMELINE OF OBJECT-ORIENTED METHODOLOGIES UP TO 1996
................. .

37

FIGURE 3. INFLUENCES ON UML
... . 39

FIGURE 4. THE EVOLUTION MAP OF AGILE METHODOLOGIES
40

FIGURE 5. THE AGILE MANIFESTO
.. .

41

FIGURE 6. THE ANALYSIS PROCESS
48

FIGURE 7. THE COAD-YOURDON MODEL FOR SOFTWARE DEVELOPMENT .. . 57

FIGURE 8. THE RDD PROCESS
61

FIGURE 9. THE MACRO PROCESS OF THE BOOCH METHODOLOGY .. . 63

FIGURE 10. THE MICRO PROCESS OF THE B oocH METHODOLOGY
.. . 63

FIGURE 11. THE OMT PROCESS AND ITS DELIVERABLES
67

FIGURE 12. THE OOSE PROCESS AND THE MODELS PRODUCED .. .
72

FIGURE 13. THE BON PROCESS: THE TASKS AND THEIR DELIVERABLES
76

FIGURE 14. THE HODGE-MOCK PROCESS: THE PHASES AND THEIR DELIVERABLES
83

FIGURE 15. THE IMPLICIT SYNTROPY PROCESS .. .
89

FIGURE 16. THE FUSION PROCESS AND ITS DELIVERABLES .. . 93

FIGURE 17. THE CATALYSIS PROCESS FOR DEVELOPING TYPICAL BUSINESS SYSTEMS
101

FIGURE 18. THE OPF COMPONENTS (OPEN) .. 105
FIGURE 19. USING THE OPF TO INSTANTIATE, TAILOR AND EXTEND A PROCESS

109

FIGURE 20. EXAMPLE OF AN INSTANTIATED OPEN PROCESS ...
109

FIGURE 21. DISCIPLINES IN ITERATIONS (RUP)
...

112

FIGURE 22. A TYPICAL RUP LIFECYCLE MODEL ..
112

FIGURE 23. A TYPICAL EUP LIFECYCLE MODEL ...
116

FIGURE 24. THE DSDM PROCESS ...
129

FIGURE 25. THE SCRUM PROCESS ...
135

FIGURE 26. A GENERAL OVERVIEW OF THE TYPICAL XP PROCESS ...
140

FIGURE 27. TOP LEVEL ACTIVITIES IN THE XP DEVELOPMENT ENGINE ...
140

FIGURE 28. ACTIVITIES IN EACH ITERATION (XP)
...

143

FIGURE 29. DEVELOPMENT ACTIVITIES IN EACH ITERATION (XP)
...

144

FIGURE 30. ACTIVITIES IN A COLLECTIVE-CODE-OWNERSHIP ENVIRONMENT (XP)
............................

145

FIGURE 31. THE BASIC ASD LIFECYCLE ..
148

FIGURE 32. THE ASD PROCESS ...
149

FIGURE 33. PROJECT TYPES IN CRYSTAL AND THE CORRESPONDING METHODOLOGIES
157

9

FIGURE 34. EXAMPLE OF PHASES, CYCLES AND ACTIVITIES IN CRYSTAL CLEAR
................................

159

FIGURE 35. THE FDD PROCESS AND ITS DELIVERABLES ... 165
FIGURE 36. THE GENERAL LAYERED ARCHITECTURE OF SOFTWARE SYSTEMS IN FDD

........................
165

FIGURE 37. AMBLER'S OBJECT ORIENTED SOFTWARE PROCESS (OOSP)
...

171

FIGURE 38. CORE STRUCTURE OF A SOFTWARE DEVELOPMENT PROCESS IN SPEM
.............................

173

FIGURE 39. THE HYBRID DESIGN PROCESS ...
211

FIGURE 40. EMPHASIS PUT ON DIFFERENT DESIGN APPROACHES IN THE HYBRID DESIGN PROCESS
214

FIGURE 41. GRADUAL REFINEMENT OF THE METHODOLOGY BLUEPRINT ..
216

FIGURE 42. USER GUIDE TEMPLATE ...
237

FIGURE 43. THE LIFECYCLE OF THE METHODOLOGY ..
239

FIGURE 44. WORK PRODUCTS AND THEIR INTERDEPENDENCIES .. 243
FIGURE 45. PROCESS-CENTRED VIEW OF THE METHODOLOGY ...

245

FIGURE 46. PRELIMINARY ANALYSIS SUBPROCESS ..
246

FIGURE 47. DOMAIN MODELING AND REQUIREMENTS ELICITATION SUBPROCESS
249

FIGURE 48. SYSTEM SPECIFICATION SUBPROCESS ...
253

FIGURE 49. ARCHITECTURAL DESIGN SUBPROCESS ...
261

FIGURE 50. PLAN BY FEATURE SUBPROCESS ...
264

FIGURE 51. DESIGN BY FEATURE SUBPROCESS ..
269

FIGURE 52. BUILD BY FEATURE SUBPROCESS ..
272

FIGURE 53. TRANSITION SUBPROCESS ...
275

FIGURE 54. WORK-PRODUCTS OF THE METHODOLOGY ..
278

FIGURE 55. INTERNAL STRUCTURE OF COMPOSITE MODELS AND THEIR INTERDEPENDENCIES
279

FIGURE 56. CONTEXT OBJECT MODEL OF THE BOOK LIBRARY PROBLEM DOMAIN
314

FIGURE 57. CONTEXT OBJECT MODEL, WITH THE SYSTEM AS A PROBLEM DOMAIN OBJECT
314

FIGURE 58. CONTEXT INTERACTION MODEL: BOOK-BORROW SCENARIO ...
315

FIGURE 59. CONTEXT INTERACTION MODEL: BOOK-RETURN SCENARIO ..
316

FIGURE 60. CONTEXT INTERACTION MODEL: BOOK-BORROW SCENARIO, WITH SYSTEM
317

FIGURE 61. CONTEXT INTERACTION MODEL: BOOK-RETURN SCENARIO, WITH SYSTEM
318

FIGURE 62. ALTERNATIVE CONTEXT INTERACTION MODEL: THE BOOK-RETURN SCENARIO
319

FIGURE 63. PARTIAL VIEW OF THE GLOSSARY OF TERMS FOR THE LIBRARY CASE STUDY
321

FIGURE 64. CONTEXT OBJECT MODEL FOCUSING ON THE LOAN AND RETURN FUNCTIONALITIES
322

FIGURE 65. DESIGNING THE LIBRARY SYSTEM AS AN EXTENSION
324

FIGURE 66. SYSTEM OBJECT MODEL USING ONE SYSTEM CLERK
325

FIGURE 67. ALTERNATIVE SYSTEM OBJECT MODEL USING TWO SYSTEM CLERKS
326

FIGURE 68. SYSTEM OBJECT MODEL, WITH MAIN FEATURE SETS ADDED
327

FIGURE 69. SYSTEM INTERACTION MODEL: BOOK-BORROW SCENARIO
328

FIGURE 70. SYSTEM INTERACTION MODEL: BOOK-RETURN SCENARIO .. .
329

FIGURE 71. OBJECT MODEL DEPICTING THE MAJOR PATTERNS APPLIED .. .
331

10

FIGURE 72. APPLYING THE SPLIT-UP-GOD-OBJECT PATTERN ...
332

FIGURE 73. APPLYING THE MOVE-BEHAVIOUR-CLOSE-TO-DATA AND MOVE-FIELD PATTERNS 333
FIGURE 74. APPLYING THE REMOVE-MIDDLE-MAN PATTERN ... 334
FIGURE 75. THE RESULTING SOFTWARE OBJECT MODEL

...
335

FIGURE 76. SOFTWARE INTERACTION MODEL: BOOK-BORROW SCENARIO ... 336
FIGURE 77. SOFTWARE INTERACTION MODEL: BOOK-RETURN SCENARIO ..

337

FIGURE 78. CONTEXT OBJECT MODEL OF THE ESTATE AGENCY PROBLEM DOMAIN
340

FIGURE 79. CONTEXT OBJECT MODEL, WITH THE SYSTEM AS A PROBLEM DOMAIN OBJECT
341

FIGURE 80. CONTEXT INTERACTION MODEL: PUT-PROPERTY-UP-FOR-SALE SCENARIO
342

FIGURE 81. CONTEXT INTERACTION MODEL: VIEWING SCENARIO ... 343
FIGURE 82. CONTEXT INTERACTION MODEL: MAKE-AN-OFFER SCENARIO ... 343
FIGURE 83. CONTEXT INTERACTION MODEL: PUT-PROPERTY-UP-FOR-SALE SCENARIO, WITH SYSTEM. 344

FIGURE 84. CONTEXT INTERACTION MODEL: VIEWING SCENARIO, WITH SYSTEM
345

FIGURE 85. CONTEXT INTERACTION MODEL: MAKE-AN-OFFER SCENARIO, WITH SYSTEM 346
FIGURE 86. PARTIAL VIEW OF THE GLOSSARY OF TERMS FOR THE ESTATE AGENCY CASE STUDY

348

FIGURE 87. CONTEXT OBJECT MODEL FOCUSING ON SELECTED FUNCTIONALITIES
350

FIGURE 88. DESIGNING THE ESTATE AGENCY SYSTEM AS AN EXTENSION ..
351

FIGURE 89. SYSTEM OBJECT MODEL FOCUSING ON SELECTED FUNCTIONAL1TIES
352

FIGURE 90. OBJECT MODEL DEPICTING THE MAJOR PATTERNS APPLIED ... 354
FIGURE 91. THE RESULTING SOFTWARE OBJECT MODEL

..
355

11

List of Tables

TABLE 1. SATISFACTION OF METHODOLOGY REQUIREMENTS IN THE DESIGN PHASE
233

TABLE 2. SATISFACTION OF METHODOLOGY REQUIREMENTS IN THE IMPLEMENTATION PHASE........... 306

TABLE 3. PARTIAL VIEW OF THE CONTEXT FEATURES LIST (LIBRARY SYSTEM)
320

TABLE 4. PARTIAL VIEW OF THE SYSTEM FEATURES LIST (LIBRARY SYSTEM)
330

TABLE 5. PARTIAL VIEW OF THE CONTEXT FEATURES LIST (ESTATE AGENCY SYSTEM)
347

TABLE 6. VALIDATION RESULTS .. 358

TABLE 7. METHODOLOGY REQUIREMENTS THAT HAVE BEEN ADDRESSED ..
362

TABLE 8. METHODOLOGY REQUIREMENTS THAT HAVE NOT BEEN ADDRESSED
363

12

Acknowledgements

I would like to thank my supervisor, Dr. Richard Paige, for his invaluable help and guidance,
and for always being there. I would also like to thank Dr. Fiona Polack, whose remarkable

attention to detail has greatly improved the quality of this thesis.

13

Declaration

Process-centred descriptions of 24 methodologies and process pattems/metamodels

were produced in the analysis phase of the methodology engineering process
(reported in Chapter 3 of this thesis). General descriptions of seven of these

methodologies (belonging to the seminal category) have been previously presented
in an introductory chapter of the author's MSc thesis [Ramsin 1995].

The Estate Agency System, which is used as one of the two case studies in Chapter

6, is loosely based on a user-story presented by Xiaocheng Ge, later developed into

the eXGrid case study [Ge et al. 2006].

Some of the material presented within this thesis has already been published or

reviewed for publication, as listed below:

" RAMSIN, R., AND PAIGE, R. F. 2004. Process-centred review of object-

oriented software development methodologies. Technical Report YCS-

2004-3 8 1. University of York, York, UK.

" RAMSIN, R., AND PAIGE, R. F. 2004. Process-centred review of object-

oriented software development methodologies. Submitted to ACM

Computing Surveys (revision currently under review).

14

Chapter 1

Introduction

Software engineering has been evolving over the past thirty years, but it has never

completely solved the software crisis [Pressman 2004]. As an integral part of the

discipline of software engineering, software development methodologies have also

evolved, from shallow and informal in-house methodologies of the late 1960s to

the object-oriented methodologies of the 1990s and the new millennium. In the

face of fierce resistance and inertia, paradigm shifts have been long and painful, yet

Object-Oriented Software Development Methodologies (OOSDMs) have managed

to survive, and indeed, prosper. The status quo, however, is far from desirable;

object-oriented methodologies have been around for two decades, yet many of the

problems associated with these methodologies two decades ago still remain

unresolved today.

Aimed at addressing the problems plaguing OOSDMs, this thesis presents a

software engineering approach to methodology development, proposing a

methodology for requirements-based development of OOSDMs and applying it to

produce a methodology. The resulting methodology is described in detail, as is the

meta-methodology used for producing it, with methodology requirements used for

validating the implemented methodology.

This chapter presents the motivations behind this thesis, its objectives and scope,

and the research methodology used. A summary of the results has been included,

enumerating the main contributions of the thesis. The structure of the remaining

chapters of the thesis has also been delineated.

15

Chapter 1. Introduction

1.1 Motivations

16

This thesis has been motivated by problems afflicting object-oriented software

development methodologies. This section presents the basis for the thesis,

illuminating the problem areas and emphasizing the need for a comprehensive

stocktaking of what has been achieved, and what remains to be done. Different

approaches to methodology development are discussed, and arguments put forward

as to why a systematic engineering approach is required. As further instances of

motivations behind this thesis, the final subsection lists a number of relevant

research roadmaps identified by the software engineering community.

1.1.1 The Need for a Retrospective Appraisal

The applicability of the object-oriented approach to systems analysis and design

was realized in the mid 1980s, and as a result, the software industry witnessed the

advent of a plethora of object-oriented software development methodologies. These

methodologies were widely acclaimed as promising means for tackling the

software crisis, yet their sheer number and diversity became detrimental to their

widespread adoption into the software engineering community. The ensuing

"Methodology War" led to efforts aimed at unification and standardization in the

mid 1990s, resulting in the development of the UML and integrated (third

generation) methodologies [Graham 2001]. This promised an end to the

methodology war, but the present situation is far from what was initially expected.

Attempts at integration, unification and standardization have actually aggravated

the problems of complexity and inconsistency, giving rise to a new family of

lightweight, agile methodologies, some of which eccentrically defy the long-

established values of modeling and process-based development [Boehm and Turner

2004]. The integrated, heavyweight methodologies are very complex, and some of

their competitors are little more than controlled code-&-fix methods based on good

programming practices. While integrated methodologies are encumbered with

unwieldy processes, agile methodologies have tried their best to have as little

explicit process as possible.

The evolution process seems to have gone astray, and as a result, we are witnessing
the return of some of the older methodologies (such as RDD [Wirfs-Brock et al.

Chapter 1. Introduction 17

1990, Wirfs-Brock and McKean 2002]). At the same time, some of the

methodologies or variants introduced today (such as EUP [Ambler and Constantine

2000a], OPM [Dori 2002a], and FOOM [Shoval and Kabeli 2001]) do not even

adhere to UML modeling conventions. On the other hand, the OMG's Model-

Driven Architecture (MDA) [OMG 2001], the general development approach
based on transforming logical models of the system (called Platform-Independent

Models - PIMs) into physical implementation models (called Platform-Specific

Models - PSMs) [Siegel and OMG 2001], is still in its early stages of development.

It is by no means mature enough to spawn serious methodologies, explaining the

lack of rigour in the few such methodologies so far introduced (such as [Gervais

2002]). Even though MDA has been hailed by its proponents as a panacea, many

prominent figures in software engineering have expressed serious doubts as to the

very feasibility of the MDA approach [Thomas 2004, Fowler 2004].

The course of events suggests that any effort aimed at enhancing object-oriented

methodologies should also consider the abundant capabilities of older

methodologies, neglected during the integration euphoria. In addition, special

attention should be given to the fact that today's integrated methodologies and their

agile counterparts have no other choice but to converge. In fact, there are signs of

convergence [Boehm and Turner 2004] proving that the imbalance caused by the

eccentric leanings of the two camps, disRUPtive overindulgence on one side and

eXtreme negligence on the other, is prompting the call to moderation. Recent

advances in the fields of process metamodeling and process patterns have also

opened new possibilities for ameliorating the status quo.

A closer look at the present state of affairs in the field of object-oriented software
development methodologies shows numerous deficiencies, including:

1. Requirements engineering is still the weak link, and requirements
traceability is rarely supported; requirements are either not adequately

captured or partially lost or corrupted during the development process
[Nuseibeh and Easterbrook 2000].

2. Model inconsistency is a dire problem. UML has exacerbated the situation
instead of improving it [Paige and Ostroff 2002, Dori 2002a, b].

Chapter 1. Introduction 18

3. Integrated methodologies are too complex to be effectively mastered,

configured, and enacted [Highsmith 2000b, Boehm and Turner 2004].

Although most of them are designed in such a way as to accommodate

customization and tailoring down, in practice they tend to rapidly build up

and get out of hand [Boehm and Turner 2004].

4. Despite remarkable achievements, agile methodologies are still not mature

enough [Abrahamsson et al. 2003, Boehm and Turner 2004, Boehm and

Turner 2005, Coram and Bohner 2005, Nerur et al. 2005, Turk et al. 2005,

Boehm 2006]; the following are some of the more commonly cited

problems:

a. Unrealistic assumptions (e. g. Scrum, as elaborated in Section 3.4.2.3)

b. Lack of scalability

c. Lack of a specific, unambiguous process (e. g. XP and Crystal, as

elaborated in Section 3.4.2.3)

5. Seamless development, pioneered by seminal methodologies, is not

adequately appreciated and supported in modern-day methodologies [Paige

and Ostroff 2002].

Even though object-oriented software development methodologies suffer from

various kinds of problems, they are still considered state of the art, and research

aimed at improving them is an ongoing evolutionary process [Capretz 2003,

Boehm and Turner 2004]. The status quo of the field clearly shows potential for

improvement through addressing the abovementioned issues. There is motivation
for developing methodologies that use the lessons learnt from UML and the long

history of object-oriented methodologies in setting up a framework for software

development that addresses the problem issues. The following have been observed

by the author (based on personal experience) as general characteristics of such

methodologies, highlighting the core areas where further work on OOSDMS is

needed:

1. Compactness: an extensible core is preferable to a customisable

monstrosity or a generic framework with complex parameters and/or

prohibitively numerous parameter options.
2. Extensibility: with extension mechanisms and guidelines clearly defined.

Chapter 1. Introduction 19

3. Traceability to requirements: all the artefacts should be one way or another

traceable to the requirements.
4. Consistency: artefacts produced should not be allowed to contradict each

other; alternatively, there should be mechanisms for detecting

inconsistencies.

5. Testability of the artefacts from the start: this will allow tools to be

developed to verify and validate the artefacts.
6. Tangibility of the artefacts: artefacts should be concrete enough to be

related to and understood by the parties involved in the development

process.

7. Visible rationality: there should be evident rationality behind every task

and the order in which the tasks are performed, and undeniable use for

every artefact produced. The developers should be able to see this logic,

truly sensing that any digression will put their objectives at risk.

1.1.2 The Software Engineering Approach to Methodology

Development

Realizing the need and potentiality for further improvement in the field, it is

important to point out that the relatively long history of methodology development

is a rich source of lessons to be learned. In every methodology, there are features to

exploit and pitfalls to avoid, many of which are direct or indirect consequences of

the method used in developing the methodology or the circumstances surrounding

the development. Choosing the right methodology to develop the desired

methodology is therefore of utmost importance. Object-oriented methodologies can

be categorized according to the circumstances leading to their development,

including the approach and method applied (if any):

" Revolutionary: A large number of OOSDMs have been developed by

experienced practitioners or academics trying novel ideas and approaches in

their day to day engineering practices, ultimately resulting in a methodology

offering a whole new approach, marking a watershed step in the history of

software development methodologies. Such methodologies act as seeds,

starting their own threads of evolution. Methodologies belonging to the first

generation of OOSDMs are all revolutionary, as are the first few agile

Chapter 1. Introduction 20

methodologies (e. g. XP [Beck 1999] and FDD [Coad et al. 1999]). The

advent of a revolutionary methodology in this sense does not necessarily

indicate the occurrence of a Kuhnian revolution: pre-existing methodologies

might co-exist with the new ones, in which case a new trend of evolution

aiming at convergence is usually commenced.

" Evolutionary: methodologies in this category are based on existing ones.

New ideas are always present in these methodologies, yet their dependence

on ideas borrowed from existing methodologies is such that precludes their

classification as revolutionary. This category has two subcategories, each of

which spans a large number of OOSDMs:

o Extensions are methodologies adding new features to an existing

methodology. Later versions and complements of revolutionary and

evolutionary methodologies belong to this category.

o Integrations are essentially the result of consolidating ideas from two

or more methodologies. Methodologists often throw in a few novel
ideas, but the bulk of these methodologies consists of bits and pieces
borrowed from existing methodologies. The important issues of

compatibility and complementarity are of utmost importance:

methodologists should ensure compatibility of the constituent parts,

and that they actually complement each other in a meaningful way.

Integrations are of three types:

 Merger. creators of methodologies come together and agree on

a merger of their methodologies. The integration is typically

done through a design-by-committee procedure, and always

results in complex and unwieldy monstrosities. Mergers are

typically the result of corporate ambitions, specifically aimed

at bringing together the user communities of the individual

methodologies in a bid to impose the integrated methodology

as a widely acclaimed standard. RUP [Jacobson et al. 1999,

Kruchten 2003] and OPEN [Henderson-Sellers and Graham

1996, Graham et at. 1997] are examples of mergers.

 Ad hoc: the methodologist uses ideas, typically from

prominent OOSDMs, in order to assemble his methodology.
The selection of methodology components is not based on pre-

Chapter 1. Introduction 21

planned, objective analysis of the features in existing

methodologies; rather, features are scavenged from favourite

methodologies in order to fill the needs of the methodologist.

Fusion [Coleman et al. 1994] and Catalysis [D'Souza and

Wills 1995] are good examples.

 Engineered: an objective, comprehensive analysis is

performed in order to identify useful features in existing

methodologies, as well as the requirements of the target

methodology. Based on the analysis results, a methodology is

developed and tested. The closest existing OOSDM to this

category is the Hodge/Mock methodology [Hodge and Mock

1992]. The developers were not aiming for a general-purpose

methodology, but rather one that would be especially suitable

for use in a simulation and prototyping laboratory, and

therefore have been rather too particular in their choice of

methodologies analyzed. Furthermore, there is little trace of

disciplined and clear-cut design, implementation and test

activities performed in developing the methodology [Mock

and Hodge 1992].

While emergence of yet other revolutionary OOSDMs is not out of the question,

they are inherently unpredictable and unplanned in occurrence, and planning a

research aimed at delivering revolutionary features is immensely risky.

Evolutionary methodologies, on the other hand, show great potential for

improvement, especially with the abundant merits of seminal methodologies

mostly neglected during the integration era, not to mention the instability caused by

the eccentric leanings of integrated methodologies and agile methods as the main

contenders, which has in turn led to convergence attempts. Planned research aimed

at ameliorating the status quo by attempting to develop an evolutionary

methodology seems to be of acceptable risk. The question comes down to which

type of evolutionary approach to methodology development is the most

appropriate.

While not without merit, developing extensions to existing methodologies is too

constraining, since any extensions made to a methodology have to be compatible

Chapter 1. Introduction 22

with the methodology itself. The methodologist therefore does not have a free hand

in applying changes and modifications. Extensions made to agile methods are good

examples: extensions are not to in any way hamper agility, which is certainly a task

easier said than done.

Considering the motivations and the special circumstances surrounding

methodology mergers, planning such a development is for the creators only, and

even if it weren't, the prospect of developing yet another heavyweight

methodology is not appealing.

Contaminated with favouritism and subjectivity, ad hoc integration is hardly

appropriate as a scientific undertaking. Some previous instances have been quite

successful, but limiting the scope of the components used to those favoured by the

methodologists, because of previous personal experience or widespread acclaim, is

far from objective, and almost certain to miss precious opportunities.

Engineering a methodology through integration is obviously the most appealing to

software engineers, and the least prone to subjectivity. However, the methodology

engineering approach intended in this context is different from that seen in Method

Engineering: Method Engineering, originally defined as "The engineering
discipline to design, construct, and adapt methods, techniques and tools for the

development of information systems" [Brinkkemper 1996], has over the years
become mainly restricted to Situational Method Engineering [Harmsen 1997], in

which methodologies are constructed to fit the project situation at hand. Contrary

to the methodology engineering approach intended here, Method Engineering does

not address the requirements-based development of a general methodology, let

alone one based on analyzing existing methodologies and aimed at alleviating their

shortcomings and making utmost use of their strengths; typologies of Method

Engineering approaches and techniques, listed in [Ralyt6 et al. 2003, Ralyte et al.
2004], are testimonies to this fact. Nevertheless, Method Engineering has inspired

metamodel-based process composition in some object-oriented methodologies; the

OPEN methodology [Henderson-Sellers and Graham 1996] is a prominent

example.

Although it might seem that the direction of this discussion has been such as to
justify the engineering approach via elimination of alternatives, yet the actual

Chapter 1. Introduction 23

intention has been to show the contrast between the engineering approach and other

approaches previously tried. It is evident that a methodology is, after all, essentially

a kind of software [Osterweil 1987, Osterweil 1997], and a software engineering

approach to its development is therefore preferable. The applicability of the

approach is even more evident when the huge amount of experience gained through

the rather long history of OOSDMs is considered. The field is even more in need of

objective analysis and disciplined engineering than before, since any other

approach is bound to overlook the precious potentialities, not to mention the

lurking hazards, in a field as overgrown and unkempt as object-oriented software
development has become.

1.1.3 Research Roadmaps

Apart from the above-mentioned issues, there are several other key research

pointers directly or indirectly related to software development processes and this

thesis. Presented at the Conference on the Future of Software Engineering in 2000,

these research pointers reflect the problems with the status quo of software

engineering and its subfields, and set roadmaps of research for the coming years.

Of the various research pointers proposed for the covered areas, the following are

relevant to the present research, listed under their respective areas:

" Software Process (quoted from [Fuggetta 2000]):

1. The scope of software [process] improvement methods and models

should be widened in order to consider all the different factors

affecting software development activities. We should reuse the

experiences gained in other business domains and in organizational
behaviour research.

2. Statistics is not the only source of knowledge. We should also

appreciate the value of qualitative observations.

" Requirements Engineering (quoted from [Nuseibeh and Easterbrook

2000]):

1. Better modeling and analysis of problem domains, as opposed to

the behaviour of software.

Chapter 1. Introduction 24

" Object-oriented Modeling (quoted from [Engels and Groenewegen

2000]):

1. Development of means to compose and to refine complex

structured models
2. Identification of guidelines for an incremental, round-trip software

development process

" Software Engineering (general) (quoted from [Finkelstein and Kramer

2000]):

1. We need to devise and support new structuring schemes and

methods for separating concerns in software systems development.

2. We need to adapt conventional software engineering methods and

techniques to work in evolutionary, rapid, extreme and other non-

classical styles of software development.

1.2 Objectives and Scope

Motivated by the issues outlined above, the central proposition of this thesis can be

summarized as follows:

An object-oriented software development methodology

can be developed (engineered) via a software engineering

process - that is, through the generic development phases

of analysis, design, implementation and test - based on

analyzing existing methodologies and techniques,
identifying their strengths and weaknesses, and producing

a set of requirements defining the characteristics of the

target methodology. The methodology can then be

developed through making utmost use of existing
techniques in such a way as to satisfy the requirements.

A further point to clarify is that object-oriented modeling is already saturated with
diverse and versatile modeling methods and notations, especially with the advent of
the UML and its widespread adoption as the de facto standard modeling language.

Chapter 1. Introduction 25

Therefore, developing a new modeling language is no longer an important concern
in methodology development, and the focus of the development effort undertaken
herein is on the process component of the methodology.

1.3 Research Methodology

As the research methodology used is essentially a software engineering process, the

methodology used for developing the target object-oriented software development

methodology broadly consists of the four generic phases of software engineering:

Analysis, Design, /nnplementution, and Test. Due to the risk factor involved,

commitment to a more concretely specific lifecycle and methodology could not be

made; a meta-methodology for developing OOSDMs gradually took shape in the

course of the effort and is indeed one of its main contributions. However, due to

the need for appropriate measures for risk mitigation, a general iterative-

incremental lifecycle was adopted, allowing for ventures into later phases -

especially during design and implementation - in order to assess and mitigate

development risks. As seen in Figure 1, the methodology is produced through

iterations of the Design-Implementation-Test cycle based on the results of the

Analysis phase. In addition to the verification and validation performed during the

Test activity, requirements-based reviews of the produced methodology are also

performed at the end of Design and Implementation activities in each of the

iterations, ensuring an acceptable level of quality and maintaining the focus of the

effort.

Cyclic Development Engine

C Test

Implementation

Analysis Design

Figure 1. General methodology development lifecycle used in this thesis

U Ivi-rG, .iY OF YORK
IRRARM

Chapter 1. Introduction 26

High-level descriptions of the goals of the four generic phases and the tasks to be

performed in each are given in the following subsections.

1.3.1 Analysis

Conforming to the specifications of the generic analysis phase, the goals and tasks

of this phase focus on problem domain analysis and requirements elicitation.

Goals

o Identification and detailed analysis of the problem domain; the structure

and behaviour of the problem domain should be modeled in order to

abstract away redundant and irrelevant elements, enabling focus on
features essential for identifying the requirements.

o Definition of a set of analysis criteria; the criteria will be used for

analyzing the problem domain and producing the requirements.

o Determination of the scope of the target OOSDM, and delineating its

requirements

Tasks

" Task 1: Research on the problem domain, encompassing existing

methodologies, process patterns and process metamodels, which are the

entities providing essential information as to the strengths and weaknesses

of existing methodologies, in turn leading to the requirements of a

desirable OOSDM; this task involves exploring, accumulating,

categorizing, and describing existing methodologies, process patterns and

process metamodels and modeling the information gathered in a form

accommodating the extraction of a set of requirements for the target

methodology. This task is a prerequisite for the completion of tasks 3 and

4: without in-depth analytical knowledge in this regard, it is virtually

impossible to come up with a reliable set of process requirements (task 3)

and a proper method for designing the target methodology (task 4).

" Task 2: Development of a criterion set for evaluating the methodologies,

mainly in order to gain a better understanding of what is desirable, and

what is undesirable, in an object-oriented software development

Chapter 1. Introduction 27

methodology; the criterion set will be used in task 3 for evaluating the

problem domain entities described in task 1 (methodologies, process

patterns, and process metamodels), and will ultimately be used as the basis

for defining the requirements. The results of the evaluation performed in

task 3 are in turn used for refining the criterion set; therefore, there is a

two-way dependency between tasks 2 and 3, meaning that the two tasks

should be carried out in parallel.

" Task 3: Development of a set of concrete requirements (based on the

results of tasks 1 and 2), to be satisfied by the target methodology; this

requires that a detailed analysis of the results of task 1 be first performed;

and strengths and weaknesses of the methodologies, process patterns and

process metamodels be identified using the criteria defined in task 2. The

evaluation results and the evaluation criteria are ultimately used for

defining the requirements.

1.3.2 Design

As expected, the design phase concerns producing a blueprint for the target

methodology, to be implemented in the next phase as a detailed specification.

Goals

o Determination of a general process for the target OOSDM

o Production of a blueprint of the target methodology based on the general

process defined and the requirements

Tasks

" Task 4: Determining the best method for designing the methodology based

on the knowledge gained in task 1 and the requirements defined in task 3

" Task 5: Development of the design of the target methodology by applying

the method selected in task 4; the design will include outlines of the

phases, procedures, rules, techniques, tools, documentation and

management issues, providing guidance as to the order of the activities,

specifying what artefacts should be developed, and directing the tasks of

the teams and individual developers.

Chapter 1. Introduction

1.3.3 Implementation

28

Analogous to the classic perception of the generic implementation phase, this phase

produces the target methodology in a form usable by the users, i. e. system
developers.

Goals

o Detailing the outline produced in the design phase

o Presenting the result in a form usable by potential users (developers)

Tasks

" Task 6: developing a user guide template for presenting the detailed

specification of the methodology

" Task 7: producing detailed specifications of the target methodology's

phases, procedures, rules, techniques, tools, and documentation and

management issues, specifying detailed guidelines as to the order of the

activities, the artefacts produced and the modeling language used, and the

tasks of the team and individual developers; the user guide template

defined in task 6 is extensively used in this task, practically guiding it

through the detailed specification process by providing a structure to be

filled in with the specifications produced.

1.3.4 Test

Testing a methodology is similar to testing any other type of system: develop test

cases (in this case, sample systems), perform verification and validation, and

correct the detected faults.

Goals

o Developing case studies for the target OOSDM to verify and validate the
implemented methodology

o Testing the methodology by applying it to the sample systems, and
debugging the detected failures

Chapter 1. Introduction

Tasks

29

" Task 8: Definition of realistic case studies in order to test the applicability

of the produced methodology, and its conformance with the requirements;

the domains to be covered are determined according to the scope and

constraints imposed by the requirements.

" Task 9: Evaluation of the target methodology through the case studies

developed in task 8, checking compliance with the requirements and the

evaluation criteria; failures to comply are recorded and corrections made to

the methodology.

1.4 Research Outcome

The following are the main results and contributions of the research reported
herein:

I. A proposed object-oriented software development methodology addressing

some of the problems found in existing methodologies; the following are

the major contributions of this methodology:
1.1. A model-based approach to the development of business

systems integrating the agile feature-driven merits of the FDD

methodology [Palmer and Felsing 2002] with design-based

features of third-generation OOSDMs, particularly Catalysis

[D'Souza and Wills 1998]; the methodology provides a middle

way between integrated and agile methods, and addresses

several key issues in OOSDMs. Defined as requirements and

used as the basis for the development of the methodology, the

most significant of these issues are: seamlessness, smoothness

of transition, manageability of complexity, encouragement of

active user involvement, practicability and practicality. Details

of how the methodology conforms to the requirements are

presented in Chapter 7.

1.2. A modeling approach built into the methodology providing

seamless and smooth transition from real-world models of the

problem domain to system models, and ultimately to design

Chapter 1. Introduction 30

models; the model chain produced is based in the requirements,

and traceability features have been incorporated. The approach

features a novel technique for rectifying anomalies associated

with real-world modeling [Isoda 2001]. The technique is based

on designing the computer-based system initially as a
homogeneous extension to the existing system structure (i. e. by

using the same types of elements as those seen in the problem
domain) and then applying pattern-based transformation to

convert the models to software-system models. The technique

also proposes the use of design patterns for introducing

structure and behaviour into the system. In addition to

seamlessness and smoothness of transition, the model chain also

addresses key modeling requirements such as: testability,

tangibility, manageability of complexity, and support for

behavioural, structural and functional modeling of logical and

physical views of the system at different levels of abstraction.

Details of how the modeling approach conforms to the

requirements are presented in Chapter 7.

2. A proposed methodology for developing object-oriented software
development methodologies based on a software engineering approach; the
following are the major contributions of this meta-methodology:

2.1. An iterative-incremental lifecycle based on the generic

activities of software development

2.2. A process-centred template for describing OOSDMs; a total of

24 prominent object-oriented methodologies, process patterns

and process metamodels have been described using this

template, providing a rich process-centred review of the field.

2.3. A criteria-based analysis method for identifying strengths and

weaknesses in object-oriented methodologies, process patterns

and process metamodels, ultimately producing a set of

requirements for the target methodology; the method has been

used for identifying strengths and weaknesses in the 24

methodologies, process patterns and process metamodels
described using the process-centred template. Although mainly

Chapter 1. Introduction 31

used for the purpose of defining the requirements, the results

are themselves a contribution of this thesis, since they provide

an extensive critique of the research field.

2.4. An iterative-incremental requirements-based design method for

producing the blueprint of the target methodology; the method

has been designed in such a way as to provide flexible use of a

multitude of design approaches.
2.5. A User Guide template for providing a pragmatic description of

object-oriented software development methodologies; the

template has been used for detailing and refining the target

methodology, which in the context of the proposed meta-

methodology, is analogous to implementation in software
development.

Although many of the requirements of the methodology have been addressed in the

final result, there remain requirements which have not been adequately met, and
hence require further work. The most important of these requirements are:

extensibility, configurability, flexibility, and support for formal modeling. Details

of these shortcomings have been given in Chapter 7.

There are several potential courses for furthering or complementing the research

reported in this dissertation, some of which are listed below:

" Engineering variants of the methodology targeting other types of systems,

e. g. safety-critical

" Applying the methodology to case studies of larger scope

" Expressing the methodology and meta-methodology processes in a Process

Modeling Language (PML) for static verification and/or enactment in a
Process-centred Software Engineering Environment (PSEE) [Ambriola et

at. 1997, Barthelmess 2003]

Empirical analysis of the usability of the methodology

" Comparison of the methodology to other OOSDMs

" Application of the meta-methodology to the development of other

methodology types

Chapter 1. Introduction 32

1.5 Overview of the Thesis

The chapter structure of this thesis is as follows:

" Chapter 2 (Background) presents the research background, delineating

the relevant research areas and focusing on the evolution process leading to

the status quo. Special attention has been given to object-oriented

methodologies, process patterns and process metamodels, with Method

Engineering explored and compared to the approach adopted in this thesis.

" Chapter 3 (Analysis) presents an explanation of the analysis process

adopted in the Analysis phase, and reports the results. Template-based

descriptions of a selection of methodologies, process patterns and process

metamodels are presented, and the results of applying a criteria-based

evaluation process to the selection are reported. A set of requirements for

an object-oriented software development methodology is produced as a

result, listed in the final section of this chapter.

" Chapter 4 (Design) presents an explanation of the iterative design process
deployed in the design phase, and reports the results. The process is

demonstrated by following the iterations through which the methodology is

gradually formed. The resulting methodology design is then explained,

with phases and tasks defined in outline.

" Chapter 5 (Implementation) presents an explanation of the

implementation process and the user-guide template used for implementing

the methodology. The major bulk of the chapter contains the implemented

methodology, i. e. the resulting user guide providing detailed description of

the methodology from three complementary viewpoints: process-centred,

work-product-centred, and role-centred.

" Chapter 6 (Test) presents an explanation of the testing process, and

reports the results of verifying and validating the implemented

methodology through applying it to two sample information systems. The

case studies are mainly focused on novel features of the methodology,

since these features pose the greatest risk.

" Chapter 7 (Conclusion) presents a summary of the thesis and the results,
discusses the degree to which the objectives were achieved, and examines

Chapter 1. Introduction 33

the shortcomings. Suggestions for furthering the research are also

provided.

Chapter 2

Background

Although object oriented software development methodologies have become

ubiquitous in software engineering circles, a brief look at the basic definitions and

the history of their evolution is necessary for understanding the motivations behind

this thesis, and the basis upon which it builds. A brief overview of the Method

Engineering discipline is also presented, mainly in order to clarify the position of

this thesis in regard to the discipline, and also to highlight the distinctions that

separate this thesis from current Method Engineering practices.

2.1 Basic Definitions

A Software Development Methodology (SDM) is a framework for applying

software engineering practices with the specific aim of providing the necessary

means for developing software-intensive systems. Software development

methodologies are therefore considered an integral part of the Software

Engineering discipline, since methodologies provide the means for timely and

orderly execution of the various finer grained techniques and methods of software

engineering. Although a software development methodology can be loosely

defined as "a recommended collection of phases, procedures, rules, techniques,

tools, documentation, management, and training used to develop a system" [Avison

and Fitzgerald 20031, it is easier to grasp when described as consisting of two main

parts [OMG 2003]:

1. A set of modeling conventions comprising a Modeling Language (syntax

and semantics).
2. A Process, which

a. provides guidance as to the order of the activities,

34

Chapter 2. Background 35

b. specifies what artifacts should be developed using the Modeling

Language,

c. directs the tasks of individual developers and the team as a whole,

and
d. offers criteria for monitoring and measuring a project's products

and activities.

Whereas the modeling language provides developers with a means to model the

different aspects of the system, the process determines what activities should be

carried out to develop the system, in what order, and how. In its most abstract
form, a process is a sequence of steps - sometimes deprecatingly called a "recipe"

- that aims to guide its users in applying the modeling language for accomplishing

a set of software development tasks. The process thus acts as the dynamic,

behavioural component of the methodology, governing the development (technical)

and management subprocesses, and therefore encompassing the phases,

procedures, rules, techniques, and tools prescribed by the methodology, as well as

the issues pertaining to documentation and project management.

2.2 Object-Oriented Software Development

Methodologies

An Object-Oriented Software Development Methodology (OOSDM) is specifically

aimed at viewing, modeling and implementing the system as a collection of

interacting objects, using specialized modeling languages, activities and techniques

needed to address the specific issues of the object-oriented paradigm. Originally

based on concepts introduced in system simulation, operating systems, data

abstraction, and artificial intelligence, the object-oriented paradigm gained

widespread popularity in the 1980s through object-oriented programming
languages. The applicability of the object-oriented approach to systems analysis

and design was recognized in the mid 1980s, and the subsequent enthusiasm has

been such that a plethora of object-oriented software development methodologies
have been since introduced. A brief description of the categories of OOSDMs and

their trend of evolution will help further clarify the domain.

Chapter 2. Background 36

2.2.1 Seminal Methodologies: First and Second Generations

The first software development methodologies termed as object-oriented were in

fact hybrid: partly structured and partly object-oriented. The analysis phase was

typically done using Structured Analysis (SA) techniques, producing Data Flow

Diagrams, Entity-Relationship Diagrams, and State Transition Diagrams, whereas

the design phase was mainly concerned with mapping analysis results to an object-

oriented blueprint of the software. These methods were hence categorized as

transformative [Monarchi and Puhr 1992]. The methods prescribed by [Seidewitz

and Stark 1986] and [Alabiso 1988] are the main methodologies in this category.

The first purely object-oriented methodologies appeared in 1986 [Booch 1986],

and were influenced by structured and/or data-oriented approaches. This first

generation of object-oriented methodologies spans methodologies developed

between 1986 and 1992. The second generation of object-oriented methodologies

evolved from the first generation and appeared between 1992 and 1996. This

period signifies the famous "Methodology War", with more than 70 methodologies

competing for a share in the software development industry. The sheer number of

methodologies introduced became so prohibitive that choosing the right

methodology for a software project was a major endeavour in itself. The frustration

in the software engineering community soon led to efforts aimed at integration and

unification, the first fruit of which was the Unified Modeling Language (UML),

adopted by the Object Management Group (OMG) as the standard object oriented

modeling language in 1997 [Booch et al. 1999, OMG 2004]. While UML was

being developed, widespread attempts at integrating seminal methodologies were

also being made, thus signifying the end of the second-generation era.

First- and second-generation methodologies are collectively referred to as
"Seminal" methodologies, in that they pioneered the unexplored field of pure

object-oriented analysis and design, and in doing so laid the groundwork for further

evolution. Though by no means mature, the ideas set forth by these methodologies
have deeply influenced the fast-growing field of object-oriented software

engineering. Many of the concepts, modeling conventions and techniques
introduced by these methodologies are still widely used today, and some of these

Chapter 2. Background 37

methodologies still have hosts of devoted followers, proving that seminal

methodologies are by no means obsolete.

86 87 88 89 99 91 92 93 94 95 96
uI u nw II II. Inn Illu nul ulu unl u. ll Ili, i, l II

Hrn,,, l I<: ný�n c,,, ll, l
$malltLk

III A \\II, 1, Hi'nlý

, \H, n IIN, xA \iýl\\ ,. i

lRl

Rde

VI ýýA ýý,.. 1111 ý

1A iMRV.

Pallnnlf

�\ ,.. A

sasD
III VIII KýI, ý-

ýI II1 Ný

I\ I

,,
ýml.

"ný
III \I, I Hüiý'_

ýI II It ".

ER
MoEeling

1\ ixl lýlc. \. I.. ýIý I

ýý"1

Eigel

, =nlracnrp

ýýI\ýýI. 1,

ýi\ý ý `ýý

I1'ýtll'/. \ý\ýII 1

Legend ..
/

. Inl , l.

Influence

F-i
MetMOe

. +, H-u. >u lu'
ýýýýIHI X1'1

nventlon .. I AI: ýý e. .l

Evolution
elan

hagram

S4IeMata

SDl Ux Caees i>, �Itý�ýý

k, . 11; I

I III IIn
III Iln lý

O

R, *nll Inxr ll R l
\II\ t.,

k%111111

�III, ý, li O

nn l

.t ýI

M III
Iw:. Rn

SNSD

IIIM11111

ER.
X111'\IR if `i ýeý

[wrA v
l\ýN ßl11 ýIH

II
-nlllllnR tI n111. 'R"

1

A\'. c' ICJ I, \Inl»... Iec'tL1l. lleý
subtyplnit- nvpr uv I I 0
u1Rg.. l,
FSnts I. n

n - n I ý" lvs u Inle llancc
u, "rln. a
rl, wc.. al: lc' l, l .

86 87 88 89 90 91 92 93 94 95 96

Figure 2. The evolution timeline of object-oriented methodologies up to 1996 -
adapted from [Webster 1996]

Chapter 2. Background 38

Figure 2 shows the methodologies developed during the period from 1986 to 1996

[Webster 1996]. It also shows the evolution timeline and genealogical relationships
between the methodologies, emphasizing the influences and the contributions.

2.2.2 The Unified Modeling Language (UML)

UML [Booch et al. 1999, OMG 2004] is the result of an effort to unify the visual

modeling languages used in object-oriented methodologies, following the

realization that although they were mostly different in terms of process and life-

cycle-model, many object-oriented methodologies used diagrams that were
identical in essence. Therefore, starting the trend of integration and unification with

unifying the modeling languages seemed the logical choice. UML is hence

considered a major milestone, marking the end of seminal methodologies and the

start of the integration euphoria.

It was stressed from the start (by many methodologists involved in assessing and

contributing to UML) that UML should be process-independent and nothing more

than a modeling language, so that methodologies could use it without having to

conform to a certain process. This has indeed been maintained as a design goal of
UML and explicitly mentioned in the official specifications [OMG 2003]. Yet the

opposite is not true: processes do tend to become dependent on the modeling
language they adopt. This has indeed resulted in some methodologies rebelling

against the imposition of UML as a standard, either insisting on their own

exclusive modeling languages [Dori 2002a] or using UML along with modeling

constructs not supported by it [Ambler and Constantine 2000a].

Figure 3 shows some of the influences on UML. The original developers of UML

were Rumbaugh, Jacobson, and Booch; UML is therefore most influenced by the

modeling languages used in the OMT, OOSE and Booch methodologies. After

being adopted by the Object Management Group (OMG) in 1997, UML is now

considered the de facto standard for object-oriented modeling. UNL's notation and

semantics are specified and constantly revised under the supervision of the OMG.

Chapter 2. Background 39

2.2.3 Integrated Methodologies: Third Generation

Methodologies in this category are results of integrating seminal methodologies

and are characterized by their process-centred attitude towards software

development, typically targeting a vast variety of software development

applications. Integrations have resulted in huge monstrosities of methodologies,

difficult to manage and enact [Boehm and Turner 20041. In trying to achieve

manageability, some of them have gone to extreme measures to ensure

customizability (RUP), others have turned into generic process Frameworks that

should be instantiated to yield a process (OPEN), and yet others have resorted to

process patterns for customizability (Catalysis); yet, it was frustration with these

methodologies that ultimately caused the agile movement (Highsmith 2000bl.

Although unwieldy and complex, integrated methodologies have a lot to offer in

terms of process components, patterns, and management and measurement issues.

Furthermore, some of them propose useful ideas on seamless development,

complexity management and modeling approach.

Database design Ada Smalltalk
Large system moOJ Formal
real-time programming

Entity-Relational Modelling C specification
Codd at at, 1980

_"
arch, R yr of :J

Mofbple v, ews of static relaf, onsh, ps, ""ý
desyn based on users', oncepts CRC

J4i. [Eiffel

Beck et e1 Meyer, 1989

COad, 1990 ýý

Fusion

OMT
Booch, 1991 Colaman et er, 1994

Managing oojeci designs Rumbaugh at at, 1991 end ýnierdependencres Oblectory
Jacobson etaL, 1992

SOMA A process for object-
Graham, 1991 onented desgn

R,, esets, 00 PAD, Odell
, 1991 S ntro

busin ess modethng Cook & Daniels, 1994
Activity diagrams

OPEN Real Time OOM
Graham at el., 1997 Selic at e1., 1994

Procass OROtron

Object Management Group UML Catalysis
ao-orduretor 1997 D'Souza and Wills, 1999

Figure 3. Influences on UML [Graham 2001]

Chapter 2. Background 40

2.2.4 Agile Methodologies

Agile methodologies first appeared in 1995 I Highsmith 2002, Abrahamsson et al.

2002, Schuh 2005]. The once-common perception that agile methodologies are

nothing but controlled code-&-fix approaches, with little or no sign of a clear-cut

process, is only true of a small - albeit influential - minority of these

methodologies, which are essentially based on practices of program design, coding

and testing that are believed to enhance software development flexibility and

productivity. Most agile methodologies incorporate explicit processes, although

striving to keep them as lightweight as possible. Figure 4 shows an evolution map

for a number of these methodologies, emphasizing the ways previous

methodologies and practices have influenced them.

1990

Zoon

Fiction of -mal mrdwds
(Mt louin rnd Iwndry. 1997)

pm"F-g mN odology
(t. g.. lanK 1956)

Spiral model
EwIutwnr7 lit -h (a-'. % 1986)
(Gib. 1968)

predud dNo.
" 19 (Tdc jFYeurhi nd Nonaký 1906) 6)

)bjcct aieMd

iPDtoaiwa
Rnptd ppliu[ron Inane I) ologiq Methodology
d-l-P- mm (RAD) di, mb wd ft- Eine nng Amedwdological IS
(cg.. Mann, 1991) dsvdop d (Kurur end d-lopm nt

WU 1992) (B k-illa,, 1992;
Tm a d., 2001)

f Sermn d-lop-t

RADA ioflwae (^` " Imo: Op- Source

d Wýýýxh 991) DYnýmu rypený
&I . ber-nd Sy, h- d-.. 11A

en devil & 2061) PPrwcA (Mic+osofl)
soft- soft- (OSS)

(DSDt3
ýý (C- rd Selby, 1995;

1997)

Unirl ad-dein I1 InguWp (UML) C7ýW ßmiy
of mýhodotoWoo (ý) IS dwdognent in (Cockburn. 1999 2001) E'Wooo P'o8-mg

(gad, 1999) ~St mtwýans
'"ý)name+-peed dwelopmný (Tntu el . 1.. 1999)

Adpliw Sow . D. vdopnpt (C nrto. nd ff-, 1999;
Rational Un f. d

N (ASD) (kgk. nidt 2000) B. . rv, ((. ot d, 2001;

Ptooea (RUP) eukaville d Prin. -Hoje, 2001)

(X, thou, 2000)

"`""*

"'ý__ý _ _'

Agile ... fm Prmvmý
f___________ __ FeatuVD (FDO) (Beck n. 1., 2001) program A(PP)

Dero Iopmen (Ikon atd Thou
.

(Palmer ud Felting, 2002)
Agile Modeling (AM)

)

(Antik 2002)

Figure 4. The evolution map of agile methodologies [Abrahamsson et al. 20031

The overall attitude of these methodologies towards software development has

been summarized in the Agile Manifesto, agreed upon by all major agile

methodologists (Figure 5). Agile methodologists have also given a set of principles
for agile development (quoted from [Beck et al. 20011):

Chapter 2. Background 41

" Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

" Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

" Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

" Business people and developers must work together daily throughout the

project.

" Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.

" The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

" Working software is the primary measure of progress.

" Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

" Continuous attention to technical excellence and good design enhances
agility.

" Simplicity-the art of maximizing the amount of work not done-is

essential.

" The best architectures, requirements, and designs emerge from self-

organizing teams.

" At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behaviour accordingly.

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Figure S. The Agile Manifesto [Beck et at. 2001]

Chapter 2. Background 42

Although many agile methodologists claim that their methodologies are not process-

centred, close examination usually reveals some sort of iterative-incremental process

(sometimes quite elaborate). Whereas at the start of the agile movement words like

"process" (even "methodology") were considered "dirty", agile methodologists are

showing increasing interest in advertising their "agile" processes and methodologies
[Schwaber and Beedle 2001, Schuh 2005].

2.3 Object-Oriented Process Patterns and Process
Metamodels

The advent of UML has allowed methodologists to focus on processes instead of

concerning themselves with devising new modeling languages, and the experience

gained from the relatively long and adventurous history of OOSDMs has helped

methodologists identify patterns and generalities among processes. Object-oriented

process patterns are the results of applying abstraction to process components,

thereby presenting ways for developing methodologies through composition of

appropriate pattern instances [Ambler 1998a, b]. Object-oriented process

metamodels, on the other hand, are the results of applying abstraction on the

overall process, providing process generalizations, or metamodels; processes can

then be built through instantiation of these metamodels [OMG 2002].

2.4 Method Engineering

Motivated by the prevalent belief that no one methodology fits all situations,
Methodology Engineering was first introduced as a discipline aimed at constructing

methodologies to match given organizational settings or specific development

projects [Kumar and Welke 1992]. The discipline later came to be known as
Method Engineering, a term proposed in [Brinkkemper 1996], with the definition

broadened as: "The engineering discipline to design, construct, and adapt methods,
techniques and tools for the development of information systems". The most well-
known subfield of the discipline is Situational Method Engineering, which is

concerned with the construction/adaptation of a methodology specifically attuned
to the project at hand [Harmsen 1997].

Chapter 2. Background 43

There are several approaches to method engineering, the most prominent of which

can be classified as follows [Ralyte et al. 2003, Ralyte et al. 2004]:

" Ad-hoc: Concerned with constructing a new methodology from scratch

" Paradigm-based: Concerned with instantiating, abstracting or adapting an

existing meta-model in order to produce the target methodology

" Extension-based: Concerned with enhancing an existing methodology with

new concepts and properties

" Assembly-based: Concerned with constructing the target methodology or

enhancing an existing methodology through reusing parts of other

methodologies.

Assembly-based method engineering is the foremost approach among the four

listed above, and is also the main approach to situational method engineering. The

assembly-based approach makes use of methodology components - called method

fragments or method chunks - extracted from existing methodologies and stored in

a repository. Assembly-based Method engineering has also inspired the use of

process components in object-oriented software development, mainly through the

OPEN methodology, as explained in Chapter 3 [Henderson-Sellers 2003, OPEN

Consortium 2000].

The broad definition of method engineering means that the research reported in this

dissertation can be categorized as belonging to this field; however, there are
features in the approach adopted in this thesis which are either improvements to

current method engineering practices, or set this thesis squarely apart from current

trends of method engineering practice and research. The most important of these

features are listed below:

" Whereas current practice and research related to method engineering is

mainly focused on developing situational solutions, this thesis is concerned

with developing a general methodology core.

" The software engineering approach adopted in this thesis, and the iterative-

incremental methodology development lifecycle devised, are different

from their sequential, non-design-based counterparts in method

engineering [Ralyte et al. 2003, Ralyte et al. 2004].

Chapter 2. Background 44

" Requirements-based development is not new in method engineering, where

requirements are defined according to the situation at hand; in this thesis,

on the other hand, requirements are specified through analyzing existing

methodologies.

"A hybrid design approach has been devised and applied in this thesis,

which provides a framework allowing flexible application of four

methodology development approaches, two of which - i. e. Instantiation

and Composition - are analogous to the Paradigm-based and Assembly-

based approaches of method engineering, but the remaining two - i. e.

Integration and Artefact-oriented - are relatively novel in this context. The

Integration approach is particularly nonconformist in comparison to usual

method engineering practices, in that it promotes integrating ideas and

techniques directly from existing methodologies, instead of first dissecting

the methodologies into fragments (as is common practice in assembly-

based method engineering, where a fragment repository is used). The

motivation behind this approach is the author's personal observation that

methodologies are synergistic entities, and while using repositories of

process fragments is not without merit - and is indeed one of the

constituent methods of the hybrid design approach adopted in this thesis -
breaking down the methodologies into fragments may result in loss of

functional capacity.

Chapter 3

Analysis

As in any engineering project, an effort aiming at developing software

development methodologies should start by clearly defining what the requirements

of such a methodology are. However, eliciting the requirements from a problem

domain as vast, varied and controversial as object-oriented software development

methodologies is by no means straightforward. The following are some of the

problems facing such an effort:

" Methodologies are products; many are even marketed as such (e. g. RUP

[Kruchten 2003] and DSDM [DSDM Consortium 2003]). Treating

methodologies as merchandise frequently results in redundant decorative

clutter, attractive yet obscuring wrappings, and uninformative, sometimes

even advert-like, descriptions.

" Methodologies are complex. Even methodologists that try to be scientific

and professional in their approach to defining their processes, too often end

up giving too little or too much detail at the wrong level. OPM is an

example, as elaborated later in this chapter.

" Methodologists are not objective and impartial towards their own creations
(and should not be expected to). Features stressed by methodologists are

most often not the essential ones for solving the problems of the domain,

but those that the methodologist sees as important or unique.

Therefore, requirements elicitation in this thesis called for a concentrated effort

aimed at gathering essential information about methodologies, process patterns and

process metamodels (entities of the problem domain) through abstracting away the
irrelevant features and laying bare the core philosophy and process.

45

Chapter 3. Analysis 46

The analysis method used in this thesis starts with summarizing problem domain

entities (methodologies, process patterns and process metamodels) using a template

accentuating the development processes that they offer. Analysis then proceeds

with defining a set of criteria for analyzing the object-oriented software

development processes thus highlighted. The criteria can be enriched by the

analysis results along the way, and since they underline the strengths and

weaknesses of software development processes, the final set of criteria is ultimately

used for defining the requirements.

3.1 Analysis Approach

The merits of criteria-based analysis as a source of insight into the capabilities and

shortcomings of software development methodologies has long been recognized, as

shown in previous research on software development methodologies in general

[Karam and Casselman 1993] and object-oriented software development

methodologies in particular [Walker 1992, Monarchi and Puhr 1992, Abrahamsson

et al. 2003]. The results obtained from such analyses are prevalently used for

selecting, tailoring and effective usage of methodologies, but they can also be used

for other purposes, as suggested in this thesis. The main problem that any

researcher attempting to exercise such analyses faces is the definition of a suitable

set of criteria.

An iterative-incremental approach to criteria-based analysis of software
development methodologies was devised for the purposes of this thesis, using the

analysis results themselves for refining the criteria. The method is based on the

observation that the strengths and weaknesses of methodologies (identified through

analysis) provide further ideas as to what is and what is not desirable in

methodologies; this can in turn lead to the identification of new criteria and/or

refinements to the existing ones. This means that a set of criteria can be built

recursively (i. e. through iterative application of the criterion set to methodologies),

starting from an initially unpolished and incomplete set of criteria. A method can

thus be devised to incrementally build an initially incomplete set of analysis criteria

through their iterative application to software development methodologies, until the

criteria and the analysis results are stabilized (i. e. the iterations no longer have a

significant effect on the criteria and the analysis results).

Chapter 3. Analysis 47

The analysis results are one of the main contributions of this process, yet it is the

final criterion set that will provide the ultimate objective: a set of requirements for

the target object-oriented software development methodology. This will be

achieved by evolving each criterion into a requirement through adding the level of

support that the target methodology is expected to provide for that criterion, taking

into account the lessons learnt from existing methodologies (as inferred from the

analysis results).

It should be noted that this approach is possible because of the relatively long

history of software development methodologies, especially object-oriented ones,
during which many development problems have been encountered and addressed
[Graham 2001, Capretz 2003, Ramsin and Paige 2004]. The degree of maturity

enjoyed today by methodologies is the main enabling factor for this approach,

since it relies on the methodologies themselves for providing the criteria and the

requirements.

The following sections contain a highlight of the method and the results of its

application to the problem domain. The analysis results are reported along with the
final criterion set, which are ultimately used for defining a set of requirements for

the target OOSDM.

3.2 Analysis Process

The method consists of the following steps, during which the criterion set and the

analysis results are incrementally built, and the final criteria are turned into

requirements (Figure 6):

1. Selection of a set of software development methodologies to be analyzed;

since the richness of the reviews and the analysis results is of utmost
importance when defining the requirements, the set of methodologies

should be comprehensive enough to provide extensive coverage of major
features offered by object oriented methodologies. Therefore, a set of

object-oriented process patterns and process metamodels were also
included in the review and analysis.

2. Summarization and review of the selected methodologies and process

patterns/metamodels using a process-centred template, abstracting away

Chapter 3. Analysis 48

the less important features of the methodologies and accentuating their core

processes

3. Definition of an initial set of criteria to act as the seed for the iterative-

incremental stage of the process; the criteria should be such that their

application to methodologies triggers wider and deeper exploration of the

methodologies (process and modeling language), giving rise to new criteria

and/or refinements to the existing ones.
4. Iteration of the following steps during which the analysis results are

incrementally built, and the criterion set is gradually refined; the cycle is

repeated until the analysis results and the criterion set are stabilized:

4.1. Analyzing the selected methodologies based on the criterion set,

determining their significant strengths and weaknesses; the criteria

are used as focus-pointers, concentrating the analysis on areas

where significant strengths and weaknesses are most likely to be

found.

4.2. Updating the criterion set with new criteria and/or refinements to

existing criteria or their structure, using the analysis results as a

resource

5. Using the stabilized criterion set as a framework and detailing it using the

analysis results in order to obtain the requirements

ý
Process-Centred

Methodologies Description of
' Methodologies

Soled Z
Methodologies Process-Centred

Template Define Initial
Cnterion Set (Seed)

Final
Criterion

Criterion if Stabilized. Set
Set

Finalize Cnlenon Sol

Analyze Melhodologms Refine Cntenon Sol Requirements
Define

Requirements

Analysis Final
Results Analysis

If Stablized, Results
Finalize Analysis Results

Figure 6. The analysis process

Chapter 3. Analysis 49

It is advisable to explore the methodologies as extensively as possible (i. e. beyond

the scope of the initial criterion set) during the first iteration. This is not absolutely

necessary, but will definitely prove a valuable time-saving measure, compensating

for the deficiencies of the initial criterion set. The following sections report the

results of applying this method to a set of object oriented software development

methodologies.

3.3 Process-Centred Review

A total of 24 object oriented methodologies were chosen for analysis, spanning all

the three classes of object-oriented methodologies: seminal, integrated and agile. A

set of process patterns and process metamodels were also added in order to

complement the set of methodologies, thereby enriching the feature set to be used

in defining the requirements. It should be noted that object oriented software

development approaches which lack a detailed process or a reasonably defined

process metamodel have not been considered for inclusion in this review. MDA is

the most important of these: still in its infancy, the approach is attractive as a

development philosophy, yet is vaguely defined, and its practicability remains to be

tested. The following are the methodologies, process patterns and process

metamodels that were reviewed:

f Methodologies

 Seminal

1. Shlaer-Mellor (1988,1992)

2. Coad-Yourdon (1989,1991)

3. RDD (1990)

4. Booch (1991,1994)

5. OMT (1991)

6. OSA (1992)

7. OOSE (1992)

8. BON (1992,1995)

9. Hodge-Mock (1992)

10. Syntropy (1994)

11. Fusion (1994)

Chapter 3. Analysis

 Heavyweight

1. OPM (1995,2002)

2. Catalysis (1995,1998)

3. OPEN (1996)

4. RUP/USDP (1998,1999,2000,2003)

5. EUP (2000,2005)

6. FOOM (2001)

 Agile

1. DSDM (1995,2003)

2. Scrum (1995,2001)

3. XP (1996,2004)

4. ASD (1997,2000)

5. dX (1998)

6. Crystal (1998,2004)

7. FDD (1999,2002)

f Process Patterns

1. Ambler (1998)

f Process Metamodels

1. OPF - as part of the OPEN methodology (2001)

2. SPEM (2002)

50

This section contains an overview of the process-centred description template,

along with descriptions of the selected set of object-oriented methodologies,

process patterns and process metamodels, summarized using the template.

3.3.1 Process-Centred Description Template

The selected methodologies are summarized and reviewed using a process-centred

template, highlighting the activities prescribed in each methodology while keeping

the description and discussion of the artefacts produced and modeling languages used

(mainly diagrams and tables) as secondary to the activities. The description produced

using this template offers little critique on the methodologies - and indeed that is not

the goal - yet abstracts and structures them in a way that enables elaborate analysis

of individual methodologies. The description of a methodology based on this

template consists of the following parts:

Chapter 3. Analysis 51

1. An introductory preface providing a brief account of the methodology's

history and distinguishing features, as well as an abstract overview of the

development process prescribed by the methodology.

2. A number of subsections, one for each high-level subprocess in the

methodology's development process, each consisting of:

a. Details of the activities performed in the subprocess and the order
in which they are performed.

b. A concise description of the artefacts produced and the modeling
languages used in the subprocess, described as part of their

relevant activities; modeling languages, although necessary for

fully understanding the mechanisms used in a methodology's

process, tend to clutter the description of a methodology and

obscure the process. Describing the modeling language as

secondary to the process alleviates this problem. Scrutinizing

notations, however, is beyond the scope of this analysis; notational

conventions have therefore been left out of the descriptions in this

thesis. The reader is referred to [Ramsin and Paige 2004] for the

full descriptions.

3.3.2 Methodologies: Seminal

Due to the large number of these methodologies, only those most renowned and
influential have been examined; methodologies that, according to the evolution

timeline of [Webster 1996], either have started, or are apt representatives of,
individual branches. Each methodology utilizes its own modeling language, which

should also be covered if the description of the methodology is to be of any good.

3.3.2.1 Shlaer-Mellor (1988,1992)

The Shlaer-Mellor methodology for object-oriented analysis and design was
introduced through two separate books. In their first book [Shlaer and Mellor

1988], Shlaer and Mellor focused on analysis, leaving design to their second book

[Shlaer and Mellor 1992]. Their analysis method considered objects as data entities

rather than encapsulations of both data and behaviour, thus neglecting object

methods. Therefore, it was mainly considered an information modeling method,

Chapter 3. Analysis 52

rather than a full-fledged object-oriented methodology [Coad and Yourdon 1991a].

The introduction of the design method and later enhancements turned this initially

inadequate method into a competitive methodology [Shlaer and Mellor 1996]. The

final version of the process covers the analysis, design, and implementation phases

of the software development lifecycle. It can be broken down into eight steps

(typically performed sequentially):

1. Partitioning the system into domains according to the four domain types

defined in the methodology. The partitions practically divide the structure,
functionality and behaviour of the software system into four tiers: problem
domain, application-independent services, physical architecture, and

physical implementation.

2. Analyzing the application (problem) domain.
3. Confirming the analysis through static and dynamic verification.

4. Extracting the requirements for the application-independent service domains

supporting the application domain.

5. Analyzing the service domains.

6. Specifying the components of the architectural domain (physical

configuration of the software).
7. Building the architectural components.
8. Translating (implementing) the analysis models of relevant domains into the

architectural components.

These steps are briefly described in the following sections.

Partitioning the system into domains (Shlaer-Mellor)

The system is first partitioned into a number of domains. There are four types of
domains, one or more of which (according to the following list) are defined in

every system:

" An Application Domain: the domain specifically pertinent to the end user
(problem domain).

