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Abstract 

Software Engineering as a discipline has provided us with methodologies for 

developing software systems, yet it can also be used for developing methodologies 

themselves; after all, as observed and aptly stated by prominent researchers, 

software development methodologies are software too. 

In a bid to address the problems plaguing object-oriented software development 

processes, this thesis presents a software engineering approach to methodology 

development: that is, through the generic software engineering phases of Analysis, 

Design, Implementation, and Test, applied in a risk-driven and iterative- 

incremental lifecycle. This abstract methodology engineering process has been 

used for developing an object-oriented methodology, and has thereby gradually 

evolved into a concrete lifecycle and meta-methodology for developing object- 

oriented methodologies. 

As a further contribution of this thesis, the methodology that has been developed 

through application of the above meta-methodology addresses several key 

problems currently afflicting object-oriented software development processes. 

Targeting information systems, the methodology is Feature-Driven and iterative- 

incremental, and is based on smooth and seamless transition from real-world 

problem domain models to system models, and ultimately to design models. The 

system is initially designed as a homogeneous extension to the problem domain, 

using the same types of elements seen in the problem domain, thus smoothing the 

transition process. Seamless transition is achieved via the use of reengineering 

patterns, design patterns and refactoring patterns for iteratively transforming the 

system models into software design models through redistributing functionalities 

and refining the structure. Typical anomalies resulting from real-world problem 

domain modeling are thereby eradicated, while keeping the models tangible to both 

users and developers. 
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Chapter 1 

Introduction 

Software engineering has been evolving over the past thirty years, but it has never 

completely solved the software crisis [Pressman 2004]. As an integral part of the 

discipline of software engineering, software development methodologies have also 

evolved, from shallow and informal in-house methodologies of the late 1960s to 

the object-oriented methodologies of the 1990s and the new millennium. In the 

face of fierce resistance and inertia, paradigm shifts have been long and painful, yet 

Object-Oriented Software Development Methodologies (OOSDMs) have managed 

to survive, and indeed, prosper. The status quo, however, is far from desirable; 

object-oriented methodologies have been around for two decades, yet many of the 

problems associated with these methodologies two decades ago still remain 

unresolved today. 

Aimed at addressing the problems plaguing OOSDMs, this thesis presents a 

software engineering approach to methodology development, proposing a 

methodology for requirements-based development of OOSDMs and applying it to 

produce a methodology. The resulting methodology is described in detail, as is the 

meta-methodology used for producing it, with methodology requirements used for 

validating the implemented methodology. 

This chapter presents the motivations behind this thesis, its objectives and scope, 

and the research methodology used. A summary of the results has been included, 

enumerating the main contributions of the thesis. The structure of the remaining 

chapters of the thesis has also been delineated. 

15 



Chapter 1. Introduction 

1.1 Motivations 

16 

This thesis has been motivated by problems afflicting object-oriented software 

development methodologies. This section presents the basis for the thesis, 

illuminating the problem areas and emphasizing the need for a comprehensive 

stocktaking of what has been achieved, and what remains to be done. Different 

approaches to methodology development are discussed, and arguments put forward 

as to why a systematic engineering approach is required. As further instances of 

motivations behind this thesis, the final subsection lists a number of relevant 

research roadmaps identified by the software engineering community. 

1.1.1 The Need for a Retrospective Appraisal 

The applicability of the object-oriented approach to systems analysis and design 

was realized in the mid 1980s, and as a result, the software industry witnessed the 

advent of a plethora of object-oriented software development methodologies. These 

methodologies were widely acclaimed as promising means for tackling the 

software crisis, yet their sheer number and diversity became detrimental to their 

widespread adoption into the software engineering community. The ensuing 

"Methodology War" led to efforts aimed at unification and standardization in the 

mid 1990s, resulting in the development of the UML and integrated (third 

generation) methodologies [Graham 2001]. This promised an end to the 

methodology war, but the present situation is far from what was initially expected. 

Attempts at integration, unification and standardization have actually aggravated 

the problems of complexity and inconsistency, giving rise to a new family of 

lightweight, agile methodologies, some of which eccentrically defy the long- 

established values of modeling and process-based development [Boehm and Turner 

2004]. The integrated, heavyweight methodologies are very complex, and some of 

their competitors are little more than controlled code-&-fix methods based on good 

programming practices. While integrated methodologies are encumbered with 

unwieldy processes, agile methodologies have tried their best to have as little 

explicit process as possible. 

The evolution process seems to have gone astray, and as a result, we are witnessing 
the return of some of the older methodologies (such as RDD [Wirfs-Brock et al. 
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1990, Wirfs-Brock and McKean 2002]). At the same time, some of the 

methodologies or variants introduced today (such as EUP [Ambler and Constantine 

2000a], OPM [Dori 2002a], and FOOM [Shoval and Kabeli 2001]) do not even 

adhere to UML modeling conventions. On the other hand, the OMG's Model- 

Driven Architecture (MDA) [OMG 2001], the general development approach 
based on transforming logical models of the system (called Platform-Independent 

Models - PIMs) into physical implementation models (called Platform-Specific 

Models - PSMs) [Siegel and OMG 2001], is still in its early stages of development. 

It is by no means mature enough to spawn serious methodologies, explaining the 

lack of rigour in the few such methodologies so far introduced (such as [Gervais 

2002]). Even though MDA has been hailed by its proponents as a panacea, many 

prominent figures in software engineering have expressed serious doubts as to the 

very feasibility of the MDA approach [Thomas 2004, Fowler 2004]. 

The course of events suggests that any effort aimed at enhancing object-oriented 

methodologies should also consider the abundant capabilities of older 

methodologies, neglected during the integration euphoria. In addition, special 

attention should be given to the fact that today's integrated methodologies and their 

agile counterparts have no other choice but to converge. In fact, there are signs of 

convergence [Boehm and Turner 2004] proving that the imbalance caused by the 

eccentric leanings of the two camps, disRUPtive overindulgence on one side and 

eXtreme negligence on the other, is prompting the call to moderation. Recent 

advances in the fields of process metamodeling and process patterns have also 

opened new possibilities for ameliorating the status quo. 

A closer look at the present state of affairs in the field of object-oriented software 
development methodologies shows numerous deficiencies, including: 

1. Requirements engineering is still the weak link, and requirements 
traceability is rarely supported; requirements are either not adequately 

captured or partially lost or corrupted during the development process 
[Nuseibeh and Easterbrook 2000]. 

2. Model inconsistency is a dire problem. UML has exacerbated the situation 
instead of improving it [Paige and Ostroff 2002, Dori 2002a, b]. 
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3. Integrated methodologies are too complex to be effectively mastered, 

configured, and enacted [Highsmith 2000b, Boehm and Turner 2004]. 

Although most of them are designed in such a way as to accommodate 

customization and tailoring down, in practice they tend to rapidly build up 

and get out of hand [Boehm and Turner 2004]. 

4. Despite remarkable achievements, agile methodologies are still not mature 

enough [Abrahamsson et al. 2003, Boehm and Turner 2004, Boehm and 

Turner 2005, Coram and Bohner 2005, Nerur et al. 2005, Turk et al. 2005, 

Boehm 2006]; the following are some of the more commonly cited 

problems: 

a. Unrealistic assumptions (e. g. Scrum, as elaborated in Section 3.4.2.3) 

b. Lack of scalability 

c. Lack of a specific, unambiguous process (e. g. XP and Crystal, as 

elaborated in Section 3.4.2.3) 

5. Seamless development, pioneered by seminal methodologies, is not 

adequately appreciated and supported in modern-day methodologies [Paige 

and Ostroff 2002]. 

Even though object-oriented software development methodologies suffer from 

various kinds of problems, they are still considered state of the art, and research 

aimed at improving them is an ongoing evolutionary process [Capretz 2003, 

Boehm and Turner 2004]. The status quo of the field clearly shows potential for 

improvement through addressing the abovementioned issues. There is motivation 
for developing methodologies that use the lessons learnt from UML and the long 

history of object-oriented methodologies in setting up a framework for software 

development that addresses the problem issues. The following have been observed 

by the author (based on personal experience) as general characteristics of such 

methodologies, highlighting the core areas where further work on OOSDMS is 

needed: 

1. Compactness: an extensible core is preferable to a customisable 

monstrosity or a generic framework with complex parameters and/or 

prohibitively numerous parameter options. 
2. Extensibility: with extension mechanisms and guidelines clearly defined. 
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3. Traceability to requirements: all the artefacts should be one way or another 

traceable to the requirements. 
4. Consistency: artefacts produced should not be allowed to contradict each 

other; alternatively, there should be mechanisms for detecting 

inconsistencies. 

5. Testability of the artefacts from the start: this will allow tools to be 

developed to verify and validate the artefacts. 
6. Tangibility of the artefacts: artefacts should be concrete enough to be 

related to and understood by the parties involved in the development 

process. 

7. Visible rationality: there should be evident rationality behind every task 

and the order in which the tasks are performed, and undeniable use for 

every artefact produced. The developers should be able to see this logic, 

truly sensing that any digression will put their objectives at risk. 

1.1.2 The Software Engineering Approach to Methodology 

Development 

Realizing the need and potentiality for further improvement in the field, it is 

important to point out that the relatively long history of methodology development 

is a rich source of lessons to be learned. In every methodology, there are features to 

exploit and pitfalls to avoid, many of which are direct or indirect consequences of 

the method used in developing the methodology or the circumstances surrounding 

the development. Choosing the right methodology to develop the desired 

methodology is therefore of utmost importance. Object-oriented methodologies can 

be categorized according to the circumstances leading to their development, 

including the approach and method applied (if any): 

" Revolutionary: A large number of OOSDMs have been developed by 

experienced practitioners or academics trying novel ideas and approaches in 

their day to day engineering practices, ultimately resulting in a methodology 

offering a whole new approach, marking a watershed step in the history of 

software development methodologies. Such methodologies act as seeds, 

starting their own threads of evolution. Methodologies belonging to the first 

generation of OOSDMs are all revolutionary, as are the first few agile 
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methodologies (e. g. XP [Beck 1999] and FDD [Coad et al. 1999]). The 

advent of a revolutionary methodology in this sense does not necessarily 

indicate the occurrence of a Kuhnian revolution: pre-existing methodologies 

might co-exist with the new ones, in which case a new trend of evolution 

aiming at convergence is usually commenced. 

" Evolutionary: methodologies in this category are based on existing ones. 

New ideas are always present in these methodologies, yet their dependence 

on ideas borrowed from existing methodologies is such that precludes their 

classification as revolutionary. This category has two subcategories, each of 

which spans a large number of OOSDMs: 

o Extensions are methodologies adding new features to an existing 

methodology. Later versions and complements of revolutionary and 

evolutionary methodologies belong to this category. 

o Integrations are essentially the result of consolidating ideas from two 

or more methodologies. Methodologists often throw in a few novel 
ideas, but the bulk of these methodologies consists of bits and pieces 
borrowed from existing methodologies. The important issues of 

compatibility and complementarity are of utmost importance: 

methodologists should ensure compatibility of the constituent parts, 

and that they actually complement each other in a meaningful way. 

Integrations are of three types: 

  Merger. creators of methodologies come together and agree on 

a merger of their methodologies. The integration is typically 

done through a design-by-committee procedure, and always 

results in complex and unwieldy monstrosities. Mergers are 

typically the result of corporate ambitions, specifically aimed 

at bringing together the user communities of the individual 

methodologies in a bid to impose the integrated methodology 

as a widely acclaimed standard. RUP [Jacobson et al. 1999, 

Kruchten 2003] and OPEN [Henderson-Sellers and Graham 

1996, Graham et at. 1997] are examples of mergers. 

  Ad hoc: the methodologist uses ideas, typically from 

prominent OOSDMs, in order to assemble his methodology. 
The selection of methodology components is not based on pre- 
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planned, objective analysis of the features in existing 

methodologies; rather, features are scavenged from favourite 

methodologies in order to fill the needs of the methodologist. 

Fusion [Coleman et al. 1994] and Catalysis [D'Souza and 

Wills 1995] are good examples. 

  Engineered: an objective, comprehensive analysis is 

performed in order to identify useful features in existing 

methodologies, as well as the requirements of the target 

methodology. Based on the analysis results, a methodology is 

developed and tested. The closest existing OOSDM to this 

category is the Hodge/Mock methodology [Hodge and Mock 

1992]. The developers were not aiming for a general-purpose 

methodology, but rather one that would be especially suitable 

for use in a simulation and prototyping laboratory, and 

therefore have been rather too particular in their choice of 

methodologies analyzed. Furthermore, there is little trace of 

disciplined and clear-cut design, implementation and test 

activities performed in developing the methodology [Mock 

and Hodge 1992]. 

While emergence of yet other revolutionary OOSDMs is not out of the question, 

they are inherently unpredictable and unplanned in occurrence, and planning a 

research aimed at delivering revolutionary features is immensely risky. 

Evolutionary methodologies, on the other hand, show great potential for 

improvement, especially with the abundant merits of seminal methodologies 

mostly neglected during the integration era, not to mention the instability caused by 

the eccentric leanings of integrated methodologies and agile methods as the main 

contenders, which has in turn led to convergence attempts. Planned research aimed 

at ameliorating the status quo by attempting to develop an evolutionary 

methodology seems to be of acceptable risk. The question comes down to which 

type of evolutionary approach to methodology development is the most 

appropriate. 

While not without merit, developing extensions to existing methodologies is too 

constraining, since any extensions made to a methodology have to be compatible 
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with the methodology itself. The methodologist therefore does not have a free hand 

in applying changes and modifications. Extensions made to agile methods are good 

examples: extensions are not to in any way hamper agility, which is certainly a task 

easier said than done. 

Considering the motivations and the special circumstances surrounding 

methodology mergers, planning such a development is for the creators only, and 

even if it weren't, the prospect of developing yet another heavyweight 

methodology is not appealing. 

Contaminated with favouritism and subjectivity, ad hoc integration is hardly 

appropriate as a scientific undertaking. Some previous instances have been quite 

successful, but limiting the scope of the components used to those favoured by the 

methodologists, because of previous personal experience or widespread acclaim, is 

far from objective, and almost certain to miss precious opportunities. 

Engineering a methodology through integration is obviously the most appealing to 

software engineers, and the least prone to subjectivity. However, the methodology 

engineering approach intended in this context is different from that seen in Method 

Engineering: Method Engineering, originally defined as "The engineering 
discipline to design, construct, and adapt methods, techniques and tools for the 

development of information systems" [Brinkkemper 1996], has over the years 
become mainly restricted to Situational Method Engineering [Harmsen 1997], in 

which methodologies are constructed to fit the project situation at hand. Contrary 

to the methodology engineering approach intended here, Method Engineering does 

not address the requirements-based development of a general methodology, let 

alone one based on analyzing existing methodologies and aimed at alleviating their 

shortcomings and making utmost use of their strengths; typologies of Method 

Engineering approaches and techniques, listed in [Ralyt6 et al. 2003, Ralyte et al. 
2004], are testimonies to this fact. Nevertheless, Method Engineering has inspired 

metamodel-based process composition in some object-oriented methodologies; the 

OPEN methodology [Henderson-Sellers and Graham 1996] is a prominent 

example. 

Although it might seem that the direction of this discussion has been such as to 
justify the engineering approach via elimination of alternatives, yet the actual 
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intention has been to show the contrast between the engineering approach and other 

approaches previously tried. It is evident that a methodology is, after all, essentially 

a kind of software [Osterweil 1987, Osterweil 1997], and a software engineering 

approach to its development is therefore preferable. The applicability of the 

approach is even more evident when the huge amount of experience gained through 

the rather long history of OOSDMs is considered. The field is even more in need of 

objective analysis and disciplined engineering than before, since any other 

approach is bound to overlook the precious potentialities, not to mention the 

lurking hazards, in a field as overgrown and unkempt as object-oriented software 
development has become. 

1.1.3 Research Roadmaps 

Apart from the above-mentioned issues, there are several other key research 

pointers directly or indirectly related to software development processes and this 

thesis. Presented at the Conference on the Future of Software Engineering in 2000, 

these research pointers reflect the problems with the status quo of software 

engineering and its subfields, and set roadmaps of research for the coming years. 

Of the various research pointers proposed for the covered areas, the following are 

relevant to the present research, listed under their respective areas: 

" Software Process (quoted from [Fuggetta 2000]): 

1. The scope of software [process] improvement methods and models 

should be widened in order to consider all the different factors 

affecting software development activities. We should reuse the 

experiences gained in other business domains and in organizational 
behaviour research. 

2. Statistics is not the only source of knowledge. We should also 

appreciate the value of qualitative observations. 

" Requirements Engineering (quoted from [Nuseibeh and Easterbrook 

2000]): 

1. Better modeling and analysis of problem domains, as opposed to 

the behaviour of software. 
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" Object-oriented Modeling (quoted from [Engels and Groenewegen 

2000]): 

1. Development of means to compose and to refine complex 

structured models 
2. Identification of guidelines for an incremental, round-trip software 

development process 

" Software Engineering (general) (quoted from [Finkelstein and Kramer 

2000]): 

1. We need to devise and support new structuring schemes and 

methods for separating concerns in software systems development. 

2. We need to adapt conventional software engineering methods and 

techniques to work in evolutionary, rapid, extreme and other non- 

classical styles of software development. 

1.2 Objectives and Scope 

Motivated by the issues outlined above, the central proposition of this thesis can be 

summarized as follows: 

An object-oriented software development methodology 

can be developed (engineered) via a software engineering 

process - that is, through the generic development phases 

of analysis, design, implementation and test - based on 

analyzing existing methodologies and techniques, 
identifying their strengths and weaknesses, and producing 

a set of requirements defining the characteristics of the 

target methodology. The methodology can then be 

developed through making utmost use of existing 
techniques in such a way as to satisfy the requirements. 

A further point to clarify is that object-oriented modeling is already saturated with 
diverse and versatile modeling methods and notations, especially with the advent of 
the UML and its widespread adoption as the de facto standard modeling language. 
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Therefore, developing a new modeling language is no longer an important concern 
in methodology development, and the focus of the development effort undertaken 
herein is on the process component of the methodology. 

1.3 Research Methodology 

As the research methodology used is essentially a software engineering process, the 

methodology used for developing the target object-oriented software development 

methodology broadly consists of the four generic phases of software engineering: 

Analysis, Design, /nnplementution, and Test. Due to the risk factor involved, 

commitment to a more concretely specific lifecycle and methodology could not be 

made; a meta-methodology for developing OOSDMs gradually took shape in the 

course of the effort and is indeed one of its main contributions. However, due to 

the need for appropriate measures for risk mitigation, a general iterative- 

incremental lifecycle was adopted, allowing for ventures into later phases - 

especially during design and implementation - in order to assess and mitigate 

development risks. As seen in Figure 1, the methodology is produced through 

iterations of the Design-Implementation-Test cycle based on the results of the 

Analysis phase. In addition to the verification and validation performed during the 

Test activity, requirements-based reviews of the produced methodology are also 

performed at the end of Design and Implementation activities in each of the 

iterations, ensuring an acceptable level of quality and maintaining the focus of the 

effort. 

Cyclic Development Engine 

C Test 

Implementation 

Analysis Design 

Figure 1. General methodology development lifecycle used in this thesis 
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High-level descriptions of the goals of the four generic phases and the tasks to be 

performed in each are given in the following subsections. 

1.3.1 Analysis 

Conforming to the specifications of the generic analysis phase, the goals and tasks 

of this phase focus on problem domain analysis and requirements elicitation. 

Goals 

o Identification and detailed analysis of the problem domain; the structure 

and behaviour of the problem domain should be modeled in order to 

abstract away redundant and irrelevant elements, enabling focus on 
features essential for identifying the requirements. 

o Definition of a set of analysis criteria; the criteria will be used for 

analyzing the problem domain and producing the requirements. 

o Determination of the scope of the target OOSDM, and delineating its 

requirements 

Tasks 

" Task 1: Research on the problem domain, encompassing existing 

methodologies, process patterns and process metamodels, which are the 

entities providing essential information as to the strengths and weaknesses 

of existing methodologies, in turn leading to the requirements of a 

desirable OOSDM; this task involves exploring, accumulating, 

categorizing, and describing existing methodologies, process patterns and 

process metamodels and modeling the information gathered in a form 

accommodating the extraction of a set of requirements for the target 

methodology. This task is a prerequisite for the completion of tasks 3 and 

4: without in-depth analytical knowledge in this regard, it is virtually 

impossible to come up with a reliable set of process requirements (task 3) 

and a proper method for designing the target methodology (task 4). 

" Task 2: Development of a criterion set for evaluating the methodologies, 

mainly in order to gain a better understanding of what is desirable, and 

what is undesirable, in an object-oriented software development 
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methodology; the criterion set will be used in task 3 for evaluating the 

problem domain entities described in task 1 (methodologies, process 

patterns, and process metamodels), and will ultimately be used as the basis 

for defining the requirements. The results of the evaluation performed in 

task 3 are in turn used for refining the criterion set; therefore, there is a 

two-way dependency between tasks 2 and 3, meaning that the two tasks 

should be carried out in parallel. 

" Task 3: Development of a set of concrete requirements (based on the 

results of tasks 1 and 2), to be satisfied by the target methodology; this 

requires that a detailed analysis of the results of task 1 be first performed; 

and strengths and weaknesses of the methodologies, process patterns and 

process metamodels be identified using the criteria defined in task 2. The 

evaluation results and the evaluation criteria are ultimately used for 

defining the requirements. 