"A number of Service Domains: relatively general, application-independent
domains directly supporting the application domain; examples include the

user interface and the sensors-and-actuators domain in real-time systems.

Chapter 3. Analysis 53

" An Architectural Domain: depicting the physical software configuration of

the system and concerned with the organization of data, control and

algorithm within the system as a whole.

"A number of Implementation Domains: comprising the readily available,
implementation-level components supporting the software system at

runtime; e. g. the operating system and the programming language

constructs and components.

The domains are organized in client-server relationships, with the client domains

depending on the server domains to provide them with necessary services. The

results of this step are modeled in a Domain Chart, depicting the domains and their

client-to-server relationships (referred to as bridges).

Analyzing the application domain (Shlaer-Mellor)

The next step involves applying Shlaer-Mellor OOA (Object-Oriented Analysis) to

the application domain. Shlaer-Mellor OOA models are made up of three separate

parts, built in the following order:

I. An Object Information Model is built that defines the objects of the

domain, and the relationships between them.
2. State Models are built that show the lifecycle (behaviour) of each object.
3. Action Specification Models are built that depict the processing taking

place in the state models. Usually there is one action specification for each

state in each object's lifecycle. Action specifications are usually done in

Action Data Flow Diagrams (ADFD).

If a domain is too large to be analyzed as a unit, it may be necessary to partition it

into subsystems. Three models are constructed to show relationships between

subsystems within a domain. These models are:

1. Subsystem Relationship Model: showing the structural relationships
between objects in different subsystems.

2. Subsystem Communication Model: showing event communications
between objects in different subsystems.

Chapter 3. Analysis 54

3. Subsystem Access Model: showing data accesses between objects in

different subsystems.

The methodology also prescribes the production of a number of derived models for

each of the subsystems, as listed below:

1. Object Communication Model: showing the event communications
between objects.

2. Event List: showing events being sent within or between state models.
3. Object Access Model: showing the data accesses between objects.
4. State Process Table: showing the processes in all ADFDs.

5. Thread-of-Control Chart: showing the sequences of actions executed in

response to each and every external event.

Confirming the analysis (Shlaer-Mellor)

A set of rules, described in [Lang 1993], forms the basis for static verification of

the OOA model-set. Furthermore, a process is prescribed for dynamic verification

of the model-set by simulating the execution of the models. The simulation of a
desired behaviour is done in four steps:

1. Establish the desired initial state of the system in data values in the object
information model.

2. Initiate the desired behaviour with an event sent to a state model.
3. Execute the processing as specified by the action specification models and

as sequenced by the state models.
4. Evaluate the outcome against the expected results (according to the desired

behaviour).

Extracting the requirements for the service domains (Shlaer-Mellor)

In the domain chart, each bridge between domains represents what the client
domain requires of the server domain. These requirements are assigned to the

service domains and form the basis for analyzing the remaining domains in the

system.

Chapter 3. Analysis 55

Analyzing the service domains (Shlaer-Mellor)

After specifying the requirements of all the client domains, Shlaer-Mellor OOA is

applied to each of the remaining service domains. After analyzing each domain, its

behaviour is dynamically verified by executing its OOA models. This process

continues downwards along the bridges until domains are reached that either
belong to the system-wide architecture (i. e. the architectural domain) or already

exist (implementation domains such as the operating system, the programming
language or the communication network).

Specifying the components of the architectural domain (Shlaer-Mellor)

As the last domain to be analyzed, the architectural domain is mainly concerned

with system design issues and specifies generic, system-wide components for

managing data, function and control, thereby laying out the physical configuration

of the system and defining rules for translating the OOA models into this

configuration.

The architectural domain is specified in two types of components: mechanisms and

structures. Mechanisms represent architecture-specific capabilities that must be

provided in order to realize the system and are realized as traditional software tasks

and library components. A mechanism may be regarded as the actual code that can
be linked into the final system to implement elements of the models (state

machines, event receiving queues, etc.). Structures represent a prescription for

translating the OOA models of the client domains. They are realized as templates
for code fragments that are filled in (populated) based on elements in the OOA

model (e. g. archetypes for C++ classes populated from OOA model objects).

The architectural domain can be designed using Shlaer-Mellor OOA notations, but

may also be designed using other methods. If an object-oriented design is required,
Shlaer/Mellor's Object Oriented Design LanguagE (OODLE) is recommended.
OODLE uses four types of diagrams (arranged into a layered structure) to model
the design of an object oriented program, library or environment:

" Inheritance Diagrams, which show the inheritance relationships between

classes.

Chapter 3. Analysis 56

" Dependency Diagrams, showing usage (client/server) and friend

relationships between classes.

" Class Diagrams, which show the external view of each class.

" Class Structure Charts, showing the structure of the methods and the flow

of data and control within a class.

Building the architectural components (Shlaer-Mellor)

Mechanisms and structures indicating the physical design of the system (specified

in the previous task) are detailed and set up in this task. Architectural mechanisms

realizing the system-wide data management, functionality and control are

constructed, and architectural structures are detailed in order to define

unambiguous templates for adding the functionality of the client domains to the

mechanisms. The stage is thus set for the implementation of components pertaining

to the client domains; these will be constructed and embedded into the architecture

in the next task. As this task and the next deal with implementation issues,

extensive use is made of components and constructs provided by the

implementation domain.

Translating the models of each domain (Shlaer-Mellor)

Models pertinent to those domains that are direct or indirect clients of the

architectural domain are implemented into the architectural configuration using the

structures detailed in the previous task. The details of the final step depend a great
deal on the design chosen for the system, and the architectural components created.

For example, considering the general case of multitasking and multiprocessor

systems, the essential activities would be to:

1. Allocate instances of objects to tasks, and tasks to processors.
2. Create the tasks through translating the OOA models.

3.3.2.2 Coad-Yourdon (1989,1991)

Like many other early object-oriented methodologies, the Coad-Yourdon

Methodology had a two-phase introduction. Coad and Yourdon introduced their

Object-Oriented Analysis (OOA) method in 1989. A second edition of their book

Chapter 3. Analysis 57

on analysis appeared in 1991 [Coad and Yourdon 1991a], and their landmark book

on Object-Oriented Design (OOD) was published the same year [Coad and

Yourdon 1991b]. The Coad-Yourdon Methodology is comparatively simplistic in

its approach, yet it served its purpose as an introductory object-oriented

methodology at a time when inertia in adopting object-oriented techniques seemed

too great to overcome. Although the Coad-Yourdon methodology is generally

considered to only span the generic analysis and design phases, it does offer

guidelines for implementation, by suggesting techniques for translating the design

models into code. The general process for applying the analysis and design

methods is shown in Figure 7 (called the "Baseball Model"). The activities and

deliverables of OOA and OOD as prescribed by the Coad-Yourdon methodology

are covered in the next sections.

/000000M"IýN OOA OOD

OOA 00 Analysis
OOD 00 Design OOP
OOP 00 Programming

Figure 7. The Coad-Yourdon model for software development
[Coad and Yourdon 1991a]

Analysis (Coad-Yourdon)

The analysis (OOA) part of the methodology consists of five principal activities:

1. Finding "Classes" (abstract classes) and "Class-&-Objects" (concrete

classes)
2. Identifying "Structures" (generalization-specialization and whole-part

relationships between classes)
3. Identifying "Subjects" (partitions/subsystems)

4. Defining attributes, and "Instance-Connections" (association relationships
between classes)

Chapter 3. Analysis 58

5. Defining "Services" (class operations) and "Message-Connections"

(invocations of operations)

Coad and Yourdon emphasize that although initiated sequentially, these activities

are not sequential steps, since jumping from one activity to another, especially to a

previously-initiated one, is inevitable. Results of these activities are reflected in a

special Class-&-Object Diagram that is the pivotal model of the system. In

accordance to these major activities, the resulting class-&-object diagram consists

of five layers, each on top of the previous one, thus adding the detail in a controlled

manner. These layers are:

1. Subject layer: which shows the overall partitions of the system.

Hierarchical models of the system can be built through nesting the subjects,

providing further means for complexity management.

2. Class-&-Object layer: showing the abstract and concrete classes of the

system.
3. Structure layer: which shows the generalization-specification and whole-

part relationships between the classes.
4. Attribute layer: showing the attributes of the classes and the association

relationships between classes.
5. Service layer: which shows the operations of the classes and the potential

message-passing between the objects (even the sequence of the messages

can be modeled).

The class-&-object diagram is supplemented with various behavioural diagrams

produced during the identification of the operations and the message-connections
(activity 5 of the analysis phase). Typically, the dynamic behaviour of each class is

captured in an Object State Diagram, a simple form of State Transition Diagram,

and the algorithm that has to be applied for each of the significant services (i. e. the

operation body) is described by a simple kind of flowchart, referred to as a Service

Chart.

Chapter 3. Analysis

Design (Coad-Yourdon)

59

During the design phase of the methodology (OOD) the system is designed in four

components, each of which provides certain functionality needed to realize the

requirements and implement the system. The components are listed below:

1. Problem Domain Component (PDC): initially contains the results of the

analysis phase. During OOD, it is improved and enriched with

implementation detail, yet still represents the part of the design containing
features related to the user domain; that is, the requirements.

2. Human Interaction Component (HIC): handles sending and receiving

messages to and from the user. The classes in the human interaction

component have names taken from the user interface language, e. g.

window and menu.

3. Task Management Component (TMC): for systems needing to implement

multiple threads of control, the designer must construct a task management

component to organize the processing, coordinate the tasks (processes) and

provide means for inter-task communication. This component contains the

classes that supply these services.
4. Data Management Component (DMC): provides the infrastructure to store

and retrieve objects. It may be a simple file system, a relational database

management system, or even an object-oriented database management

system. Classes in this domain typically represent relational tables, and/or

more complex data/object servers.

The main diagram in each component is the class-&-object diagram (with the same
five-layered architecture). Dynamic diagrams (object state diagrams and service

charts) are used to augment and supplement the information they convey.

3.3.2.3 RDD (1990)

Wirfs-Brock, Wilkerson and Wiener introduced Responsibility-Driven Design

(RDD) in 1990 [Wirfs-Brock et al. 1990]. The RDD process starts when a detailed

requirement specification of the system has already been provided. This means that

certain typical analysis activities, including requirements elicitation, have been left

out of the methodology, leaving it to the engineer to decide what method to use for

Chapter 3. Analysis 60

producing the requirements specification. Despite this, RDD has had a great impact

on modem object-oriented software engineering, since the very useful notion of

responsibility was first demonstrated and used to perfection in this methodology.

A new version of RDD using ideas from UML and use case driven practices has

also been released [Wirfs-Brock and McKean 2002].

RDD models an application as a collection of objects that collaborate to fulfil their

responsibilities. Responsibilities include two key items:

1. The knowledge an object maintains.
2. The actions an object can perform.

The process is divided into two phases: the Exploratory Phase and the Analysis

Phase (Figure 8). A brief overview of each phase is given in the next sections.

Exploratory Phase (RDD)

The major tasks in this phase are to:

1. discover the classes required to model the application,
2. determine what behaviour the system is responsible for and assign these

responsibilities to specific classes, and

3. determine what collaborations must occur between classes of objects to
fulfil the responsibilities.

As seen in the diagram depicting the RDD process, the three activities of
Identifying Classes, Identifying Responsibilities and Identifying Collaborations

should be performed iteratively in order to be effective, since the results of each

activity will affect the outcome of the others. The responsibility-driven design

method uses CRC (Class-Responsibility-Collaborator) cards - first introduced by

Cunningham and Beck - in order to capture classes, responsibilities and

collaborations. These cards also record subclass-superclass relationships and

common responsibilities defined by superclasses.

Chapter 3. Analysis

Requirements Specification

Exploratory Phase

Identify Classes

Identify Responsibilities I1 Identify Collaborations

Preliminary Design

Analysis Phase

Analyze Hierarchies

Analyze Subsystems

Create Protocols

Design

Figure 8. The RDD process [Wirfs-Brock et at. 19901

Analysis Phase (RDD)

61

During the second phase of RDD, the following activities are primarily performed:

1. Factoring the responsibilities into inheritance hierarchies to get maximum

reusability from class designs. Inheritance hierarchies are modeled in

Inheritance Graphs. Responsibilities of each class are clustered into

contracts, i. e. the list of requests that a client can make of the class. A class

may support numerous contracts, showing different behaviour to different

clients.

2. Identifying possible subsystems of objects and modeling the collaborations

between objects in more detail. This activity involves modeling the

structure of the subsystems and their contents (objects and other

subsystems), along with the client-server relationships between them, in

Collaboration Graphs. These diagrams also show the contracts of each

Chapter 3. Analysis 62

server (class or subsystem), and the Client-server relationships explicitly

show on which contract of the server a client is dependent.

3. Determining Class Protocols and completing a specification of classes,

subsystems of classes, and client-server contracts; protocols are defined for

each class by refining responsibilities into sets of method signatures.
Detailed textual specifications are written for each subsystem, each class,

and each contract.

The first two activities are performed iteratively, since decisions on subsystem
boundaries may affect the factoring of responsibilities, and vice-versa.

3.3.2.4 Booch (1991,1994)

Booch introduced his object-oriented methodology, purely as a design method, in

his first book in 1991 [Booch 1991]. He was already well known at that time for

his work on Ada program design, and especially for his landmark paper [Booch

1986], which was the first to suggest using the object-oriented approach in higher-

level software development activities, namely system design. He presented an

extended version of his methodology, which also covered analysis, in his second

book [Booch 1994]. Booch has modeled object-oriented design as a repeating

process (referred to as "The Micro Process") within a lifecycle-level repeating

process (referred to as "The Macro Process"). It has been likened to a wheel (the

micro process) spinning along a road (the macro process).

The macro process serves as a controlling framework for the micro process. It

represents the activities of the development team on the scale of weeks to months.
Many parts of this process are basic software management practices such as quality

assurance, code walkthroughs, and documentation. The focus at this level is more

upon the customers and their desires for things such as quality, completeness, and

scheduling. Figure 9 shows the macro process as prescribed by Booch (the self-
iterations represent the micro process).

Chapter 3. Analysis

Establish Core Model Desired
Requirements Behaviour

(Conceptualization) (Analysis)

Create
Architecture

(Design)

Post-delivery Evolve
Evolution Implementation

(Maintenance) (Evolution)

Figure 9. The Macro Process of the Booch methodology
[Booch 19941

63

The micro process is driven by the scenarios and architectural specifications that

emerge from the macro process. It represents the daily activities of the individual

or small group of developers. Figure 10 shows the various tasks involved in the

micro process.

These two processes are further described in the next sections.

Identify
Classes and Objects

Specify

Interfaces and
Implementations

Identify
Class and Object

Relationships

Identify
Class and Object

Semantics

Figure 10. The Micro Process of the Booch Methodology
IBooch 1994]

Chapter 3. Analysis

Macro Process (Booch)

The macro process tends to follow these steps [Booch 1994]:

1. Establish core requirements for software (conceptualization).

2. Develop a model of the system's desired behaviour (analysis).

3. Create an architecture for the implementation (design).

4. Evolve the implementation through successive refinement (evolution).

5. Manage post-delivery evolution (maintenance).

Micro Process (Booch)

64

The micro process tends to cycle through the following activities [Booch 1994]:

1. Identify the classes and objects at a given level of abstraction, through

establishing the boundaries of the problem, finding abstractions in the

problem domain, constraining the problem and identifying what is and is

not of interest, and generating a Data Dictionary, which specifies all

classes and objects in the development. Due to the iterative nature of the

micro process, the data dictionary can change during development. Booch

advocates the use of CRC cards (explained in Section 3.3.2.3) throughout

the process. Classes identified during the earlier phases of the macro

process mainly belong to the problem domain, while those added during

design typically belong to the implementation.

2. Identify the semantics of classes and objects. The purpose of this step is to

establish the meanings of the classes and objects identified in the previous

step, with the emphasis chiefly on behaviour of the system and its

constituents, rather than the structure. This is done by establishing the

behaviour and attributes of each abstraction identified in the previous

phase, and by refining the abstractions. Responsibilities are added to

abstractions and named operations are developed for each class. State

Charts are produced for classes with significant dynamic behaviour. Object

Diagrams and Interaction Diagrams are also produced, depicting the

patterns of interaction among objects; these diagrams are actually
isomorphic, with the former stressing the static relationships among

objects, and the latter emphasizing the sequence of the interactions among

Chapter 3. Analysis 65

objects. Object diagrams are also quite useful in the earlier stages of the

macro process for showing the structural relationships among objects. In

this context, only the links between the objects are shown, and the arrows

and sequence numbers, which determine the behavioural aspects (message

passing), are left out, to be added in later stages. These simple object-
diagrams are built during the third step of the micro process (identifying

relationships); in other words, simple object diagrams built during the third

activity of the micro process in the earlier stages of the project (first two

phases of the macro process), are adorned with behavioural detail during

the second activity in later iterations.

3. Identify the relationships among classes and objects. Once behaviour is

identified, the next step is to determine the relationships among classes and

objects. This is done by establishing exactly how things interact within the

system. Patterns among classes which permit reorganization and

simplification of the class structure are sought. Visibility decisions are

made at this time. The end result of this step is the production of class,

object and module diagrams. Class Diagrams show the classes and their

relationships (association, inheritance, and aggregation). Module Diagrams

are typically built during later stages of the macro process and are used to

show the physical modules and the interdependencies among them, thus
depicting the physical architecture of the system.

4. Specify the interface and implementation of classes and objects. Design

decisions are made concerning the representation of the classes and objects

already identified. Classes and objects are allocated to modules, and

processes implementing these modules are allocated to processors. Module

diagrams are adorned with additional detail, and Process Diagrams are

produced. A process diagram shows the hardware platform architecture of
the system by depicting the processors and devices and their
interconnections. It also shows which processes are allocated to each

processor.

Typically, the stress is gradually shifted from the earlier activities of the micro
process to the later ones as the project moves through the macro process, from

conceptualization to analysis and then to design. However, due to the iterative

Chapter 3. Analysis 66

nature of the overall process, it is likely that earlier activities of the micro process

will be revisited throughout the design.

3.3.2.5 OMT (1991)

OMT (Object Modeling Technique) was introduced by Rumbaugh et al. in 1991

[Rumbaugh et al. 1991]. The methodology is categorized as combinative

[Monarchi and Puhr 1992], since it uses three different models (analogous to the

old structured SA/SD methodology [DeMarco 1978, Yourdon and Constantine

1979]) and then defines a method for integrating them. The three models by which

OMT graphically defines a system are:

1. The Object Model (OM): The object model is the pivotal model. It depicts

the object classes in the system and their relationships, as well as their

attributes and operations, and thus represents the static structure of the

system. The object model is represented graphically by a Class Diagram.

2. The Dynamic Model (DM): The dynamic model indicates the dynamics of
the objects and their changes in state. It captures the essential behaviour of

the system by exploring the behaviour of the objects over time and the

flow of control and events among the objects. Scenarios of the flow of

events are captured in Event-Trace Diagrams. These diagrams, along with

State Transition Diagrams (State Charts), compose the OMT dynamic

model.

3. The Functional Model (FM): The functional model is a hierarchical set of
Data Flow Diagrams (DFDs) of the system and describes its internal

processes without explicit concern for how these processes are actually

performed.

Each model describes one aspect of the system but contains references to the other

models: the object model describes the data structure that the dynamic and
functional models operate on; the operations in the object model correspond to

events in the dynamic model and functions in the functional model; the dynamic

model describes the control structure of objects, showing decisions that depend on

object values and which cause actions that change object values and invoke

functions; the functional model describes functions invoked by operations in the

Chapter 3. Analysis 67

object model and actions in the dynamic model; functions operate on data values

specified by the object model; the functional model also shows constraints on

object values.

The OMT process consists of five phases, as shown in Figure 11. A use case driven

version of OMT, coined OMT-2, was proposed by Rumbaugh in 1994 [Rumbaugh

1994]; in OMT-2, Use Case Diagrams and Object Interaction Diagrams replace

DFDs as constituents of the functional model.

The first three phases (Analysis, System Design and Object Design), which are

considered the primary features of the OMT process, are described in the next

sections.

Class libraries

Knowledge about
application domain Init. Basic

Init. D System aýhitectw Object aalysis Design Design Coding Testing
Mit. FM Detailed Object

Problem statement OM, DM, FM OM, DM, FM source code

Analysis System Object source fest
document design design code scenarios document document

User interactions

Reuse Database of OMT Specifications

Figure 11. The OMT process and its deliverables [Derr 1995]

Analysis (OMT)

The goal of analysis is to build a correct and comprehensible model of the real

world. Requirements of the users, developers and managers provide the
information needed to develop the initial problem statement. Once the initial

problem is defined, the following tasks are carried out:

1. Building the object model, including a Class Diagram, depicting the

classes of the system and their relationships, and a Data Dictionary.

Chapter 3. Analysis 68

2. Developing the dynamic model, including State Transition Diagrams and

global Event-Trace Diagrams. The OMT identifies the following steps in

constructing the dynamic model:
2.1. Identifying patterns of system usage and preparing scenarios of

typical interaction sequences.
2.2. Identifying events between objects and preparing an event-trace

diagram for each scenario.
2.3. Preparing an event-trace diagram for the system, showing events

flowing at the boundary of the system.
2.4. Developing state transition diagrams for classes with important

dynamic behaviour.

2.5. Checking for consistency and completeness of events shared

among the state transition diagrams.

3. Constructing the functional model including Data Flow Diagrams and

constraints.
4. Verifying, iterating, and refining the three models.

System Design (OMT)

During system design, the high-level structure of the system is chosen. The

decisions that will be addressed during system design are:

1. Organizing the system into subsystems.
2. Identifying concurrency.

3. Allocating subsystems to processors and tasks.
4. Choosing the strategy for implementing data stores in terms of data

structures, files, and databases.

5. Identifying global resources and determining mechanisms for controlling

access to them.

6. Choosing an approach to implementing software control.
7. Considering boundary conditions.
8. Establishing trade-off priorities.

Chapter 3. Analysis

Object Design (OMT)

69

Object design is concerned with fully specifying the existing and remaining

classes, associations, attributes, and operations necessary for implementing the

system. Operations and data structures are fully defined along with any internal

objects needed for implementation. In essence, all of the details for fully

determining how the system will be implemented are specified during object

design.

3.3.2.6 OSA (1992)

OSA (Object-oriented Systems Analysis) was introduced in 1992 by Embley,

Kurtz and Woodfield [Embley et al. 1992]. OSA is only concerned with object-

oriented analysis and does not include other phases of the generic software
development lifecycle. It is considered a model-driven technique, in that it provides

a pre-specified set of fundamental concepts with which to model the system under

study, and therefore lacks a prescribed, step-by-step process. This is in contrast to

the method-driven approach (which is typical of lifecycle-span methodologies),

casting a shadow of doubt on whether it should at all be considered a methodology.
Nevertheless, there are those who believe that OSA is an analysis methodology,

categorizing it as such alongside its method-driven counterparts [Meyer 1997]. In

any case, OSA's influence on later methodologies is significant, justifying its

inclusion in this review.

In OSA, the system is modeled from three perspectives: object structure, object
behaviour, and object interaction. An OSA model of the system consists of three

parts:

1. Object-Relationship Model (ORM), which describes objects and classes as

well as their relationships with each other and with the "real world".
2. Object-Behaviour Model (OBM), which provides the dynamic view

through states, transitions, events, actions and exceptions (analogous to a

state-transition diagram).

3. Object-Interaction Model (OIM), which specifies possible interactions

among objects.

Chapter 3. Analysis 70

Complexity is managed by providing means for model layering, showing details of

high-level model elements in separate lower-level diagrams. These models are

briefly described in the next sections.

Object-Relationship Model - ORM (OSA)

ORM components describe objects, object classes, relationships, relationship sets,

and constraints. An object is any identifiable entity, and an object class is a set of

objects that share common properties or behaviour. A relationship links two or

more objects. A relationship set is a set of relationships that associate objects from

the same collection of object classes. ORM components include three special kinds

of relationship sets: generalization/specialization, aggregation, and association.

High-level object classes and high-level relationship sets are complex object

classes and relationship sets described in more detail in separate ORM diagrams.

Object-Behaviour Model - OBM (OSA)

The OBM describes the behaviour of objects in a system. It consists of a collection

of state nets, each of which defines the behaviour for the members of an object

class. The primary building blocks for state nets are states and transitions. An

object may be in several different states at any time. A transition consists of a

trigger and an optional action. High-level states and high-level transitions are

states and transitions described by other state nets.

Object-Interaction Model - OIM (OSA)

An OIM captures information about interactions between objects. OIM

components include objects, interactions and various types of constraints. High-

level interactions are those described by more detailed OIM diagrams.

3.3.2.7 OOSE (1992)

OOSE (Object-Oriented Software Engineering) was introduced by Jacobson in

1992 [Jacobson et al. 1992]. It is a simplified version of Jacobson's Objectory

methodology, first introduced in 1987 [Jacobson 1987] and later the property of
Rational Corporation (recently acquired by IBM). Covering the full generic

Chapter 3. Analysis 71

lifecycle, the OOSE process consists of three main phases, each producing a set of

models:

1. Analysis: focus is on understanding the system and creating a conceptual

model of it. This phase consists of two non-sequential, iterative subphases:
1.1. Requirements Analysis, aiming at eliciting and modeling the

requirements of the system. A Requirements Model is produced

as a result of this activity.
1.2. Robustness Analysis, aiming at modeling the structure of the

system in terms of interface, data and control objects and also
by specifying the subsystems making up the overall system. An

Analysis Model is produced as the result of this activity.

2. Construction: focus is on creating a blueprint of the software and
producing the code. This phase consists of two subphases:

2.1. Design, aiming at modeling the run-time structure of the

system, and also the inter-object as well as intra-object

behaviour necessary to realize the requirements. A Design

Model is produced as the result of this activity.
2.2. Implementation, aiming at building the software. An

Implementation Model (including the code) is produced as the

result of this activity.
3. Testing: focus is on verifying and validating the implemented system. A

Test Model is produced during this phase.

Figure 12 shows the OOSE process and the models produced. Although each model
is built in a specific phase of the process, models are usually revisited and refined
during later phases. A brief description of each phase and subphase, and the

corresponding models, is given in the next sections.

Analysis (OOSE)

Concerned with understanding and modeling the system, this phase lays the

groundwork for later phases, especially by producing the Use Case Model, which is

the pivotal model of the whole process. The two subphases are executed iteratively,

thereby deriving the Requirements and Analysis Models from the informal

customer requirements.

Chapter 3. Analysis

Requirements Model
Use case model
Interface descriptions

Analysis A domain model

Requirements analysi
- use case modeling Analysis Model
- user interface design Modeling the system with
- domain modeling three object types
Robustness analysis Subsystems
- three object lures

Design Model
Implementation
environment descriptio

Construction Interaction diagrams
Design State transition graphs
implementation environ- Block design
merit An object model

Implementation
environment descriptions

Construction Interaction diagrams
Design State transition graphs
implementation environ- Block design
mcnt An object model

Source code
Model

Testing
Unit testing Testing Model
Intergration testing Test specifications
System testing Test results

Figure 12. The OOSE process and the models produced
[Jacobson et al. 1992]

Requirements Analysis

72

The aim of the requirements analysis subphase is to specify and model the

functionality required of the system, typical means and forms of interacting with

the system, and the structure of the problem domain.

The model to be developed is the Requirements Model, further divided into three

submodels:

"A Use Case Model, which delimits the system and describes the functional

requirements from the user's perspective. The use case model specifies the

complete functional behaviour of the system by defining what entities
interact with the system from outside (actors) and the specific ways these

external entities use the system (use cases). A use case is defined as "a

particular form or pattern or example of usage, a scenario that begins with

Chapter 3. Analysis 73

some user of the system initiating some transaction or sequence of

interrelated events" [Jacobson et al. 1992]. In addition to depicting the

relationship between the actors and their corresponding use cases (those

they communicate with), a use case model can also show the relationships

between the use cases themselves: a use case may extend another use

case's behaviour, or use another use case in order to perform its own

functionality.

"A Domain Object Model, which consists of objects representing entities
derived from the problem domain, and their inheritance, aggregation and

association relationships.

" Interface Descriptions, which provide detailed logical specifications of the

user interface and interfaces with other systems.

The use case model is the central model of OOSE; use cases are the basis on which

the whole process rests. They are directly involved in the construction of other

models and enable the developers to keep constant focus on the requirements.
Hence, OOSE is considered a "use case driven" methodology, and the first of an

influential dynasty.

Robustness Analysis

The aim of the robustness analysis subphase is to map the requirements model to a
logical configuration of the system that is robust and adaptable to change. The

model to be developed is the Analysis Model, which shows how the functionality of

each and every use case is realized by collaboration among typed objects (called

analysis objects). These objects can be of three types:

1. Entity: objects of this type represent entities with persistent state, typically

outliving the use cases they help realize. They are usually derived from the

domain object model.
2. Interface: objects of this type represent entities that manage transactions

between the system and the actors in the outside world.
3. Control: objects of this type represent functionality not inherently

belonging to other types of objects. They typically act as controllers or

coordinators of the processing going on in the use cases.

Chapter 3. Analysis 74

The developers of OOSE believe that this kind of typing improves robustness and

adaptability by enhancing separation of concern among the objects.

The analysis model is derived from the use case model by spreading the behaviour

in each use case among typed objects, showing how they communicate and interact

in order to realize the use case. The analysis submodels thus constructed (one per

use case) can also show the inheritance and aggregation relationships between the

objects. In more complex systems, the analysis model also includes information on

how the system can be partitioned into subsystems, represented as packages of

analysis classes.

Construction (OOSE)

This phase is concerned with mapping the models so far produced to a physical

configuration of the system. It constructs the software system by focusing on

implementation issues, modeling the run-time structure and behaviour of the

system, and producing the final code. The two subphases closely correspond to the

generic lifecycle activities of the same names.

Design

The aim of the design subphase is to refine the analysis model by taking into

account implementation features. The model to be developed is the Design Model,

which describes the features of the implementation environment, the details of the

design classes (referred to as blocks) necessary to implement the system, and the

way run-time objects should behave and interact in order to realize the use cases.

The design subphase can be broken down into three activities:

1. Determination of the features of the implementation environment; such as

the DBMS, programming language features, and distribution

considerations.
2. Definition of blocks (design classes) and their structure; each object in the

Analysis Model is initially mapped to a design class, called a block.

Implementation-specific blocks are then added and the collection is

revised. The set of blocks is partitioned into packages, which represent the

Chapter 3. Analysis 75

actual implementation elements of the system. Interfaces of blocks and

semantics of their operations are explicitly and comprehensively defined.

3. Specification of the sequences of interactions among objects and the

dynamic behaviour of each block; an Interaction Diagram is drawn for

each of the use cases, describing the sequence of communication among

block instances at run-time for realizing the use case. OOSE interaction

diagrams provide support for use cases with extensions, by using special

symbols called probe positions for indicating a position in the use case that

is to be extended (the extension use case is to be plugged into it) if a given

condition is satisfied. In addition to interaction diagrams, a State Transition

Graph is used to describe the behaviour of each block.

Implementation

The aim of the implementation subphase is to produce the code from the

specifications of the packages and blocks defined in the design model. The model

to be developed is the Implementation Model, which consists of the actual source

code and accompanying documentation.

Testing (OOSE)

The aim of the testing phase is to verify and validate the implementation model.
The model to be developed is the Testing Model, which mainly consists of the test

plan, the test specifications and the test results. As usual, testing is done at three

levels: starting from the lowest level, blocks are tested first, use cases are tested

next, and finally, tests are performed on the whole system.

3.3.2.8 BON (1992,1995)

The BON Methodology was first introduced in a paper by Nerson in 1992 [Nerson

1992], with the acronym standing for "Better Object Notation". A revised and far

more detailed version of the methodology was put forward in 1995 [Walden and
Nerson 1995]; this time the acronym stood for "Business Object Notation".

Whatever the `B' should stand for, BON is certainly not a mere notation, but a

complete methodology spanning the analysis and design phases of the generic

software development lifecycle. The methodology strives to be language-

Chapter 3. Analysis 76

independent; however, it is deeply influenced by Eiffel's assertion mechanisms and

the notion of Design by Contract [Meyer 1997].

The BON process consists of nine steps, or tasks. A summary of the process tasks
in the order of execution is shown in Figure 13. Tasks 1-6 focus on analysis and

tasks 7-9 deal with design. The developer is allowed to change the order of the

tasks if it helps achieve the goals of the project, but it is required that all the

necessary models be eventually produced.

TASK DESCRIPTION BON DELIVERABLES

1 Delineate system borderline. Find major C'
A subsystems, user metaphors, use cases.

SYSTEM CHART, SCENARIO CHARTS

}j 2 List candidate classes. Create glossary of
E technical terms.

CLUSTER CHARTS

R
I
N Select classes and group into clusters.

SYSTEM CHART, CLUSTER CHARTS,

G
3

Classify; sketch principal collaborations.
STATIC ARCHITECTURE,

D 4 Define classes. Determine commands,
E queries, and constraints. CLASS CHARTS
S
C
R

Sketch system behaviors. Identify events, EVENT CHARTS, SCENARIO CHARTS,

I 5 object creation, and relevant scenarios CREATION CHARTS,

B
I

drawn from system usage. OBJECT SCENARIOS

N 6 Define public features. Specify typed CLASS INTERFACES.

Signatures and formal contracts. STATIC ARCHITECTURE

CLASS INTERFACES,

7 Refine system. Find new design classes, STATIC ARCHITECTURE,
D add new features. CLASS DICTIONARY, EVENT CHARTS,
E
S

OBJECT SCENARIOS

I

G CLASS INTERFACES,

N 8 Generalize. Factor out common behavior. STATIC ARCHITECTURE,
I
N

CLASS DICTIONARY

G Complete and review system. Produce
9 final static architecture with dynamic Final static and dynamic models;

system behavior. all BON deliverables completed.

Figure 13. The BON process: the tasks and their deliverables
[Walden and Nerson 1995]

Each task in the BON process has a set of input sources, is controlled by

acceptance criteria, and produces a set of deliverables. The deliverables that are

created or updated as a result of each task are listed opposite the task entry in

Figure 13 (the initial version of each deliverable is underscored). The goal of the
BON process is to gradually build the deliverables, which provide static and
dynamic descriptions of the system being developed. The static descriptions form

the static model of the system. This model contains formal descriptions of classes

Chapter 3. Analysis 77

and their grouping into clusters as well as client-server, inheritance, and

aggregation relationships between them, thereby showing the system structure.

The dynamic descriptions, on the other hand, make up the system's dynamic

model. This model specifies system events, what object types are responsible for

the creation of other objects, and system execution scenarios representing selected

types of system usage with diagrams showing object message passing.

The BON deliverables are dependent on each other; there are close mappings
between some of them, and although the static and dynamic models are two very
different types of system description, they are closely related, since the

communicating objects in the dynamic model correspond exactly to the classes in

the static architecture.

A short description of each of the BON tasks is given in the next sections. The

description of each task includes a brief overview of the deliverables that are first

produced in that task (underscored in Figure 13).

Delineating System Borderline (BON)

This task is concerned with the main view of the world that is to be understood, and
the system that is going to be modeled. Through well-established information

gathering and systems analysis techniques, the scope of the system and its

subsystems is identified, user metaphors are compiled, and the system functionality

is defined as typical usage scenarios. Overall reuse policy is also established in this

task, since it will affect other tasks of the process.

The major activity in this task is to analyze the problem domain and decide which

parts of it belong to the system. In BON, a system (or even the whole problem
domain) consists of one or more clusters, each of which contains a number of classes

and/or sub-clusters. Clustering is essentially a mechanism for grouping classes, yet it

is also used for representing subsystems. Major subsystems are identified in this first

task of the BON process if the system is overly complex. Each subsystem is modeled
as a top-level cluster, later to contain classes implementing the structure and
behaviour of the subsystem. The System Chart (one per system) contains a brief
description of each top-level cluster in the system. User metaphors are also
identified, mainly to be used for identifying classes in later tasks, yet they also help

Chapter 3. Analysis 78

to define the borderline of the system: combined with structural analysis of the

problem domain and the system, the metaphors help indicate what parts of the

problem domain reside inside the system as seen from the viewpoint of its users and

domain experts, and what belongs to the outside world, thus delineating the system

boundary.

Other activities of this task focus on the system and its functionality as seen from the

users' perspective. Outgoing and incoming information flow is identified, major

system functionality is defined, and typical use cases are determined and described as

system scenarios. A system scenario is a description of a possible partial system

execution. It is a sequence of events initiated by one or more stimuli (internal or

external) and shows the resulting events in the order they occur. Some interesting

system scenarios are usually collected to illustrate important aspects of the overall

system behaviour. A description of the scenarios, depicting the actions fulfilled in

each, is then tabulated as Scenario Charts.

Listing Candidate Classes (BON)

This task is mainly concerned with extracting a list of candidate classes from the

problem domain. This list is entered in special tables called Cluster Charts. Although

initialized with a list of candidate classes, the cluster charts will be refined and

completed during the BON process and will ultimately contain descriptions of the

classes and sub-clusters in a cluster. The analysts will also compile a glossary of
technical terms and concepts used in the problem domain. All the deliverables

produced are then reviewed and validated by end-users and domain experts.

Selecting Classes and Grouping into Clusters (BON)

In this task, beginning with the list of candidates produced in task 1, an initial set of

concepts is formed; these concepts will then be modeled as classes, which are then

grouped into clusters. This task also involves the identification of relationships
(inheritance, client-server, and aggregation) among the classes in a cluster, and

among the clusters themselves. A set of diagrams (called the Static Architecture),

describing the relationships between the classes and clusters in the system, is the

main deliverable produced. A Class Dictionary is also produced which is a sorted list

Chapter 3. Analysis 79

of the classes, containing their textual descriptions. The System Chart and Cluster

Charts are updated with the results of this task.

Defining Classes (BON)

Having selected and grouped an initial set of classes, the next task is to define each

class in terms of its state (the information it can provide), its behaviour (the

operations it can perform), and the general rules that must be obeyed by the class

and its clients. This amounts to filling in the BON Class Charts with: queries,

which are functions that return information about the system state without

changing it (corresponding to attributes); commands, which do not return any

information but may change the state (corresponding to operations), and

constraints, which are the general business rules and consistency conditions as

pertinent to the class. The results of this task are then reviewed and validated by the

end-user/customer.

Sketching System Behaviour (BON)

In this task, the dynamic model of the system is elaborated. Initial Scenario Charts

capturing the most important types of system usage have already been constructed as

a result of task 1, which are of great value for finding initial candidate classes and

selecting between alternative views of the problem domain. However, a

comprehensive and more detailed model of potential system usage should be built,

which is the main objective of this task. External (incoming) events that trigger

object communication, and also the important internal (outgoing) events that are

indirectly triggered by the incoming events, are identified and listed in Event Charts.

Classes that are instantiated during system execution and those classes that instantiate

them are specified and tabulated in Creation Charts. For each System Scenario

(depicting a typical use case of the system), the sequence of message

communications between objects aimed at fulfilling the scenario is specified and

modeled in an Object Scenario; this typically necessitates perfecting and refining

the scenario charts. The dynamic model thus constructed is checked for consistency

with the static model, and ultimately, reviewed and validated by the end-

user/customer.

Chapter 3. Analysis 80

Defining Public Features (BON)

In this task, the informal class descriptions filled into the class charts during task 4

(Defining Classes) are translated into formal class interfaces (features) with

software contracts. Queries become functions - which return information and

typically correspond to attributes, and commands become procedures - which may

change the system state and typically correspond to operations; the functions and

procedures thus defined are referred to as features. Constraints translate into pre-

and post-conditions on the operations and invariants for the whole class, thus

constructing the contract. The signature of each public feature (function or

procedure) is also specified. The results are shown in Class Interfaces, which are

charts showing detailed, typed and formal descriptions of the classes and their

relationships, with feature-signatures and contracts elaborated. Typing of features

usually results in new client relations being discovered between classes, which are

also modeled in the charts. The Static Architecture is updated to reflect the

refinements done in this task.

Refining the System (BON)

This task begins the design part of the BON process, and therefore includes a

repetition of many activities already performed for the analysis classes, now

applied to new design classes. The existing classes (especially features, contracts

and relationships) are also modified and refined in order to accommodate the

design classes and implement the design decisions made. These changes in turn

necessitate refinements to the dynamic model. The relevant diagrams and tables -
including the Static Architecture, Class Interfaces, Event Charts, Object Scenarios,

and the Class Dictionary - are updated accordingly.

Generalizing (BON)

This task concerns improving the inheritance hierarchy of the classes by factoring

common state and behaviour into deferred (abstract) superclasses. The relevant
diagrams and tables - including the Static Architecture, Class Interfaces, and the

Class Dictionary - are updated accordingly.

Chapter 3. Analysis 81

Completing and Reviewing the System (BON)

In this final task, the models are polished and completed, and the overall system

consistency is checked. This typically involves reviewing and perfecting the static

and dynamic models, syntactic verification of the classes, and checking the

consistency of class invariants and the pre- and post-conditions of routines. The

relevant diagrams and tables - especially the Static Architecture, Class Interfaces,

Event Charts, Object Scenarios, and the Class Dictionary - are updated

accordingly.

3.3.2.9 Hodge-Mock (1992)

The methodology introduced by Hodge and Mock in 1992 was the result of

research to find an object-oriented software development methodology for use in a

simulation and prototyping laboratory, the sole purpose of which was to explore

the feasibility of introducing higher levels of automation into Air Traffic Control

(ATC) systems [Hodge and Mock 1992]. The research concluded that, of the many

existing methodologies investigated, none was suitable for the purpose [Mock and
Hodge 1992]. The team therefore set out to develop a methodology through

integrating and extending existing methodologies, including Coad-Yourdon and
Booch, with a special emphasis on incorporating seamlessness, traceability and

verifiability. The resultant methodology is extremely rich as to the types of

diagrams and tables produced during the development process, yet due to strong

mapping relationships among them, versions of most diagrams and tables are

directly derivable from those initially produced; the methodology, therefore, lends

itself to automation and is applicable as a general-purpose methodology, despite its

complexity.

The Hodge-Mock process consists of five phases:

1. Analysis: focusing on refining the requirements and identifying the scope,

structure and behaviour of the system. This phase in turn consists of four

subphases:
I. I. Requirements Analysis: with the focus on eliciting the

requirements of the system.

Chapter 3. Analysis 82

1.2. Information Analysis: with the focus on determining the classes
in the problem domain, their interrelationships, and the

collaborations among their instances.

1.3. Event Analysis: with the focus on identifying the behaviour of the

system through viewing the system as a stimulus-response

machine. The findings are then used for verifying and

complementing the class structure of the system.
1.4. Transition to System Design: with the focus on providing a more

detailed view of the collaborations among objects.
2. System Design: with the focus on adding design classes to the class

structure of the system and refining the external behaviour of each of the

classes.

3. Software Design: with the focus on adding implementation-specific classes
and details to the class structure of the system, and specifying the internal

structure and behaviour of each class.
4. Implementation: with the focus on coding and unit testing.
5. Testing: with the focus on system-level verification and validation.

Figure 14 shows these phases and the deliverables produced or updated in each. It

also shows the order in which the deliverables are produced, emphasizing the
interdependencies among the deliverables. Although the phases are primarily
sequential, the methodology explicitly prescribes cyclic returns to previous phases
and iterative development of deliverables.

A short description of each of the first three phases (Analysis, System Design and
Software Design) is given in the next sections; the methodology does not propose a

specific procedure for the Implementation and Testing phases, suggesting instead

that these phases should be performed according to object-oriented programming
and testing practices. The description of each phase includes a brief overview of
the major deliverables that are first produced in that phase (underscored in Figure
14).

Chapter 3. Analysis 83

Analysis System Design

ennry
... _ relalionshiP

alagram

ohlert_ .

- ielaborshýp
tlmgrýin

Products Protlucls
/

oblea tlescnpnons object tlescnpLOns

anaiysýs
evaluauon
scenarios

___.. _ _.

1--

I

II
I
I

I
system

evaluation ý-
SCf! nan05 I

I

Iý

Iwane Design Impkn»ntatIOI Tutu

Products

tescripnons
behavrour dwgrams
ntertace diagrams
behaviour scnpts

ocessl o. rams
>code
C msfelere-

Wmare

1
-d9
and

unil le5i

1

Inle
ev dlUa110f1 ---
-C ar*s

u59r'ti
9u, de

--t--- dnd
!f

I aCC

I
. _.. _. and

ev.

Figure 14. The Hodge-Mock process: the phases and their deliverables
lHodge and Mock 19921

Analysis (Hodge-Mock)

The tasks performed during the analysis phase of the Hodge-Mock methodology

mainly deal with requirements elicitation and problem-domain modeling. The rest

of this section describes the tasks performed in each of the four subphases of

analysis.

1. Requirements Analysis: using requirements elicitation techniques and

starting from the typically ambiguous, incomplete and inconsistent

problem-statement supplied by the client, the development team strives to

produce a clear statement of the system's scope and its main functional and

non-functional requirements. The system scope and requirements

specifications thus identified will be extensively used in generating other

deliverables, and will in turn be updated and refined according to later

findings.

2. In/orntation Analysis: The following tasks are performed in this Subphase:

Chapter 3. Analysis 84

2.1. Using the requirements identified in the previous subphase,

structural modeling of the problem domain starts with the

familiar information-modeling practice of entity-relationship

modeling: data elements, entities, of the problem domain, along

with their attributes and interrelationships are identified and

modeled in an Entity-Relationship Diagram (ERD).

2.2. The entity-relationship model produced in the previous task is

translated into a model of problem domain classes, together with

their attributes, operations (services), and interrelationships. This

is done by considering each and every entity as a candidate for

being mapped onto a problem-domain class. Entities ultimately

end up as either classes or attributes of classes. The resultant

model is depicted as an Object-Relationship Diagram (ORD). As

a mechanism for managing the complexity of the ORD, the

classes in the ORD can be partitioned into subjects, which group

classes of close functional or structural relationships together.

2.3. Each of the classes identified and modeled in the ORD is

described and documented in detail using a standard template.
These Object Description (OD) documents contain detailed

information about all the particulars of the classes they describe,

and are gradually completed during the development process.
2.4. Class instances (objects) typically collaborate with each other in

order to fulfil their expected functionalities. Identifying and

summarizing these collaborations at the class-level is a major task

in the Hodge-Mock methodology. For each of the classes
identified so far, a list is made of its services and the services that

the class requires from other classes in order to be able to provide
its expected functionality. The findings are tabulated in the
Object Cross-Reference (OCR) table.

2.5. Using the class structure identified so far, especially the structure
(attributes) and behaviour (services) of individual classes,
generalization-specialization (is-a) relationships existing between

the classes are identified and modeled separately in an
Inheritance Diagram (ID).

Chapter 3. Analysis 85

3. Event Analysis: The following tasks are performed in this subphase:
3.1. Through viewing the system as a stimulus-response machine, a

list of external stimuli to which the system should respond is

prepared based on the purpose of the system as determined in

previous subphases. The activities that the system should perform

in response to these stimuli are also specified. A number of these

activities are categorized as fundamental activities, which are

directly attributable to and in support of the system's purpose,

while the rest are regarded as custodial, in that they are secondary

activities providing support to fundamental activities. The

functionality of the system thus identified is summarized in a

tabular form in a System Behaviour Script (SBS).

3.2. The external behaviour of the system is captured in a System

Behaviour Diagram (SBD), which is a State Transition Diagram

showing the states the system can be in and state transitions

triggered by external stimuli (events).

3.3. Based on system behaviour determined in previous tasks (stimuli

and activities), data elements and objects required to provide the

behaviour are identified. Work starts with identifying the

problem-domain entities that accompany the stimuli or the

system responses, or are otherwise involved in the activities

performed by the system. The set of entities, their attributes and

the relationships they have among themselves is then used for

verifying or updating the ERD. Based on this revised ERD,

problem domain classes are determined, giving special attention

to determining the classes' services and collaborations in such a

way as to realize the modeled behaviour of the system. Results

are used for verifyinglupdating the ORD, ODs, OCR, and ID.

4. Transition to System Design: The following tasks are performed in this

subphase:
4.1. A functional view of the interactions in the system is depicted

through modeling the objects inside the system, their

relationships, and the messages they pass among themselves as

well as messages passed between objects residing inside the

Chapter 3. Analysis 86

system and the users outside. This model is shown as a Client-

Server Diagram (CSD). Since this model implicitly shows the

boundary of the system and sets the stage for delving deeper into

the dynamics of object interactions inside the system, it is

considered a transition from problem domain analysis to system

design.

4.2. Simple scenarios showing typical user interactions with the

system are compiled in order to verify the integrity of the models

produced during the analysis phase, as well as validate them as

traceable to the system requirements. These Analysis Evaluation

Scenarios are based on the latest version of the requirements

specifications and are regarded as validation criteria for the set of

models. The analysis models are then reviewed and, if necessary,

revised in order to make sure that the scenarios can be

accommodated, thereby satisfying the requirements.

System Design (Hodge-Mock)

The following tasks are performed in this phase:

1. Design classes are added to the models so far developed. These are classes

that are needed for developing the target system as a computer-based

system, but at the same time keep it independent from any specific

implementation by assuming unlimited processing and storage capacity.

Examples include generic data-structure classes such as "Linked List".

2. Based on the system-level object-interaction model shown in the CSD, an

Object Interface Diagram (O1D) is developed for each of the classes
identified, showing interactions between instances of the individual class

with other objects, be they clients of the class's services or providers of

service to instances of the class. The OlD is a transition from the collective

view of the CSD showing all the classes, to the single-class view, which
focuses on individual classes.

3. In order to further specify the behaviour of each class, an Object Behaviour

Script (OBS) is built for each class, tabulating the class's services and their

corresponding inner activities. In addition, a state transition diagram is

Chapter 3. Analysis 87

produced for every class with significant state-driven behaviour.

Analogous to the SBD and following the same notation, this class-level

state transition diagram is called the Object Behaviour Diagram (OBD).

4. Class definitions in tables and diagrams are refined in order to include the

detailed signature of class services. Especially affected are the ODs and the

OCR.

5. Based on the analysis evaluation scenarios, System Evaluation Scenarios

are developed in order to verify the integrity of the models produced during

the system design phase, as well as validate them as traceable to the system

requirements. The system design models are then reviewed and, if

necessary, revised in order to make sure that the scenarios can be

accommodated, thereby satisfying the requirements.

Software Design (Hodge-Mock)

The following tasks are performed in this phase of the process:

1. Implementation-specific classes are added in order to support the physical
implementation of the system in the intended execution environment.
Furthermore, implementation specific refinements are made to all classes,

and all the relevant tables and diagrams are updated accordingly.
Interfacing with the hardware/software platform, providing support for

object persistence, and satisfying non-functional requirements are the

major issues necessitating additions and refinements to the models.

2. The internal structure and behaviour of each object is further refined in

order to show the way data flows among the operations. This is done by

producing an Object Processing Diagram (OPD) for every class in the

system. The OPD is in fact a Data Flow Diagram (DFD) at the class level,

showing the class's operations as DFD processes, the attributes as DFD

data stores, and other classes (interacting with the class being modeled) as

external entities. Messages to the class are shown as invocations adorned

with input/output parameters, and private and public operations are
discriminated.

3. Operations (services) with complex bodies (algorithms) are modeled with

pseudo-code in order to facilitate coding and testing.

Chapter 3. Analysis 88

4. Based on the system evaluation scenarios, Software Evaluation Scenarios

are developed in order to verify the integrity of the models produced during

the software design phase, as well as validate them as traceable to the

system requirements. The software design models are then reviewed and, if

necessary, revised in order to make sure that the scenarios can be

accommodated, thereby satisfying the requirements.
5. A user's guide is prepared for the system using the design models and the

final version of the requirements specifications.

3.3.2.10 Syntropy (1994)

Syntropy, introduced in 1994 by Cook and Daniels [Cook and Daniels 1994], is the

result of integrating object-oriented modeling techniques (based on OMT and

Booch) with formal specification elements derived from Z [Wordsworth 1992], and

covers the analysis and design phases of the generic software development

lifecycle. Although its developers prefer it be described as a collection of modeling

techniques rather than a step-by-step process, Syntropy does suggest a definite

process through the levels of modeling it prescribes, since a specific sequence

should be followed for developing the models. The three distinct, yet integrated,

model levels used in Syntropy are:

1. Essential Model, which models the problem domain, totally disregarding

software as a component of the system.

2. Specification Model, which abstractly models the requirements of the

software system, treating the system as a stimulus-response mechanism,

and assuming a computing environment with unlimited resources.
3. Implementation Model, which models the software system's run-time

structure and behaviour in detail, taking into account considerations

pertaining to the computing environment, and elaborating on how the

software objects should communicate.

Each model may be expressed along structural and behavioural views. There are
three kinds of views in Syntropy:

Chapter 3. Analysis 89

" Type View (similar to the Class Diagram used in OMT): provides the

structural view by describing object types (classes), their static properties

and their relationships.

" State View (containing diagrams similar to the State Transition Diagram

used in OMT): provides the behavioural view by describing the states each

object type can be in and the way it responds to stimuli by changing state

and generating responses.

" Mechanism Diagram (similar to the Interaction Diagram used in the Booch

methodology): solely used in the Implementation Model for describing the

flow of messages between objects in response to stimuli.

Syntropy supports the notion of domain: a sub-system defined as a set of object
types. It also supports the concept of viewpoint: a subset of an object's overall

interface; thus enabling the designer to describe various interfaces to the same

object.

Essential Model

Type State
View ýi View

------------- -------- ---- - --------
Specifwadon Model

Type State
view View

-------------- ------- ---- --------
Implementation

Mader G
Type Mecya_ State N
View misms View

Figure 15. The implicit Syntropy process: models, views and their interdependencies
[Cook and Daniels 1994]

Figure 15 shows the three models, their views and the interdependencies. This

figure can also be interpreted as the process of the Syntropy methodology: the

generic concept of System Analysis fits aspects of the Essential Model (analysis of
the problem domain) as well as a part of the Specification Model (analysis of the

required system functionality and behaviour); likewise, the generic concept of
System Design is seen in the remaining part of the Specification Model (design of

Chapter 3. Analysis 90

state-charts and interactions between them in order to achieve required responses to

external events) and the Implementation Model (algorithm construction,

transformation of event generation into message-passing, etc.). Therefore, a

seamless transition from Analysis to Design takes place during the construction of

the Specification Model.

The next sections contain brief descriptions of the models, views and diagramming

notations used.

Essential Model (Syntropy)

The Essential Model models the problem domain as a collection of objects and

events. The objects' properties can only change as the result of events, and a

specific event may change the properties of several objects simultaneously. The

essential model consists of a type view, which represents the types of objects in the

problem domain, and a state view, which represents the way objects change as a

result of events.

The type view is represented by a kind of Class Diagram, supplemented with Z

specifications for types and invariants.

The state view consists of Statecharts, one for each object type, showing how

objects of the type respond to events. The statecharts are supplemented with
information about the details of object creation, and the particulars of the events to

which objects of the type can respond, including Z specifications for pre- and post-

conditions of the events.

Specification Model (Syntropy)

The Specification Model describes the states that the software can be in, and shows
how it changes state and produces events in response to stimuli. The specification

model is described by the same views as the essential model; that is, a type view

and a state view. The type view of the specification model represents the

conceptual decomposition of the software into objects and the state view represents
the behaviour of the software objects in response to stimuli, either external or
issued by other objects. External stimuli are observable to all the objects in the

Chapter 3. Analysis 91

model simultaneously. An external stimulus may trigger several transitions in

several statecharts.

To build a specification model, the system boundary should be defined. This is

done by determining external entities (called agents), which affect or are affected

by the software. Furthermore, it must be decided for each event in the essential

model whether it is to be detected by the software, generated by the software, or

simply ignored. The specification model should also show how undesirable events

are handled, an issue neglected in the essential model.

Implementation Model (Syntropy)

The Implementation Model describes the flow of control inside the software.

Stimuli are mapped to messages and all message-passing and method executions

are modeled using Mechanism Diagrams. These diagrams specify the run-time

objects, their inter-relationships (links), and the sequence of the messages passed

between these objects in order to implement the external functionality of the

system. A mechanism diagram is generally very similar to a Booch Interaction

Diagram. The implementation model must also deal with implementation issues

such as concurrency, persistence, finite resources, errors, and exceptions.

3.3.2.11 Fusion (1994)

The Fusion methodology was first introduced in 1992 by a team of practitioners at
Hewlett-Packard Laboratories [Coleman et al. 1992]. A revised and detailed

version of the methodology was released in 1994 [Coleman et al. 1994]. The

methodology is the result of the integration, unification and extension of a number

of older methodologies, mainly OMT, Booch, Objectory and RDD; hence the name
Fusion.

The designers of Fusion describe it as a full-coverage method, in that it covers all

stages of the development lifecycle from requirements to implementation, although
the analysis phase starts when a preliminary informal requirements document is

already available, and is in fact the main input to the whole process. Fusion

provides consistency and completeness checks between phases to enable orderly

Chapter 3. Analysis 92

and reliable progression through system development stages. It also suggests

criteria for determining when to move from one phase to the next in the lifecycle.

The Fusion process consists of three phases:

1. Analysis: the focus is on what the system does. The system is described

from the standpoint of the user. The requirements of the system are

mapped to the System Specification, which is expressed through a set of

models. The models produced in this phase describe:

a. classes and objects of interest found in the application domain, and

the relationships which exist between these classes and objects,
b. the operations which are to be performed by the system, and

c. the proper ordering of these operations.
2. Design: the focus is on how the system is to do what has been defined

during analysis. The specification of the system (the result of the previous

phase) is mapped to a blueprint for the implementation of the system. The

design phase models describe:

a. realization of system operations in terms of cooperating objects,
b. how these objects are linked together,

c. how the classes, to which the objects belong, are specialized and

refined (the inheritance structure of the classes), and
d. the detailed particulars of each class's attributes and methods.

3. Implementation: the focus is on the actual coding of the system. The

system design is mapped to a particular programming environment. Design

classes are mapped to language specific classes and object communications
are encoded as implementation methods.

Figure 16 shows the Fusion process, the models produced, and the
interdependencies between the models, describing what the models contribute to

each other. This figure also shows the construction of a Data Dictionary as an

ongoing task throughout the phases of Fusion. This dictionary is a repository of
detailed information, including constraints and assumptions, about all the elements
in the models.

Chapter 3. Analysis 93

Each phase in the Fusion process consists of a number of sub-phases. A brief

description of each phase, the sub-phases and the models produced is given in the

next sections.

Analysis (Fusion)

The analysis phase is concerned with capturing the requirements of the system

completely, consistently and unambiguously. The requirements specification
document is the standard input to the analysis phase. Two models are produced in

this phase: a System Object Model and a System Interface Model, the latter further

divided into two models, the Life-Cycle Model and the Operation Model, all using

the data dictionary as a central repository.

Requiremens

-- ---------------------
änalyeia

System lrterfaceModel -------
Object Model (Operation and Life-Cycle)

D
--------------- ----- -------"_________ _-_--------------------

c. lasses operations
relationships

operatics,
:t

a
Object Interaction Graph. meaeaqu Viability Graphs

tuathod
visibility Design parameter comoi method. --------- c

t

1

attributes vieibilit
a

y (for abstract alas.)
n

r
inheritance informati

Class Description o Inhetitanro Graphs Y

specifications generalizatians

r----------------------------------

i

Implementation Code

Figure 16. The Fusion process and its deliverables [Lano et al. 2000]

Chapter 3. Analysis 94

The analysis phase consists of the following steps:

1. Develop an overall Object Model encompassing the system and its

environment; the static structure of the problem domain is specified in

terms of objects and their relationships. The initial list of objects, and the

classes to which they belong (along with their attributes), is produced by

grammatically parsing the informal requirements document. The list is then

completed through close observation of the system and communication

with the domain experts. The results are modeled in a static structural

Object Diagram.

2. Develop the System Object Model; the collection of classes in the overall

object model, produced in the previous step, will include classes that

belong to the environment as well as classes that belong to the system. The

system object model, on the other hand, excludes the environment classes

and focuses on the system classes by explicitly showing the boundary of

the system. This model is produced through:

2.1. Determining interaction patterns between the system and outside

agents (users, devices or other systems); agents interact with the

system by means of events. Input events typically lead to state

changes in the system, possibly leading to output events. An

input event and its effect on the system are collectively called a

system operation. Typical interactions are modeled as

Transaction Scenarios, explicitly showing the time ordering of

the events by using time-lines.

2.2. Specification of the System Interface Diagram (not to be

confused with the System Interface Model), showing all the

events interchanged between the system and outside agents,

regardless of the time order; this in fact is the result of integrating

all transaction scenarios previously identified.

2.3. Producing the system object model by adding a boundary to the

overall object model; by identifying the agents that interact with
the system, the operations of the system, and events affecting or

generated by the system, a good idea is obtained of which objects
belong inside the system boundary, and which belong to the

environment. This in turn enables the analyst to add a system

Chapter 3. Analysis 95

boundary to the overall object diagram resulting in the system

object model. It is important to note that although class attributes

are specified in this diagram, class operations (methods) are

intentionally ignored, since Fusion leaves their specification to

the design phase.

3. Develop the System Interface Model through:

3.1. Developing the Life-Cycle Model: a life-cycle model shows the

allowable sequences of system operation invocations throughout

the lifetime of the system. The ordering of the events (input and

output) is specified in terms of a regular-expression-like
language.

3.2. Developing the Operation Model: the operation model captures

the details of all the system operations already depicted in the

interface diagram and the life-cycle model. Each system

operation is textually and semi-formally described by an

Operation Schema. The resulting schemata make up the operation

model.
4. Check the analysis models; Fusion provides detailed checklists for

verifying the completeness and consistency of the analysis models.

Design (Fusion)

The purpose of the design phase is to find a strategy for implementing the

specification of the system, which has been developed during the analysis phase.
The output of the design phase consists of four parts: a set of Object Interaction

Graphs describing how objects interact for implementing system operations; a set

of Visibility Graphs describing object communication paths; a set of Class

Descriptions providing detailed descriptions of class interfaces; and a set of

Inheritance Graphs elaborating the inheritance relationships between classes.

The design phase consists of the following steps:

1. Develop the Object Interaction Graphs; object interaction graphs are used
to develop system operations described in the operation model. Each

system operation should be realized by an object interaction graph, which
describes how the system operation is implemented through object

Chapter 3. Analysis 96

interactions and message passing. Typically, in every interaction graph,

one of the objects (termed the controller) initiates the message sequence in

response to an input event.
2. Develop the Visibility Graphs; a visibility graph describes the server

objects that a client object needs to reference and specifies the kind of

reference that is needed. The visibility of objects is described using the

following characteristics: Reference Lifetime (temporary or permanent),

Server Visibility (exclusive or shared), Server Binding (the degree of

lifetime-dependency between the client and the server), and Reference

Mutability (whether a server can be changed).

3. Specify the Class Descriptions; class descriptions store detailed

information about classes, including class name, immediate superclasses,

attributes, and methods. A class description is built for every class in the

system.

4. Develop the Inheritance Graphs; generalization-specialization hierarchies

previously identified among analysis classes are enhanced by factoring out

common structure and behaviour in order to increase reusability and

maintainability. The result is summarized in inheritance graphs.

Implementation (Fusion)

This phase concentrates on the conversion of the design models into a suitable

language. Design features are mapped to code as follows:

1. Inheritance, references, and attributes are implemented using

corresponding features of the target language.

2. Object interactions are implemented as methods in the appropriate classes.
3. State machines are developed for implementing permissible sequences of

operations.

3.3.3 Methodologies: Integrated

After the initial disastrous fan-out of object-oriented methodologies, along came
the inevitable fan-in, yet integration of methodologies was not as successful as
integration of modeling languages: whereas the latter resulted in the advent of
UML, the former produced over-complex mega-methodologies. Although many of

Chapter 3. Analysis 97

these Integrated (Third-Generation) methodologies have adopted UML as their

modeling language, they share little else, particularly as pertaining to process and

modeling approach.

3.3.3.1 OPM (1995,2002)

Object-Process Methodology (OPM) was introduced by Dori in 1995, primarily as

a novel approach to analysis modeling that advocated combining the classic

process-oriented modeling approach with object-oriented modeling techniques

[Dori 1995]. Over the years, it has evolved into a full-lifecycle methodology [Dori

2002a], yet its unique modeling approach is still the main feature attracting

researchers and developers.

OPM's modeling strength lies in the fact that only one type of diagram is used for

modeling the structure, function and behaviour of the system. This single-model

approach avoids the problems associated with model multiplicity, but the model

that is produced can be complex and hard to grasp.

The single diagram type is called the Object-Process Diagram (OPD), and uses

elements of types object and process to model the structural, functional and

behavioural aspects of whatever is being modeled (hence the prefix Object-Process

in OPD and OPM). The basic OPD notation was later expanded to also include

elements of type state, which were particularly useful in modeling real-time

systems. Variants of the notation were also developed for modeling other types of

systems, including web-applications, semantic web services, and multi-agent

systems.

Every OPD can also be expressed in textual form; a constrained natural language

called the OPL (Object-Process Language) is provided by the OPM for this

purpose. OPL equivalents can be automatically generated from the OPDs and are

typically used as documentation complements of the OPDs, based on the

assumption that they are more intelligible to the users and domain-experts and

easier to convert to code than the OPDs [Dori 2002a].

In OPM, a set of OPDs is built for the system being developed, typically forming a

hierarchy, somewhat analogous to the hierarchy of Data Flow Diagrams built in

Chapter 3. Analysis 98

classic process-oriented methodologies. This layering of OPDs is applied as a

complexity management technique and helps improve the intelligibility of the

models, yet the multi-dimensional nature of the OPDs makes it difficult to focus on

a particular aspect of the system (such as structure), without being distracted by

other aspects. Elements depicting different aspects are so intertwined that

separating them in order to examine them in their own context can be a formidable

task. Furthermore, some important orthogonal behavioural aspects of systems (such

as object interactions, especially with regard to message sequencing) cannot be

adequately captured in OPM models.

In contrast with OPM's strong emphasis on the modeling approach and the

associated notational conventions, the OPM process is little more than an abstract

framework. It resembles the generic software development process described in

basic software engineering textbooks. This may be a consequence of the single-

model approach: the lack of multiple models (whose relationships and

interdependencies are often reflected in processes) seems to have had a simplifying

effect on the process.

The OPM process consists of three high-level subprocesses:

1. Initiating: with the focus on preliminary analysis of the system,
determining the scope of the system, the required resources, and the high-

level requirements.

2. Developing: with the focus on detailed analysis, design and implementation

of the system.
3. Deploying: with the focus on the introduction of the system into the user

environment, and the subsequent maintenance activities performed during

the operational life of the system.

In the following sections, a short description is given for each of the above

subprocesses.

Chapter 3. Analysis 99

Initiating (OPM)

The following activities are performed during this subprocess:

1. Identifying: the needs and/or opportunities justifying the development of

the system are determined.

2. Conceiving: the system is "conceived" through determining its scope and

ensuring that the resources necessary for the development effort are

available.