1.3.2 Design 

As expected, the design phase concerns producing a blueprint for the target 

methodology, to be implemented in the next phase as a detailed specification. 

Goals 

o Determination of a general process for the target OOSDM 

o Production of a blueprint of the target methodology based on the general 

process defined and the requirements 

Tasks 

" Task 4: Determining the best method for designing the methodology based 

on the knowledge gained in task 1 and the requirements defined in task 3 

" Task 5: Development of the design of the target methodology by applying 

the method selected in task 4; the design will include outlines of the 

phases, procedures, rules, techniques, tools, documentation and 

management issues, providing guidance as to the order of the activities, 

specifying what artefacts should be developed, and directing the tasks of 

the teams and individual developers. 
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1.3.3 Implementation 
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Analogous to the classic perception of the generic implementation phase, this phase 

produces the target methodology in a form usable by the users, i. e. system 
developers. 

Goals 

o Detailing the outline produced in the design phase 

o Presenting the result in a form usable by potential users (developers) 

Tasks 

" Task 6: developing a user guide template for presenting the detailed 

specification of the methodology 

" Task 7: producing detailed specifications of the target methodology's 

phases, procedures, rules, techniques, tools, and documentation and 

management issues, specifying detailed guidelines as to the order of the 

activities, the artefacts produced and the modeling language used, and the 

tasks of the team and individual developers; the user guide template 

defined in task 6 is extensively used in this task, practically guiding it 

through the detailed specification process by providing a structure to be 

filled in with the specifications produced. 

1.3.4 Test 

Testing a methodology is similar to testing any other type of system: develop test 

cases (in this case, sample systems), perform verification and validation, and 

correct the detected faults. 

Goals 

o Developing case studies for the target OOSDM to verify and validate the 
implemented methodology 

o Testing the methodology by applying it to the sample systems, and 
debugging the detected failures 
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Tasks 
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" Task 8: Definition of realistic case studies in order to test the applicability 

of the produced methodology, and its conformance with the requirements; 

the domains to be covered are determined according to the scope and 

constraints imposed by the requirements. 

" Task 9: Evaluation of the target methodology through the case studies 

developed in task 8, checking compliance with the requirements and the 

evaluation criteria; failures to comply are recorded and corrections made to 

the methodology. 

1.4 Research Outcome 

The following are the main results and contributions of the research reported 
herein: 

I. A proposed object-oriented software development methodology addressing 

some of the problems found in existing methodologies; the following are 

the major contributions of this methodology: 
1.1. A model-based approach to the development of business 

systems integrating the agile feature-driven merits of the FDD 

methodology [Palmer and Felsing 2002] with design-based 

features of third-generation OOSDMs, particularly Catalysis 

[D'Souza and Wills 1998]; the methodology provides a middle 

way between integrated and agile methods, and addresses 

several key issues in OOSDMs. Defined as requirements and 

used as the basis for the development of the methodology, the 

most significant of these issues are: seamlessness, smoothness 

of transition, manageability of complexity, encouragement of 

active user involvement, practicability and practicality. Details 

of how the methodology conforms to the requirements are 

presented in Chapter 7. 

1.2. A modeling approach built into the methodology providing 

seamless and smooth transition from real-world models of the 

problem domain to system models, and ultimately to design 
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models; the model chain produced is based in the requirements, 

and traceability features have been incorporated. The approach 

features a novel technique for rectifying anomalies associated 

with real-world modeling [Isoda 2001]. The technique is based 

on designing the computer-based system initially as a 
homogeneous extension to the existing system structure (i. e. by 

using the same types of elements as those seen in the problem 
domain) and then applying pattern-based transformation to 

convert the models to software-system models. The technique 

also proposes the use of design patterns for introducing 

structure and behaviour into the system. In addition to 

seamlessness and smoothness of transition, the model chain also 

addresses key modeling requirements such as: testability, 

tangibility, manageability of complexity, and support for 

behavioural, structural and functional modeling of logical and 

physical views of the system at different levels of abstraction. 

Details of how the modeling approach conforms to the 

requirements are presented in Chapter 7. 

2. A proposed methodology for developing object-oriented software 
development methodologies based on a software engineering approach; the 
following are the major contributions of this meta-methodology: 

2.1. An iterative-incremental lifecycle based on the generic 

activities of software development 

2.2. A process-centred template for describing OOSDMs; a total of 

24 prominent object-oriented methodologies, process patterns 

and process metamodels have been described using this 

template, providing a rich process-centred review of the field. 

2.3. A criteria-based analysis method for identifying strengths and 

weaknesses in object-oriented methodologies, process patterns 

and process metamodels, ultimately producing a set of 

requirements for the target methodology; the method has been 

used for identifying strengths and weaknesses in the 24 

methodologies, process patterns and process metamodels 
described using the process-centred template. Although mainly 
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used for the purpose of defining the requirements, the results 

are themselves a contribution of this thesis, since they provide 

an extensive critique of the research field. 

2.4. An iterative-incremental requirements-based design method for 

producing the blueprint of the target methodology; the method 

has been designed in such a way as to provide flexible use of a 

multitude of design approaches. 
2.5. A User Guide template for providing a pragmatic description of 

object-oriented software development methodologies; the 

template has been used for detailing and refining the target 

methodology, which in the context of the proposed meta- 

methodology, is analogous to implementation in software 
development. 

Although many of the requirements of the methodology have been addressed in the 

final result, there remain requirements which have not been adequately met, and 
hence require further work. The most important of these requirements are: 

extensibility, configurability, flexibility, and support for formal modeling. Details 

of these shortcomings have been given in Chapter 7. 

There are several potential courses for furthering or complementing the research 

reported in this dissertation, some of which are listed below: 

" Engineering variants of the methodology targeting other types of systems, 

e. g. safety-critical 

" Applying the methodology to case studies of larger scope 

" Expressing the methodology and meta-methodology processes in a Process 

Modeling Language (PML) for static verification and/or enactment in a 
Process-centred Software Engineering Environment (PSEE) [Ambriola et 

at. 1997, Barthelmess 2003] 

Empirical analysis of the usability of the methodology 

" Comparison of the methodology to other OOSDMs 

" Application of the meta-methodology to the development of other 

methodology types 
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1.5 Overview of the Thesis 

The chapter structure of this thesis is as follows: 

" Chapter 2 (Background) presents the research background, delineating 

the relevant research areas and focusing on the evolution process leading to 

the status quo. Special attention has been given to object-oriented 

methodologies, process patterns and process metamodels, with Method 

Engineering explored and compared to the approach adopted in this thesis. 

" Chapter 3 (Analysis) presents an explanation of the analysis process 

adopted in the Analysis phase, and reports the results. Template-based 

descriptions of a selection of methodologies, process patterns and process 

metamodels are presented, and the results of applying a criteria-based 

evaluation process to the selection are reported. A set of requirements for 

an object-oriented software development methodology is produced as a 

result, listed in the final section of this chapter. 

" Chapter 4 (Design) presents an explanation of the iterative design process 
deployed in the design phase, and reports the results. The process is 

demonstrated by following the iterations through which the methodology is 

gradually formed. The resulting methodology design is then explained, 

with phases and tasks defined in outline. 

" Chapter 5 (Implementation) presents an explanation of the 

implementation process and the user-guide template used for implementing 

the methodology. The major bulk of the chapter contains the implemented 

methodology, i. e. the resulting user guide providing detailed description of 

the methodology from three complementary viewpoints: process-centred, 

work-product-centred, and role-centred. 

" Chapter 6 (Test) presents an explanation of the testing process, and 

reports the results of verifying and validating the implemented 

methodology through applying it to two sample information systems. The 

case studies are mainly focused on novel features of the methodology, 

since these features pose the greatest risk. 

" Chapter 7 (Conclusion) presents a summary of the thesis and the results, 
discusses the degree to which the objectives were achieved, and examines 
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the shortcomings. Suggestions for furthering the research are also 

provided. 



Chapter 2 

Background 

Although object oriented software development methodologies have become 

ubiquitous in software engineering circles, a brief look at the basic definitions and 

the history of their evolution is necessary for understanding the motivations behind 

this thesis, and the basis upon which it builds. A brief overview of the Method 

Engineering discipline is also presented, mainly in order to clarify the position of 

this thesis in regard to the discipline, and also to highlight the distinctions that 

separate this thesis from current Method Engineering practices. 

2.1 Basic Definitions 

A Software Development Methodology (SDM) is a framework for applying 

software engineering practices with the specific aim of providing the necessary 

means for developing software-intensive systems. Software development 

methodologies are therefore considered an integral part of the Software 

Engineering discipline, since methodologies provide the means for timely and 

orderly execution of the various finer grained techniques and methods of software 

engineering. Although a software development methodology can be loosely 

defined as "a recommended collection of phases, procedures, rules, techniques, 

tools, documentation, management, and training used to develop a system" [Avison 

and Fitzgerald 20031, it is easier to grasp when described as consisting of two main 

parts [OMG 2003]: 

1. A set of modeling conventions comprising a Modeling Language (syntax 

and semantics). 
2. A Process, which 

a. provides guidance as to the order of the activities, 

34 
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b. specifies what artifacts should be developed using the Modeling 

Language, 

c. directs the tasks of individual developers and the team as a whole, 

and 
d. offers criteria for monitoring and measuring a project's products 

and activities. 

Whereas the modeling language provides developers with a means to model the 

different aspects of the system, the process determines what activities should be 

carried out to develop the system, in what order, and how. In its most abstract 
form, a process is a sequence of steps - sometimes deprecatingly called a "recipe" 

- that aims to guide its users in applying the modeling language for accomplishing 

a set of software development tasks. The process thus acts as the dynamic, 

behavioural component of the methodology, governing the development (technical) 

and management subprocesses, and therefore encompassing the phases, 

procedures, rules, techniques, and tools prescribed by the methodology, as well as 

the issues pertaining to documentation and project management. 

2.2 Object-Oriented Software Development 

Methodologies 

An Object-Oriented Software Development Methodology (OOSDM) is specifically 

aimed at viewing, modeling and implementing the system as a collection of 

interacting objects, using specialized modeling languages, activities and techniques 

needed to address the specific issues of the object-oriented paradigm. Originally 

based on concepts introduced in system simulation, operating systems, data 

abstraction, and artificial intelligence, the object-oriented paradigm gained 

widespread popularity in the 1980s through object-oriented programming 
languages. The applicability of the object-oriented approach to systems analysis 

and design was recognized in the mid 1980s, and the subsequent enthusiasm has 

been such that a plethora of object-oriented software development methodologies 
have been since introduced. A brief description of the categories of OOSDMs and 

their trend of evolution will help further clarify the domain. 
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2.2.1 Seminal Methodologies: First and Second Generations 

The first software development methodologies termed as object-oriented were in 

fact hybrid: partly structured and partly object-oriented. The analysis phase was 

typically done using Structured Analysis (SA) techniques, producing Data Flow 

Diagrams, Entity-Relationship Diagrams, and State Transition Diagrams, whereas 

the design phase was mainly concerned with mapping analysis results to an object- 

oriented blueprint of the software. These methods were hence categorized as 

transformative [Monarchi and Puhr 1992]. The methods prescribed by [Seidewitz 

and Stark 1986] and [Alabiso 1988] are the main methodologies in this category. 

The first purely object-oriented methodologies appeared in 1986 [Booch 1986], 

and were influenced by structured and/or data-oriented approaches. This first 

generation of object-oriented methodologies spans methodologies developed 

between 1986 and 1992. The second generation of object-oriented methodologies 

evolved from the first generation and appeared between 1992 and 1996. This 

period signifies the famous "Methodology War", with more than 70 methodologies 

competing for a share in the software development industry. The sheer number of 

methodologies introduced became so prohibitive that choosing the right 

methodology for a software project was a major endeavour in itself. The frustration 

in the software engineering community soon led to efforts aimed at integration and 

unification, the first fruit of which was the Unified Modeling Language (UML), 

adopted by the Object Management Group (OMG) as the standard object oriented 

modeling language in 1997 [Booch et al. 1999, OMG 2004]. While UML was 

being developed, widespread attempts at integrating seminal methodologies were 

also being made, thus signifying the end of the second-generation era. 

First- and second-generation methodologies are collectively referred to as 
"Seminal" methodologies, in that they pioneered the unexplored field of pure 

object-oriented analysis and design, and in doing so laid the groundwork for further 

evolution. Though by no means mature, the ideas set forth by these methodologies 
have deeply influenced the fast-growing field of object-oriented software 

engineering. Many of the concepts, modeling conventions and techniques 
introduced by these methodologies are still widely used today, and some of these 
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methodologies still have hosts of devoted followers, proving that seminal 

methodologies are by no means obsolete. 
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Figure 2. The evolution timeline of object-oriented methodologies up to 1996 - 
adapted from [Webster 1996] 
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Figure 2 shows the methodologies developed during the period from 1986 to 1996 

[Webster 1996]. It also shows the evolution timeline and genealogical relationships 
between the methodologies, emphasizing the influences and the contributions. 

2.2.2 The Unified Modeling Language (UML) 

UML [Booch et al. 1999, OMG 2004] is the result of an effort to unify the visual 

modeling languages used in object-oriented methodologies, following the 

realization that although they were mostly different in terms of process and life- 

cycle-model, many object-oriented methodologies used diagrams that were 
identical in essence. Therefore, starting the trend of integration and unification with 

unifying the modeling languages seemed the logical choice. UML is hence 

considered a major milestone, marking the end of seminal methodologies and the 

start of the integration euphoria. 

It was stressed from the start (by many methodologists involved in assessing and 

contributing to UML) that UML should be process-independent and nothing more 

than a modeling language, so that methodologies could use it without having to 

conform to a certain process. This has indeed been maintained as a design goal of 
UML and explicitly mentioned in the official specifications [OMG 2003]. Yet the 

opposite is not true: processes do tend to become dependent on the modeling 
language they adopt. This has indeed resulted in some methodologies rebelling 

against the imposition of UML as a standard, either insisting on their own 

exclusive modeling languages [Dori 2002a] or using UML along with modeling 

constructs not supported by it [Ambler and Constantine 2000a]. 

Figure 3 shows some of the influences on UML. The original developers of UML 

were Rumbaugh, Jacobson, and Booch; UML is therefore most influenced by the 

modeling languages used in the OMT, OOSE and Booch methodologies. After 

being adopted by the Object Management Group (OMG) in 1997, UML is now 

considered the de facto standard for object-oriented modeling. UNL's notation and 

semantics are specified and constantly revised under the supervision of the OMG. 
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2.2.3 Integrated Methodologies: Third Generation 

Methodologies in this category are results of integrating seminal methodologies 

and are characterized by their process-centred attitude towards software 

development, typically targeting a vast variety of software development 

applications. Integrations have resulted in huge monstrosities of methodologies, 

difficult to manage and enact [Boehm and Turner 20041. In trying to achieve 

manageability, some of them have gone to extreme measures to ensure 

customizability (RUP), others have turned into generic process Frameworks that 

should be instantiated to yield a process (OPEN), and yet others have resorted to 

process patterns for customizability (Catalysis); yet, it was frustration with these 

methodologies that ultimately caused the agile movement (Highsmith 2000bl. 

Although unwieldy and complex, integrated methodologies have a lot to offer in 

terms of process components, patterns, and management and measurement issues. 

Furthermore, some of them propose useful ideas on seamless development, 

complexity management and modeling approach. 
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2.2.4 Agile Methodologies 

Agile methodologies first appeared in 1995 I Highsmith 2002, Abrahamsson et al. 

2002, Schuh 2005]. The once-common perception that agile methodologies are 

nothing but controlled code-&-fix approaches, with little or no sign of a clear-cut 

process, is only true of a small - albeit influential - minority of these 

methodologies, which are essentially based on practices of program design, coding 

and testing that are believed to enhance software development flexibility and 

productivity. Most agile methodologies incorporate explicit processes, although 

striving to keep them as lightweight as possible. Figure 4 shows an evolution map 

for a number of these methodologies, emphasizing the ways previous 

methodologies and practices have influenced them. 
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Figure 4. The evolution map of agile methodologies [Abrahamsson et al. 20031 

The overall attitude of these methodologies towards software development has 

been summarized in the Agile Manifesto, agreed upon by all major agile 

methodologists (Figure 5). Agile methodologists have also given a set of principles 
for agile development (quoted from [Beck et al. 20011): 
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" Our highest priority is to satisfy the customer through early and continuous 

delivery of valuable software. 

" Welcome changing requirements, even late in development. Agile 

processes harness change for the customer's competitive advantage. 

" Deliver working software frequently, from a couple of weeks to a couple of 

months, with a preference to the shorter timescale. 

" Business people and developers must work together daily throughout the 

project. 

" Build projects around motivated individuals. Give them the environment 

and support they need, and trust them to get the job done. 

" The most efficient and effective method of conveying information to and 

within a development team is face-to-face conversation. 

" Working software is the primary measure of progress. 

" Agile processes promote sustainable development. The sponsors, 
developers, and users should be able to maintain a constant pace 
indefinitely. 

" Continuous attention to technical excellence and good design enhances 
agility. 

" Simplicity-the art of maximizing the amount of work not done-is 

essential. 

" The best architectures, requirements, and designs emerge from self- 

organizing teams. 

" At regular intervals, the team reflects on how to become more effective, 
then tunes and adjusts its behaviour accordingly. 

We are uncovering better ways of developing 
software by doing it and helping others do it. 
Through this work we have come to value: 

Individuals and interactions over processes and tools 

Working software over comprehensive documentation 
Customer collaboration over contract negotiation 

Responding to change over following a plan 

That is, while there is value in the items on 
the right, we value the items on the left more. 

Figure S. The Agile Manifesto [Beck et at. 2001] 
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Although many agile methodologists claim that their methodologies are not process- 

centred, close examination usually reveals some sort of iterative-incremental process 

(sometimes quite elaborate). Whereas at the start of the agile movement words like 

"process" (even "methodology") were considered "dirty", agile methodologists are 

showing increasing interest in advertising their "agile" processes and methodologies 
[Schwaber and Beedle 2001, Schuh 2005]. 

2.3 Object-Oriented Process Patterns and Process 
Metamodels 

The advent of UML has allowed methodologists to focus on processes instead of 

concerning themselves with devising new modeling languages, and the experience 

gained from the relatively long and adventurous history of OOSDMs has helped 

methodologists identify patterns and generalities among processes. Object-oriented 

process patterns are the results of applying abstraction to process components, 

thereby presenting ways for developing methodologies through composition of 

appropriate pattern instances [Ambler 1998a, b]. Object-oriented process 

metamodels, on the other hand, are the results of applying abstraction on the 

overall process, providing process generalizations, or metamodels; processes can 

then be built through instantiation of these metamodels [OMG 2002]. 

2.4 Method Engineering 

Motivated by the prevalent belief that no one methodology fits all situations, 
Methodology Engineering was first introduced as a discipline aimed at constructing 

methodologies to match given organizational settings or specific development 

projects [Kumar and Welke 1992]. The discipline later came to be known as 
Method Engineering, a term proposed in [Brinkkemper 1996], with the definition 

broadened as: "The engineering discipline to design, construct, and adapt methods, 
techniques and tools for the development of information systems". The most well- 
known subfield of the discipline is Situational Method Engineering, which is 

concerned with the construction/adaptation of a methodology specifically attuned 
to the project at hand [Harmsen 1997]. 
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There are several approaches to method engineering, the most prominent of which 

can be classified as follows [Ralyte et al. 2003, Ralyte et al. 2004]: 

" Ad-hoc: Concerned with constructing a new methodology from scratch 

" Paradigm-based: Concerned with instantiating, abstracting or adapting an 

existing meta-model in order to produce the target methodology 

" Extension-based: Concerned with enhancing an existing methodology with 

new concepts and properties 

" Assembly-based: Concerned with constructing the target methodology or 

enhancing an existing methodology through reusing parts of other 

methodologies. 

Assembly-based method engineering is the foremost approach among the four 

listed above, and is also the main approach to situational method engineering. The 

assembly-based approach makes use of methodology components - called method 

fragments or method chunks - extracted from existing methodologies and stored in 

a repository. Assembly-based Method engineering has also inspired the use of 

process components in object-oriented software development, mainly through the 

OPEN methodology, as explained in Chapter 3 [Henderson-Sellers 2003, OPEN 

Consortium 2000]. 

The broad definition of method engineering means that the research reported in this 

dissertation can be categorized as belonging to this field; however, there are 
features in the approach adopted in this thesis which are either improvements to 

current method engineering practices, or set this thesis squarely apart from current 

trends of method engineering practice and research. The most important of these 

features are listed below: 

" Whereas current practice and research related to method engineering is 

mainly focused on developing situational solutions, this thesis is concerned 

with developing a general methodology core. 

" The software engineering approach adopted in this thesis, and the iterative- 

incremental methodology development lifecycle devised, are different 

from their sequential, non-design-based counterparts in method 

engineering [Ralyte et al. 2003, Ralyte et al. 2004]. 
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" Requirements-based development is not new in method engineering, where 

requirements are defined according to the situation at hand; in this thesis, 

on the other hand, requirements are specified through analyzing existing 

methodologies. 

"A hybrid design approach has been devised and applied in this thesis, 

which provides a framework allowing flexible application of four 

methodology development approaches, two of which - i. e. Instantiation 

and Composition - are analogous to the Paradigm-based and Assembly- 

based approaches of method engineering, but the remaining two - i. e. 