3. Initializing: the high-level requirements of the system are determined.

Developing (OPM)

The following activities are performed during this subprocess:

1. Analyzing: mainly concerned with eliciting the requirements, modeling the

problem domain and the system in OPDs (and their OPL equivalents), and

selecting a skeletal architecture for the system.
2. Designing: the major activities of which are adding implementation-

specific details to the models (OPDs and their OPL equivalents), and

refining the architecture of the system by determining its hardware,

middleware and software components. Designing the software components

mainly involves detailing the process logic (to be implemented as the

program), the database organization, and the user interface.

3. Implementing: mainly focused on constructing the components of the

system and linking them together. Construction typically involves coding

and testing the software components (mainly consisting of the process
logic of the system, the database and the user interface), setting up the

hardware architecture, and installing the software platform (including the

middleware). Design models (OPDs and their OPL equivalents) can be

used for automatic or semi-automatic generation of the code.

Although seemingly sequential, the above activities can be performed in an

iterative and incremental fashion; in fact, the methodology suggests return-loops
from implementation to design and from design to analysis.

Chapter 3. Analysis 100

Deploying (OPM)

The following activities are performed during this subprocess:

1. Assimilating: concerned with introducing the implemented system into the

user environment, mainly involving training, generation of appropriate
documents, data and system conversion, and acceptance testing.

2. Using and Maintaining: spanning the period during which the system is

being used. The activities performed also include maintenance tasks

necessary to keep the system in working order.
3. Evaluating Functionality: checking that the current system possesses the

functionality needed to satisfy the requirements. This activity is typically

performed during the Using-and-Maintaining activity in order to check

whether the current system still satisfies the functional and non-functional

requirements of the users; if not, a new generation of the system is needed,

and the next activity in this list should be performed.

4. Terminating: concerned with declaring the current system as dead,

applying the usual post-mortem procedures, and prompting the generation

of a new system.

3.3.3.2 Catalysis (1995,1998)

Catalysis was introduced by D'Souza and Wills in 1995, originally as a

component-based formalization of OMT deeply influenced by Fusion, Objectory,

Booch and Syntropy [D'Souza and Wills 1995]. A UML-based, refined version of

the methodology appeared in 1998 [D'Souza and Wills 1998].

Instead of one, all-purpose process, Catalysis proposes a set of process patterns to
be selected and applied according to the characteristics of the project in hand.

However, it does propose a specific process for developing business systems, as

shown in Figure 17. This process is used in the following sections for describing

the general attitude of Catalysis towards software development, as well as the

models produced in the methodology.

Chapter 3. Analysis

Requirements Domain Models - - - týý-=ý dc ph
poect

Understand problem, system r nna ýnrýt .
context, architecture and System Context
nonfunctional requirements [3ojnd. cry

System Specification Scenarios

Describe external behavior of
UI Desgn

target system using problem
Type Model and

domain model
Operation Specs Dialog now,

0
a prototype,
o usability

Architectural Design Platform, Physical
Architecture

Partition technical and application
architecture components and their Logical Application

,
connectors to meet design goals Architecture

DB Design

Component Internal Interface and
I

Design Class Specs Class
mapping.

Design interfaces and classes for Implementation transactions,

each component build and teat and Test e.

Figure 17. The Catalysis process for developing typical business systems
[D'Souza and Wills 19981

Business Systems Development Process (Catalysis)

101

This process consists of the following activities, gradually moving from examining

and modeling the context of the system to specifying the system at its boundary

and, ultimately, to designing the interior of the system ID'Souza and Wills 19981:

1. Identify and Model the Requirements: focusing on exploration and

modeling of the problem domain and the requirements of the system.
2. Develop the System Specification: focusing on identifying and modeling

the functionality and high-level class-structure of the system. Designing

the User Interface (UI) usually overlaps with this activity. UI design

typically involves developing UI prototypes and UI specifications

describing the screens, dialog flows across windows, information presented

and required, and reports.

3. Develop the Architectural Design: focusing on designing the internal

component (logical) architecture of the system, as well as the technical

(physical) architecture defining the domain-independent parts of the

system, such as the hardware and software platform. The design of the

database architecture should also start at this stage, including mapping the

object models to the database and definition of transaction boundaries.

Chapter 3. Analysis 102

4. Develop the Component Internal Design: focusing on designing the

internal detail of the components, which are then implemented and tested.

The following sections include brief descriptions of these activities. The last

section contains a description of the process patterns proposed by Catalysis.

Identify and Model the Requirements (Catalysis)

The following tasks are performed during this activity:

1. Explore the problem domain and construct the Business Model: the

Business Model typically includes:

o class diagrams depicting the object-types (analogous to classes) in

the problem domain and their relationships,

o special collaboration diagrams showing the actions that problem

domain objects perform during interactions (without specifying the

order),

o sequence diagrams showing the sequence of the actions, and

oa glossary, listing the terms used to define the problem domain.

2. Identify and model the functional requirements of the system: functional

requirements are typically modeled using a System Context Diagram

showing the system as an object in the problem domain interacting with

other objects. Actions on the system are nothing but use cases, and

scenarios of interaction are expressed by sequence diagrams.

3. Identify the non-functional requirements: such as performance, reliability,

scalability, and reuse goals.
4. Identify and model the known platform or architectural constraints:

machines, operating systems, middleware, legacy systems, and

interoperability requirements are identified and modeled as package
diagrams. Interactions between these physical components are captured in

collaboration diagrams and sequence diagrams.

5. Identify the project and planning constraints: pertaining to issues such as
budget, schedule, staff, and user involvement.

Chapter 3. Analysis 103

Develop the System Specification (Catalysis)

The system specification mainly consists of a class (type) diagram showing the

system as a type, emphasizing its attributes (internal types) and its associations

with other types in the problem domain. The system also has a set of operations,
depicting the actions that it performs (functionality). The detailed behaviour of the

system is usually captured in statecharts.

Develop the Architectural Design (Catalysis)

The following tasks are performed during this activity:

1. Identify the components comprising the system and their architecture: The

component (application) architecture is usually described with package
diagrams showing the components and their inter-relationships.

Specification types (system attributes) identified during the previous

activity are split across different components. Interaction among

components is modeled through collaboration diagrams.

2. Identify the architecture of the domain-independent parts of the system:
hardware and software platforms, infrastructure components (such as

middleware and databases), utilities for logging/exception-handling/start-

up/shutdown, design standards and tools, and the choice of component

architecture (such as JavaBeans or COM), are all modeled in the Technical

Architecture. Package diagrams are used to show these physical

components and their inter-relationships. Interactions are shown in

collaboration diagrams.

Develop the Component Internal Design (Catalysis)

During this activity, each and every component is designed, implemented and

tested. Design is done by identifying the programming language interfaces and

classes, or pre-existing components, that constitute the component. The

architecture of these parts inside each component is modeled using a package
diagram showing the internal constituent parts and their inter-relationships.

Interactions are shown by sequence and collaboration diagrams.

Chapter 3. Analysis 104

Process Patterns (Catalysis)

Even though the Business Systems Development Process is but one way of

applying the methodology, it clearly shows Catalysis's general approach to systems

development. Analysis usually starts by modeling the problem domain as a

collection of types (classes), with their own inter-relationships and interactions.

Then the system is added to the context, treated like another problem domain type,

whose state (the types it contains), operations (functionality) and behaviour are

carefully modeled. The focus is then shifted into the system itself, modeling it as a

collection of components, again with their own inter-relationships and interactions.

Finally, each component is modeled as a collection of implementation-level

classes, interfaces and off-the-shelf components, yet again with their own inter-

relationships and interactions.

This sort of gradual refinement is an essential practice in Catalysis. So is the

recursive (fractal) modeling approach: applying the same view (constituents, their

inter-relationships and interactions) by the same set of diagrams at each and every
level of refinement. These two practices are at the heart of the Catalysis process,

yet there are many ways of actually applying them to a project: they can be applied

sequentially, or in an iterative-incremental fashion, or according to any other
development lifecycle deemed appropriate by the developers.

To help developers apply the methodology, Catalysis proposes four process

patterns for four different kinds of projects:

1. Object Development from Scratch: for when there is no existing system.
2. Reengineering: for when the objective is to improve an existing system.

3. Business Process Improvement: for applying object technology to

organizations and systems other than software.
4, Separate Middleware from Business Components: for handling legacy

systems as well as for insulating a system from certain changes in

technology.

Catalysis proposes detailed sets of activities for each pattern and guidelines for

their application [D'Souza and Wills 19981.

Chapter 3. Analysis

3.3.3.3 OPEN (1996)

105

OPEN (Object-oriented Process, Environment, and Notation) was first introduced

in 1996 as the result of the integration of four methodologies: MOSES, SOMA,

Synthesis and Firesmith [Henderson-Sellers and Graham 1996]. This initial version

of OPEN was later deeply influenced by BON and OOram [Reenskaug et al. 1996].

The advent of UML compelled the OPEN Consortium (an international group of

experts and tool-vendors that maintains OPEN) to tailor it in order to catch up with

the new wave of standardization. However, OPEN has kept its own modeling
language, OML (OPEN Modeling Language), as a more suitable alternative to

UML in terms of compatibility with the specific modeling needs in OPEN [Graham

et al. 1997].

OPEN is presented as a framework called OPF (OPEN Process Framework). OPF

is a process metamodel defining five classes of components and guidelines for

constructing customized OPEN processes (Figure 18). OPEN also contains a

component library from which individual component instances can be selected and

put together to create a specific process instance tailored to fit the project in hand.

The OPF component classes and the instantiation method for constructing OPEN

processes are discussed in the following sections.

Stags

or mýao oý. astion
to the

help to 1_=

EfwAW Produecrs Pracasa
Componanb \

parWr+ý prodim

Work create Work
Unta kä Product

maintain

are
documented

using

For each element (represented
by box), OPEN permits the
user to select how many and
which instances will be used.
The OPF documentation
provides a comprehensive list
of suggestions on the best
selections together with
guidelines on their best
organization.

Figure 18. The OPF components (OPEN) [OPEN Consortium 2000]

Chapter 3. Analysis 106

OPF Component Classes (OPEN)

As depicted in Figure 18, OPF consists of five major classes of components:

1. Work Products: any significant thing of value (document, diagram, model,

class, application) developed during the project.
2. Languages: the media used to document work products, such as natural

languages, modeling languages such as UML or OML, and implementation

languages such as Java, SQL, or CORBA-IDL.

3. Producers: active entities (human or nonhuman) that develop the work

products.
4. Work Units: operations that are performed by producers when developing

work products. One or more producers develop a work product during the

execution of one or more work units. Work units are of three types:

a. Activity: a major work unit consisting of a related collection of
jobs that produce a set of work products. Activities are coarse-

grained descriptions of what needs to be done. Some important

instances defined by OPEN are: Project Initiation, Requirements

Engineering, Analysis and Model Refinement, Project Planning,

and Build (evolutionary development or OOA/OOD/OOP together

with verification and validation, user review and consolidation).
b. Task: the smallest atomic unit of work. Tasks are small-scale jobs

associated with and comprising the activities, resulting in the

creation, modification, or evaluation of one or more work products.

c. Technique: defines how the jobs are to be done. Techniques are

ways of doing the tasks and activities.
5. Stages: durations or points in time that provide a high-level organization to

the work units. Stages are of two types:

a. Milestone (Instantaneous Stage): a point in time marking the

occurrence of an event.
b. Stage with Duration: The high-level periods during which work

units are performed. There are seven significant types:
i. Project: covering a single individual project.

ii. Cycle: Iterative set of work units varying in span and

scope from short-span cycles (such as Development

Chapter 3. Analysis 107

Cycles and Delivery Cycles) to the long-span Lifecycle,

which is a sequence of phases covering the whole

temporal extent of a significant engineering effort. The

following types of lifecycle have been defined in OPF:

1. Project Development Lifecycle: the duration over

which the project is conceived and products are

constructed.

2. Project Lffecycle: covering the project
development lifecycle and the maintenance stage.

3. Delivery Lifecycle: focusing on the repetitive
delivery of product versions.

4. Enterprise Lifecycle: in which business modeling

and business re-engineering occur.
5. Programme Lifecycle: larger in scale than the

project lifecycle, this is a cycle related to a

programme of projects, and as such is the sum of

all the relevant project life cycles plus a Strategy

Phase in which high-level business planning

across all projects is performed.
iii. Phase: a stage of development consisting of a sequence of

one or more builds, releases and deployments (explained

later in this section). Instances of phase are assigned to one

or more of the above life cycles. Seven phases have been

defined in OPF:

1. Inception: during which the development is started

and appropriate preparations are made.

2. Construction: during which the work products are
developed and prepared for release.

3. Usage: during which the work products are

released to the user organization and put into

service.
4. Retirement: when the software is withdrawn from

service.

Chapter 3. Analysis 108

5. Strategy: in which cross-project considerations at

the business level are analyzed.

6. Business Modeling: in which a modeling

technique is applied to model the business itself

(irrespective of whether or not software has any

role in the business).

7. Business Reengineering: in which the processes in

the business are analyzed and reconsidered.
iv. Workflow: a sequence of tasks during which producers

collaborate to produce a work product. Examples of

workflows defined in OPF are requirements and

architectural workflows such as: Vision Statement

Workflow, System Requirements Specification Workflow,

Software Requirements Specification Workflow, and

Software Architecture Document Workflow.

v. Build: during which tasks are undertaken. Builds are the

only kinds of stage that occur within the Inception Phase;

in other phases they are generally complemented by

releases, deployments, and milestones.

vi. Release: in which the results of a build are delivered to the

user.

vii. Deployment when the user receives the product and puts it

into service.

Process Instantiation (OPEN)

As shown in Figure 19, the following tasks are performed (through applying the

guidelines proposed by OPF) in order to instantiate, tailor and extend an OPEN

process [Firesmith and Henderson-Sellers 2001]:

1. Instantiating the OPEN library of predefined component-classes to produce

actual process components.
2. Choosing the most suitable process components from the set of instantiated

components.

3. Adjusting the fine detail inside the chosen process components.

Chapter 3. Analysis 109

4. Extending the existing class library of predefined process components to

enhance reusability.

It is even
-

po sihlc to

Process
Pre-COI75lNClC,

process lake sets of

metamodd OPEN (productizcd) eonstninta

nem o of --
to CICate

(M>nom up . pre-

srlecnon tailored..
i from (reenryt.

Styles of frnmework ote(me
eompmenb) 0000m 51. OPEN

_
process

stantiated Orgamr alionl
raxss framework ddd

spccitic
process

wmble proses.
- from components

uemg assertions

- .; pomble tailoring

Figure 19. Using the OPF to instantiate, tailor and extend a process (OPEN)
[OPEN Consortium 2000]

Figure 20 shows an example of an instantiated OPEN process. This process is

usually (and wrongly) referred to as "The OPEN Process", yet it is just one
instance (though fairly general) of the processes that can be constructed in OPEN.

Figure 20. Example of an instantiated OPEN process [Graham et al. 1997]

Chapter 3. Analysis 110

3.3.3.4 RUP/USDP (1998,1999,2000,2003)

RUP (Rational Unified Process) was developed at Rational Corporation by the

three principal developers of the OMT, Booch and OOSE (Objectory)

methodologies, the same people that developed UML. RUP is use case driven, a

feature inherited from OOSE. It is also iterative and incremental, with the overall

process resembling the Micro-in-Macro process of the Booch methodology.

The initial version of RUP was officially released in 1998, covering all the generic

activities in a software development project. UML is used as the modeling

language in RUP; therefore RUP has also been mistakenly called the UML

Methodology. Revised versions of RUP were introduced in 2000 and 2003, the

most recent of which will be described in this section [Kruchten 2003]. The

developers of RUP introduced a non-proprietary, somewhat less complex variant of

RUP, called USDP (Unified Software Development Process) in 1999 [Jacobson et

al. 1999].

The overall RUP development cycle consists of four phases [Kruchten 2003]:

1. Inception: focus is on defining the objectives of the project, especially the

business case.
2. Elaboration: focus is on capturing the crucial requirements, developing

and validating the architecture of the software system, and planning the

remaining phases of the project.

3. Construction: focus is on implementing the system in an iterative and
incremental fashion based on the architecture developed in the previous

phase.
4. Transition: focus is on beta-testing the system and preparing for releasing

the system.

Each phase can be further broken down into iterations. An iteration is a complete
development loop resulting in a release of an executable increment to the system.
Each iteration consists of nine work areas performed during the iteration

(somewhat like the micro process activities in Booch methodology). These work

areas, called disciplines, are [Kruchten 2003, Kroll and Kruchten 2003]:

Chapter 3. Analysis 111

1. Business Modeling: concerned with describing business processes and the

internal structure of a business in order to understand the business and

determine the requirements for software systems to be built for the

business. A Business Use Case Model and a Business Object Model are

developed as the result of this discipline.

2. Requirements Management: concerned with eliciting, organizing, and
documenting requirements. The Use Case Model is produced as the result.

3. Analysis and Design: concerned with creating the architecture and the

design of the software system. This discipline results in a Design Model

and optionally an Analysis Model. The design model consists of design

classes structured into design packages and design subsystems with well
defined interfaces, representing what will become components in the

implementation. It also contains descriptions of how objects of these

design classes collaborate to perform use cases.

4. Implementation: concerned with writing and debugging source code, unit
testing, and build management. Source code files, executables, and

supportive files are produced.
5. Test: concerned with integration-, system- and acceptance testing.
6. Deployment: concerned with packaging the software, creating installation

scripts, writing end-user documentation and other tasks needed to make the

software available to its end-users.

7. Project Management: concerned with project planning, scheduling and

control.
8. Configuration and Change Management: concerned with version- and

release management and change-request management.
9. Environment: concerned with adapting the process to the needs of a project

or an organization, and selecting, introducing and supporting development

tools.

Figure 21 shows how the disciplines are performed during the iterations.

Chapter 3. Analysis

eju rem ants Euýii
Anolysis & Design

Plýrinr q
nti ýl ImplýrnentatiSn

P1 3r ni"C 1? nag'm=nt

Ennnnment Deployment

Evaluation -

TToos.

Figure 21. Disciplines in iterations (RUP)
[Kruchten 20031

112

The disciplines do not have equal emphasis during an iteration: the amount of

effort expended on a discipline depends on the phase in which the iteration is

taking place. Business modeling and requirement take a lot of emphasis during

earlier phases, whereas during later phases, most of the effort is put into

deployment and testing. Figure 22 shows the phases, disciplines and example

iterations in the RUP lifecycle model, and shows the relative amount of emphasis

put on each discipline during the iterations and phases.

For each discipline, RUP defines a set of artefacts (work products), activities (units

of work on the artefacts), and roles (responsibilities taken on by development team

members).

A brief description of each of the phases in RUP and the artefacts produced is

given in the next sections.

Disciplines

Business Modeling
Requirements

Anslysis sad Design

Implementation
Test

Deployment

Configuration and
Change Management
Project Management

Environment
hu ha EIý1 Eh1 twrl GBH Ewrl irw Trw
#i #1 #' #I #2 #w #I #w

Iterations

Figure 22. A typical RUP lifecycle model [Kroll and Kruchten 2003]

Chapter 3. Analysis

Inception (RUP)

113

During the inception phase, the business case for the system is established and the

project scope is delimited. This requires the following tasks:

1. Describe the initial requirements.

2. Develop and justify the business case for the system.
3. Determine the scope of the system.
4. Identify the people, organizations, and external systems that will interact

with the system.

5. Develop initial risk assessment, schedule, and estimates.
6. Configure the initial system architecture.

The following artefacts are usually produced during this phase:

9A vision document: a general description of the core project's

requirements, key features, and main constraints.

" An initial use case model (10% -20% complete).

" An initial project glossary.

" An initial business case: business context, success criteria, and financial

forecast.

" An initial risk assessment.

"A project plan.

"A business model (optional).

"A number of prototypes.

Elaboration (RUP)

The purpose of the elaboration phase is to analyze the problem domain, establish a

system-level architectural foundation, develop the project plan, and mitigate the

risks. This requires the following tasks:

1. Produce an architectural baseline for the system.
2. Evolve the requirements model to 80% completion.
3. Draft a coarse-grained project plan for the construction phase.

Chapter 3. Analysis 114

4. Ensure that critical tools, processes, standards, and guidelines have been

put in place for the construction phase.
5. Understand and eliminate high-priority risks of the project.

The following artefacts are usually produced during this phase:

"A use case model (at least 80% complete) - with all use cases and actors

identified, and most use case descriptions developed.

" Supplementary requirements capturing the non-functional requirements

and those requirements that are not associated with any specific use case.

"A software architecture description.

" An executable architectural prototype.

"A revised risk list and a revised business case.

"A development plan for the overall project, including the coarse-grained

construction plan, showing iterations and evaluation criteria for each

iteration.

" An updated development case specifying the process to be used.

"A preliminary user manual (optional).

Construction (RUP)

During the construction phase, the remaining components and features are

developed and integrated into the product, and all features are thoroughly tested.

This requires the following tasks:

1. Describe the remaining requirements.
2. Develop the design of the system.
3. Ensure that the system meets the needs of its users and fits into the

organization's overall system configuration.
4. Complete component development and testing, including both the software

product and its documentation.

5. Minimize development costs by optimizing resources.
6. Achieve adequate quality.
7. Develop useful versions of the system.

Chapter 3. Analysis

The following artefacts are usually produced during this phase:

" The software product.

" The user manuals.

9A description of the current release.

Transition (RUP)

115

The purpose of the transition phase is to transition the software product to the user

community. This requires the following tasks:

1. Test and validate the complete system.

2. Integrate the system with existing systems.

3. Convert legacy databases and systems to support the new release.
4. Train the users of the new system.

5. Deploy the new system into production.

The following artefacts are usually produced during this phase:

" Final product baseline of the system.

" Training materials for the system.

" Documentation, including user manuals, support documentation, and

operations documentation.

3.3.3.5 EUP (2000,2005)

EUP (Enterprise Unified Process) was introduced by Ambler and Constantine in

2000 as an extended variant of RUP. A revised and refactored version was
introduced in 2005 [Ambler et al. 2005]. The developers believe that RUP suffers
from serious drawbacks (which they claim to have corrected in EUP), namely
[Ambler and Constantine 2000a]:

" RUP does not cover system support and eventual retirement.

9 RUP does not explicitly support organization-wide infrastructure
development.

Chapter 3. Analysis 116

" The iterative nature of RUP is both a strength and a weakness, since the

iterative nature of the lifecycle is hard to grasp for many experienced

developers.

" Rational's approach to developing RUP was initially tools-driven; hence

the resulting process is not sufficient for the needs of developers.

The lifecycle model of EUP is shown in Figure 23. It extends RUP by adding two

new phases and two new disciplines (one of which was further broken down into

seven disciplines in the 20O5 version of the methodology), and also by extending

the activities in some of the old disciplines.

EUP's viewpoint to modeling is also somewhat different from RUP. Whereas RUP

advocates adherence to UML, EUP makes use of some older modeling notations

too. An example of this is the use of Data Flow Diagrams for business modeling.

Furthermore, EUP stresses that use cases are not enough for modeling the

requirements; consequently, use cases in EUP do not have the pivotal role they

have in RUP.

The following sections briefly describe the additions and changes EUP has made to

RUP.

Disciplines

Business Modeling

Requirement s

Anetysis & Design

Implementation

Test
Deployment

Cor/iguraton &
Change Management
Prged Managemert

Environment
Operations & Suppcxt

Enterprise Managemeil

Phases
Inception (_Elaboratlrn Construction II TransHlmJ ProOýdon (Retirement

_-f;

41111111111111

r-

a.

Conat Const Can& trän Tran j` ýýuaý Rat Ret Inllial [!
lab M1 lab 1ý2 # 02 #N #1 #0

ý

_J
Iterations

Figure 23. A typical EUP lifecycle model [Ambler and Constantine 2000a1

Chapter 3. Analysis 117

New phases (EUP)

The two new phases that EUP has added to RUP are:

" Production: added as the fifth phase, the focus of this phase is on keeping

the software in production until it is either replaced with a new version (by

executing the lifecycle all over again), or retired and removed. There are

no iterations during this phase. This phase is somewhat similar to the

maintenance phase in the generic software development lifecycle, in that it

is mainly concerned with the operation and support of the system; but

unlike classic maintenance, any need for changing the system (even a bug

fix) will result in the reinitiation of the development cycle [Ambler and

Constantine 2002].

Retirement: added in 2002 as the sixth phase, the focus of this phase is on

the careful removal of a system from production, either because it is no

longer needed or is being replaced. This typically includes [Ambler 2005]:

 Identification of the existing system's coupling to other systems.

 Redesign and rework of other systems so that they no longer rely

on the system being retired.

 Transformation of existing legacy data.

 Archival of data previously maintained by the system that is no
longer needed by other systems.

 Configuration management of the removed software so that it may
be reinstalled if required at some point in the future.

 System integration testing of the remaining systems to ensure that

they have not been broken via the retirement of the system in

question.

New disciplines (EUP)

The two new disciplines that EUP has added to RUP are:

" Operations and Support: concerned with issues related to operating and

supporting the system, typically associated with the maintenance phase of
the generic software development lifecycle. This discipline, however,

spans several phases, not only the production phase. During the

Chapter 3. Analysis 118

construction phase, and perhaps as early as the elaboration phase, the

development of operations and support plans, documents, and training

manuals is initiated. These artefacts are enhanced and perfected during the

transition phase, where the discipline will also include the training of the

operations and support staff. During the production and retirement phases,

the discipline covers classic maintenance activities: the operations staff

will keep the software running, performing necessary backups and batch

jobs, and the support staff will communicate with the users to help them

work with the software [Ambler and Constantine 2000a, b, c].

" Enterprise Management: concerned with the activities required to create,

evolve, and maintain the organization's cross-system artefacts such as the

organization-wide models (requirements and architecture), software

process, standards, guidelines, and the reusable artefacts [Ambler and

Constantine 2000a, b, c]. The Enterprise Management discipline was broken

down into seven disciplines in the 2005 version of the methodology

[Ambler et al. 2005], namely: Enterprise Business Modeling, Portfolio

Management, People Management, Enterprise Architecture, Strategic

Reuse, Enterprise Administration, and Software Process Improvement.

Modified disciplines (EUP)

In EUP, several changes have been made to RUP disciplines, including:

9 The Test discipline has been expanded to include requirements validation

during the inception phase, using techniques such as walkthroughs,
inspections, and scenario testing [Ambler and Constantine 2000a].

" The Deployment discipline in EUP has been augmented by deployment

modeling activities (which in RUP are a part of the analysis-and-design
discipline). The EUP also advocates starting deployment planning as early

as possible in the lifecycle. As a result of these two changes, the

deployment discipline in EUP has been extended into the inception and

elaboration phases [Ambler and Constantine 2000a, b].

" The Environment discipline has been updated to include the work

necessary to define the Production environment [Ambler and Constantine

2002].

Chapter 3. Analysis 119

9 The Configuration and Change Management and Project Management

disciplines are extended into the new production and retirement phases.

Furthermore, new features have been added to the project management

discipline, including metric management, subcontractor management and

people management [Ambler and Constantine 2002, Ambler 2005].

3.3.3.6 FOOM (2001)

Introduced in 2001 by Shoval and Kabeli, FOOM (Functional and Object-Oriented

Methodology) [Shoval and Kabeli 2001] is an object-oriented variant of Shoval's

ADISSA methodology of 1988 [Shoval 1988]. ADISSA (Architectural Design of
Information Systems based on Structured Analysis) was an attempt to ameliorate

the shortcomings of the classical, process-oriented Structured-Analysis/Structured-

Design (SA/SD) methodology through introduction of the transaction -a notion

very similar to the use case - as the basis for the design process. FOOM, in turn,

strives to combine the classical process-oriented approach (as prescribed by

ADISSA) with the object-oriented paradigm, very much in the tradition of well-

established "hybrid" methodologies such as OMT.

The FOOM process consists of the following phases:

1. Analysis: concerned with requirements elicitation and problem-domain
modeling, this phase consists of two activities, performed in parallel or
iteratively:

1.1. Data Modeling: with the focus on identifying and modeling the

class structure of the problem domain.

1.2. Functional Analysis: with the focus on identifying and modeling
the functional requirements of the system.

2. Design: concerned with designing implementation-specific classes and

adding structural and behavioural detail to the models, this phase consists

of the following stages:
2.1. Defining Basic Methods: with the focus on specifying primitive

operations for the classes.
2.2. Top-level Design of Application Transactions: with the focus on

identifying transactions, which are intra-system chains of

Chapter 3. Analysis 120

processes performed in response to stimuli from outside the

system; as such, each transaction is in fact a unit of functionality

performed by the system in realization of its functional

requirements. Structured descriptions of the identified

transactions are also generated, to be extensively used during

later stages of the design phase.

2.3. Interface Design: with the focus on designing a menu-based user
interface for the system. Suitable classes are then defined in order

to implement these menus.

2.4. Input/Output Design: with the focus on designing the input

forms/screens and the output reports/screens of the system, and

defining classes for implementing them.

2.5. Design of System Behaviour. with the focus on providing detailed

specifications for the transactions, and elaborating on object
interactions and operations of the classes.

3. Implementation: with the focus on object-oriented coding and testing of the

system.

FOOM is mainly targeted at data-intensive information systems. This explains its

lack of provision for behavioural modeling during systems analysis. Targeting

data-intensive systems has also resulted in a slack attitude towards behavioural

design of the system; many of the activities prescribed in the Design-of-System-

Behaviour stage are too simplistic to be of any practical use in developing process-
intensive systems.

A short description of each of the first two phases (Analysis and Design) is given in

the next sections. The developers of the methodology do not propose a specific

procedure for the Implementation phase, merely stating that the system is

implemented based on the models and specifications produced during the design

phase (especially the behavioural specifications), using any common object-

oriented programming language.

Analysis (FOOM)

The following activities are performed in this phase:

Chapter 3. Analysis 121

1. Data Modeling - Problem-domain classes are identified along with their

attributes and relationships, with the results modeled in a Class Diagram.

This initial class diagram does not include the operations (methods) of the

classes, as these are to be added during the design phase. The classes
identified, therefore, are in fact data classes representing the data content

of the problem domain.

2. Functional Analysis - Functional requirements of the system are elicited

and modeled in a hierarchy of Object-Oriented Data Flow Diagrams (00-

DFDs). What makes these diagrams different from traditional DFDs is that

classes replace traditional data stores. Furthermore, the traditional notion

of external entities has been expanded to include time entities, real-time

entities and communication entities in addition to ordinary user entities.
Time entities act as modeling proxies for clocks, generating time signals at

specific points in time or during predetermined time-intervals, whereas

real-time entities act as generators of asynchronous sensor events from the

system environment, and communication entities represent other systems
interacting with our system via communication channels.

The two activities complement each other: not only are their products bound

together by common elements (data classes), but they also contribute to each other
in the sense that each activity provides an insight into the problem domain that can

then be used for enhancing the course of the other activity. Therefore, the

methodology prescribes that these activities be performed either in parallel or
iteratively (with the analysis team alternating between the two); more recently, it

has been suggested that, although the two activities should overlap, starting with
data modeling is preferable [Kabeli and Shoval 2003].

Design (FOOM)

The design phase consists of the following stages:

1. Defining Basic Methods - primitive methods are attached to each data class
in the initial class diagram. These methods, which are fairly independent
from the business logic of the system, are of two types:

Chapter 3. Analysis 122

I. I. Elementary Methods, which are the basic methods typically

found in classes, namely: construct-object (instantiate), destruct-

object, get-attribute(s), and change-attribute(s).
1.2. Relationship/Integrity Methods, which are derived from structural

relationships between classes and are intended to manage the

links between the objects at run-time and perform referential

integrity checks. Integrity checks should take into account the

relationship types that the classes are involved in, and the

cardinality constraints of these relationships. There are five types

of Relationship/Integrity methods generally defined for each

relationship a class is involved in, namely: initialize-connections

(on object construction), break-all-connections (on object

destruction), connect-to-object (via relationship), disconnect, and

reconnect.

2. Top-level Design of Application Transactions - Very much like the

modem-day use case, a transaction is a unit of functionality performed by

the system in direct support of an external entity (as categorized in 00-

DFD semantics). A transaction is triggered (initiated) as a result of an

event. Events in FOOM are of four types: user events (originating from

user entities), communication events (originating from communication

entities), time events (originating from time entities), and real-time events
(originating from real-time entities). Top-level design of the transactions is

performed in the following steps:

2.1. Identification of transactions: the transactions of the system are

identified from the hierarchy of OO-DFDs constructed during the

analysis phase. The OO-DFD hierarchy is traversed in order to
isolate the transactions, each of which consists of one or more

chained leaf processes, and the data classes and external entities

connected to them. Generally each transaction has one or more

external entities at one end and data classes and/or external

entities at the other.
2.2. Description of transactions: a top-level transaction description is

provided in a structured language referring to all the components

of the transaction: every data-flow from or to an external entity is

Chapter 3. Analysis 123

translated to an "Input from... " or "Output to... " line; every data-

flow from or to a data class is translated to a "Read from... " or

"Write to... " line; every data flow between two processes

translates to a "Move from... to... " line; and every process in the

transaction translates into an "Execute function... " line. The

process logic of the transaction is expressed by using standard

structured programming constructs. The top-level descriptions

thus produced will be extensively used during later stages of
design as a basis for designing the application-specific features of

the system.

2.3. Definition of the "Transaction" class: an abstract "Transaction"

class is added to the class diagram. Acting as a utility class, the

"Transaction" class will encapsulate operations for implementing

the process logic of complex transactions; that is, transactions

that are not deemed suitable to be assigned to ordinary classes

due to their over-complexity are put in this class as operations.
Operations of this class will be defined during the last stage of

design.

3. Interface Design - In this stage, the OO-DFD hierarchy is traversed in a

top-down fashion in order to produce the menu-based interface of the

system: a main menu, initially empty, is defined for the system; for each

process at the topmost level of the hierarchy that is connected to a user

entity, a corresponding menu-item is defined and added to the main menu;

at any level of the OO-DFD hierarchy, for every non-leaf process

connected to a user entity, a corresponding submenu is defined and
initialized as empty, and for every process (leaf or non-leaf) that is

connected to a user entity a corresponding menu-item is defined and added

to its parent-process's submenu. The menu tree thus derived is then refined
into the user-interface of the system. The leaf items in this tree correspond

to leaf processes connected to user entities, and will invoke a system

transaction when selected at run-time. In order to realize this interface, a
"Menu" class is defined and added to the class diagram of the system.
Instances of this class will be the run-time menus, with their items saved as

attribute values.

I

Chapter 3. Analysis 124

4. InputlOutput Design - The top-level descriptions of the transactions are

used for determining what input forms/screens and output reports/screens

should be designed: an input form/screen will be designed for each "Input

from" line appearing in the transaction descriptions, and an output

report/screen will be designed for each "Output to" line. Two new classes,

the "Form" class for the inputs and the "Report" class for the outputs, are

then added to the class diagram. The actual screens, forms, and reports are

instances of these classes, with the titles and data-fields stored as attribute

values.
5. Design of System Behaviour - This stage of the design phase produces the

main behavioural specifications of the system. The top-level descriptions

of the transactions are used as a basis for identifying and detailing the main

application-specific operations of the classes as well as the object
interactions (message-passing chains) that implement the transactions of

the system. This process typically involves the following activities:

5.1. Identification of operations: the top-level descriptions are refined

so as to include details on the operations in charge of
implementing the expected functionality, as well as the

classes/objects to which these operations belong. Transaction

specifications thus refined show the full object-oriented process
logic of the transactions in terms of run-time message interchange

among objects. The following conversions and mappings are

typically performed:

" Each Input/Output line is converted into a message to a

corresponding operation in the relevant Report/Form

object.

" Each Read/Write line is translated into a message to the

corresponding basic function in the relevant data class.

" Each Execute-Function line is converted to a message-

passing chain consisting of one or more messages to

specific operations of particular classes. These operations
may be basic operations already defined, or new
application-specific operations that should be assigned to

appropriate classes. The design team decides on how to

Chapter 3. Analysis 125

realize the expected functionality of each Execute-

Function line as a message passing chain, and in doing so

identifies new operations for the classes involved. It

should also make sure that the message passing logic is

incorporated in each of the participating classes.

Detailed signatures are then defined for all the operations. The

detailed descriptions of the transactions are ultimately translated

into pseudo-code, in which the process logic of each transaction

(the sequence of the message interchange, and the

iterations/conditions involved) is expressed by using standard

structured-programming constructs. In addition, for every

transaction that involves chains of message-interchange among

objects, a Message Diagram (identical to the UML collaboration

diagram) is produced; these diagrams help further clarify the

process logic of the transactions.

5.2. Transaction assignment: classes are put in charge of fully

executing, or initiating/directing the execution of the transactions

for which detailed specifications were produced in the previous

substage. Depending on the complexity of its internal process

logic (excluding Input/Output and Read/Write messages), each

transaction undergoes one of the following:

Transactions that have a processing scope confined to

instances of a single class are assigned to that class as an

operation. Triggering the transaction will result in the

invocation of the corresponding operation, which will

"execute" the transaction in its entirety.

" Transactions with moderate processing complexity
involving a message-passing chain among instances of
different classes are assigned to a participating class as an

operation. Instances of this class will thus be able to act

as chain "initiators"; the overall process logic is

distributed among the participant classes, with the

participating objects knowing to which object the next

message should be directed.

Chapter 3. Analysis 126

" Transactions with complex process logics involving

many classes are deemed not suitable to be assigned to

any of their participant classes. Such transactions are

assigned to the abstract `"Transaction" class as an

operation. The high-level process logic of the transaction

is centralized in the operation, thus putting it in charge of

orchestrating the processing through "directing" the

invocations (analogous to a "main" module).
Every operation executing, initiating or directing a user

transaction is linked to its corresponding menu item in the

relevant Menu object, so that selection of the item by the user at

run-time will activate the proper operation. Provision should also

be made for operations that execute/initiate/direct other types of

transactions (time, real-time, and communication) to be invoked

upon occurrence of their pertinent trigger events.
5.3. Detailed specification of operations: pseudo-code descriptions

are produced for all significant operations. The pseudo-code

specifications of the methods (operation bodies) are intended to

facilitate the actual coding of the system during the

Implementation phase.

3.3.4 Methodologies: Agile

Enthusiasm over agile development has been such that the methodology war of the

early 90s has been more or less repeated over agile methodologies. Not only have

numerous variants of prominent agile methodologies emerged, but agile variants of

older methodologies have also been proposed. The agile methodologies selected
for inclusion in this analysis are the main contenders, widely recognized as the

torchbearers of the agile movement.

3.3.4.1 DSDM (1995,2003)

DSDM (Dynamic Systems Development Method) was first introduced in 1995 by a

consortium of UK companies. Motivated by an ever-increasing need for a standard,

generally-accepted RAD (Rapid Application Development) methodology, the

Chapter 3. Analysis 127

consortium produced DSDM as an iterative-incremental generic framework based

on evolutionary prototyping and principles that are nowadays attributed to agile

development [DSDM Consortium 2003]. Starting with 16 UK companies, the

consortium now has more than 1000 members, including industry giants such as
IBM, Microsoft and Siemens; it should not be surprising, then, that the framework

proposed by DSDM is now considered the de facto standard for RAD.

The latest version of the DSDM process consists of seven phases [DSDM

Consortium 2003]; the first and last ones, though, are not considered main phases,

since they are not considered part of the project itself:

1. Pre-project: with the focus on providing the necessary resources for

starting the project, along with a plan for the next immediate phase, i. e. the

feasibility study.

2. Project-proper, during which the five main phases of the DSDM are

applied; the first two sequentially at the start of the project, and the

remaining three as interwoven cycles (Figure 24):

2.1. Sequential Phases: primarily concerned with studying the
business domain and performing a preliminary analysis of the

system, these short phases set the stage for the actual
development of the system:

2.1.1. Feasibility Study: analogous to the classic feasibility

analysis, albeit with a special focus on analyzing the

suitability of DSDM for the project, and coming up

with an outline plan for the subsequent phases.
2.1.2. Business Study: with the focus on identifying

system-relevant processes and information entities in

the business domain, defining and prioritizing the
high-level requirements of the system, developing

the system architecture, and producing a
development plan.

2.2. Iterative Phases (The Development Cycle): based on the high-
level knowledge acquired during the business study phase, the
three iterative phases iteratively and incrementally analyze,

Chapter 3. Analysis 128

design, code and deploy the system through evolutionary

prototyping:
2.2.1. Functional Model Iteration: with the focus on

selecting requirements according to their priority,

and performing detailed analysis and modeling of

the selected requirements through prototyping.

2.2.2. Design-and-Build Iteration: with the focus on

evolving the prototypes into final deliverable

increments of the system.

2.2.3. Implementation: with the focus on deploying the

deliverable increments into the operational

environment, and reviewing and validating the

system built so far.

3. Post project: with the focus on system maintenance, which as in most other

iterative-incremental methods, is applied through further iterations of the

main phases.

DSDM does not prescribe a specific order for the execution of the iterative phases

in the overall process: it is true that prototypes should undergo the three phases in

the order specified above, yet as shown in Figure 24, the three iterative phases

themselves form an outer interwoven cycle (hence the name "Development

Cycle"). The selection of the number of iterations in each cycle, and the way the

iterations should interact, is completely dependent on the project and up to the

development team to decide. Furthermore, the introduction of multiple

development sub-teams working in parallel enables the phases to overlap, adding

another configurable dimension to the process. Since all of this enables the

developers to tailor the process to fit the project in hand, DSDM is referred to as a

configurable process framework, rather than a methodology.

In customizing the process framework, the development team also has to set up a

strict time-constrained plan for the development. In DSDM, stringent constraints

are set on time and resources, leaving the requirements (functionality) as the only

variable parameter of the project (DSDM is thus deemed especially suitable for

projects with highly volatile requirements); this is in contrast to traditional

Chapter 3. Analysis 129

methods, in which time and resources are allowed to vary, while functionality is

fixed.

In DSDM, time constraints are set up using time frames called time-boxes. A fixed

completion date is set for the overall project, thereby defining the overall time-box

in which the project is to be done. During the business study phase, shorter time-

boxes of two to six weeks are nested inside this overall time-box, setting temporal

boundaries for development cycles and/or iterations. Each tine-box is assigned a

fixed end-date and a prioritized set of requirements. End-dates are not movable,

and lower priority requirements are to he sacrificed if the time-box does not allow

work to be done on them, in which case they might be taken on in later time-boxes.

Each time-box is to produce tangible artefacts, and is therefore the basic unit for

project monitoring and control.

Like other agile development methods, DSDM is based on a number of principles,

the most important of which are active user involvement, frequent deliveries,

empowered development teams, reversibility of changes, and testing in all phases

of the project.

The following sections contain brief descriptions of the tasks performed in each of

the five main phases of DSDM.

Figure 24. The DSDM process: the rive main phases of the framework
[DSDM Consortium 2003]

Chapter 3. Analysis

Feasibility Study (DSDM)

130

In this short phase, which typically takes no more than a few weeks, the following

tasks are performed:

1. Acquire high-level knowledge as to the nature of the project, its scope, and

the risks and constraints involved.

2. Check whether DSDM is the suitable approach for the project in hand.

This is done by applying a list of project and organizational criteria (called

the Suitability Filter) to the project. The suitability filter defines the

characteristics that should be present in a project for DSDM to be properly

applicable. The following non-exhaustive list includes a number of the

more important characteristics, some of which are legacies from RAD:

" The system to be developed should be interactive, with the

functionality amply visible at the user interface level (screens,

reports and controls), thus allowing prototyping to be effectively

applied.

" The system should have a clearly defined user group, so that well-

informed representatives (called Ambassador Users) can be

identified and involved as active participants in the project.

" The system should not be computationally complex (more

business-oriented rather than scientific).

" The requirements should not be too complex to elicit, delineate,

prioritize, or implement individually.

" There should be no constraint or criticality issue compelling the

developers to fully specify the requirements before any coding can

commence.

" If the system is large, it should lend itself to partitioning.

" The sponsor/senior-management should understand and accept the

principles and practices of DSDM.

3. Perform the traditional activities of feasibility analysis, paying special

attention to technical, schedule, and managerial feasibilities.

4. Develop rough estimates and an overall Outline Plan for the project.

Chapter 3. Analysis 131

The results of the first three tasks are compiled in the Feasibility Report. The report

may be complemented by a primitive prototype of the system (called the

Feasibility Prototype), the main purpose of which is to demonstrate the scope and

the technical feasibility of the project.

Business Study (DSDM)

The business study broadly encapsulates the following tasks, typically performed

through a series of facilitated workshops involving the developers and the

ambassador users:

1. Identify the processes and information entities in the business domain that

are relevant to the system, as well as the types of users interacting with, or

affected by, the system. The list of user-types will help identify

ambassador users to participate in later tasks.

2. Define and prioritize the high-level functional and non-functional

requirements of the system. The requirements are prioritized according to

what DSDM calls the MoSCoW Rules, which is, in effect, categorizing

each of the requirements as one of the following:

Must-Haves: essential requirements on which the project's success

relies.

" Should-Haves: important requirements, but not essential to the

project's success.

" Could-Haves: requirements that can be excluded from the system
functionality without having any serious effect on the project.

" Won't-Haves: requirements that will not be part of the system
functionality in the current project.

The project must guarantee the implementation of the must-haves and

should strive hard to deliver the should-haves. The could-haves will only
be realized if time and resources allow their implementation.

The results of the first two tasks are packaged as the Business Area
Definition document.

3. Develop the System Architecture Definition, which highlights the

architecture of the software solution, and specifies the development and
operational platforms.

Chapter 3. Analysis 132

4. Produce the Prototyping Plan, outlining the order of activities during the

iterative phases of the development.

Functional Model Iteration (DSDM)

In this iterative phase of the process, based on the high-level specifications outlined

during the business study, detailed systems analysis is carried out through

evolutionary prototyping. The following tasks are to be performed during the

overall phase:

9A risk analysis is conducted in order to assess the risks involved in

developing the requirements. The analysis will be refined during the

iterations (based on the feedback and experience gained from the

prototypes), ultimately resulting in the Development Risk Analysis Report.

" Requirements are selected according to their development risk (higher risk

meaning higher priority), and functional prototypes are iteratively built in

order to demonstrate the relevant functionality to the ambassador users,

and refine the requirements based on the feedback. Testing is rigorously

performed during the prototyping activities, and records are carefully
logged. The prototypes produced in this phase not only constitute the

embryo from which the final system will ultimately evolve, but as

manifestations of the refined functional requirements, they also form the

main part of the Functional Model of the system (thereby eradicating any

need for the use of functional/behavioural modeling notations).

" Non-functional requirements are refined and listed. This list too is

considered a constituent of the functional model.

" If necessary, static models (class diagrams) are used for modeling the

structural aspects of the domain area being analyzed. These models are

also appended to the functional model.

The above tasks are performed through iterations, with the following activities
(similar to the activities in the traditional prototyping lifecycle) being carried out in

each iteration:

1. Identify what is to be produced (the products).
2. Agree how and when to carry out the production (the plan).

Chapter 3. Analysis

3. Create the product(s).

133

4. Check that the products have been produced correctly (by reviewing

documents, demonstrating a prototype or testing part of the system).

Design and Build Iteration (DSDM)

In this iterative phase of the process, the functional prototypes produced in the

previous phase are completed and refined into a thoroughly tested and operational

increment of the system. The prototypes from the functional model were merely

meant for the purpose of requirements elicitation, refinement and modeling, and

are therefore far from deployable: they are lacking in low-level functionality and

structure, and do not adequately address non-functional requirements and
implementation-specific issues. During the design-and-build phase, the prototypes

are iteratively refined and gradually evolved into a working software subsystem,

ready to be deployed as an increment into the operational environment, and

integrated into the system built so far. The intermediate prototypes are called

Design Prototypes, since they act as "live" executable blueprints for the final

product.

As in the previous phase, the activities performed in each iteration are similar to

those of the traditional prototyping lifecycle. Testing is performed on a continuous

basis, with test cases and relevant results and decisions carefully logged. The

intermediate prototypes are also kept on record as design documentation.

Implementation (DSDM)

During this phase of the project (which could have well been called Deployment,

or Transition), the increment produced in the previous phase is deployed into the

user environment, and integrated with the system built so far. Each iteration

involves the following tasks:

1. Users and support personnel are trained, and manuals are prepared.
2. The increment is introduced into the operational environment. This

naturally involves dealing with system integration and conversion issues,

and the subsequent refactoring and testing activities.

Chapter 3. Analysis 134

3. A comprehensive validation review is performed on the system with

feedback acquired from the users, results of which are compiled in the

Increment Review Document. Based on the results of the review,

alternative courses of action may be taken. There are four possible

outcomes:

" All requirements planned to be realized have been implemented to

the users' satisfaction, in which case the project is declared as

finished.

"A major area of functionality was discovered during development

that had to be abandoned because of time-box constraints, but

should be developed; in this case a return to the business study

phase is required.

" An area of functionality had to be left out because of time-box

constraints, but should be developed; in this case a return to the

functional-model-iteration phase is required.

"A non-functional requirement had to be ignored because of time-

box constraints, yet should be realized; in this case a return to the

design-and-build-iteration phase is required.

3.3.4.2 Scrum (1995,2001)

The first mention of "Scrum" as a development method was made in 1986, when it

was used to refer to a new fast and flexible product development process being

practiced at that time in Japanese manufacturing companies. The name emphasizes

the importance of teamwork in the methodology and is derived from the game of

rugby. The variant of Scrum used for software development, jointly developed by

Sutherland and Schwaber, was introduced in 1995 during a workshop at the annual

ACM/OOPSLA conference [Schwaber 1995]. Originally intended as a general

framework for systems development, Scrum is currently advertised as a

comprehensive software development methodology [Schwaber and Beedle 2001,

Schwaber 2004].

The Scrum process consists of three phases [Schwaber and Beedle 2001], as shown
in Figure 25:

Chapter 3. Analysis 135

1. Pre-game: concerned with setting the stage for the iterative-incremental

development effort; this phase consists of the following subphases:
1.1. Planning: with the focus on producing an initial list of prioritized

requirements for the system (called the Product Backlog),

analyzing risks associated with the project, estimating the

resources needed for implementing the requirements, obtaining

the resources necessary for starting the development, and
determining an overall schedule for the project.

1.2. Architecture/High-level Design: with the focus on determining

the overall architecture of the system in such a way as to

accommodate the realization of the requirements identified so far.

2. Development (Game): with the focus on iterative and incremental

development of the system. Each iteration (called Sprint) is typically one

month in duration and delivers an operational increment satisfying a

predetermined subset of the product backlog.

3. Post-game: with the focus on integrating the increments produced and

releasing the system into the user environment.

The following sections contain brief descriptions of the activities performed in

each phase of the Scrum process.

PREGAME DMLCPME-W POSTGAW
PHASE i

PHASE PHASE
II

". II
sprirt

-k
list p4wWH.

r vovdcn

Pilo d.. E, bt sI .. b.
An*de

Evok"

ArdibcUs

\/
's k\.

, TmchndoýW Roxxom

Nw po"
hm w

I

Figure 25. The Scrum process [Abrahamsson et al. 2002]

Chapter 3. Analysis

Pre-game (Scrum)

136

The two subphases comprising this phase usually overlap. The following activities

are performed in the Planning subphase:

1. Development of an initial list of requirements (Product Backlog) for the

system; the customer is fully involved in producing this initial version of

the product backlog, but all other possible sources are also used for

requirements elicitation. The product backlog will be completed and

updated as the project moves on, always acting as the basis for the

development effort. It will contain the functional and non-functional

requirements of the system, as well as bug fixes and enhancements

necessitated during the development process. Due to its utmost importance,

a dedicated caretaker (typically a key user of the system), called the

Product Owner, is put in charge of managing and controlling the product

backlog.

2. Estimation of the effort and resources needed for developing the items on

the product backlog and deploying the final system.
3. Assessment of the risk involved in developing the items on the product

backlog.

4. Prioritization of the items on the product backlog.

5. Definition of a delivery date for the release of the system. If the system is

too large, multiple releases might be deemed appropriate, and a delivery

date specified for each.

6. Formation of development team(s); each team (called Scrum Team)

typically has five to ten members with diverse specialties. The teams are

supposed to be self-organizing, in that team-members collectively decide

on issues of task assignment, team management and control. Nevertheless,

a supervisor, or Scrum Master, is assigned to each team to act both as a

facilitator in charge of removing the obstacles preventing the team's

progress, and an enforcer of Scrum practices, making sure that the team

does not digress from the course of action, values and guidelines laid out
by Scrum.

7. Provision of tools and resources necessary for the actual development to

commence.

Chapter 3. Analysis 137

The Architecture/High-level Design subphase consists of the following activities:

1. Problem domain analysis: based on the items in the product backlog,

domain models reflecting the context and requirements of the system are
built. Prototypes may also be built in order to gain better understanding of

the problem domain.

2. Definition of the architecture of the system: this is done in such a way as to

support the context and requirements of the system represented in the

domain models.

3. Updating the product backlog: new backlog items are added and/or existing
items are changed in order to accommodate the architecture designed.

Development (Scrum)

As the main development engine of the Scrum process, this phase is where the

requirements listed in the product backlog are realized through iterative analysis,
design, and implementation. This phase consists of a number of iterations, or
Sprints, each of which produces an executable increment to the system. The

following activities are performed in each sprint:

1. Sprint Planning: a Sprint Planning Meeting is held at the start of each

sprint in which all parties concerned with the project - development

team(s), users, customers, management, product owner and scrum

master(s) - participate in order to define a goal for the sprint. The Sprint

Goal defines the objective of the sprint in terms of the product backlog

Items that it should implement. In defining the sprint goal, special attention
is given to the priority of the items on the product backlog. The

development team then sets out to determine a Sprint Backlog, which is a

list of tasks to be performed during the sprint in order to meet the sprint

goal. Thus the sprint backlog is a fine-grained, implementation-oriented,

expanded subset of the product backlog. Items on the sprint backlog thus

produced are assigned to the development team(s), and will be the basis for

development activities performed during the rest of the sprint. If the sprint
planning meeting concludes that no further sprints are necessary, the
development phase is declared as finished, and the post-game phase is

started.

Chapter 3. Analysis 138

2. Sprint Development: the development team analyzes, designs, and
implements the requirements set in the sprint goal through performing the

tasks detailed in the sprint backlog, all in the 30-day time frame set by the

sprint. In order to effectively manage and control the activities of the

sprint, 15-minute Daily Scrum Meetings are held during which the team-

members discuss what they have achieved since the last meeting, their

plans for the period leading to the next meeting, and the impediments they

have encountered. The purpose of the meeting is to maintain and keep

track of the progress of the team and resolve the problems that might

adversely affect the team's pace. The management and the scrum master

also attend the meetings and are to help overcome the problems faced by

the team-members.
3. Sprint Review: a Sprint Review Meeting is held at the end of each sprint

during which the increment produced is demonstrated to all the parties

concerned. A comprehensive assessment is made of the achievements of
the sprint in satisfying the sprint goal, and the product backlog is updated

accordingly; i. e. fully realized requirements are marked as such, necessary
bug fixes or enhancements are added, and appropriate changes are made to

partially developed requirements. The sprint can also result in the
identification of new requirements, or changes to already defined

requirements, both of which are duly considered when updating the

product backlog. As another objective of the sprint review meeting, issues

impeding the progress of the development team are discussed and resolved.
The meeting is also concerned with updating the system architecture
according to the insight gained during the sprint.

Post-game (Scrum)

The following typical deployment activities are performed in this phase,
introducing the release into the user environment:

1. Integration of the increments produced during the sprints.
2. System-wide testing.

3. Preparation of user documentation.

4. Preparation of training and marketing material.

Chapter 3. Analysis

5. Training the users and operators of the system.
6. System conversion/packaging.
7. Acceptance testing.

3.3.4.3 XP (1996,2004)

139

XP (eXtreme Programming) was developed by Beck in 1996. Although the

introductory material on the methodology was available on the Web almost from

the start, it took three years for the first authentic XP book to appear [Beck 19991,

with a revised and refined version appearing in 2004 [Beck and Andres 2004].

Although some of the methodologies that are nowadays dubbed as agile are older

than XP, it was the advent of XP that sparked the agile movement.

XP considers itself a software engineering discipline rather than a methodology, yet

it does incorporate a process. The XP lifecycle consists of six phases (Figure 26):

1. Exploration: with the focus on developing an initial list of high-level

requirements, and determining the overall design of the system through

prototyping.
2. Planning: also called Release Planning, this phase's focus is on estimating

the time needed for the implementation of each requirement, prioritizing
the requirements, and determining a schedule (as well as a minimal, select

set of requirements to be implemented) for the first release of the system.
3. Iterations to First Release: with the focus on iterative development of the

first release of the system, using the specific rules and practices prescribed
by XP. Iterations are typically between 1 to 3 weeks in duration.

4. Productionizing: with the focus on system-wide verification and validation

of the first release, and its deployment into the user production

environment.
5. Maintenance: with the focus on implementing the remaining requirements

(including any resulting from post-deployment maintenance needs) into the

running system. Unlike many other methodologies, entering the

maintenance phase of XP does not mean that the project is over; in fact,

maintenance is the time for system evolution, and therefore is the time

when the project is considered to be in its "normal" state.

Chapter 3. Analysis 140

6. Death: with the focus on closing the project and conducting post-mortem

review and documentation.

EXPLORATION 1 PLANNING ITERATIONSTO to 1Ü PHASE I PHASE RELEASE PHASE 1_
CONTINUOUS W

REVIEW I
11 11

STOPoES I ýý
ýý

1
rvr1 neAI

REGULAR ITET)ON
1

UPDAT&S /
1I 1 ýý º ýý \

PAIR PROGRAMMING

PU
ANALYSIS DESIGN U

OR
WR TESTING

TESTING

1 1ý 1

Q. 11
1 11
1 11
1 1
1

STORIES I1i %%
Prbritles

Effort CONTINUOUS FEEE(M 1 estlmatea CK INTERGATION
!1
1/

TE$T ý-ý COLLEGTN SMALL uppATED FINAL
ý

LADEBASE RELEASE RELEASE RELEASE

1 -.
ýý CUSTOMERT'

Figure 26. A general overview of the typical XP process
[Abrahamsson et al. 2002]

The activities performed in the second, third and fourth phases of the process

constitute the development "engine" of the XP methodology (Figure 27), in that each

execution (run) of these phases produces a new release. According to the XP process,

a first release of the system is initially produced and deployed, which is then

incrementally improved and complemented during the maintenance phase through
further iterations (runs) of the development engine.

Test Scenarios

User Stories New User Story

Requirements Pro ectVelocity Bu s

Architech alMeta en
r

Release Release
Verston Acceptance

App
Approval Small

Spike planning Iteration
Tests Releases

Uncertain Conlldent Next aeration
Estimates Estimates

Spike

Figure 27. Top level activities in the XP development engine [Wells 2003]

Chapter 3. Analysis 141

The following sections contain brief descriptions of the activities performed in

each phase of the XP process.

Exploration (XP)

The main activities performed in this phase of the XP process are as follows:

1. Formation of the development team: the team typically consists of a coach

acting as monitor and facilitator, a number of programmers, and a business

representative (customer) that should be always available to actively

participate in project activities and supply the team with information and

feedback. The team may also include a number of analysts to help elicit the

requirements, a number of testers helping the customer define acceptance

tests, and a resource manager.

2. Development of the initial set of User Stories: a User Story defines a
feature of the system as seen from the customer's point of view. User

stories are written by the customer in his own terminology on index cards,

and are nothing but short descriptions (around three sentences) of a certain

chunk of functionality needed to be delivered by the system. User stories

are only detailed enough to allow relatively reliable estimation of the time

needed for their implementation, and'therefore only provide a high-level

view of the requirements; yet they are the main drivers of the planning and
development activities. The list of user stories is constantly updated during

the process to reflect the changes and additions made.
3. Creation of the system Metaphor. a prototype (called Spike or Spike

Solution in XP) is developed, exploring potential architectures for the

system. The prototype helps the team define the system Metaphor, which is

typically a very simple, high-level description of how the system works. It

usually takes the form of a description-by-analogy in order to be easily

understandable to all the team members. Though informal, the metaphor

gives an extremely useful idea of the overall architecture of the system

without setting too many constraints.

Chapter 3. Analysis

Planning (XP)

142

The main activities performed in this rather short phase of the XP process
(typically taking no more than a couple of days), which is also called Release

Planning, are as follows:

1. Estimation of development time: developers estimate the time needed to

develop each of the user stories as conforming to the system metaphor, and

write the estimates down on the user-story index cards. User stories that

need more than 3 weeks to develop are broken down into smaller ones, and

user stories taking less than 1 week are merged. In cases where estimates

are not reliable enough, spike solutions (prototypes) are developed in order

to help the developers mitigate schedule risks, and improve the estimates.
2. Prioritization of user stories: the customer prioritizes the user stories

according to their business value.
3. Planning the first release: the team selects a minimal, most valuable set of

user stories for implementation in the first release, and agrees on the

release date. In doing so, the team also decides on the iteration duration

(between 1 to 3 weeks), which once determined, will be the same for all
iterations. The resultant release plan will be the framework according to

which the iterative development effort in the next phase will proceed.

Iterations to First Release (XP)

This phase is the iterative development core of the XP process, with the ultimate

objective of producing the first working release of the system according to the

release plan. As a result of development activities, new user stories may be

identified, and the existing ones may change. The following activities are

performed in each of the iterations (Figure 28):

1. Iteration planning: at the start of each iteration, a planning meeting is held

during which the development team performs the following activities:
1.1. Selection of user stories to implement, as well as failed

acceptance tests of previous iterations that should be rectified:
based on the release plan, the customer selects user stories
(according to their business value) for development in the coming

Chapter 3. Analysis 143

iteration. Failed acceptance tests encountered during previous

iterations are also considered for inclusion in the list of jobs to be

attended to. Special attention is given to the experience gained

during previous iterations as to the development speed of the

team (called Project Velocity in XP) in order to make sure that

the selected jobs can indeed be completed by the end of the

iteration.

1.2. Identification of programming tasks: the developers on the team

break down the selected user stories and debugging jobs into

programming tasks, which are then written down on the user-

story index cards.

New User Story,
Release Project Velocity

Plan
User Stories Unfinished Tasks

1Leam

and
Communicate

New
Project Its ton Functionality Next velocnr Iteration Plan -- Latest

Iteration Planning -ý Development eueý. Version
Failed Acceptance

Tests
Day by Day

Bugs

Figure 28. Activities in each iteration (XP) [Wells 2003]

1.3. Task sign-up and estimation: programmers sign-up to do the

tasks. Each developer then estimates the time he needs for

completion of each of the tasks he has undertaken, making sure
that he can develop all of them in the time available. Each task

should take between 1 to 3 days to complete.
2. Development: the development activity in each iteration is itself an iterative

process with daily cycles. The main activities performed during

development, as shown in Figure 29, are as follows:
2.1. Holding daily stand up meetings: A short stand up meeting is

held every morning in order to communicate problems and

solutions, and help the team keep on track.

Chapter 3. Analysis 144

Learn and
Communicate

Unfinished Pau Programmng

Iteration Tasks RefactotMercilessly
New

Plan Tasks
ITOaMuch

Share
Move People Around

To Do CRC Cards
Functionality

Stand Up Collective +so%und p Tests Passed
FalledActeptante

Meeting NertTask Code Ownership
Or Failed

Tests Acceptance Test Acceptanta

Day by Day Test Passed Bug Fixes

Figure 29. Development activities in each iteration (XP) [Wells 2003]

2.2. Analysis, design, coding, testing and integration in a Collective-

Code-Ownership environment (Figure 30): Collective Code

Ownership means that all the code developed is put in a shared

code repository, and any developer can change his or others' code
in order to add functionality, fix bugs, or refactor. In order to

make collective code ownership possible, test-driven

development is applied: the developers have to create unit tests

for their code as they develop it. All the code in the code

repository includes unit tests, forming a suite of tests that is

automatically applied by test tools whenever code is added or

changed. Builds are frequent in XP, and continuous integration is

encouraged; yet, for code to be allowed integration into the

repository, it must pass the entire test suite. The test suite thus

safeguards the repository from malignant change.

In order to make sure that the user stories are indeed being

implemented, black-box acceptance tests based on the user stories

are defined by the customer and developed by the team during the
iteration. Acceptance tests are frequently applied (by automated
tools) to the code; the defects detected are relegated to the next
iterations if time constraints do not allow their rectification in the

present cycle.

Chapter 3. Analysis 145

Move People CRC
Around 100%

Cards Unit
simple

I
Tests Design

Complex
we Chang

Paa Need Passed Problem

Failed
Help Run All unit

Next Task Pair Create nit Unit Tess Newunlt
or Failed up a Unit Te - Pair Teas Continuous Run

F il d
Acceptance Test Passed Programming Now Integration a e

Acceptance

Test Una
Test Functionality Test

Simple Complex
Code Code

A cceptance
Test

Refactor Passed
Mercilessly

Figure 30. Activities in a Collective-Code-Ownership environment (XP)
[Wells 2003]

Other rigorous development practices are also prescribed by XP,

which will be briefly mentioned here. Although many of these

development practices are much older than XP itself, XP was the

first methodology to combine them into a synergistic
development-practice core:

o Programmers work in pairs, each pair on one machine
(a practice called Pair Programming).

o Programmers use CRC cards (explained in Section

3.3.2.3) in order to come up with the simplest design

possible for the programming task in hand.

o Refactoring is constantly done in order to simplify the

code and eliminate redundancy.

oA common coding standard is enforced in order to

promote code legibility, which in turn enhances

communication among developers.

o Developers are moved around so that they acquire
knowledge about all parts of the system; this will

reduce the cost of changes made to the team structure

and will help relieve overloading and coding
bottlenecks.

Chapter 3. Analysis 146

o Developers are to work at a sustainable pace, with forty

hours a week as the norm; nobody is allowed to work

overtime for two weeks in a row.

Productionizing (XP)

The main activities performed in this phase of the XP process are as follows:

1. System-wide verification and validation: the release is tested in order to

make sure of the user's approval and the system's readiness for

deployment. Acceptance tests, mostly developed during the iterations-to-

first-release phase, are used here as regression tests. Defects found are

resolved through iterations of the main development cycle.
2. Deployment into the production environment: the release is introduced into

the user environment. This naturally involves the usual integration,

conversion, tuning, training, and documentation activities typical of
deployment efforts. Any tuning and stabilization action on the release itself

is regarded as a development activity (analogous to user story
development) and is conducted through short iterations (typically weekly)

of the development cycle.

Maintenance (XP)

This post-deployment phase of the XP process encompasses the same activities as

those in the previous three phases (the development engine); i. e. Planning,

Iterations to First Release (the "First" will be dropped though), and

Productionizing. It is still dependent on the evolving set of user stories and the

system metaphor, and the activities in the constituent phases are performed in the

same order as before. The important difference is that the small releases produced
during maintenance are integrated into an already running and operational system.
The maintenance phase is when the remaining user stories are implemented into the

system (thereby evolving the operational first release into a complete system) and

the system is maintained as such. As customary in iterative and incremental

processes, requirements arising as a result of maintenance are treated as ordinary

requirements (also expressed as user stories) and implemented through the same

Chapter 3. Analysis 147

iterative development process. Maintenance in this way employs a uniform process
for both evolving and maintaining the system over its operational life.