Integration and Artefact-oriented - are relatively novel in this context. The 

Integration approach is particularly nonconformist in comparison to usual 

method engineering practices, in that it promotes integrating ideas and 

techniques directly from existing methodologies, instead of first dissecting 

the methodologies into fragments (as is common practice in assembly- 

based method engineering, where a fragment repository is used). The 

motivation behind this approach is the author's personal observation that 

methodologies are synergistic entities, and while using repositories of 

process fragments is not without merit - and is indeed one of the 

constituent methods of the hybrid design approach adopted in this thesis - 
breaking down the methodologies into fragments may result in loss of 

functional capacity. 
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Analysis 

As in any engineering project, an effort aiming at developing software 

development methodologies should start by clearly defining what the requirements 

of such a methodology are. However, eliciting the requirements from a problem 

domain as vast, varied and controversial as object-oriented software development 

methodologies is by no means straightforward. The following are some of the 

problems facing such an effort: 

" Methodologies are products; many are even marketed as such (e. g. RUP 

[Kruchten 2003] and DSDM [DSDM Consortium 2003]). Treating 

methodologies as merchandise frequently results in redundant decorative 

clutter, attractive yet obscuring wrappings, and uninformative, sometimes 

even advert-like, descriptions. 

" Methodologies are complex. Even methodologists that try to be scientific 

and professional in their approach to defining their processes, too often end 

up giving too little or too much detail at the wrong level. OPM is an 

example, as elaborated later in this chapter. 

" Methodologists are not objective and impartial towards their own creations 
(and should not be expected to). Features stressed by methodologists are 

most often not the essential ones for solving the problems of the domain, 

but those that the methodologist sees as important or unique. 

Therefore, requirements elicitation in this thesis called for a concentrated effort 

aimed at gathering essential information about methodologies, process patterns and 

process metamodels (entities of the problem domain) through abstracting away the 
irrelevant features and laying bare the core philosophy and process. 

45 
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The analysis method used in this thesis starts with summarizing problem domain 

entities (methodologies, process patterns and process metamodels) using a template 

accentuating the development processes that they offer. Analysis then proceeds 

with defining a set of criteria for analyzing the object-oriented software 

development processes thus highlighted. The criteria can be enriched by the 

analysis results along the way, and since they underline the strengths and 

weaknesses of software development processes, the final set of criteria is ultimately 

used for defining the requirements. 

3.1 Analysis Approach 

The merits of criteria-based analysis as a source of insight into the capabilities and 

shortcomings of software development methodologies has long been recognized, as 

shown in previous research on software development methodologies in general 

[Karam and Casselman 1993] and object-oriented software development 

methodologies in particular [Walker 1992, Monarchi and Puhr 1992, Abrahamsson 

et al. 2003]. The results obtained from such analyses are prevalently used for 

selecting, tailoring and effective usage of methodologies, but they can also be used 

for other purposes, as suggested in this thesis. The main problem that any 

researcher attempting to exercise such analyses faces is the definition of a suitable 

set of criteria. 

An iterative-incremental approach to criteria-based analysis of software 
development methodologies was devised for the purposes of this thesis, using the 

analysis results themselves for refining the criteria. The method is based on the 

observation that the strengths and weaknesses of methodologies (identified through 

analysis) provide further ideas as to what is and what is not desirable in 

methodologies; this can in turn lead to the identification of new criteria and/or 

refinements to the existing ones. This means that a set of criteria can be built 

recursively (i. e. through iterative application of the criterion set to methodologies), 

starting from an initially unpolished and incomplete set of criteria. A method can 

thus be devised to incrementally build an initially incomplete set of analysis criteria 

through their iterative application to software development methodologies, until the 

criteria and the analysis results are stabilized (i. e. the iterations no longer have a 

significant effect on the criteria and the analysis results). 
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The analysis results are one of the main contributions of this process, yet it is the 

final criterion set that will provide the ultimate objective: a set of requirements for 

the target object-oriented software development methodology. This will be 

achieved by evolving each criterion into a requirement through adding the level of 

support that the target methodology is expected to provide for that criterion, taking 

into account the lessons learnt from existing methodologies (as inferred from the 

analysis results). 

It should be noted that this approach is possible because of the relatively long 

history of software development methodologies, especially object-oriented ones, 
during which many development problems have been encountered and addressed 
[Graham 2001, Capretz 2003, Ramsin and Paige 2004]. The degree of maturity 

enjoyed today by methodologies is the main enabling factor for this approach, 

since it relies on the methodologies themselves for providing the criteria and the 

requirements. 

The following sections contain a highlight of the method and the results of its 

application to the problem domain. The analysis results are reported along with the 
final criterion set, which are ultimately used for defining a set of requirements for 

the target OOSDM. 

3.2 Analysis Process 

The method consists of the following steps, during which the criterion set and the 

analysis results are incrementally built, and the final criteria are turned into 

requirements (Figure 6): 

1. Selection of a set of software development methodologies to be analyzed; 

since the richness of the reviews and the analysis results is of utmost 
importance when defining the requirements, the set of methodologies 

should be comprehensive enough to provide extensive coverage of major 
features offered by object oriented methodologies. Therefore, a set of 

object-oriented process patterns and process metamodels were also 
included in the review and analysis. 

2. Summarization and review of the selected methodologies and process 

patterns/metamodels using a process-centred template, abstracting away 
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the less important features of the methodologies and accentuating their core 

processes 

3. Definition of an initial set of criteria to act as the seed for the iterative- 

incremental stage of the process; the criteria should be such that their 

application to methodologies triggers wider and deeper exploration of the 

methodologies (process and modeling language), giving rise to new criteria 

and/or refinements to the existing ones. 
4. Iteration of the following steps during which the analysis results are 

incrementally built, and the criterion set is gradually refined; the cycle is 

repeated until the analysis results and the criterion set are stabilized: 

4.1. Analyzing the selected methodologies based on the criterion set, 

determining their significant strengths and weaknesses; the criteria 

are used as focus-pointers, concentrating the analysis on areas 

where significant strengths and weaknesses are most likely to be 

found. 

4.2. Updating the criterion set with new criteria and/or refinements to 

existing criteria or their structure, using the analysis results as a 

resource 

5. Using the stabilized criterion set as a framework and detailing it using the 

analysis results in order to obtain the requirements 
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Figure 6. The analysis process 
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It is advisable to explore the methodologies as extensively as possible (i. e. beyond 

the scope of the initial criterion set) during the first iteration. This is not absolutely 

necessary, but will definitely prove a valuable time-saving measure, compensating 

for the deficiencies of the initial criterion set. The following sections report the 

results of applying this method to a set of object oriented software development 

methodologies. 

3.3 Process-Centred Review 

A total of 24 object oriented methodologies were chosen for analysis, spanning all 

the three classes of object-oriented methodologies: seminal, integrated and agile. A 

set of process patterns and process metamodels were also added in order to 

complement the set of methodologies, thereby enriching the feature set to be used 

in defining the requirements. It should be noted that object oriented software 

development approaches which lack a detailed process or a reasonably defined 

process metamodel have not been considered for inclusion in this review. MDA is 

the most important of these: still in its infancy, the approach is attractive as a 

development philosophy, yet is vaguely defined, and its practicability remains to be 

tested. The following are the methodologies, process patterns and process 

metamodels that were reviewed: 

f Methodologies 

  Seminal 

1. Shlaer-Mellor (1988,1992) 

2. Coad-Yourdon (1989,1991) 

3. RDD (1990) 

4. Booch (1991,1994) 

5. OMT (1991) 

6. OSA (1992) 

7. OOSE (1992) 

8. BON (1992,1995) 

9. Hodge-Mock (1992) 

10. Syntropy (1994) 

11. Fusion (1994) 
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  Heavyweight 

1. OPM (1995,2002) 

2. Catalysis (1995,1998) 

3. OPEN (1996) 

4. RUP/USDP (1998,1999,2000,2003) 

5. EUP (2000,2005) 

6. FOOM (2001) 

  Agile 

1. DSDM (1995,2003) 

2. Scrum (1995,2001) 

3. XP (1996,2004) 

4. ASD (1997,2000) 

5. dX (1998) 

6. Crystal (1998,2004) 

7. FDD (1999,2002) 

f Process Patterns 

1. Ambler (1998) 

f Process Metamodels 

1. OPF - as part of the OPEN methodology (2001) 

2. SPEM (2002) 
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This section contains an overview of the process-centred description template, 

along with descriptions of the selected set of object-oriented methodologies, 

process patterns and process metamodels, summarized using the template. 

3.3.1 Process-Centred Description Template 

The selected methodologies are summarized and reviewed using a process-centred 

template, highlighting the activities prescribed in each methodology while keeping 

the description and discussion of the artefacts produced and modeling languages used 

(mainly diagrams and tables) as secondary to the activities. The description produced 

using this template offers little critique on the methodologies - and indeed that is not 

the goal - yet abstracts and structures them in a way that enables elaborate analysis 

of individual methodologies. The description of a methodology based on this 

template consists of the following parts: 
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1. An introductory preface providing a brief account of the methodology's 

history and distinguishing features, as well as an abstract overview of the 

development process prescribed by the methodology. 

2. A number of subsections, one for each high-level subprocess in the 

methodology's development process, each consisting of: 

a. Details of the activities performed in the subprocess and the order 
in which they are performed. 

b. A concise description of the artefacts produced and the modeling 
languages used in the subprocess, described as part of their 

relevant activities; modeling languages, although necessary for 

fully understanding the mechanisms used in a methodology's 

process, tend to clutter the description of a methodology and 

obscure the process. Describing the modeling language as 

secondary to the process alleviates this problem. Scrutinizing 

notations, however, is beyond the scope of this analysis; notational 

conventions have therefore been left out of the descriptions in this 

thesis. The reader is referred to [Ramsin and Paige 2004] for the 

full descriptions. 

3.3.2 Methodologies: Seminal 

Due to the large number of these methodologies, only those most renowned and 
influential have been examined; methodologies that, according to the evolution 

timeline of [Webster 1996], either have started, or are apt representatives of, 
individual branches. Each methodology utilizes its own modeling language, which 

should also be covered if the description of the methodology is to be of any good. 

3.3.2.1 Shlaer-Mellor (1988,1992) 

The Shlaer-Mellor methodology for object-oriented analysis and design was 
introduced through two separate books. In their first book [Shlaer and Mellor 

1988], Shlaer and Mellor focused on analysis, leaving design to their second book 

[Shlaer and Mellor 1992]. Their analysis method considered objects as data entities 

rather than encapsulations of both data and behaviour, thus neglecting object 

methods. Therefore, it was mainly considered an information modeling method, 



Chapter 3. Analysis 52 

rather than a full-fledged object-oriented methodology [Coad and Yourdon 1991a]. 

The introduction of the design method and later enhancements turned this initially 

inadequate method into a competitive methodology [Shlaer and Mellor 1996]. The 

final version of the process covers the analysis, design, and implementation phases 

of the software development lifecycle. It can be broken down into eight steps 

(typically performed sequentially): 

1. Partitioning the system into domains according to the four domain types 

defined in the methodology. The partitions practically divide the structure, 
functionality and behaviour of the software system into four tiers: problem 
domain, application-independent services, physical architecture, and 

physical implementation. 

2. Analyzing the application (problem) domain. 
3. Confirming the analysis through static and dynamic verification. 

4. Extracting the requirements for the application-independent service domains 

supporting the application domain. 

5. Analyzing the service domains. 

6. Specifying the components of the architectural domain (physical 

configuration of the software). 
7. Building the architectural components. 
8. Translating (implementing) the analysis models of relevant domains into the 

architectural components. 

These steps are briefly described in the following sections. 

Partitioning the system into domains (Shlaer-Mellor) 

The system is first partitioned into a number of domains. There are four types of 
domains, one or more of which (according to the following list) are defined in 

every system: 

" An Application Domain: the domain specifically pertinent to the end user 
(problem domain). 

"A number of Service Domains: relatively general, application-independent 
domains directly supporting the application domain; examples include the 

user interface and the sensors-and-actuators domain in real-time systems. 
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" An Architectural Domain: depicting the physical software configuration of 

the system and concerned with the organization of data, control and 

algorithm within the system as a whole. 

"A number of Implementation Domains: comprising the readily available, 
implementation-level components supporting the software system at 

runtime; e. g. the operating system and the programming language 

constructs and components. 

The domains are organized in client-server relationships, with the client domains 

depending on the server domains to provide them with necessary services. The 

results of this step are modeled in a Domain Chart, depicting the domains and their 

client-to-server relationships (referred to as bridges). 

Analyzing the application domain (Shlaer-Mellor) 

The next step involves applying Shlaer-Mellor OOA (Object-Oriented Analysis) to 

the application domain. Shlaer-Mellor OOA models are made up of three separate 

parts, built in the following order: 

I. An Object Information Model is built that defines the objects of the 

domain, and the relationships between them. 
2. State Models are built that show the lifecycle (behaviour) of each object. 
3. Action Specification Models are built that depict the processing taking 

place in the state models. Usually there is one action specification for each 

state in each object's lifecycle. Action specifications are usually done in 

Action Data Flow Diagrams (ADFD). 

If a domain is too large to be analyzed as a unit, it may be necessary to partition it 

into subsystems. Three models are constructed to show relationships between 

subsystems within a domain. These models are: 

1. Subsystem Relationship Model: showing the structural relationships 
between objects in different subsystems. 

2. Subsystem Communication Model: showing event communications 
between objects in different subsystems. 
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3. Subsystem Access Model: showing data accesses between objects in 

different subsystems. 

The methodology also prescribes the production of a number of derived models for 

each of the subsystems, as listed below: 

1. Object Communication Model: showing the event communications 
between objects. 

2. Event List: showing events being sent within or between state models. 
3. Object Access Model: showing the data accesses between objects. 
4. State Process Table: showing the processes in all ADFDs. 

5. Thread-of-Control Chart: showing the sequences of actions executed in 

response to each and every external event. 

Confirming the analysis (Shlaer-Mellor) 

A set of rules, described in [Lang 1993], forms the basis for static verification of 

the OOA model-set. Furthermore, a process is prescribed for dynamic verification 

of the model-set by simulating the execution of the models. The simulation of a 
desired behaviour is done in four steps: 

1. Establish the desired initial state of the system in data values in the object 
information model. 

2. Initiate the desired behaviour with an event sent to a state model. 
3. Execute the processing as specified by the action specification models and 

as sequenced by the state models. 
4. Evaluate the outcome against the expected results (according to the desired 

behaviour). 

Extracting the requirements for the service domains (Shlaer-Mellor) 

In the domain chart, each bridge between domains represents what the client 
domain requires of the server domain. These requirements are assigned to the 

service domains and form the basis for analyzing the remaining domains in the 

system. 
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Analyzing the service domains (Shlaer-Mellor) 

After specifying the requirements of all the client domains, Shlaer-Mellor OOA is 

applied to each of the remaining service domains. After analyzing each domain, its 

behaviour is dynamically verified by executing its OOA models. This process 

continues downwards along the bridges until domains are reached that either 
belong to the system-wide architecture (i. e. the architectural domain) or already 

exist (implementation domains such as the operating system, the programming 
language or the communication network). 

Specifying the components of the architectural domain (Shlaer-Mellor) 

As the last domain to be analyzed, the architectural domain is mainly concerned 

with system design issues and specifies generic, system-wide components for 

managing data, function and control, thereby laying out the physical configuration 

of the system and defining rules for translating the OOA models into this 

configuration. 

The architectural domain is specified in two types of components: mechanisms and 

structures. Mechanisms represent architecture-specific capabilities that must be 

provided in order to realize the system and are realized as traditional software tasks 

and library components. A mechanism may be regarded as the actual code that can 
be linked into the final system to implement elements of the models (state 

machines, event receiving queues, etc. ). Structures represent a prescription for 

translating the OOA models of the client domains. They are realized as templates 
for code fragments that are filled in (populated) based on elements in the OOA 

model (e. g. archetypes for C++ classes populated from OOA model objects). 

The architectural domain can be designed using Shlaer-Mellor OOA notations, but 

may also be designed using other methods. If an object-oriented design is required, 
Shlaer/Mellor's Object Oriented Design LanguagE (OODLE) is recommended. 
OODLE uses four types of diagrams (arranged into a layered structure) to model 
the design of an object oriented program, library or environment: 

" Inheritance Diagrams, which show the inheritance relationships between 

classes. 
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" Dependency Diagrams, showing usage (client/server) and friend 

relationships between classes. 

" Class Diagrams, which show the external view of each class. 

" Class Structure Charts, showing the structure of the methods and the flow 

of data and control within a class. 

Building the architectural components (Shlaer-Mellor) 

Mechanisms and structures indicating the physical design of the system (specified 

in the previous task) are detailed and set up in this task. Architectural mechanisms 

realizing the system-wide data management, functionality and control are 

constructed, and architectural structures are detailed in order to define 

unambiguous templates for adding the functionality of the client domains to the 

mechanisms. The stage is thus set for the implementation of components pertaining 

to the client domains; these will be constructed and embedded into the architecture 

in the next task. As this task and the next deal with implementation issues, 

extensive use is made of components and constructs provided by the 

implementation domain. 

Translating the models of each domain (Shlaer-Mellor) 

Models pertinent to those domains that are direct or indirect clients of the 

architectural domain are implemented into the architectural configuration using the 

structures detailed in the previous task. The details of the final step depend a great 
deal on the design chosen for the system, and the architectural components created. 

For example, considering the general case of multitasking and multiprocessor 

systems, the essential activities would be to: 

1. Allocate instances of objects to tasks, and tasks to processors. 
2. Create the tasks through translating the OOA models. 

3.3.2.2 Coad-Yourdon (1989,1991) 

Like many other early object-oriented methodologies, the Coad-Yourdon 

Methodology had a two-phase introduction. Coad and Yourdon introduced their 

Object-Oriented Analysis (OOA) method in 1989. A second edition of their book 
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on analysis appeared in 1991 [Coad and Yourdon 1991a], and their landmark book 

on Object-Oriented Design (OOD) was published the same year [Coad and 

Yourdon 1991b]. The Coad-Yourdon Methodology is comparatively simplistic in 

its approach, yet it served its purpose as an introductory object-oriented 

methodology at a time when inertia in adopting object-oriented techniques seemed 

too great to overcome. Although the Coad-Yourdon methodology is generally 

considered to only span the generic analysis and design phases, it does offer 

guidelines for implementation, by suggesting techniques for translating the design 

models into code. The general process for applying the analysis and design 

methods is shown in Figure 7 (called the "Baseball Model"). The activities and 

deliverables of OOA and OOD as prescribed by the Coad-Yourdon methodology 

are covered in the next sections. 

/000000M"IýN OOA OOD 

OOA 00 Analysis 
OOD 00 Design OOP 
OOP 00 Programming 

Figure 7. The Coad-Yourdon model for software development 
[Coad and Yourdon 1991a] 

Analysis (Coad-Yourdon) 

The analysis (OOA) part of the methodology consists of five principal activities: 

1. Finding "Classes" (abstract classes) and "Class-&-Objects" (concrete 

classes) 
2. Identifying "Structures" (generalization-specialization and whole-part 

relationships between classes) 
3. Identifying "Subjects" (partitions/subsystems) 

4. Defining attributes, and "Instance-Connections" (association relationships 
between classes) 
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5. Defining "Services" (class operations) and "Message-Connections" 

(invocations of operations) 

Coad and Yourdon emphasize that although initiated sequentially, these activities 

are not sequential steps, since jumping from one activity to another, especially to a 

previously-initiated one, is inevitable. Results of these activities are reflected in a 

special Class-&-Object Diagram that is the pivotal model of the system. In 

accordance to these major activities, the resulting class-&-object diagram consists 

of five layers, each on top of the previous one, thus adding the detail in a controlled 

manner. These layers are: 

1. Subject layer: which shows the overall partitions of the system. 

Hierarchical models of the system can be built through nesting the subjects, 

providing further means for complexity management. 

2. Class-&-Object layer: showing the abstract and concrete classes of the 

system. 
3. Structure layer: which shows the generalization-specification and whole- 

part relationships between the classes. 
4. Attribute layer: showing the attributes of the classes and the association 

relationships between classes. 
5. Service layer: which shows the operations of the classes and the potential 

message-passing between the objects (even the sequence of the messages 

can be modeled). 

The class-&-object diagram is supplemented with various behavioural diagrams 

produced during the identification of the operations and the message-connections 
(activity 5 of the analysis phase). Typically, the dynamic behaviour of each class is 

captured in an Object State Diagram, a simple form of State Transition Diagram, 

and the algorithm that has to be applied for each of the significant services (i. e. the 

operation body) is described by a simple kind of flowchart, referred to as a Service 

Chart. 
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Design (Coad-Yourdon) 

59 

During the design phase of the methodology (OOD) the system is designed in four 

components, each of which provides certain functionality needed to realize the 

requirements and implement the system. The components are listed below: 

1. Problem Domain Component (PDC): initially contains the results of the 

analysis phase. During OOD, it is improved and enriched with 

implementation detail, yet still represents the part of the design containing 
features related to the user domain; that is, the requirements. 

2. Human Interaction Component (HIC): handles sending and receiving 

messages to and from the user. The classes in the human interaction 

component have names taken from the user interface language, e. g. 

window and menu. 

3. Task Management Component (TMC): for systems needing to implement 

multiple threads of control, the designer must construct a task management 

component to organize the processing, coordinate the tasks (processes) and 

provide means for inter-task communication. This component contains the 

classes that supply these services. 
4. Data Management Component (DMC): provides the infrastructure to store 

and retrieve objects. It may be a simple file system, a relational database 

management system, or even an object-oriented database management 

system. Classes in this domain typically represent relational tables, and/or 

more complex data/object servers. 

The main diagram in each component is the class-&-object diagram (with the same 
five-layered architecture). Dynamic diagrams (object state diagrams and service 

charts) are used to augment and supplement the information they convey. 

3.3.2.3 RDD (1990) 

Wirfs-Brock, Wilkerson and Wiener introduced Responsibility-Driven Design 

(RDD) in 1990 [Wirfs-Brock et al. 1990]. The RDD process starts when a detailed 

requirement specification of the system has already been provided. This means that 

certain typical analysis activities, including requirements elicitation, have been left 

out of the methodology, leaving it to the engineer to decide what method to use for 
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producing the requirements specification. Despite this, RDD has had a great impact 

on modem object-oriented software engineering, since the very useful notion of 

responsibility was first demonstrated and used to perfection in this methodology. 

A new version of RDD using ideas from UML and use case driven practices has 

also been released [Wirfs-Brock and McKean 2002]. 

RDD models an application as a collection of objects that collaborate to fulfil their 

responsibilities. Responsibilities include two key items: 

1. The knowledge an object maintains. 
2. The actions an object can perform. 

The process is divided into two phases: the Exploratory Phase and the Analysis 

Phase (Figure 8). A brief overview of each phase is given in the next sections. 

Exploratory Phase (RDD) 

The major tasks in this phase are to: 

1. discover the classes required to model the application, 
2. determine what behaviour the system is responsible for and assign these 

responsibilities to specific classes, and 

3. determine what collaborations must occur between classes of objects to 
fulfil the responsibilities. 

As seen in the diagram depicting the RDD process, the three activities of 
Identifying Classes, Identifying Responsibilities and Identifying Collaborations 

should be performed iteratively in order to be effective, since the results of each 

activity will affect the outcome of the others. The responsibility-driven design 

method uses CRC (Class-Responsibility-Collaborator) cards - first introduced by 

Cunningham and Beck - in order to capture classes, responsibilities and 

collaborations. These cards also record subclass-superclass relationships and 

common responsibilities defined by superclasses. 
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Figure 8. The RDD process [Wirfs-Brock et at. 19901 
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During the second phase of RDD, the following activities are primarily performed: 

1. Factoring the responsibilities into inheritance hierarchies to get maximum 

reusability from class designs. Inheritance hierarchies are modeled in 

Inheritance Graphs. Responsibilities of each class are clustered into 

contracts, i. e. the list of requests that a client can make of the class. A class 

may support numerous contracts, showing different behaviour to different 

clients. 

2. Identifying possible subsystems of objects and modeling the collaborations 

between objects in more detail. This activity involves modeling the 

structure of the subsystems and their contents (objects and other 

subsystems), along with the client-server relationships between them, in 

Collaboration Graphs. These diagrams also show the contracts of each 
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server (class or subsystem), and the Client-server relationships explicitly 

show on which contract of the server a client is dependent. 

3. Determining Class Protocols and completing a specification of classes, 

subsystems of classes, and client-server contracts; protocols are defined for 

each class by refining responsibilities into sets of method signatures. 
Detailed textual specifications are written for each subsystem, each class, 

and each contract. 

The first two activities are performed iteratively, since decisions on subsystem 
boundaries may affect the factoring of responsibilities, and vice-versa. 

3.3.2.4 Booch (1991,1994) 

Booch introduced his object-oriented methodology, purely as a design method, in 

his first book in 1991 [Booch 1991]. He was already well known at that time for 

his work on Ada program design, and especially for his landmark paper [Booch 

1986], which was the first to suggest using the object-oriented approach in higher- 

level software development activities, namely system design. He presented an 

extended version of his methodology, which also covered analysis, in his second 

book [Booch 1994]. Booch has modeled object-oriented design as a repeating 

process (referred to as "The Micro Process") within a lifecycle-level repeating 

process (referred to as "The Macro Process"). It has been likened to a wheel (the 

micro process) spinning along a road (the macro process). 

The macro process serves as a controlling framework for the micro process. It 

represents the activities of the development team on the scale of weeks to months. 
Many parts of this process are basic software management practices such as quality 

assurance, code walkthroughs, and documentation. The focus at this level is more 

upon the customers and their desires for things such as quality, completeness, and 

scheduling. Figure 9 shows the macro process as prescribed by Booch (the self- 
iterations represent the micro process). 
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Figure 9. The Macro Process of the Booch methodology 
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The micro process is driven by the scenarios and architectural specifications that 

emerge from the macro process. It represents the daily activities of the individual 

or small group of developers. Figure 10 shows the various tasks involved in the 

micro process. 

These two processes are further described in the next sections. 

Identify 
Classes and Objects 

Specify 

Interfaces and 
Implementations 

Identify 
Class and Object 

Relationships 

Identify 
Class and Object 

Semantics 

Figure 10. The Micro Process of the Booch Methodology 
IBooch 1994] 
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Macro Process (Booch) 

The macro process tends to follow these steps [Booch 1994]: 

1. Establish core requirements for software (conceptualization). 

2. Develop a model of the system's desired behaviour (analysis). 

3. Create an architecture for the implementation (design). 

4. Evolve the implementation through successive refinement (evolution). 

5. Manage post-delivery evolution (maintenance). 

Micro Process (Booch) 

64 

The micro process tends to cycle through the following activities [Booch 1994]: 

1. Identify the classes and objects at a given level of abstraction, through 

establishing the boundaries of the problem, finding abstractions in the 

problem domain, constraining the problem and identifying what is and is 

not of interest, and generating a Data Dictionary, which specifies all 

classes and objects in the development. Due to the iterative nature of the 

micro process, the data dictionary can change during development. Booch 

advocates the use of CRC cards (explained in Section 3.3.2.3) throughout 

the process. Classes identified during the earlier phases of the macro 

process mainly belong to the problem domain, while those added during 

design typically belong to the implementation. 

2. Identify the semantics of classes and objects. The purpose of this step is to 

establish the meanings of the classes and objects identified in the previous 

step, with the emphasis chiefly on behaviour of the system and its 

constituents, rather than the structure. This is done by establishing the 

behaviour and attributes of each abstraction identified in the previous 

phase, and by refining the abstractions. Responsibilities are added to 

abstractions and named operations are developed for each class. State 

Charts are produced for classes with significant dynamic behaviour. Object 

Diagrams and Interaction Diagrams are also produced, depicting the 

patterns of interaction among objects; these diagrams are actually 
isomorphic, with the former stressing the static relationships among 

objects, and the latter emphasizing the sequence of the interactions among 
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objects. Object diagrams are also quite useful in the earlier stages of the 

macro process for showing the structural relationships among objects. In 

this context, only the links between the objects are shown, and the arrows 

and sequence numbers, which determine the behavioural aspects (message 

passing), are left out, to be added in later stages. These simple object- 
diagrams are built during the third step of the micro process (identifying 

relationships); in other words, simple object diagrams built during the third 

activity of the micro process in the earlier stages of the project (first two 

phases of the macro process), are adorned with behavioural detail during 

the second activity in later iterations. 

3. Identify the relationships among classes and objects. Once behaviour is 

identified, the next step is to determine the relationships among classes and 

objects. This is done by establishing exactly how things interact within the 

system. Patterns among classes which permit reorganization and 

simplification of the class structure are sought. Visibility decisions are 

made at this time. The end result of this step is the production of class, 

object and module diagrams. Class Diagrams show the classes and their 

relationships (association, inheritance, and aggregation). Module Diagrams 

are typically built during later stages of the macro process and are used to 

show the physical modules and the interdependencies among them, thus 
depicting the physical architecture of the system. 

4. Specify the interface and implementation of classes and objects. Design 

decisions are made concerning the representation of the classes and objects 

already identified. Classes and objects are allocated to modules, and 

processes implementing these modules are allocated to processors. Module 

diagrams are adorned with additional detail, and Process Diagrams are 

produced. A process diagram shows the hardware platform architecture of 
the system by depicting the processors and devices and their 
interconnections. It also shows which processes are allocated to each 

processor. 

Typically, the stress is gradually shifted from the earlier activities of the micro 
process to the later ones as the project moves through the macro process, from 

conceptualization to analysis and then to design. However, due to the iterative 
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nature of the overall process, it is likely that earlier activities of the micro process 

will be revisited throughout the design. 

3.3.2.5 OMT (1991) 

OMT (Object Modeling Technique) was introduced by Rumbaugh et al. in 1991 

[Rumbaugh et al. 1991]. The methodology is categorized as combinative 

[Monarchi and Puhr 1992], since it uses three different models (analogous to the 

old structured SA/SD methodology [DeMarco 1978, Yourdon and Constantine 

1979]) and then defines a method for integrating them. The three models by which 

OMT graphically defines a system are: 

1. The Object Model (OM): The object model is the pivotal model. It depicts 

the object classes in the system and their relationships, as well as their 

attributes and operations, and thus represents the static structure of the 

system. The object model is represented graphically by a Class Diagram. 

2. The Dynamic Model (DM): The dynamic model indicates the dynamics of 
the objects and their changes in state. It captures the essential behaviour of 

the system by exploring the behaviour of the objects over time and the 

flow of control and events among the objects. Scenarios of the flow of 

events are captured in Event-Trace Diagrams. These diagrams, along with 

State Transition Diagrams (State Charts), compose the OMT dynamic 

model. 

3. The Functional Model (FM): The functional model is a hierarchical set of 
Data Flow Diagrams (DFDs) of the system and describes its internal 

processes without explicit concern for how these processes are actually 

performed. 

Each model describes one aspect of the system but contains references to the other 

models: the object model describes the data structure that the dynamic and 
functional models operate on; the operations in the object model correspond to 

events in the dynamic model and functions in the functional model; the dynamic 

model describes the control structure of objects, showing decisions that depend on 

object values and which cause actions that change object values and invoke 

functions; the functional model describes functions invoked by operations in the 
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object model and actions in the dynamic model; functions operate on data values 

specified by the object model; the functional model also shows constraints on 

object values. 

The OMT process consists of five phases, as shown in Figure 11. A use case driven 

version of OMT, coined OMT-2, was proposed by Rumbaugh in 1994 [Rumbaugh 

1994]; in OMT-2, Use Case Diagrams and Object Interaction Diagrams replace 

DFDs as constituents of the functional model. 

The first three phases (Analysis, System Design and Object Design), which are 

considered the primary features of the OMT process, are described in the next 

sections. 

Class libraries 

Knowledge about 
application domain Init. Basic 

Init. D System aýhitectw Object aalysis Design Design Coding Testing 
Mit. FM Detailed Object 

Problem statement OM, DM, FM OM, DM, FM source code 

Analysis System Object source fest 
document design design code scenarios document document 

User interactions 

Reuse Database of OMT Specifications 

Figure 11. The OMT process and its deliverables [Derr 1995] 

Analysis (OMT) 

The goal of analysis is to build a correct and comprehensible model of the real 

world. Requirements of the users, developers and managers provide the 
information needed to develop the initial problem statement. Once the initial 

problem is defined, the following tasks are carried out: 

1. Building the object model, including a Class Diagram, depicting the 

classes of the system and their relationships, and a Data Dictionary. 
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2. Developing the dynamic model, including State Transition Diagrams and 

global Event-Trace Diagrams. The OMT identifies the following steps in 

constructing the dynamic model: 
2.1. Identifying patterns of system usage and preparing scenarios of 

typical interaction sequences. 
2.2. Identifying events between objects and preparing an event-trace 

diagram for each scenario. 
2.3. Preparing an event-trace diagram for the system, showing events 

flowing at the boundary of the system. 
2.4. Developing state transition diagrams for classes with important 

dynamic behaviour. 

2.5. Checking for consistency and completeness of events shared 

among the state transition diagrams. 

3. Constructing the functional model including Data Flow Diagrams and 

constraints. 
4. Verifying, iterating, and refining the three models. 

System Design (OMT) 

During system design, the high-level structure of the system is chosen. The 

decisions that will be addressed during system design are: 

1. Organizing the system into subsystems. 
2. Identifying concurrency. 

3. Allocating subsystems to processors and tasks. 
4. Choosing the strategy for implementing data stores in terms of data 

structures, files, and databases. 

5. Identifying global resources and determining mechanisms for controlling 

access to them. 

6. Choosing an approach to implementing software control. 
7. Considering boundary conditions. 
8. Establishing trade-off priorities. 
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Object design is concerned with fully specifying the existing and remaining 

classes, associations, attributes, and operations necessary for implementing the 

system. Operations and data structures are fully defined along with any internal 

objects needed for implementation. In essence, all of the details for fully 

determining how the system will be implemented are specified during object 

design. 

3.3.2.6 OSA (1992) 

OSA (Object-oriented Systems Analysis) was introduced in 1992 by Embley, 

Kurtz and Woodfield [Embley et al. 1992]. OSA is only concerned with object- 

oriented analysis and does not include other phases of the generic software 
development lifecycle. It is considered a model-driven technique, in that it provides 

a pre-specified set of fundamental concepts with which to model the system under 

study, and therefore lacks a prescribed, step-by-step process. This is in contrast to 

the method-driven approach (which is typical of lifecycle-span methodologies), 

casting a shadow of doubt on whether it should at all be considered a methodology. 
Nevertheless, there are those who believe that OSA is an analysis methodology, 

categorizing it as such alongside its method-driven counterparts [Meyer 1997]. In 

any case, OSA's influence on later methodologies is significant, justifying its 

inclusion in this review. 

In OSA, the system is modeled from three perspectives: object structure, object 
behaviour, and object interaction. An OSA model of the system consists of three 

parts: 

1. Object-Relationship Model (ORM), which describes objects and classes as 

well as their relationships with each other and with the "real world". 
2. Object-Behaviour Model (OBM), which provides the dynamic view 

through states, transitions, events, actions and exceptions (analogous to a 

state-transition diagram). 

3. Object-Interaction Model (OIM), which specifies possible interactions 

among objects. 
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Complexity is managed by providing means for model layering, showing details of 

high-level model elements in separate lower-level diagrams. These models are 

briefly described in the next sections. 

Object-Relationship Model - ORM (OSA) 

ORM components describe objects, object classes, relationships, relationship sets, 

and constraints. An object is any identifiable entity, and an object class is a set of 

objects that share common properties or behaviour. A relationship links two or 

more objects. A relationship set is a set of relationships that associate objects from 

the same collection of object classes. ORM components include three special kinds 

of relationship sets: generalization/specialization, aggregation, and association. 

High-level object classes and high-level relationship sets are complex object 

classes and relationship sets described in more detail in separate ORM diagrams. 

Object-Behaviour Model - OBM (OSA) 

The OBM describes the behaviour of objects in a system. It consists of a collection 

of state nets, each of which defines the behaviour for the members of an object 

class. The primary building blocks for state nets are states and transitions. An 

object may be in several different states at any time. A transition consists of a 

trigger and an optional action. High-level states and high-level transitions are 

states and transitions described by other state nets. 

Object-Interaction Model - OIM (OSA) 

An OIM captures information about interactions between objects. OIM 

components include objects, interactions and various types of constraints. High- 

level interactions are those described by more detailed OIM diagrams. 

3.3.2.7 OOSE (1992) 

OOSE (Object-Oriented Software Engineering) was introduced by Jacobson in 

1992 [Jacobson et al. 1992]. It is a simplified version of Jacobson's Objectory 

methodology, first introduced in 1987 [Jacobson 1987] and later the property of 
Rational Corporation (recently acquired by IBM). Covering the full generic 
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lifecycle, the OOSE process consists of three main phases, each producing a set of 

models: 

1. Analysis: focus is on understanding the system and creating a conceptual 

model of it. This phase consists of two non-sequential, iterative subphases: 
1.1. Requirements Analysis, aiming at eliciting and modeling the 

requirements of the system. A Requirements Model is produced 

as a result of this activity. 
1.2. Robustness Analysis, aiming at modeling the structure of the 

system in terms of interface, data and control objects and also 
by specifying the subsystems making up the overall system. An 

Analysis Model is produced as the result of this activity. 

2. Construction: focus is on creating a blueprint of the software and 
producing the code. This phase consists of two subphases: 

2.1. Design, aiming at modeling the run-time structure of the 

system, and also the inter-object as well as intra-object 

behaviour necessary to realize the requirements. A Design 

Model is produced as the result of this activity. 
2.2. Implementation, aiming at building the software. An 

Implementation Model (including the code) is produced as the 

result of this activity. 
3. Testing: focus is on verifying and validating the implemented system. A 

Test Model is produced during this phase. 

Figure 12 shows the OOSE process and the models produced. Although each model 
is built in a specific phase of the process, models are usually revisited and refined 
during later phases. A brief description of each phase and subphase, and the 

corresponding models, is given in the next sections. 

Analysis (OOSE) 

Concerned with understanding and modeling the system, this phase lays the 

groundwork for later phases, especially by producing the Use Case Model, which is 

the pivotal model of the whole process. The two subphases are executed iteratively, 

thereby deriving the Requirements and Analysis Models from the informal 

customer requirements. 
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Figure 12. The OOSE process and the models produced 
[Jacobson et al. 1992] 

Requirements Analysis 

72 

The aim of the requirements analysis subphase is to specify and model the 

functionality required of the system, typical means and forms of interacting with 

the system, and the structure of the problem domain. 

The model to be developed is the Requirements Model, further divided into three 

submodels: 

"A Use Case Model, which delimits the system and describes the functional 

requirements from the user's perspective. The use case model specifies the 

complete functional behaviour of the system by defining what entities 
interact with the system from outside (actors) and the specific ways these 

external entities use the system (use cases). A use case is defined as "a 

particular form or pattern or example of usage, a scenario that begins with 
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some user of the system initiating some transaction or sequence of 

interrelated events" [Jacobson et al. 1992]. In addition to depicting the 

relationship between the actors and their corresponding use cases (those 

they communicate with), a use case model can also show the relationships 

between the use cases themselves: a use case may extend another use 

case's behaviour, or use another use case in order to perform its own 

functionality. 

"A Domain Object Model, which consists of objects representing entities 
derived from the problem domain, and their inheritance, aggregation and 

association relationships. 

" Interface Descriptions, which provide detailed logical specifications of the 

user interface and interfaces with other systems. 

The use case model is the central model of OOSE; use cases are the basis on which 

the whole process rests. They are directly involved in the construction of other 

models and enable the developers to keep constant focus on the requirements. 
Hence, OOSE is considered a "use case driven" methodology, and the first of an 

influential dynasty. 

Robustness Analysis 

The aim of the robustness analysis subphase is to map the requirements model to a 
logical configuration of the system that is robust and adaptable to change. The 

model to be developed is the Analysis Model, which shows how the functionality of 

each and every use case is realized by collaboration among typed objects (called 

analysis objects). These objects can be of three types: 

1. Entity: objects of this type represent entities with persistent state, typically 

outliving the use cases they help realize. They are usually derived from the 

domain object model. 
2. Interface: objects of this type represent entities that manage transactions 

between the system and the actors in the outside world. 
3. Control: objects of this type represent functionality not inherently 

belonging to other types of objects. They typically act as controllers or 

coordinators of the processing going on in the use cases. 
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The developers of OOSE believe that this kind of typing improves robustness and 

adaptability by enhancing separation of concern among the objects. 

The analysis model is derived from the use case model by spreading the behaviour 

in each use case among typed objects, showing how they communicate and interact 

in order to realize the use case. The analysis submodels thus constructed (one per 

use case) can also show the inheritance and aggregation relationships between the 

objects. In more complex systems, the analysis model also includes information on 

how the system can be partitioned into subsystems, represented as packages of 

analysis classes. 

Construction (OOSE) 

This phase is concerned with mapping the models so far produced to a physical 

configuration of the system. It constructs the software system by focusing on 

implementation issues, modeling the run-time structure and behaviour of the 

system, and producing the final code. The two subphases closely correspond to the 

generic lifecycle activities of the same names. 

Design 

The aim of the design subphase is to refine the analysis model by taking into 

account implementation features. The model to be developed is the Design Model, 

which describes the features of the implementation environment, the details of the 

design classes (referred to as blocks) necessary to implement the system, and the 

way run-time objects should behave and interact in order to realize the use cases. 

The design subphase can be broken down into three activities: 

1. Determination of the features of the implementation environment; such as 

the DBMS, programming language features, and distribution 

considerations. 
2. Definition of blocks (design classes) and their structure; each object in the 

Analysis Model is initially mapped to a design class, called a block. 

Implementation-specific blocks are then added and the collection is 

revised. The set of blocks is partitioned into packages, which represent the 
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actual implementation elements of the system. Interfaces of blocks and 

semantics of their operations are explicitly and comprehensively defined. 

3. Specification of the sequences of interactions among objects and the 

dynamic behaviour of each block; an Interaction Diagram is drawn for 

each of the use cases, describing the sequence of communication among 

block instances at run-time for realizing the use case. OOSE interaction 

diagrams provide support for use cases with extensions, by using special 

symbols called probe positions for indicating a position in the use case that 

is to be extended (the extension use case is to be plugged into it) if a given 

condition is satisfied. In addition to interaction diagrams, a State Transition 

Graph is used to describe the behaviour of each block. 

Implementation 

The aim of the implementation subphase is to produce the code from the 

specifications of the packages and blocks defined in the design model. The model 

to be developed is the Implementation Model, which consists of the actual source 

code and accompanying documentation. 