The maintenance phase continues until either there are no more user-stories to

develop and none are anticipated in the future (an improbable happy ending for the

project effort), or the system in no way lends itself to necessary evolution any

more.

Death (XP)

The project is declared dead when evolution is either unnecessary or impossible.

The main activities performed in this final phase of the XP process are as follows:

1. Declaring the project as closed: this involves wrapping up the usual legal,

financial and social loose ends.
2. Post-mortem documentation and review: this mainly involves preparing a

short document (no longer than ten pages) providing a brief tour of the

system, and writing a review report summarizing the lessons learned from

the project.

3.3.4.4 ASD (1997,2000)

ASD (Adaptive Software Development) was introduced by James Highsmith in

1997 [Highsmith 1997]. A refined and extended version was introduced in 2000

[Highsmith 2000a]. Evolved from a RAD process and based on the teachings of the

complexity theory, ASD strives to present a change-tolerant, adaptive alternative to

the classical Plan-Design-Build and the iterative Plan-Build-Revise lifecycles. The

component-based development lifecycle prescribed by the ASD methodology

assumes that all aspects and constituents of the development effort (business

environment, people, requirements, resources, methods, etc.) are highly volatile,

and that building complex systems is an evolutionary process extremely difficult to

achieve unless special measures are taken to facilitate collaboration among the

people who are somehow involved or affected by the development of the system.

Chapter 3. Analysis

Or can
diverge

.,, e
*

C`o Or can
bal diverge

c, o

Learn

Or can
diverge

Figure 31. The basic Adaptive Software Development (ASD) lifecycle
I Highsmith 2000b]

148

According to ASD, the uncertain and unpredictable nature of the development

leaves developers no alternative but to use short iterations, or cycles. In order to

bound the development effort and keep it focused, a specific mission, a set of

components to develop, and a time box are defined for each cycle. Iterations should

be planned, but plans are only risk-driven speculations, requiring revision after

each iteration of the cycle; the actual design and implementation of the system

components becomes a by-product of intense collaboration; and for the process to

be adaptive, group reviews are performed at the end of each cycle, to enable the

people involved to learn from the experience and implement the lessons learned in

the process. The Speculate-Collaborate-Learn lifecycle thus formed (Figure 31)

becomes the basic ASD framework for developing software systems.

ASD goes further than specifying just a framework: it also specifies the concrete

phases comprising the lifecycle. The five phases constituting the ASD process, the

three middle phases of which form the iterative development engine of the

methodology, are as follows [Highsmith 2000a]:

1. Project Initiation: with the focus on understanding the project's objectives

and estimating its size and scope, exploring the constraints and the risks
involved, organizing the development teams, identifying high-level

requirements, and specifying success criteria.
2. Iterative Development Phases:

2.1. Adaptive Cycle Planning: with the focus on setting time frames

for the project and the development cycles, defining the

components that should be developed, assigning the components

Chapter 3. Analysis 149

to cycles, and scheduling the iterations. The plan will be revisited

and revised at the start of each iteration.

2.2. Concurrent Component Engineering: with the focus on

concurrent design and implementation of the components

assigned to individual cycles.

2.3. Quality Review: with the focus on conducting group reviews of

the components produced and rectifying the problems confronted.

3. Final Q/A and Release: with the focus on validating the produced system

and deploying it into the working environment.

Figure 32 shows the order of the phases and their relative mapping to the basic

Speculate-Collaborate-Learn lifecycle. The five phases of ASD and the activities

performed in each are briefly described in the following sections.

Approved
L"n, 7e 2 A(<"d

S, -bA=
- Lutllllllý L: "; 1ý -

quest

0 Project 1
i 2.0 Ada m 30 Concurnnt ý;

5 0 Fin lQ! A)it Qu . Cycle r-+ Component ° . a y "
Initiation Ping 1 Engineenng Review and Release

Mami insoýtmnr

Speculate Collaborate Learn

,. ý. ý Preceding or
lzgend

- Project Process M lestone Succeeding Process Processes
CD

Process ss

Figure 32. The ASD process [Crystal Methodologies Organization 20011

Project Initiation (ASD)

The activities performed in this phase are as follows:

1. Specify the Project Mission, which defines the objectives to he achieved

and broad requirements to be satisfied by the project.
2. Identify the project team(s).

3. Create the Mission Artefacts, consisting of the following:

Chapter 3. Analysis 150

a. Project Vision (Charter), which sets boundaries on the following:

i. Scope, size, and context of the project.
ii. Resources allocated to the project.

iii. Project staff; defining the skills, knowledge, and authority

required to successfully execute the project.
iv. Communication among the people involved in or affected

by the project, i. e. the Project Community.

b. Product Mission Profile, which identifies the primary factors

governing the product's success. The main part of this profile is a

matrix depicting the priority to be assigned to the four project

variables of scope, quality, schedule, and resources in order to lead

the project towards a successful product. The matrix also shows the

target values to be achieved for each variable, and the degree of

tradeoff allowed.

c. Product Specification (outline), which contains the results of

systems analysis and modeling, to be enriched in depth and breadth

in later phases. At this stage it typically includes a list of

requirements (also showing their priorities and interdependencies

and the risks involved in their development), as well as models of
the system showing the overall functionality, the major object

classes, and the interactions involved.

d. Project Data Sheet, which is a one-page document summarizing

the overall knowledge so far accumulated about the project. It

typically includes the project's objectives, clients and sponsors,
development team, main features (system functionality), overall

scope (in the shape of a Context Diagram), resources, benefits and
implications, milestones, constraints, priorities, and the key risks
involved.

The necessary information for producing the artefacts is usually obtained
through JAD sessions.

4. Obtain approval of the clients/sponsors and the permission to go ahead
with the project.

5. Share mission values among the project community, through discussing

and agreeing on quality objectives and evaluation criteria.

Chapter 3. Analysis 151

Adaptive Cycle Planning (ASD)

The activities performed in this first phase of the iterative-development part of the

ASD process are as follows:

1. Determine time boxes for the entire project and each of the development

cycles. Before specifying time frames for the development cycles, the

number of cycles necessary for developing the system should be estimated.
Cycle time boxes in ASD are typically between two to eight weeks in

duration.

2. Write objective statements for the development cycles. The objective

statement will help the development team focus its efforts during the cycle.
3. Define product components through JAD sessions. The components form

the ultimate system implementing the requirements, and are of three types:

feature components, which are domain-specific, analysis components that

enact the business logic of the system; and technology components and

support components, which are domain-independent, design components
that act as the technical infrastructure on which feature components rely
for execution and perfect run-time operation.

4. Assign components to cycles according to the risks involved in their
development and with careful consideration given to their
interdependencies. The assignment should be such that each cycle delivers

a tangible result.
5. Plan the project; an activity that typically involves developing buffered

schedules for the development cycles (considering the risks involved in

each and the resources they require), and setting up a suitable medium
(methods, tools and procedures) for enabling and enhancing collaboration

among members of the project community.
6. Develop a Project Task List, consisting of the tasks that should be

performed during the remaining phases of the project. Naturally, most of
the tasks are directly related to the development of components.

Due to the iterative nature of this phase, the speculative plans produced during the
first iteration are revised and updated during later iterations to reflect the lessons
learned.

Chapter 3. Analysis 152

Concurrent Component Engineering (ASD)

The activities performed in this phase, which is rightly considered the heart of the

iterative-development part of the ASD process, are as follows:

1. Develop the components assigned to the cycle. Working components are

typically developed concurrently by development teams working in

parallel and are delivered as builds on a daily or weekly basis. The

produced builds are immediately fed into an integration process. Testing

and refactoring are ongoing processes during this activity.

2. Manage the project through continuous monitoring and control.

Maintaining the inter- and infra-team collaboration and keeping the cycle

on the right track are the main concerns.

3. Prepare for final QIA by developing system-level test plans and test cases.
4. Prepare for quality review by planning the review meetings to take place

in the Quality Review phase.

Quality Review (ASD)

The activities performed in this last of the iterative phases are as follows:

1. Conduct cycle review by holding facilitated customer focus group sessions.
The result of the cycle is presented to the customers. The feedback and

change requests are carefully documented in order to be considered in later

iterations.

2. Determine next step; decision is made on whether another iteration cycle

should be initiated, or the system should be prepared for release.
3. Conduct cycle post-mortem, which typically involves reviewing the

performance of the teams and the effectiveness of the methods used. The

problems are then rectified so as not to adversely affect the next iterations.

Final Q/A and Release (ASD)

The activities performed in this phase are as follows:

1. Perform tests, with the main purpose of system-level validation.
2. Evaluate the test results.

Chapter 3. Analysis

3. Fix the problems.

153

4. Make a decision based on the test results, whether to release the system or

to start a new development cycle.
5. Transition to production; typically involving deployment activities

including system conversion, training, and preparation of documents.

6. Close the project, which, in addition to the usual wrapping-up and
termination procedures, also includes a project post-mortem summarizing

the lessons learned from the execution of the project.

3.3.4.5 dX (1998)

The dX methodology was introduced by Martin in 1998 as an agile instance of
RUP [Booch et al. 19981. Although a RUP derivative, dX closely resembles XP

and is based on the same principles; even the name is XP rotated (Martin has

claimed, however, that the methodology is referred to as dX because it is "very

small" [Booch et al. 1998]). The dX process consists of the same four phases as
RUP, yet the tasks performed in each phase are much simpler, and there is no trace

of the elaborate disciplines (workflows) prescribed by RUP. The dX versions of the
four phases are:

1. Inception: with the focus on determining the major requirements (use

cases), producing a preliminary version of the project schedule, and
designing a basic architecture for the system.

2. Elaboration: with the focus on iterative and incremental design and coding

of higher- priority (i. e. higher-risk) use cases until the architecture of the

system and the project-schedule are stabilized to a point that a release

schedule can be reliably worked out.
3. Construction: with the focus on designing and coding the remaining use

cases. In dX, the construction phase is a seamless extension of the

elaboration phase, with the release schedule being the only milestone

signifying the transition between the two.
4. Transition: with the focus on gradual introduction of the implemented

releases of the system into the user environment, and the subsequent

maintenance activities.

Chapter 3. Analysis 154

The four phases of dX and the tasks preformed are briefly described in the

following sections.

Inception (dX)

Tasks performed in the inception phase are similar to the generic, and already

familiar, analysis tasks. A team, consisting of developers and a customer

representative (analogous to XP), is formed and takes on the following tasks:

1. The customer representative, taking into account the developers'

viewpoints, writes simple descriptions of the major use cases on index

cards. These use case cards are the only intermediate artefacts the

production of which is enforced by dX.

2. Simple throwaway prototypes of the major use cases are developed in

order to measure the efficiency of the development team and to verify that

the use cases are at the appropriate level of granularity and detail. If there

are alternative architectures for the system, which is typically the case,

alternative prototypes are developed in order to obtain better understanding

of the implications of each alternative architecture.
3. Based on the results obtained from the prototypes, a preliminary project

schedule is prepared, which will be revised and improved in the course of

the project, especially during the elaboration phase.

4. The results obtained from the prototypes are also used as a basis for

choosing one of the alternative architectures as the initial version of the

system architecture, which will be revised and improved during the course

of the project, especially during the elaboration phase.

Elaboration (dX)

The elaboration phase is where the team, having determined the use cases, designs

and implements the higher-risk ones. Mitigating the major risks in this way allows

the system architecture and the project schedule to be stabilized, which in turn

makes it possible for a release schedule to be produced. The design and
implementation is done in short iterations, and the implemented increments are

constantly integrated. Other features prescribed in dX are even more suggestive of
XP's influence; index-card based planning techniques, customer tests, small

Chapter 3. Analysis 155

releases, simple designs, pair programming, test-driven development, stringent

coding standards, ongoing design improvement, and collective code ownership are
XP principles explicitly adhered to in dX.

The main tasks performed during elaboration are as follows:

1. The customer representative continues writing new use case cards and

completing the existing ones.

2. The amount of effort needed for developing each use case is estimated by

the developers and is written on the corresponding index card.
3. The use cases are prioritized according to their risk by the customer

representative.

4. The actual development is done in short iterations, each of which involves

the following activities:

4.1. Iteration Planning: bound by the iteration-duration selected
(which is typically no longer than one week), the customer
representative allocates the higher-priority use cases to the

iteration.

4.2. Design: the use cases selected for development are designed to fit

the system architecture. This is done during design sessions, in

which the team decides on how to implement the use cases.
Modeling may be done by any means the team finds appropriate
(e. g. UML diagrams), yet is usually limited to using CRC cards,

or simply writing the design decisions on the use case cards.
4.3. Coding: pair programming, test-driven development, and

constant refactoring are meticulously exercised. Collective code
ownership is the accepted rule, and integration is performed
continuously.

4.4. Post-iteration Revision: after each iteration, the project schedule
and the system architecture are revised to reflect the lessons
learned. As soon as the project schedule and the architecture are
stable enough, a release schedule is produced, and the transition
to the construction phase takes place.

Chapter 3. Analysis

Construction (dX)

156

The construction phase consists of the same activities as the elaboration phase,

except that the development is now performed according to the release schedule.
Construction goes on until all the use cases are implemented and released.

Transition (dX)

In dX, like XP, releases are frequent, with the first happening as early as possible
in the project. Transition starts immediately after this first release, running in

parallel with the construction phase. The purpose of the transition phase is to

introduce the software produced so far into the user community. This involves beta

testing the release, integrating the release with existing systems, converting legacy

databases and systems to support the new release, training the users, and

ultimately, deploying the new system. Since the early releases of the system are

generally lacking in functionality, a parallel conversion from the existing system to

the new one is preferable if these early releases are to be safely introduced into the

user environment.

3.3.4.6 Crystal (1998,2004)

Based on the belief that different projects call for different methodologies,
Cockburn has proposed Crystal as a family of methodologies [Cockburn 2001]. In
Crystal, projects are categorized according to their size and the criticality of the

system being produced. Four levels of criticality have been defined, based on what
might be lost because of a failure in the produced system: Comfort (C),
Discretionary Money (D), Essential Money (E), or Life Q. The maximum number
of people that might have to get involved in a project is regarded as a measure of
the project's size; therefore, a category L40 project is a project involving up to 40

people developing a life-critical system.

Crystal methodologies put heavy emphasis on communication among people
involved in the project. Therefore, projects with a larger size require heavier

methodologies since they involve more people, and hence, need better

coordination, whereas projects with higher criticality call for a more rigorous
approach, which might be accommodated by tuning a methodology used for a less

Chapter 3. Analysis 157

critical project. Based on this philosophy, Crystal methodologies are categorized

according to the project size that they address. Each member of the Crystal family

has been assigned a colour showing its relative complexity: the heavier the

methodology, the darker the colour assigned to it. Figure 33 shows a portion of the

project-type grid as defined in Crystal. Moving upward in the grid corresponds to

higher project criticality, while moving to the right means larger project size and

therefore more complex methodologies. The figure also shows a number of Crystal

methodologies assigned to different project sizes and the project categories that

they cover; i. e. Clear, Yellow, Orange, and Red, in ascending order of complexity.

Other more heavyweight members of the family - namely Maroon, Blue, and Violet

- have also been mentioned in the literature (though not shown in this grid), and yet

others can be added if a usage context arises.

Life
(L)

N

J
L40 L80

O

Essential
money

(E) E6 E20 E40 E80

Discretionary

T

money (D) D40 080

Comfort
(C)

C40 C80
rang ee

Project size (number of people involved)

L6 L20 L40 L80

E6 E20 E40 E80

D6 D20 D40 080

C6 C20 040 C80

Clear Yello e)range

Figure 33. Project types in Crystal and the corresponding Crystal methodologies
(partial grid) - adapted from [Cockburn 20011

In addition to adhering to the principles of agile development (Beck et al. 20011.

Crystal methodologies share several other common characteristics as well. Crystal

methodologies do not support the development of life-critical systems, are
iterative-incremental with each increment (delivery cycle) lasting no more than

four months, do not support distributed teams and require the people involved to be

collocated (e. g. in the same building), and depend on effective communication and
information flow among team-members for successful enactment.

Chapter 3. Analysis 158

Every Crystal methodology enforces a development process framework and

requires that a set of certain process elements (typically standard practices,

strategies and techniques of a relatively general nature) be used, and certain work

products be produced; yet, a large body of finer-grained detail is left to the

development team to decide. In many cases, developers are even allowed to use

techniques borrowed from other methodologies. Crystal methodologies thus

provide means for tailoring the methodology to fit the project in hand: the

development team(s) selects a base methodology at the start of the project (in the

form of a minimal set of working conventions), and gradually refine and perfect it

during development. This is Crystal's principal technique for making the

development methodology adaptable to variable levels of project criticality and

resilient to complications arising during development. In order to monitor and tune

the development effort, Crystal methodologies make extensive and frequent use of

Reflection Workshops, during which the project plans, the development

methodology, and the quality of the system delivered so far, are reviewed and

necessary adjustments made.

Of the Crystal methodologies named in the literature, only those that have been

practically used in real projects have been defined, and the rest remain to be

developed. The three Crystal methodologies so far defined are Crystal Orange,

Crystal Orange Web, and Crystal Clear. Crystal Orange was introduced in 1998

[Cockburn 1998] targeting C40, D40 and E40 projects; Crystal Orange Web is a

variant of Crystal Orange targeting ongoing web development projects in which a

continuous stream of deliverables is produced over an indefinite time span
[Cockburn 2001]. Crystal Clear, the lightest and most widely used member of the
family, will be briefly described hereinafter.

Crystal Clear is primarily targeted at C6 and D6 projects [Cockburn 2004]. There is

only one development team, with members working in close proximity to each

other. Usable software is delivered at least once every three months, though
delivery is typically expected to be much more frequent.

The project lifecycle in Crystal Clear consists of the following three sequential
phases:

Chapter 3. Analysis 159

1. Chartering: taking a few days to a few weeks, this phase involves forming

the development team, performing a preliminary feasibility analysis,

shaping and fine-tuning the development methodology, and developing an
initial plan for the project.

2. Cyclic Delivery: this is the main development engine of the process and

consists of two or more Delivery Cycles. Each delivery cycle takes from

one week to three months, during which the team updates and refines the

release plan, implements a subset of the requirements through one or more

program-test-integrate iterations, delivers the integrated product to real

users, and reviews the development methodology adopted and the project

plans. The iteration(s) in a delivery cycle are themselves composed of daily

and integration cycles.

3. Wrap-up: during this last phase of the lifecycle, post-implementation

activities are carried out, the software product is deployed into the user

environment, and post-deployment reviews and reflections are performed.

Figure 34 shows an example of the phases, cycles and activities in a typical project
developed using Crystal Clear. The three phases of Crystal Clear and the cycles

and activities performed in each are briefly described in the following sections.

Figure 34. Example of phases, cycles and activities in Crystal Clear -
adapted from [Cockburn 2004]

Chapter 3. Analysis

Chartering (Crystal Clear)

This phase consists of the following four steps:

1. Build the core of the team, typically consisting of:

160

a. An Executive Sponsor, who provides monetary and logistical

support to the project and essential direction to the team, and may

also act as the domain expert.

b. A Lead Designer, who also acts as project manager, coordinator,

and technical expert and trainer.

c. An Ambassador User, who acts as the expert on system usage.

Direct and active user involvement is essential to the

methodology's success.

d. A number of Systems Analysts, Designer-Programmers, Business

Experts, Testers, Text-Writers, Coordinators, and others, as

deemed necessary by the team (especially the above three main

members).

2. Perform the Exploratory 360°, which is a preliminary feasibility study

providing a high-level project-wide review of the key issues governing the

development of the project. These issues include: expected business value

of the system and its high-level requirements, domain models, technology

alternatives, overall project plans and constraints, necessary resources, and

the development methodology. This step typically results in a decision to

either go on with the project or terminate the effort due to infeasibility.

3. Shape and fine-tune the methodology conventions; a minimal set of rules is

agreed upon by the team as the skeleton of the methodology to be used in

developing the system. This initial set will be iteratively revised and

perfected during cyclic delivery, gradually evolving into a methodology

tailored to fit the project in hand.

4. Build the initial project plan, which typically includes a Project Map

showing the development tasks and their dependencies, and a Release Plan

showing the projected completion dates for delivery cycles and iterations.

Tasks are identified, prioritized and estimated using a technique called
Blitz Planning, which is a close variant of XP's card-based planning
technique. The plans will be revisited and updated during cyclic delivery.

Chapter 3. Analysis 161

Cyclic Delivery (Crystal Clear)

This phase consists of two or more Delivery Cycles. Each delivery cycle involves

the following four activities, collectively aimed at implementing, testing and

delivering working software to the user:

1. Recalibrate the release plan: the requirements and the project plans are

reviewed and updated according to the experience gained in the delivery

cycles performed so far. Refinements are also made to the plans and fine-

grained detail is added in order to accommodate the iterations to be

performed in the current cycle.

2. Develop in iterations: one or more iterations are performed in every
delivery cycle. Each iteration lasts from one week to three months, and

consists of the following three activities
2.1. Iteration planning: a fine-grained plan is produced involving the

tasks that should be performed in the iteration.

2.2. Cyclic program-test-integrate: an iteration consists of cyclic
daily activities (Figure 34). The team's Daily Cycle includes a

stand-up meeting (similar to that in Scrum), during which the

team-members exchange information and ideas about their

achievements, plans and problems. The rest of the day typically

consists of several Integration Cycles. During each integration

cycle, designer-programmers perform design-implementation

Episodes; that is, they start development tasks, and carry out

designing-programming (considered as one activity in Crystal)

and unit testing. At the end of an integration cycle, the code

produced by designer-programmers during the episodes of the

integration cycle is integrated into the system built so far, and

appropriate integration tests are performed. Developed code is

thus continually integrated into the system, typically several
times a day.

2.3. Iteration completion ritual: a Reflection Workshop is held for

reflecting on the quality of the code produced, the effectiveness

of the development methodology and the reliability of the plans.

Chapter 3. Analysis 162

Necessary changes are made to the working conventions and the

plans in order to resolve the problem issues.

3. Deliver to real users: the integrated system produced during the previous

activity is delivered to a small number of users (preferably only one), and
feedback is used for improving the system built so far and revising the

plans and/or the requirements. As in most agile processes, delivery in

Crystal Clear is frequent, necessitating frequent acceptance testing.

Therefore, the number of users to which the system is delivered should be

kept small in order to avoid excessive training and deployment costs.
4. Reflect on the delivery: through a workshop, the team reflect on the quality

of the delivered product, the development methodology and the plans. The

goal is to identify strengths and weaknesses and decide on ways for

resolving the shortcomings.

Wrap-up (Crystal Clear)

The main purpose of this phase is to perform acceptance testing, prepare the final

product and the user environment for final deployment, and ultimately carry out the

system conversion. As expected, this phase also includes a final reflection activity

aimed at compiling and recording the lessons learned from the project, in order to

use them in future projects.

3.3.4.7 FDD (1999,2002)

De Luca and Coad introduced FDD (Feature-Driven Development) in 1999,

originally as a tailored complement to the "Object Modeling in Color" technique
[Coad et al. 1999]. A revised version of the methodology was published in 2002

[Palmer and Felsing 2002]. This latter version had been completely decoupled from

"Modeling in Color", and was general enough to be considered an independent

methodology.

As the name implies, FDD is based on expressing and realizing the requirements in

terms of small user-valued pieces of functionality called Features. Each feature is a

relatively fine-grained function of the system expressed in client-valued terms,

conforming to the general template: <action> <result> <object>; for example,
"calculate the total value of a shipment" or "check the availability of seats on a

Chapter 3. Analysis 163

flight". The granularity of each feature should be such that it would take no more

than two weeks to develop; otherwise it will be broken down into smaller features.

Each feature is identified as a Step in one or more Activities (also called Feature

Sets), and activities in turn belong to Areas (or Major Feature Sets). This three-

layered structure allows the developers to adequately manage the complexity of the

requirements. Furthermore, features can also be partitioned according to the

architectural layer to which they belong: FDD prescribes a layered architecture for

software systems (as explained later in this section), providing a further means for

managing the complexity of requirements through architectural partitioning of
features.

The FDD process consists of five subprocesses, during the course of which several

deliverables are produced (Figure 35). The first three subprocesses are concerned

with requirements analysis and development planning and are performed

sequentially at the start of the process, whereas the remaining two are design and

implementation activities, done in iterations of no longer than two weeks.

The subprocesses of the FDD process, as shown in Figure 35, are:

1. Sequential Subprocesses: during this primary sequential phase, the problem
domain is modeled, requirements are identified as hierarchical lists of
features, and development planning is performed. Although not explicitly
included in any of the subprocesses, the sequential phase may also include

the production of an architecture for the system, typically conforming to

the general layered architecture proposed by FDD (Figure 36). The

subprocesses, in the order they are performed, are as follows:

1.1. Develop an Overall Model: with the focus on building a mainly

structural model of the problem domain called the Object Model.

This model mainly consists of full-featured class diagrams, yet it

may also include sequence diagrams (if deemed necessary) for

capturing important behavioural patterns of interaction in the

problem domain. The object model will be extensively used, and

refined, during the design-by-feature subprocess.
1.2. Build a Features List: with the focus on identifying the required

functionality of the system. This is done by first identifying the

Chapter 3. Analysis 164

areas of functionality in the system, and the activities performed

in each area. Features are then identified as steps in the activities,

and a three-layered pyramid of functionality, taking the form of a
hierarchy of lists, is thus produced.

1.3. Plan by Feature: with the focus on scheduling the features for

development, and then assigning the feature sets (activities), and

the classes in the object model, to developers. During the iterative

subprocesses, feature-set-developers (called Chief Programmers)

will develop the feature sets assigned to them by commissioning

class-developers (called Class Owners) to cooperate in order to
design and implement the features.

2. Iterative Subprocesses: during this iterative development phase, strands of
design-and-build iterations start off as each chief programmer selects the

set of features (called the Work Package) that should be developed in each

of the iterations performed under his supervision, and forms a team of class

owners to do the job. A chief programmer selects features and schedules
his iterations according to the overall development plan, taking care that

each iteration takes no longer than two weeks to complete. Typically, at

any point during this development period, several iterations are being

performed concurrently, some of them supervised by the same chief

programmer, with each of the class owners taking part in several iteration-

teams simultaneously. The subprocesses, in the order they are performed in

each iteration, are as follows:

2.1. Design by Feature: with the focus on determining how the
features in the work package should be realized at run-time by
interactions among objects. Sequence diagrams are drawn for

each of the features, resulting in additions and modifications
being made to the object model, and refined class and method
descriptions being produced.

2.2. Build by Feature: with the focus on coding and unit-testing the

necessary items for realization of the features in the work
package. The implemented items that pass the tests are then
promoted to the main build.

Chapter 3. Analysis 165

Develop 2. Build a 3. PIan 4. Design 5. Build
an Features By By By

Overall
List Feature Feature Feature

Model I(}

Shape and core A categorized A development A design package Completed
methods list of features plan (sequences) client-valued

An object model -- - --- -- - - Detailed how-to
function

+ informal features list content
+ notes on alternatives

Figure 35. The FDD process and its deliverables [Palmer and Felsing 20021

The FDD methodology cannot be considered an all-inclusive software

development methodology, in that it starts when the feasibility study and overall

project planning have already been done, a business case has been established, and

permission has been granted by the sponsors to go on with the development. It also

excludes post-implementation activities such as system-wide verification and

validation, and the ultimate system deployment and maintenance. Before a project

is started, a Project Manager is assigned who coordinates all development

activities, making sure that project activities, with the FDD process embedded as

the core, are performed coherently. The project manager's responsibilities include,

among other usual project management duties, the forming of the various teams

that should perform the FDD tasks.

The five subprocesses of FDD and the tasks performed in each are briefly

described in the following sections.

User Interface (UI) Layer
Human Interaction, User Interaction, Man-Machine Interface, Presentation Logic

Data Management (DM) Layer System Interaction (SI) Layer
Persistence Layer, Data Storage Logic System Interface, External Interface Layer

Figure 36. The general layered architecture of software systems as proposed by FDD
[Palmer and Felsing 20021

Chapter 3. Analysis 166

Build an Overall Model (FDD)

The tasks performed in this subprocess are as follows:

1. Form the Modeling Team, consisting of several software development

professionals (Chief Programmers), and one or more domain experts. The

team will operate under the guidance of a modeling expert (called the Chief

Architect).

2. Iterate the modeling cycle: an overview of the entire problem domain is

first presented by the domain experts. The problem domain is then

partitioned into areas, and the modeling is performed iteratively: each

problem-domain area is separately analysed and modeled through tasks 2.1

to 2.4 (below); the resulting sub-model is then integrated into the overall

model through task 2.5, and model notes are added in task 2.6. This cycle
is repeated until all problem domain areas are adequately covered and

modeled to the satisfaction of the chief architect. The tasks performed in

each iteration of the cycle are:

2.1. Conduct a domain-area walkthrough, which is also presented by

the domain experts.
2.2. Study documents of the problem domain area (if available).
2.3. Develop small Group Models of the problem domain area by

breaking the modeling team into small groups (of no more than

three members), and commissioning each group to develop its

own version of the object model for the problem domain area.
Each model will consist of full-featured class diagrams (showing

classes, their inter-relationships, and their attributes and

methods), and, if necessary, a number of sequence diagrams

depicting the typical interactions among objects.
2.4. Develop a Team Model of the problem domain area, by

examining the models produced by the small groups. The team

either approves one of the proposed models as the team model, or

produces the team model by merging ideas from two or more
group models.

2.5. Refine the overall Object Model by integrating the model of the

problem domain area into the overall problem-domain object

Chapter 3. Analysis 167

model produced so far. This naturally requires a certain degree of

refactoring to be done.

2.6. Write model notes, which describe specific aspects of the model

that are not explicitly addressed by the model itself, especially

including accounts of the alternatives explored by the modeling

team during the modeling process.

Build a Features List (FDD)

The tasks performed in this subprocess are as follows:

1. Form the Features-List Team, which consists of the chief programmers

participating in the modeling team from the previous subprocess.
2. Build the features list, which is a three-layered hierarchical list with the

following structure:

oA list of areas (major feature sets).

o For each area, a list of activities (feature sets) within that area.

o For each activity, a list of features representing the steps in the

activity.
The features-list is built in a top-down fashion: the features-list team first

identifies the areas (high-level feature sets) by carefully investigating the

knowledge acquired about the problem domain, particularly the problem-

domain areas (partitions) identified while building the overall object model

in the previous subprocess; the activities (low-level feature-sets) in each

area, and the features (steps) in each activity are then identified by

applying functional decomposition.

Plan By Feature (FDD)

The tasks performed in this subprocess are as follows:

1. Form the Planning Team, consisting of the project manager, the chief

programmers, and a Development Manager (which is put in charge of the

development effort, and as such, supervises the chief programmers).

2. Determine the development sequence by scheduling the development of the

feature sets (activities), specifying a date (month and year) for the

Chapter 3. Analysis 168

completion of each. This requires taking into account the inter-

dependencies among the feature sets, the workload distribution across the

development team, and the risks associated with the feature-sets. A

completion date is then determined for each area (major feature set) as the

last completion date assigned to its constituent feature sets.

3. Assign feature sets to Chief Programmers, thereby declaring them as the

owners of the feature-sets assigned to them.

4. Assign classes to developers, thereby declaring the developers as class

owners.

Design By Feature (FDD)

The tasks performed in this subprocess are as follows:

1. Form a Features Team, which will design and build the feature(s) selected
for development in the current iteration under the supervision of the chief

programmer who owns the features. After identifying the set of classes that

might be involved in the realization of the features, the chief programmer
brings together the owners of these classes and thereby forms the features

team.
2. Conduct a domain walkthrough (if at all necessary), by inviting domain

expert(s) to help the features team grasp all the relevant particulars of the

features. This task is usually undertaken for high-risk features, the

development of which usually requires a deeper understanding of the data,

algorithms, and constraints involved.

3. Study the referenced documents (if at all existent), in order to obtain a
better understanding of the features. As with the previous task, this task is

usually performed for high-risk features for which descriptive

documentation already exists.
4. Develop the sequence diagram(s), which as the pivotal part of the design

models, are required to show how objects should interact at run-time in

order to implement each of the features. The features team also

meticulously logs the alternative design models it has explored, as well as
the constraints and assumptions that apply.

Chapter 3. Analysis 169

5. Refine the Object Model (class diagrams) so that it supports the sequence
diagrams produced in the previous task. This usually means that new

elements are added to the model, some of the existing elements are

changed, and refactoring is necessitated as a consequence.

6. Write Class- and method-Prologues for the elements of the object model.

These relatively low-level design details are produced by the class owners

as the last design artefacts needed before the coding can commence.

7. Design inspection is performed by the features team (possibly in

consultation with other people involved in the project) in order to verify

the integrity of the design artefacts produced.

The products of this subprocess are transferred to the next subprocess as a package.

This Design Package consists of the sequence diagrams produced, the refinements

made to the object model, the prologues, and the notes on the design alternatives

explored, constraints, and assumptions.

Build By Feature (FDD)

The tasks performed in this subprocess are as follows:

1. Implement classes and methods according to the specifications given in the

design package. Each of the class owners implements the necessary items

(including the unit-testing code) in the classes he or she owns.

2. Conduct a code inspection, either before or after the unit-test, during which
the features team examines the code to make sure of its integrity and

conformance to coding standards.
3. Unit-test the code to ensure that all classes satisfy the functionality

required. Class owners perform class-level unit-tests, as well as feature-

level unit-tests prescribed by the chief programmer.
4. Promote to the build, if the implemented classes are successfully inspected

and unit-tested. As the leader of the features team, it is the chief

programmer who makes sure that all the classes necessary to realize the
features are ultimately integrated into the main build.

Chapter 3. Analysis

3.3.5 Process Patterns

170

Process patterns are the results of applying abstraction to recurring processes and

process components, thereby creating means for developing methodologies through

composition of appropriate pattern instances. They are an invaluable source of
insight for researchers, since they typically reflect the state of the practice and are
based on well-established, refined concepts.

3.3.5.1 Introduction

The first recorded reference to the term "Process Pattern" was made by Coplien in

his landmark paper in 1994 [Coplien 1994]. Coplien defined process patterns as
"the patterns of activity within an organization (and hence within its project)", and

almost all his patterns are relatively fine-grained techniques for exercising better

organizational and management practices, which although quite useful, do not

constitute a comprehensive, coherent whole for defining a software development

process. A number of them, however, such as "Prototype" and "Decouple Stages",

are indispensable in any process.

Ambler, who is the author of the only books so far written on object-oriented

process patterns, defines a process pattern as "a pattern which describes a proven,

successful approach and/or series of actions for developing software" [Ambler

1998a], and an object-oriented process pattern as "a collection of general
techniques, actions, and/or tasks (activities) for developing object-oriented

software" [Ambler 1998b].

A brief overview of Ambler's process patterns is presented in the following

sections.

3.3.5.2 Types of Process Patterns (Ambler)

According to Ambler, process patterns are of three types [Ambler 1998a]. These

types, in the ascending order of abstraction level, are as follows:

1. Task Process Pattern: depicting the detailed steps to execute a specific task

of the process.

Chapter 3. Analysis 171

2. Stage Process Pattern: depicting the steps that need to be done in order to

perform a stage of the process. A stage process pattern is usually made up

of several task process patterns.

3. Phase Process Pattern: depicting the interaction of two or more stage

process patterns in order to execute the phase to which they belong.

Ambler believes that in any process (even object oriented ones), phase's are

performed in serial order, whereas the stage patterns inside them can be

executed iteratively.

Ambler proposes many patterns of each type in his books, complete with detailed

steps and guidelines for integrating and shaping the patterns into a comprehensive

process [Ambler 1998a, Ambler 1999].

3.3.5.3 Object Oriented Software Process (Ambler)

Using his library of patterns, Ambler has proposed a general software development

process, which he has called the Object Oriented Software Process (OOSP).

As shown in Figure 37, OOSP consists of four serial phases, each of which is made

up of a number of stages. Each stage in turn consists of a number of tasks. All the

phases, stages and tasks have been instantiated from Ambler's library of patterns

according to guidelines provided in his method.

Ini6alr Comtrbd Iklicrr Maintain and Support

y. ybn Twt I Iý

ýý
!

Irltll

I
MoiM YUt. Ymr F NArM Sypt

YW. Y. e. ob -: ý

ýlsll

VR.

__
L`

_ýý
Ibarh

IfII

(:.. Nun ºaý dken.. E
u. ns

ý
ýý, ý 'lull lrwai

ta--
ý>. r '. Glrenna.

MaNYpbisf I. IrrrnNnn
L-.

. -..

A. wn Quality, Mrnaps IM projrn, role and Cducrtr, Mreyle Pople, M. aq. Risk, Mae. Rn R. _. Mrn. Ln Mrks, M. -g, DrIlrnMn, M. -It, 1al trun rn

Figure 37. Ambler's Object Oriented Software Process (OOSP) [Ambler 1998a]

Chapter 3. Analysis 172

3.3.6 Process Metamodels

In a bid to highlight the high-level features of a process or family of processes,

efforts have been made to apply abstraction to software development processes;

process metamodels thus produced can be instantiated in order to produce concrete

processes.

The two most well-known object-oriented process metamodels are the Open

Consortium's OPEN Process Framework (OPF) [Firesmith and Henderson-Sellers

2001], and the OMG's Software Process Engineering Metamodel (SPEM) [OMG

2002]. OPF was briefly explained when describing the OPEN methodology. A

brief overview of SPEM is given in the following sections.

3.3.6.1 The Software Process Engineering Metamodel (SPEM)

Similar in essence to OPF yet much simpler, SPEM is primarily based on Rational

Corporation's Unified Software Process Metamodel (USPM) [Kruchten 2001].

USPM was chiefly intended as a metamodel for the RUP process; consequently,
SPEM mainly supports the modeling of UML-based processes similar to RUP.

Unlike OPF, SPEM does not include a process component library, nor does it offer

a specific procedure for instantiating a software development process using the

metamodel.

3.3.6.2 Process Structure (SPEM)

SPEM regards a software development process as a collaboration of active entities
(called process roles) aimed at performing specific operations (called activities) on

a set of tangible artefacts (called work products) until the artefacts are brought to a

well-defined state, and declared as complete. SPEM hence regards the core

structure of a software development process as consisting of process roles, the

work products they are responsible for, and the activities that they perform on the

work products (as seen in Figure 38).

Chapter 3. Analysis

Role
LiJesPonsibIeFor

0
LW-.

rkProduct

0 6,

input output

pe s

Uses p uces

0' Activity

173

Figure 38. Core structure of a software development process, as defined by SPEM
[OMG 2002]

The complete structure of a process in SPEM is actually much more complex than

the core structure mentioned above. A work product may be composed of other

work products, and can be associated with a state machine showing the states the

work product can be in, and the permissible transitions between these states.

Activities can be partitioned into disciplines based on the structural and functional

themes that they have in common, and each activity may consist of atomic sub-

activities called steps. An activity can have a precondition and a goal as constraints

on its enactment, and may be associated with an activity graph, which shows the

flow of steps in the activity.

In order to constrain the order in which the activities are performed, and to define

the lifecycle structure of the process, SPEM incorporates definitions for iteration,

phase and lifecycle, which are very similar to their corresponding definitions in

RUP. The process structure proposed by SPEM also includes several abstract

classes encapsulating the structural and behavioural commonalities of the various

types of process elements. It also includes well-formedness rules, to be observed

when instantiating processes.

3.4 Criteria-Based Evaluation

This section contains a description of the initial set of analysis criteria and the

results of its application to the object-oriented methodologies, process patterns and

process metamodels described in the previous section. The analysis results are

Chapter 3. Analysis 174

reported, along with the final criterion set, which is then used for defining the

requirements.

3.4.1 Basic Criterion Set (Seed)

The criterion set should be initialized to a limited number of features known to be

significant in a software development methodology, and likely to trigger the

identification of new criteria and/or refinements to existing criteria when iteratively

applied to object-oriented software development methodologies. As well as general

traits and characteristics found in Software Engineering textbooks [Pressman

2004], features found desirable in object-oriented methodologies are also good

candidates [Graham 2001]. The important point to have in mind is that the initial

criterion set is to act as a "detonator": since the criteria are used as focus-pointers

guiding the analysis process in exposing the processes' strengths and weaknesses,

the initial criterion set should be expansive and incisive in order to trigger a large-

scale fan-out effect, ever increasing the breadth and depth of the analysis, and

thereby uncovering new criteria and refining the existing ones. The initial criterion

set should therefore be expected to undergo dramatic changes - both in structure

and content - during the analysis process.

The following were selected as initial criteria:

1. Coverage of standard software development activities: covering activities

constituting or supporting the generic software development lifecycle

[Pressman 2004].

2. Compactness of process: referring to lightness and simplicity of process,

and its being free of nonessential, excess features; hefty and complex

processes are hard to understand and master, and difficult to use.
3. Extensibility of process: the degree to which the process can be extended

to support software development efforts of different sizes, complexities

and criticalities.
4. Traceability of artefacts to requirements: the degree to which artefacts can

be shown to have stemmed from the requirements.
5. Consistency of artefacts: mutual agreement and logical coherence of the

artefacts.

Chapter 3. Analysis 175

6. Testability of artefacts: the degree to which artefacts lend themselves to

establishment of test criteria and performance of tests to determine whether

the test criteria have been met.
7. Tangibility and understandability of artefacts to users and developers: the

level of consideration given to the balance between abstraction and

concreteness in producing the artefacts - removal or reduction of low-level

detail when appropriate and developing physical manifestations when

necessary (e. g. prototyping) - with the ultimate objective of enhancing the

perceptibility of the underlying notions.
8. Rationality of process and artefacts: evident rationality behind every task

and the order in which the tasks are performed, and undeniable use for

every artefact produced.

The seven characteristics listed in Chapter 1- representing the core areas where
OOSDMs need improvement - have been included in order to reveal what the

existing processes lack or provide in this regard, thus unearthing features to exploit

and pitfalls to avoid. The first criterion has been added in order to broaden the

scope of the analysis to cover the whole lifecycle of the processes, and also to

prompt scrutiny into the details of the activities performed.

3.4.2 Evaluation Results

As a result of iterative-incremental criteria-based analysis of the selected

methodologies, process patterns and process metamodels according to the dynamic

criterion set, significant strengths and weaknesses were identified, the final list of

which is presented in the following subsections. Unlike many criteria-based

analyses, the results are not represented as ratings denoting the degree of support

each methodology provides for each of the criteria. As the criteria are used as
focus-pointers, guiding the analyst towards potential areas of significant strength or

weakness in the processes, there is no one-to-one relationship between the criteria

and the results: a process might possess several significant strengths/weaknesses as

pertaining to one criterion, while having nothing significant to offer in relevance to

another criterion. Whereas a simple rating procedure would add nothing new to the

criteria, the focus-pointing approach makes it possible to gradually increase the

Chapter 3. Analysis 176

span and depth of exploration and identify potential areas of improvement, thus

facilitating the evolution of the criteria.

3.4.2.1 Seminal Methodologies

Shlaer-Mellor

Strengths

D Partitioning the system into domains, providing distinct layers

from logical to physical
Overall process generally governed by the domain structure; the

base domain model is used as a focal point and as a high-level

roadmap for development

Q Infra-object behaviour accurately captured

Weaknesses

Excessive number of models
O Complex behavioural modeling
ÜD Bottom-up modeling: models are not based on system-wide

behaviour or functionality; modeling starts from object and intra-

object structure and then builds upward to inter-object and

system-wide behaviour
DD The modeling language used during architectural design lacks

behavioural features, wrongly suggesting that architectural

mechanisms have no distributed behaviour to add to the models.
D No modeling of physical configuration, i. e. processes

(modules/components) and processors

Coad-Yourdon

Strengths

Q Simple and well-defined process
Q Seamless development phases based on layered construction of

analysis models and tiered architecture of design

Chapter 3. Analysis

/

177

Q Partitioned design corresponding to the three-tiered architecture
Q Single notation for class structure and inter-object behaviour
Q Layered construction of class diagrams

Q Rich structural modeling

Weaknesses

No basis in behavioural or functional requirements of the system

(scenarios, use cases, responsibilities, etc.), resulting in poor

requirement traceability
D Poor behavioural modeling
D Lack of formal features

D No modeling of physical configuration

RDD

Strengths

Q Strong basis in system-level functionality (captured as

responsibilities)
Q Seamless development, although mostly limited to structural

models
Q Support for interfaces (called contracts); classes may have

multiple interfaces
Q One of the first instances of fractal (recursive) modeling:

subsystems and classes are both treated as having interfaces

Weaknesses

D Process coverage limited to detailed analysis and design
D Poor behavioural modeling (almost nonexistent)
D Lacking in structural modeling features
O No formal features
ÜD No modeling of physical configuration

Chapter 3. Analysis 178

Booch

Strengths

Q Iterative-incremental (Micro in Macro)

Rich structural and behavioural modeling features

(static/dynamic)

Q The Micro process puts precedence on identification of behaviour

over identification of structure, avoiding unwanted/unneeded

relationships

Modeling support for physical structure (configuration)

Weaknesses

D Comparatively complex process
D Traceability to requirements is not straightforward
D Poor behavioural modeling at the problem-domain and system

levels

O Inadequate formal features

OMT

Strengths

Q Identification of physical architecture prior to detailed design of

classes (system design before object design)

Behavioural modeling at the system level (scenarios and event-

traces)

Q Functional modeling at the system level (DFDs)
Q Rich structural and behavioural modeling features

Weaknesses

D OMT was a political solution intended to introduce 00 into

SA/SD communities, and as such, was a temporary remedy
bound to be pushed aside upon widespread adoption of the

object-oriented approach

Chapter 3. Analysis 179

D Inadequacy of the DFD as the functional modeling element
(which does not exactly integrate well with other models; this

ultimately led to the advent of OMT-2 in 1994 [Rumbaugh

1994]): orthogonal models need to converge somewhere along

the process, or be oriented around or based on a common notion.
D Inter-object behaviour not modeled
D Lack of formal features

D No modeling of physical configuration

OSA

Strengths

Rich structural and behavioural modeling features

D Explicit inter-diagram links (linking object interactions to object

states and events)

Weaknesses

D No process
O Limited to analysis modeling
D Traceability and seamlessness not addressed (and is not

applicable)

Inadequate modeling of object interactions
QD Inter-class details not adequately captured in the models
O Limited support for formality

OOSE

Strengths

Strong basis in problem-domain modeling and functional

modeling of the system (via use cases and domain object models)
Q Traceability to requirements (via use cases)

Seamless use case oriented development (despite a slight hiccup
in the Robustness Analysis phase)
Use-case oriented testing

Chapter 3. Analysis 180

0 Rich functional and behavioural modeling (at the system-, inter-

object-, and intra-object levels)

D Rich inter-object structural modeling

Weaknesses

O Typing of objects in the robustness analysis phase is somewhat

premature, especially the introduction of control objects
O Poor infra-object structural modeling
D Modeling infra-object behaviour is deferred to late design, where

events typically correspond to method invocations; doing the

modeling earlier can be more helpful in understanding the

requirements
D Lack of formal features

D No modeling of physical configuration

BON

Strengths

Q Based on system-level behavioural modeling and requirements
thereby identified

Q Seamless development

Q Customizable process through deliverable-based development:

changing the order of the tasks is permissible as long as all
deliverables are eventually produced.

Q Ongoing refinement
Q Rich structural and inter-object behavioural modeling
Q Formal features (especially contracts)
Q Good complexity management in structural models (via the

notion of cluster)

Weaknesses

O Many deliverables, resulting in complexity
19 Very limited functional modeling (use cases are casually

described and tabulated)

Chapter 3. Analysis 181

O Intra-object behaviour not modeled
19 Behavioural modeling starts late in the process: system-level

behavioural deliverables, especially event-charts, which can be

useful in identifying classes, are not produced until after class

definition

9 No modeling of physical configuration

Hodge-Mock

Strengths

Q Based on structural and behavioural modeling at the system-level
Q Seamless top-down development based on structure and

behaviour of the system (gradual well-defined transition from

system-level models to intra-object models)
Q Traceability to requirements via evaluation scenarios based on

scenarios of typical system usage
Q Continual verification based on evaluation scenarios
Q Using behavioural modeling in order to verify and refine the set

of classes identified during structural modeling
Q Rich functional modeling at the inter-object level
Q Rich infra-object behavioural and functional modeling
Q Rich structural modeling

Weaknesses

9 Relatively complex process
Q Poor inter-object behavioural modeling
19 Inadequate functional modeling at the system level (limited to

scenarios for evaluation)
D Lack of formal features

D Prohibitive number of diagrams and tables
D No modeling of physical configuration

Chapter 3. Analysis 182

Syntropy

Strengths

Q Substantial formal features derived from Z

Q Based on models of the problem-domain
Q Overall simplicity as to diagram types

Q Rich structural and behavioural modeling throughout
Q Smooth seamless transition from logical (problem-domain level)

to physical; through using type-views and state-views at all levels

and gradually refining them throughout the process
Cý1 Well-defined rules for linking different models to each other
Q Well-defined rules for transition from a logical view to its

physical counterpart

Weaknesses

O Process coverage limited to analysis and design

Traceability suffers from inadequate attention to functional

modeling at the system level; especially lack of attention to usage

scenarios
L Poor functional modeling
9 Inter-object communication not modeled until the last stage of

design

O No modeling of physical configuration

Fusion

Strengths

2 Based on functional, behavioural and structural modeling of the

problem-domain and the system
Q Smooth transition from task to task and from phase to phase
Q Traceability to requirements via scenarios of system usage
Q Rich models (structural, functional, and behavioural)
Q Support for formalism

Chapter 3. Analysis 183

D Strong functional and behavioural modeling at the system level

through identifying detailed scenarios of interaction with the

system at the system boundary
Q Extra attention to details of inter-object visibility and the

references that objects need to make to each other
Q Detailed inter-object/inter-class models produced during design

Weaknesses

D Partial coverage of the generic analysis phase: the process starts

when a preliminary informal requirements document is already

available.
O Structural model identified during analysis is discontinued in the

design phase, with its information broken down and then

perfected, thus damaging seamlessness
D The number of diagrams and other deliverables is prohibitive
ÜO No modeling of intra-class behaviour
D No intra-system behavioural and functional modeling during the

analysis stage; this has been done intentionally, but nevertheless
damages the comprehensiveness of analysis

O No modeling of physical configuration

3.4.2.2 Integrated Methodologies (Third Generation)

OPM

Strengths

Q Simplicity of process
Q Some degree of seamless development and traceability to

requirements due to the singularity of the model type used
(disrupted, though, because of OPD's limited modeling capacity)

Q Innovative structural and functional modeling in a single type of
diagram (OPD)

Q Strong structural modeling at the inter-object level

Chapter 3. Analysis

Weaknesses

184

ÜD Process is defined at a shallow level, with ambiguities and

inadequate attention to detail

O Seamlessness and traceability are disrupted due to lack of

behavioural models (especially at the inter-object and intra-object

levels, directly affecting the identification and design of class

operations)
D No basis in system-level behaviour and usage scenarios
D Poor behavioural modeling
D No formalism

Poor infra-object structural modeling
D Models are prone to over-complexity
O No modeling of physical configuration

Catalysis

Strenciths

0 Based on requirements identified and modeled as system
functionality and behaviour in the context of the problem
domain: the system is modeled as a class - type - among other

classes in the problem domain

2 Seamless development through uniform approach to modeling at
different levels

0 Traceability to requirements via usage scenarios and use-case-
based testing

Q Gradual refinement from problem domain to the system
boundary, then to the component architecture of the system, and
finally to the class architecture of the components

Q Process patterns identified for different kinds of projects
Q Special attention to non-functional requirements
Q Adequate complexity management
Q Special attention to physical configuration of the system early in

the process
Q Smooth transition from logical to physical aspects

Chapter 3. Analysis 185

Component based approach
Q Fractal modeling

Rich structural and behavioural modeling at all levels. Functional

modeling limited to UML's capabilities

Weaknesses

0 Heavy process; fractal modeling and process patterns help, but

are not enough
D Focus mostly confined to business systems, more or less limiting

the applicability of the process

OPEN

Strengths

2 Flexibility and configurability due to the framework definition of

the process
21 Well-defined framework (generally and in detail) for instantiating

tailored-to-fit processes
Q

Q

Q

Q

Q

Q

Accommodates seamless process configurations

Accommodates process configurations supporting traceability

Accommodates various lifecycles, including iterative-incremental

Covers enterprise-level activities and business-process-

reengineering

Incorporates a rich library of process components
Provides guidelines as to how customized processes should be

built (especially how stages should be structured and organized)
Q Accommodates comprehensive modeling at all levels (problem

domain to objects; logical to physical)
Q Rich modeling-language support (UML and OML)

Weaknesses

D As a result of merging various methodologies, OPEN is not a

specific methodology, but rather a process framework; in trying

Chapter 3. Analysis 186

to remain noncommittal to any single process, it has lost

concreteness.
D OPEN is huge and complex; many developers tend to use typical

instances introduced by the authors rather than instantiate their

own.
ÜD The developer is responsible for constructing the methodology,

and even though OPEN prescribes the framework, components,

and guidelines as to how to construct the process, bad instances

can be built (very much like a Lego game).

RUP/USDP

Strengths

Q Iterative-incremental process
Q Well-documented process
Q Based on functional, behavioural, and structural modeling of the

problem domain and the system
Q Traceability supported through use cases
Q Seamlessness (though with hiccups, e. g. transforming use cases

to sequence diagrams)
Q Architecture-centric process (which necessitates early

specification of an architectural blueprint)

Q Customizability addressed
Q Risk-based development, aimed at mitigating the risks before

undertaking the tasks
Q Support for structural, behavioural and functional modeling at all

levels (problem domain to objects; logical to physical)
Q Rich modeling language (UML), especially in structural and

behavioural modeling features

Support for formalism (through UMLJOCL)

Weaknesses

9 Very complex process

Chapter 3. Analysis 187

D The process is confusing to those involved: it is hard to

understand the logic behind some of the deliverables and tasks

performed. The iterative-incremental nature of the process further

complicates the issue.

D Although advertised as customizable, configuring the process is a

formidable task in itself. Trying to tailor down the process often

has the opposite effect.
D Since the process is very complex, not having a maintenance

phase, on the grounds that it can be performed by iterating the

whole process as a cycle, is not convincing.
O Prohibitive number of models
O Strict adherence to UML, which is not necessarily constructive,

especially since UML is not perfect and can exacerbate the model
inconsistency problem.

ÜO Substantial potential for inconsistency of models

EUP

Strengths

Q Same benefits as RUP
Q Addresses enterprise-level issues

Q Maintenance is a phase in its own right.
Q Attention is given to post-mortem activities when retiring the

project (in the form of a new Retirement phase).
Q Not strictly adherent to UML; other modeling languages such as

DFDs are also used.

Weaknesses

9 Like RUP, EUP is

 very complex

 encumbered with a prohibitive number of models
 suffering high potential for model inconsistency

 confusing as to the process used
 hard to customize

Chapter 3. Analysis 188

91 EUP has added further complexity to RUP by adding two new

phases and two new disciplines.

Adding the maintenance phase is not sufficient, since any change

needed will result in a restart of the development process.

FOOM

Strengths

2 Based on functional and structural modeling of the problem

domain and the system
Q Traceability to requirements (via transactions)

Appealing to domain experts and the SA/SD community (due to

the popularity of DFDs)
Q Attention to interface design and I/O design based on the

transactions identified and the OO-DFDs

Weaknesses

Z No implementation, deployment and maintenance phases

Only suitable for data-intensive information systems
D Seamlessness suffers because OO-DFDs are not exactly object-

oriented.
D The process is vague in how operations and transactions

extracted from the OO-DFDs are assigned to classes; this is the

same problem that triggered the demise of DFDs in 00

methodologies, after transformative methodologies and OMT

failed to resolve the issue. Using DFDs in an 00 context without

solving the problem of mapping (data-stores to classes and

processes to operations) and assignment (operations to classes)

will most probably result in failure.

D No modeling of logical architecture and physical configuration
D Poor behavioural modeling (performed only in later stages of

design at the inter-object level)

ÜD Lack of formalism

Chapter 3. Analysis 189

ÜD The issue of design-level refinements to the Data Model (class

diagram) is not properly addressed (only "Form", "Menu",

"Report", and "Transaction" classes are added).

3.4.2.3 Agile Methodologies

DSDM

Strengths

D Iterative-incremental process
D Based on functional and structural modeling performed on the

problem domain and the system
Q Early specification of the physical architecture
El Flexible and configurable process (through defining the main

development cycle as consisting of interwoven Analyze-Design-

Implement cycles)
Q Carefully worked-out process
Q Especially suitable for projects with highly volatile requirements,

since it is easily adaptable
Q Seamless development through using prototypes
Q Incorporating a Suitability Filter to make sure that the project can

be carried out with DSDM

Q Based on careful planning
Q Test-based development

Q Active user involvement

Q Reversibility of changes
Q Early and frequent releases
Q Smooth transition from stage to stage
Q Traceability to requirements achieved through constant testing

and via the prototype produced (the prototype is the

manifestation of the requirements and will ultimately evolve into

the final system)
Q Based on prioritization of requirements by categorizing them into

specific types
Q Design-based development

Chapter 3. Analysis

Weaknesses

190

O Not scalable
D Limited applicability scope: the project should lend itself to RAD

through evolutionary prototyping.
O Stringent constraints on time and resources
D Severe model-phobia: text reports are abundant but visual models

are avoided unless absolutely essential. The prototype is

considered the main model.
9 Lack of formalism

Scrum

Strengths

0

Q

0

Q

2

Iterative-incremental process
Based on modeling the problem domain and the system
Requirements are allowed to evolve over time.
Traceability to requirements through the Product Backlog: the

repertoire of requirements which all the stages are based upon
Architecture of the system drafted before the development engine
is started

2 Iterative development engine governed by careful planning and

reviewing
Q Active user involvement
Q Simple and straightforward process
Q Early and frequent releases, demonstrating functionality at the

end of each iteration (sprint) of the development cycle

Weaknesses

9 Integration is done after all increments are built
D Lack of scalability
QD Based on the assumption that human communication is sufficient

for running projects of any size and keeping them focused
D Not necessarily seamless (details of tasks are not prescribed)

Chapter 3. Analysis 191

D No clear-cut design effort
ÜO Model-phobic

Models are not prescribed, leaving it to the developer to decide

what model can be useful.
Lack of formalism

XP

Strengths

Q Iterative-incremental process
Q Based on system functionality captured in User Stories

The process is tuned according to feedback during its execution
Q Traceability to requirements through the use of user stories

throughout the process as the basis for tasks and tests

Q Based on system architecture (Metaphor) identified through

prototyping
Q Active user involvement
Q Test-based development

Q Stringent standards enforced on coding
Q Early and frequent releases
Q Requirements are allowed to evolve over time
Q Iterative development engine governed by careful planning and

reviewing
Q Explicit coverage of maintenance and project retirement

("Death") phases; maintenance in fact comprises the bulk of the
development effort

Q Continuous validation
Q Continuous integration

Q Refactoring exercised in order to acquire the simplest code

possible

Weaknesses

Process is rather vague: the process commonly introduced as the

"XP Process" is just a typical example.

Chapter 3. Analysis 192

D More intended as a set of principles and practices rather than a

methodology
O Limited evidence of scalability
QD Seamlessness is not addressed: development is more or less a

jump from user stories to code, and the little design that is done

(if at all) does not have to conform to any standard.
O Requires the use of automated tools and enforcement of

discipline for "Collective-Code-Ownership" to be practicable.
O No clear-cut design effort
O Model-phobic

D Except for CRC cards, models are not prescribed, leaving it to the

individual developer to decide what model is useful to him.

Lack of formalism

ASD

Strengths

Q Iterative-incremental process
Q Based on structural, functional and behavioural modeling of the

problem domain and the system
Q Well-worked-out process
Q Special attention to quality assessment and control (Q/A is

performed at all levels: per-project and per-iteration)
Q Component-based development
Q Adaptive (tuneable) process; through risk-driven planning,

conducting reviews, and revising the plans and the development

process according to what has been learnt during the iterations
Q Extensive use of JAD sessions for information gathering and

decision making
Q Stress on the importance of a collaborative environment for the

development to be successful: a User Community is established
and a suitable medium of collaboration (methods, tools and
procedures) is set up.

D Test-based development

Chapter 3. Analysis 193

Q Refactoring for simplifying the code
Q Continuous integration
Q Stress on parallel development of components by collaborating

teams of developers, thus speeding up the process
Q Traceability to requirements through ongoing validation and

quality review

Weaknesses

D Not scalable
D Over-dependence on inter-human communication
D Need for intensive project monitoring and control in order to

maintain inter-team and infra-team collaboration during

component development

D Seamlessness not addressed
QO No clear-cut design effort
D Model-phobic

D No specific models prescribed
O Physical configuration modeling is ignored (even though

necessary in component-based development).
D Lack of formalism

dX

Strengths

Iterative-incremental process
Q Based on system architecture identified through prototyping
Q Prototyping results used in planning and scheduling
Q Prototypes compensate for lack of analysis modeling
Q Based on system functionality captured in use cases
Q Traceability to requirements through the use of use cases

throughout the process as the basis for tasks and tests
Q Advantageous development practices borrowed from XP (test-

based development, early and frequent releases, active user

; w.

Chapter 3. Analysis 194

involvement, refactoring for achieving code simplicity,

continuous integration, and stringent coding standards)

Design-based development; design sessions are held in order to

decide on how the use cases should be implemented to fit the

system architecture.
Q Iterative development engine governed by planning and

reviewing

Seamlessness observed (though limited) due to use-case based

activities throughout the process, and design-based development
Q Risk-based process
Q Not particularly model-phobic
Q Formal features can be added via UMUOCL

Weaknesses

D Lack of detailed descriptive documentation on the methodology
QD Not scalable
O Transition is defined as a phase solely in order to remain

compliant with RUP; whereas it is, for the large part, a per-
iteration activity.
Poor analysis modeling is likely to have an adverse effect on the

design activity.

Crystal

Strengths

Q Iterative-incremental process
Continuous integration

Q Iterative development engine governed by planning and

reviewing
Q Flexible and configurable process (in each methodology):

methodologies are tuned through gradual perfection and revision
based on cyclic reflection workshops

Q Methodologies used for a low-criticality project can typically be

tuned to fit a higher-criticality project (if the criticality level is

Chapter 3. Analysis 195

supported by the methodology), provided that the project size is

not increased dramatically
Q Active user involvement

Q Early and frequent releases
Q Scalability (though limited) through using different

methodologies for different project sizes
Q Continuous validation
Q Specific work-products prescribed, though details and templates

are left to the developers to decide
Q [Crystal Clear] Traceability to requirements (though limited)

through continuous validation and quality reviews
Q [Crystal Clear] Requirements are allowed to evolve over time
Q [Crystal Clear] Preliminary feasibility analysis conducted as a

risk mitigation mechanism
Q [Crystal Clear] Based on system functionality, typically captured

in use cases
Q [Crystal Clear] Based on structural modeling of the problem

domain

Q [Crystal Clear] Based on a system architecture identified and

refined during the process
Q [Crystal Clear] Test-based development
Q [Crystal Clear] Design activities encouraged, with results

documented as Design Notes

Weaknesses

D Only limited scalability
QD Lack of an unambiguous common process
D Limited applicability: not suitable for developing highly critical

systems
D Over-dependence on inter-human communication

[Crystal Clear] Seamlessness not addressed
O [Crystal Clear] traceability to requirements suffers because

planning and development activities are not necessarily

Chapter 3. Analysis 196

requirements-based (e. g. Blitz Planning is task-based rather than

requirements-based).
D [Crystal Clear] Design activities are carried out by individual

developers in the manner they choose; design is not performed as

a team effort with globally available results based on which
implementation can be carried out uniformly.

D [Crystal Clear] Since the detailed nature of many work-products
is left to the individual developers to decide, behavioural and
functional modeling can be poor throughout the process.

QD [Crystal Clear] No formalism

FDD

Strengths

Iterative-incremental process
Q Based on a general layered architecture for systems
Q Based on structural and behavioural modeling of the problem

domain

Q Based on system requirements captured as Features
Q Traceability implemented through using features as a basis

throughout the process
Q Simple and straightforward process, yet well thought-out
Q Continuous integration

Seamlessness observed throughout the process via feature-based

modeling activities
Q Design-based development
Q Continuous validation
Q Frequent deliveries once the iterations start

Complexity management at the features level through layering
Q Only mild model-phobia
Q Modeling at the problem-domain-, system-, inter-object-, and

intra-object levels
Q Group modeling used as a technique for putting all involved in

the overall picture

Chapter 3. Analysis 197

0 Iterative modeling in order to enhance the accuracy,

completeness and consistency of the models

Weaknesses

QD Does not cover post-implementation activities and preliminary

analysis.
D Lacks adaptability due to inexistence of iteration-level planning,

reviewing and revision.
Intensive project supervision is essential

O No formalism

3.4.2.4 Process Patterns

Ambler

Strengths

Q Comprehensive and detailed specification document
Q Full coverage of generic development lifecycle activities
Q Iterative-incremental process
Q Full support for umbrella activities
Q Requirements-based development
Q Based on functional, behavioural, and structural modeling of the

problem domain and the system.
Q Accommodates comprehensive modeling at all levels (enterprise

to problem domain to system objects; logical to physical).
Q Rich modeling-language support (UML), especially in structural

and behavioural modeling features
Q Support for formalism (through UMIJOCL)
Q Traceability supported through use cases

Weaknesses

D Process patterns are not defined as individual patterns, but as

components of a specific object oriented methodology (OOSP);

Chapter 3. Analysis 198

this enhances the tangibility of the patterns but damages their

generality and applicability.
D Very complex process (OOSP)

Q Configurability not addressed
fI Seamlessness damaged due to hitches in model mapping
0 Prohibitive number of models
0 Substantial potential for inconsistency of models

3.4.2.5 Process Metamodels

SPEM

Strengths

Q Flexibility and configurability due to the generality of the

metamodel (albeit limited, because of dependence on RUP as a

metamodel basis)
Q Well-defined general framework
Q Provision of well-formedness rules to be observed when

instantiating processes

Weaknesses

O Lack of a specific instantiation procedure
O Lack of a detailed specification document: the specification

document adopted by the OMG is a very general description of

the metamodel.
QD Lack of subtyping for important process components (let alone a

component library), which makes the metamodel of very little

practical use. Consequently:

 Poor coverage of lifecycle activities

 Lack of explicit support for umbrella activities
 Modeling and artefact production issues not explicitly

addressed

Chapter 3. Analysis 199

D Mainly targets the modeling of processes similar to RUP, hence

limiting applicability and generality (even the terminology is that

used in RUP).