Testing (OOSE) 

The aim of the testing phase is to verify and validate the implementation model. 
The model to be developed is the Testing Model, which mainly consists of the test 

plan, the test specifications and the test results. As usual, testing is done at three 

levels: starting from the lowest level, blocks are tested first, use cases are tested 

next, and finally, tests are performed on the whole system. 

3.3.2.8 BON (1992,1995) 

The BON Methodology was first introduced in a paper by Nerson in 1992 [Nerson 

1992], with the acronym standing for "Better Object Notation". A revised and far 

more detailed version of the methodology was put forward in 1995 [Walden and 
Nerson 1995]; this time the acronym stood for "Business Object Notation". 

Whatever the `B' should stand for, BON is certainly not a mere notation, but a 

complete methodology spanning the analysis and design phases of the generic 

software development lifecycle. The methodology strives to be language- 
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independent; however, it is deeply influenced by Eiffel's assertion mechanisms and 

the notion of Design by Contract [Meyer 1997]. 

The BON process consists of nine steps, or tasks. A summary of the process tasks 
in the order of execution is shown in Figure 13. Tasks 1-6 focus on analysis and 

tasks 7-9 deal with design. The developer is allowed to change the order of the 

tasks if it helps achieve the goals of the project, but it is required that all the 

necessary models be eventually produced. 

TASK DESCRIPTION BON DELIVERABLES 

1 Delineate system borderline. Find major C' 
A subsystems, user metaphors, use cases. 

SYSTEM CHART, SCENARIO CHARTS 

}j 2 List candidate classes. Create glossary of 
E technical terms. 

CLUSTER CHARTS 

R 
I 
N Select classes and group into clusters. 

SYSTEM CHART, CLUSTER CHARTS, 

G 
3 

Classify; sketch principal collaborations. 
STATIC ARCHITECTURE, 

D 4 Define classes. Determine commands, 
E queries, and constraints. CLASS CHARTS 
S 
C 
R 

Sketch system behaviors. Identify events, EVENT CHARTS, SCENARIO CHARTS, 

I 5 object creation, and relevant scenarios CREATION CHARTS, 

B 
I 

drawn from system usage. OBJECT SCENARIOS 

N 6 Define public features. Specify typed CLASS INTERFACES. 

Signatures and formal contracts. STATIC ARCHITECTURE 

CLASS INTERFACES, 

7 Refine system. Find new design classes, STATIC ARCHITECTURE, 
D add new features. CLASS DICTIONARY, EVENT CHARTS, 
E 
S 

OBJECT SCENARIOS 

I 

G CLASS INTERFACES, 

N 8 Generalize. Factor out common behavior. STATIC ARCHITECTURE, 
I 
N 

CLASS DICTIONARY 

G Complete and review system. Produce 
9 final static architecture with dynamic Final static and dynamic models; 

system behavior. all BON deliverables completed. 

Figure 13. The BON process: the tasks and their deliverables 
[Walden and Nerson 1995] 

Each task in the BON process has a set of input sources, is controlled by 

acceptance criteria, and produces a set of deliverables. The deliverables that are 

created or updated as a result of each task are listed opposite the task entry in 

Figure 13 (the initial version of each deliverable is underscored). The goal of the 
BON process is to gradually build the deliverables, which provide static and 
dynamic descriptions of the system being developed. The static descriptions form 

the static model of the system. This model contains formal descriptions of classes 



Chapter 3. Analysis 77 

and their grouping into clusters as well as client-server, inheritance, and 

aggregation relationships between them, thereby showing the system structure. 

The dynamic descriptions, on the other hand, make up the system's dynamic 

model. This model specifies system events, what object types are responsible for 

the creation of other objects, and system execution scenarios representing selected 

types of system usage with diagrams showing object message passing. 

The BON deliverables are dependent on each other; there are close mappings 
between some of them, and although the static and dynamic models are two very 
different types of system description, they are closely related, since the 

communicating objects in the dynamic model correspond exactly to the classes in 

the static architecture. 

A short description of each of the BON tasks is given in the next sections. The 

description of each task includes a brief overview of the deliverables that are first 

produced in that task (underscored in Figure 13). 

Delineating System Borderline (BON) 

This task is concerned with the main view of the world that is to be understood, and 
the system that is going to be modeled. Through well-established information 

gathering and systems analysis techniques, the scope of the system and its 

subsystems is identified, user metaphors are compiled, and the system functionality 

is defined as typical usage scenarios. Overall reuse policy is also established in this 

task, since it will affect other tasks of the process. 

The major activity in this task is to analyze the problem domain and decide which 

parts of it belong to the system. In BON, a system (or even the whole problem 
domain) consists of one or more clusters, each of which contains a number of classes 

and/or sub-clusters. Clustering is essentially a mechanism for grouping classes, yet it 

is also used for representing subsystems. Major subsystems are identified in this first 

task of the BON process if the system is overly complex. Each subsystem is modeled 
as a top-level cluster, later to contain classes implementing the structure and 
behaviour of the subsystem. The System Chart (one per system) contains a brief 
description of each top-level cluster in the system. User metaphors are also 
identified, mainly to be used for identifying classes in later tasks, yet they also help 
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to define the borderline of the system: combined with structural analysis of the 

problem domain and the system, the metaphors help indicate what parts of the 

problem domain reside inside the system as seen from the viewpoint of its users and 

domain experts, and what belongs to the outside world, thus delineating the system 

boundary. 

Other activities of this task focus on the system and its functionality as seen from the 

users' perspective. Outgoing and incoming information flow is identified, major 

system functionality is defined, and typical use cases are determined and described as 

system scenarios. A system scenario is a description of a possible partial system 

execution. It is a sequence of events initiated by one or more stimuli (internal or 

external) and shows the resulting events in the order they occur. Some interesting 

system scenarios are usually collected to illustrate important aspects of the overall 

system behaviour. A description of the scenarios, depicting the actions fulfilled in 

each, is then tabulated as Scenario Charts. 

Listing Candidate Classes (BON) 

This task is mainly concerned with extracting a list of candidate classes from the 

problem domain. This list is entered in special tables called Cluster Charts. Although 

initialized with a list of candidate classes, the cluster charts will be refined and 

completed during the BON process and will ultimately contain descriptions of the 

classes and sub-clusters in a cluster. The analysts will also compile a glossary of 
technical terms and concepts used in the problem domain. All the deliverables 

produced are then reviewed and validated by end-users and domain experts. 

Selecting Classes and Grouping into Clusters (BON) 

In this task, beginning with the list of candidates produced in task 1, an initial set of 

concepts is formed; these concepts will then be modeled as classes, which are then 

grouped into clusters. This task also involves the identification of relationships 
(inheritance, client-server, and aggregation) among the classes in a cluster, and 

among the clusters themselves. A set of diagrams (called the Static Architecture), 

describing the relationships between the classes and clusters in the system, is the 

main deliverable produced. A Class Dictionary is also produced which is a sorted list 
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of the classes, containing their textual descriptions. The System Chart and Cluster 

Charts are updated with the results of this task. 

Defining Classes (BON) 

Having selected and grouped an initial set of classes, the next task is to define each 

class in terms of its state (the information it can provide), its behaviour (the 

operations it can perform), and the general rules that must be obeyed by the class 

and its clients. This amounts to filling in the BON Class Charts with: queries, 

which are functions that return information about the system state without 

changing it (corresponding to attributes); commands, which do not return any 

information but may change the state (corresponding to operations), and 

constraints, which are the general business rules and consistency conditions as 

pertinent to the class. The results of this task are then reviewed and validated by the 

end-user/customer. 

Sketching System Behaviour (BON) 

In this task, the dynamic model of the system is elaborated. Initial Scenario Charts 

capturing the most important types of system usage have already been constructed as 

a result of task 1, which are of great value for finding initial candidate classes and 

selecting between alternative views of the problem domain. However, a 

comprehensive and more detailed model of potential system usage should be built, 

which is the main objective of this task. External (incoming) events that trigger 

object communication, and also the important internal (outgoing) events that are 

indirectly triggered by the incoming events, are identified and listed in Event Charts. 

Classes that are instantiated during system execution and those classes that instantiate 

them are specified and tabulated in Creation Charts. For each System Scenario 

(depicting a typical use case of the system), the sequence of message 

communications between objects aimed at fulfilling the scenario is specified and 

modeled in an Object Scenario; this typically necessitates perfecting and refining 

the scenario charts. The dynamic model thus constructed is checked for consistency 

with the static model, and ultimately, reviewed and validated by the end- 

user/customer. 
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Defining Public Features (BON) 

In this task, the informal class descriptions filled into the class charts during task 4 

(Defining Classes) are translated into formal class interfaces (features) with 

software contracts. Queries become functions - which return information and 

typically correspond to attributes, and commands become procedures - which may 

change the system state and typically correspond to operations; the functions and 

procedures thus defined are referred to as features. Constraints translate into pre- 

and post-conditions on the operations and invariants for the whole class, thus 

constructing the contract. The signature of each public feature (function or 

procedure) is also specified. The results are shown in Class Interfaces, which are 

charts showing detailed, typed and formal descriptions of the classes and their 

relationships, with feature-signatures and contracts elaborated. Typing of features 

usually results in new client relations being discovered between classes, which are 

also modeled in the charts. The Static Architecture is updated to reflect the 

refinements done in this task. 

Refining the System (BON) 

This task begins the design part of the BON process, and therefore includes a 

repetition of many activities already performed for the analysis classes, now 

applied to new design classes. The existing classes (especially features, contracts 

and relationships) are also modified and refined in order to accommodate the 

design classes and implement the design decisions made. These changes in turn 

necessitate refinements to the dynamic model. The relevant diagrams and tables - 
including the Static Architecture, Class Interfaces, Event Charts, Object Scenarios, 

and the Class Dictionary - are updated accordingly. 

Generalizing (BON) 

This task concerns improving the inheritance hierarchy of the classes by factoring 

common state and behaviour into deferred (abstract) superclasses. The relevant 
diagrams and tables - including the Static Architecture, Class Interfaces, and the 

Class Dictionary - are updated accordingly. 
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Completing and Reviewing the System (BON) 

In this final task, the models are polished and completed, and the overall system 

consistency is checked. This typically involves reviewing and perfecting the static 

and dynamic models, syntactic verification of the classes, and checking the 

consistency of class invariants and the pre- and post-conditions of routines. The 

relevant diagrams and tables - especially the Static Architecture, Class Interfaces, 

Event Charts, Object Scenarios, and the Class Dictionary - are updated 

accordingly. 

3.3.2.9 Hodge-Mock (1992) 

The methodology introduced by Hodge and Mock in 1992 was the result of 

research to find an object-oriented software development methodology for use in a 

simulation and prototyping laboratory, the sole purpose of which was to explore 

the feasibility of introducing higher levels of automation into Air Traffic Control 

(ATC) systems [Hodge and Mock 1992]. The research concluded that, of the many 

existing methodologies investigated, none was suitable for the purpose [Mock and 
Hodge 1992]. The team therefore set out to develop a methodology through 

integrating and extending existing methodologies, including Coad-Yourdon and 
Booch, with a special emphasis on incorporating seamlessness, traceability and 

verifiability. The resultant methodology is extremely rich as to the types of 

diagrams and tables produced during the development process, yet due to strong 

mapping relationships among them, versions of most diagrams and tables are 

directly derivable from those initially produced; the methodology, therefore, lends 

itself to automation and is applicable as a general-purpose methodology, despite its 

complexity. 

The Hodge-Mock process consists of five phases: 

1. Analysis: focusing on refining the requirements and identifying the scope, 

structure and behaviour of the system. This phase in turn consists of four 

subphases: 
I. I. Requirements Analysis: with the focus on eliciting the 

requirements of the system. 
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1.2. Information Analysis: with the focus on determining the classes 
in the problem domain, their interrelationships, and the 

collaborations among their instances. 

1.3. Event Analysis: with the focus on identifying the behaviour of the 

system through viewing the system as a stimulus-response 

machine. The findings are then used for verifying and 

complementing the class structure of the system. 
1.4. Transition to System Design: with the focus on providing a more 

detailed view of the collaborations among objects. 
2. System Design: with the focus on adding design classes to the class 

structure of the system and refining the external behaviour of each of the 

classes. 

3. Software Design: with the focus on adding implementation-specific classes 
and details to the class structure of the system, and specifying the internal 

structure and behaviour of each class. 
4. Implementation: with the focus on coding and unit testing. 
5. Testing: with the focus on system-level verification and validation. 

Figure 14 shows these phases and the deliverables produced or updated in each. It 

also shows the order in which the deliverables are produced, emphasizing the 
interdependencies among the deliverables. Although the phases are primarily 
sequential, the methodology explicitly prescribes cyclic returns to previous phases 
and iterative development of deliverables. 

A short description of each of the first three phases (Analysis, System Design and 
Software Design) is given in the next sections; the methodology does not propose a 

specific procedure for the Implementation and Testing phases, suggesting instead 

that these phases should be performed according to object-oriented programming 
and testing practices. The description of each phase includes a brief overview of 
the major deliverables that are first produced in that phase (underscored in Figure 
14). 
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Figure 14. The Hodge-Mock process: the phases and their deliverables 
lHodge and Mock 19921 

Analysis (Hodge-Mock) 

The tasks performed during the analysis phase of the Hodge-Mock methodology 

mainly deal with requirements elicitation and problem-domain modeling. The rest 

of this section describes the tasks performed in each of the four subphases of 

analysis. 

1. Requirements Analysis: using requirements elicitation techniques and 

starting from the typically ambiguous, incomplete and inconsistent 

problem-statement supplied by the client, the development team strives to 

produce a clear statement of the system's scope and its main functional and 

non-functional requirements. The system scope and requirements 

specifications thus identified will be extensively used in generating other 

deliverables, and will in turn be updated and refined according to later 

findings. 

2. In/orntation Analysis: The following tasks are performed in this Subphase: 
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2.1. Using the requirements identified in the previous subphase, 

structural modeling of the problem domain starts with the 

familiar information-modeling practice of entity-relationship 

modeling: data elements, entities, of the problem domain, along 

with their attributes and interrelationships are identified and 

modeled in an Entity-Relationship Diagram (ERD). 

2.2. The entity-relationship model produced in the previous task is 

translated into a model of problem domain classes, together with 

their attributes, operations (services), and interrelationships. This 

is done by considering each and every entity as a candidate for 

being mapped onto a problem-domain class. Entities ultimately 

end up as either classes or attributes of classes. The resultant 

model is depicted as an Object-Relationship Diagram (ORD). As 

a mechanism for managing the complexity of the ORD, the 

classes in the ORD can be partitioned into subjects, which group 

classes of close functional or structural relationships together. 

2.3. Each of the classes identified and modeled in the ORD is 

described and documented in detail using a standard template. 
These Object Description (OD) documents contain detailed 

information about all the particulars of the classes they describe, 

and are gradually completed during the development process. 
2.4. Class instances (objects) typically collaborate with each other in 

order to fulfil their expected functionalities. Identifying and 

summarizing these collaborations at the class-level is a major task 

in the Hodge-Mock methodology. For each of the classes 
identified so far, a list is made of its services and the services that 

the class requires from other classes in order to be able to provide 
its expected functionality. The findings are tabulated in the 
Object Cross-Reference (OCR) table. 

2.5. Using the class structure identified so far, especially the structure 
(attributes) and behaviour (services) of individual classes, 
generalization-specialization (is-a) relationships existing between 

the classes are identified and modeled separately in an 
Inheritance Diagram (ID). 
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3. Event Analysis: The following tasks are performed in this subphase: 
3.1. Through viewing the system as a stimulus-response machine, a 

list of external stimuli to which the system should respond is 

prepared based on the purpose of the system as determined in 

previous subphases. The activities that the system should perform 

in response to these stimuli are also specified. A number of these 

activities are categorized as fundamental activities, which are 

directly attributable to and in support of the system's purpose, 

while the rest are regarded as custodial, in that they are secondary 

activities providing support to fundamental activities. The 

functionality of the system thus identified is summarized in a 

tabular form in a System Behaviour Script (SBS). 

3.2. The external behaviour of the system is captured in a System 

Behaviour Diagram (SBD), which is a State Transition Diagram 

showing the states the system can be in and state transitions 

triggered by external stimuli (events). 

3.3. Based on system behaviour determined in previous tasks (stimuli 

and activities), data elements and objects required to provide the 

behaviour are identified. Work starts with identifying the 

problem-domain entities that accompany the stimuli or the 

system responses, or are otherwise involved in the activities 

performed by the system. The set of entities, their attributes and 

the relationships they have among themselves is then used for 

verifying or updating the ERD. Based on this revised ERD, 

problem domain classes are determined, giving special attention 

to determining the classes' services and collaborations in such a 

way as to realize the modeled behaviour of the system. Results 

are used for verifyinglupdating the ORD, ODs, OCR, and ID. 

4. Transition to System Design: The following tasks are performed in this 

subphase: 
4.1. A functional view of the interactions in the system is depicted 

through modeling the objects inside the system, their 

relationships, and the messages they pass among themselves as 

well as messages passed between objects residing inside the 
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system and the users outside. This model is shown as a Client- 

Server Diagram (CSD). Since this model implicitly shows the 

boundary of the system and sets the stage for delving deeper into 

the dynamics of object interactions inside the system, it is 

considered a transition from problem domain analysis to system 

design. 

4.2. Simple scenarios showing typical user interactions with the 

system are compiled in order to verify the integrity of the models 

produced during the analysis phase, as well as validate them as 

traceable to the system requirements. These Analysis Evaluation 

Scenarios are based on the latest version of the requirements 

specifications and are regarded as validation criteria for the set of 

models. The analysis models are then reviewed and, if necessary, 

revised in order to make sure that the scenarios can be 

accommodated, thereby satisfying the requirements. 

System Design (Hodge-Mock) 

The following tasks are performed in this phase: 

1. Design classes are added to the models so far developed. These are classes 

that are needed for developing the target system as a computer-based 

system, but at the same time keep it independent from any specific 

implementation by assuming unlimited processing and storage capacity. 

Examples include generic data-structure classes such as "Linked List". 

2. Based on the system-level object-interaction model shown in the CSD, an 

Object Interface Diagram (O1D) is developed for each of the classes 
identified, showing interactions between instances of the individual class 

with other objects, be they clients of the class's services or providers of 

service to instances of the class. The OlD is a transition from the collective 

view of the CSD showing all the classes, to the single-class view, which 
focuses on individual classes. 

3. In order to further specify the behaviour of each class, an Object Behaviour 

Script (OBS) is built for each class, tabulating the class's services and their 

corresponding inner activities. In addition, a state transition diagram is 
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produced for every class with significant state-driven behaviour. 

Analogous to the SBD and following the same notation, this class-level 

state transition diagram is called the Object Behaviour Diagram (OBD). 

4. Class definitions in tables and diagrams are refined in order to include the 

detailed signature of class services. Especially affected are the ODs and the 

OCR. 

5. Based on the analysis evaluation scenarios, System Evaluation Scenarios 

are developed in order to verify the integrity of the models produced during 

the system design phase, as well as validate them as traceable to the system 

requirements. The system design models are then reviewed and, if 

necessary, revised in order to make sure that the scenarios can be 

accommodated, thereby satisfying the requirements. 

Software Design (Hodge-Mock) 

The following tasks are performed in this phase of the process: 

1. Implementation-specific classes are added in order to support the physical 
implementation of the system in the intended execution environment. 
Furthermore, implementation specific refinements are made to all classes, 

and all the relevant tables and diagrams are updated accordingly. 
Interfacing with the hardware/software platform, providing support for 

object persistence, and satisfying non-functional requirements are the 

major issues necessitating additions and refinements to the models. 

2. The internal structure and behaviour of each object is further refined in 

order to show the way data flows among the operations. This is done by 

producing an Object Processing Diagram (OPD) for every class in the 

system. The OPD is in fact a Data Flow Diagram (DFD) at the class level, 

showing the class's operations as DFD processes, the attributes as DFD 

data stores, and other classes (interacting with the class being modeled) as 

external entities. Messages to the class are shown as invocations adorned 

with input/output parameters, and private and public operations are 
discriminated. 

3. Operations (services) with complex bodies (algorithms) are modeled with 

pseudo-code in order to facilitate coding and testing. 
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4. Based on the system evaluation scenarios, Software Evaluation Scenarios 

are developed in order to verify the integrity of the models produced during 

the software design phase, as well as validate them as traceable to the 

system requirements. The software design models are then reviewed and, if 

necessary, revised in order to make sure that the scenarios can be 

accommodated, thereby satisfying the requirements. 
5. A user's guide is prepared for the system using the design models and the 

final version of the requirements specifications. 

3.3.2.10 Syntropy (1994) 

Syntropy, introduced in 1994 by Cook and Daniels [Cook and Daniels 1994], is the 

result of integrating object-oriented modeling techniques (based on OMT and 

Booch) with formal specification elements derived from Z [Wordsworth 1992], and 

covers the analysis and design phases of the generic software development 

lifecycle. Although its developers prefer it be described as a collection of modeling 

techniques rather than a step-by-step process, Syntropy does suggest a definite 

process through the levels of modeling it prescribes, since a specific sequence 

should be followed for developing the models. The three distinct, yet integrated, 

model levels used in Syntropy are: 

1. Essential Model, which models the problem domain, totally disregarding 

software as a component of the system. 

2. Specification Model, which abstractly models the requirements of the 

software system, treating the system as a stimulus-response mechanism, 

and assuming a computing environment with unlimited resources. 
3. Implementation Model, which models the software system's run-time 

structure and behaviour in detail, taking into account considerations 

pertaining to the computing environment, and elaborating on how the 

software objects should communicate. 

Each model may be expressed along structural and behavioural views. There are 
three kinds of views in Syntropy: 
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" Type View (similar to the Class Diagram used in OMT): provides the 

structural view by describing object types (classes), their static properties 

and their relationships. 

" State View (containing diagrams similar to the State Transition Diagram 

used in OMT): provides the behavioural view by describing the states each 

object type can be in and the way it responds to stimuli by changing state 

and generating responses. 

" Mechanism Diagram (similar to the Interaction Diagram used in the Booch 

methodology): solely used in the Implementation Model for describing the 

flow of messages between objects in response to stimuli. 

Syntropy supports the notion of domain: a sub-system defined as a set of object 
types. It also supports the concept of viewpoint: a subset of an object's overall 

interface; thus enabling the designer to describe various interfaces to the same 

object. 

Essential Model 

Type State 
View ýi View 

------------- -------- ---- - -------- 
Specifwadon Model 

Type State 
view View 

-------------- ------- ---- -------- 
Implementation 

Mader G 
Type Mecya_ State N 
View misms View 

Figure 15. The implicit Syntropy process: models, views and their interdependencies 
[Cook and Daniels 1994] 

Figure 15 shows the three models, their views and the interdependencies. This 

figure can also be interpreted as the process of the Syntropy methodology: the 

generic concept of System Analysis fits aspects of the Essential Model (analysis of 
the problem domain) as well as a part of the Specification Model (analysis of the 

required system functionality and behaviour); likewise, the generic concept of 
System Design is seen in the remaining part of the Specification Model (design of 
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state-charts and interactions between them in order to achieve required responses to 

external events) and the Implementation Model (algorithm construction, 

transformation of event generation into message-passing, etc. ). Therefore, a 

seamless transition from Analysis to Design takes place during the construction of 

the Specification Model. 

The next sections contain brief descriptions of the models, views and diagramming 

notations used. 

Essential Model (Syntropy) 

The Essential Model models the problem domain as a collection of objects and 

events. The objects' properties can only change as the result of events, and a 

specific event may change the properties of several objects simultaneously. The 

essential model consists of a type view, which represents the types of objects in the 

problem domain, and a state view, which represents the way objects change as a 

result of events. 

The type view is represented by a kind of Class Diagram, supplemented with Z 

specifications for types and invariants. 

The state view consists of Statecharts, one for each object type, showing how 

objects of the type respond to events. The statecharts are supplemented with 
information about the details of object creation, and the particulars of the events to 

which objects of the type can respond, including Z specifications for pre- and post- 

conditions of the events. 

Specification Model (Syntropy) 

The Specification Model describes the states that the software can be in, and shows 
how it changes state and produces events in response to stimuli. The specification 

model is described by the same views as the essential model; that is, a type view 

and a state view. The type view of the specification model represents the 

conceptual decomposition of the software into objects and the state view represents 
the behaviour of the software objects in response to stimuli, either external or 
issued by other objects. External stimuli are observable to all the objects in the 
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model simultaneously. An external stimulus may trigger several transitions in 

several statecharts. 

To build a specification model, the system boundary should be defined. This is 

done by determining external entities (called agents), which affect or are affected 

by the software. Furthermore, it must be decided for each event in the essential 

model whether it is to be detected by the software, generated by the software, or 

simply ignored. The specification model should also show how undesirable events 

are handled, an issue neglected in the essential model. 

Implementation Model (Syntropy) 

The Implementation Model describes the flow of control inside the software. 

Stimuli are mapped to messages and all message-passing and method executions 

are modeled using Mechanism Diagrams. These diagrams specify the run-time 

objects, their inter-relationships (links), and the sequence of the messages passed 

between these objects in order to implement the external functionality of the 

system. A mechanism diagram is generally very similar to a Booch Interaction 

Diagram. The implementation model must also deal with implementation issues 

such as concurrency, persistence, finite resources, errors, and exceptions. 

3.3.2.11 Fusion (1994) 

The Fusion methodology was first introduced in 1992 by a team of practitioners at 
Hewlett-Packard Laboratories [Coleman et al. 1992]. A revised and detailed 

version of the methodology was released in 1994 [Coleman et al. 1994]. The 

methodology is the result of the integration, unification and extension of a number 

of older methodologies, mainly OMT, Booch, Objectory and RDD; hence the name 
Fusion. 

The designers of Fusion describe it as a full-coverage method, in that it covers all 

stages of the development lifecycle from requirements to implementation, although 
the analysis phase starts when a preliminary informal requirements document is 

already available, and is in fact the main input to the whole process. Fusion 

provides consistency and completeness checks between phases to enable orderly 
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and reliable progression through system development stages. It also suggests 

criteria for determining when to move from one phase to the next in the lifecycle. 

The Fusion process consists of three phases: 

1. Analysis: the focus is on what the system does. The system is described 

from the standpoint of the user. The requirements of the system are 

mapped to the System Specification, which is expressed through a set of 

models. The models produced in this phase describe: 

a. classes and objects of interest found in the application domain, and 

the relationships which exist between these classes and objects, 
b. the operations which are to be performed by the system, and 

c. the proper ordering of these operations. 
2. Design: the focus is on how the system is to do what has been defined 

during analysis. The specification of the system (the result of the previous 

phase) is mapped to a blueprint for the implementation of the system. The 

design phase models describe: 

a. realization of system operations in terms of cooperating objects, 
b. how these objects are linked together, 

c. how the classes, to which the objects belong, are specialized and 

refined (the inheritance structure of the classes), and 
d. the detailed particulars of each class's attributes and methods. 

3. Implementation: the focus is on the actual coding of the system. The 

system design is mapped to a particular programming environment. Design 

classes are mapped to language specific classes and object communications 
are encoded as implementation methods. 

Figure 16 shows the Fusion process, the models produced, and the 
interdependencies between the models, describing what the models contribute to 

each other. This figure also shows the construction of a Data Dictionary as an 

ongoing task throughout the phases of Fusion. This dictionary is a repository of 
detailed information, including constraints and assumptions, about all the elements 
in the models. 
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Each phase in the Fusion process consists of a number of sub-phases. A brief 

description of each phase, the sub-phases and the models produced is given in the 

next sections. 

Analysis (Fusion) 

The analysis phase is concerned with capturing the requirements of the system 

completely, consistently and unambiguously. The requirements specification 
document is the standard input to the analysis phase. Two models are produced in 

this phase: a System Object Model and a System Interface Model, the latter further 

divided into two models, the Life-Cycle Model and the Operation Model, all using 

the data dictionary as a central repository. 
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Figure 16. The Fusion process and its deliverables [Lano et al. 2000] 
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The analysis phase consists of the following steps: 

1. Develop an overall Object Model encompassing the system and its 

environment; the static structure of the problem domain is specified in 

terms of objects and their relationships. The initial list of objects, and the 

classes to which they belong (along with their attributes), is produced by 

grammatically parsing the informal requirements document. The list is then 

completed through close observation of the system and communication 

with the domain experts. The results are modeled in a static structural 

Object Diagram. 

2. Develop the System Object Model; the collection of classes in the overall 

object model, produced in the previous step, will include classes that 

belong to the environment as well as classes that belong to the system. The 

system object model, on the other hand, excludes the environment classes 

and focuses on the system classes by explicitly showing the boundary of 

the system. This model is produced through: 

2.1. Determining interaction patterns between the system and outside 

agents (users, devices or other systems); agents interact with the 

system by means of events. Input events typically lead to state 

changes in the system, possibly leading to output events. An 

input event and its effect on the system are collectively called a 

system operation. Typical interactions are modeled as 

Transaction Scenarios, explicitly showing the time ordering of 

the events by using time-lines. 

2.2. Specification of the System Interface Diagram (not to be 

confused with the System Interface Model), showing all the 

events interchanged between the system and outside agents, 

regardless of the time order; this in fact is the result of integrating 

all transaction scenarios previously identified. 

2.3. Producing the system object model by adding a boundary to the 

overall object model; by identifying the agents that interact with 
the system, the operations of the system, and events affecting or 

generated by the system, a good idea is obtained of which objects 
belong inside the system boundary, and which belong to the 

environment. This in turn enables the analyst to add a system 
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boundary to the overall object diagram resulting in the system 

object model. It is important to note that although class attributes 

are specified in this diagram, class operations (methods) are 

intentionally ignored, since Fusion leaves their specification to 

the design phase. 

3. Develop the System Interface Model through: 

3.1. Developing the Life-Cycle Model: a life-cycle model shows the 

allowable sequences of system operation invocations throughout 

the lifetime of the system. The ordering of the events (input and 

output) is specified in terms of a regular-expression-like 
language. 

3.2. Developing the Operation Model: the operation model captures 

the details of all the system operations already depicted in the 

interface diagram and the life-cycle model. Each system 

operation is textually and semi-formally described by an 

Operation Schema. The resulting schemata make up the operation 

model. 
4. Check the analysis models; Fusion provides detailed checklists for 

verifying the completeness and consistency of the analysis models. 

Design (Fusion) 

The purpose of the design phase is to find a strategy for implementing the 

specification of the system, which has been developed during the analysis phase. 
The output of the design phase consists of four parts: a set of Object Interaction 

Graphs describing how objects interact for implementing system operations; a set 

of Visibility Graphs describing object communication paths; a set of Class 

Descriptions providing detailed descriptions of class interfaces; and a set of 

Inheritance Graphs elaborating the inheritance relationships between classes. 

The design phase consists of the following steps: 

1. Develop the Object Interaction Graphs; object interaction graphs are used 
to develop system operations described in the operation model. Each 

system operation should be realized by an object interaction graph, which 
describes how the system operation is implemented through object 
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interactions and message passing. Typically, in every interaction graph, 

one of the objects (termed the controller) initiates the message sequence in 

response to an input event. 
2. Develop the Visibility Graphs; a visibility graph describes the server 

objects that a client object needs to reference and specifies the kind of 

reference that is needed. The visibility of objects is described using the 

following characteristics: Reference Lifetime (temporary or permanent), 

Server Visibility (exclusive or shared), Server Binding (the degree of 

lifetime-dependency between the client and the server), and Reference 

Mutability (whether a server can be changed). 

3. Specify the Class Descriptions; class descriptions store detailed 

information about classes, including class name, immediate superclasses, 

attributes, and methods. A class description is built for every class in the 

system. 

4. Develop the Inheritance Graphs; generalization-specialization hierarchies 

previously identified among analysis classes are enhanced by factoring out 

common structure and behaviour in order to increase reusability and 

maintainability. The result is summarized in inheritance graphs. 

Implementation (Fusion) 

This phase concentrates on the conversion of the design models into a suitable 

language. Design features are mapped to code as follows: 

1. Inheritance, references, and attributes are implemented using 

corresponding features of the target language. 

2. Object interactions are implemented as methods in the appropriate classes. 
3. State machines are developed for implementing permissible sequences of 

operations. 

3.3.3 Methodologies: Integrated 

After the initial disastrous fan-out of object-oriented methodologies, along came 
the inevitable fan-in, yet integration of methodologies was not as successful as 
integration of modeling languages: whereas the latter resulted in the advent of 
UML, the former produced over-complex mega-methodologies. Although many of 
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these Integrated (Third-Generation) methodologies have adopted UML as their 

modeling language, they share little else, particularly as pertaining to process and 

modeling approach. 

3.3.3.1 OPM (1995,2002) 

Object-Process Methodology (OPM) was introduced by Dori in 1995, primarily as 

a novel approach to analysis modeling that advocated combining the classic 

process-oriented modeling approach with object-oriented modeling techniques 

[Dori 1995]. Over the years, it has evolved into a full-lifecycle methodology [Dori 

2002a], yet its unique modeling approach is still the main feature attracting 

researchers and developers. 

OPM's modeling strength lies in the fact that only one type of diagram is used for 

modeling the structure, function and behaviour of the system. This single-model 

approach avoids the problems associated with model multiplicity, but the model 

that is produced can be complex and hard to grasp. 

The single diagram type is called the Object-Process Diagram (OPD), and uses 

elements of types object and process to model the structural, functional and 

behavioural aspects of whatever is being modeled (hence the prefix Object-Process 

in OPD and OPM). The basic OPD notation was later expanded to also include 

elements of type state, which were particularly useful in modeling real-time 

systems. Variants of the notation were also developed for modeling other types of 

systems, including web-applications, semantic web services, and multi-agent 

systems. 

Every OPD can also be expressed in textual form; a constrained natural language 

called the OPL (Object-Process Language) is provided by the OPM for this 

purpose. OPL equivalents can be automatically generated from the OPDs and are 

typically used as documentation complements of the OPDs, based on the 

assumption that they are more intelligible to the users and domain-experts and 

easier to convert to code than the OPDs [Dori 2002a]. 

In OPM, a set of OPDs is built for the system being developed, typically forming a 

hierarchy, somewhat analogous to the hierarchy of Data Flow Diagrams built in 
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classic process-oriented methodologies. This layering of OPDs is applied as a 

complexity management technique and helps improve the intelligibility of the 

models, yet the multi-dimensional nature of the OPDs makes it difficult to focus on 

a particular aspect of the system (such as structure), without being distracted by 

other aspects. Elements depicting different aspects are so intertwined that 

separating them in order to examine them in their own context can be a formidable 

task. Furthermore, some important orthogonal behavioural aspects of systems (such 

as object interactions, especially with regard to message sequencing) cannot be 

adequately captured in OPM models. 

In contrast with OPM's strong emphasis on the modeling approach and the 

associated notational conventions, the OPM process is little more than an abstract 

framework. It resembles the generic software development process described in 

basic software engineering textbooks. This may be a consequence of the single- 

model approach: the lack of multiple models (whose relationships and 

interdependencies are often reflected in processes) seems to have had a simplifying 

effect on the process. 

The OPM process consists of three high-level subprocesses: 

1. Initiating: with the focus on preliminary analysis of the system, 
determining the scope of the system, the required resources, and the high- 

level requirements. 

2. Developing: with the focus on detailed analysis, design and implementation 

of the system. 
3. Deploying: with the focus on the introduction of the system into the user 

environment, and the subsequent maintenance activities performed during 

the operational life of the system. 

In the following sections, a short description is given for each of the above 

subprocesses. 
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Initiating (OPM) 

The following activities are performed during this subprocess: 

1. Identifying: the needs and/or opportunities justifying the development of 

the system are determined. 

2. Conceiving: the system is "conceived" through determining its scope and 

ensuring that the resources necessary for the development effort are 

available. 

3. Initializing: the high-level requirements of the system are determined. 

Developing (OPM) 

The following activities are performed during this subprocess: 

1. Analyzing: mainly concerned with eliciting the requirements, modeling the 

problem domain and the system in OPDs (and their OPL equivalents), and 

selecting a skeletal architecture for the system. 
2. Designing: the major activities of which are adding implementation- 

specific details to the models (OPDs and their OPL equivalents), and 

refining the architecture of the system by determining its hardware, 

middleware and software components. Designing the software components 

mainly involves detailing the process logic (to be implemented as the 

program), the database organization, and the user interface. 

3. Implementing: mainly focused on constructing the components of the 

system and linking them together. Construction typically involves coding 

and testing the software components (mainly consisting of the process 
logic of the system, the database and the user interface), setting up the 

hardware architecture, and installing the software platform (including the 

middleware). Design models (OPDs and their OPL equivalents) can be 

used for automatic or semi-automatic generation of the code. 

Although seemingly sequential, the above activities can be performed in an 

iterative and incremental fashion; in fact, the methodology suggests return-loops 
from implementation to design and from design to analysis. 
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Deploying (OPM) 

The following activities are performed during this subprocess: 

1. Assimilating: concerned with introducing the implemented system into the 

user environment, mainly involving training, generation of appropriate 
documents, data and system conversion, and acceptance testing. 

2. Using and Maintaining: spanning the period during which the system is 

being used. The activities performed also include maintenance tasks 

necessary to keep the system in working order. 
3. Evaluating Functionality: checking that the current system possesses the 

functionality needed to satisfy the requirements. This activity is typically 

performed during the Using-and-Maintaining activity in order to check 

whether the current system still satisfies the functional and non-functional 

requirements of the users; if not, a new generation of the system is needed, 

and the next activity in this list should be performed. 

4. Terminating: concerned with declaring the current system as dead, 

applying the usual post-mortem procedures, and prompting the generation 

of a new system. 

3.3.3.2 Catalysis (1995,1998) 

Catalysis was introduced by D'Souza and Wills in 1995, originally as a 

component-based formalization of OMT deeply influenced by Fusion, Objectory, 

Booch and Syntropy [D'Souza and Wills 1995]. A UML-based, refined version of 

the methodology appeared in 1998 [D'Souza and Wills 1998]. 

Instead of one, all-purpose process, Catalysis proposes a set of process patterns to 
be selected and applied according to the characteristics of the project in hand. 

However, it does propose a specific process for developing business systems, as 

shown in Figure 17. This process is used in the following sections for describing 

the general attitude of Catalysis towards software development, as well as the 

models produced in the methodology. 
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This process consists of the following activities, gradually moving from examining 

and modeling the context of the system to specifying the system at its boundary 

and, ultimately, to designing the interior of the system ID'Souza and Wills 19981: 

1. Identify and Model the Requirements: focusing on exploration and 

modeling of the problem domain and the requirements of the system. 
2. Develop the System Specification: focusing on identifying and modeling 

the functionality and high-level class-structure of the system. Designing 

the User Interface (UI) usually overlaps with this activity. UI design 

typically involves developing UI prototypes and UI specifications 

describing the screens, dialog flows across windows, information presented 

and required, and reports. 

3. Develop the Architectural Design: focusing on designing the internal 

component (logical) architecture of the system, as well as the technical 

(physical) architecture defining the domain-independent parts of the 

system, such as the hardware and software platform. The design of the 

database architecture should also start at this stage, including mapping the 

object models to the database and definition of transaction boundaries. 
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4. Develop the Component Internal Design: focusing on designing the 

internal detail of the components, which are then implemented and tested. 

The following sections include brief descriptions of these activities. The last 

section contains a description of the process patterns proposed by Catalysis. 

Identify and Model the Requirements (Catalysis) 

The following tasks are performed during this activity: 

1. Explore the problem domain and construct the Business Model: the 

Business Model typically includes: 

o class diagrams depicting the object-types (analogous to classes) in 

the problem domain and their relationships, 

o special collaboration diagrams showing the actions that problem 

domain objects perform during interactions (without specifying the 

order), 

o sequence diagrams showing the sequence of the actions, and 

oa glossary, listing the terms used to define the problem domain. 

2. Identify and model the functional requirements of the system: functional 

requirements are typically modeled using a System Context Diagram 

showing the system as an object in the problem domain interacting with 

other objects. Actions on the system are nothing but use cases, and 

scenarios of interaction are expressed by sequence diagrams. 

3. Identify the non-functional requirements: such as performance, reliability, 

scalability, and reuse goals. 
4. Identify and model the known platform or architectural constraints: 

machines, operating systems, middleware, legacy systems, and 

interoperability requirements are identified and modeled as package 
diagrams. Interactions between these physical components are captured in 

collaboration diagrams and sequence diagrams. 

5. Identify the project and planning constraints: pertaining to issues such as 
budget, schedule, staff, and user involvement. 
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Develop the System Specification (Catalysis) 

The system specification mainly consists of a class (type) diagram showing the 

system as a type, emphasizing its attributes (internal types) and its associations 

with other types in the problem domain. The system also has a set of operations, 
depicting the actions that it performs (functionality). The detailed behaviour of the 

system is usually captured in statecharts. 

Develop the Architectural Design (Catalysis) 

The following tasks are performed during this activity: 

1. Identify the components comprising the system and their architecture: The 

component (application) architecture is usually described with package 
diagrams showing the components and their inter-relationships. 

Specification types (system attributes) identified during the previous 

activity are split across different components. Interaction among 

components is modeled through collaboration diagrams. 

2. Identify the architecture of the domain-independent parts of the system: 
hardware and software platforms, infrastructure components (such as 

middleware and databases), utilities for logging/exception-handling/start- 

up/shutdown, design standards and tools, and the choice of component 

architecture (such as JavaBeans or COM), are all modeled in the Technical 

Architecture. Package diagrams are used to show these physical 

components and their inter-relationships. Interactions are shown in 

collaboration diagrams. 

Develop the Component Internal Design (Catalysis) 

During this activity, each and every component is designed, implemented and 

tested. Design is done by identifying the programming language interfaces and 

classes, or pre-existing components, that constitute the component. The 

architecture of these parts inside each component is modeled using a package 
diagram showing the internal constituent parts and their inter-relationships. 

Interactions are shown by sequence and collaboration diagrams. 
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Process Patterns (Catalysis) 

Even though the Business Systems Development Process is but one way of 

applying the methodology, it clearly shows Catalysis's general approach to systems 

development. Analysis usually starts by modeling the problem domain as a 

collection of types (classes), with their own inter-relationships and interactions. 

Then the system is added to the context, treated like another problem domain type, 

whose state (the types it contains), operations (functionality) and behaviour are 

carefully modeled. The focus is then shifted into the system itself, modeling it as a 

collection of components, again with their own inter-relationships and interactions. 

Finally, each component is modeled as a collection of implementation-level 

classes, interfaces and off-the-shelf components, yet again with their own inter- 

relationships and interactions. 