ÜD The developer is responsible for constructing the methodology,

and well-formedness rules are not enough to prevent bad

instantiations.

3.5 Final Criterion Set

The final, stabilized version of the criterion set, refined as the result of iterative-

incremental application to the selected methodologies, process patterns and process

metamodels, is as follows:

1. Process

1.1. Clarity, rationality, accuracy, and consistency of definition

1.2. Coverage of the generic development lifecycle activities
(Analysis, Design, Implementation, Test, Maintenance)

1.3. Support for umbrella activities, especially including:

1.3.1. Risk management
1.3.2. Project management
1.3.3. Quality assurance

1.4. Seamlessness and smoothness of transition between phases,

stages and activities

1.5. Basis in the requirements (functional and non-functional)
1.6. Testability and Tangibility of artefacts, and traceability to

requirements
1.7. Encouragement of active user involvement

1.8. Practicability and practicality
1.9. Manageability of complexity
1.10. Extensibility/Configurability/Flexibility/Scalability

1.11. Application scope
2. Modeling Language

2.1. Support for consistent, accurate and unambiguous object-oriented

modeling:

Chapter 3. Analysis 200

2.2. Provision of strategies and techniques for tackling model
inconsistency and managing model complexity

The final criteria satisfy the validity meta-criteria of [Karam and Casselman 1993],

in that they are:

" general enough to be used for evaluating all object-oriented software
development methodologies,

" precise enough to help discern and highlight the similarities and

differences among object-oriented software development methodologies,

" comprehensive enough to cover all significant features of object-oriented

software development methodologies, and

" balanced: adequate attention has been given to all three major types of

features in a methodology: technical, managerial and usage [Karam and

Casselman 1993].

3.6 Requirements

The final criterion set and the analysis results can be used for defining a set of

requirements for object-oriented software development methodologies, as

suggested by the following observations:

" Since the analysis criteria can be regarded as a framework defining the

general features desirable in an object-oriented methodology, requirements
for such a methodology can be built by detailing and enriching these

features with information on the degree of support expected in the target

methodology. Consider risk-management as an example of an analysis

criterion: in order to evolve it into a requirement, the degree of risk

management support that the target methodology is expected to provide

should be defined.

" Development processes offer alternative ways for implementing desirable

features; analysis results, when enriched with information as to how

criteria are met or contradicted, provide a toolkit of methods and
techniques for implementing features, as well as a list of potential pitfalls.
The repertoire of ideas thus built (containing lessons learnt from existing

Chapter 3. Analysis 201

software development processes, i. e. features to use and pitfalls to avoid)

can guide the developers in defining and refining the requirements.

Thus, using the final criterion set as the basis, and applying the lessons learnt from

the results of the criteria-based analysis of software processes, the following

requirements have been identified for the target object-oriented software
development methodology:

1. Process

1.1. Definition: the methodology should be well-documented
(comprehensive, clear, rational, accurate, detailed and

consistent description should be provided):
1.1.1. What should be captured? Lifecycle and work-units,

producers, modeling language, work-products,

techniques and rules, and issues pertaining to

umbrella activities. Metamodels suggested by SPEM

and OPF provide useful information as to what

should be captured in the definition.

1.1.2. How? Mainly process-centred: the structure of the

documentation should closely resemble that of the

lifecycle, and everything should be described as

secondary to the work-units (phases, stages and

activities) of the lifecycle. Gradual refinement
(hierarchical layering) should be used in describing

the process. Since object-oriented process

metamodels - such as SPEM and OPF - regard

processes as mainly consisting of work-units, roles

(producers), and products (artefacts), the definition

of the methodology should also provide a view
focusing on the producers involved in the

methodology (describing the work-units they

participate in and the artefacts they produce) as well

as a view focusing on the artefacts produced
(describing the work-units where they are produced

and the producers involved).

Chapter 3. Analysis 202

1.2. Coverage: the generic software development lifecycle activities
(Definition, Development, and Maintenance) should be covered.
Fusion, RUP, EUP and Catalysis are examples of

methodologies providing extensive coverage. Close

examination of the generic software development lifecycle

[Pressman 2004, Sommerville 2004], Ambler process patterns
[Ambler 1998a, Ambler 1999], and the OPEN Process

Framework (OPF) [Firesmith and Henderson-Sellers 2001]

shows that the following activities should be covered as a

minimum:

1.2.1. Definition

1.2.1.1. Problem domain exploration and

modeling
1.2.1.2. Requirements elicitation
1.2.1.3. Feasibility analysis

1.2.2. Development

1.2.2.1. Architectural Design

1.2.2.2. Detailed Design

1.2.2.3. Programming

1.2.2.4. Test

1.2.2.5. Deployment

1.2.3. Maintenance

1.3. Support for umbrella activities: especially including:

1.3.1. Risk management: through risk assessment and

risk mitigation activities incorporated into the

lifecycle. Of special importance are techniques

proven effective in other methodologies: e. g.

preliminary feasibility analysis (as seen in OPEN,

Crystal Clear, and DSDM), prototyping (e. g. RUP,

DSDM, XP, and dX), risk-based planning (e. g. RUP,

DSDM and Scrum), iterative-incremental

development (e. g. RUP and agile methodologies),

active user involvement (e. g. Scrum and FDD),

continuous verification and validation (e. g. Hodge-

Chapter 3. Analysis 203

Mock, XP and ASD), iterative process/product/plan

reviews (e. g. ASD, Scrum and Crystal), early

releases (e. g. XP and Scrum), and continuous

integration (e. g. XP and FDD).

1.3.2. Project management: through planning, scheduling

and control techniques incorporated into the process

(as in RUP and EUP; DSDM and Scrum are good

agile examples). Provision should be made for the

plans and schedules to be iteratively revisited and

revised based on experience gained through the

development (as in EUP, ASD and Scrum). Special

attention should be given to team management

aimed at enhancing intra-team and inter-team

communication and collaboration (as seen in RUP,

EUP, Scrum and FDD).

1.3.3. Quality assurance: through quality assessment and

enhancement techniques incorporated into the

process. Of special importance are techniques

proven effective in other methodologies: e. g.

iterative technical reviews (as seen in agile

methodologies; e. g. Scrum and Crystal), design by

contract (e. g. BON), continuous verification and

validation (e. g. Hodge-Mock, XP and ASD), and

strategies/techniques enhancing requirements

traceability (e. g. use-case-driven methodologies

such as OOSE and RUP, scenario-based

methodologies such as Hodge-Mock, and agile

methodologies such as XP and FDD).

1.4. Seamlessness and smoothness of transition between phases,

stages and activities: Although seamlessness can be

incorporated via basing all tasks and artefacts on a common

concept (e. g. classes in BON, the Domain Model in Shlaer-

Mellor, and use cases in RUP), the transition between phases,

stages and activities is not necessarily smooth, since it might

Chapter 3. Analysis

1.5.

1.6.

204

involve the production of brand new artefacts; even though not

violating seamlessness, the effort that is typically required

damages smoothness of transition. An alternative seamless

strategy is continuous refinement of a specific set of models,

around which the development tasks are oriented, which

provides both seamlessness and smoothness of transition (as

used in Coad-Yourdon, Syntropy and Catalysis). Fractal

modeling (as in Catalysis) is an example of a technique that is

particularly successful in this context. It should be noted that all

methodologies providing smooth transition are not necessarily

seamless; many agile methodologies provide smooth transition

because of the iterative-incremental nature of their development

strategy and the short cycles they usually have, yet they cannot

always be considered seamless, since there can be a huge gap

between analysis and implementation.

Basis in the requirements (functional and non-functional):
functional and non-functional requirements should be captured

early in the process, modeled in their own right, and used as a

basis for design and implementation (Coad-Yourdon is an

example of a methodology that neglects this seemingly obvious

requirement); use-case-driven methodologies such as Catalysis

and RUP, and agile methodologies such as FDD and Scrum are

good examples of successful methodologies in this regard.
Requirements should be allowed to evolve during the process,

as is the case in many agile methodologies.

Testability and tangibility of artefacts, and traceability to

requirements: artefacts should be few, simple, and

understandable, with dependencies that are minimal and clearly
defined (Catalysis is a good example, as are many seminal

methodologies, e. g. BON and Fusion). Artefacts should

complement each other in the context of the process, not
decorate each other with clutter. Tangibility of the artefacts to

the users and the developers should be maximized: executable

artefacts and artefacts with syntax and semantics

Chapter 3. Analysis

1.7.

1.8.

205

understandable to the user are tangible to the user, while

developers find those artefacts tangible that are visibly useful in

the process (otherwise they will be ignored or botched, and

quality may suffer as a result). Artefacts should be traceable to

the requirements (e. g., as direct or indirect realizations of the

requirements - as in RUP, or via the use of requirements-based

evaluation scenarios - as in Hodge-Mock).

Encouragement of active user involvement: which is vital for

risk management and quality assurance. Ambassador users, and

planning and review sessions with user participants are proven

techniques [Highsmith 2002]. Agile methodologies have a great
deal to offer in this regard.

Practicability and practicality: the methodology should be

employable; and effectively, efficiently and usefully at that.

Over-complex methodologies are not practicable;

configurability does not solve the problem since it typically
involves complex procedures (as is the case with RUP), and

neither do instantiation frameworks (like OPEN), for the same

reason. Practicability can also depend on the project in hand;

performing a feasibility analysis task early in the process
(possibly involving the deployment of suitability filters) may

prove essential. There are numerous factors, other than

complexity, that affect practicality (some adversely), and should

therefore be taken into account. Tasks that distract the

developers from mainstream activities or encumber them with
impertinent or unnecessary details should be deleted; techniques

and strategies for focusing the development, such as

requirements-based models (such as those seen in Fusion,

Catalysis and FDD), system architecture/metaphor (such as

those seen in RUP and XP), and team management sessions
(such as those seen in Scrum and FDD) seem to be promising
techniques in this context. Dependence on error-prone
techniques and strategies can damage practicality (such is the

over-dependence of some agile methods on the efficacy of

Chapter 3. Analysis 206

human communication, and dogged adherence of some

integrated methodologies to UML). Dependency on special

tools and technologies can also be detrimental to practicality. A

very important factor affecting practicality is the project

management strategy; lack of adequate management measures

can render the methodology impractical or even impracticable,

especially in large projects with stringent constraints on time

and resources.
1.9. Manageability of complexity: the complexity of work-units

should be manageable, e. g. via partitioning and layering.

Catalysis is a particularly successful example.
1.10. Extensibility/Configurability/Scalability/Flexibility: the

process should be an extensible core, with extension points and

mechanisms explicitly specified. It is desirable to be able to

configure the extensions or even the core itself in order to fit it

to the project in hand (process patterns can be useful in this

context). The methodology should be applicable to projects of

different sizes and criticalities (as seen in integrated

methodologies such as RUP and Catalysis, as well as some

agile ones such as FDD). It should also be dynamically flexible:

it should be possible to tune the methodology according to the

experience gained during the development; useful techniques

are iterative process review sessions, and feedback-based

revisions (as seen in ASD and Crystal Clear); it should be

noted, however, that tuning is a project-wide decision, and

individual teams and developers should not be allowed to make

alterations with possible project-wide implications.

1.11. Application scope: the application scope depends on the

intended usage context, yet targeting information systems as a

general usage context seems to be a logical minimum

requirement, as this is likely to address the minimum modeling

needs of a general methodology. The application scope in the

context of this thesis is initially limited to information systems,

Chapter 3. Analysis 207

but can later be expanded depending on the outcome of the

design.

2. Modeling Language

2.1. Support for consistent, accurate and unambiguous object-

oriented modeling: specifically covering:

2.1.1. Diverse modeling viewpoints: Structural -
Functional - Behavioural (as seen in UML, and the

modeling languages of OMT and OSA)

2.1.2. Logical to Physical modeling: Business-

Process/Problem Domain to Solution Domain to

Implementation Domain (as seen in UML and

OPEN/OML)

2.1.3. Diverse levels of abstraction and granularity:
Enterprise level - System level -
Subsystem/Package level - Inter-object level - Intra-

object level (as seen in UML, and the modeling
languages of Hodge-Mock and Fusion)

2.1.4. Formal and Non-formal specifications (as seen in

UML/OCL, and the modeling languages of BON

and Syntropy)

Although UML is rich and extensible enough to provide

ample support, strict adherence to UML should not be

enforced. The use of data-flow diagramming for functional

problem-domain modeling - as seen in EUP and FOOM -
is a successful example of complementing UML with other

modeling languages.

2.2. Provision of strategies and techniques for tackling model
inconsistency and managing model complexity: tackling

model inconsistency is usually up to the process component of

the methodology rather than the modeling language; yet

modeling languages can facilitate consistency-checking through

providing semantics which define model dependencies and

constraints. UML lacks such semantics [OMG 2004], leaving it

to the methodology process to define them; Catalysis is an

Chapter 3. Analysis 208

example of a successful process in this regard. However,

modeling languages proposed by many seminal methodologies

offer such semantics (examples include BON and Fusion).

Another noteworthy contribution in this regard is OPM's

single-model approach, which facilitates consistency-checking

through eliminating model multiplicity. Modeling languages

should also include constructs facilitating complexity

management; UML's package and component elements are apt

examples.

3.7 Summary

The analysis phase produces the requirements of the target OOSDM through

analyzing existing object-oriented methodologies, process patterns and process

metamodels. The analysis process adopted in this thesis starts with process-centred

review of the methodologies, patterns and metamodels, resulting in descriptions

which highlight the processes and prepare them for critical examination.

The processes are then scrutinized according to a set of criteria. The criteria-based

analysis approach adopted in this thesis is based on iterative review of the

processes, thereby incrementally identifying the strengths and weaknesses of the

processes, perfecting the set of criteria along the way. The products of this analysis

process are the analysis results (a list of strengths and weaknesses for the

processes), and the refined criterion set.

The requirements are produced through specifying the degree of support expected

to be provided by the target methodology for each criterion in the final criterion

set. The list of strengths and weaknesses is also used in the definition of the

requirements: the strengths and weaknesses identified in existing processes show
how processes meet or fail the requirements, and can therefore be used for

providing a more detailed definition of the requirements through supplying
instances from existing processes.

The set of requirements produced in the Analysis phase is fed into the Design-

Implementation-Test cycle of the methodology development lifecycle (introduced

Chapter 3. Analysis 209

in Chapter 1). This iterative development engine designs, implements and validates

the target methodology based on the set of requirements.

Chapter 4

Design

The design phase focuses on determining a blueprint for the methodology based on

the requirements defined during analysis (Section 3.6). The process-centred

descriptions (Section 3.3) and the criteria-based analysis results (Section 3.4.2)

provide a rich repertoire of ideas and techniques to be used in the design. The first

task of this phase, however, is to determine an appropriate design method, which is

then applied for producing the blueprint of the methodology.

4.1 Alternative Design Methods

The following methods were identified as alternative ways of designing the target

methodology:

1. Instantiation approach: instantiating an already available process

metamodel (reviewed in Section 3.3.6)

2. Artefact-oriented approach: devising a seamless complementary chain of

artefacts and building the process around it

3. Composition approach: using one of the already available libraries of

process patterns (reviewed in Section 3.3.5)

4. Integration approach: integrating features, ideas and techniques from

existing methodologies (merits of which were discussed in Section 2.4)

As pointed out in Section 2.4, the Instantiation and Composition approaches are

correspondingly analogous to the Paradigm-based and Assembly-based approaches

of Method Engineering, but the Integration and Artefact-oriented approaches are

relatively novel in this context. Any of these approaches can be used for designing

the methodology, but since the approach undertaken should be flexible and

versatile enough to make use of all of the merits that different approaches have to

210

Chapter 4. Design 211

offer, a Hybrid approach has been devised, using different alternatives from among

the above-mentioned for different parts of the process and/or at different levels of

abstraction.

4.2 The Hybrid Design Process

The hybrid design process has been devised as a top-down iterative-incremental

process. The iterative-incremental engine at the core of the design process

generates the methodology in a top-down fashion - from general lifecycle to finer

grained detail of process phases and activities - using the requirements,

methodology descriptions and methodology analysis results as a basis. The design

approaches used in each iteration are determined according to the scope and

abstraction level of the design activity undertaken in the iteration.

Requirements

Prioritize
Requirements

ized Methodology ogy scri tion of
Pýorit

Analysis Results hodologies Requirements

Define and Apply Refine and Revise Identify Next Abstraction Level

Hybrid Design Method Methodology and Re-prioritize Requirements

71
Methodology Final

Methodology
Elements Design

Methodology
Design

Integrate Elements If Stabilized and Complete,
into Methodology Finalize Methodology

Figure 39. The hybrid design process

The hybrid design process consists of the following tasks (Figure 39):

1. Prioritization of the requirements: performed at the start of the process and

repeated at the end of each iteration, prioritization orders the requirements

according to their relevance to the current scope and level of abstraction,

Chapter 4. Design 212

thus focusing the design process on satisfying requirements of higher

significance. At the start of the process, abstraction is at its highest level

and the scope encompasses the whole lifecycle, therefore requirements

with lifecycle-level impacts are given precedence over others; these

typically include:

a. Coverage of generic software development lifecycle activities
(Requirement 1.2),

b. Support for umbrella activities (Requirement 1.3),

c. Extensibility/Configurability/Flexibility/Scalability (Requirement

1.10), and
d. Application scope (Requirement 1.11).

As iterative design progresses to lower levels of abstraction and the scope
is focused on individual subprocesses and their internal activities, priority

is gradually shifted to requirements affecting finer-grained aspects.

Requirements of importance introduced at subprocess- and activity levels

typically include:

a. Seamlessness (Requirement 1.4),

b. Testability and Tangibility of artefacts, and traceability to

requirements (Requirement 1.6), and
c. Requirements pertaining to Modeling features (Requirements 2.1

and 2.2).

As design is focused on deeper levels, requirements that affect low-level

task detail are assigned higher priority; these typically include:

a. Basis in the requirements (Requirement 1.5), and
b. Encouragement of active user involvement (Requirement 1.7).

Last but not least, there are requirements that are important regardless of

what the scope and abstraction level are; these typically include:

a. Practicability/Practicality (Requirement 1.8), and
b. Manageability of complexity (Requirement 1.9).

Prioritization of requirements is mainly performed as a complexity

management measure, since having to focus on a large repertoire of

requirements can result in inadequate attention to satisfying the important

ones. However, it also gives a degree of flexibility to the design process,

Chapter 4. Design 213

enabling the designer to assign higher priorities to those requirements

which he/she considers essential.
2. Design engine: The following tasks are performed in each iteration:

a. Selection of the design approaches to be used in the current

iteration: While all the four approaches listed in the previous

section can be used regardless of the scope and the level of

abstraction of the design activity, they have different uses

depending on the scope and abstraction level of the design activity

undertaken in the current iteration: Instantiation is more useful

when designing high-level aspects of the methodology, Integration

and Composition are more suited to the design needs of low-level

aspects, and the Artefact-oriented approach comes in between, i. e.

while less useful at the general lifecycle level, it is indispensable

when addressing seamlessness issues at the inter-subprocess and

infra-subprocess levels. Figure 40 provides an idea of the relative

emphasis typically put on the four design approaches, depicting

how emphasis can be expected to change as focus shifts from high-

level to low-level design. Furthermore, although the approaches

are not totally disjoint, they require focus on different aspects of

the methodology, and rely on distinct sets of tools and techniques:

Instantiation relies on metamodels, Integration is dependent on

existing methodologies (with special attention to analysis results,

and methodology descriptions), Composition requires libraries of

reusable process components, and the Artefact-oriented approach

needs concentration on designing artefact chains using modeling

languages. Using all approaches in the same iteration is not

impossible, yet can cause unwarranted complexity. Therefore, in

order to keep design activities duly focused, the first task in each

iteration is to decide which design approaches are most suitable to

the needs of the current iteration. The design tasks in the iteration

can then be commenced according to the process dictated by the

design approaches selected.

b. Application of the selected design approaches aimed at defining

the methodology at the current scope and level of abstraction:

Chapter 4. Design 214

Special attention should be given to the analysis results and

methodology descriptions, thus implementing features of strength

and avoiding common pitfalls. The prioritized set of requirements

focuses the design effort on satisfying requirements of importance.

The methodology elements designed are then integrated into the

methodology blueprint.

c. Revision, refinement and restructuring of the methodology built so

far in order to accommodate the changes made in the current

iteration.

d. Specification of the level of abstraction for the next iteration, and

definition of the scope and intended level of detail.

e. Revision and refinement of the requirements, including their

prioritization according to the scope and level of abstraction

intended for the next iteration.

Figure 40. Emphasis put on different design approaches during iterations of the
hybrid design process

Transition to the implementation phase occurs when the design process has

produced a detailed enough blueprint of the methodology. Since the Design,

Chapter 4. Design 215

Implementation and Test phases of the methodology development process are

carried out iteratively, results of design iterations later undergo implementation and

test; the design is thus perfected gradually as implementation and test activities

resolve ambiguities and mitigate risks.

4.3 Design Results

The design process described in the previous section was applied using the

requirements, analysis results and methodology descriptions introduced in the

previous chapter. The first four iterations of the process are briefly described in this

section along with the resulting methodology design. Iterations are described in

order to demonstrate the inner workings of the design process, and thereby clarify

the rationale behind the design decisions.

4.3.1 Iterations

The first four iterations were where the essential structure of the methodology took

shape, with further iterations filling the structure with fine-grained detail during

later iterations of the Design-Implementation-Test cycle of the methodology
development lifecycle. Figure 41 shows the gradual formation of the methodology
during the first four iterations. Highlighted areas show new or modified features

introduced in each iteration.

4.3.1.1 First Iteration

Being at the highest abstraction level, the first iteration's scope encompasses the

whole lifecycle. Requirements of highest priority are:

" Coverage of generic software development activities (Requirement 1.2 as
listed in the previous chapter)

" Support for umbrella activities (Req. 1.3)

" Practicability and practicality (Req. 1.8)

" Manageability of complexity (Req. 1.9)

" Extensibility/Configurability/Flexibility/Scalability (Req. 1.10)

" Application scope (Req. 1.11)

Chapter 4. Design 216

Iteration I

--------- ----- ----- ------ --------------- -------

PI'cllllllll: lr\ I)c'I, IIkd i1ýI111iýl Uf: l Dclýllkd IIII ýIr'111ý'III: II Ii NI I I ýM

r\tl: ll\. IS lll. ll\. I. f1ý'ýIlll DeNl. ll
I: YI. ýI I I

nlJ la ýl

Iteration 2
--------- ----- ----- ------ --------------- -------

Po dllmn. ln Domlyd I Ardun mr sd Deuulnt Implelrnrolallal Trmswrn
\n. dvals Au, rl

,

Ihagn Deign ImJ Tell

I, I, ýhlr

Iteration 3
--------- ----- ----- ------ --------------- -------

Nellll
_

II, Nll. nlý A1.. IcIInF . ulýl Yý ýýIýýIII Artýhne.: lurnl Delýlinl Implenrnlunýel lfwlwlnln
Anaha Kcyurtnncros 8hcu. el, a sillh-l'- Urslý. m Drags mldTem

rom<, I Iý. «, Iwhlr
MuJd \t . la-I \I.. hl FattaF<

Iteration 4
--------- ----- ----- ------ --------------- -------

I'LIII h,.

hc. Il tYc

I%-t' I�pflrlit (: IIL III'

h, 1, I11u:. v -, m M,, JI I11g x, STY, 1 1 iiflllllctilUl: l l Dc. NIp h) I7UIJ t, Fru Nlllt\I

Annl)- Requlrc-im Eh: uuw wl Sj-hcuti- -P F-1 ure Feinare

' l ý)arnl SýJI" . r\ Ilrusa r I. vlahlr
ýf. Jd IU4,1 wwd I'e 1aYr I`a. lsyc Ira lcllx nl 1'x\. II

Figure 41. Gradual refinement of the methodology blueprint during the first four
iterations of the design process

The design approach in this iteration was mainly Instantiation, using metamodels -
including SPEM 1OMG 2002] and OPF [Firesmith and Henderson-Sellers 20011 -

and general object-oriented development lifecycles such as OOSP [Ambler 1998a].

Also used was the Composition approach, which was utilized for populating

subprocesses with basic activities; OPF's process components (especially stages)

[Firesmith and Henderson-Sellers 2001] and Ambler's process patterns [Ambler

1998a] were the main components used.

Chapter 4. Design 217

In order to prevent unwarranted complexity from creeping into the design, utmost

care was taken to keep the blueprint as simple as possible. Therefore, a simple yet

sufficiently comprehensive and highly cohesive methodology core was targeted,

encompassing essential software engineering activities assembled into a seamless

process. Influenced by the generic software development lifecycle introduced in

[Pressman 2004], a simple lifecycle consisting of the generic subprocesses of

Analysis, Design, Implementation, Test, and Transition was constructed, each

populated with basic activities.

In order to enhance scalability and risk-management (as applicable to information

systems), a risk-based, plan-driven, model-based, and architecture-centric

development attitude was implemented into the methodology. This was partly

achieved in this iteration through splitting the Analysis and Design subprocesses

and combining Implementation and Test. Analysis was split into Preliminary

Analysis and Detailed Analysis, and Design was split into Architectural Design and

Detailed Design, with relevant feasibility analysis, planning and architectural

design activities duly added. The Implementation and Test subprocesses were

combined in order to better accommodate test-based development.

Maintenance has not been added as a subprocess, leaving it to the developers to

decide what maintenance strategy to use. For small systems, a reiteration of the

methodology lifecycle is advisable, whereas a separate procedure may be necessary
for larger systems. Maintenance planning, however, is one of the tasks in the

Transition subprocess.

4.3.1.2 Second Iteration

The second iteration focuses on adding modeling features to the relevant

subprocesses of the methodology. Requirements of highest priority are:

" Seamlessness and smoothness of transition between phases, stages and

activities (Req. 1.4)

" Testability and tangibility of artefacts, and traceability to requirements
(Req. 1.6)

" Practicability and practicality (Req. 1.8)

" Manageability of complexity (Req. 1.9)

Chapter 4. Design 218

" Extensibility/Configurability/Flexibility/Scalability (Req. 1.10)

" Support for consistent, accurate and unambiguous object-oriented

modeling (Req. 2.1)

The design approach in this iteration was mainly an Integration approach, using

modeling features from existing methodologies and implementing them into the

process framework designed in the previous iteration. Catalysis [D'Souza and

Wills 1998] and OPEN [Graham et al. 1997] had the most influence on the design

produced in this iteration.

A UML-based modeling approach similar to that used in the Catalysis

methodology [D'Souza and Wills 1998] was chosen because of its fractal modeling

approach, which is relatively seamless and highly tangible to developers and end-

users (the modeling approach has been described in the section on Catalysis in

Chapter 3). The first in the chain of artefacts thus devised is the Context Model,

which captures the structural, functional and behavioural aspects of the problem

domain (with the system as an element therein), and is built during the Detailed

Analysis subprocess. System requirements are captured in use cases. Focus is then

shifted to the internals of the system, and an initial version of the System Model is

built during the Detailed Analysis subprocess, based on the information captured in

the Context Model. The System Model is perfected with architectural and detailed

design particulars (including the user interface and the database) during the design

subprocesses, and ultimately used as a basis for implementing the system and

producing the Executable Package.

The artefact chain introduced was perfected and elaborated during this iteration.

Constituent diagrams were determined and dependencies were identified, and

corresponding modeling activities were added to the relevant subprocesses.

4.3.1.3 Third Iteration

The third iteration focuses on refining and perfecting the model chain, especially
targeting seamlessness and smoothness of transition. Requirements of highest

priority are:

Chapter 4. Design 219

9 Seamlessness and smoothness of transition between phases, stages and

activities (Req. 1.4)

" Testability and tangibility of artefacts, and traceability to requirements

(Req. 1.6)

" Practicability and practicality (Req. 1.8)

" Manageability of complexity (Req. 1.9)

" Extensibility/Configurability/Flexibility/Scalability (Req. 1.10)

" Application scope (Req. 1.11)

" Support for consistent, accurate and unambiguous object-oriented

modeling (Req. 2.1)

" Provision of strategies and techniques for tackling model inconsistency and

managing model complexity (Req. 2.2)

The design approach in this iteration was mainly an Artefact-Oriented approach,
focusing on improving the artefact chain, and reshaping the process around it

accordingly. The design was deeply influenced by FDD [Palmer and Felsing 2002],

as well as the data-flow-oriented modeling approaches seen in FOOM [Shoval and
Kabeli 2001] and EUP [Ambler and Constantine 2000a].

The artefact chain introduced during the previous iteration suffers from disruptions

in seamlessness due to the fact that mapping problem-domain (context) models to

corresponding system models is typically not a smooth process [Isoda 2001].

Realizing the need for a smoother transition from problem domain models to

system models, a novel method was devised resulting in a modified chain of

artefacts, a brief description of which will be given below. Detailed description of

the model chain is given in Chapter 5, with examples presented in Chapter 6.

The fractal modeling approach inspired by Catalysis [D'Souza and Wills 1998]

(introduced in the second iteration) is preserved: the problem domain is modeled as

consisting of objects, and the target system is added to this model as a problem
domain object, which in turn consists of system objects. The Context Model in this

chain is built through direct object-oriented real-world modeling of the problem
domain, with human workers, systems and data-stores modeled as collaborating

objects. A data-flow-oriented approach has been adopted for structural and
functional modeling - due to the high tangibility of the models produced and their

Chapter 4. Design 220

close correspondence to the real-world problem domain - using a notation similar

to that of UML collaboration diagrams (Version 1.5) [OMG 2003] for modeling

problem domain objects and the data flowing among them; Figure 56 in Chapter 6

(page 314) is an example of this diagram. The diagram in fact resembles a data

flow diagram, and intentionally so, as DFDs used in this context - i. e. with actors

regarded as objects and modeled as DFD processes - offer a close correspondence

to problem domains, and are therefore widely used as workflow diagrams

(alongside UML activity diagrams) for business process modeling [Ambler and

Constantine 2000a]. Job descriptions and functionalities of problem domain objects

are identified and expressed as FDD-style Features [Palmer and Felsing 2002].

Features have been preferred to use cases in this context, since they are intrinsically

object-oriented, and the set of conventions governing their definition ensures a

high-level of expressiveness and provides apt complexity management

mechanisms. The system is then added to the models as an object of the problem

domain. Requirements of the system are identified through redistributing features

among problem domain objects, which results in the assignment of features to the

system object. New features are then added to the system as additional

requirements, if deemed necessary.

Focus is then shifted to the internals of the system, and the System Model is

produced from the Context Model. Objects sharing features with the system are

either moved inside the system boundary or assigned system counterparts. The

system is then designed as a homogeneous extension to the problem domain; this

means that the same types of entities as seen in the problem domain are used for

designing the system. In a business system, for instance, this means adding a new

section or department consisting of staff performing predefined jobs using

equipment and tools made available to them. In this extension, data-store and

flowing-data objects are assigned to Custodians, which are proxy objects enabling

and controlling access to the objects (example in Figure 68, page 327). This

ensures that all passive objects are coupled with corresponding active objects.
Features are assigned to objects based on the features assigned to the system.
Designing the System Model as an extension to the problem domain keeps the

models tangible to both domain experts and developers, and smoothes the

transition to software objects.

Chapter 4. Design 221

The System Model is then transformed into the Software Model, which depicts the

internal structure and behaviour of the computer-based system. This is achieved

through applying specifically adapted patterns by which features are redistributed

among objects and necessary architectures are introduced. The real-world domain

modeling approach used for producing the Context Model is a hazardous practice,

in that it can introduce actors or irrelevant objects among system objects, or allow

redundant associations and interactions to be entered into the System Model [Isoda

2001]. The pattern-based transformation approach adopted, however, resolves

these issues during the transformation of the System Model into the Software

Model by gradually pruning the models of redundancies. Bearing in mind that the

target methodology's application scope is confined to information systems, a set of

patterns specifically targeting business systems (as ubiquitous examples of

information systems) was compiled and adapted for this purpose. The

transformation process is similar in essence to an approach advocated by MDA

[OMG 2001], in which transformation patterns are proposed for transforming

Platform Independent Models into Platform Specific Models; here, though, models

of the system designed as an extension to the problem domain are transformed into

software domain models.

The pattern-based transformation approach was inspired by observations made by

the author, indicating that object-oriented reengineering patterns [Demeyer et al.

2003] and refactoring patterns [Fowler 1999] can be used for redistributing
features among objects so that anomalies in objects, relationships and interactions -
introduced as a result of real-world modeling - are rectified. The applicability of

design patterns [Gamma et al. 1995, Buschmann et al. 1996] for introducing

object-oriented structure and behaviour in models of business systems is based on

the author's personal experience, according to which many job definition and task

assignment techniques in organizational design and personnel management are

noticeably similar in effect to the transformations seen in design patterns. Applying

design patterns not only results in improved structures familiar to domain experts,
but also facilitates the translation of these structures into solution-domain and

implementation-domain class structures.

The transformation procedure results in highly cohesive objects and reduced inter-

object coupling. The procedure culminates in passive objects being combined with

Chapter 4. Design 222

their custodians. The Software Model thus built represents the actual model of the

computer system, to be refined and perfected during the design subprocesses and

ultimately used as a basis for producing the Executable Package.

Introduction of the System Model as a transitional model - bridging the gap

between real-world domain modeling and system modeling - has resulted in the

introduction of a new System Specification subprocess. The Detailed Design

subprocess defined in previous iterations is split into a Real-World Domain

Modeling and Requirements Elicitation subprocess and the new System

Specification subprocess, where the former is where the context model is produced,

and the latter is where the System Model is constructed and transformed into the

Software Model. Activities of the two subprocesses were defined in this iteration,

as well as the structure of the models produced.

4.3.1.4 Fourth Iteration

The fourth iteration's scope encompasses the Detailed Design and Implementation

and Test subprocesses of the methodology, and focuses on harmonizing the design

and implementation activities with the feature-driven basis of the models.
Requirements of highest priority are:

" Support for umbrella activities (Req. 1.3)

" Seamlessness and smoothness of transition between phases, stages and

activities (Req. 1.4)

" Basis in the requirements (Req. 1.5)

" Testability and tangibility of artefacts, and traceability to requirements
(Req. 1.6)

" Encouragement of active user involvement (Req. 1.7)

" Practicability and practicality (Req. 1.8)

" Manageability of complexity (Req. 1.9)

" Support for consistent, accurate and unambiguous object-oriented

modeling:

The design approach in this iteration was mainly an Integration approach, aiming

to use existing methodologies for transforming the Detailed Design and

Chapter 4. Design 223

Implementation and Test subprocesses into feature-driven subprocesses. FDD

[Palmer and Felsing 2002] had the most influence on this iteration.

The iteration resulted in the introduction of the FDD methodology's feature-driven

iterative-incremental development engine into the methodology [Palmer and

Felsing 2002]. Adapting other methodologies to the purpose was also considered
(especially Catalysis and Scrum), yet FDD was deemed the logical choice, since it

suitably addresses the above requirements, and already incorporates a cohesive
feature-driven development engine. As a result, the Detailed Design and

Implementation and Test subprocesses were replaced by the cyclic Design by

Feature and Build by Feature subprocesses respectively. A Plan by Feature

subprocess was also added, during which the activities of the development engine

are planned and scheduled.

In each iteration of the development engine, features are selected from the

Software Model for design and implementation. The selected features comprise the

Work Package, based on which detailed design is performed and results are duly

reflected back to the Software Model. The design results, comprising the Design

Package, are then implemented and tested, with the resulting System Increment

ultimately integrated into the Executable Package. Activities of the development

engine were defined in this iteration, as well as the structure of the artefacts

produced.

4.3.2 The Designed Methodology

The general approach of the designed methodology is based on smooth and seamless
transition from real-world domain models to system models, and ultimately to

software design models. In business systems, this can be achieved via the use of

patterns for iterative transformation of the models through redistribution of
functionalities and introduction of object structures. The process consists of the
following subprocesses:

1. Feasibility analysis and preliminary planning.
2. Real-world domain modeling and requirements elicitation
3. System specification
4. Architectural design

Chapter 4. Design

5. Planning by feature

6. Feature-driven iterative-incremental development

6.1. Design by feature

6.2. Build by feature

7. Transition

224

UML (Version 1.5) [OMG 2003] is the main modeling language used for

diagramming in the designed methodology. UML activity diagrams and sequence
diagrams are used for behavioural modeling (in Interaction Models), with UMIL

component diagrams used for modeling subsystems. UML class diagrams are used

later in the modeling process to depict software classes and their relationships (in

Class Models). However, Object Models - which capture functional and structural

aspects throughout the modeling stages - use a notation similar to UML

collaboration diagrams, yet in a data-flow-oriented context analogous to Data Flow

Diagrams (DFD); i. e. Object Models use the same notation that is used for denoting

message passing in UML collaboration diagrams (without the sequencing), yet the

notation denotes data/control flow rather than message/signal flow.

The following sections present a more detailed description of the designed

subprocesses, specifically targeting business systems as an example. The finer-

grained detail will be added during the implementation phase, the results of which

are reported in Chapter 5. Examples of the models mentioned in these sections are

given in Chapter 6.

4.3.2.1 Feasibility Analysis and Preliminary Planning

The main tasks performed in this subprocess are as follows:

I. Acquire high-level knowledge as to the nature of the project, its scope, and

the risks and constraints involved.

2. Perform the traditional activities of feasibility analysis.
3. Develop rough estimates and an overall Outline Plan for the project.

4.3.2.2 Domain Modeling and Requirements Elicitation

The main tasks performed in this subprocess are as follows:

Chapter 4. Design 225

1. Real-world modeling of the problem domain, starting with modeling the

high-level view and gradually moving inside organizational sections,
focusing on lower-level elements of the problem domain. The tasks

performed are as follows:

1.1. Human workers, systems and data-stores of the problem domain

are modeled as collaborating objects in a Context Object Model.

A notation similar to UML collaboration diagrams is used for

representing the model, with links adorned with data/control

flows instead of messages (without sequence numbers); Figure 56

in Chapter 6 (page 314) is an example of this diagram.

Organizational boundaries are preserved, modeled through using

packages and component diagrams. The resulting functional

models comprise the main bulk of the Context Model.

1.2. Typical transaction scenarios are modeled in activity diagrams

(with swimlanes depicting the participating objects) and/or

sequence diagrams (example in Figure 58, page 315). The

resulting Context Interaction Models comprise the behavioural

part of the Context Model.

1.3. Job descriptions and functionalities are expressed as areas (major

feature sets), activities (feature-sets), and features [Coad et al.
1999, Palmer and Felsing 2002]. Feature lists are compiled and

added to the Context Model.

1.4. A glossary of terms from the problem domain is compiled.
2. Introduction of the system into the problem domain: The system is added

as an object to the Context Model (in Context Object Models) and feature

sets are assigned to the system through redistribution and/or duplication

(example in Figure 57, page 314). New feature sets are added as deemed

necessary by the Modeling Team, and the feature lists in the Context

Model are duly updated. Typical scenarios of interaction with the system

are also modeled and the Context Interaction Models are updated

accordingly (example in Figure 60, page 317).
3. Non-functional requirements and constraints are identified and added to

the Context Model.

4. The results, the project plan and the requirements are reviewed.

Chapter 4. Design 226

4.3.2.3 System Specification

The main tasks performed in this subprocess:

1. The Context Model built during the previous subprocess is converted to the

System Model. The system is designed as an extension to the

organizational structure into which the system is to be ultimately
introduced, using the same types of elements already present in the

problem domain. The major tasks performed are as follows:

1.1. Human elements, systems and data stores sharing features with

the system are moved inside system boundaries or assigned

system counterparts. The system is then designed as a

homogeneous extension of the problem domain.

1.2. Each data-store and each flowing data object is assigned to a

custodian; any access to any such object should be made via the

custodian. It should be noted that there is no limit on the number

of staff assigned to the system. The resulting System Object

Models comprise the functional component of the System Model

(example in Figure 68, page 327).

1.3. Typical interaction scenarios are identified, and relevant
behavioural models (typically activity diagrams and interaction

diagrams) are produced for each of the system's feature sets. The

resulting System Interaction Models comprise the behavioural

component of the System Model (example in Figure 69, page

328).

1.4. Feature sets and features are assigned to the active elements
(staff) based on the functionality assigned to the system as a

whole and the interaction models produced in the previous task.

1.5. Review and revision of the requirements of the system and the

resulting System Model is performed.
2. The System Model produced so far is converted to the Software Model by

applying patterns to redistribute functionality among system objects. The

tasks performed, explained as relevant to business systems, are as follows:

2.1. Patterns are applied to the System Model to iteratively

redistribute features among objects (i. e. processing staff and

Chapter 4. Design 227

custodians) in order to enhance encapsulation, increase

cohesion and reduce coupling, and also to introduce

architecture. Reengineering patterns, especially those suggested

in [Demeyer et al. 2003] for redistributing responsibilities

among objects, are of utmost use in the starting iterations.

These typically include:

" Moving behaviour close to data

" Eliminating navigation

" Splitting up God classes (Blobs)

Refactoring patterns proposed in [Fowler 1999] can also be

used in conjunction with the above. Design patterns [Gamma et

al. 1995, Buschmann et al. 1996] can be used in later iterations

to help implement specific architectures and mechanisms

typically present in the problem domain and tangible to users.

Antipatterns can also be of use in the redistribution procedure

[Brown et al. 1998]. The redistribution procedure is devised in

such a way as to resolve the problems typically afflicting

analysis approaches based on object-oriented real-world

modeling [Isoda 2001]. Objects irrelevant to the system and

actor-counterparts without any justification for existence in the

system are gradually disposed of, and relationships not

belonging to the system are not introduced into the models

because of the interaction-oriented and feature-driven nature of

the System Model and the redistribution procedure (example in

Figure 71, page 331). Behavioural models are updated in each

iteration of the redistribution procedure.
2.2. Applying the patterns ultimately results in custodian objects

being merged with the data objects they had under custody.

This marks the transition from the problem-domain-based

system to the computer system, signifying the transition to

solution domain. The resulting Software Object Models

comprise the functional component of The Software Model

(example in Figure 75, page 335). UML class diagrams are then

produced based on the Object Models, depicting the classes in

Chapter 4. Design 228

the system and their relationships. Inheritance hierarchies are

introduced in order to enhance abstraction (patterns for

refactoring inheritance can be of use in this context [Fowler

1999]). The Software Class Models thus produced comprise the

main structural component of the Software Model.

2.3. Behavioural diagrams inherited from the System Model are

updated according to the new Software Class/Object Models.

The resulting Software Interaction Models comprise the

behavioural component of the Software Model. Message

passing should be clearly depicted.

2.4. Preparation of initial versions of class and method prologues
2.5. Review and revision of the requirements

2.6. Review of the resulting Software Model

3. Review of the results of the subprocess, the project plan and the

requirements

4.3.2.4 Architectural Design

The tasks performed in this subprocess (mostly in parallel) are as follows:

1. Convey the Software Model to the implementation domain through adding
implementation-specific detail and restructuring it in order to facilitate

implementation and accommodate the domain-independent parts of the

system. The user interface is designed, and the Software Model is enriched

with architectural design patterns.
2. Identify the architecture of the domain-independent parts of the system:

hardware and software platforms, infrastructure components (such as

middleware and databases), utilities for logging/exception-handling/start-

up/shutdown, design standards and tools, and the choice of component

architecture (such as JavaBeans or COM), are all added to the Software

Model.

3. Review the results, the project plan and the requirements.

4.3.2.5 Planning by Feature

The main tasks performed in this subprocess are as follows:

Chapter 4. Design 229

1. Determine the development sequence by scheduling the development of

the feature sets (activities), thereby producing a Development Plan.

2. Assign feature sets to development coordinators.
3. Assign classes to developers.

4. Review the resulting development plan, the project plan and the

requirements.

4.3.2.6 Feature-Driven Iterative-Incremental Development

Almost identical to the iterative-incremental engine in the FDD methodology, the

iterative subprocesses is where strands of design-build iterations start off as each

development coordinator (called Chief Programmer) selects the set of features

(called the Work Package) that should be developed in each of the iterations

performed under his supervision, and forms a Features Team to do the job in the

timeframe set in the development plan.

Design by Feature

The tasks performed in this subprocess are as follows:

1. Study the Software Model in order to obtain a better understanding of the

particulars of the features.

2. Refine and complete the sequence diagrams in the Software Interactions

Models, which as the behavioural component of the Software Model, are

required to show how software objects should interact at run-time in order

to implement each of the features.

3. Refine the Software Object Models (class diagrams) so that they support
the sequence diagrams produced in the previous task.

4. Write Class- and Method-prologues for the elements of the Software

Object Models.

5. Inspect the design for errors, inconsistencies and areas for improvement.

6. Review and revise the Work Package (the features and the iteration

schedule).

The products of this subprocess are transferred to the next subprocess as a Design

Package consisting of the sequence diagrams produced, the refinements made to

Chapter 4. Design 230

the Software Model, the prologues, and the notes on the design alternatives

explored, constraints, and assumptions.

Build by Feature

The tasks performed in this subprocess are as follows:

1. Implement classes and methods according to the specifications given in the

Design Package.

2. Conduct a code inspection.

3. Unit-test the code to ensure that all classes satisfy the functionality

required.
4. Integrate the increment with the system built so far, if the implemented

classes are successfully inspected and unit-tested.
5. Review the results, the development plan, the project plan and the

requirements.

4.3.2.7 Transition

The main tasks performed in this subprocess are as follows:

1. Test and validate the complete system.

2. Integrate the system with existing systems.
3. Convert legacy databases and systems to support the new release.
4. Train the users of the new system.
5. Deploy the new system.

4.4 Requirements-Based Review of the Design

Before proceeding to implementation, it is important to review the methodology
design according to the requirements defined in the previous chapter, and to

modify the requirements if necessary. Due to the risk-based approach of the

development effort, the methodology design is volatile at the start of transition to

the implementation phase, and is bound to be refined and perfected during the

iterative application of the design-implementation-test cycle introduced in Chapter

1, yet regular requirements-based reviews of the methodology are essential for

Chapter 4. Design 231

ensuring quality and maintaining the focus of the effort. Table 1 shows how each

requirement has been addressed in the final methodology design, thereby

identifying the requirements that remain to be addressed, and requirements that

need modification. It also shows how the design has been influenced by existing

methodologies and process patterns/metamodels in addressing the requirements. In

this regard, Table 1 is complemented by Table 2 of Chapter 5 (page 306), which

tabulates the results of a requirements-based review of the implemented

methodology.

4.5 Summary

An iterative design process has been devised for performing methodology design.

The process produces a blueprint of the target methodology through flexible and

adaptive application of a set of four design approaches: instantiation of process

metamodels, artefact-oriented definition of the process (around an artefact-chain),

composition of process patterns, and integration of features from existing

methodologies.

The design process is dependent on the results of the analysis phase; i. e. the

process-centred descriptions, the criteria-based analysis results, and the

requirements. In order to focus the effort on satisfying requirements of highest

relevance, requirements are prioritized at the start of each design iteration, based on

the abstraction level and scope of the design activity planned to be undertaken in

the iteration. The design activities performed in each iteration make use of the

results of the process-centred review and analysis of object-oriented

methodologies, process patterns and process metamodels carried out in the analysis

phase, not the least as a source of ideas as to what features are desirable in a

methodology and what pitfalls should be avoided. Furthermore, the review and

analysis results are also the basis of the Integration design approach - one of the

four design approaches available for use during the iterative design process - in

which features, ideas and techniques from existing methodologies are integrated to

form the design.

Transition to the implementation phase occurs as soon as the blueprint is deemed

complete enough; i. e. to a degree that ensures the relative stability of the design so

Chapter 4. Design 232

that implementation can be started. It should be reiterated that each application of
the design process is in turn part of an iteration of the Design-Implementation-Test

cycle of the methodology development lifecycle (as explained in Chapter 1). The

decision to start implementation is therefore dependent on the level of detail

targeted in each iteration of the cycle; however, a high level of risk introduced

during design may prompt an early transition to implementation and test.

Chapter 4. Design

Table 1. Satisfaction of methodology requirements in the design phase
(continued on next page)

233

ADDRESSED/
REQUIREMENT uF r: lu. S FOtIA) %-IPA(I IUN

NOT ADDRESSED

('I_u uv. l li, lnalit\. I, Ißt' . IJ\hcca'J m Illy

. Iýtllr: il')'. clinsisll'nc\' �I \�I Addressed N/A impkint. Illation

dc l111 ltlll11

Addressed at the lit- y. Ie. and Ilus reyuirenx"nt ncc., I�

\ 111". M. (11'I', : III,] 1: 1, % Iu\rl5 ruhst iItid I, Ix' IIIIeIxIei Iit I, ttl I I�

_

Je I" 11 lI I l
Add, e,, rd Ambler's IX)SI'I . ICt�Innx, Jate the tat "t

" 1 ur n I -c r

a 111 111
It-l, t'I, 1 ýi: u nts'll. lllýt'1 Ma II ite (tarnte il�I Ivtll : IJJI'J 11t �IýIt'r f, ý\t'I. Ice tu 'r ma llllt' I'miit

, ,
tl, a zlx'atie m. unlcnan. c ovoid ennunil me It

str tegy

Addressed through iterative-incrt"mrut: ll .S 111 n Inne 1, u l,, In N.

Jr\c I,, pnwnl (mainly influenced by PDD). tither elalx, rnlel III In

I, rchnunary analysis (intluenced by ()I'I- and Inq, louxnt: ul�n I ileru

DSDM), risk-based planninu (influenced by

His. DSDM and FDD), plntutyping (inspired by
Addressed

managen will Rlý 1' and XP I, cu nt intit) us verification and

s ahdatilnt (influenced by ASDI, regular

hrnduel/Plan reviews (influenced by ASD and

l ry. uJl, and continuous integration

influenced by PDD).
Suplx"n

Addressed Ihn, ngh pn, ject planlllne, r� Ix' blether e1.11x, r: Ited t ,r
scheduling and control activities : u1J ruulplemcnted with

umbrella

III lac, Ihujrcl
incurlx, raled in the suhprucessus .1 the I, �hirer nwnugenient, and

AJJrrs, e 1 nx-ttxrdolugy, and pruvisirrns lot revles and tram numagentent
luaulipclucnt

revision ut the plans thruuglxrut the pr, icc>s techniques in particular -

influenced by ASD, Scrum and FDDI Juriug the intPlenxntati(1n

PrIM ell rli tse

Addressed through regular technical review S,, plxlrting features tu he

I Influenced by ASD and Crystal), continuous tntt (ter rl; ih, rated in tine

Qu: lhl) vcriticatiun and validation during iterative In q, lrlur nt. lrn, n hh. lsc
Addressed

. u<ur: lnce Jecelupirent 1 influenced by ASDI, and

requirements traceability Untluenced by

Catalysis and FDD),

Addressed through the an-telact chain -
Sulq*, nlnp fc: uurc< 1.. Ix'

Seatlllessnr1. \ and

gr, venling the process through analysis and further elaborated III lle

sitrsiiittiess tu Ir: Visit 1,111
Addressed deign (inspired by Catalysts) - and the imPIcnx'nl: u il, n ph. -

F, etwren phases, aaEes and
Iterative- iterative-increnrntal development emir

: K'tl\Itlt"s

(inspired by FDD).

Addressed Ihnlugh the feature-driven approach Suh(x, nmý Iý'. u arcs 1, ý Fx'

(sins tu the requirenunts Addressed guvertling all Jevelupment activities turlher elaMvated in tilt'
atrnnglx)nl the pn, cess (influenced by FDD) Implementation Phase

Addressed via basis in real-world nx, dcllnc - Suplx, rtmg features to be

(motor need by Fusion and EUP), fructal turtlx"r elAx, rated tu tax'

nrudeling (intluencetl by Catalysis), gradual lulplcnx'nlatiun phase T cuahllny and I; In gihllil)
`e: 111tIeus transtnrl1 ahoi((tit artetacts Illn, utll

tit artefacts, aast traceability Addressed
analysis and design I intluenced by ('atalysis

n, reyuirrntenis
und [ION), and the feature-driven nature tit

: vtelacts thn, uglx)ut the pnrcess (Inspired by

FDD).

Addressed (hmugh constant Participant), of Suplx, n mp teat ure. it) Ir
1! 11ru untern will if : ICtne

Addressed user representatives (hrouglr tut tine pn, erss lurtlx"r elaIx)rated 11t dw

user miukrnx'nl
I mtlucnctd by FUD1. iwplrnx"ntation phase.

Chapter 4. Design

Table 1. Contd.

234

ADDRESSIAY
Rh'Q1IREM : NT DETAILS M1.1.01i\-I: PA(IION

NO F AIURFSSP: l)

Addressed 1111 h u. uiJmc armplcsn) 1II ,. tiul, lrýlnuc Ic: llures its Ix

all let eis lintluc"ueed by 11)1)1, Qdlx"r ing Ill fln tiler elut>tlr: ued In Ihr

Ink ha. eJ Jet'c lupine II l 1in11ucnced h1 nuhlclncnl, llnm hh. l, o

I ISI)! v1 und PUD), incaultilrunng 11W)ecl

Pr act lcuhlliII and In: magenxnt : ICtivilies (influenced by , \SI).
A11,111 "I J

hrlclicii ltr Serum and 11)D). : Ind using techniyucs and

strategies Pur tilcusinnu lilt- Jcvclupnlcnl it

1,. nute-Jrivrn untie! drein Mid archnccnn: J

Jrlvw influenced by FDD and RI T

Ic , lraivcly1.

\JJresse11111rinig11file hler; lrellle: ll stillt lute i tiIIIIIH ýIIIIIt tl': Il ll rý', Is It

BAI the Illl. "Ihlrlttlllrgy. and keeping. iltriller CI: Iixtr; lil'J III Ih,
t I: Ill. lýl': IbI III\

Iý1

\Jd rr, >el ,u hpmcesses, activities and lu.. ks cuhlenr Ilnlýloluc w. lnuu Iýh. ur
Pnýrrtl c, ýn, lc it,

and easy to understand (Influenced by

Cata1)sit and hf)1)I

Sc: d: lhility was addressed through plan iI. vr' Inlblhl},
Eltensthlhiv / basest IINIJni-driven and arciutec'Itlle -ccllfllt ("1n1t1gurahlll Iy, and

Not r\JJrc<M"J Crlniigur; lhl llty /1 'leClhllll\ h; l., l-t III, princess (Illtlneneet h\ I '; 1l, 111 X515
flexibility to he addressed

11'. lcc'lll tii: ll. lhllll\ 1
/ Sc, J, lhllu) Rl l' Mid I1)Ill In the inlplenx"ntwioll

hl, -c.

IP. uu. Jiu. IJJ11"Ill lhn, uuhcssncr'uu. wus ,: AIlhlicahility to

h-ill", 'N'te11l, as col I111M"11\ jIjt0rlIWtI0Il 1\1(L-1111 OHM

Application zc, 1v encsruntered inlbn, euiun s) 11 Ills than Kusine� 1o Ix,
\JJm: vvl

I lnluunarlnrI
.
luau l) l influenced by Catalysis). rplored in lilt

Applicability tu oller kinds of I1111 11 Iua11111 iluplclnrluunýýu I'll: ".

55slenla has]I'll it-en expb, n'J

Addressed through using ; q, hnlhlI ntl . Sulq>, Ining te: uures lo h'

UNIL-horsed diagrams at dlttercnl Iclcl, Iwllk-r elalxxmcd In lilt

I influenced by Catalysis)- Functirln. J Inyýlclnrnt. ll iýýu hhaac
Strua unit

m-Jeling has been addressed Ihnsuth the

u, c of a notation similar tu that ut UMI.
! leimt Irwlal

rnllalxtratiun diagrams, yet in a data flow

�dented conwxt (inspired by DR), and

then u. e in EUP and F(x)M).
Suppun

Addressed through the Ilrdel 1llalll Stiftwirt inn, le: llllre, III Ix'
for .

lalgicul to staring at the problem-domain leiert old timber elah, r: uen Ili Ilk-
u h1 ecl - Address J

Ph), Icul Imlceeding to detailed design (influenced implenx"ntatiou hh. ist
u ni ne c J

hfurlrillI by Catalysis),
1lt lilt 11111;

I'm cull Cr Addressed through fractal inodeling Suplnlning features Its It

Al Jltterrm t inllueneed by Catalysis) at dllti"rcul lurlher el: Ihrrued III the

levels of Adsre"<, ed granularity levels (Enterprise level - uuplruk'nl. won I'll, -

granulurils System level - Subsysteul/P; ukage trot -

liner-object level - Infra-object Ic stell

Pomlal and Infirrnull features imply lilt nnJ Ihn, ut_h . i- MAI It 'It JILL tc, uulcs
Not Addressed

Intbrned UML III ire considered during line
1 Pomnl I

te, uures Ingdenr"nuuiun phase,
1'rs Ill, ls>Il III sIialq les and is it addressed J111 lilt' line

Irk Illllýl lll'ý irr tackling IIIIIIIe IIk'III: IIlllll Illl, lse
Not Audi esse) N/A

Illii 1111ISlrlley and

complexity

Chapter 5

Implementation

The Implementation phase is concerned with detailing, extending and refining the

methodology blueprint produced during the Design phase. The objective is to

convert the blueprint (described in Chapter 4) into a detailed methodology

specification that is directly usable by system developers. This chapter explains the

implementation process and presents the end result, i. e. the implemented

methodology.

5.1 Implementation Process

In any development effort, implementation means building the designed product in

a form usable by the intended end users. In a methodology development effort such

as this, implementation deals with adding pragmatic fine-grained detail to the

methodology's design and representing it in a form usable to the intended

audience, i. e. software engineers. A User Guide is the normal medium for

representing a software development methodology, but there is no single standard

format for a methodology user guide. Therefore, devising a suitable template for

the user guide is the first task in the implementation of the designed methodology.

The User Guide structure thus defined is not only used for representing the final

methodology, but also guides the perfection and refinement of the methodology

through focusing the methodology development effort on issues which are

expected to be addressed in a typical methodology user guide.

According to the requirements described in Chapter 3, the definition of the

methodology should provide concise yet comprehensive, clear, rational, accurate,

detailed and consistent description of the methodology lifecycle and work-units,

producers (roles), modeling language, work-products, techniques and rules, and

issues pertaining to umbrella activities. In order to satisfy this set of requirements,

235

Chapter 5. Implementation 236

a multiple-view and top-down approach has been chosen for describing the

methodology: three views of the methodology are provided, while focus is

gradually shifted from high-level specifications to fine-grained detail. The three

views through which the methodology is represented are as listed below:

1. Process-Centred: focusing on the lifecycle and the work-units performed

in the methodology (subprocesses, activities and tasks), describing all other

elements of the methodology - roles performing the process, work-products

produced during the process and the modeling languages used for

expressing them, techniques and rules, and issues pertaining to umbrella

activities - in the context of the process.
2. Work-Product-Centred: focusing on the work-products, the modeling

languages in which they are expressed, their interdependencies and their

trend of evolution in the course of the methodology. All other elements of

the methodology are described as secondary to the work-products.
3. Role-Centred: focusing on the people (producers) involved in the

methodology and the relevant management issues. All other elements of

the methodology are described as pertinent to the roles.

The above is based on the notion supported by prominent methodology

metamodels - especially the OPEN Process Framework (OPF) [Firesmith and

Henderson-Sellers 2001] and the Software Process Engineering Metamodel

(SPEM) [OMG 2002] - that a software development methodology consists of three

types of basic components: work-units (organized in stages, and ultimately a

lifecycle), work products (described using modeling languages), and producers
(roles). This general metamodel has been used for the instantiation and

composition of software development methodologies [Firesmith and Henderson-

Sellers 2001]. Furthermore, some form of this multi-view approach (although

rather unstructured and informal) can be seen in the user guides of a number of

modern methodologies; RUP [Krachten 2003], USDP [Jacobson et al. 1999], and

FDD [Palmer and Felsing 2002] are prominent examples. Having three views of

the methodology not only highlights the issues pertinent to each of these three

types of components, it also makes it possible to de-clutter the description of the

methodology through keeping fine-grained detail where it is most relevant. For

example, low-level development task details are confined to the process-centred

Chapter 5. Implementation 237

view, modeling language and diagramming issues are mainly addressed in the

work-product-centred view, and team-related issues are solely attended to in the

role-centred view.

The template used for describing the user guide has thus taken shape as shown in

Figure 42. The template excludes examples at this stage, as these are produced
during testing and can be later added as complements to the user guide.

User Guide Template

 Overall Process
o Lifecycle: subprocesses and their order of execution
o Work-products

o Roles and teams
 Process-centred description of the methodology; consisting of phase descriptions,

each of which covers the following:
o Entry criteria
o Tasks and their order of execution; the following are explained for each

task:
 Work to be performed
 Work-products to be produced
 Roles involved

o Verification
o Exit criteria

" Work-product-centred description of the methodology; consisting of work-
product descriptions, each of which covers the following:

o Structure and modeling language
o Dependencies

o Trend of evolution throughout the process: Subprocesses and tasks
where the work-product is created or modified

o Producers: Roles involved in producing/modifying the work-product
throughout the process

o Production methods and guidelines
o Consistency issues

 Role-centred description of the methodology
o Roles: Responsibilities throughout the process
o Teams: Constitution and responsibilities

Figure 42. User guide template

5.2 End Result: Methodology User Guide

The following sections contain the detailed description of the methodology as

presented in the framework of the proposed user-guide template. A high-level view

Chapter 5. Implementation 238

of the methodology is presented before delving into finer-grained detail. Examples

of models (produced during the Test phase) are presented in Chapter 6, yet have

been referenced in the relevant sections of this chapter.

5.2.1 Overall Process

A general view of the methodology lifecycle, the work-products produced, and the

roles and teams involved in performing lifecycle activities is herein presented.

5.2.1.1 Lifecycle: Subprocesses and Their Order of Execution

The proposed process is based on smooth and seamless transition from real-world

domain models to system models, and ultimately to software design models. In

business systems, this can be achieved via use of patterns for iteratively transforming

the models through redistributing functionalities and structures. The process consists

of the following subprocesses:

1. Preliminary Analysis (feasibility analysis and preliminary planning): with

the focus on preliminary feasibility study of the project, weighing the

available resources against constraints and complexities involved. An overall

plan is also produced for the development effort.
2. Real-world domain modeling and requirements elicitation: with the focus on

modeling the problem domain into which the system is to be introduced. The

system is then inserted into this context model, and its requirements are

specified as FDD-style feature sets [Coad et al. 1999].

3. System specification: with the focus on iterative translation of the problem
domain model first into a system model - in which the system is designed as

a non-automated subunit of the problem domain - and ultimately to a

software model, depicting the internal structure and behaviour of the

computer-based system. In the case of business systems, adapted versions of

reengineering-, refactoring- and design patterns are iteratively applied to the

system model in order to produce the target software model.
4. Architectural design: with the focus on identifying an implementation-

specific architecture for the system modeled so far, and determining the

domain-independent infrastructure supporting the system.

Chapter 5. Implementation 239

5. Planning by feature: with the focus on scheduling the features for

development, and then assigning the feature sets (activities), and the classes
in the system model, to developers.

6. Feature-driven iterative-incremental development: During, this iterative

development phase, Each feature-set-developer (called ('hick/' Programmer)

selects the set of features (called the Work Package) that should be

developed in each of the iterations performed under his supervision, and

develops the feature sets by commissioning class-developers (called Class

Owners) to cooperate in order to design and implement the features. The

constituent subphases, in the order that they are performed in each iteration.

are as follows:

6.1. Design by feature: with the focus on determining how the

features in the work package should be realized at run-time by

interactions among objects.

6.2. Build by feature: with the focus on coding and unit-testing the

necessary items for realization of the features in the work

package. The implemented items that pass the tests are then

integrated into the main build.

7. Transition: with the focus on validating the system and releasing it into the

user environment.

Figure 43 shows the lifecycle and its subprocesses.

Figure 43. The lifecycle of the methodology

Chapter 5. Implementation

5.2.1.2 Work Products

240

The methodology is based on expressing functionality and functional requirements

as FDD-style Feature Sets and Features [Coad et al. 1999, Palmer and Felsing

20021. Features are relatively fine-grained user-valued pieces of functionality

expressed in client-valued terms, conforming to the general template: <action>

<result> <object>; for example, "calculate the total value of a shipment" or

"check the availability of seats on a flight". Each feature is identified as a Step in

one or more Activities (also called Feature Sets), which are expressed as

conforming to the general template: <action><-ing> a(n) <object>; for example,

"reserving a seat". Activities in turn belong to Areas (or Major Feature Sets),

which are expressed using the general template: <object> management; for

example, "reservations management". This three-layered structure allows the

developers to adequately manage the complexity of functionalities and

requirements.

The following work products are produced in the methodology:

1. Feasibility Analysis Package, which encapsulates the results of preliminary

analysis and consists of:

a. Feasibility Report: The Feasibility Report includes information on

the scope of the system, high-level requirements, constraints and

risks involved, the resources required, and alternative approaches

to developing the system and results of their analysis.
b. Feasibility Prototype: Used to demonstrate the scope and the

technical feasibility of the project.
2. Context Model, which depicts the problem domain and consists of:

a. Context Object Models: Depicting elements of the problem domain

as collaborating objects, with data/control now clearly shown. The

system is later added and modeled as a problem domain object.
b. Context Interaction Models: Depicting typical transaction scenarios

among problem domain objects. With the introduction of the

system, models are produced depicting the typical system usage

scenarios.

Chapter 5. Implementation 241

c. Feature Lists: Job descriptions and functionalities are expressed as

areas (major feature sets), activities (feature-sets), and feature.

With the introduction of the system, system features are identified

and set as functional requirements.
d. Context Vocabulary: A glossary of terms from the problem domain

e. Non-functional requirements and constraints
3. System Model: The result of extending and refining the Context Model, the

System Model shows the internal constitution of the system designed as an

extension to the problem domain, using the same notions and concepts as

those found in the problem domain. The System Model consists of:

a. System Object Models: Depicting intra-system elements as

collaborating objects, using the same element types as those

present in the problem domain.

b. System Interaction Models: Showing typical interaction scenarios

among system elements.

c. Features list: Composed of features and feature sets assigned to
intra-system objects and subsystems.

d. Revised list of non-functional requirements and constraints
4. Software Model: The Software Model depicts the constituent elements of

the software system, and is the result of applying feature redistribution

patterns to the System Model. It consists of:

a. Software Object/Class Models: Object Models depict typical links

and data flows among system objects, and are complemented by

Class Models, showing the classes of the system and their

relationships. Architectural information and domain-independent

elements are added to these models in later subprocesses of the
development lifecycle.

b. Software Interaction Models: Depicting typical object interactions

in the software systern.

c. Class and Method prologues
d. Revised list of features

e. Revised list of non-functional requirements and constraints
5. Project Plan and Development Plan

Chapter 5. Implementation 242

6. Work Packages: A Work Package is the set of features that a Chief

Programmer has chosen to be designed and built in each iteration of the
iterative-incremental development engine.