This sort of gradual refinement is an essential practice in Catalysis. So is the 

recursive (fractal) modeling approach: applying the same view (constituents, their 

inter-relationships and interactions) by the same set of diagrams at each and every 
level of refinement. These two practices are at the heart of the Catalysis process, 

yet there are many ways of actually applying them to a project: they can be applied 

sequentially, or in an iterative-incremental fashion, or according to any other 
development lifecycle deemed appropriate by the developers. 

To help developers apply the methodology, Catalysis proposes four process 

patterns for four different kinds of projects: 

1. Object Development from Scratch: for when there is no existing system. 
2. Reengineering: for when the objective is to improve an existing system. 

3. Business Process Improvement: for applying object technology to 

organizations and systems other than software. 
4, Separate Middleware from Business Components: for handling legacy 

systems as well as for insulating a system from certain changes in 

technology. 

Catalysis proposes detailed sets of activities for each pattern and guidelines for 

their application [D'Souza and Wills 19981. 
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OPEN (Object-oriented Process, Environment, and Notation) was first introduced 

in 1996 as the result of the integration of four methodologies: MOSES, SOMA, 

Synthesis and Firesmith [Henderson-Sellers and Graham 1996]. This initial version 

of OPEN was later deeply influenced by BON and OOram [Reenskaug et al. 1996]. 

The advent of UML compelled the OPEN Consortium (an international group of 

experts and tool-vendors that maintains OPEN) to tailor it in order to catch up with 

the new wave of standardization. However, OPEN has kept its own modeling 
language, OML (OPEN Modeling Language), as a more suitable alternative to 

UML in terms of compatibility with the specific modeling needs in OPEN [Graham 

et al. 1997]. 

OPEN is presented as a framework called OPF (OPEN Process Framework). OPF 

is a process metamodel defining five classes of components and guidelines for 

constructing customized OPEN processes (Figure 18). OPEN also contains a 

component library from which individual component instances can be selected and 

put together to create a specific process instance tailored to fit the project in hand. 

The OPF component classes and the instantiation method for constructing OPEN 

processes are discussed in the following sections. 
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Figure 18. The OPF components (OPEN) [OPEN Consortium 2000] 



Chapter 3. Analysis 106 

OPF Component Classes (OPEN) 

As depicted in Figure 18, OPF consists of five major classes of components: 

1. Work Products: any significant thing of value (document, diagram, model, 

class, application) developed during the project. 
2. Languages: the media used to document work products, such as natural 

languages, modeling languages such as UML or OML, and implementation 

languages such as Java, SQL, or CORBA-IDL. 

3. Producers: active entities (human or nonhuman) that develop the work 

products. 
4. Work Units: operations that are performed by producers when developing 

work products. One or more producers develop a work product during the 

execution of one or more work units. Work units are of three types: 

a. Activity: a major work unit consisting of a related collection of 
jobs that produce a set of work products. Activities are coarse- 

grained descriptions of what needs to be done. Some important 

instances defined by OPEN are: Project Initiation, Requirements 

Engineering, Analysis and Model Refinement, Project Planning, 

and Build (evolutionary development or OOA/OOD/OOP together 

with verification and validation, user review and consolidation). 
b. Task: the smallest atomic unit of work. Tasks are small-scale jobs 

associated with and comprising the activities, resulting in the 

creation, modification, or evaluation of one or more work products. 

c. Technique: defines how the jobs are to be done. Techniques are 

ways of doing the tasks and activities. 
5. Stages: durations or points in time that provide a high-level organization to 

the work units. Stages are of two types: 

a. Milestone (Instantaneous Stage): a point in time marking the 

occurrence of an event. 
b. Stage with Duration: The high-level periods during which work 

units are performed. There are seven significant types: 
i. Project: covering a single individual project. 

ii. Cycle: Iterative set of work units varying in span and 

scope from short-span cycles (such as Development 
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Cycles and Delivery Cycles) to the long-span Lifecycle, 

which is a sequence of phases covering the whole 

temporal extent of a significant engineering effort. The 

following types of lifecycle have been defined in OPF: 

1. Project Development Lifecycle: the duration over 

which the project is conceived and products are 

constructed. 

2. Project Lffecycle: covering the project 
development lifecycle and the maintenance stage. 

3. Delivery Lifecycle: focusing on the repetitive 
delivery of product versions. 

4. Enterprise Lifecycle: in which business modeling 

and business re-engineering occur. 
5. Programme Lifecycle: larger in scale than the 

project lifecycle, this is a cycle related to a 

programme of projects, and as such is the sum of 

all the relevant project life cycles plus a Strategy 

Phase in which high-level business planning 

across all projects is performed. 
iii. Phase: a stage of development consisting of a sequence of 

one or more builds, releases and deployments (explained 

later in this section). Instances of phase are assigned to one 

or more of the above life cycles. Seven phases have been 

defined in OPF: 

1. Inception: during which the development is started 

and appropriate preparations are made. 

2. Construction: during which the work products are 
developed and prepared for release. 

3. Usage: during which the work products are 

released to the user organization and put into 

service. 
4. Retirement: when the software is withdrawn from 

service. 
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5. Strategy: in which cross-project considerations at 

the business level are analyzed. 

6. Business Modeling: in which a modeling 

technique is applied to model the business itself 

(irrespective of whether or not software has any 

role in the business). 

7. Business Reengineering: in which the processes in 

the business are analyzed and reconsidered. 
iv. Workflow: a sequence of tasks during which producers 

collaborate to produce a work product. Examples of 

workflows defined in OPF are requirements and 

architectural workflows such as: Vision Statement 

Workflow, System Requirements Specification Workflow, 

Software Requirements Specification Workflow, and 

Software Architecture Document Workflow. 

v. Build: during which tasks are undertaken. Builds are the 

only kinds of stage that occur within the Inception Phase; 

in other phases they are generally complemented by 

releases, deployments, and milestones. 

vi. Release: in which the results of a build are delivered to the 

user. 

vii. Deployment when the user receives the product and puts it 

into service. 

Process Instantiation (OPEN) 

As shown in Figure 19, the following tasks are performed (through applying the 

guidelines proposed by OPF) in order to instantiate, tailor and extend an OPEN 

process [Firesmith and Henderson-Sellers 2001]: 

1. Instantiating the OPEN library of predefined component-classes to produce 

actual process components. 
2. Choosing the most suitable process components from the set of instantiated 

components. 

3. Adjusting the fine detail inside the chosen process components. 
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4. Extending the existing class library of predefined process components to 

enhance reusability. 
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Figure 19. Using the OPF to instantiate, tailor and extend a process (OPEN) 
[OPEN Consortium 2000] 

Figure 20 shows an example of an instantiated OPEN process. This process is 

usually (and wrongly) referred to as "The OPEN Process", yet it is just one 
instance (though fairly general) of the processes that can be constructed in OPEN. 

Figure 20. Example of an instantiated OPEN process [Graham et al. 1997] 
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3.3.3.4 RUP/USDP (1998,1999,2000,2003) 

RUP (Rational Unified Process) was developed at Rational Corporation by the 

three principal developers of the OMT, Booch and OOSE (Objectory) 

methodologies, the same people that developed UML. RUP is use case driven, a 

feature inherited from OOSE. It is also iterative and incremental, with the overall 

process resembling the Micro-in-Macro process of the Booch methodology. 

The initial version of RUP was officially released in 1998, covering all the generic 

activities in a software development project. UML is used as the modeling 

language in RUP; therefore RUP has also been mistakenly called the UML 

Methodology. Revised versions of RUP were introduced in 2000 and 2003, the 

most recent of which will be described in this section [Kruchten 2003]. The 

developers of RUP introduced a non-proprietary, somewhat less complex variant of 

RUP, called USDP (Unified Software Development Process) in 1999 [Jacobson et 

al. 1999]. 

The overall RUP development cycle consists of four phases [Kruchten 2003]: 

1. Inception: focus is on defining the objectives of the project, especially the 

business case. 
2. Elaboration: focus is on capturing the crucial requirements, developing 

and validating the architecture of the software system, and planning the 

remaining phases of the project. 

3. Construction: focus is on implementing the system in an iterative and 
incremental fashion based on the architecture developed in the previous 

phase. 
4. Transition: focus is on beta-testing the system and preparing for releasing 

the system. 

Each phase can be further broken down into iterations. An iteration is a complete 
development loop resulting in a release of an executable increment to the system. 
Each iteration consists of nine work areas performed during the iteration 

(somewhat like the micro process activities in Booch methodology). These work 

areas, called disciplines, are [Kruchten 2003, Kroll and Kruchten 2003]: 
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1. Business Modeling: concerned with describing business processes and the 

internal structure of a business in order to understand the business and 

determine the requirements for software systems to be built for the 

business. A Business Use Case Model and a Business Object Model are 

developed as the result of this discipline. 

2. Requirements Management: concerned with eliciting, organizing, and 
documenting requirements. The Use Case Model is produced as the result. 

3. Analysis and Design: concerned with creating the architecture and the 

design of the software system. This discipline results in a Design Model 

and optionally an Analysis Model. The design model consists of design 

classes structured into design packages and design subsystems with well 
defined interfaces, representing what will become components in the 

implementation. It also contains descriptions of how objects of these 

design classes collaborate to perform use cases. 

4. Implementation: concerned with writing and debugging source code, unit 
testing, and build management. Source code files, executables, and 

supportive files are produced. 
5. Test: concerned with integration-, system- and acceptance testing. 
6. Deployment: concerned with packaging the software, creating installation 

scripts, writing end-user documentation and other tasks needed to make the 

software available to its end-users. 

7. Project Management: concerned with project planning, scheduling and 

control. 
8. Configuration and Change Management: concerned with version- and 

release management and change-request management. 
9. Environment: concerned with adapting the process to the needs of a project 

or an organization, and selecting, introducing and supporting development 

tools. 

Figure 21 shows how the disciplines are performed during the iterations. 
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Figure 21. Disciplines in iterations (RUP) 
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The disciplines do not have equal emphasis during an iteration: the amount of 

effort expended on a discipline depends on the phase in which the iteration is 

taking place. Business modeling and requirement take a lot of emphasis during 

earlier phases, whereas during later phases, most of the effort is put into 

deployment and testing. Figure 22 shows the phases, disciplines and example 

iterations in the RUP lifecycle model, and shows the relative amount of emphasis 

put on each discipline during the iterations and phases. 

For each discipline, RUP defines a set of artefacts (work products), activities (units 

of work on the artefacts), and roles (responsibilities taken on by development team 

members). 

A brief description of each of the phases in RUP and the artefacts produced is 

given in the next sections. 
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Figure 22. A typical RUP lifecycle model [Kroll and Kruchten 2003] 
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Inception (RUP) 
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During the inception phase, the business case for the system is established and the 

project scope is delimited. This requires the following tasks: 

1. Describe the initial requirements. 

2. Develop and justify the business case for the system. 
3. Determine the scope of the system. 
4. Identify the people, organizations, and external systems that will interact 

with the system. 

5. Develop initial risk assessment, schedule, and estimates. 
6. Configure the initial system architecture. 

The following artefacts are usually produced during this phase: 

9A vision document: a general description of the core project's 

requirements, key features, and main constraints. 

" An initial use case model (10% -20% complete). 

" An initial project glossary. 

" An initial business case: business context, success criteria, and financial 

forecast. 

" An initial risk assessment. 

"A project plan. 

"A business model (optional). 

"A number of prototypes. 

Elaboration (RUP) 

The purpose of the elaboration phase is to analyze the problem domain, establish a 

system-level architectural foundation, develop the project plan, and mitigate the 

risks. This requires the following tasks: 

1. Produce an architectural baseline for the system. 
2. Evolve the requirements model to 80% completion. 
3. Draft a coarse-grained project plan for the construction phase. 
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4. Ensure that critical tools, processes, standards, and guidelines have been 

put in place for the construction phase. 
5. Understand and eliminate high-priority risks of the project. 

The following artefacts are usually produced during this phase: 

"A use case model (at least 80% complete) - with all use cases and actors 

identified, and most use case descriptions developed. 

" Supplementary requirements capturing the non-functional requirements 

and those requirements that are not associated with any specific use case. 

"A software architecture description. 

" An executable architectural prototype. 

"A revised risk list and a revised business case. 

"A development plan for the overall project, including the coarse-grained 

construction plan, showing iterations and evaluation criteria for each 

iteration. 

" An updated development case specifying the process to be used. 

"A preliminary user manual (optional). 

Construction (RUP) 

During the construction phase, the remaining components and features are 

developed and integrated into the product, and all features are thoroughly tested. 

This requires the following tasks: 

1. Describe the remaining requirements. 
2. Develop the design of the system. 
3. Ensure that the system meets the needs of its users and fits into the 

organization's overall system configuration. 
4. Complete component development and testing, including both the software 

product and its documentation. 

5. Minimize development costs by optimizing resources. 
6. Achieve adequate quality. 
7. Develop useful versions of the system. 
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The following artefacts are usually produced during this phase: 

" The software product. 

" The user manuals. 

9A description of the current release. 

Transition (RUP) 
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The purpose of the transition phase is to transition the software product to the user 

community. This requires the following tasks: 

1. Test and validate the complete system. 

2. Integrate the system with existing systems. 

3. Convert legacy databases and systems to support the new release. 
4. Train the users of the new system. 

5. Deploy the new system into production. 

The following artefacts are usually produced during this phase: 

" Final product baseline of the system. 

" Training materials for the system. 

" Documentation, including user manuals, support documentation, and 

operations documentation. 

3.3.3.5 EUP (2000,2005) 

EUP (Enterprise Unified Process) was introduced by Ambler and Constantine in 

2000 as an extended variant of RUP. A revised and refactored version was 
introduced in 2005 [Ambler et al. 2005]. The developers believe that RUP suffers 
from serious drawbacks (which they claim to have corrected in EUP), namely 
[Ambler and Constantine 2000a]: 

" RUP does not cover system support and eventual retirement. 

9 RUP does not explicitly support organization-wide infrastructure 
development. 
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" The iterative nature of RUP is both a strength and a weakness, since the 

iterative nature of the lifecycle is hard to grasp for many experienced 

developers. 

" Rational's approach to developing RUP was initially tools-driven; hence 

the resulting process is not sufficient for the needs of developers. 

The lifecycle model of EUP is shown in Figure 23. It extends RUP by adding two 

new phases and two new disciplines (one of which was further broken down into 

seven disciplines in the 20O5 version of the methodology), and also by extending 

the activities in some of the old disciplines. 

EUP's viewpoint to modeling is also somewhat different from RUP. Whereas RUP 

advocates adherence to UML, EUP makes use of some older modeling notations 

too. An example of this is the use of Data Flow Diagrams for business modeling. 

Furthermore, EUP stresses that use cases are not enough for modeling the 

requirements; consequently, use cases in EUP do not have the pivotal role they 

have in RUP. 

The following sections briefly describe the additions and changes EUP has made to 

RUP. 
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Figure 23. A typical EUP lifecycle model [Ambler and Constantine 2000a1 
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New phases (EUP) 

The two new phases that EUP has added to RUP are: 

" Production: added as the fifth phase, the focus of this phase is on keeping 

the software in production until it is either replaced with a new version (by 

executing the lifecycle all over again), or retired and removed. There are 

no iterations during this phase. This phase is somewhat similar to the 

maintenance phase in the generic software development lifecycle, in that it 

is mainly concerned with the operation and support of the system; but 

unlike classic maintenance, any need for changing the system (even a bug 

fix) will result in the reinitiation of the development cycle [Ambler and 

Constantine 2002]. 

Retirement: added in 2002 as the sixth phase, the focus of this phase is on 

the careful removal of a system from production, either because it is no 

longer needed or is being replaced. This typically includes [Ambler 2005]: 

  Identification of the existing system's coupling to other systems. 

  Redesign and rework of other systems so that they no longer rely 

on the system being retired. 

  Transformation of existing legacy data. 

  Archival of data previously maintained by the system that is no 
longer needed by other systems. 

  Configuration management of the removed software so that it may 
be reinstalled if required at some point in the future. 

  System integration testing of the remaining systems to ensure that 

they have not been broken via the retirement of the system in 

question. 

New disciplines (EUP) 

The two new disciplines that EUP has added to RUP are: 

" Operations and Support: concerned with issues related to operating and 

supporting the system, typically associated with the maintenance phase of 
the generic software development lifecycle. This discipline, however, 

spans several phases, not only the production phase. During the 
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construction phase, and perhaps as early as the elaboration phase, the 

development of operations and support plans, documents, and training 

manuals is initiated. These artefacts are enhanced and perfected during the 

transition phase, where the discipline will also include the training of the 

operations and support staff. During the production and retirement phases, 

the discipline covers classic maintenance activities: the operations staff 

will keep the software running, performing necessary backups and batch 

jobs, and the support staff will communicate with the users to help them 

work with the software [Ambler and Constantine 2000a, b, c]. 

" Enterprise Management: concerned with the activities required to create, 

evolve, and maintain the organization's cross-system artefacts such as the 

organization-wide models (requirements and architecture), software 

process, standards, guidelines, and the reusable artefacts [Ambler and 

Constantine 2000a, b, c]. The Enterprise Management discipline was broken 

down into seven disciplines in the 2005 version of the methodology 

[Ambler et al. 2005], namely: Enterprise Business Modeling, Portfolio 

Management, People Management, Enterprise Architecture, Strategic 

Reuse, Enterprise Administration, and Software Process Improvement. 

Modified disciplines (EUP) 

In EUP, several changes have been made to RUP disciplines, including: 

9 The Test discipline has been expanded to include requirements validation 

during the inception phase, using techniques such as walkthroughs, 
inspections, and scenario testing [Ambler and Constantine 2000a]. 

" The Deployment discipline in EUP has been augmented by deployment 

modeling activities (which in RUP are a part of the analysis-and-design 
discipline). The EUP also advocates starting deployment planning as early 

as possible in the lifecycle. As a result of these two changes, the 

deployment discipline in EUP has been extended into the inception and 

elaboration phases [Ambler and Constantine 2000a, b]. 

" The Environment discipline has been updated to include the work 

necessary to define the Production environment [Ambler and Constantine 

2002]. 
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9 The Configuration and Change Management and Project Management 

disciplines are extended into the new production and retirement phases. 

Furthermore, new features have been added to the project management 

discipline, including metric management, subcontractor management and 

people management [Ambler and Constantine 2002, Ambler 2005]. 

3.3.3.6 FOOM (2001) 

Introduced in 2001 by Shoval and Kabeli, FOOM (Functional and Object-Oriented 

Methodology) [Shoval and Kabeli 2001] is an object-oriented variant of Shoval's 

ADISSA methodology of 1988 [Shoval 1988]. ADISSA (Architectural Design of 
Information Systems based on Structured Analysis) was an attempt to ameliorate 

the shortcomings of the classical, process-oriented Structured-Analysis/Structured- 

Design (SA/SD) methodology through introduction of the transaction -a notion 

very similar to the use case - as the basis for the design process. FOOM, in turn, 

strives to combine the classical process-oriented approach (as prescribed by 

ADISSA) with the object-oriented paradigm, very much in the tradition of well- 

established "hybrid" methodologies such as OMT. 

The FOOM process consists of the following phases: 

1. Analysis: concerned with requirements elicitation and problem-domain 
modeling, this phase consists of two activities, performed in parallel or 
iteratively: 

1.1. Data Modeling: with the focus on identifying and modeling the 

class structure of the problem domain. 

1.2. Functional Analysis: with the focus on identifying and modeling 
the functional requirements of the system. 

2. Design: concerned with designing implementation-specific classes and 

adding structural and behavioural detail to the models, this phase consists 

of the following stages: 
2.1. Defining Basic Methods: with the focus on specifying primitive 

operations for the classes. 
2.2. Top-level Design of Application Transactions: with the focus on 

identifying transactions, which are intra-system chains of 
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processes performed in response to stimuli from outside the 

system; as such, each transaction is in fact a unit of functionality 

performed by the system in realization of its functional 

requirements. Structured descriptions of the identified 

transactions are also generated, to be extensively used during 

later stages of the design phase. 

2.3. Interface Design: with the focus on designing a menu-based user 
interface for the system. Suitable classes are then defined in order 

to implement these menus. 

2.4. Input/Output Design: with the focus on designing the input 

forms/screens and the output reports/screens of the system, and 

defining classes for implementing them. 

2.5. Design of System Behaviour. with the focus on providing detailed 

specifications for the transactions, and elaborating on object 
interactions and operations of the classes. 

3. Implementation: with the focus on object-oriented coding and testing of the 

system. 

FOOM is mainly targeted at data-intensive information systems. This explains its 

lack of provision for behavioural modeling during systems analysis. Targeting 

data-intensive systems has also resulted in a slack attitude towards behavioural 

design of the system; many of the activities prescribed in the Design-of-System- 

Behaviour stage are too simplistic to be of any practical use in developing process- 
intensive systems. 

A short description of each of the first two phases (Analysis and Design) is given in 

the next sections. The developers of the methodology do not propose a specific 

procedure for the Implementation phase, merely stating that the system is 

implemented based on the models and specifications produced during the design 

phase (especially the behavioural specifications), using any common object- 

oriented programming language. 

Analysis (FOOM) 

The following activities are performed in this phase: 
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1. Data Modeling - Problem-domain classes are identified along with their 

attributes and relationships, with the results modeled in a Class Diagram. 

This initial class diagram does not include the operations (methods) of the 

classes, as these are to be added during the design phase. The classes 
identified, therefore, are in fact data classes representing the data content 

of the problem domain. 