7. Design Packages: A Design Package encapsulates the results of the Design

stage in each of the iterations of the iterative-incremental development

engine, and is used as a basis for implementing the features in the

iteration's Build-by-Feature stage. It consists of:

a. Refinements made to the Software Model during detailed design in

order to facilitate the implementation of the features specified in

the iteration's Work Package.

b. Class and method prologues detailing the structure and particulars

of classes and methods.

c. Notes on the design alternatives explored, the constraints specified,

and the assumptions made during design.

8. Verification and validation reports
9. Executable Package, consisting of executables and run-time components
10. User Guides and Operation Manuals

The models produced: the Context Model, the System Model and the Software

Model, are in fact different evolution stages of one, single model. The Context

Model is extended and refined into the System Model, and the System Model is in

turn converted into the Software Model using pattern-based mapping. The

Software Model is later perfected and enriched with architectural and detailed

design specifications, after which it is used as a basis for implementation.

UML (Version 1.5) [OMG 2003] is the main modeling language used for

diagramming in the methodology. UML class diagrams (used for producing Class

Models), activity diagrams (used for producing Interaction Models), sequence
diagrams (used for producing Interaction Models), and component diagrams (used

for modeling subsystem architectures in Class Models and Object Models) are all

produced according to UML specifications. However, Object Models - which

capture functional and structural aspects of the context, system and software - use a

notation similar to UML collaboration diagrams, but in a data-flow-oriented context

analogous to Data Flow Diagrams (DFD), i. e. through replacing message/signal
flow by data/control flow, and ignoring sequencing.

Chapter 5. Implementation 243

Figure 44 shows the work products and their interdependencies.

5.2.1.3 Roles and Teams

The roles involved in the development methodology, many of which are extended

versions of FDD roles Palmer and Felsing 20021, are as listed below:

1. Project Manager: Overall manager of the development effort

2. Client Representative: Makes decisions on behalf of the client

3. Domain Expert: Provides knowledge on the problem domain

4. Ambassador User: Supplies user feedback

5. Chief Architect: Acts as modeling coordinator

6. Modeling Expert: Provides guidance on object-oriented modeling
7. Patterns Advisor: Provides assistance on using design, reengineering and

refactoring patterns for producing the Software Model

8. Development Manager: Coordinates development teams during iterative-

incremental development subphases
9. Chief Programmer: Directs detailed design and implementation activities

during iterative-incremental development

10. Class Owner: Performs detailed design, implementation and test on

classes put under his ownership

Feasibility Analysis Package

Context Model 4 Ssstern Model

Sottvýare Model

Project Plan Desclopment Plan Work Packages Design Packages

User Guide and Operation

als
Executable Package Verification and Validation

Manu Reports

Figure 44. Work products and their interdependencies

Chapter 5. Implementation 244

The teams undertaking the execution of subprocesses and activities in the course of

the methodology are as follows:

1. Preliminary Analysis Team: Performing feasibility analysis and

preliminary planning during the Preliminary Analysis subprocess.
2. Modeling Team: Performing real-world problem domain modeling and

requirements elicitation during systems analysis.
3. Model Conversion Team: Producing the system and software models

during the System Specification subprocess.
4. Architectural Design Team: Producing a blueprint for the architecture of

the system, based on which detailed design and implementation will be

performed.

5. Planning Team: Producing a plan for the iterative-incremental

development phase.
6. Features Team: In charge of the iterative-incremental design stages of the

methodology, performing detailed design and implementation in pre-

planned iterations.

7. Transition Team: In charge of releasing the system into the user

environment.

5.2.2 Process-Centred Description of the Methodology

In the process-centred view of the methodology, the focus is on the lifecycle and

the subprocesses comprising it, with work-products and producers (teams and

roles) viewed in the context of - and secondary to - the process. Figure 45 shows a
high-level process-centred view of the methodology. The following sections
describe the details in each of the subprocesses of the methodology.

5.2.2.1 Preliminary Analysis (Feasibility Analysis and Preliminary
Planning)

The Preliminary Analysis subprocess is mainly concerned with acquiring high-

level information about the system in order to assess the feasibility of the

development effort and set the groundwork for commencement of the project.
Figure 46 shows the tasks involved in this subprocess and the work-products

produced.

Chapter 5. Implementation 245

I
Preliinin rr N. dellný ('atterviun krdutnturwl I'I. nnitq Frntum 7r tI, wt

Anwlr. Lr / le. m C-u I IkniFn I lein I Iexn I 1'ewm

_____-

I ý..,. c in, l
111e, 1 \V�rl k. i. ýiý ýIýerýlý,. n

ýw1\/1
\\ /

\/
\/

1Iwýiýýýiu
Alý. lclinl"

I'rzliýi uý in. l
F: c, liii riýl

I: li. ii iiuyi

/' Ik. cI. TnClll l'. iýlýiýe li,. n. lýl.

I

'I

k. a l. y ieiii
............ ... nc

\I. lel //
/\

lA"ecnd
tc, l

t,. w, r,. f Ff�v º,
Hcl�rt.

..... 7...

Figure 45. Process-centred view of the methodology: lifecycle, teams responsible for
carrying out the subprocesses, and work-products produced or revised

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Request made by the client, and case established for considering the

feasibility of the effort

o Resources available for performing the preliminary analysis

Tasks and Their Order of Execution

Preliminary Analysis is mainly a risk mitigation activity, aimed at identifying the

characteristics, constraints and risks associated with the system and the

development project, and assessing the feasibility of the development effort based

on the knowledge acquired, thus avoiding the embarrassment - not to mention the

financial implications - of committing to a project that has a significantly high

possibility of failure.

Chapter 5. Implementation 246

Preliminary Analysis >unwm Modeling

and
Form the Preliminary

Kcyuirriuc nt
liliruanýýn

Analysis Team

sý, ll"ýýI
Acquire high-level project knowledge

(scope, risks, constraints, requirements)

Feasibility
Perform Feasibility

Analysis - Analysis
Packacc t i. l n rralllrl

Develop rough estimates and
k"slc 111, v It "

_-- an outline plan DCVCHI(1117C111 Engine

Project
plan tilljid nN ITAUl1

Arrange provision of
resources

Figure 46. Preliminary Analysis subprocess: tasks and work-products

The tasks performed in this subprocess, typically performed sequentially, are as

follows:

1. Form the Preliminary Analysis Team, consisting of a Project Manager in

charge of the development effort, a Client Representative who makes the

decisions on behalf of the client, a number of Ambassador Users and

Domain Experts to help understand the complexities of the problem

domain, and a number of Chief Programmers to develop the prototype of

the system and provide technical expertise.

2. Acquire high-level knowledge as to the nature of the project, its scope, and

the risks and constraints involved. A set of high-level requirements,

expressed as major feature sets (areas) and their constituent feature sets

(activities), is also compiled.

3. Perform the traditional activities of feasibility analysis, exploring alternative

development approaches and architectural configurations paying special

attention to technical, schedule, financial, operational and political

feasibilities (performed in traditional methodologies, e. g. SA IDeMarco

Chapter 5. Implementation 247

1978] and SSADM [Downs et al. 1988], as well as in modern ones, e. g.
DSDM [DSDM Consortium 2003]). The results are summarized in the
Feasibility Analysis Report. A throw-away prototype of the system, called

the Feasibility Prototype, is also produced in order to demonstrate the

technical feasibility of the development effort. Since the Feasibility Analysis

Report and the Feasibility Prototype are mutually dependent, a parallel

scheme for producing them should be agreed and implemented by the team.

An iterative-incremental approach is typically preferable when significant

risks are involved, since risk management can be exercised continually as

analysis gradually and tentatively delves deeper into the problem domain. In

such an approach, functionalities to be implemented in the prototype are

prioritized according to their development risk, implemented in the

prototype, and analyzed and assessed according to user feedback. The results

are then fed back into the feasibility analysis task. Based on the results of the

feasibility analysis, a decision is made on whether the development effort

should be commenced or aborted. Subsequent tasks (tasks 4 and 5 on this

list) are only performed if the decision is to commence the project.
4. Develop rough estimates and an overall Outline Plan for the project.
5. Make arrangements for provision of resources for commencement of the

project.

Work Products

The following work-products are produced in this subprocess:

 The results of the first two tasks are compiled in the Feasibility Report.

The report may be complemented by a primitive prototype of the system
(called the Feasibility Prototype), the main purpose of which is to

demonstrate the scope and the technical feasibility of the project. The

Feasibility Report includes information on:

a. scope of the system and high-level requirements (expressed as
feature sets)

b. constraints and risks involved

c. alternative approaches to developing the system and the results of
their analysis

Chapter 5. Implementation 248

d. resources required

 Initial Project Plan (only produced if feasibility analysis results in the

decision to commence the project)

Roles Involved

The Preliminary Analysis Team which carries out this subprocess consists of the

following roles:

 Project Manager: Responsible for

a. leading the team
b. providing and managing resources

c. facilitating operations

d. resolving issues with the client and third parties

e. enforcing standards and schedules

" Domain Expert: Helping understand the problem domain

 Ambassador User: Providing realistic and hands-on user feedback

 Chief Programmer: Developing the prototype of the system and providing

technical expertise

" Client Representative: Responsible for:

a. Defining constraints and high-level non-functional requirements
b. making decisions as to stopping or commencing the project

Verification

The Preliminary Analysis Team verifies the results. The primary concern should be

ensuring that constraints and risks (functional, managerial, technical, financial,

schedule, political, etc.) likely to jeopardize the feasibility of the project have not
been overlooked. Outside verification may be sought if deemed necessary by the

client.

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

Chapter 5. Implementation 249

0 Decision reached as to the commencement or abandonment of the project,

based on the results of the feasibility analysis

" Agreement made on the scope of the system and the constraints set by the

client

" Commitments made on both sides to provide the services and resources

expected from them as agreed by the team

" Approval of the overall Project Plan

5.2.2.2 Real-World Domain Modeling and Requirements Elicitation

As its name implies, this subprocess is where the problem domain is explored and

modeled as is. The system is then introduced in the models and its requirements are

identified. Figure 47 shows the tasks involved in this subprocess and the work-

products produced or modified.

tr Domain Modeling and Requirements Elicitation

Form the Modeling
yearn

-------- Domain modeling I

t ik

Contest
_

Introduction of the system
M1 xlel into the problem domain

I Ik. iyn Iw Ic. iýnc

Identification of non-functional
requirements and constraints D-Iop em Eng-

i", , ý,, ----- Review results, plan and
---- ----- r° requirements

Figure 47. Domain Modeling and Requirements Elicitation subprocess: tasks and
work-products

Chapter 5. Implementation

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Decision made by the client to commence the project

"o Provision of resources required for performing the subprocess

Tasks and Their Order of Execution

250

The Context Model is produced by real-world modeling of the problem domain and

adding the system to it as an object.

The tasks performed in this subprocess are as follows:

1. Form the Modeling Team, consisting of several software development

professionals (Chief Programmers), and one or more Domain Experts. The

team will operate under the guidance of a modeling specialist (called the

Chief Architect) and enjoys the counsel of one or more Modeling Experts.

One or more members of the user community will also be present as

Ambassador Users, contact with whom will be maintained during the

development process. The Project Manager attends team sessions as

supervisor and facilitator.

2. Domain modeling is conducted iteratively, starting with modeling the high-

level view and gradually moving inside organizational sections, focusing

on lower-level elements of the problem domain. Real-world modeling is

intended rather than object/class modeling, though the elements of the

problem domain are modeled as objects. The tasks performed are as
follows:

2.1. Human workers, systems and data-stores of the problem domain

are modeled as collaborating objects in a Context Object

Model. A notation similar to UML collaboration diagrams is

used for representing the model [OMG 2003], except that links

are adorned with data/control flows, but not sequence numbers

(example in Figure 56, page 314). Organizational boundaries

are preserved, modeled through using UML packages and

Chapter 5. Implementation 251

component diagrams. The resulting functional models comprise

the main bulk of the Context Model.
2.2. Typical transaction scenarios are modeled in UML activity

diagrams (with swimlanes depicting the participating objects, as

shown in Figure 58, page 315) and/or UML sequence diagrams

(Figure 62, page 319). The resulting Context Interaction Models

comprise the behavioural part of the Context Model.

2.3. Job descriptions and functionalities are expressed as areas
(major feature sets), activities (feature-sets), and features [Coad

et al. 1999, Palmer and Felsing 2002]. Feature lists are

compiled and added to the Context Model.

2.4. A glossary of terms from the problem domain is compiled
(Figure 63, page 321).

3. Introduction of the system into the problem domain: The system is added

as an object to the Context Model (Context Object Models) and feature sets

are assigned to the system through redistribution and/or duplication (Figure

57, page 314). New feature sets are added as deemed necessary by the

Modeling Team, and the feature lists in the Context Model are updated.
The features of the system comprise the functional requirements and as

such will guide and focus the development activities throughout the rest of

the lifecycle (Table 3, page 320). Typical scenarios of interaction with the

system are also modeled and the Context Interaction Models are updated

accordingly (Figure 60, page 317).

4. Non-functional requirements and constraints are identified and added to

the Context Model.

5. The results, the plan and the requirements are reviewed and revised.

Work Products

The following work-products are produced in this subprocess:

 Context Model, consisting of:

a. Context Object Models, with the system added and modeled as a

problem domain object

Chapter 5. Implementation 252

b. Context Interaction Models, including models depicting typical

scenarios of system usage

c. Feature Lists, including system features identified and set as

functional requirements

d. Context Vocabulary, containing the glossary of terms compiled

from the problem domain

e. Non-functional requirements and constraints

 Revised Project Plan

Roles Involved

The Modeling Team which carries out this subprocess consists of the following

roles:

 Project Manager: Responsible for

a. leading the team
b. providing and managing resources

c. facilitating operations

d. resolving issues with the client and third parties

e. enforcing standards and schedules

 Domain Expert: Helping understand the problem domain

 Ambassador User: Providing realistic and hands-on user feedback

 Chief Architect: Providing modeling expertise and guiding the modeling

effort

 Modeling Expert: Providing advice on object-oriented modeling issues

 Chief Programmer: Development expert

Verification

The Modeling Team verifies the results, seeking advice from other Domain Experts

if necessary. The primary concern should be ensuring that major functionality has

been captured in the Context Model. Outside verification may be sought if deemed

necessary by the client.

Chapter 5. Implementation 253

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

" Context Model verified and approved by the team

5.2.2.3 System Specification

The System Specification subprocess focuses on the design of the system as an

extension of the existing system using the types of elements originally found in the

problem domain, and then converting the result to its computer system counterpart

using object-oriented patterns. Figure 48 shows the tasks involved in this

subprocess and the work-products produced or modified.

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Context Model approved by the Chief Architect as adequately capturing

the problem Domain

o Provision of resources required for performing the subprocess

System Specification

0 Form the Conversion

sýyn «I tnI erdl: a� Team

Convert Context Model to
---- System Model through

homogeneous extension

System
Model 1'I n" rý. lýýlý

Convert System Model to I -pi .

Software Model using patterns
týcv<k , nt Fnyýýk

Software

Model

1liiil"I I"" tliu

-- Review results. plan and

ri,, ---- requirements

Figure 48. System Specification subprocess: tasks and work-products

Chapter 5. Implementation 254

Tasks and Their Order of Execution

Focus is shifted to the interior of the system, and the system is designed as an

extension to the structure presently in place. The System Model thus built is then

converted to the Software Model through using patterns to enhance encapsulation

and information hiding. The goal is to provide a smooth transition from the

problem domain to the solution domain and ultimately to the implementation

domain, preserving object-orientation at all levels while keeping the artifacts

tangible to all the people involved in the effort, especially Domain Experts.

Features are given a pivotal role from the start and act as the basis binding the tasks

and artifacts together.

The tasks performed in this subprocess, explained as relevant to business systems,

are as follows:

1. Form the Model Conversion Team: The team consists of the same roles as

the Modeling Team (the people may indeed be the same as those present in

the Modeling Team), except that one or more Patterns Advisors are also

present to provide advice during converting the System Model to the

Software Model.

2. The Context Model built during the previous subprocess is converted to the

System Model. The system object treated as a black box during the

previous subprocess is opened up, and the system is designed as an

extension to the organizational structure into which the system is to be

ultimately introduced, using the same types of elements already present in

the problem domain. In a business system, for instance, this means adding

a new section or department consisting of staff performing predefined jobs

using equipment and tools made available to them (Figure 65, page 324).

The tasks performed, using examples relevant to business systems, are as
follows:

2.1. Human elements, systems and data stores sharing features with
the system are moved inside system boundaries or assigned

system counterparts if their attachment to the system is partial
(elements interacting with the system may have system

counterparts). The system is to be designed as a homogeneous

Chapter 5. Implementation 255

extension of the problem domain; this means that the same types

of entities as seen in the problem domain are used for designing

the system.

2.2. Each data-store and each flowing data object is assigned to a

custodian; any access to any such object should be made via the

custodian. Flowing-data custodians are file/document movers,

transferring the file or document put in their custody between

processing clerks. In a business system, data-store custodians are

akin to file clerks and archive keepers. It should be noted that

there is no limit on the number of staff assigned to the system.

The resulting System Object Models - depicting non-sequenced
data/control flowing among objects (intra-system and extra-

system) - comprise the functional component of the System

Model (Figure 68, page 327).

2.3. Typical interaction scenarios are identified, and relevant
behavioural models (typically activity diagrams and interaction

diagrams) are produced for each of the system's feature sets. The

resulting System Interaction Models comprise the Behavioural

component of the System Model (Figure 69, page 328).

2.4. Feature sets and features are assigned to the system elements
based on the functionality assigned to the system as a whole and

the interaction models produced in the previous task (Table 4,

page 330). This is analogous to job definition and task

assignment in manual business systems. The list of feature sets

and features assigned to the objects will later be used in

determining class methods.
2.5. Review and revision of the requirements of the system
2.6. Review of the resulting System Model

3. The System Model produced so far is converted to the Software Model by

applying patterns to redistribute functionality among system objects. The

model thus produced will ultimately be perfected and extended during later

design and implementation subprocesses. The tasks performed, explained as

relevant to business systems, are as follows:

Chapter 5. Implementation 256

3.1. Patterns are applied to the System Model to iteratively

redistribute features among objects (i. e. processing staff and

custodians) in order to enhance encapsulation, increase cohesion

and reduce coupling, and also to introduce architecture.

Reengineering patterns, especially those suggested in [Demeyer

et al. 2003] for redistributing responsibilities among objects are

of utmost use in the starting iterations. These typically include:

" Moving behaviour close to data

e Eliminating navigation

" Splitting up God classes (Blobs)

A number of Refactoring patterns proposed in [Fowler 1999] can

also be used in conjunction with the above (indeed, some of them

already are a part of the above patterns):

" Move method (feature)

" Move field

" Extract class

" Inline class

" Hide delegate

" Remove middle man

" Encapsulate field

Design patterns can be used in later iterations to help implement

specific architectures and mechanisms typically present in the

problem domain and tangible to users. Applying these patterns

not only results in structures familiar to the user, but also
facilitates the translation of these structures into solution domain

and implementation domain class structures. Design patterns

especially useful in this context are:

" GoF patterns [Gamma et al. 1995]:

o Wrapper:

 Adapter: to standardize interfaces

 Decorator: for dynamic reassignment of

responsibilities (features)

o Facade: for inter-departmental/inter-group

interfacing

Chapter 5. Implementation 257

o Proxy: already used in assigning custodians, can

also be used for adding middle men if necessary

o Command: to encapsulate features or feature-sets

(possibly transaction processing chains), making

it possible to pass them like processing

instruction manuals

o Mediator: to centralize complex inter-object

communications (analogous to appointing a

facilitator or manager)

o Observer: to implement change monitors
(auditors/supervisors) in order to ensure

consistency and the enforcement of business

rules

o State: to facilitate dynamic change of roles
(dynamic job descriptions)

o Strategy: to enable dynamic assignment of

algorithms (changing work procedures)

o Visitor: for setting up specialized service-

provider departments/sections, with the

knowledge of how to provide specific kinds of

service to each and every client

department/section

" GoV patterns [Buschmann et al. 1996]:

o Broker: for defining inter-departmental go-
betweens (dispatch-offices)

o Command Processor: to define special jacks-of-

all-trades; i. e. dynamically configurable

clerks/teams that take part in the processing once

they are supplied with the know-how

(commands)

o Layers: for implementing hierarchical

departmental/management organizational

structures

Chapter 5. Implementation 258

o Master-Slave: to implement certain team and

management structures

o Pipes-and-Filters: to define overall transaction-

processing architecture

Antipatterns can also be of use in the redistribution procedure,

especially the Poltergeist and Swiss-Army-Knife antipatterns

[Brown et al. 1998]. The redistribution procedure is devised in

such a way as to resolve the problems typically afflicting

analysis approaches based on object-oriented real-world

modeling [Isoda 2001]. Objects irrelevant to the system and

actor-counterparts without any justification for existence in the

system are gradually disposed of, and relationships not belonging

to the system are not introduced into the models because of the

data-flow oriented and feature-driven nature of the System

Model and the redistribution procedure (Figure 71, page 331).

Behavioural models are updated in each iteration of the

redistribution procedure.

3.2. Applying the patterns ultimately results in custodian objects
being merged with the data objects they had under custody. This

marks the transition from the problem-domain-based system to

the computer system, signifying the transition to solution
domain. The resulting Software Object Models comprise the

functional component of the Software Model. Class diagrams are

then produced based on the Object Models, depicting the classes
in the system and their relationships. Inheritance hierarchies are
introduced in order to enhance abstraction (patterns for

refactoring inheritance can be of use in this context [Fowler

1999]). The Software Class Models thus produced comprise the

main structural component of the Software Model.

3.3. Behavioural diagrams inherited from the System Model are

updated according to the new Software Class/Object Models.

The resulting Software Interaction Models comprise the

behavioural component of the Software Model. Message passing

should be clearly depicted (Figure 76, page 336).

Chapter 5. Implementation 259

3.4. Preparation of initial versions of class and method prologues
3.5. Review and revision of the requirements
3.6. Review of the resulting Software Model

4. Review the results of the subprocess, the plan and the requirements

Work Products

The following work-products are produced in this subprocess:

 System Model

a. System Object Models

b. System Interaction Models

c. Revised Features List

d. Revised list of non-functional requirements and constraints

 Software Model

a. Software Object/Class Models, consisting of Object Models

depicting typical links and data flows among system objects, and
Class Models, showing the classes of the system and their

relationships.
b. Software Interaction Models

c. Initial versions of class and method prologues
d. Revised list of features

e. Revised list of non-functional requirements and constraints

 Revised Project Plan

Roles Involved

The Model Conversion Team which carries out this subprocess consists of the

following roles:

 Project Manager: Responsible for

a. leading the team

b. providing and managing resources

c. facilitating operations
d. resolving issues with the client

e. enforcing standards and schedules

Chapter 5. Implementation 260

 Domain Expert: Helping understand the problem domain

 Ambassador User: Providing realistic and hands-on user feedback

 Chief Architect: Providing modeling expertise and guiding the modeling

effort

 Modeling Expert: Providing advice on object-oriented modeling issues

 Chief Programmer: Development expert

 Patterns Advisor: Providing expertise on patterns and their application for

redistributing functionality among system elements

Verification

The Model Conversion Team verifies the results, making sure the conversions have

not resulted in lost information or redundant clutter. The primary concern should

be ensuring that features have been preserved during model conversion, and have

indeed been realised and implemented by the designed system, in the System

Model as well as the Software Model. Outside verification may be sought if

deemed necessary by the team.

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

" Software Model verified and approved by the team

" Features list reviewed and approved as consistent with the Software Model

5.2.2.4 Architectural Design

Focused on designing an overall implementation-specific architecture for the

system, this subprocess defines the infrastructure based on which multi-team,
iterative-incremental detailed design and implementation will be carried out in the

following subprocesses. Figure 49 shows the tasks involved in this subprocess and

the work-products modified.

Chapter 5. Implementation 261

h, ý V, k",

IMýit urn Ati. lcl nie
ýi., l

Ný. iýiiiýiix iii I. li. ii. iii., ii

Architectural Design

Form the Architectural
Deign Yeam

Add implrmcmation-specific

1------------ - domain-dependent detail and
architecture to the Software Model

\Al.
kl` IkiN, ITV I r, ilini

1 ° Identify architecture of domain-
independent tarts of the system

t

----------- - -- 1
II I

----- -I

----_
Review results. plan and

--- I'I"' requiretnetlls

Tl. malnn

Figure 49. Architectural Design subprocess: tasks and work-products

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Software Model approved by the Conversion Team as adequately complete

for architectural design to start

o Provision of resources required for performing the subprocess

Tasks and Their Order of Execution

The tasks performed in this subprocess are as follows:

I. Form the Architectural Design Team: consisting of the same roles as the

Conversion Team active in the previous subprocess, except that Domain

Experts are replaced by Design Experts with knowledge on architectural

design techniques and domain-independent technologies.

2. Convey the Software Model to the implementation domain through adding

implementation-specific detail and restructuring it in order to facilitate

implementation and accommodate the domain-independent parts of the

system. The user interface is designed in this task, and the Software Model

Chapter 5. Implementation 262

is enriched with architectural design patterns, this time used in their

original capacity. The components comprising the system and their

architecture are identified (if a component-based development approach is

intended); the component (application) architecture is usually described

with packages and component diagrams showing the components and their

inter-relationships. Features and feature sets are duly redistributed.
Interaction among architectural parts is modeled through interaction

diagrams.

3. Identify the architecture of the domain-independent parts of the system:
hardware and software platforms, infrastructure components (such as

middleware and databases), utilities for logging/exception-handling/start-

up/shutdown, design standards and tools, and the choice of component

architecture (such as JavaBeans or COM), are all added to the Software

Model. Component diagrams are used to show these physical components

and their inter-relationships. Interactions are shown in collaboration
diagrams.

4. Review the results, the plan and the requirements

Work Products

The following work-products are produced in this subprocess:

 Revised Software Model

a. Revised versions of Software Object/Class Models spanning

architectural information, user interface and domain-independent

components added during the subprocess; consisting of Object

Models depicting typical links among objects, and Class Models,

showing the classes and their relationships.
b. Revised versions of Software Interaction Models

c. Revised versions of class and method prologues
d. Revised list of features covering feature sets assigned to

architectural and domain-independent units

e. Revised list of non-functional requirements and constraints
 Revised Project Plan

Chapter 5. Implementation

Roles Involved

263

The Architectural Design Team which carries out this subprocess consists of the

following roles:

 Project Manager: Responsible for

a. leading the team

b. providing and managing resources

c. facilitating operations

d. resolving issues with the client and third parties

e. enforcing standards and schedules

 Design Expert: providing knowledge on architectural design techniques

and domain-independent technologies

 Ambassador User: Providing realistic and hands-on user feedback

 Chief Architect: Providing modeling expertise and guiding the modeling

effort

 Chief Programmer: Development expert

 Patterns Advisor: Providing expertise on patterns and their application for

redistributing functionality among system elements

Verification

The Architectural Design Team verifies the results, making sure all major

architectural and domain-independent elements needed for implementing the

system are identified. The primary concern should be ensuring that links between

domain entities and domain-independent components have been adequately set up,

and system features have been preserved during design and have indeed been

realised and implemented by the designed system. The user interface should be

validated by the Ambassador Users. The only remaining design activity is the

detailed design of the classes, which is performed during the cycles of the iterative-

incremental development engine in the penultimate subprocess of the lifecycle.

Outside verification may be sought if deemed necessary by the team.

Chapter 5. Implementation 264

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

" Software Model (including the user interface) verified and approved by the

team as covering the implementation-specific architectural and domain-

independent components necessary for the implementation process to

commence

" Features list reviewed and approved as consistent with the Software Model

5.2.2.5 Planning by Feature

This subprocess is where the feature-driven iterative-incremental engine of the

development process is planned and the appropriate feature-development task

assignments are made. Figure 50 shows the tasks involved in this subprocess and

the work-products produced or modified.

aý,.,:,.,.

Plan by Feature

Form the Planning Team

nnlutr, Wr., l

I- -- Schedule development of feature sets

Assign feature sets to Chief
Programmers

I)evelopmem
Plan

Assign Classes to
Class Owners

1 kvelyetenl P. nplrc

Review Ihvelopment Plan,
Project Plan and requirements

Figure 50. Plan by Feature subprocess: tasks and work-products

Chapter 5. Implementation 265

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Software Model (especially the Features List therein) approved by the

Architectural Design Team as adequately complete and stabilized

o Provision of resources required for performing the subprocess

Tasks and Their Order of Execution

The tasks performed in this subprocess are as follows:

1. Form The Planning Team: The Planning Team typically consists of the

Project Manager as the leader of the team, the Development Manager as

the resource manager and coordinator of the Features Teams responsible

for the ultimate implementation of the system, and the Chief Programmers

involved in the development as leaders of Features Teams, providing

practical implementation expertise crucial to reliable estimation and

scheduling of the feature development subprocesses.
2. Determine the development sequence by scheduling the development of

the feature sets (activities), specifying a date (month and year) for the

completion of each. This requires taking into account the inter-

dependencies among the feature sets, the workload distribution across the

development teams, and the risks associated with the feature-sets. A

completion date is then determined for each area (major feature set) as the

last completion date assigned to its constituent feature sets. The resources

needed for the development are also identified and planned to be allocated

to development teams.

3. Assign feature sets to Chief Programmers, thereby declaring them as the

owners of the feature-sets assigned to them.

4. Assign classes to developers, thereby declaring the developers as Class

Owners.

5. Review the resulting Development Plan, the Project Plan and the

requirements

Chapter 5. Implementation

Work Products

The following work-products are produced in this subprocess:

 Development Plan, covering

a. Development schedule
b. Feature-set and class assignments

c. Resource allocations

 Revised Features List (in the Software Model)

 Revised Project Plan

Roles Involved

266

The Planning Team which carries out this subprocess consists of the following

roles:

 Project Manager: Responsible for

a. leading the team

b. providing and managing resources

c. facilitating operations
d. resolving issues with the client and third parties

e. enforcing standards and schedules

 Development Manager: The resource manager and coordinator of the

Features Teams during the iterative development subprocesses

 Chief Programmer: Development expert

Verification

The Planning Team verifies the results, making sure that all feature sets have been

scheduled and assigned to Chief Programmers, and all classes have been assigned

to Class Owners. The primary concern should be ensuring that reasonable

completion dates have been determined based on inter-dependencies among the

feature sets, the risks associated, and the workload distribution across the

development teams. Care should also be taken in ensuring that all major resources

required have been identified and verified as obtainable and ready to be allocated.
Outside verification may be sought if deemed necessary by the team.

Chapter 5. Implementation 267

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

" Development Plan verified and approved by the team as reasonably

complete

9 Features list reviewed and approved as consistent with the Software Model

5.2.2.6 Feature-Driven Iterative-Incremental Development

Strands of design-and-build iterations start off as each Chief Programmer selects

the set of features (called the Work Package) that should be developed in each of

the iterations performed under his supervision, and forms a Features Team to do

the job. A Chief Programmer selects features and schedules his iterations according

to the Development Plan. Typically, at any point during this development period,

several iterations are being performed concurrently, some of them supervised by

the same Chief Programmer, with each of the Class Owners taking part in several

iteration-teams simultaneously.

5.2.2.6.1 Design by Feature

In each iteration of this subprocess, detailed design of the classes and methods
involved in the implementation of the features in the Work Package is carried out.
Figure 51 shows the tasks involved in this subprocess and the work-products

produced or modified.

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Software Model (especially the Features List therein) approved by the

Architectural Design Team as adequately complete and stabilized to be

used as the basis for implementation

o Development Plan verified and approved by the Planning Team as

reasonably complete

o Provision of resources required for performing the subprocess

Chapter 5. Implementation 268

Tasks and Their Order of Execution

The tasks performed in this subprocess are as follows:

1. Form a Features Team, which will design and build the feature(s) selected
for development in the current iteration under the supervision of the Chief

Programmer who owns the features. A Work Package should first be

defined by the Chief Programmer, showing the projected completion date

of the current iteration and the features chosen for detailed design and

implementation therein. After defining the Work Package and identifying

the set of classes that might be involved in the realization of the features in

the Work Package, the Chief Programmer brings together the owners of

these classes. Included in the team are one or more Modeling Experts who

are commissioned to help with the design modeling. One or more

Ambassador Users are also present to provide feedback on the design.

2. Study the Software Model in order to obtain a better understanding of the

particulars of the features. This task is usually undertaken for high-risk

features, the development of which usually requires a deeper understanding

of the data, algorithms, and constraints involved.

3. Refine and complete the sequence diagrams in the Software Interactions

Models, which as the behavioural component of the Software Model, are

required to show how software objects should interact at run-time in order

to implement each of the features. The features team also meticulously logs

the alternative design models it has explored, as well as the constraints and

assumptions that apply.
4. Refine the Software Object/Class Models so that they support the sequence

diagrams produced in the previous task. This usually means that new

elements are added to the model, some of the existing elements are

changed, and refactoring is necessitated as a consequence.
5. Write Class- and Method-prologues for the elements of the Software

Object Models. These relatively low-level design details are produced by

the Class Owners as the last design artifacts needed before the coding can

commence.

Chapter 5. Implementation 269

6. Design inspection is performed by the Features Team (possibly in

consultation with other people involved in the project) in order to verify the

integrity of the design artifacts produced.

7. Review and revise the Work Package (the features and the iteration

schedule)

The products of this subprocess are transferred to the next subprocess as a package.

This Design Package consists of the sequence diagrams produced, the refinements

made to the Software Model, the prologues, and the notes on the design

alternatives explored, constraints, and assumptions.

laniwin Mýtleliiif

�i<III

V, 1"',

Development Engine

Design by Feature

Form Features'l'eani

Study Sottwaie Model

I h" by

------- ------------
r
I
r
1

1------------------

1

ý--------

Refine and complete
Interaction M xiels

Refine Ohjcct/('lass Models

Work

Packjgc

Design

Write Class- and Method-Prologues

Inspect Design Package

Review Development Plan,

Project Plan and requirements

I>rývý"y, n r, ii __

Iýr, ui. i I i, n

Figure 51. Design by Feature subprocess: tasks and work-products

Chapter 5. Implementation 270

Work Products

The following work-products are produced in this subprocess:

 Work Package: consisting of:

a. A set of features that the Chief Programmer leading the team has

chosen to be designed and built in the iteration

b. A projected completion date for the iteration.

 Design Package: consisting of:

a. Refinements made to the Software Model in order to facilitate the

implementation of the features in the Work Package. The revisions

typically cover:

i. Revised Software Interaction Models - typically in the

form of new or refined sequence diagrams - depicting

object interactions that implement the set of target

features.

ii. Refinements made to the Software Object/Class Models in

order to accommodate the object interactions.

b. Class and method prologues

c. Notes on the design alternatives explored, the constraints specified,

and the assumptions made during design

Roles Involved

The Features Team which carries out this subprocess consists of the following

roles:

 Chief Programmer: Responsible for

a. acting as the leader of the team

b. defining and revising the Work Package

c. scheduling the iterations

d. supervising and monitoring the design activities

 Modeling Expert: Helping with model revisions

 Ambassador User: Providing feedback on the design

 Class Owner: Undertaking the detailed design of software classes and their

methods

Chapter 5. Implementation 271

Features Teams are collectively coordinated and provided with resources by the

Development Manager.

Verification

The Features Team verifies the results, making sure that all features in the Work

Package have been covered. The primary concern should be ensuring that the

behavioural models introduced or revised during this subprocess do indeed

implement the features specified in the Work Package. Care should also be taken in

ensuring that necessary refinements and refactorings are made to other models of

the Software Model, especially the Class Models, and that no inconsistencies have

crept into the Software Model as the result of the revisions.

Outside verification may be sought if deemed necessary by the team or the

Development Manager.

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

9 Work Package verified as feasible

" Design Package verified and approved by the Features Team as covering
the features in the latest version of the Work Package, and ready for

implementation in the next subprocess

" Software Model verified and approved by the Features Team as consistent

and updated with the necessary revisions

5.2.2.6.2 Build by Feature

This subprocess is where the Design Package produced in the previous subprocess
is implemented, tested and integrated with the system built so far. Figure 52 shows

the tasks involved in this subprocess and the work-products produced or modified.

Chapter 5. Implementation 272

Development Engine

u, , b, Ir. iuu,

Budd by Feature

Cale classes and methods

Conduct clxle ü111)ccnon

------- - 1,1111-le 'l

eel (Ic: tI loll/V aIid: nion

Reports

----- Intel rate and test -
Executahlr

Package

I t

Review results, plan and ---

rl t requirements

I'Im

Figure 52. Build by Feature subprocess: tasks and work-products

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Design Package verified and approved by the Features Team as ready to be

implemented

o Provision of resources required for performing the subprocess

Tasks and Their Order of Execution

The tasks performed in this subprocess are as follows:

1. Implement classes and methods according to the specifications given in the

Design Package. Each of the Class Owners implements the necessary items

(including the unit-testing code) in the classes he or she owns.

Chapter 5. Implementation 273

2. Conduct a code inspection, either before or after the unit-test, during which

the features team examines the code to make sure of its integrity and

conformance to coding standards.

3. Unit-test the code to ensure that all classes satisfy the functionality

required. Class Owners perform class-level unit-tests, as well as feature-

level unit-tests prescribed by the Chief Programmer. Tests and test-results

are logged in Verification Reports.

4. Integrate the increment with the system built so far, if the implemented

classes are successfully inspected and unit-tested. The necessary

refactoring activities and the appropriate integration tests are then carried

out. As the leader of the features team, it is the Chief Programmer who

makes sure that all the classes necessary to realize the features are

ultimately integrated into the main build.

5. Review the results, the plan and the requirements

Work Products

The following work-products are produced in this subprocess:

" Revised Executable Package, with the executable increment built in the

iteration (consisting of system executables and run-time components)

properly integrated.

 Verification and Validation Reports: containing the results of the tests and

the feedback provided by Ambassador Users

 Revised Features List (preserving consistency with the Software Model)

 Revised Project- and Development Plans

Roles Involved

The Features Team which carries out this subprocess consists of the following

roles:

 Chief Programmer: Responsible for

a. acting as the leader of the team

b. revising the Work Package

c. scheduling the iterations

Chapter 5. Implementation 274

d. supervising and monitoring the implementation and test activities

 Modeling Expert: Helping with model interpretation and revision

 Ambassador User: Providing validation feedback on the system

 Class Owner: Undertaking the implementation and testing of software

classes and their methods

Features Teams are collectively coordinated and provided with resources by the

Development Manager.

Verification

The Features Team verifies the results, making sure that all features in the Work

Package have been implemented and tested. The primary concern should be

ensuring that all necessary unit- and integration tests have been carried out, and

system validation has been performed based on feedback provided by Ambassador

Users. Care should also be taken in ensuring that necessary refinements and

refactorings are made to the Executable Package after the increment has been

integrated, and that all verification and validation results are logged in relevant

reports. Outside verification may be sought if deemed necessary by the team or the

Development Manager, especially in case of crucial and high-risk features.

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

" Executable Package verified and approved as satisfying the features in the

Work Package, and validated by Ambassador Users.

" Verification and Validation Reports properly produced

" Revised Features List reviewed and approved as consistent with the

Software Model

5.2.2.7 Transition

The Transition subprocess is mainly focused on system-wide verification and

validation and the deployment of the implemented system in the user environment.

Chapter 5. Implementation 275

Figure 53 shows the tasks involved in this subprocess and the work-products

produced or modified.

Entry Criteria

The following should be satisfied before the subprocess may be commenced:

o Executable Package verified and approved by the Development Manager

and the Project Manager as ready to be deployed

o Provision of resources required for performing the subprocess

Prch-, -, Analysis

lktuuuu \indt Iinc

and
kegwrrnrnt

HLat: aion

s STClfl
tijvcI fic'IIIor]

\relw c. nu. J
Ik" ien

I'I. "he Fellure

ksicu hý Pr: aurr

1) .. Wpnnnt Fjigim

Rudd by F, eIu,

her. utahk 1

F'uckacc """"

Transition

Form the Transition Team

Prepare user environment
for deployment

Test and validate
completed system

Deploy system and
integrate

Usage and
Operuiun
Manu; iI C

Organize the
Maintenance beam D

Conduct project wrap-up

/

Figure 53. Transition subprocess: tasks and work-products

Chapter 5. Implementation 276

Tasks and Their Order of Execution

The tasks performed in this subprocess (many of which in parallel) are as follows:

1. Form the Transition Team: The Transition Team typically consists of the

Project Manager as the leader of the team, the Development Manager as

the coordinator of the Features Teams responsible for rectifying the system

problems encountered during transition, the Chief Programmers involved

in system correction as leaders of Features Teams, Class Owners as

developers responsible for the ultimate debugging and testing during

system correction activities, and one or more Ambassador Users providing

system validation feedback. A Client Representative is also present to

decide whether the project objectives have been achieved. The Project

Manager usually commissions a host of instructors, documentation

producers, data- and system conversion experts, and others to undertake

the finer-grained activities of transition tasks.

2. Test and validate the complete system: System testing and acceptance

testing with the appropriate reports produced. Defects are rectified and

necessary modifications are made to the Executable Package by the

relevant Features Teams, and the Software Model is updated accordingly.
3. Prepare user environment for system deployment: Set up the hardware and

software platforms, convert legacy databases and systems to support the

new release, produce user guides and operation manuals, and train the

users and the operational staff
4. Deploy the new system and integrate it with existing systems: System

conversion and commencement of system operation in the user

environment
5. Organize the Maintenance Team, typically consisting of a Chief

Programmer as team leader, one or more Class Owners as developers, and

one or more Ambassador Users for providing user feedback

6. Declare the project as finished: When Deployment is carried out to the

satisfaction of the Transition Team, especially the Client Representative,

project wrap-up is conducted; the project is reviewed and the lessons

learned from the project are compiled and recorded in order to be used in

future projects.

Chapter 5. Implementation 277

Work Products

The following work-products are produced in this subprocess:

 Revised Executable Package, with the necessary corrections and

modifications applied based on the results of the system level verification

and validation carried out in the subprocess

 Revised Software Model

 Verification and Validation Reports: containing the results of the system

tests and the feedback provided by Ambassador Users

 User Guides and Operation Manuals

Roles Involved

The Transition Team which carries out this subprocess consists of the following

roles:

 Project Manager: Leader of the team

 Development Manager: Coordinator of the Features Teams carrying out

the corrections and alterations to the executable system

 Client Representative: Deciding whether the project has been successfully

concluded

 Chief Programmer: Leaders of Features Teams

 Class Owners: Active in the Features Teams, implementing corrections and

modifications made to the Executable Package

" Ambassador User: Providing system validation feedback

Verification

The Transition Team verifies the results, making sure that the system has been

verified as satisfying the Features List, and validated and deployed in the user

environment to the satisfaction of Ambassador Users and the Client

Representative. The primary concern should be ensuring that all necessary tests

have been carried out, and that the operational platforms and the system have been

correctly installed. Care should also be taken in ensuring that users and operational

staff are properly trained and maintenance teams have been set up and organized.

Chapter 5. Implementation 278

Outside verification may be sought if deemed necessary by the team or the ('lieht

Representative.

Exit Criteria

The following should be satisfied before the subprocess may be concluded:

" Installed system verified and approved as satisfying the features in the

Features List, and validated by Ambassador Users and the Client

Representative

" Verification/Validation Reports and usage/operation manuals duly

produced

" Users and operational staff trained, and Maintenance Team organized

5.2.3 Work-Product-Centred Description of the Methodology

In the work-product-centred view of the methodology, the focus is on the artefacts

produced, their structure and their dependencies, with tasks and producers viewed

in the context of - and secondary to - the work-products. Figure 54 shows a high-

level work-product-centred view of the methodology, depicting the usage span of

the work-products and the points in time when they affect each other during the

enactment of the methodology.

Pr<ünrin. r
Andý"ir

Donuin)lodeli. q . ad Suiem
Require-. n Elkneüun Sperifir. linn

i Arrhh<cwral P14a b7 tlenlire-Iwrnwuul Tr. u. ilius
Deli. F,. lurc D... lup-l

Dniýn hp Rulkl by
F at- Fnlnre

I .ýr rnJ ,
ýnl U<, c"I", pnwul Igw

rl. n nlmuul,

.
\1 ýýil I ,., iual"Ir

II

I, r. iln Ir. i

\. y
P.. Aa. yr

Atielel \I, skl \I, wl. l

LcgenJ

N ur1. ýPreJucl
(Amrr f)rywnarnm

Figure 54. Work-products of the methodology: usage span, dependencies and mutual
effects

Chapter 5. Implementation 279

Many of the packages and models produced in the methodology are composite

work-products. Figure 55 shows the internal structure of these composite work-

products and summarizes the interdependencies. Of the work-products shown in

this figure, only those which are specific to the methodology are described in

detail; those work-products for which a well-established template and production

method already exists (and has been approved as sufficient for the needs of this

methodology) have been excluded from the work-product-centred description of

the methodology, on the grounds that any description will be a repetition of what is

already known.

Feasibility Analysis Package

Feasibility Report

FFeasibility
Prototype

Context Model

Context Object
Models

Context Interaction
Models

Feature Lists

Context Vocabulary

Non-functional Requirements

and Constraints

I User Guide and Operation
Manuak

Project I'I: {n

Non-functional Requirements
and Constraints

Design Packages

Executable Package

Soft care Model

Sofl are Object
Models

Software Interaction
Models

Feature Lists

I Class and Method

Prolovues

Non-functional Requirements

and Constraints

ý1 k Pack agI
N I)oelupment Plan

Verification and Validation
Reports

Figure 55. Internal structure of composite models and their interdependencies in the
context of the overall work-product structure

System Model

Chapter 5. Implementation 280

The following sections describe the details of each of the work-products, including

internal structure and modeling language(s), dependencies, trends of evolution,

producers involved, production methods and guidelines, and consistency issues.

5.2.3.1 Feasibility Analysis Package:

The Feasibility Analysis Package is one of the main products produced during the

Preliminary Analysis subprocess, and contains high-level knowledge about the

system and the development project as delineated by the client and explored by the

analysts. It lays the groundwork for commencement of the development project and

detailed analysis of the problem domain, and is used as a basis for developing the

Project Plan and the Context Model.

Structure and Modeling Language

The Feasibility Analysis Package consists of two parts:

1. The Feasibility Report, the exact structure of which is agreed by the

Preliminary Analysis Team, encapsulates high-level information about the

system and the development project on the following issues:

a. Scope of the system
b. High-level requirements of the system, expressed as major feature

sets (areas) and their constituent feature sets (activities); each

activity (feature set) is expressed as conforming to the general

template: <action> <-ing> a(n) <object>; for example, "reserving

a seat". Activities belong to areas (major feature sets), which are

expressed using the general template: <object> management; for

example, "reservations management".

c. Constraints imposed on the development effort
d. Risks involved in the development of the system

e. Resources required for the development of the system
f. Alternative general approaches to developing the system and

results of their feasibility analysis, based on the high-level

knowledge so far acquired

g. Verdict on whether the development of the system should go

ahead; considering the scope and requirements of the system, the

Chapter 5. Implementation 281

constraints imposed, the risks involved, the resources available,

and the alternative development approaches so far approved as
feasible

2. The Feasibility Prototype: a throw-away prototype used to demonstrate the

scope and the technical feasibility of the project; the prototype specifically

addresses key requirements, critical technical risks, and alternative

architectures and development approaches.

Dependencies

The following dependencies exist between this work-product and other artefacts

produced during the enactment of the methodology:

1. The constituent parts of the package (Feasibility Analysis Report and

Feasibility Prototype) are mutually dependent.

2. The knowledge about the system and the development project compiled in

this package is used for developing the initial version of the Project Plan

during the Preliminary Analysis subprocess.
3. The high-level view of the system and the problem domain portrayed in

this package is elaborated and refined during the Real-World Domain

Modeling and Requirements Elicitation subprocess, ultimately resulting in

the Context Model.

Trend of Evolution

Creation: The Feasibility Analysis Package is created in the Preliminary Analysis

subprocess.

Usage Span: The usage span encompasses the Real-World Domain Modeling and

Requirements Elicitation subprocess, as well as the subprocess where it is created.

Update and Revision: This work product is not updated in subprocesses other than

where it is created. Revision is not performed unless a reiteration of the

Preliminary Analysis subprocess is carried out, typically as a result of

circumstances indicating a critical flaw in the knowledge compiled in the product.

Chapter 5. Implementation

Producers Involved

282

The Preliminary Analysis Team produces and, if necessary, revises the Feasibility

Analysis Package. The composition of the team and the responsibilities of the

team-members, as pertaining to the production of the Feasibility Analysis Package,

are as follows:

 The Project Manager responsible for leading the team, providing and

managing resources, facilitating operations, resolving issues with the client

and third parties, and enforcing standards and schedules.

 One or more Domain Experts helping the team gain better understanding

about the problem domain, the scope and high-level requirements of the

system, and the complexities and risks involved; they also provide expert

opinion on financial, operational and political feasibility of alternatives,

and assess the prototype of the system produced as part of the Feasibility

Analysis Package.

 One or more Ambassador Users providing realistic and hands-on

knowledge about the system; they also provide user feedback on the

prototype, as well as operational and political feasibility of alternatives.
 One or more Chief Programmers developing the prototype of the system

and providing expert opinion on issues pertaining to software

development; these issues include development risks and constraints,

resources required, and technical and schedule feasibility of alternatives.
The Chief Programmers may also commission other programmers to help

in the development of the Feasibility Prototype.

 The Client Representative responsible for defining constraints and high-

level non-functional requirements, ratifying the development approach to

be taken, and making the ultimate decision on whether the project should
be commenced or aborted.

Production Methods and Guidelines

Methods and guidelines for producing feasibility analysis reports and prototypes

are relatively well-established, yet the following are suggested as noteworthy

guidelines:

Chapter 5. Implementation 283

 Since the constituent parts of the package are mutually dependent, a

parallel scheme for producing them should be agreed and implemented by

the team. An iterative-incremental approach is preferable when significant

risks are involved. In this approach, feasibility analysis is conducted in

each of the iterations, and if further prototyping is deemed necessary by the

team, functionalities to be implemented in the prototype are identified and

prioritized according to their development risk, after which high-priority

functionalities are selected and implemented in the prototype, and the new

version of the prototype is analyzed and assessed according to user
feedback. The results are then fed back into the iterative process to be used

in a new round of feasibility analysis.

 User involvement is essential if an accurate picture of the system and its

operational feasibility is to be obtained. The Project Manager should

encourage and facilitate the involvement of Ambassador Users in the

activities.

Consistency Issues

The following consistency rules should be observed when making changes to the
Feasibility Analysis Package:

 If changes are made to system and project parameters (primarily scope,

requirements, resources, and constraints) that may change subprocess/task

execution times, alter subprocess/task interdependencies or priorities, or

require changes to resources or resource-allocation schemes, appropriate

adjustments should be made to the Project Plan in order to maintain

consistency and keep the plans up-to-date.

 Any changes to system parameters (primarily scope and requirements),

should be duly propagated to the Context Model.

5.2.3.2 Project Plan

The Project Plan is initially created in the Preliminary Analysis subprocess, and is

reviewed, revised and refined at the end of each subsequent subprocess based on

the progress of the project and any circumstances requiring a change in the plans. It

Chapter 5. Implementation 284

contains subprocess-level and task-level planning and scheduling information,

governing the management and control of the project.

The Project Plan depends on the information captured about the project, the

problem domain and the system, and as the development progresses, analysis,
design and implementation results affect the plan as better estimation of
development times and resources becomes possible. Hence, whereas it is the

information captured in the Feasibility Analysis Package that is used for producing

the initial version of the Project Plan in the Preliminary Analysis subprocess, the

plan is also affected by the Context Model and the Software Model during later

subprocesses. The Project Plan itself is used as a basis for producing the

Development Plan, which governs the iterative-incremental development engine; at

the end of each iteration, the Development Plan is reviewed and - if necessary -

revised, which may in turn necessitate changes to the Project Plan.

Structure and Modeling Language

The Project Plan's exact structure is decided by the teams working during the

project, yet it should include projected completion dates for tasks and

subprocesses, the resources required and resource-allocation schemes,

subprocess/task interdependencies and priorities, and project tracking features such

as progress indicators.

The initial version of the plan produced during Preliminary Analysis contains

project-level and subprocess-level scheduling, resource allocation, and
interdependency information. As analysis progresses, task-level detail and tracking
features are added to the plan.

Dependencies

The following dependencies exist between this work-product and other artefacts

produced during the enactment of the methodology:

1. The Project Plan is created during the Preliminary Analysis subprocess
based on the knowledge about the system and development project

compiled in the Feasibility Analysis Package.

Chapter 5. Implementation 285

2. The planning and scheduling information captured in the Project Plan is

used as a basis for producing the Development Plan during the Plan by

Feature subprocess. The Development Plan governs the iterative-

incremental development engine, and if altered during the iterations of the

development engine, might necessitate modifications to the Project Plan.

Trend of Evolution

Creation: The Project Plan is created in the Preliminary Analysis subprocess,

initially consisting of project-level and subprocess-level scheduling, resource

allocation, and interdependency information.

Usage Span: The usage span encompasses all the subprocesses in the lifecycle.

Update and Revision: This work product is reviewed and - if necessary - revised in

all subprocesses, since it is used by the Project Manager as a dynamic project

tracking and control tool, and any issues causing changes in the progress of the

project should be handled with the results duly reflected in the plan. Furthermore,

the development and evolution of major work-products also affects the Project

Plan, since it enables better estimation of development time and resources required:

 The detailed knowledge - about the problem-domain and the system -
captured in the Context Model is used for adding detail and refining the

Project Plan at the end of the Real-World Domain Modeling and
Requirements Elicitation subprocess.

 The detailed system specifications captured in the Software Model are used
for refining the Project Plan at the end of the System Specification

subprocess.

 The architectural design detail added to the Software Model is used for

refining the Project Plan at the end of the Architectural Design subprocess.

 The Development Plan is used for refining and updating the Project Plan at

the end of the Plan by Feature subprocess.

 Modifications made to the Development Plan during the execution of the

iterative-incremental development engine are reflected in the Project Plan

at the end of each iteration.

Chapter 5. Implementation

Producers Involved

286

The Preliminary Analysis Team produces the Project Plan. The composition of the

team and the responsibilities of the team-members, as pertaining to the production

of the Project Plan, are as follows:

 The Project Manager responsible for leading the team, providing and

managing resources, facilitating operations, resolving issues with the client

and third parties, and enforcing standards and schedules. The Project

Manager is the principal producer of the Project Plan, using the

information provided by other team members and the lessons learned from

the development of the Feasibility Prototype for estimating development

times, determining subprocess/task interdependencies and priorities,
devising resource-allocation schemes, and scheduling tasks. As the main

user of the Project Plan as a monitoring and control tool, the Project

Manager is also responsible for refining, updating and maintaining the

Project Plan during later subprocesses of the lifecycle.

 One or more Domain Experts helping the team gain better understanding

about the problem domain, the scope and high-level requirements of the

system, and the complexities and risks involved, all of which are used in

estimating development time and determining the resources needed for

carrying out the project.

 One or more Ambassador Users providing realistic and hands-on

knowledge about the system, which complements the information provided
by Domain Experts.

 One or more Chief Programmers providing expert technical opinion on
issues pertaining to software development; these issues include the
development risks and constraints involved, as well as the time and

resources required, and are therefore indispensable in the estimation and

scheduling activities performed by the Project Manager when developing

the Project Plan.

 The Client Representative responsible for defining constraints and high-

level non-functional requirements, and ratifying the initial version of the
Project Plan.

Chapter 5. Implementation 287

Production Methods and Guidelines

Project planning is a well-established practice, yet the following can be mentioned

as useful guidelines for performing the activity in the context of the overall

methodology:

 The Project Plan is maintained by the Project Manager, who is also its

principal user, yet it should also be visible to all participants in the

development effort. Reflection on the accuracy and rationality of the plan
is an ongoing process throughout the project (typically resulting in

modifications made to the plan at the end of every subprocess), and relies
heavily on feedback obtained from development teams.

 The Project Plan should be meticulously updated with progress tracking

data and revised task completion dates during the execution of the

iterative-incremental development engine. This requires close cooperation
between the Project Manager and the Development Manager.

Consistency Issues

The following consistency rule should be observed when making changes to the

Project Plan:

 Any changes made to the Project Plan during the iterative-incremental

development subprocesses (typically as pertaining to task schedules)

should be reflected in the Development Plan.

5.2.3.3 Context Model

The Context Model is created in the Real-World Domain Modeling and
Requirements Elicitation subprocess, and is used for producing the System Model

in the System Specification subprocess. It captures the structure and the dynamic

behaviour of the elements of the problem domain - as encountered in reality - in

object-oriented models. The system is later introduced in the model as an element

of the problem domain, and the functionalities associated with it in the problem
domain are defined as the functional requirements of the system.

Chapter 5. Implementation 288

The Context Model relies heavily on the information already captured in the

Feasibility Analysis Package, in that the scope of the system and the high-level

requirements captured in the Feasibility Analysis Report form the basis for the

context modeling activity.

Structure and Modeling Language

The Context Model consists of the following parts:

1. Context Object Models: consisting of diagrams with a notation similar to
UML collaboration diagrams [OMG 2003], but with links adorned with

data/control flows (no sequence indicators), in which actors and storage

elements of the problem domain (e. g. human workers, systems and data-

stores in a business system) are modeled as collaborating objects. While

based on regarding the problem domain as consisting of objects, the

data/control-flow-oriented approach of the modeling provides a closer

correspondence with the problem domain and the workflow-oriented view

that Domain Experts tend to have of the problem domain, and hence

facilitates real-world modeling (Figure 56, page 314). The system is later

added and modeled as a problem domain object (Figure 57, page 314).

Subsystems and organizational boundaries are preserved, modeled through

using packages and/or separate component diagrams complementing the

collaboration diagrams.

2. Context Interaction Models: consisting of UML activity diagrams with

swimlanes depicting the participating objects (Figure 58, page 315) and/or

sequence diagrams (Figure 62, page 319) which depict typical scenarios of
interaction among problem-domain objects [OMG 2003]. With the

introduction of the system, models are produced depicting typical system

usage scenarios (Figure 60, page 317).

3. Feature Lists: Encompassing Job descriptions and functionalities of
domain objects (and organizational units and subsystems) expressed as

areas (major feature sets) and their constituent activities (feature-sets), and

- where needed - the finer-grained features of each activity. With the
introduction of the system, system features are also identified and added to

Chapter 5. Implementation 289

the lists, comprising the functional requirements of the system (Table 3,

page 320).

4. Context Vocabulary: A glossary of terms from the problem domain (Figure

63, page 321).

5. Non-functional requirements and constraints.

Dependencies

The following dependencies exist between this work-product and other artefacts

produced during the enactment of the methodology:

1. The Context Model is created based on the knowledge compiled in the

Feasibility Analysis Package about the problem domain and the system.

2. The information captured in the Context Model about the problem domain

and the system is used as a basis for producing the System Model during

the System Specification subprocess. The System Model is in fact produced

through extending and refining the Context Model.

3. The detailed knowledge acquired about the system is used for revising the

Project Plan at the end of the Real-World Domain Modeling and
Requirements Elicitation subprocess.

Trend of Evolution

Creation: The Context Model is created in the Real-World Domain Modeling and

Requirements Elicitation subprocess. Based on the high-level specifications of the

system already defined in the Feasibility Analysis Package, real-world-modeling of

the problem domain is conducted, and results are structured into the Context

Model.

Usage Span: The usage span encompasses the System Specification subprocess as

well as the subprocess where the work-product is created.

Update and Revision: This work product is not updated in subprocesses other than

where it is created. Revision is not performed unless a reiteration of the Real-World

Domain Modeling and Requirements Elicitation subprocess is carried out, typically

Chapter 5. Implementation 290

as a result of circumstances indicating a critical flaw in the knowledge compiled in

the product.

Producers Involved

The Modeling Team produces the Context Model. The composition of the team

and the responsibilities of the team-members, as pertaining to the production of the

Context Model, are as follows:

 The Project Manager responsible for leading the team, providing and

managing resources, facilitating operations, resolving issues with the client
and third parties, and enforcing standards and schedules.

 The Chief Architect responsible for coordinating modeling activities; the

Chief Architect plans modeling iterations, determines the scope and

abstraction level of the modeling to be performed in each iteration, forms

modeling sub-teams (if necessary) and assigns responsibilities to teams and
team-members, arranges and facilitates information gathering activities and

sessions, coordinates the sub-teams, and verifies and integrates the models

produced.
 One or more Domain Experts helping the team gain better understanding

about the problem domain.

 One or more Ambassador Users providing realistic and hands-on

knowledge about the system, which complements the information provided
by Domain Experts.

 One or more Modeling Experts providing advice on object-oriented

modeling methods and techniques.

 One or more Chief Programmers providing expert technical opinion on
issues pertaining to software development. Involving Chief Programmers

early in the modeling process not only familiarizes them with the problem
domain and system requirements, but also means that the team can benefit
from their expertise for early identification of technical risk issues

pertaining to system requirements, thus making it possible to assess the

technical feasibility of the requirements before committing to them.

Chapter 5. Implementation 291

Production Methods and Guidelines

Based on the scope of the system delineated in the Feasibility Analysis Package,

iterative real-world domain modeling is performed in order to produce the Context

Model. Complemented by the well-established practices of requirements

engineering, the following is one possible method for conducting context

modeling:

" Iterative real-world domain modeling: Conducted by the Modeling Team and

coordinated by the Chief Architect, exploration and modeling of the problem

domain is performed iteratively and in a top-down fashion, starting from

organizational units and subsystems of the problem domain and gradually

moving deeper, shifting focus on fine-grained system elements. The following

tasks are performed:

A. Iteration Planning: The Chief Architect schedules the iterations and
determines the scope and abstraction level of the modeling to be

performed in each iteration.

B. Iterative Modeling Engine: The following tasks are performed in

each iteration under the supervision of the Chief Architect:
I. The Chief Architect assigns responsibilities to teams and

team-members, forming modeling sub-teams to work on
different parts of the problem domain. The sub-teams are

briefed on the modeling scope and granularity intended

in the iteration.

H. Sub-teams conduct information gathering, domain

exploration and modeling. System observation and JAD

sessions are particularly useful in this context. Domain

Experts, Ambassador Users and Modeling Experts

should be heavily involved in this activity. Structural

elements at the subsystem level and the data/control

flows are modeled in UML component diagrams and/or

via packages in collaboration diagrams. Fine-grained

elements (systems, actors and storage elements) and their
data/control flows are modeled in non-sequenced data-

flow-oriented collaboration diagrams. Typical interaction

Chapter 5. Implementation 292

scenarios are modeled in UMIL activity diagrams and/or

sequence diagrams. Functionalities and responsibilities of

problem domain elements are identified and modeled as

feature sets and features (depending on the granularity of

the elements). Constraints and business rules are also

identified and recorded. A glossary of problem-domain

terms is compiled and perfected as modeling progresses.
The Chief Architect arranges and facilitates information-

gathering activities and sessions, and coordinates the sub-

teams.

III. The models produced in the iteration are reviewed,

verified and integrated into the Context Model by the

Modeling Team, in team sessions closely supervised by

the Chief Architect.

C. Introduction of the target system: The system is added as an object
to the Context Object Models. Feature sets are then redistributed

among objects; features and feature sets are thus assigned to the

system and feature lists are updated. Typical scenarios of

interaction with the system are modeled and Context Interaction

Models are updated accordingly. Non-functional requirements,

constraints and business rules of the system are specified and added

to the Context Model.

Consistency Issues

The following consistency rule should be observed when making changes to the

Context Model:

 Any changes to system parameters (primarily scope and requirements),

should be duly propagated to the System Model.

 If the changes affect system and project parameters (primarily scope,

requirements, resources, and constraints), appropriate adjustments should
be made to the Project Plan in order to maintain consistency and keep the

schedule up-to-date.

Chapter 5. Implementation 293

5.2.3.4 System Model

The result of extending and refining the Context Model, the System Model shows

the internal constitution of the system and its place in the problem domain. It is

modeled as an extension to the problem domain, using the same notions and

concepts as those found in the problem domain. In a business system this amounts

to designing the system as a new addition to the organization already in place,

staffed and provisioned in its own right as a new department or section, rather than

a virtual, to-be-computer-based utility. A transition from what is considered

conceptual or essential in OOSDMs to the so-called specification is thus delayed in

order to keep the models as tangible as possible for as long as possible to both

developers and Domain Experts.

Structure and Modeling Language

The System Model consists of the following parts:

1. System Object Models: Mainly consisting of diagrams with a notation

similar to UML collaboration diagrams (but with links adorned with
data/control flows with no sequence indicators), in which elements
belonging to the system or interacting with it (staff of the system, passive

objects and their custodians, and relevant elements outside the system
including actors) are modeled as collaborating objects (Figure 68, page
327). Subsystems of the system are modeled through using packages

and/or separate UML component diagrams.

2. System Interaction Models: Consisting of UML sequence diagrams (Figure

69, page 328) and/or activity diagrams (with swimlanes depicting the

participating objects from inside and outside the system), depicting typical

scenarios of interaction among system objects and also between system

objects and outside actors.
3. Features list: Based on system functionalities identified and depicted in the

Context Model, features and feature sets are assigned to intra-system

subsystems and objects, and listed in the features list (Table 4, page 330).

4. Revised list of non-functional requirements and constraints.

Chapter 5. Implementation 294

Dependencies

The following dependencies exist between this work-product and other artefacts

produced during the enactment of the methodology:

1. The System Model is created through extending and refining the Context

Model.

2. The information captured in the System Model about the problem domain

and the system is used as a basis for producing the Software Model during

the System Specification subprocess. The System Model is in fact

converted to the Software Model through applying feature redistribution

patterns.

Trend of Evolution

Creation: The System Model is created in the System Specification subprocess by

extending and refining the Context Model.

Usage Span: The usage span is limited to the System Specification subprocess,

during the execution of which the System Model is converted to the Software

Model.

Update and Revision: This work product is not updated in subprocesses other than

where it is created. Revision is not performed unless a reiteration of the System

Specification subprocess is carried out, typically as a result of circumstances

indicating a critical flaw in the knowledge compiled in the product.

Producers Involved

The Model Conversion Team produces the System Model. The composition of the

team and the responsibilities of the team-members, as pertaining to the production

of the System Model, are as follows:

 The Project Manager responsible for leading the team, providing and

managing resources, facilitating operations, resolving issues with the client

and third parties, and enforcing standards and schedules.

 The Chief Architect responsible for coordinating modeling activities.

Chapter 5. Implementation 295

 One or more Domain Experts helping the team gain a better understanding

of the problem domain and the element types therein; this will then be used
in designing the system as an extension to the problem domain.

 One or more Ambassador Users providing realistic and hands-on

knowledge about the system, which complements the information provided
by Domain Experts.

 One or more Modeling Experts providing advice on object-oriented

modeling methods and techniques.

 One or more Chief Programmers providing expert technical opinion on
issues pertaining to software development.

Production Methods and Guidelines

The System Model is produced through extending the Context Model. The

different parts of the System Model are produced as described below:

1. System Object Models are produced through the following steps:
A. Through consultation with Domain Experts and Ambassador

Users, the system is designed as a non-computer-based extension

to the existing structure, as if a new internal section is added. Early

models can be informal sketches (Figure 65, page 324). The

internal structure is for the Model Conversion Team to decide, yet

a few ground rules should be observed:

I. Problem domain objects sharing features with the system

are moved inside system boundaries or assigned system

counterparts if their attachment to the system is partial
(elements interacting with the system may have system

counterparts).
II. Passive flowing- or storage elements are modeled as

objects and assigned to custodian objects which act as

proxies; any access to any passive object should be made

via the custodian. In business systems, flowing-data

custodians are akin to file/document movers, transferring

the file or document put in their custody between

processing clerks; data-store custodians are akin to file

Chapter 5. Implementation 296

clerks and archive keepers. It should be noted that there is

no limit on the number of staff assigned to the system, so
the number of custodians is expected to be high.

III. Additional objects - if needed - should be of the same

general types as those seen in the problem domain; e. g. in

business systems, these include clerks, managers, archives,

etc.
B. Collaboration diagrams with links adorned with data/control flows

(without sequence indicators) are produced depicting

collaborations among system objects and external objects.

Subsystems of the system are modeled through using packages

and/or separate component diagrams.

2. System Interaction Models are produced depicting typical interaction

scenarios satisfying the system's requirements. Activity diagrams and/or

interaction diagrams are produced for each of the system's feature sets.

3. Feature lists are produced through assigning feature sets and features to the

subsystems and objects of the system based on the functionality assigned

to the system as a whole and the interaction models produced in the

previous task.

4. Non-functional requirements and constraints are updated and added to the

System Model.

Consistency Issues

The following consistency rule should be observed when making changes to the

System Model:

 Any changes should be duly propagated to the Software Model.

5.2.3.5 Software Model

The Software Model depicts the constituent elements of the software system, and is

the result of applying feature redistribution patterns to the System Model. Created

in the System Specification subprocess, the Software Model is the pivotal model
during design and implementation of the system, and is therefore continually

revised and updated during the remaining subprocesses of the lifecycle.

Chapter 5. Implementation 297

Structure and Modeling Language

The Software Model consists of the following parts:

1. Software Object/Class Models: Object Models - with a notation similar to

UML collaboration diagrams [OMG 2003], except that data/control flow is

shown instead of message flow, and sequencing is ignored - depict typical

links and data/control flows among system objects (Figure 75, page 335).

Object Models are complemented by Class Models (UML class diagrams

[OMG 2003]), showing the classes of the system and their relationships.

2. Software Interaction Models: Typical object interactions are modeled in

UML interaction diagrams [OMG 2003] (Figure 76, page 336). The

messages are also denoted.

3. Class and Method prologues
4. Revised list of features

5. Revised list of non-functional requirements and constraints

Dependencies

The following dependencies exist between this work-product and other artefacts

produced during the enactment of the methodology:

1. The Software Model is created through extending and refining the System

Model.

2. The detailed knowledge acquired about the system is used for revising the

Project Plan at the end of the Software Specification and Architectural

Design subprocesses, and for producing the Development Plan in the Plan

by Feature subprocess.
3. The information captured in the Software Model about the system and its

requirements is used as a basis for selecting features for development -

organized as Work Packages - during iterations of the Design by Feature

subprocess.
4. The structuraVbehavioural information and requirements of the system

specified in the Software Model are used as a basis for producing Design

Packages during iterations of the Design by Feature subprocess. The

Chapter 5. Implementation 298

Software Model is then updated with the detailed design features of the

system captured in the Design Packages.

5. The requirements and functional specifications of the system defined in the
Software Model are used as a basis for performing verification and

validation of the system during the Build by Feature and Transition

subprocesses, resulting in the production of the Verification and Validation

(Test) Reports. Corrections and improvements are then made to the

Software Model, if necessitated by the test results.

Trend of Evolution

Creation: The Software Model is created in the System Specification subprocess by

applying feature redistribution patterns to the System Model.

Usage Span: Being the pivotal model in the design and implementation of the

system, the usage span of the Software Model encompasses the System

Specification, Architectural Design, Plan by Feature, Design by Feature, Build by

Feature, and Transition Subprocesses; i. e. over the entire remaining subprocesses

of the lifecycle.

Update and Revision: This work product is continually updated and revised

through the lifecycle. It is augmented with architectural design details during the

Architectural Design subprocess, enriched with detailed design features during

iterations of the Design by Feature subprocess, and refined and improved as a

result of corrections found necessary through verification and validation of the

executable system in the Build by Feature and Transition subprocesses.

Producers Involved

The Model Conversion Team produces the Software Model. The composition of

the team and the responsibilities of the team-members, as pertaining to the

production of the Software Model, are as follows:

 The Project Manager responsible for leading the team, providing and

managing resources, facilitating operations, resolving issues with the client

and third parties, and enforcing standards and schedules.

Chapter 5. Implementation 299

 The Chief Architect responsible for coordinating modeling activities. The

Chief Architect is put in charge of maintaining the Software Model during

the rest of the lifecycle.

 One or more Domain Experts helping the team gain better understanding

about the problem domain.

 One or more Ambassador Users providing realistic and hands-on

knowledge about the system, which complements the information provided
by Domain Experts.

 One or more Chief Programmers providing expert technical opinion on

issues pertaining to software development.

 One or more Patterns Advisors providing expertise on patterns and their

application for redistributing functionality among system elements

Production Methods and Guidelines

The Software Model is produced through iterative application of feature

redistribution patterns to the System Model. The model thus produced will be

refined and extended during later design and implementation subprocesses. The

different parts of the Software Model are produced as described below:

1. Software Object/Class Models: Patterns are iteratively applied to System

Object Models and System Interaction Models to redistribute features

among objects in order to enhance encapsulation, increase cohesion and

reduce coupling, and also to introduce architecture. During earlier
iterations, Reengineering patterns [Demeyer et al. 2003] are applied to

redistribute responsibilities among objects. These patterns typically

include:

A. Moving behaviour close to data

B. Eliminating navigation
C. Splitting up God classes (Blobs)

Refactoring patterns [Fowler 1999] are applied in conjunction with the

above (indeed, some of them already are a part of the above patterns) and

also in later iterations. Antipatterns [Brown et al. 1998] can also be of use
in conjunction with refactoring patterns, especially the Poltergeist (for

identifying redundant objects) and the Swiss-Army-Knife (for breaking up

Chapter 5. Implementation 300

overly complex classes). Design patterns [Gamma et al. 1995, Buschmann

et al. 1996] are used in later iterations to help implement specific

architectures and mechanisms typically present in the problem domain and

tangible to users.

Applying the patterns (Figure 71, page 331) prunes the models of classes

irrelevant to the system and actor-counterparts without any justification for

existence in the system, and relationships not belonging to the system
(Figure 75, page 335). Applying the patterns ultimately results in custodian

objects being merged with the data objects they had under custody. Class

Models (UML class diagrams) are then produced based on the Object

Models, depicting the classes in the system and their relationships.
Inheritance hierarchies are introduced in order to enhance abstraction

2. Behavioural models (UML sequence diagrams or activity diagrams) are

updated in each iteration of the redistribution procedure, and Software

Interaction Models are produced (Figure 76, page 336).

3. Initial versions of class and method prologues are prepared.
4. Feature sets and features are refined and compiled in feature lists.

5. Non-functional requirements and constraints are revised.

Consistency Issues

The following consistency rules should be observed when making changes to the

Software Model:

 If anytime during the lifecycle changes are made to the Software Model

that affect system and project parameters (primarily scope, requirements,

resources, and constraints), appropriate adjustments should be made to the

Project Plan in order to maintain consistency and keep the schedule up-to-
date.

 If changes made during the execution of the iterative-incremental

development subprocesses (Design by feature and Build by Feature) affect

system and project parameters (primarily scope, requirements, resources,

and constraints), appropriate adjustments should be made to the
Development Plan in order to maintain consistency and keep the
development schedule up-to-date.

Chapter 5. Implementation 301

5.2.4 Role-Centred Description of the Methodology

The role-centred description of the methodology focuses on the roles involved in

the subprocesses of the lifecycle, and how they cooperate in teams in order to

perform their tasks.

5.2.4.1 Roles: Responsibilities throughout the Process

The roles involved in the methodology are as listed below:

1. Project Manager: active in all subprocesses, directs and manages the

development effort, facilitating development, enforcing the schedule and

conformance to standards, managing resources, and resolving issues with

the client and third parties.

2. Client Representative: mainly active in the first and last subprocesses,

provides decision and feedback on behalf of the client.
3. Domain Expert: mainly active in the first two subprocesses, provides

information on the problem domain, helping clarify complexities and

risks associated with the problem domain.

4. Ambassador User: active in nearly all subprocesses, provides continuous
feedback on the models and the system itself, thus enabling continuous

validation to be exercised.
5. Chief Architect: active in all activities where modeling is performed or

models are revised, coordinates the modeling activities and maintains the
Software Model.

6. Modeling Expert: active in all activities where modeling is performed,

provides modeling advice to the teams.

7. Patterns Advisor: mainly active when using patterns to map the System

Model to the Software Model and during design-related activities,

provides. expertise on the use of patterns.
8. Development Manager: active during design and implementation

activities, supervises the development teams and manages the day-to-day

resourcing required to keep the project on track.
9. Chief Programmer: active during all activities, providing team

supervision and development expertise.

Chapter 5. Implementation 302

10. Class Owner: programmer active during detailed design and

implementation activities and put in charge of implementing, testing and

maintaining specific software classes.

5.2.4.2 Teams: Constitution and Responsibilities

The teams undertaking the execution of subprocesses and activities in the course of

the methodology are as follows:

1. Preliminary Analysis Team: The Preliminary Analysis Team obtains high-

level information on the project and analyses the feasibility of undertaking

the development effort during the first subprocess of the lifecycle. It

typically consists of:

a. The Project Manager in charge of the development effort
b. The Client Representative who makes the decisions on behalf of

the client

c. One or more Ambassador Users providing user feedback

d. One or more Domain Experts to help understand the complexities

of the problem domain

e. One or more Chief Programmers providing prototyping skills and

technical counsel
2. Modeling Team: The Modeling Team performs real-world domain

modeling during analysis. It typically consists of:

a. The Project Manager as supervisor and facilitator

b. The Chief Architect as the modeling coordinator

c. One or more Ambassador Users providing user feedback

d. One or more Domain Experts helping the team to better understand

the problem domain

e. One or more Modeling Experts providing advice on object-

oriented modeling issues

f. One or more Chief Programmers providing practical development

counsel

3. Model Conversion Team: The Model Conversion Team produces the

System Model and converts it into the Software Model using pattern-based

Chapter 5. Implementation 303

techniques during the System Specification subprocess. It typically

consists of:

a. The Project Manager as supervisor and facilitator

b. The Chief Architect as the modeling coordinator

c. One or more Ambassador Users providing user feedback

d. One or more Domain Experts providing knowledge on the

problem-domain

e. One or more Modeling Experts providing advice on object-

oriented modeling issues

f. One or more Chief Programmers supplying development-related

advice

g. One or more Patterns Advisors providing advice on patterns of
feature redistribution and architectural design

4. Architectural Design Team: Active during the Architectural Design

subprocess, the Architectural Design Team identifies an implementation-

specific architecture for the system modeled so far, and determines the

domain-independent infrastructure supporting the system. It typically

consists of:

a. The Project Manager as supervisor and facilitator

b. The Chief Architect as the modeling coordinator

c. One or more Ambassador Users providing user feedback

d. One or more Design Experts providing knowledge on architectural
design techniques and domain-independent technologies

e. One or more Modeling Experts

f. One or more Chief Programmers supplying development-related

advice

g. One or more Patterns Advisors providing advice on patterns of
feature redistribution and architectural design

5. Planning Team: The Planning Team plans the iterative-incremental

implementation of the features and is active during the Plan-by-Feature

subprocess. It typically consists of:

a. The Project Manager as the leader of the team

b. The Development Manager as the resource manager and

coordinator of the Features Teams

Chapter 5. Implementation 304

c. The Chief Programmers involved in the development providing

practical implementation expertise crucial to reliable estimation

and scheduling of the feature development subprocesses
6. Features Team: Features Teams are collectively coordinated by the

Development Manager, and are active during the iterative-incremental

development subprocesses. A Features Team typically consists of:

a. A Chief Programmer as the leader of the team supervising the

design-implementation-test activities of the development engine

b. One or more Modeling Experts helping with the design

c. One or more Ambassador Users providing user feedback on user-

centred aspects of the design and the implemented system

d. A number of Class Owners undertaking the implementation and

testing of the software classes
7. Transition Team: The Transition Team is active during the last subprocess

of the lifecycle and is responsible for deploying the implemented system
into the user environment. It typically consists of:

a. The Project Manager as the leader of the team

b. The Development Manager as coordinator of the Features Teams

that will carry out the corrections and alterations to the executable

system

c. A Client Representative deciding whether the project has been

successfully concluded
d. The Chief Programmers acting as leaders of Features Teams

e. The Class Owners active in the Features Teams

f. One or more Ambassador Users providing system validation
feedback

5.3 Requirements-Based Review of the

Implementation

Table 2 shows how each requirement has been addressed in the final implemented

version of the methodology, thereby highlighting the requirements that have been

met and those that have not been satisfied. It also shows how the implemented

methodology has been influenced by existing methodologies and process

Chapter 5. Implementation 305

patterns/metamodels in addressing the requirements. In this regard, Table 2

complements Table 1 of Chapter 4 (page 233).

5.4 Summary

The blueprint produced in the Design phase of the methodology development

lifecycle is refined and detailed during implementation. The end product should be

usable by the users (i. e. software developers), and since user guides are the

common medium for presenting methodologies in a useable form, the first step in

implementing the methodology is to devise a user guide template focusing on the

tasks performed, products produced, and producers involved in the methodology.

The user guide template describes the methodology from three complementing

viewpoints: Process-Centred, Work-Product-Centred, and Role-Centred.

The user template devised has been used for detailing the target OOSDM. The

resulting methodology specification (implementation) is then fed into the next

phase of the iterative Design-Implementation-Test cycle of the methodology
development lifecycle: to be verified as functional and validated as conforming to

the requirements.

Chapter 5. Implementation 306

Table 2. Satisfaction of methodology requirements in the implementation phase
(continued on next page)

RI: QUIRE. IEN'r
ADDRESSED/

Nor: UuuRESNEI)
DETAILS DETAILS FOLLOW-lTI'A(I'ION

Addressed through the User (hulk tempi 1, It nhd m ihr Ir. i

(Torun. rationality, used for defining the ntthodology pluuc

eccur n. ennsinrI 'I Addreaed 1inllueneed h) SPEM, RIII' IISI lb und

defininun P1)1)I

('osci:, ge nI gruenc Addressed at tIre lit-YO le. sulq, ruce s ; Ill

develupuw"nt lifecycle Addressed task levels (influences as listed in Table 1)

actin ides

Rik

II1: III: lgeru eIll

Support

for

umhrrll t Pmjcct

act va tv u lallage11ent

QuuIity

assurance

.
Scandcssness and

Prnrru snxwthnessottransition

between phases. stages and

activities

Basis in the requirements

Testability and Tangibility

uP miefacts, and traceability

to requirements

Encuuragenrnt of J. tive

user Invulvcntnt

Practicability and

practicality

Manageability of

Complexity

development, preliminary analysis, risk K-d

planning, protutyping, continuous verilicatwn
Addr-wd

and validation, regular product/plan review..

and continuous integration (influences as h, tv

in Table 1).

Addressed through project planning,

scheduling and control activities

incorporated in the subprocesses of tire
Addressed

metlxodology, and provisions for review and

revision of the plans throughout the process

t influences as listed in Table D.

Addressed through regular technical review.,

continuous verification and validation during

iterative development, and requirements

traceability (influences as listed in Table I t.

Addressed through the artefact chain and die

iterative-incrementaldevelopniii coy me
Addressed

(influences as listed in Table II

governing all development activities
Addressed

throughout the process (influences as listed in
Table 1).

Addressed via basis in real-world ntadelmE,

fractal nxadeling, gradual seandess

transformation of artefacts through aflaIN III Addressed
and design, and the feature-driven natute of

artetiwts throughout the process (influences as

listed in Table 1).

Addressed through constant participation of

Addressed user representatives throughout the process

Influences as listed in Table I).

Addressed through avoiding complexity tall
levels, adhering to risk-based devekiptttettt,

incorporating project management activuies.
Addressed

and using techniques and strategies lime

focusing the development (Influence, as Iosteil

in Table 1).

Addressed through the hierarchical structwu o

(he methodology, and keeping subprocesses, Addressed

activities and tasks cohesive and easy lu

understand (influences as listed in Table I I.

Chapter S. Implementation

Table 2. Contd.

307

ADDRESSED/
REQUIREMENT DETAILS FOLLOW-UPA('TION

NOT ADDRESSED

Scalahihty ti as addressed through plan ýI', ýnhFurubihly and

based, nxldel-driven und architecture-centric I lexdnlity not addteno n
Addressed

litn'nahilus / process (influences as listed tun Tahle 1) Implementing I-lexibihiv
1 Except

('t ungurahiht} /I ienihiln} Extensibility was addressed through keepunt -t adding proaes tel uw
C�ntlyurahility and

/ S1: 11: Ihtiiiy the process as a curhe Ytve core orgatn/ell 51'555 pits sin ýIII,
I IY

Flexibility)
: round a mldel chain (influenced by ('uad- explorer)

Yuurdun, BON and Catalysis).

Partially addressed through concerti uiug - Applicability ni

On business systems as cutnntonly mlhruuui, m systems �dx r

encountered information systems; than business systems Is
Apphcat ion <c�pc

Addressed (Influences as listed in Table 11. n�w considered bcy,, nd tin.
let/nrtnitliun S's s pits i

Applicability to ualer kinds of iul, in tilt nm . caps' of flits t1wSIS, and

.ý acrm its n, ýt In eu e plot, i should he eXplorel to

turtler research hrigeet,

Structural - Addtessenf thn, ugh -mg app- -maul

Puncthtnal - Addressed IIML based diagr: uus :u dilterrnt len is

Beh: rvuturd I influences as listed in Table II

Addressed through the model chant,

logical to starting at the problem-domain level and Addressed
Physical proceeding tu detailed design I tnlluenet s

SuPpo rt as listed in Table 11.

for Addressed through fractal nntleling
uhject- (Influences as listed in Table I) at

At different
oriented different granularity levels (Enterprise

Modeling levels itf Addressed
odeling m level - System level - Suhsystent/Package

Fntttgttttgt granularity
level - Inter-object level - Intra-object

level)

Informal features implemented through Ingllcnr"nntriun of funs: J
FumsJ and

Not Addressed UML. features is now cun. irh red In)t, rnnJ
IPnrn>J4 Furntul features not considered, but seem IY wend the scope of Iltis feature,

feasible via using OCL. d.. ",

Pnly isiun of strategies and Addressed through detailed specilie nt u, n

it': hniques for lacklang if dependencies and consistency
Addressed

inconsistency and guidelines (influenced by Catalysis)

complexity

Chapter 6

Test

In software engineering, testing is a process intended to build confidence in the

software [Sommerville 2004]. In an iterative-incremental development process

such as that prescribed by the meta-methodology applied herein, testing is

performed iteratively, not only to build confidence in the end product, but also to

guide the development process through focusing development on satisfying the

requirements, and to mitigate development risks via early detection of design and

implementation flaws.

In this research, testing has been applied as a continual activity to verify and

validate the results of the two development phases of Design and Implementation.

Two small business systems have been targeted as case studies for verifying the

methodology and validating it against the requirements. This chapter contains an

explanation of the test process and the results of applying the implemented

methodology for the analysis and design of the two systems used as test inputs. As

expected, activities directly concerning the model-chain have become the primary

focus of testing, and the results clearly reflect this. This was mainly due to the

pivotal role of the model chain in the methodology, and the novelty of the pattern-

based approach applied in its production.

6.1 Test Process

As in any software testing effort, the test activity prescribed by the meta-

methodology applied in this research consists of the four generic activities of
designing test-cases, preparing test data, running the software with the test data,

and comparing the results to test cases [Sommerville 2004]; the difference is that

the software being tested here is a methodology, with the immediate consequence

that development situations become the test data.

308

Chapter 6. Test 309

The meta-methodology used for developing the methodology is test-based, in that

it prescribes testing as part of an iterative-incremental development engine,

consisting of Design-Implementation-Test cycles. As explained in Chapter 1,

although validation is iteratively performed at the end of the Design and

Implementation activities, each Design-Implementation-Test cycle of this engine

relies on the Test activity to perform verification and final validation of the system

increment that has been developed.

In the context of methodology development, verification is performed in order to

ensure that the methodology correctly implements its functions; in other words, to

ensure that work products are successfully produced, culminating in the production

of the target software system. Considering the scope of this research, test cases

were mostly focused on areas of higher potential risk.

Validation tests the methodology against the requirements. Requirements-based

reviews, conducted after each iteration of the Design and Implementation activities

of the development engine, are validation activities and provide risk management

and quality assurance, yet they cannot replace validation with test data, performed

during the Test activity.

Since the methodology's scope of application is currently limited to information

systems - with the main focus on business systems - two business systems have

been chosen to act as development test-beds, providing the development situations

necessary for testing the methodology. The resulting case studies have taken shape

during the iterative-incremental development of the methodology, helping to

gradually refine and sculpt the methodology into its final shape by detecting and

correcting the flaws and smoothing the rough edges. In order to provide a wider

coverage of diverse development situations, several points of difference have been

introduced in the definition of the target systems; for example, one system is

introduced in a fully manual problem domain, while the other problem domain

already contains computer-based elements, and whereas one system is to be

implemented and used as a local-access system, the other is web-based. The

systems are briefly described below:

Chapter 6. Test 310

A Library System providing basic library services to members and
librarians; the existing library is managed through a manual process and

depends on index cards for searching for books and keeping track of

books, members, loans, returns and reservations. The computer-based

system is to replace the index cards and provide additional facilities for

searching and transaction management. The selection and definition of this

particular problem domain as a case study was inspired by and based on

the author's personal familiarity with the domain, gained through

commercial and academic development projects.

" An Estate Agency System providing property search, property promotion,

and transaction management facilities; the existing agency relies on a

computer-based record management system used by agency clerks for

storing information on properties, customers (buyers/sellers), and

transactions. The target system is to provide online facilities to customers

for searching properties, putting properties up for sale, requesting

viewings, making offers on properties, and communicating with agents and

clerks. It should also provide messaging, documentation and information

management facilities to clerks, and reporting and communication facilities

to agents. The definition of this system is loosely based on a preliminary

user-story, later developed into the eXGrid case study [Ge et al. 2006].

Tangibility, simplicity and understandability were the main criteria considered in

selecting these systems: however testable the methodology itself is, poor test data

in the form of unfamiliar, complex, poorly documented or unexplored problem
domains is bound to hamper the testing process. Considering the scope of this

research, small-scale versions of these systems have been targeted, and where

possible, selected subsets of the overall system functionality have been focused

upon in order to avoid unwarranted complexity.

Due to the pivotal role of the model chain and the novel approaches applied to its

production, the Real-world Domain Modeling and Requirements Elicitation

subphase - where modeling starts - and the System Specification subphase - where

model conversions are performed - have been targeted by the test cases. Other

subphases are well-established cohesive activities - coupled together according to

well-established development frameworks and metamodels - that have previously

Chapter 6. Test 311

been used in other methodologies [Cockburn 2004, DSDM Consortium 2003,

D'Souza and Wills 1998, Palmer and Felsing 2002]. What is being tested is the

ability of the methodology to enable successful production of design models that

specify the class structure and inter-object behaviour of the software system in such

a way that satisfies system requirements. The subsequent introduction of

architectural design details into the models, and the ultimate production of class

and method prologues leading to the software code, have already been done in

other methodologies - the most prominent of which are Catalysis [D'Souza and

Wills 1998] and FDD [Palmer and Felsing 20021 - and therefore pose a relatively

minor degree of risk. It is true, however, that a comprehensive verification and

validation of the methodology requires enactment in an industrial context, which

has been suggested in Chapter 7 as a future task for furthering this research, yet

verifying the model chain is essential for building an acceptable level of confidence

in the methodology, and has indeed been crucial for gradual refinement of the

approach, and the methods and techniques applied.

The following sections summarise the verification results, focusing on the work-

products produced through applying the methodology for the analysis and design

of the two systems mentioned above. Validation results have been tabulated and

reported separately at the end of the chapter.

6.2 Case Study 1: Book Library System

The book library problem domain targeted in this case study is a currently manual

system providing basic library services to members. Introducing a computer-based

system through applying the proposed object-oriented methodology starts with

exploring and modeling the problem domain, and progresses to designing the new

system first as an extension to the current system and then as a software system.
The following sections contain the results of the modeling activities performed on

the system through the application of the development methodology. For sake of
brevity, when modeling detailed aspects of the system, focus has been limited to

the two basic functions of borrowing a book and returning a book.

Chapter 6. Test 312

Continuous verification was mostly performed on this case study, as a result of

which the methodology was gradually refined. Some of the more significant results

are given below:

" Activity diagrams should be given precedence over sequence diagrams in

problem domain modeling, but the priority is reversed during later

subprocesses. Verification showed that using activity diagrams facilitates

requirements elicitation through highlighting the features, and they are

better suited for modeling problem domains due to their superior modeling

power, especially in modeling parallel work flows. Sequence diagrams, on

the other hand, are better suited to specifying dynamic object

communications, which come under focus later in the development process.

" Object Models should be kept data-flow-oriented and feature-driven.

Verification showed that if data-flows were replaced by message-flows,

continuity would be disrupted. This is particularly damaging to traceability

and seamlessness. Specification of operations and message flow is therefore

left to the System Specification subprocess, where they evolve from

features, and are modeled in Software Class- and Interaction Models.

" It is best to apply redistribution patterns in a specific order for transforming

the System Model into the Software Model. Verification showed that

Reengineering Patterns should be applied first, then Refactoring Patterns,

and then Design Patterns (as introduced in Section 5.2.2.3). This ensures

that major anomalies are removed before the introduction of new structures.

6.2.1 Context Model

The Context Model components presented in this section include Context Object

Models, Context Interaction Models, the Context Features List, and a partial
Glossary of Terms. The Context Object Models show a representation of the

problem domain as encountered in the real world, with the target system then

added as a problem domain object. The Context Interaction Models depict the

cooperation among problem domain objects for performing the book-borrow and
book-return processes. Context Interaction models come in two versions: the first

versions model the real world, and the latter ones depict the interactions after the

target system is added as a problem domain object and is involved in inter-object

Chapter 6. Test 313

cooperation. The Context Features List shows the major feature sets (areas), as

well as their constituent feature sets (activities) and bottom-level features (steps),

with the detail mostly confined to features pertaining to book-borrow and book-

return processes. The list also shows the assignment of feature sets and features to

problem domain objects.

6.2.1.1 Context Object Models

Figure 56 shows the real-world Context Object model of the library problem
domain. The diagramming notation resembles that of UML collaboration diagrams

[OMG 2003], yet the semantics of the inter-object interactions does not conform to

the UML, in that it depicts data flow instead of message/signal flow, and also
because sequencing is ignored. The diagram also shows the assignment of feature-

sets and features to objects. Objects and data flowing between them are direct

models of the real world, yet the modeler can define a specific object to represent a

typical object encountered in the problem domain, together with its typical

properties and features; Librarian and Library-Member are examples of such

objects. These typical objects are not to be called classes yet, in order to keep

models tangible to Domain Experts and Ambassador Users for as long as possible.

Figure 57 shows the Context Object Model after the target system is added as a

problem domain object. Feature sets have been redistributed and new feature-sets

have been added to the system.

6.2.1.2 Context Interaction Models

Figure 58 and Figure 59 show the scenarios for performing the book-borrow and
book-return processes in the real-world library. UML activity diagrams are used at

this stage with swimlanes depicting the active objects participating in the

processes.

The use of swimlanes is essential in this context, since it is their use that makes the
diagrams object-oriented. As seen in the figures, Librarian and Member are the two

active objects cooperating to perform the book-borrow and book-return scenarios.
Storage objects (such as card-racks) are not modeled as participating objects due to

their passive roles in the system, nevertheless references to their usage by active

objects can be seen in activity descriptions.

Chapter 6. Test 314

Card Catalogue Book Cards
Rack

Itinik Intýýý
I pdLltrd, a"ý' 'ti (lid

B ook oýk lilt,
I

Indry (. iid

1
(pd: ur'. r\k

IStxtk k (. ud

Library Member

Ruck. Librarian
Due-Dale Slip Book Into Dine Amount

Nwir
Nmuhx r

10 10 No
Book. Info Request Payment Rese rvation Itark-Stock %Ign l

K, yuruing lilt,, Book Cards. Re quest Ba)k-Loan NI gut
S'-ruching Card Catalog ue Member-Id Biwk-Return Nignit

Iti-, ing BookslwIves
Reservation MRmt

nng Book Kc ines
Edo-Request NIgrut

Studying in Library
11NIgnit cmbership
'

Kc. <arrving Bonk inancial Mgnit N mt

N, m-mg Book Book. Book.

R, o-ing 8.... k Book Cards Book (; irds1 Updated/New
Prying I Im Member Card

titrnthrr
Legend BookI f ('; ud

Book (-ard, 1 Object
IT

Rtwk.
Buck ('arils

Member ('arils
Link Bookshelves

Rack

Dam/Control Flow

Figure 56. Context Object Model of the Book library problem domain

Book Cards
Archive

Card f
Upda d/N-

Catalogue I Brx, k c'.,, d
BN, ký
Inh

U pdated/N-
IIx1: un /Nrw IIl.,, l/N- Index Card I

11-1, (', rd Mrmtx"r Card 11-k l'. uJ
f_ ~

B, x, k lilt,,
Change/add ('h. mgr/. iJd

Library Member
Financial
Rep, ui,

Member l, N,

B-1s, Librarian Library System

Name
I)ne Date Slip B ,k hit" 4 one-n: uý- N,, hcr

B-k
I to

Number _
Type ---º -ý

Book, li lt,, Request Book-Stock MRmt l"an Rc 1 est Ink, Request System Book-Stock MRnrt

uesting lilt,, Re
MemberId Book-Loan MRmt Fine ýttttl System Book-Loan M mt q

Searching Card Catalogue
Book-Return Mgmt ý

System Book- Return MRmt

Browsing Biwkselves Fine Anrwnt
Reservation 41 all

_ý
R R H System R u

Retrieving Book
Info-Request D1gmt

u) nk"nt I Reservation Membership MRmt
- e e itt System Info-Request 111Rmt

Sv+tem Membership MRmt Studying in Library
Reserving Buck

Financial Mgmt C onti n System Financial MRmt

Burn, wing Buck
Returning Book

P:, ynx"m
*\1rmtxr

Rescrr: un, u
R-ult

Paying Fine B, Nkt I Card

1
1lpd: ued/Nrw

\tcmlxr Curd
Heu t

Noah-- x, n kcyucst
B, N, k BIN, ký

BINIký

Bookshelves Member Cards
Archive

lilt,, Request 11, N, k lilt,,

-1ý 1-

Figure 57. Context Object Model, with the system introduced as a problem domain
object

Chapter 6. Test 315

Member Librarian

uand in liýHik

Retrieve Member-('ard

('heck whether eligible

Inol eligibleI

Reject request Detach and update Book-Cards C-!
-

Update due-date slip on the Bnnk

Attach one Book-Card to
Member Card

Insert other Book-Card into Rack

CReturn
Member-Card to ILýck

Return Book to Member

O

Figure 58. Context Interaction Model, depicting
the book-borrow scenario

Figure 60 and Figure 61 show the book-borrow and hook-return scenarios after the

addition of the system object. The system has been assigned a separate swimlane,

and activities and functionalities have been redistributed.

Chapter 6. Test 316

the book-return scenario
Figure 59. Context Interaction Model, depicting

Chapter 6. Test 317

Member Librarian Library System

(land in Book
and Member-Id

Pact Book and %lember-Id to S-Inn

lookup records

Check elittibilitr

('heck whether eli¢ibIr

hpblc

C'onf'irm loan

t'pdatr Ireonlti

Reject request and

return Book to
Member

Generate Due-Date Notice

Return Book and Due-Date
Notice to Member

Figure 60. Context Interaction Model depicting the book-borrow scenario,
with the system introduced as an object

Figure 62 is an alternative Context Interaction Model using UML sequence

diagrams instead of activity diagrams. While activity diagrams provide a simpler

informal tool for depicting cooperation scenarios, and are therefore quite suitable

for the starting stages of the development, sequence diagrams tend to force a

Chapter 6. Test 318

message-based approach and necessitate the definition of more clear-cut

operations, thus leading to clearer delineation of feature-sets and features.

Member Librarian Library System

(land in Book

C
(Obtain Book-Id

LC ookup records

('a lculale fine

Check whether 0-

[overdue)

Mine Member

Pav fine

Cc-ýfinn

rclurn
D

Update reconls

Return Book to Bookshelf

Figure 61. Context Interaction Model depicting the book-return scenario,
with the system introduced as an object

Chapter 6. Test

m: Member ri hbrarv-Svstem

returnBook (book)

checkRecords (bookiD)
iuokýýpRrcnrds

k
II . dý. ulateFne

fineAmount

(fineAmount O) pay ---------------

payment registerRetum (book(D)
- --- opdaleRecords

reshelve (book)

319

Figure 62. Alternative Context Interaction Model depicting the book-return scenario,
including the target system as a problem domain element

6.2.1.3 Context Features List

The Features List produced as part of the Context Model is extended and detailed

in the System and Software Models. It is the main repository for functional

requirements, and as such acts as the base holding the model chain together,

therefore maintaining it and keeping it up-to-date is essential for ensuring

consistency and requirements traceability.

In the initial version of the library Context Features List, the functions that each

active object of the problem domain performs are listed and expressed as higher-

level feature sets (areas and activities) and low-level features. When the target

system is added as a problem domain object, responsibilities are redistributed and

feature sets and features redefined. Table 3 shows a partial view of the library

Context Features List after the system has been added, highlighting feature-sets and

features related to the book-borrow and book-return functionalities.

6.2.1.4 Glossary of Terms

Explanations of the objects, data flows and typical activities and interactions are

provided in a Glossary of Terms included in the Context Model. Figure 63 shows a

partial view of the Glossary of Terms in the library system's Context Model,

Chapter 6. Test 320

mainly focusing on domain objects and Flowing data. Detailed structural

information has been left out for sake of brevity.

Table 3. Partial view of the Context Features List (library system),
highlighting loan and return processes

Object
Major Feature Sets

(Areas)

Feature Sets

(Activities)

Features
(Steps)

Requesting Info

Searching Card (-analogue
...

Browsing Bookshelves
...

Retrieving Book
...

Member
_ Studying in Library

Reserving Book
...

Borrowing Book

Returning Book
...

Paying Fine
...

Book-Stock Mgmt ...

Book-Loan M mt
Passing loan info to System ... g
Passing results to Member

...
Passing Book to System

...

Librarian
Book-Return Mgmt Fining Member

...
Reshelving Book

...
Reservation Mgmt
Info-Request Mgmt
Membership Mgmt

Financial Mgnll
... ...

System Book-Stock Mgmt

Verifying eligibility

Lookup loan specifications of book
-- Lookup loan permissions of member
-- Determine eligibility of member

System Book-Loan Mgmt Registering loan

Determine loan duration for book
-- I Ipdate loan history of book
-- I 1pdate loan history of member

System

Issuing Due-Date Notice

Retrieve specifications of book
-- Retrieve specifications of member
-- Generate due-date notice for book

System Book-Return Mgnu

Calculating fine amount

Lookup loan history of book
-- Lookup loan specifications of member
--

Calculate fine payable by member

Registering return
Update loan history of book
- --------------------------------------- Update loan history of member

System Reservation Mgmt
... ...

System Info-Request Mgmt
... ...

System Membership Mgmt
...

System Financial Mgmt
... ...

Chapter 6. Test 321

Book Library
Problem Domain Objects

Member A person registered as it member and issued with it mcndxrship card lach Metuhrt is assigned a unique

nxnilership number and it type, based on which the rnaximunt number of books that can be borrowed by

the member at any one time are determined, as well as the maximum loan duration and the line amount
that should be paid by the member if it book is returned after its due (Lite,

Librarian A person providing library services in the library.

('ard Catalogue A set of index cards - indexed according to title. snbjrrt and author - providing it srarch; ihle ti cihty tm

obtaining hook information.

Book-Cards Rack A holder for book cards, which are sorted in the rack according to book number

Member-Cards Rack A holder for member tcards, which are sorted in the rack according to member number.

Bookshelves Holders for books, which are sorted in the shelves according to hook number.

Flowing Data (or Objects)

Book Each book volume in the library, which is assigned it unique book number and it type hased on which the

maximum loan duration and the fine amount (in case of delays in returning the item) are determined. Each

book is issued with it number of cards: two book cards - for recording loan information such as borrower

numbers, due dates and actual return dates -, one derail card - which contains detailed information about
the book and is permanently held in the book-cards rack -, and it number of index cards - which are put in

the card catalogue for searches on author, title and subject. To each hook it card sleeve and it due dare dip

are attached. The sleeve is used for holding the book's two book cards when it is on the shelves

Book Card Two issued for each book, hook cards record loan history and current loan data, especially borrowers'

numbers, due dates and actual return dates. When it book is on the shelves, the cards are contained in the
book in it special sleeve. When the book is lent, the number of the borrower and the due date are entered in

the two cards, one of which is attached to the borrower's member card in the member-rnrds rack and the

other is attached to the book's details card in the book-cards rack, thus enabling the librarian to cross-
reference the members with their borrowed books. When it book is returned, the book cards are retrieved,
updated with the return date and then reinserted in the sleeve on the book.

Member Card Each member is issued with it member card which is permanently held in the member-cards rack and
contains the member's personal data and loan history, including current loans. For each loan, the hook

number, due date and return date are recorded.

Index Card These search cards enable the member to obtain book into from the rnrd catalogue based on search criteria
including title, author and subject.

Due-Date Slip A slip which is attached to each book and holds loan history information including borrowers, due dates

and return dates. When a book is loaned, the borrower's number and the due date are entered in the due-
date slip. The due date is calculated based on the book type and the member type using loan duration

tables. When a book is returned, the slip is updated with the return date.

Book Info Detailed information on a book, which results from a search in the book rnrnlogue or an info request from

a librarian.

Info Request A request for book info which is submitted to a librarian and typically includes values for search criteria -
such as title, author or subject.

Reservation Request A Request submitted to a librarian to reserve a specific book. Book number is supplied along with the
request.

Fine Amount Calculated by the librarian according to fining tables.

Payment Fine amount paid in by the member.

Figure 63. Partial view of the glossary of terms for the library case study

Chapter 6. Test

6.2.2 System Model

322

The System Model components presented in this section include System Object

Models, System Interaction Models, and the System Features List.

The System Object Models show the internal structure of the target system

designed as an extension to the existing library structure, i. e. as a separate section

consisting of library clerks and information storage facilities found in conventional

offices. Detail has been limited to book-borrow and book-return processes.

The System Interaction Models depict the cooperation among system objects for

performing the hook-borrow and book-return processes.

The System Features List shows the feature sets (activities) and bottom-level

features (steps) assigned to system objects, with the detail mostly confined to

functionality as pertaining to book-borrow and book-return processes.

6.2.2.1 System Object Models

Since System Model components focus on the two system functionalities of book-

borrow and book-return, a more restricted view of the latest version of the Context

Object Model has been presented (Figure 64) as the basis for System Object

Models.

Book.
Due-Date Nutiav Due-Date Notice

Library Member Librarian Library System

Book. 1,0än Request

N1 tr
Mcnilwr-W

Number
Ty

Book-Loan MVnt System Bark-Loan MRmt

Fine Amount
Passing loan into to System

Dine Anwnmt Ventying eligibility
Passing results to Member Registering k, an Borrowing Book Book-Return M mt R Is Doc-Date Nemec

Returning Book Passing Book to Sy>tcm System tem Bark-Return Mgml
Pas ne Fine Paýnx-nt Fining Member Return Payuxcnt ('ukututmg tine anw, unt

Reshelving Book N�titie: uiun Cunllnn: uN, n Registering return

&x, ký

Bookshelves

Figure 64. Context Object Model focusing on the loan and return functionalities of the
library system

Chapter 6. Test 323

As already mentioned, the System Model is developed through designing the

system as an extension to the existing library. Figure 65 shows an example of one

such design.

The shaded area in Figure 65 shows the target system, with the objects colour-

coded in order to be easily distinguished. Although not a part of the System Object

Model, this type of blueprint can be safely used in order to provide a more realistic

visualization of the target system to the Ambassador Users and Domain Experts.

However, it will ultimately be represented as System Object Models.

As shown in this diagram, a number of custodians are put in charge of providing

access to data stores and archives, and other custodians are on standby to take

charge of flowing data when the need arises.

Each and every item retrieved from data storage (e. g. Book Record), produced by

clerks, or supplied by entities external to the system, is given to a custodian, who

controls access to the item until it either has to be returned to storage, is completely

consumed during processing (and is therefore discarded), or is supplied to external

entities. This ensures that passive data is always coupled with and encapsulated by

active objects.

Custodians are tangible to Domain Experts and Ambassador Users, as they

correspond to entities normally seen in business systems. Furthermore, they lay the

groundwork for applying redistribution patterns for transforming the System Model

into the Software Model.

Figure 66 shows an initial version of the System Object Model with the loan/return

functionality performed by one active clerk object. Custodians have been clearly

shown as objects in charge of providing access to passive data objects. Features of
the clerk object are added later when the overall structure has taken shape.

Chapter 6. Test Original in Colour 324

-ýý A
ý.

ýý
ýý '1

ý--gte'

ýý
ý_ý. -_:

__Lýý
3

ý_

dý v

ý.

,ýý

:ö
400

CUSTODIAN SYSTEM MANAGER
CLERK

Figure 65. Designing the library system as an extension to the existing structure

Library System
Introduced as an Extension

Chapter 6. Test

B-k

Book,
Pin, Ati , unt Dur-bate Notice

Member
f'aymeut R *, k.

Memher-Id

Librarian

Library System

N�utlc., u,

cU., l}rin: ifI CI

f- I

(ushn: m

Member Repository
Custodian

Member R`ýnrrmg Member Rrcord
Records

la, ine Member Record
Repository

Mrmhr
I

Mrmh
Hr. nl Inf..

I Member-Record
Custodian

Member
Record truing Memher Data

Setting Member Data

Monher Num
R"r nalIntio
f) r.
Slums
contact Details
Bumiw History
Current Iwan Info

Loan/Betu

LplId/Nc,
Bon- lt, t�

325

Ilook SheI\

I'lllr
ýýIIX, IIIII

u, -I)ale

Nutt-
HýN, k II)

rn Clerk Iti,,, A Hr i�rJ
1'ua�Jl. m

[look Repository
Custodian

Book
HcllirvinE Book Hca, rJ Records
Saving Ho�k Hr, �rJ

Repository

I Rn�1,

Ld� HI., rJ

laý: lll llt� + L

Book-Record

Custodian

Book
(ietnlli Book I I. It: I Record
Scuing II. c ik 1): 11: 1

Rook Nulll
1,111c

Aunt,
Publication Into
I. y1w
Status
Loan Hit�ry It
Cutrrnt IA an Info t

Figure 66. System Object Model using one system clerk for implementing the loan and
return functionalities

Figure 67 shows an alternative design with two clerk objects. The former

alternative has been chosen for final refinement due to its relative simplicity.

Figure 68 shows the resulting System Object Model with feature-sets assigned to

the clerk object, and custody relationships simplified in order to reduce diagram

complexity.

Chapter 6. Test 326

FI-k,
Fin" Armout 1)uc- Dal, Notire

Member
ý- f- Librarian Rlwkshelve

I'aynxenl Blwk. II nk
Member-ld

Return I, ibran tiNslem

\Iýnfi.: v iý. n

{ý. 1\Ilh'lll

1 . VIII II'111: In1ýi1
1'III[' i\Ilk, lllll

Iaý. ln Rinnt Uuc I1 .

Neun V�I ucn

la, un Rlx, k-ID

Loan Repository Loafi/Rclurn
Custodian Clerk

Loan-RrrurJ
(usn, Jian Ia, anýRecurJ

t

Retries Inc Loan Record Custodial

Sa, me 1-in Record Ilan

t Dw: t
Meiulxr-II), Loan Records

U : ued/Ne B)
t

, n, k-II
Repository Recrd= [,, an Into

Loan-Record
Custodian

Loan
Record Book Repository c; e tt taint Data Book-Re o Custodian

Book Nom tirttine Irrun Dutu
Eligibility Custudiarj u

Member Nunn Status
laxen Date

1
Due Date Fine Book-ID

I'-

Status Rita Ann., unt

Rrtricvine Bu�k Record
Saving Fronk KccorJ

Book Records
Record Management Repository

Clerk

Member-ID
ý

t, ký Record

high
Book-Record

Meutiher Custodian

Into Member Reel Ird*
Custodum I

Member-Record (; citing Book Dma Book
Custodian Soling Book Data Record

Member Repository'
Custodian Book Nwu

Member Getting Member Data Member Title
Rrcnrd Setting Metni, nr Data Record Aulh, r

Publication Into
Retrieving Member Record Type
Saving Member Record Member Nom

Saz Personal Intl,
Type

Member Records Status
Repository Contact Details

Figure 67. Alternative System Object Model using two system clerks for implementing
the loan and return functionalities

Chapter 6. Test 327

I librarian

-- -------- --------------- -------- --
Library Bestem Krlurn

�I i I, : 111�n t

I'. 1)Incul
I'Iiii \IIM, III II l i, I1t Ir111: 111,111

l. +an I tut' I hits

u stý Re

t

\IcQIrt II) y e \ 11
Book-II)

' -f LoatvKrturn (Irrk
\lrnlfrr-Krcurdt

lIlýn, tll: lit
Lw, wt duration takle

1ýI. I� tl. lll

Member Repository
Iatnn eliglhility takle Bonk Repository Fining takle

Member Custodian Custodian Bt wk
Records System Bonk-loan Nignit Records

Renosilory Verityiug eItgihility statu. Repository
Retries tue Member Record Le"temuning k+an duranon Retrieving Book RrcurJ

-,, n, \It Iulur Record Reetsterntg kiln S; Ising hook KtCord
Issuing DucýD: uc Nut cc

System Book-Return AMRmt
l": IIlll l: ll llll tlllt' : II1 F+Un1

Rrciacriný rctwn
\lý Illlt'I f
R, ':,, rJ

W111N. r
li,,,, k li, H, k

d K T Infi, cc

t Ixl. uell/Net I , xl: ue, l/Ne

Bi, mw Into le,: ul Inti,

Mont r-Record
(look-Record

Book Member 'ustodian Custodian Record Record

slemher Num
l lrtnnL Sienther Data

Getting Buuk Dmu
Book Num

Titk F eru, nul Info
Scinu. \tclnh"r U: Iw

Sehnig. Bunk Data Author
I We Publication lilt,,
Stntns

Type Contact Details Status
B, nn, w History
'

fh. tnry Ulan mreut Ulan Info (CuL,; In 1111 Current �

1--
--

Figure 68. System Object Model, with main feature sets added

6.2.2.2 System Interaction Models

Figure 69 and Figure 70 show the scenarios for performing the book-borrow and

book-return processes in the library system. UML sequence diagrams are used with
interactions depicted as message passing.

As shown in the figures, data objects retrieved from data repositories are

instantiated as transient objects which are assigned to specially instantiated

custodian objects, and are destructed when the data is returned to the repository.

Chapter 6. Test 328

The figures also show how custodians and data objects are created by repository

custodians, how access to data objects is provided through their custodians, and

how data objects and their custodians are destructed when they have served their

purpose.

System Interaction Models are produced for every feature-set of the system, and

also for every complex feature. It should be noted that the diagrams depict

processes in a manual system that has been designed as an extension to the problem

domain - using the same types of objects encountered therein - and hence some

processes are running in parallel.

IMoYNUm, mwriwNUn) I MrrvýBooRRr cord (booYNUm) 1
arNrMV, loOYMCON (EOOYNUmI

1
n10. V*I ýmDYTwsN imýrnWrNUml l -Mt- Nmb. R. ord (-, Num)

niMMeOwk ecwA 1b1

nrMlizrrMýmWTrrcorE (m)

1

I al,. ow. walo.

1_ mlmBooYMeMaoTwMwn. e. r 0

ýý

i I. w. cu. I dy I. eoou. cn, a) I

Y. MmWrRýcor000Sb01n Li

. 5-kR. -aCuatW-
_______________ .

1)
___________i _______

ch. cEIgibiItr
YMD. I1Iý (1

wtDmta

mwnMr0. OlY rrwMw0.1ý1

b-ktW

1
1

ýI. EIq*N1 . YI. t. t-wn ()

eNwhbLOrlDuntbn ()

upUYR-rd ýbrlDMa1M)

KaC ()

prodIIC. . Oal. Not-1)

i
jai. ýý i

mrMýrWbIM

1ý
1ý

pMWla ý- ý

pooYDýlýllý

J,

1
I

1
I
I

upCýal1«oN a

rý
i
ýý
ýý iý

Figure 69. System Interaction Model depicting the book-borrow scenario

Chapter 6. Test 329

. Lo ReturnCkrk th MemkarReuaMorvCUlodlan ýý proLceURNUm

(COOkNUm) r. trwv, BookRatord (boobNum)

theg-kReoo. flo Ncu, to lfia

b"r. t w. oOMR-d (bookNun)

muuu:. aookR. co! d in)
. Mmt"., d

Ba kR. cordCwlod .n

IU. Cualody l. BookR. cord)

aBookR. cordCU. lodlm

p. IDelarl. 1)
p. roa. ll

---------------------------------- --

Dooto. l. ll. 1.
DoOkp. l. ll., Dorrow. MUm

r"Irln. M. mM, Record Dorrow. MUm m(1 "retrwv. FNmMrR. cord (DOrrovnMUml

. MemEarRecorE

MdlaDZaMemWMxord IM)
1

I, k. Cu. lodY IMMmC. rR. oord)

M. mC. rll-dC, stadlan

o. eo, t. 11

m. mb. A. lalls . mMrMl, ila

0-rd-u. -()
ý

(00v. rdwllm. M. InO. r(1

.. gl. 1., R. dm 11

updat. Racord (rýlumD. t. II.)

upd, bR-d

. avdnR. poadory 0

uawl. o

m«ýwro. l, n.

ý. ýctrorümyMleE

F

YI
II

i.. InR. pO Itory I. BookRrrcordl

prtDatý 11

GoolWtýilý
-ý

Figure 70. System Interaction Model depicting the book-return scenario

6.2.2.3 System Features List

The Features List produced as part of the Context Model is extended in the System

Model and focus is shifted to intra-system objects. Table 4 shows a partial view of

the library Service Features List focusing on feature-sets and features related to the

book-borrow and book-return processes. Distribution of features among system

objects is emphasized, with custodians providing access/update features and the

clerk object undertaking the main processing tasks. Data and repository objects

lack functionality and are therefore devoid of features.

Chapter 6. Test

Table 4. Partial view of the System Features List (library system),
focusing on loan and return processes

330

Major Feature
Feature Sets Features

Object Sets
(Activities) (Steps)

(Arens)

Retrieving Member Record Rctnc c st il t 'I mrrnl, rr rrrurd
-- ---

ositor Custodian ber-Re M M mt Member-Re ositor
Assign custodian to rnr/nher record

y p em g p y
Saving Member Record Save lüta Ut IIIenil, er-, e'f(1/'(I

-- Disass, ciate custodian trout member-rernrrl

di B k R i M
Retrieving Book Record

an Book Repository Custo oo - epos tory gmt
Saving Book Record

Getting Member Data
Member-Record Custodian Member-Record Mgmt

Setting Member Data

B k R dM
Getting Book Data

Book-Record Custodian oo - ecor gmt
Setting Book Data

Request bookrecord trout bm)k-rt, jj4mrw%
--- Request member-reeurd tram member-repetetuns

---------- ----- Veritying eligibility

Lookup luvt specifications in hook-record

------------------------- -------------------------
la, ukup loan permissions in rnenihei-rerold
-- Detennine eligibility for member'-record

Determine loan duration tor /nerriber-re(uiJ
----------------------------------- -

System Book-Loan Mgmt Registering loan ---------- -
Update loam history in hook-record
--
Ullate loan history in member-reenrd

Retrieve sl eciticutiuns from hook-record
-------------- ------------------------------------

Retrieve specificuttons trout rnernher-rernrd
- -

Loan/Return Clerk
Issuing Due-Date Notice - ---

r-reenrrl Generate due-date notice for

Return book-record to book-tepmimrv
------------ ---------------------------------- Return member-record to mernbrr-repu. tsirur

Request look-re, urd from book repomrom
--------------------- -------------------------------

Request member-record from member-repo cnor

Calculating fine amount
-- Get loan history trout btwk-recoid

----------------------- --------------------------- Get Ivan specifications from rnemher-record
--- - System Book-Return Mgmt - ---

t>rtrrmfne fine p: ryuMe fur mernherrernrd
Update lout history in book-record

--

Registering return
UNate loan history in member-record
--- Return Wok-record to book-reposilon,

---------------- ------------------------------- Return �member-rernrd tu member-re'posiwri

6.2.3 Software Model

The Software Model components presented in this section include Software Object

Models and Software Interaction Models. As was the case with the System Model,

detail has been limited to book-borrow and book-return processes.

Software Object Models are produced through iterative application of patterns to

System Object Models. The Software Interaction Models depict the cooperation

among software objects for performing the book-borrow and book-retuni

processes.

Chapter 6. Test Original in Colour 331

6.2.3.1 Software Object Models

Figure 71 shows the System Object Model from the previous section along with the

patterns that are applied in order to produce the Software Object Model. The

sequence of pattern application conforms to that prescribed in the methodology, i. e.

redistribution patterns take precedence, with refactoring patterns complementing

them where needed.

Librarian

r--------------------------------- -------- ------------------------
t Library System Ketuni

t Notification a Rern; /orgy i

t 'c/ * Up lind Objec' Payment
t r2emooc middle mm t

t Confirmatton

1FmeAmount

Loan Due-Date /
Request*

Mem -In ber I Notice
ýC

. 'Member-Record*
Custodian

Member Repository,
Custodian ' Member

Records
Reposlto

Retnev m5 M: mber Recur
Samt; \9ember Record

ý! L
%

Mew
MEmber Retire

Info

t

V,,,,. .

Loan Clerk
ý, I<riuýn ý iriE

Loan duration table
Loan eligibility table

Book-Loan Mgmt
Retrieving relevant records

en ing eligibility status
Determining loan duration
Registering loan
Issuing Due-Date Notice
Returning records

nook-Return \Ippn
Hcin<. in_. irirv, ini nYl'd

' culaimu i ", . nl
Kecra ri uýc ri LI

Rook-Record
Custodian

Book Repository
Custodian Book

Records
Repository

Retrieving Book Record
Saving Bhok Record

Book Book

fo lecord

i t, .� ýUpdatedNew Updated-New I t

Memüer-Record Borrow Info Loan Info Boon-Record
Member Cttstodisn ('us'odian

gook

Record 2 Mow aenowour Z Move oemwour
Record t

close to data close To dato
Book Num

t
I Personal Info Getting Member Data Getting ok Data Title

Setting Member Data Setting Book Data Author
Status Publication Info

I Contact Details Type

Borrow History Status

current Loan Info Loan History
Current Loan Info

--------------------- ------------------------- ---------- ---------- -

Figure 71. Object Model depicting the major patterns applied to convert the System
Object Model into the Software Object Model

Chapter 6. Test Original in Colour 332

Other figures in this section depict the step-by-step process of pattern application,

showing how each pattern is applied and the resulting changes in the Object Model.

Transformations are highlighted in order to emphasize the effects of each pattern

on the model.

Figure 72 shows the results of applying the Split-Up-God-Class(Object) pattern to

the System Object Model. The Loan/Return-Clerk object is thus split up into two

objects: the Loan-Clerk and the Return-Clerk. The features and data fields are

moved to their corresponding object.

Libranan

---------------------------------- -------------------------
Library System Return

Notification
VD vod Jbjec -

Payment
Confirmation Fmc Amount

Loan I* DueNotice -Date I
Member-ID

Requcst+
Book-ID

in ('Irrt -ý

Member Repository

Member (ustodian
Records

Retrieving Member Record
Saving Member Record

Member
Member*

Record
Info I

t. uan ('jerk
Return (Icri,

i. oan duration tabir
L. oan enelhiIa tabu

'" inrn " tahic

Book-Loan MItmi

Retrieving relevant recorlb
erdymg etigibilnv status

)etertnmmg loan duration
Regtstermg roar,
, ssumg Due-Date nonce
Retumm rccorun

Rook-Return %12mi
Ketnr. mg IC C%, lnl 1 rwi. u

" ., ICI1hIi lilt -it" J1111)11M
(CL'Isio IC (till! !
<tiul111110 Ic'ýI. ICI-

1 Book-Record
Custodian

Book Repository
Custodian Book

Records

Retne. ing Book Record
Saving Book Record

{ * Book Book

Into Record

1

Updated-New Updated New

L

Me Borrow Into
mber- Record Loan Into + Book-Record t

Member Custodian Custodian Book
Record Record

t t
Member Num

Gating Member Data Getting Book Data
Book Num
Title t Personal Info

Setting Member Data Setting Book Data Author T
Status Publication Info

t Contact Details Type

Borrow History Status

Current Loan Into Loan History
Current Loan Info

t
t

____-

Figure 72. First Step: applying the Split-Up-God-Object pattern

Chapter 6. Test Original in Colour 333

Figure 73 shows the way the second and third patterns are applied. The Move-

Behaviour-Close-to-Data pattern is first applied to move the relative behaviour to

custodians. The Move-Field refactoring pattern is then applied to do the same with

data fields. As a result, the two clerk objects lose their structure and behaviour and

become simple intermediaries between the Librarian outside the system and the

custodians.

Librarian

---------------------------------- --------------------------------,
Library System Return ýt

Notification

Payment t
Fine Amount l'onfirmanon

Loan Due-Dato
Reques1 Notice Member-ID w _t-rn

4-
'Member,

di-Record Custan

Member Repository

Member Custodian.

Records

Repository
Retnevmg M'mber ecor
Sa%ing Member Record

Member
Record %1ýmber

. Info

Loan Clerk
Return Clerk

Loan duration table
Loan eligibilný table

Fining table

Book-Loan Mgmt
Retrieving relevant records
Verifying eligibility status
Determining loan duration
Registering loan
Issuing Due-Date Notice
Retumine records

Book-Return Mgmt
Retrieving re evant recor

Calculating fine amount
Registering return
Returning records

ýý
Book-Record

Custodian

Book Repository
('ustodian Book

Records
Reposito ry . Retne% t4g Book Record

Saving Book Record

Book küroA

nfý
Record

UpdatedNew UpdatedNeµ 1

Memor
Borrow info Loan Info `. o

Cutodin Cusodian
Record Behaviour 2 Move Henawour Record

Num
Close to Uarc Llose to Daro Book Num

Persona Info ('ding Member Data Getting Book Data Title

Type Setting Member Data Setting Book Data Author
Status Publication Info
Contact Details Type
Borrow Histon Status
Current Loan Info Loan Histon

Current Loan Info

t

l __________________________________ ____________ ___________ --------- --

Figure 73. Second and Third Steps: applying the Move-Behaviour-Close-To-Data and
Move-Field patterns

Figure 74 Shows the last pattern applied. The Return-Clerk and Loan-Clerk objects

are now little more than empty shells. The Remove-Middleman refactoring pattern

is hence applied to establish direct links between the custodians and the external

Librarian. Alternatively, the Poltergeist antipattern can be used with the exact same

effect.

Chapter 6. Test Original in Colour 334

Librarian

r----------------- y -- ----------------- Loan
stem Librar S R

------ ---------------------
Return

-

y y eracror- Reuest Notification
temave Middleman

Due-Date ! t Fine I'avment
A ' Notice mount (onfirmatton

Loan Clerk Return Clerk
Loan

Request

Book-11
ý

I
Member-ID Return

N otificat ton

Member-Record Payment * Fine
Custodian (bnfirmanon I Amoum

Member Repository Book-Record
Book

Custodian Member-ID Custodian
Record

Member Fining table
Records Book Num

Repository Retrieving Member Record Member-Record
I i i L P

Book-Record Mgmt Title
n t ating oan rocess Custodian Getting Book Data Author

Saving Member Record Setting Book Data Publication Info I

Book-Return Mgmt Type
Retrieving relevant records status

Member Loan History Calculating fine amount
Record Registering return Current Loan Info

Returning records

Updated Neýk Updated
Loan Info Return Info Book

Due-Date Record

Notice Member Book
Member-Record Info I1 t

Book-Record
o In Custodian

Custodian

Loan duration table Member Loý elt gtbihty table
Record

Member-Record Mgmt
Getting Member Data

Member Num Setting Member Data Book Repository
Personal Info System Book-Loan Mgmt Custodian
Type Retrieving relevant records k Status Verifying eligibility status Contact Details Determining loan duration Book-Record Records Book-ID Retrieving Book Record Borrow Histo ry Registering loan Custodian
Current Loan Inf Initiating Return Process

Repository
Initiating

Issuing Due-Date Notice Saving Book Record
n Returning records

------------------------------------- ---------------------------- --

Figure 74. Fourth Step: applying the Remove-Middle-Man pattern

Figure 75 shows the resulting Software Object Model, with custodians doing the

processing and data objects providing the data. Design patterns can then be used -
if applicable - to introduce specialized structure and behaviour in the models. The

next and last step is to merge the custodians with their data objects, thus producing

objects encapsulating both state and behaviour. Software Class Models can then be

produced, highlighting classifications of objects and their relationships, especially

aggregation and generalization specialization.

Chapter 6. Test 335

Librarian

r
1

------------- -- -----------------
I ,.. III I Lihrarý

S l

------ --------------
r, 111 1

, uý. + vs cm N�nh . lu u

I),,, I). II,

I'Illt' I'', 1\'I lH'111
ý

1

Noll-
; 11MIII iII 1 �IIt I1111. li li 111

Member Repository
l took- Record

Book

Custodian vtclnrxr-II) Custodian
Record f_ Member l-ming table

Records Blx, k Num

Repository Rrt Sing Mrmhrr Rea, rd Meirrher-Record le Book-Record MRmt ht
Initi: uuig lain Prnce. > C-1-hall Grating Buuk Data Author
Sa%ille \leiirhrr RL-COT1I Setting Book Dula Publication Info

Book-Return Mgmt I We
Retrieving relevant records Statu`

Melutx. l I listn Calculating tine uu>ttunl le, un rY
Re'c, i Rl Rccizlcnng retool

Current [,, all Iilto

Returning records

t

Lunn Ul>J: ued/New UIXI u-1
Request lw,: m Infi, Rciwu Ina� I Irk

Record

Menlhrrt Bltilk

N'Iember-Record lidl, tl, c,
Custodian

t Return *
la, an duruiun able Member t N�tire: nl�n IA all elil i hil itV table

Record Member-Record Mgmt
Getöne Member Data

Member Num Setting Member Data Rook Repository
Personal Into System Book-Loan M6mt Custodial)
Type Retrieving relevant record. Book Status Verifying eligibility status -ý f-
Contact Details llrterntin ing loan duration Ei-Rerurd

Records
Book-11) Retrieving ßuuk Record

Recor
Burrow History Registering loan Custodian Initiating Return Process

Repository
Current Leu) Into Issuing Due-Date Notice Saving Book Rr-rd

Returning records 1

1---1

Figure 75. The resulting Software Object Model before merging custodians with data
objects

6.2.3.2 Software Interaction Models

Figure 76 and Figure 77 show the scenarios for performing the book-borrow and

hook-return processes in the software system. Here too UML sequence diagrams

are used with interactions depicted as message passing.

As these figures show, repository custodians are in charge of initiating the loan and

return processes. Control is then passed to record custodians to implement the main

functionality.

Chapter 6. Test 336

I
tneMember Reoositor YC ustodian

processLoan lbookNum. membe(Num) 1

m-retrieveMemberRecurd (memberNum)

indiali-MemberR-rd (m)

11 aMemberRernrdCustodian

eCustody (aMemberRecord) 1I

processloan (bookNum) 1
retrlavaBaoNRscord (bookNum) t-. t, iavaBookRecord (bookNum)

getData ()

In NIalizeBookRecord (b)

dueDeteNotlrw

-________________ J______________

ý savelnRepoeNnry (aAMmbarReci

getDato 11 /\

ý mýrnOerDetalls

rNUrn, BookAntlNotluToMember ý)

Figure 76. Software Interaction Model depicting the book-borrow scenario

Software Interaction Models will later be used alongside Software Object/Class

Models to produce class- and method prologues during iterative design and

implementation. Due to the feature-driven nature of models and development tasks,

feature-based interaction scenarios are preserved as bases throughout the

development process (as observed in the Library examples above), to ultimately

influence class- and method prologues, and the final software code.

aBOOkRecordCustodian 1

tak. Custody (. BookR. cord) I

aBookRecoMCustodlan
_ gNlhtafls ()

gNDN. ý)

boo MDNalls

boakDetaiIs -----

ch. ckEIIglbiIit4()

1

(I. EI gIbla) r. gLNrLoan 0II
cakulateLoanDur. tion ()

upd. teRecord (IoanDstallq
updat. Racord I)

Upd t Record pj Ir

I

ptoducsDueDat. Notfu () III
1

I

savelnRapository O(I

savelnRepo. Itory (. Book Record)

Chapter 6. Test 337

6.3 Case Study 2: Estate Agency System

The estate agency system targeted in this case study is currently a computer-based

system, with potential buyers and sellers visiting the premises of the agency in

person or contacting agency clerks by phone in order to obtain information about

properties on the market, put new properties up for sale, request viewings, or make

an offer on a property. Information about properties, customers and transactions is

stored in a database and maintained via an existing computer-based record

management system.

Figure 77. Software Interaction Model depicting the book-return scenario

Chapter 6. Test 338

Sellers contact the agency clerks to put their properties on the market. Each

property is then assigned to an agent, who surveys the property in order to assess

its marketing potential and decide whether marketing is advisable considering the

present state of the market. The agent reports the results to the clerks at the agency,

who then advertise the property on display boards if marketing has been approved.

As the first point of contact for customers, agency clerks are approached by

potential buyers mainly to help with searching for properties using the computer

system. Potential buyers can also browse through the advertisements put on display

boards. Buyers who request to view a property are put in contact with the agent

assigned to the property, who then consults with the seller to arrange a viewing

schedule. Buyers who decide to put an offer after viewing a property do so by

contacting the agent, who then relays the offer to the seller and announces the

result to the buyer. Agents also offer advice to the parties involved, and arrange for

the signing of contracts if final agreement is reached. The results are continually

reported to agency clerks, who are in charge of updating all records and managing

the paperwork.

The aim is to develop an online estate-agency system, which provides property

search facilities online, and allows registered customers to put properties up for

sale, request viewings, make offers, negotiate deals, and seek professional advice.
The system is to make use of messaging as the main means of communication

among agents, customers and agency clerks. The present computer-based record

management system is to be considered as an external data storage system,

interfaced in order to provide database management facilities to the online system.

The following sections contain the results of the modeling activities performed on

the system through the application of the development methodology. For sake of

brevity, when modeling detailed aspects of the system, focus has been limited to

the three basic functions of putting a property up for sale, arranging a viewing, and

making an offer on a property.

As the main purpose in conducting this case study has been to verify the

applicability of the methodology and the pattern-based model-transformation

approach to problem domains that already contain computerised elements,

emphasis has been put on model conversion; Object Models have therefore taken

Chapter 6. Test 339

precedence, and some less relevant behavioural models have consequently been

omitted from the results. Verification using this case study confirmed the findings

reported in Section 6.2.

6.3.1 Context Model

The Context Model components presented in this section include Context Object

Models, Context Interaction Models, the Context Features List, and a partial

Glossary of Terms.

The Context Object Models show a representation of the estate agency problem

domain as encountered in the real world, with the target system then added as a

problem domain object. The Context Interaction Models depict the cooperation

among problem domain objects for performing the put-property-up-for-sale,

viewing, and make-an-offer processes. Context Interaction models come in two

versions: the first versions model the real world, and the latter ones depict the

interactions after the target system is added as a problem domain object and is

involved in inter-object cooperation. The Context Features List shows the major

feature sets (areas), as well as their constituent feature sets (activities) and bottom-

level features (steps), with the detail mostly confined to features pertaining to put-

property-up for-sale, viewing, and make-an-offer processes. The list also shows the

assignment of feature sets and features to problem domain objects.

6.3.1.1 Context Object Models

Figure 78 shows the real-world Context Object model of the estate agency problem
domain. The diagram also shows the assignment of feature-sets and features to

objects. Figure 79 shows the Context Object Model after the target system is added

as a problem domain object. Feature sets have been redistributed and new feature-

sets have been added to the system.

6.3.1.2 Context Interaction Models

Figure 80, Figure 81, and Figure 82 show the scenarios for performing the put-

property-up-for-sale, viewing, and make-an-offer processes in the real-world estate

agency. UML activity diagrams are used at this stage with swimlanes depicting the

Chapter 6. Test 340

active objects participating in the processes. As seen in the figures, active objects

cooperate to perform the put-property-upfor-sale, viewing, and 'nuke-nn-o%/er

scenarios. Storage objects (such as ud-boards) are not modeled as participating

objects due to their passive roles in the system, nevertheless references to their

usage by active objects can be seen in activity descriptions.

Property Info Property Into
f- Property Ads

Board

Newll1pdated T

Ad

Clerk

Into 4I Property Property Mgmt Property
4

Info
Request Info BuyerMgmt Into Request

Seller D1gint
Agent Mgmt

Viewing Agent Transaction Mgmt Agent Put-I 'Ip-fur-. Sale

Request1

1

Info Financial rlgmt Into+ Request

Offer Assigned Updated/New Record
T

Notilicatiot Property Info Record

Viewing Viewer Report
Report Info Requestl Report

Record
Signed

4Contract
Management System Signed Contract

Contract

4
tbutract

Property Record.

Property Buyer Agent Records Property Seller
Customer Records

Seller ID Transaction Records Buyer IU

Perumal Inf , Personal Into
Property Records Mgmt

Requesting lilt(, Agent Records Mgmt Requesting Info

Browsing Property Ads Customer Records Mgmt Browsing Pngxny Ads

Viewing Property Transaction Records Mgmt Putting Property Up for Sale

Consulting Agent Consulting Agent

Making Offer Responding to Offer

Closing Purchase (losing Sate

Response Offer Response)flee
to Offer Agent Viewing tu Offer

Schedule
Agent ID
Personal Info

_º __º
Professional Viewing Viewing Professional

Advice Schedule Promoting Property Request Advice
Inspecting Property
Showing Property
Offering Advice tu Parties
Closing Deal
Rcry, ning to Clerk

Figure 78. Context Object Model of the Estate Agency problem domain,
depicting problem domain objects, feature sets and inter-object data flows

Chapter 6. Test 341

Property Into Pruprm Into
Ads ý- Property

Board

Nc /1 pd: ucd
Ad

Clerk

Into
II'ropert

N PropertyMgmt Property Inl,
T

Request Into Buyer Mgmt Report Into
RLqucs(

Seller Mgmt f-

Agent Mgrnt

Vicý+inC Aient
Transaction Mgmt ROtt Put 1' , put 1 Ir

-
Request into

Financial: Ngmt Request Inlt, Sale Request

Updated/New I
Record

T

Record

(lifer I

Notification Record Management
System

Viewing I'n, lxrty Records
Report Agent Records

Customer Records
I rmsactk, n Recours

Assigned Property Records Mgmt

1 Property Agent Records Mgmt
Info Customer Records Mgmt

Transaction Records Mgml

Viewer

Into Pat.,
ý D:, t: t

Estate Agency Rr' It r' t
System

Signed Contract
Into ontract

Signed Contract
i ("ontrac eu Request

User Accounts Mgml
Into Rryur. I

(t111l r. ll'l

Clerical Services Mgnut
Buyer Services Mgmt -f

Property Buyer I'n, perry Seller Services Mgmt lWperly Property Seller
Into Agent Services Mgmt Into

Buyer ID Agent O(fe
Property Search Mgmt Seller II) Utter

Personal Into Int,, Prrum: d Into
R esponse

Requesting Inn, '
Ads ert wsin Pn, B

*Virwing Pu
Request

t-(Ip-ti, r-SaleAgent Requesting Info
R +t l te Ad P t i r ro g)

Viewing Property Mr'"uFt'

r ur u , s eI roper y Brows ng
Putting Property (i) tor Site

ý Consulting Agent MessaFr Mnn<ulting
Agent

Messa l
e Making Offer g Responding to Otter

Closing Purchase (l sung Sale

Response Response (Mee
to to Offer Agent Viewing to Of(cr

Schedule

Agent IU
f- 4---- Personal Info -f

Professional Viewing Viewing Processional
Advice Schedule PmmiLiting Prohr"ny Request Advice

Inspecting Prope"ry
Slowing Property
Offering Advice to Part ies
Closing Deal
Rep>rting to Clerk

Figure 79. Context Object Model of the estate agency, with the system introduced as a
problem domain object

Chapter 6. Test 342

Figure 83, Figure 84, and Figure 85 show the viewing, put-property-up for-sale,

and make-an-offer scenarios after the addition of the system as a problem domain

object. The system has been assigned a separate swimlane, and activities and

functionalities have been redistributed.

Figure 80. Context Interaction Model, depicting
the put-property-up-for-sale scenario

Chapter 6. Test 343

Record

Buyer Clerk Agent Seller Management
system

submit Viewing
Request for a specific

Property

Search Datahau
batted on Property

to given

Retrieve 1'roperh

Hecont

nd info rm
E.,

if,
E

, ,. t

Send Viewing
Request to Seller

Set Viewing
Schedule

Pass Viewing
S h d l d id prov c e u e an e

Advice to Buyer
EP

O

Figure 81. Context Interaction Model, depicting the viewing scenario

Record
Buyer Clerk Agent Seller Management

System

Submit Oller to Agent

Pass Offer and provide
Advice to Seller

Announce Oller

.
1-

W
Response tu AFenl

Pass ORer Responu
to Buyer

Notify Clerk

L pdale property
Info

(! pdale Property
Record

O

Figure 82. Context Interaction Model, depicting the make-an-offer scenario

Chapter 6. Test 344

Figure 83. Context Interaction Model, depicting the put-property-up-for-sale scenario,
with the system introduced as an object

Chapter 6. Test

Record

Buyer
Estate Agency Agent Seller management

System System

S

ra
operty

Collect Keyurst and
Search Database

based on Property
Info supplied

Kct6rNr Properly

Kc urd

Identify and infono
Agent

Submit Viewing
Request and

provide Advice

Past Agent's
Message to

Seller

Submit Viewing
Schedule

Pass Seller's
Message to

Agent

Pass Agent's
Submit Viewing

Message to
Schedule and

Buyer
Introductory

Message
ET,

O

Figure 84. Context Interaction Model, depicting the viewing scenario,
with the system introduced as an object

345

With the introduction of the system as a problem domain object, it has assumed the

responsibility of connecting buyers, sellers, agents and clerks, so that they

communicate through passing messages to each other. Requests made by objects

are automatically stored by the system and routed to the corresponding destination

objects. The system also acts as the interface to the old database system, giving

clerks access to the records. Buyers and sellers can search for properties via the

system, and agents can use the system's special reporting facilities to send reports

to clerks.

Chapter 6. Test 346

6.3.1.3 Context Features List

In the initial version of the estate agency Context Features List, the functions that

each active object of the problem domain performs are listed and expressed as

higher-level feature sets (areas and activities) and low-level features. When the

target system is added as a problem domain object, responsibilities are redistributed

and feature sets and features redefined. Table 5 shows a partial view of the estate

agency Context Features List after the system has been added, highlighting feature-

sets and features related to the viewing, put-property-up-for-sale, and make-

all-offer functionalities.

Figure 85. Context Interaction Model, depicting the make-an-offer scenario,
with the system introduced as an object

Chapter 6. Test 347

Table 5. Partial view of the Context Features List (estate agency system),
highlighting viewing, put-property-up-for-sale, and ºnake-an-ufer processes

Object
Major Feature Sets

(Areas)
Feature Sets

(Activities)
Features

(Steps)

Requesting Info

Browsing Property Ads

Property
Viewing Property

Subout viewing request for a prnpenv

View properly

Buyer Consulting Agent

Making Offer
Submit offer , it a proprrhv
--

Closing Purchase
...

Requesting Info ...
Browsing Property Ads

Property
Putting Property Up for Sale

Submit sale request for a proprvrc
--
Set viewing schedule for it propene

Seller Consulting Agent

Responding to Offer
Submit offer resronse on a pn, pem
--

Closing Sale ...
Creating new Property Record

Property Mgmt Updating Property Record

Producing Property Advertisement

Buyer Mgmt
...

Clerk Seller Mgmt
...

Agent Mgmt
Assigning Agent to Property

Collecting Reports

Transaction Mgmt
...

Financial Mgmt
...

Promoting Property

Inspecting Property

A ent
Showing Property

g _ Offering Advice to Parties
...

Closing Deal

Reporting to Clerk

Property Records Mgmt
...

Record
ement Mana

Agent Records Mgmt
g

System Customer Records Mgmt
,.. _.

Transaction Records Mgmt
,..

User Accounts Mgmt
...

Clerical Services Mgmt
Providing Database Management Facilities

Providing Messaging Facilities

Registering/Processing Viewing Requests

Buyer Services Mgmt Registering/Processing Offers

Estate Agency Providing Messaging Facilities

Web-Based Registering/Processing Sale Requests
System Seller Services M mit b Registering/Processing Offer Responses

Providing Messaging Facilities

Registering/Processing Viewing Requests

Agent Services \lgmt Providing Reporting Facilities

Providing Messaging Facilities

Property Search Mgmt

Chapter 6. Test 348

Estate Agency
Problem Domain Objects

Property Buyer A person intending to buy a property: customers visiting the agency are initially considered potential

buyers and are allowed to search for properties via browsing ads or requesting information from clerks. A

buyer will have to be registered with the system in order to request a viewing or place an oiler on a

property. Registration involves opening a buyer account for the person and storing their particulars in the

database. Registered buyers will be assigned it unique buyer-Il), which will he used in all their transactions

with the agency. A registered buyer will have to reregister as a seller it ever intending to sell a property.

Property Seller A person intending to sell a property; it seller will have to be registered with the system in order to put it
property up for sale. Registration involves opening it seller account for the person and storing their

particulars in the database. Registered sellers will be assigned it unique seller-il), which will be used in all
their transactions with the agency. A registered seller will have to reregister as it buyer if ever intending to
buy a property.

Clerk A person in charge of clerical services at the estate agency offices. As the first point of contact with

customers, a clerk's office duties include: providing information on properties, registering customers,

entering information into the database, producing property ads, assigning agents to properties, and taking

care of all paperwork related to transactions.

Agent A person acting as the representative of the estate agency in performing surveys and valuations, inspecting

and promoting properties that have been put up for sale, showing properties to potential buyers, acting as

mediator and adviser to sellers and buyers, and arranging the finalization of transaction'.. tgeni% should

report all their activities to the clerks involved.

Record Mani SN steal Ilse Computer-based Database Management System maintaining records of properties, custonxcrs, agents

and transactions. The system also produces reports of the data upon request, including property ads.

Property Ads Board A Display board for displaying property advertisements

Flowing Data (or Objects)

Property Ad A descriptive advertisement of a property detailing the specifications of the property and the price its
indicated by the seller. Property Ads are produced by the Record Mgrnt Svstem upon request by the
clerks, who then put them on display on property ads boards.

Viewing Request A request made by a buyer to view a specific property. The request is passed to the agent assigned to
the property, who then contacts the seller of the property and arranges for a viewing schedule.

Put-Up-for-Sale Request A request made by a seller to the estate agency, giving permission to the agency to act as sale
representative on behalf of the seller for the promotion and sale of it specific property owned by the
seller. The request is passed to a clerk who assigns an agent to the property. The agent then inspects

and evaluates the property. If confirmed as eligible for sale, the property is then registered in the
database and advertised for sale, with the agent acting as mediator in all transactions.

Offer A price offered by a buyer on a specific property.

Response to Offer An acceptance or rejection response by a seller to an offer made by a buyer.

Info Request A request for property info which is submitted to a clerk and typically includes values for search
criteria - such as location, price range, number of bedrooms, or type.

Property info Detailed information on a property, which results from a search in the property ads hoard or an uib�
request from a clerk.

Viewing Schedule A schedule set by a seller for the viewing of a property by a buyer, or inspection by an agent.

Contract Legally binding agreement denoting a transaction between buyers and sellers over a specific property.
A contract is prepared by a clerk and signed by the parties involved.

Figure 86. Partial view of the glossary of terms for the estate agency case study

Chapter 6. Test 349

6.3.1.4 Glossary of Terms

Figure 86 shows a partial view of the Glossary of Terms in the estate agency's

Context Model, focusing on problem domain objects and flowing data.

Descriptions of typical activities and interactions, and detailed structural

information have been left out for sake of brevity.

6.3.2 System Model

The System Model components presented in this section consist of System Object

Models; System Interaction Models and the System Features List have been left out

for sake of brevity. The System Object Models show the internal structure of the

target system, designed as an extension to the existing estate agency structure, i. e.

as a separate section consisting of service-attendants and information storage

facilities found in conventional offices. Detail has been limited to put-property-up-

for-sale, viewing, and make-an-offer processes.

Since System Model components focus on the three system functionalities of put-

property-up-for-sale, viewing, and make-an-offer, a more restricted view of the

latest version of the Context Object Model has been presented in Figure 87 as the

basis for System Object Models.

As already mentioned, the System Model is developed through designing the

system as an extension to the existing estate agency. Figure 88 shows an example

of one such design. The shaded area in Figure 88 shows the target system, with the

objects colour-coded in order to be easily distinguished.

Figure 89 shows an initial version of the System Object Model, with service

attendants in charge of interacting with external objects. Custodians have been

clearly shown as objects in charge of providing access to passive data objects.
Features of the objects - as pertaining to the put-property-up-for-sale, viewing, and

make-an-offer functionalities - have been clearly depicted.

Chapter 6. Test 350

Record Management
(leek System

I'Is petty Records

Property Mgml Age-ut Records
Creating Property Record nk"r Records

I rJamw Fr pens Ree rd Il. e -woou Records
llmd-, - P-1-1r VI

Buyer NI gnn Property Renorlls Mgunt

Seller Mgml Agent Records Mgmt
Agent Nlgm1 Customer Records MRmt

A, mvmne Arcnt 1, I'mlkns
C, 01"tmg Repents

Transaction Mgml

M

Estate Agcricy

System n l It -age . .

1) ii e Clerical Services Mgmt
Pnwiding Datahuse Man egenr nt Facilities

Providing Messaging Facilities
Buyer Services Mgmt

'
RegisteringfProcessing Vt eine Rcyuests

\ Irulnc Registering/Prueessing Ottern
S. IIe

Kcyura Keyuc. t
Pn, vrting Messaging Facilities

Seller Services Mgml

Otter

\1e.. aEeý

Registering/Processing Sale Reyue. re
Registering/Processing Offer Rra, n.. c.

Mess. 1

Keýlvm. e
ý`

Pnrviding Messaging Facilities
Agent Services Mgmt

Reg istering/Pnxessing Viewing Reyuc. u
Pnrviding Re[xoning Facilities
Pn, viding Messer situ I-: Irilnlcs

Property Buyer *h i
Property Seller + ispect �n ýe..: ýge I Request

Buyer ID Seller 11)
Personal Into Per. -mal Inter

Agent
Viewing Property Tuning Property Up for Sale

Consulting Agent Agent ID Consulting Agent
Making Otter

Per-mal Info
Resin ne tng to Otter

Inspecting Property
Sinus ing Property

(ttlcring Advice tu Parties
Relenting to Clerk

Figure 87. Context Object Model, focusing on the Put-Up-for-Sate, Request-Viewing,
and Make-Offer functionalities

As seen in Figure 89, service attendants act as interfaces to the system, interacting

with buyers, sellers, agents, and agency clerks. Record-Management-Clerks have

been put in charge of retrieving and updating records through interacting with the

old database system. A message repository, with its own custodian, has been set up

to store the messages through which external objects communicate with each other.

Clerical-Services-Attendant objects not only act as interfaces between agency

clerks and the system, but also act as intra-system controllers, in that they control

access from other attendants to the message repository and Record-Managenient-

Clerks.

Chapter 6. Test Original in Colour 351

Existing Estate Agency Structure

.ýa
ý°

on

Estate Agency System
introduced as an Extension

4- ýý 4

BUYER/SELLER CLERK CUSTODIAN SYSTEM MANAGER AGENT
CLERK

Figure 88. Designing the estate-agency system as an extension to the existing structure

Chapter 6. Test 352

Agent Property Clerk
Seller

T

F. stalc A ýcnc i. y'

ý.......

- -1

System

,

1(

I" 1t u Kc . a Kci ucu Kcyucst Kcaru. c

1 Buyer Services Agent Services Seller Services
Attendant Attendant Attendant

Htner Services Mgmt Agent Services Mgmt Seller Services Nignil
I'rucessine Viewing Request. Processing Inslx-cuon Requests Processing Sale Requests
Processing Otters Providing Reporting Facilities Processing Offer Reslrinses
Prosiding %1's aging, Facilities Providing Messaging Facilities Prodding Messaging Far ilii cy _

Clerical Services Attendant

Messäer Clerical Services Mgrot
Providing Database Management Pu liu us
Pruuviding Messaging Facilities

Property Record Message Repository U: ua
Custodian Custodian

c ýcutiaýe
Property Record Kt 4t t'

Retries tug Message
s'�ng Message Seller Record

t

Message Repository Custodian

Seller Record

Buyer Record
Custodian

1 Buyer Record u: ýýa

Record Management
Clerk

Pnqerty Records
Agent Records

Customer Records
Transaction Records

Property Records Mgmt
Agent Records Mgmt
Customer Records Mgmt

Data

----------------------------- ----

Record Management
System

Figure 89. System Object Model focusing on the viewing, Put-properly-up-for-sale, and
make-an-offer functionalities

Chapter 6. Test

6.3.3 Software Model

353

Software Object Models are presented in this section in order to illustrate the

pattern-based transformation process. As was the case with the System Model,

detail has been limited to put-property-up-for-sale, viewing, and make-an-offer

processes.

Software Object Models are produced through iterative application of patterns to

System Object Models. Figure 90 shows the System Object Model from the

previous section along with the patterns that are applied in order to produce the

Software Object Model.

The sequence of pattern application conforms to that prescribed in the

methodology, i. e. redistribution patterns take precedence, with refactoring patterns

complementing them where needed. Transformations are highlighted in order to

emphasize the effects of each pattern on the model.

As shown in this figure, the Move-Behaviour-Close-to-Data pattern is first applied

to move the relative behaviour to custodians. As a result, the attendant objects lose

their behaviour and become simple intermediaries between external objects and the

custodians. The Remove-Middleman refactoring pattern is hence applied to

establish direct links between the custodians and external objects. Alternatively, the
Poltergeist antipattern can be used with the exact same effect.

Figure 91 shows the resulting Software Object Model, with custodians doing the

processing and data objects providing the data. The main functions- as pertaining
to the put-property-up-for-sale, viewing, and make-an-offer functionalities - are

performed by Property-Record-Custodians, yet processing is typically initiated by

Record-Management-Clerks, who retrieve the relevant property record, assign it to

a custodian, and then request the custodian to perform the required function.

The next and last step is to merge the custodians with their data objects, thus

producing objects encapsulating both state and behaviour. Software Class Models

can then be produced, highlighting classifications of objects and their relationships,

especially aggregation and generalization/specialization.

Chapter 6. Test Original in Colour 354

Propcrt Agent
Bu. er

-------- ------

Message

sage
s

(1cwmB

11 Offer
Request

cnon
Rtquest

1

IL

Buyer Services X
Attendant

X

Buyer Services Mgmt

Processing Offers

P ocessing Viewing Requests

Pro, ding Messaging Faciliti

Propert II Clerk
Seller

----------------- Estate Agency

Repon

Agent Services V
Attendant

Agent Serb ices %igmt

t Processmg Inspection Requests
i

I Providing Reporting Facilities

Pro idmg Messaging Facilities

;. i et Messagef
1`.

ý
ý\ 1 Moir, oenav, ou,

Message
to

Message Repojitory
Clistodiaä

1
Retne, Ing Message

i

Saving Message

Message Repository

n

Data
V

I-

t Property Rao
Agent Record

t Customer Ra
t Transaction R

//

1
1

ýI
I,

1
II
II

1

r/'

Ids

-ýýsr ý X70/ý- 1

rds

ord
eco

Data

I Record Management I
System

McssabW

Response

Seller Services
Attendant

Seller Services Mgmt

Processing Offer Responses

Processing Sale Requests

Proeiding Messaging FactIitt

than

Record

- ----------

Remctormq ,

lemuve middle mar

CI¬rical Services Attendant X

Clerical Services Mgmt

Providing Database Management Facilities

Providing Messaging Facilities

I 2 Data
Get Save
Request

Seller Record
Custodian

Seller Record

Figure 90. Object Model depicting the major patterns applied to convert the System
Object Model into the Software Object Model

Buyer Record
Custodian

Buyer Record

Record Management
Clerk

Property Records Mgmt
Agent Records Mgmt
Customer Records Mgmt

Chapter 6. Test

I Property
Seller

Agent

- --------------- ------------------------------ Estate Agency

System

Message Repository
>tr..:, _e Custodian
H

H, I,, n Message MRmt
Retrieving b1-sage
Saving Mesage

Otter Agent Services Mgml

Re pinne
I'mvtding Retx, rting Fncil ities

-0, Message Repository

Site
Rcyue1

It'H Ine Otter Property Record

Rot ieit Respi, nse Custodian

Otter Sale Buyer Services Mgmt
0 Request I'mcessing Viewing Request.
Ins tii, n I`r'e ßvccssing Offers
Request Seller Services MRmt

Re m
I mcessing Sale Requests Hryw-. t
Pntcessing Offer Responses

Agent Services Atgnu
Processing Inspection Requests

Inclxcnon

Rey ru Property Record

Buyer Record
Custodian

Buyer Record

Seller Record
Data Custodian

Property I
Buyer f

1
Virwing Seller Record
Request Iles.

1

_f
Record Management

Otter Clerk

Property Records
Agent Records

_º
Customer Records

Request fruns: LLtion Record.

Property Records Mgmt
Agent Records MRntt
Customer Records Mgmt

Data

------- ---------------- ------

Record Management
S. s stem

-I

355

11,19"

Clerk

Figure 91. The resulting Software Object Model before merging custodians with data
objects

Chapter 6. Test 356

6.4 Requirements-Based Review of the Test Phase

Table 6 shows the final validation results based on the case studies. As the case

studies have been conducted on small-scale versions of the Library and Estate

Agency systems, and since testing has been focused on methodology subphases

posing the highest development risk, test results have not targeted all requirements

to the same extent; for instance, while modeling-related requirements have been

satisfactorily covered, requirements related to umbrella activities have not been

adequately addressed by the case studies. Therefore, the validation results

presented in Table 6 should be complemented by requirements-based review tables

of Chapters 4 and 5 in order to provide a comprehensive picture.

6.5 Summary and Conclusion

Rather than a one-off activity performed at the end of the development effort,

testing is a continuous, ongoing activity in the meta-methodology applied in this

research, gradually shaping the target methodology through uncovering the flaws

and smoothing the rough edges. Verification and validation is conducted at the end

of each Design-Implementation-Test cycle of the iterative-incremental

methodology development engine. The tasks performed during methodology

testing are the same as in software testing, but since the software being tested here

is a methodology, development situations are used as test data.

Two small-scale business systems -a Library and an Estate Agency - have been

used as test-beds for verifying and validating the methodology. What is being

tested is the ability of the methodology to result in the production of the work-

products, and ultimately the target software system. Since many subphases and

activities of the methodology are either based on well-established software

engineering practices or have been previously used in other object-oriented

methodologies, testing has been mainly focused on activities producing the model

chain, which due to the novel methods and techniques used in its production, poses

the highest development risk.

Verification results have been reported in this chapter as case studies, showing that

enacting the final version of the methodology does indeed result in successful

Chapter 6. Test 357

production of design models, which can then be enriched with architectural design

detail and class- and method prologues, and ultimately converted into the software

system. Validation results, however, are not comprehensive, mainly due to the

limited scale and focus of the testing conducted. Validation results should therefore

be complemented with the requirements-based review results reported in Chapters

4and5.

Chapter 6. Test

Table 6. Validation results (continued on next page)

358

REQUIREMENT I VALIDATION RESULTS I COMMENTS

(I: Irit,. rat1otiulity. Flaws detected III nnideling act stiles in it user guide Al- refer t(, Itx" result -111x

accur'ac), consistency it Instructions refined and perfected In Or flnul version of requirenx rn. hued rr, le.. tabulated it 11M

detinitiun the user guide. end Of Chapter S

('overage if generic Analysis and preliminary design activities, espe'etall\ as Also rvier to fix' re-out, it 11111111 ei s'lit

devek, l, ilietit Iltec')d'le pertaining to nutideling. refilled and IItipn, sed lased re\lew, I. Ihnl. ttu d it In 110 M

icily ties i (ltlier activities not addressed by the case studies I'll. q. ters 4 and S

Hrlrr, u, it. - iesu lt. ,I nyunonxnt h. Iw i
Risk

Validation not addressed by tIn, caw sludges reviews tabulated at Ole end oll ('hupl('1.1
111: 111agen will

mid5
Su ort pp

Rcicr to tue results III n"yulrrnx"nl, h. r+d
t'Ir Project

Validation not addressed by the case studies review. tabulated at fir rush tit (I1: 11,11't''1

umhrell. l nlanueenlenl
ands

acts, mr.
Traceability thn, ughJi"wures validated and mi1nn(1 Al. a, refer it, the results of reyulrenxrw,

(111: 1111 y

Kiwi[re\IC'w s tabulated at the end of

assurance
Chapters 4 and 5

Supported throughout the nu, del chain and the relevant Also refer to lie resod, nt Icquul'ux III,
Brainlessness and

activities. Feature-lists are essential for keeping the based rev less , tAIMLur. l At Ilx (nd ýd
. nr, otllness of transition

model conversion activity on track. I'I apler, 4 "10
hetueen Phases. stage. and

Application of design patterns not addressed by the caw
activities

studies.

Baas in the requirements nurdel of the prohlent donrun, validated as capturing Or

reyuirenrtts.

Fractal nudeling, basis in real-world n>odeling, and

Prurerr seanilessness were validated a enhancing tangibility and

Testability and Tangibility traceability.

it utrtacis, and traceability Tangibility, traceability and the feature-driven nature of

to requirements : utefa -is were validated as enhancing testability through

improving observability, understandability and simplicity

(. see I Pressecut 20041)

Gnruuragentent of active
Krtr-i t� ilk rrýu Its, it iryuurný w. I,. n.. l

Validation not address d by the case studies. rcrirwn tabulated at lie end of ('h. yarrs 4
user invuluenwnt

and S.

Analysis and pre llnun: lrN design %alidated as Ipt ict1C: Ih1C Als refer tll the results ßr1 re Ylll lrt'Itlt' Ills

Ilractlcah1I1ty and and practical based reviews tallll l. in d it 0.. r'INI .1

practicality Validation of the rest lit the Illl'tlullllllllly has o lit leeil Chapters 4 and S

addressed by the case studies.

Methodology instructions and guidelines validated Is Also refer tu the inn lt. d rcyuul nK nlý
Manageability of

sufficient, simple and easy to follow. based re. Iews tabu laced at tit' eibi ,t
complexity

Chapters 4 and s

Extensibility / Reter to the results of tequtrenrut, 1, -ll
C'rlntlgurahlllty / Fle[Ihlllty Validation not addressed by the case studies reviews tabulated at Itie end lit (I1. IpII'I s4

scalabiluy and 5.

Applicability to the two business systems is validated Also refer to the results tit requirvio, iii,
insofar as nndeling is concerned Further validatüm based reviews tahul: ucd itt be cln ý1

Application cope through enactment in large scale devekrpnrnt situations, Chapters 4 an lS

/n(nrrnrmnn .
Sl ctrnl i1 preferably in an industrial context, is stnmgly advised.

Applicability to other kinds of infomution systems has not
been addressed by the case studies

Chapter 6. Test

Table 6. Contd.

359

REQUIREMENT VALIDATION RESULTS COMNIENTS

Structural, functional and hrh. tsioural a>fxets of sirr Also refer to tlx' results itt reyuueii nt<

Structural - systems analyzed and designed in the case studies bird review. t. rbul. ucr at llu r iD ýýI

Functional - have been adequately captured, detail hass been I'hulnr r. 4 and i

1lclclv inurd enough to enable tnrdel itamfunnehou H hllsi amine

forward along the [verdeI chain

Analysis and preliminary -design neskchng c; tlidaiei . Also rt-lei iii ilx ". It, .I "'Ito r iui ui.
Suhlx, n

Logical to as practical. ha. r I tev terry tabulated at the rau of
mir

Physical Architectural and detailed design uxrdeling not I lt gtiers 4 and 5
object-

addressed by the case studies.
oriented

Mudrlin, l At different Fractal rmdeling validated as enabling nxtdeling at - Al- refer tu the results if reyuirenu-w,
Iturdeltrig

I on'hil't'
levels if different levels of granularity. based reviews tabulated at the t'it,] ol

granularity Chapters 4 and S

Infon al features have been implemented through Also refer tu the results it reywreweni,
Ftrrncd and (IML and validated through11nt the Ituxtel chain. based review, tahnl: liell at 0. - i'IHI id

hthirnial
Validation (if (untied features not addressed by the Chapters 4 and 5

features

case studies.

Provision of strategies and Detailed specification of dependencies and

techniques for tackling consistency guidelines in the user guide has been

inconsistency and validated as enhancing simplicity as well as useful fier

complexity detecting inconsistencies.

Chapter 7

Conclusion

This chapter presents a summary of the results and contributions of the

development effort reported in previous chapters, together with an analysis of the

achievements and shortcomings. Several suggestions for furthering this research

have also been provided.

7.1 A Summary of Research Results

The following are the main results and contributions of this thesis:

1. A proposed object-oriented software development methodology addressing

some of the problems found in existing methodologies; the following are

the major contributions of this methodology:
1.1. A model-based approach to the development of business

systems integrating the agile feature-driven merits of the FDD

methodology [Palmer and Felsing 2002] with design-based

features of third-generation OOSDMs, particularly Catalysis

[D'Souza and Wills 1998].

1.2. A novel modeling approach built into the methodology

providing seamless and smooth transition from real-world

models of the problem domain to system models and ultimately
to design models, using fractal modeling and pattern-based
transformation

2. A proposed meta-methodology for developing object-oriented software
development methodologies based on a software engineering approach; the
following are the major contributions of this meta-methodology:

2.1. An iterative-incremental lifecycle based on the generic
activities of software development

360

Chapter 7. Conclusion 361

2.2. A process-centred template for describing OOSDMs, and the

results of applying this template to 24 prominent object-

oriented methodologies, process patterns and process

metamodels
2.3. A criteria-based analysis method for identifying strengths and

weaknesses in object-oriented processes (and thereby defining a

set of requirements for the target OOSDM), plus the results of

applying this method to the 24 methodologies, process patterns

and process metamodels mentioned above

2.4. An iterative-incremental requirements-based design method for

producing the blueprint of the target methodology; the method
has been designed in such a way as to provide flexible use of a

multitude of design approaches.

2.5. A User Guide template for providing a pragmatic description of

object-oriented software development methodologies

7.2 Objectives Achieved

As expected in any software engineering effort, the objectives of this methodology

development effort are manifested in the set of requirements identified through

problem-domain analysis (reported in Chapter 3). Identifying the features that

address the requirements is facilitated by the fact that the list of requirements also

provides extensive coverage of methods and techniques found in existing

methodologies that can be adopted to satisfy the requirements. By focusing on

requirements and integrating ideas from existing methodologies, a methodology

has been produced that is relatively simple, makes use of established techniques in

a coherent and intuitive fashion, and addresses key issues of practicality, tangibility

and seamlessness, all of which contribute to its usability by practitioners.

Table 7 shows the requirements addressed in the production of the target

methodology, detailing the methodology features through which the requirements

have been met. As shown in this table, some requirements (i. e. extensibility and

application scope) have been satisfied partially, and will therefore be further

discussed in the next section.

Chapter 7. Conclusion 362

Table 7. Methodology requirements that have been addressed

REQUIREMENT DE AILS OF now HIE REQUIREMºEN r ºL%S BEI AI)lRE. SSEI)
Addressed through the structure of the User Guide template used for deilmng the nrllr' I Iý erl.

which provides it mans for defining the Ilr'tlwedolugy na roll down fashion, guiding and I-n. un"
Claru}. rationahts, accuracy.

the definition process Ion specifying appropriate Revels of dc-toil : 1v 1011M u Ili the ihrer' lvi. ie

cunslstuncy it detinitiun
complementary views 01 the nrtl>�dology fine eis-Based, Work-/'ruJurt(Arrefm rl -Biioe1 , id

Red e"(Produeer)-Based.

/ Addressed at the lifecyele, subprocess and task levels

Coverage of generic
Maintenance has not been covered in full in order to avoid conlminlrnt to n slx'cltic Inalnten', m. e

develupnrnt lifecyclr

i ti
strategy, allowing an iteration ell 11w devekr)1111ent process it appropriate. Maintenance Plantisil r".

vl eS act
however, is conducted during the Transition subprocess.

Risk r Addressed through iterative-incremental development, preliminary analysis, risk based Plannme.

man: tecnx-nt continuous verification and validation, regular product/plan reviews, and continuous IIIIegLlllnQ

Sup1vitt r' Addressed through project planning, scheduling and control activities turlerl-rated 111 the

Project
fir subprocesses of the tnethudolugy, and provisions for continual review and revision of tic Plain,

wabernd
management

throughout the process.

achy lies a- Addressed through regular technical reviews, continuous verification and validation during sel"In-
QU: 111I j

rance s
development, rryuirenx'nts traceability incorporated in the feature based model cumin, and it.

as u
feature-driven nature of activities and tasks,

Y Addressed through 11w anefa -t chain and the iterative-inerenrntal devek, pinent engine n. l. l, ti Seantlessnes and
modeling, systeltl design through homogeneous extension, and pattern-based trau for llaiiou modeling,

vnlue)tl mess of transition
provide a seamless and snnlxlth modeling process -

having the satlr effect on 11w subpl otecct"v milli
between phases, stages and

PI'lll' e\\ around the artefact chain, while plan-bawd feature-driven cyclic developnlrllt provides viltnetll
activities

transition between the design and build activities of the iterative devekipitieiit engine

Y Addressed through
.
features: i. e. due feature-based description of the n"ymrenrnts. and the 1-ti-

Baas in the requirements driven approach governing all development activities throughout the Process

Testability and tangibility of Y Addressed via basis in real-world ur. ldeling, fractal ukldeling, gradual seamless transh nnan, ui

artefacts, and traceability to artefacts through analysis and design, initial design of the system as a IYII111ge11eius entrtmci. ii In

requirements the prohlettl dontain, and the feature-based nature of artefacts throughout 11w process

Encliuragenlent of active / Addressed through constant participation of user re(1rrseniatlves throughout the ptocesS, a feil ice

user involvement adapted from agile development.

Addressed through avoiding complexity at all levels, adhering tu risk-bused drveklpurnt,

Practicability and incorporating project management activities, snaking use of ttrlhods and techniques already Icard

practicality in existing methodologies, and using techniques and strategies for focusing the devrklpurnl 1e- g
feature-driven nadel chain).

Y Addressed through the hierarchical structure of the methodology defuntton. and also via krrlrme
Manageability of complexity

subprocesses, activities and tasks cohesive and easy tu understand.

Y Scalability was addressed through plan-bused, nudel-driven and a cttitecture-centre process

Scalahllity / Extensibility / Extensibility was addressed through keeping the process as a cohesive core organized around a i1"'Irl

chain. Further work is required on defining extension points and extension nrcharnsim

Partially addressed through concentrating on business systems as enllutnmly encounlrn"d into, mit I, ýil Application scope
, y. ten>_..

(DI(orrnuriurt Systems)
Y Applicability to other kinds of information syste1111 h us not been esphired

.- Addressed through using appropriate l, IML-based diagrams :u different lese Is . nu. lural undo rig I. Structural -
addressed through the use of Object Models and Class Models, functional features are uribi, I Functional -
data-flow-oriented Object Models, and Activity Diagral, and luter: r-tkm Diagramm' are used I,

Support for Behas1o Ural

modeling behavioural features.
Lo

gical to Y Addressed through the nv. ldel chain, starting at the prohlenrduncun level and pnxreding e le l. nlyd
oriented

Physical design.
Modeling nnideling

At different
Language >" Addressed through fractal modeling at difherrnt granularity levels (Finterpnse level System level

ut levels
Suhsystenl(Package level

-
litter-object level

-
llltra-object level).

gr: uwlarity

Provision of strategies and Y Inconsistency prevention and resolution is inyllemented through detailed specification of

leclmiyues for tackling dependencies and consistency guidelines.

Inconsistency and 'r Complexity is tackled through fractal nºrdeling, the layered structure of the mKlel%, and IIMI-%

con>rlexity complexity management features.

Chapter 7. Conclusion 363

The hybrid iterative process used for designing the methodology is based on

prioritizing the requirements, both as a complexity management technique and a

flexibility enhancement feature (as reported in Chapter 4). As a result,

requirements relevant to the core target areas in object-oriented methodologies

where improvement is needed (Compactness, Extensibility. True eab, Iiýv to

Requirements, Consistency. Testability of Arte/ acts, Tangibility of Arie/runts, and

Visible Rationality; as listed in Chapter 1) have been assigned higher priority

during the first few crucial iterations of the design engine. This explains why

fractal modeling and the seamless model chain, for example, have been assigned

such a pivotal role in the methodology.

7.3 Shortcomings

A number of requirements have not been addressed, mainly due to the need for

further practical experience with the current version of the methodology, or in

order to avoid undue complexity. Table 8 shows the requirements that have not

been addressed in the current version of the methodology, along with details of

why implementation has not been considered and ideas for future enhancements to

the methodology in order to satisfy the requirements.

Table 8. Methodology requirements that have not been addressed in the current
version of the methodology

REQUIREMENT DETAILS IDEAS FOR IMIll. EMENI': \'I'ION

Practical application of the methodology to

industrial projects, i. e. basest on industrial -' In cases where 1-D[) has been shown to hr

scenarios and taking place to an industlcii
sperutnlnally useful, an imploded vrrshln ot tlr

context, is required in order to identity unplena"nted nx"thidnklgy with the rnxlel (' nntiguruhility
potentials for variation, and thereby detennine chain Jrengllnstzrd seenis to he of Ixataal

ways tu parameterize the process therefore, merit. The model chain is t1wn"bsre n Is. Irnn. l

contigurability has not been incorporated at area for purwlrtenznnom Prurris
this stage.

. Although useful methods for implementing : Inyplrnwutmg I t' stsshly (Jyn: wuc
flexibility already exist, it has been decided to clsntigurubilityt via incorporating pi-r. '

Plcvlhlfily keep the mrthxk)k)gy in its present fhan until review sessions Isnntlur tu these seen m
data from practical experience wllh Ih" c'111Tc111 ('rysl: ll (Tear I ('o LI u11 1nl4II - 111,

ser'llsn of the Inethxklklgy has Irr. n v: uh"rest IsisIisissisg 11k, 11Fssl

Suptw, n for il urncrl features not considered in il. im nl
Mudding Funlwl

abject unewed versioon in order to keep the nrth doingy , 'e Incorporating (IMIJI n'l.
La, intl11, nP

loodeling

fe. iture\

def notion as simple as possible.

Chapter 7. Conclusion 364

In addition to requirements not addressed in the current version of the

methodology, there are also requirements that admittedly have not been fully met.

As shown in Table 7, these requirements include:

o Extensibility: extension points and extension mechanisms have not been

defined, mainly due to the need for further practical experience with the

methodology in order to identify potential ways of extending the process.
Exploring the applicability of the methodology to various types of systems,

at different levels of criticality and scale, is necessary in order to gain

adequate knowledge of extensions required and the feasibility of their

incorporation into the methodology. However, designing the methodology

as a core - avoiding complexity and undue commitment to unessential and

complementary methods and techniques at all levels - is definitely

instrumental in allowing extensibility to be implemented in future versions

of the methodology.

o Application Scope: although the methodology is targeted at Information

Systems, the focus has been mostly limited to Business Systems; hence,

behavioural modeling features are lacking. As an indicative example, state-
dependent behaviour - which is the distinguishing feature of real-time

aspects of information systems - is not captured. Improving the

methodology in this regard requires the incorporation of State-Transition

modeling into the modeling process, and emphasizing the mechanisms

already available in UML for expressing timing constraints.

7.4 Suggestions for Further Research

There are several potential courses for furthering or complementing the research

reported in this dissertation, some of which are listed below:

" Engineering variants of the methodology targeting other types of
systems, e. g. safety-critical: the pattern-based model transformation

approach can potentially be used for developing system types other than
Business systems, yet the current model chain lacks formal modeling
features, and its applicability to systems requiring more precise behavioural

modeling is not certain. Variants of the methodology should also address

Chapter 7. Conclusion 365

the use of specialized sets of design patterns for model transformation,

especially for introducing context-specific structure and behaviour in the

models.

" Applying the methodology to case studies of larger scope: the sample

systems used for the verification and validation of the methodology have

been intentionally selected to be small in scope, and the focus has mostly
been on the practicability of the modeling approach. In order to test the

scalability of the methodology, larger systems should be considered for

testing.

" Expressing the methodology and meta-methodology processes in a
Process Modeling Language (PML): this will be especially useful for

static verification of the methodology and/or enactment in a Process-

centred Software Engineering Environment (PSEE) [Ambriola et al. 1997,

Barthelmess 2003].

" Empirical analysis of the usability of the methodology: an empirical

analysis will also complement the testing results already obtained: although

many components of the methodology have already been used in existing

methodologies, the overall effectiveness of many aspects of the

methodology - especially the umbrella activities and the actual
development tasks of the iterative-incremental engine - cannot be properly
tested without enactment in actual development projects based on industrial

scenarios and taking place in an industrial context. Practical experience

will also help identify potential for making enhancements to the

methodology, e. g. to implement features such as configurability and

extensibility.

" Comparison of the methodology to other OOSDMs: the aim is to assess
the contributions of the methodology using existing comparison
frameworks. The criteria-based evaluation method presented in this thesis
is of little use for this purpose, since it has already been used for defining

methodology requirements, based on which the methodology was
developed in the first place.

" Application of the meta-methodology to the development of other
methodology types: the meta-methodology is general enough to be used
for developing any type of methodology, provided that there are enough

Chapter 7. Conclusion 366

base methodologies to provide the requirements and process components.
Agent-oriented development, for example, is a suitable candidate, since the

field is mature enough to provide established development methodologies

for analysis and integration.

Abbreviations

ADFD Action Data Flow Diagram

ADISSA Architectural Design of Information Systems based on
Structured Analysis

ASD Adaptive Software Development

BON Business Object Notation

CORBA Common Object Request Broker Architecture

CRC Class-Responsibility-Collaborator

DFD Data Flow Diagram

DM Dynamic Model

DMC Data Management Component

DSDM Dynamic Systems Development Method

ERD Entity-Relationship Diagram

EUP Enterprise Unified Process

FDD Feature-Driven Development

FM Functional Model

FOOM Functional and Object-Oriented Methodology

HIC Human Interaction Component

IDL Interface Definition Language

JAD Joint Application Development

MDA Model-Driven Architecture

OBM Object-Behaviour Model

367

Abbreviations 368

OCL Object Constraint Language

OIM Object Interaction Model

OM Object Model

OMG Object Management Group

OML OPEN Modeling Language

OMT Object Modeling Technique

00 Object-Oriented

OOA Object-Oriented Analysis

OOD Object-Oriented Design

OODLE Object Oriented Design LanguagE

OOP Object-Oriented Programming

OOSDM Object-Oriented Software Development Methodology

OOSE Object-Oriented Software Engineering

OOSP Object-Oriented Software Process

OPD Object Process Diagram

OPEN Object-oriented Process, Environment, and Notation

OPF OPEN Process Framework

OPL Object-Process Language

OPM Object-Process Methodology

ORM Object-Relationship Model

OSA Object-oriented Systems Analysis

PDC Problem Domain Component

PIM Platform-Independent Model

PML Process Modeling Language

Abbreviations

PSEE Process-centred Software Engineering Environment

PSM Platform-Specific Model

Q/A Quality Assurance

RAD Rapid Application Development

RDD Responsibility-Driven Design

RUP Rational Unified Process

SA Structured Analysis

SD Structured Design

SDM Software Development Methodology

SPEM Software Process Engineering Metamodel

SQL Structured Query Language

SSADM Structured Systems Analysis and Design Method

TMC Task Management Component

UI User Interface

UML Unified Modeling Language

USDP Unified Software Development Process

USPM Unified Software Process Metamodel

XP eXtreme Programming

369

References

ABRAHAMSSON, P., SALO, 0., RONKAINEN, J., AND WARSTA, J. 2002. Agile

Software Development Methods: Review and Analysis. VTT Publications, Oulu,

Finland.

ABRAHAMSSON, P., WARSTA, J., SIPONEN, M. T., AND RONKAINEN, J. 2003. New

directions on agile methods: A comparative analysis. In Proceedings of the

International Conference on Software Engineering -ACM/1CSE 2003,244-254.

ALABISO, B. 1988. Transformation of dataflow analysis models to object oriented
design. In Proceedings of ACM/OOPSLA'88 Conference, 335-353.

AMBLER, S. W. 1998a. Process Patterns: Building Large-Scale Systems Using

Object Technology. Cambridge University Press, New York, NY.

AMBLER, S. W. 1998b. An introduction to process patterns. Published on the Web

at: http: //www. ambysoft. com/processPattern df, visited in April 2006.

AMBLER, S. W. 1999. More Process Patterns: Delivering Large-Scale Systems

Using Object Technology. Cambridge University Press, New York, NY.

AMBLER, S. W. 2005. Introduction to the Enterprise Unified Process. Available at:
http: //www. enteryriseuniuiednrocess. info/downloads/euplntroduction pdf, visited in

April 2006.

AMBLER, S. W., AND CONSTANTINE, L. L. 2000a. The Unified Process Inception

Phase. CMP Books, Gilroy, CA.

AMBLER, S. W., AND CONSTANTINE, L. L. 2000b. The Unified Process Elaboration

Phase. CMP Books, Gilroy, CA.

370

References 371

AMBLER, S. W., AND CONSTANTINE, L. L. 2000c. The Unified Process

Construction Phase. CMP Books, Gilroy, CA.

AMBLER, S. W., AND CONSTANTINE, L. L. 2002. The Unified Process Transition

and Production Phase. CMP Books, Gilroy, CA.

AMBLER, S. W., NALBONE, J., AND VIZDOS, M. J. 2005. The Enterprise Unified

Process: Extending the Rational Unified Process. Prentice-Hall, Englewood Cliffs,

NJ.

AMBRIOLA, V., CONRADI, R., AND FUGGETTA, A. 1997. Assessing process-centered

software engineering environments. ACM Transactions on Software Engineering

and Methodology 46,3 (July), 283-328.

AVISON, D. E., AND FITZGERALD, G. 2003. Where now for development

methodologies? Communications of the ACM 46,1 (January), 79-82.

BARTHELMESS, P. 2003. Collaboration and coordination in process-centered

software development environments: A review of the literature. Information and
Software Technology 45,13,911-928.

BECK, K. 1999. Extreme Programming Explained: Embrace Change. Addison-

Wesley, Reading, Mass.

BECK, K., AND ANDRES, C. 2004. Extreme Programming Explained: Embrace

Change, 2nd ed. Addison-Wesley, Reading, Mass.

BECK, K., ET AL. 2001. Manifesto for agile software development. Published on the
Web at: http: //agilemani esto. or , visited in November 2004.

BOEHM, B. 2006. Some future trends and implications for systems and software

engineering processes. Systems Engineering 9,1 (Spring), 1-19.

References 372

BOEHM, B., AND TURNER, R. 2004. Balancing Agility and Discipline: A Guide for

the Perplexed. Addison-Wesley, Reading, Mass.

BOEHM, B., AND TURNER, R. 2005. Management challenges to implementing agile

processes in traditional development organizations. IEEE Software 22,5

(September/October), 30-39.

BOOCH, G. 1986. Object-oriented development. IEEE Transactions on Software

Engineering 12,2 (February), 211-221.

BOOCH, G. 1991. Object-Oriented Design with Applications.

Benjamin/Cummings, Redwood City, CA.

BOOCH, G. 1994. Object Oriented Analysis and Design with Applications.

Benjamin/Cummings, Redwood City, CA.

BOOCH, G., MARTIN, R. C., AND NEWKIRK, J. 1998. Object Oriented Analysis and

Design with Applications, 2nd ed. (Unpublished). Addison Wesley, Reading, Mass.

The unpublished chapter on RUP and dX is available on the Web at:
http: //www. objectmentor. com/resources/articies/RUPvsXP. i)dL

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1999. Unified Modeling Language-

User's Guide. Addison-Wesley, Reading, Mass.

BRINKKEMPER, S. 1996. Method engineering: engineering of information systems
development methods and tools. Information and Software Technology 38,4,275-

280.

BROWN, W. J., MALVEAU, R. C., MCCORMICK, H., AND MOWBRAY, T. 1998.

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley,

New York, NY.

References 373

BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M.

1996. Pattern Oriented Software Architecture: A System of Patterns. Wiley, New

York, NY.

CAPRETZ, L. F. 2003. A brief history of the object-oriented approach. ACM

SIGSOFT Software Engineering Notes 28,2 (March).

COAD, P., LEFEBVRE, E., AND DE LUCA, J. 1999. Java Modeling in Color with
UML: Enterprise Components and Process. Prentice-Hall, Englewood Cliffs, NJ.

COAD, P., AND YOURDON, E. 1991a. Object-Oriented Analysis, 2nd ed. Yourdon

Press/Prentice-Hall, Englewood Cliffs, NJ.

COAD, P., AND YOURDON, E. 1991b. Object-Oriented Design. Yourdon

Press/Prentice-Hall, Englewood Cliffs, NJ.

CocKBURN, A. 1998. Surviving Object-Oriented Projects: A Manager's Guide.

Addison-Wesley, Reading, Mass.

COCKBURN, A. 2001. Agile Software Development: Software through People.

Addison-Wesley, Reading, Mass.

COCKBURN, A. 2004. Crystal Clear: A Human-Powered Methodology for Small

Teams. Addison-Wesley, Reading, Mass.

COLEMAN, D., ARNOLD, P., BODOFF, S., DOLLIN, C., GILCHRIST, H., HAYES, F.,

AND JEREMAES, P. 1994. Object-Oriented Development: The Fusion Method.

Prentice-Hall, Englewood Cliffs, NJ.

COLEMAN, D., JEREMAES, P., AND DOLLIN, C. 1992. Fusion: A Systematic Method

for Object-Oriented Development. Hewlett Packard Laboratories.

References 374

COOK, S., AND DANIELS, J. 1994. Designing Object Systems: Object-Oriented

Modeling with Syntropy. Prentice-Hall, Englewood Cliffs, NJ.

COPLIEN, J. 0.1994. A development process generative pattern language. In

Proceedings of the First Annual Conference on Pattern Languages of

Programming (PLOP).

CORAM, M. AND BOHNER, S. 2005. The impact of agile methods on software

project management. In Proceedings of the 12th IEEE International Conference

and Workshops on the Engineering of Computer-Based Systems (Ecbs'OS), 363-

370.

CRYSTAL METHODOLOGIES ORGANIZATION. 2001. Adaptive Software

Development process framework. PowerPoint presentation available on the Web at:

htty: //crystalmethodologies. orR/processes/asd/asdprocess. ppt, visited in January

2003.

D'SoUZA, D. F., AND WILLS, A. C. 1995. Catalysis - practical rigor and refinement:
Extending OMT, Fusion, and Objectory. Available on the Web at:

htt "//www. catalysis. ore/publications/papers/1995-catal sis fusion. pdf, visited in

April 2006.

D'SOUZA, D. F., AND WILLS, A. C. 1998. Objects, Components, and Frameworks

with UML: The Catalysis Approach. Addison-Wesley, Reading, Mass.

DEMARCO, T. 1978. Structured Analysis and System Specification. Prentice-Hall,

Englewood Cliffs, NJ.

DEMEYER, S., DUCASSE, S., AND NIERSTRASZ, O. 2003. Object-Oriented

Reengineering Patterns. Morgan-Kauffman, San Francisco, CA.

DERR, K. W. 1995. Apply OMT. " A Practical Step-by-step Guide to Using the Object

Modeling Technique. Cambridge University Press, New York, NY.

References 375

DORI, D. 1995. Object-process analysis: Maintaining the balance between system

structure and behaviour. Journal of Logic and Computation 5,2 (April), 227-249.

DORI, D. 2002a. Object-Process Methodology: A Holistic Systems Paradigm.

Springer, Berlin-New York.

DORI, D. 2002b. Why significant UML change is unlikely. Communications of the
ACM 45,11 (November), 82-85.

DOWNS, E., CLARE, P., AND COE, I. 1988. Structured Systems Analysis and Design

Method: Application and Context. Prentice-Hall International, UK.

DSDM CONSORTIUM. 2003. DSDM: Business Focused Development, 2nd ed. J.

Stapleton, Ed. Addison-Wesley, Reading, Mass.

EMBLEY, D. W., KURTL, B. D., AND WOODFIELD, S. N. 1992. Object-Oriented

Systems Analysis: A Model-Driven Approach. Yourdon Press/Prentice-Hall,

Englewood Cliffs, NJ.

ENGELS, G., AND GROENEWEGEN, L. 2000. Object-oriented modeling: a roadmap.
In Proceedings of the Conference on the Future of Software Engineering -
ACM/ICSE 2000,103-116.

FiNKEISTEIN, A., AND KRAMER, J. 2000. Software engineering: a roadmap.
Proceedings of the Conference on the Future of Software Engineering -ACM/ICSE
2000,3-22.

FIRESMITH, D., AND HENDERSON-SELLERS, B. 2001. The OPEN Process

Framework: An Introduction. Addison-Wesley, Reading, Mass.

FOWLER, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Reading, Mass.

References 376

FOWLER, M. 2004. Model Driven Architecture. Published on the Web at:
httn: //martinfowler. com/bliki/ModelDrivenArchitecture. html, visited in April 2006.

FUGGETTA, A. 2000. Software process: a roadmap. In Proceedings of the

Conference on the Future of Software Engineering -ACM/ICSE 2000,25-34.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley, Reading, Mass.

GE, X., PAIGE, R. F., POLACK, F. A. C., CHIVERS, H., AND BROOKE, P. J. 2006.

Agile development of secure web applications. In Proceedings of the International

Conference on Web Engineering (ICWE2006).

GERVAIS, M. P. 2002. Towards an MDA-oriented methodology. In Proceedings of

the 26th Annual International Computer Software and Applications Conference

(COMPSAC2002), 265-270.

GRAHAM, I. 2001. Object-oriented Methods: Principles and Practice, 3rd ed.
Addison-Wesley, Reading, Mass.

GRAHAM, I., HENDERSON-SELLERS, B., AND YOUNESSI, H. 1997. The OPEN

Process Specification. Addison-Wesley, Reading, Mass.

HARMSEN, A. F. 1997. Situational Method Engineering. Moret Ernst & Young.

HENDERSON-SELLERS, B. 2003. Method engineering for 00 systems development.

Communications of the ACM 46,10 (October), 73-78.

HENDERSON-SELLERS, B., AND GRAHAM, I. 1996. OPEN: Toward method

convergence? IEEE Computer 29,4 (April), 86-89.

HIGHSMTTH, J. 1997. Messy, exciting, and anxiety-ridden: Adaptive software
development. American Programmer 10,4 (April), 23-29.

References 377

HIGHSMITH, J. 2000a. Adaptive Software Development: A Collaborative Approach

to Managing Complex Systems. Dorset House, New York, NY.

HIGHSMITH, J. 2000b. Retiring lifecycle dinosaurs. Software Testing and Quality

Engineering 2,4 (July/August), 22-28.

HIGHSMITH, J. 2002. Agile Software Development Ecosystems. Addison-Wesley,

Reading, Mass.

HODGE, L. R., AND MOCK, M. T. 1992. A proposed object-oriented development

methodology. Software Engineering Journal 7,2 (March), 119-129.

ISODA, S. 2001. Object-oriented real-world modeling revisited. Journal of Systems

and Software 59,2 (November), 153-162.

JACOBSON, I. 1987. Object-oriented development in an industrial environment. In

Proceedings of ACMIOOPSLA'87,183-191.

JACOBSON, L, BOOCH, G., AND RUMBAUGH, G. 1999. Unified Software

Development Process. Addison-Wesley, Reading, Mass.

JACOBSON, I., CHRISTERSON, M., JONSSON, P., AND ÖVERGAARD, G. 1992. Object-

Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley,

Reading, Mass.

KABELT, J., AND SHOVAL, P. 2003. Software analysis process - which order of

activities, is preferred? An experimental comparison using FOOM methodology. In

Proceedings of the IEEE International Conference on Software-Science,

Technology and Engineering, 111-122.

KARAM, G. M., AND CASSELMAN, R. S. 1993. A cataloging framework for software
development methods. IEEE Computer 26,2 (February), 34-45.

References 378

KROLL, P., AND KRUCHTEN, P. 2003. The Rational Unified Process Made Easy: A

Practitioner's Guide to Rational Unified Process. Addison-Wesley, Reading, Mass.

KRUCFTEN, P. 2001. A process engineering metamodel. Available on the Web at:
httn"//www_forsoft. de/zen/sdnn02/naners/KrucOl. pdf, visited in April 2006.

KRUCHTEN, P. 2003. Rational Unified Process: An Introduction, 3rd ed. Addison-

Wesley, Reading, Mass.

KuMAR, K., AND WELKE, R. J. 1992. Method engineering: a proposal for situation-

specific methodology construction. In Systems Analysis and Design: A Research

Agenda. Cotterman, W. W., and Senn, J. A. Eds. Wiley, 257-268.

LANG, N. 1993. Shlaer-Mellor object-oriented analysis rules. Software Engineering

Notes 18,1 (January), 54-58.

LANG, K., FRANCE, R., AND BRUEL, J. 2000. A semantic comparison of Fusion and
Syntropy. The Computer Journal 43,6,451-468.

MEYER, B. 1997. Object-oriented Software Construction, 2nd ed. Prentice-Hall,

Englewood Cliffs, NJ.

MOCK, M. T., AND HODGE, L. R. 1992. An exercise to prototype the object-oriented
development process. Software Engineering Journal 7,2 (March), 114 -118.

MONARCHI, D. E., AND PUHR, G. I. 1992. A research typology for object-oriented

analysis and design. Communications of the ACM 35,9 (September), 35-47.

NERSON, J. 1992, Applying object-oriented analysis and design. Communications

of the ACM 35,9 (September), 63-74.

NERUR, S., MAHAPATRA, R., AND MANGALARAJ, G. 2005. Challenges of migrating

to agile methodologies. Communications of the ACM 48,5 (May), 73-78.

References 379

NUSEIBEH, B., AND EASTERBROOK, S. 2000. Requirements engineering: A

roadmap. In Proceedings of the Conference on the Future of Software Engineering

- ACM/ICSE 2000,35-46.

OMG. 2001. Model Driven Architecture (MDA). Object Management Group

(OMG).

OMG. 2002. Software Process Engineering Metamodel Specification (v1.0). Object

Management Group (OMG).

OMG. 2003. Unified Modeling Language Specification (v1.5). Object Management

Group (OMG).

OMG. 2004. Unified Modeling Language Specification (v2.0). Object Management

Group (OMG).

OPEN CoNsoRTIUM. 2000. What is OPEN? Published on the Web at:
http: //www. open. org. au/Introduction/main. html, visited in April 2006.

OSTERWEIL, L. J. 1987. Software processes are software too. In Proceedings of the
9`h International Conference on Software Engineering, 2-13.

OSTERWEIL, L. J. 1997. Software processes are software too, revisited: An invited

talk on the most influential paper of ICSE 9. In Proceedings of the 19'h

International Conference on Software Engineering, 540-548.

PAIGE, R., AND Osmon , J. S. 2002, The single model principle. Journal of Object

Oriented Technology 1,5 (November-December), 63-81.

PALMER, S. R., AND FELSING, J. M. 2002. A Practical Guide to Feature-Driven

Development. Prentice-Hall, Englewood Cliffs, NJ.

}

References 380

PRESSMAN, R. S. 2004. Software Engineering: A Practitioner's Approach, 6th ed.
McGraw-Hill, New York, NY.

RALYT$, J., DENECK$RE, R., AND ROLLAND, C. 2003. Towards a generic model for

situational method engineering. In Proceedings of CAiSE 2003 (LNCS 2681), 95.

110.

RALYT$, J., ROLLAND, C., AND DENECK$RE, R. 2004. Towards a meta-tool for

change-centric method-engineering: A typology of generic operators. In

Proceedings of CAiSE 2004 (LNCS 3084), 202-218.

RAMSIN, R. 1995. Detailed Inspection and Evaluation of Object-Oriented Software

Development Methodologies. MSc Thesis (in Persian). Department of Computer

Engineering, Sharif University of Technology, Tehran, Iran. Submitted in February

1995.

RAMsIN, R., AND PAIGE, R. F. 2004. Process-centred review of object-oriented

software development methodologies. Technical Report YCS-2004-381. University

of York, York, UK.

REENSKAUG, T., WOLD, P., AND LEHNE, 0.1996. Working with Objects: The

OOram Software Engineering Method. Manning Publications, Greenwich, Cr.

RUMBAUGH, J. 1994. Getting started: Using use cases to capture requirements.
Journal of Object-Oriented Programming 7,5 (September), 8-23.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN, W. 1991.

Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ.

SCHUH, P. 2005. Integrating Agile Development in the Real World. Charles River

Media, Hingham, Mass.

1ý

References 381

SCHWABER, K. 1995. SCRUM development process. In Proceedings of the

ACM/OOPSLA'95 Workshop on Business Object Design and Implementation, also

available on the Web at: http: //jeffsutherland. conVoopsla/schwapub. pdf.

SCHWABER, K. 2004. Agile Project Management with Scrum. Microsoft Press,

Redmond, WA.

SCHWABER, K., AND BEEDLE, M. 2001. Agile Software Development with Scrum.

Prentice-Hall, Englewood Cliffs, NJ.

SEIDEWITL, E., AND STARK, M. 1986. Towards a general object-oriented software

development methodology. In Proceedings of the First International Conference

on Ada Programming Language Applications, 1-14.

SHLAER, S., AND MELLOR, S. J. 1988. Object-Oriented Systems Analysis: Modeling

the World in Data. Prentice-Hall, Englewood Cliffs, NJ.

SHLAER, S., AND MELLOR, S. J. 1992. Object Lifecycles: Modeling the World in

States. Prentice-Hall, Englewood Cliffs, NJ.

SHLAER, S., AND MELLOR, S. J. 1996. The Shlaer-Mellor method. Published on the

Web at: httn: //www. nrt. se/nrt/PTpdf/smmethod. pdf, visited in January 2003.

SHOVAL, P. 1988. ADISSA: Architectural design of information systems based on

structured analysis. Information Systems 13,2,193-210.

SHOVAL, P., AND KABELI, J. 2001. FOOM: Functional- and object-oriented analysis

and design of information systems: An integrated methodology. Journal of
Database Management 12,1 (January-March), 15-25.

SIEGEL, J., AND OMG. 2001. Developing in OMG's Model Driven Architecture

(MDA). Object Management Group (OMG).

References 382

SOMMERVILLE, I. 2004. Software Engineering, 7th ed. Addison-Wesley, Reading,

Mass.

THOMAS, D. 2004. MDA: Revenge of the modelers or UML utopia. IEEE Software

21,3 (May/June), 22-24.

TURK, D., FRANCE, R., AND RUMPE, B. 2005. Assumptions underlying agile

software-development processes. Journal of Database Management 16,4

(October-December), 62-87.

WALDEN, K., AND NERSON, J. 1995. Seamless Object-Oriented Software

Architecture. Prentice-Hall, Englewood Cliffs, NJ.

WALKER, I. J. 1992. Requirements of an object-oriented design method. Software

Engineering Journal 7,2 (March), 102-113.

WEBSTER, S. 1996. On the evolution of 00 methods. Available on the Web at:

http: //dec. bournemouth. ac. uk/staff/swebster/OOmeth_evol_complete. html, visited

in January 2003.

WELLS, D. 2003. Extreme programming: A gentle introduction. Published on the

Web at: http: //www. extremeproQramming. or9. visited in April 2006.

WIRFS-BROCK, R., AND MCKEAN, A. 2002. Object Design: Roles, Responsibilities

and Collaborations. Addison-Wesley, Reading, Mass.

WIRFS-BROCK, R., WILKERSON, B., AND WIENER, R. 1990. Designing Object.

Oriented Software. Prentice-Hall, Englewood Cliffs, NJ.

WORDSWORTH, J. 1992. Software Development with Z: Practical Approach to

Formal Methods in Software Engineering. Addison-Wesley, Reading, Mass.

References 383

YOURDON, E., AND CONSTANTINE, L. L. 1979. Structured Design. Prentice-Hall,

Englewood Cliffs, NJ.