2. Functional Analysis - Functional requirements of the system are elicited 

and modeled in a hierarchy of Object-Oriented Data Flow Diagrams (00- 

DFDs). What makes these diagrams different from traditional DFDs is that 

classes replace traditional data stores. Furthermore, the traditional notion 

of external entities has been expanded to include time entities, real-time 

entities and communication entities in addition to ordinary user entities. 
Time entities act as modeling proxies for clocks, generating time signals at 

specific points in time or during predetermined time-intervals, whereas 

real-time entities act as generators of asynchronous sensor events from the 

system environment, and communication entities represent other systems 
interacting with our system via communication channels. 

The two activities complement each other: not only are their products bound 

together by common elements (data classes), but they also contribute to each other 
in the sense that each activity provides an insight into the problem domain that can 

then be used for enhancing the course of the other activity. Therefore, the 

methodology prescribes that these activities be performed either in parallel or 
iteratively (with the analysis team alternating between the two); more recently, it 

has been suggested that, although the two activities should overlap, starting with 
data modeling is preferable [Kabeli and Shoval 2003]. 

Design (FOOM) 

The design phase consists of the following stages: 

1. Defining Basic Methods - primitive methods are attached to each data class 
in the initial class diagram. These methods, which are fairly independent 
from the business logic of the system, are of two types: 
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I. I. Elementary Methods, which are the basic methods typically 

found in classes, namely: construct-object (instantiate), destruct- 

object, get-attribute(s), and change-attribute(s). 
1.2. Relationship/Integrity Methods, which are derived from structural 

relationships between classes and are intended to manage the 

links between the objects at run-time and perform referential 

integrity checks. Integrity checks should take into account the 

relationship types that the classes are involved in, and the 

cardinality constraints of these relationships. There are five types 

of Relationship/Integrity methods generally defined for each 

relationship a class is involved in, namely: initialize-connections 

(on object construction), break-all-connections (on object 

destruction), connect-to-object (via relationship), disconnect, and 

reconnect. 

2. Top-level Design of Application Transactions - Very much like the 

modem-day use case, a transaction is a unit of functionality performed by 

the system in direct support of an external entity (as categorized in 00- 

DFD semantics). A transaction is triggered (initiated) as a result of an 

event. Events in FOOM are of four types: user events (originating from 

user entities), communication events (originating from communication 

entities), time events (originating from time entities), and real-time events 
(originating from real-time entities). Top-level design of the transactions is 

performed in the following steps: 

2.1. Identification of transactions: the transactions of the system are 

identified from the hierarchy of OO-DFDs constructed during the 

analysis phase. The OO-DFD hierarchy is traversed in order to 
isolate the transactions, each of which consists of one or more 

chained leaf processes, and the data classes and external entities 

connected to them. Generally each transaction has one or more 

external entities at one end and data classes and/or external 

entities at the other. 
2.2. Description of transactions: a top-level transaction description is 

provided in a structured language referring to all the components 

of the transaction: every data-flow from or to an external entity is 
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translated to an "Input from... " or "Output to... " line; every data- 

flow from or to a data class is translated to a "Read from... " or 

"Write to... " line; every data flow between two processes 

translates to a "Move from... to... " line; and every process in the 

transaction translates into an "Execute function... " line. The 

process logic of the transaction is expressed by using standard 

structured programming constructs. The top-level descriptions 

thus produced will be extensively used during later stages of 
design as a basis for designing the application-specific features of 

the system. 

2.3. Definition of the "Transaction" class: an abstract "Transaction" 

class is added to the class diagram. Acting as a utility class, the 

"Transaction" class will encapsulate operations for implementing 

the process logic of complex transactions; that is, transactions 

that are not deemed suitable to be assigned to ordinary classes 

due to their over-complexity are put in this class as operations. 
Operations of this class will be defined during the last stage of 

design. 

3. Interface Design - In this stage, the OO-DFD hierarchy is traversed in a 

top-down fashion in order to produce the menu-based interface of the 

system: a main menu, initially empty, is defined for the system; for each 

process at the topmost level of the hierarchy that is connected to a user 

entity, a corresponding menu-item is defined and added to the main menu; 

at any level of the OO-DFD hierarchy, for every non-leaf process 

connected to a user entity, a corresponding submenu is defined and 
initialized as empty, and for every process (leaf or non-leaf) that is 

connected to a user entity a corresponding menu-item is defined and added 

to its parent-process's submenu. The menu tree thus derived is then refined 
into the user-interface of the system. The leaf items in this tree correspond 

to leaf processes connected to user entities, and will invoke a system 

transaction when selected at run-time. In order to realize this interface, a 
"Menu" class is defined and added to the class diagram of the system. 
Instances of this class will be the run-time menus, with their items saved as 

attribute values. 

I 
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4. InputlOutput Design - The top-level descriptions of the transactions are 

used for determining what input forms/screens and output reports/screens 

should be designed: an input form/screen will be designed for each "Input 

from" line appearing in the transaction descriptions, and an output 

report/screen will be designed for each "Output to" line. Two new classes, 

the "Form" class for the inputs and the "Report" class for the outputs, are 

then added to the class diagram. The actual screens, forms, and reports are 

instances of these classes, with the titles and data-fields stored as attribute 

values. 
5. Design of System Behaviour - This stage of the design phase produces the 

main behavioural specifications of the system. The top-level descriptions 

of the transactions are used as a basis for identifying and detailing the main 

application-specific operations of the classes as well as the object 
interactions (message-passing chains) that implement the transactions of 

the system. This process typically involves the following activities: 

5.1. Identification of operations: the top-level descriptions are refined 

so as to include details on the operations in charge of 
implementing the expected functionality, as well as the 

classes/objects to which these operations belong. Transaction 

specifications thus refined show the full object-oriented process 
logic of the transactions in terms of run-time message interchange 

among objects. The following conversions and mappings are 

typically performed: 

" Each Input/Output line is converted into a message to a 

corresponding operation in the relevant Report/Form 

object. 

" Each Read/Write line is translated into a message to the 

corresponding basic function in the relevant data class. 

" Each Execute-Function line is converted to a message- 

passing chain consisting of one or more messages to 

specific operations of particular classes. These operations 
may be basic operations already defined, or new 
application-specific operations that should be assigned to 

appropriate classes. The design team decides on how to 
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realize the expected functionality of each Execute- 

Function line as a message passing chain, and in doing so 

identifies new operations for the classes involved. It 

should also make sure that the message passing logic is 

incorporated in each of the participating classes. 

Detailed signatures are then defined for all the operations. The 

detailed descriptions of the transactions are ultimately translated 

into pseudo-code, in which the process logic of each transaction 

(the sequence of the message interchange, and the 

iterations/conditions involved) is expressed by using standard 

structured-programming constructs. In addition, for every 

transaction that involves chains of message-interchange among 

objects, a Message Diagram (identical to the UML collaboration 

diagram) is produced; these diagrams help further clarify the 

process logic of the transactions. 

5.2. Transaction assignment: classes are put in charge of fully 

executing, or initiating/directing the execution of the transactions 

for which detailed specifications were produced in the previous 

substage. Depending on the complexity of its internal process 

logic (excluding Input/Output and Read/Write messages), each 

transaction undergoes one of the following: 

Transactions that have a processing scope confined to 

instances of a single class are assigned to that class as an 

operation. Triggering the transaction will result in the 

invocation of the corresponding operation, which will 

"execute" the transaction in its entirety. 

" Transactions with moderate processing complexity 
involving a message-passing chain among instances of 
different classes are assigned to a participating class as an 

operation. Instances of this class will thus be able to act 

as chain "initiators"; the overall process logic is 

distributed among the participant classes, with the 

participating objects knowing to which object the next 

message should be directed. 
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" Transactions with complex process logics involving 

many classes are deemed not suitable to be assigned to 

any of their participant classes. Such transactions are 

assigned to the abstract `"Transaction" class as an 

operation. The high-level process logic of the transaction 

is centralized in the operation, thus putting it in charge of 

orchestrating the processing through "directing" the 

invocations (analogous to a "main" module). 
Every operation executing, initiating or directing a user 

transaction is linked to its corresponding menu item in the 

relevant Menu object, so that selection of the item by the user at 

run-time will activate the proper operation. Provision should also 

be made for operations that execute/initiate/direct other types of 

transactions (time, real-time, and communication) to be invoked 

upon occurrence of their pertinent trigger events. 
5.3. Detailed specification of operations: pseudo-code descriptions 

are produced for all significant operations. The pseudo-code 

specifications of the methods (operation bodies) are intended to 

facilitate the actual coding of the system during the 

Implementation phase. 

3.3.4 Methodologies: Agile 

Enthusiasm over agile development has been such that the methodology war of the 

early 90s has been more or less repeated over agile methodologies. Not only have 

numerous variants of prominent agile methodologies emerged, but agile variants of 

older methodologies have also been proposed. The agile methodologies selected 
for inclusion in this analysis are the main contenders, widely recognized as the 

torchbearers of the agile movement. 

3.3.4.1 DSDM (1995,2003) 

DSDM (Dynamic Systems Development Method) was first introduced in 1995 by a 

consortium of UK companies. Motivated by an ever-increasing need for a standard, 

generally-accepted RAD (Rapid Application Development) methodology, the 
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consortium produced DSDM as an iterative-incremental generic framework based 

on evolutionary prototyping and principles that are nowadays attributed to agile 

development [DSDM Consortium 2003]. Starting with 16 UK companies, the 

consortium now has more than 1000 members, including industry giants such as 
IBM, Microsoft and Siemens; it should not be surprising, then, that the framework 

proposed by DSDM is now considered the de facto standard for RAD. 

The latest version of the DSDM process consists of seven phases [DSDM 

Consortium 2003]; the first and last ones, though, are not considered main phases, 

since they are not considered part of the project itself: 

1. Pre-project: with the focus on providing the necessary resources for 

starting the project, along with a plan for the next immediate phase, i. e. the 

feasibility study. 

2. Project-proper, during which the five main phases of the DSDM are 

applied; the first two sequentially at the start of the project, and the 

remaining three as interwoven cycles (Figure 24): 

2.1. Sequential Phases: primarily concerned with studying the 
business domain and performing a preliminary analysis of the 

system, these short phases set the stage for the actual 
development of the system: 

2.1.1. Feasibility Study: analogous to the classic feasibility 

analysis, albeit with a special focus on analyzing the 

suitability of DSDM for the project, and coming up 

with an outline plan for the subsequent phases. 
2.1.2. Business Study: with the focus on identifying 

system-relevant processes and information entities in 

the business domain, defining and prioritizing the 
high-level requirements of the system, developing 

the system architecture, and producing a 
development plan. 

2.2. Iterative Phases (The Development Cycle): based on the high- 
level knowledge acquired during the business study phase, the 
three iterative phases iteratively and incrementally analyze, 
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design, code and deploy the system through evolutionary 

prototyping: 
2.2.1. Functional Model Iteration: with the focus on 

selecting requirements according to their priority, 

and performing detailed analysis and modeling of 

the selected requirements through prototyping. 

2.2.2. Design-and-Build Iteration: with the focus on 

evolving the prototypes into final deliverable 

increments of the system. 

2.2.3. Implementation: with the focus on deploying the 

deliverable increments into the operational 

environment, and reviewing and validating the 

system built so far. 

3. Post project: with the focus on system maintenance, which as in most other 

iterative-incremental methods, is applied through further iterations of the 

main phases. 

DSDM does not prescribe a specific order for the execution of the iterative phases 

in the overall process: it is true that prototypes should undergo the three phases in 

the order specified above, yet as shown in Figure 24, the three iterative phases 

themselves form an outer interwoven cycle (hence the name "Development 

Cycle"). The selection of the number of iterations in each cycle, and the way the 

iterations should interact, is completely dependent on the project and up to the 

development team to decide. Furthermore, the introduction of multiple 

development sub-teams working in parallel enables the phases to overlap, adding 

another configurable dimension to the process. Since all of this enables the 

developers to tailor the process to fit the project in hand, DSDM is referred to as a 

configurable process framework, rather than a methodology. 

In customizing the process framework, the development team also has to set up a 

strict time-constrained plan for the development. In DSDM, stringent constraints 

are set on time and resources, leaving the requirements (functionality) as the only 

variable parameter of the project (DSDM is thus deemed especially suitable for 

projects with highly volatile requirements); this is in contrast to traditional 
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methods, in which time and resources are allowed to vary, while functionality is 

fixed. 

In DSDM, time constraints are set up using time frames called time-boxes. A fixed 

completion date is set for the overall project, thereby defining the overall time-box 

in which the project is to be done. During the business study phase, shorter time- 

boxes of two to six weeks are nested inside this overall time-box, setting temporal 

boundaries for development cycles and/or iterations. Each tine-box is assigned a 

fixed end-date and a prioritized set of requirements. End-dates are not movable, 

and lower priority requirements are to he sacrificed if the time-box does not allow 

work to be done on them, in which case they might be taken on in later time-boxes. 

Each time-box is to produce tangible artefacts, and is therefore the basic unit for 

project monitoring and control. 

Like other agile development methods, DSDM is based on a number of principles, 

the most important of which are active user involvement, frequent deliveries, 

empowered development teams, reversibility of changes, and testing in all phases 

of the project. 

The following sections contain brief descriptions of the tasks performed in each of 

the five main phases of DSDM. 

Figure 24. The DSDM process: the rive main phases of the framework 
[DSDM Consortium 2003] 
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In this short phase, which typically takes no more than a few weeks, the following 

tasks are performed: 

1. Acquire high-level knowledge as to the nature of the project, its scope, and 

the risks and constraints involved. 

2. Check whether DSDM is the suitable approach for the project in hand. 

This is done by applying a list of project and organizational criteria (called 

the Suitability Filter) to the project. The suitability filter defines the 

characteristics that should be present in a project for DSDM to be properly 

applicable. The following non-exhaustive list includes a number of the 

more important characteristics, some of which are legacies from RAD: 

" The system to be developed should be interactive, with the 

functionality amply visible at the user interface level (screens, 

reports and controls), thus allowing prototyping to be effectively 

applied. 

" The system should have a clearly defined user group, so that well- 

informed representatives (called Ambassador Users) can be 

identified and involved as active participants in the project. 

" The system should not be computationally complex (more 

business-oriented rather than scientific). 

" The requirements should not be too complex to elicit, delineate, 

prioritize, or implement individually. 

" There should be no constraint or criticality issue compelling the 

developers to fully specify the requirements before any coding can 

commence. 

" If the system is large, it should lend itself to partitioning. 

" The sponsor/senior-management should understand and accept the 

principles and practices of DSDM. 

3. Perform the traditional activities of feasibility analysis, paying special 

attention to technical, schedule, and managerial feasibilities. 

4. Develop rough estimates and an overall Outline Plan for the project. 
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The results of the first three tasks are compiled in the Feasibility Report. The report 

may be complemented by a primitive prototype of the system (called the 

Feasibility Prototype), the main purpose of which is to demonstrate the scope and 

the technical feasibility of the project. 

Business Study (DSDM) 

The business study broadly encapsulates the following tasks, typically performed 

through a series of facilitated workshops involving the developers and the 

ambassador users: 

1. Identify the processes and information entities in the business domain that 

are relevant to the system, as well as the types of users interacting with, or 

affected by, the system. The list of user-types will help identify 

ambassador users to participate in later tasks. 

2. Define and prioritize the high-level functional and non-functional 

requirements of the system. The requirements are prioritized according to 

what DSDM calls the MoSCoW Rules, which is, in effect, categorizing 

each of the requirements as one of the following: 

Must-Haves: essential requirements on which the project's success 

relies. 

" Should-Haves: important requirements, but not essential to the 

project's success. 

" Could-Haves: requirements that can be excluded from the system 
functionality without having any serious effect on the project. 

" Won't-Haves: requirements that will not be part of the system 
functionality in the current project. 

The project must guarantee the implementation of the must-haves and 

should strive hard to deliver the should-haves. The could-haves will only 
be realized if time and resources allow their implementation. 

The results of the first two tasks are packaged as the Business Area 
Definition document. 

3. Develop the System Architecture Definition, which highlights the 

architecture of the software solution, and specifies the development and 
operational platforms. 



Chapter 3. Analysis 132 

4. Produce the Prototyping Plan, outlining the order of activities during the 

iterative phases of the development. 

Functional Model Iteration (DSDM) 

In this iterative phase of the process, based on the high-level specifications outlined 

during the business study, detailed systems analysis is carried out through 

evolutionary prototyping. The following tasks are to be performed during the 

overall phase: 

9A risk analysis is conducted in order to assess the risks involved in 

developing the requirements. The analysis will be refined during the 

iterations (based on the feedback and experience gained from the 

prototypes), ultimately resulting in the Development Risk Analysis Report. 

" Requirements are selected according to their development risk (higher risk 

meaning higher priority), and functional prototypes are iteratively built in 

order to demonstrate the relevant functionality to the ambassador users, 

and refine the requirements based on the feedback. Testing is rigorously 

performed during the prototyping activities, and records are carefully 
logged. The prototypes produced in this phase not only constitute the 

embryo from which the final system will ultimately evolve, but as 

manifestations of the refined functional requirements, they also form the 

main part of the Functional Model of the system (thereby eradicating any 

need for the use of functional/behavioural modeling notations). 

" Non-functional requirements are refined and listed. This list too is 

considered a constituent of the functional model. 

" If necessary, static models (class diagrams) are used for modeling the 

structural aspects of the domain area being analyzed. These models are 

also appended to the functional model. 

The above tasks are performed through iterations, with the following activities 
(similar to the activities in the traditional prototyping lifecycle) being carried out in 

each iteration: 

1. Identify what is to be produced (the products). 
2. Agree how and when to carry out the production (the plan). 
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4. Check that the products have been produced correctly (by reviewing 

documents, demonstrating a prototype or testing part of the system). 

Design and Build Iteration (DSDM) 

In this iterative phase of the process, the functional prototypes produced in the 

previous phase are completed and refined into a thoroughly tested and operational 

increment of the system. The prototypes from the functional model were merely 

meant for the purpose of requirements elicitation, refinement and modeling, and 

are therefore far from deployable: they are lacking in low-level functionality and 

structure, and do not adequately address non-functional requirements and 
implementation-specific issues. During the design-and-build phase, the prototypes 

are iteratively refined and gradually evolved into a working software subsystem, 

ready to be deployed as an increment into the operational environment, and 

integrated into the system built so far. The intermediate prototypes are called 

Design Prototypes, since they act as "live" executable blueprints for the final 

product. 

As in the previous phase, the activities performed in each iteration are similar to 

those of the traditional prototyping lifecycle. Testing is performed on a continuous 

basis, with test cases and relevant results and decisions carefully logged. The 

intermediate prototypes are also kept on record as design documentation. 

Implementation (DSDM) 

During this phase of the project (which could have well been called Deployment, 

or Transition), the increment produced in the previous phase is deployed into the 

user environment, and integrated with the system built so far. Each iteration 

involves the following tasks: 

1. Users and support personnel are trained, and manuals are prepared. 
2. The increment is introduced into the operational environment. This 

naturally involves dealing with system integration and conversion issues, 

and the subsequent refactoring and testing activities. 
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3. A comprehensive validation review is performed on the system with 

feedback acquired from the users, results of which are compiled in the 

Increment Review Document. Based on the results of the review, 

alternative courses of action may be taken. There are four possible 

outcomes: 

" All requirements planned to be realized have been implemented to 

the users' satisfaction, in which case the project is declared as 

finished. 

"A major area of functionality was discovered during development 

that had to be abandoned because of time-box constraints, but 

should be developed; in this case a return to the business study 

phase is required. 

" An area of functionality had to be left out because of time-box 

constraints, but should be developed; in this case a return to the 

functional-model-iteration phase is required. 

"A non-functional requirement had to be ignored because of time- 

box constraints, yet should be realized; in this case a return to the 

design-and-build-iteration phase is required. 

3.3.4.2 Scrum (1995,2001) 

The first mention of "Scrum" as a development method was made in 1986, when it 

was used to refer to a new fast and flexible product development process being 

practiced at that time in Japanese manufacturing companies. The name emphasizes 

the importance of teamwork in the methodology and is derived from the game of 

rugby. The variant of Scrum used for software development, jointly developed by 

Sutherland and Schwaber, was introduced in 1995 during a workshop at the annual 

ACM/OOPSLA conference [Schwaber 1995]. Originally intended as a general 

framework for systems development, Scrum is currently advertised as a 

comprehensive software development methodology [Schwaber and Beedle 2001, 

Schwaber 2004]. 

The Scrum process consists of three phases [Schwaber and Beedle 2001], as shown 
in Figure 25: 
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1. Pre-game: concerned with setting the stage for the iterative-incremental 

development effort; this phase consists of the following subphases: 
1.1. Planning: with the focus on producing an initial list of prioritized 

requirements for the system (called the Product Backlog), 

analyzing risks associated with the project, estimating the 

resources needed for implementing the requirements, obtaining 

the resources necessary for starting the development, and 
determining an overall schedule for the project. 

1.2. Architecture/High-level Design: with the focus on determining 

the overall architecture of the system in such a way as to 

accommodate the realization of the requirements identified so far. 

2. Development (Game): with the focus on iterative and incremental 

development of the system. Each iteration (called Sprint) is typically one 

month in duration and delivers an operational increment satisfying a 

predetermined subset of the product backlog. 

3. Post-game: with the focus on integrating the increments produced and 

releasing the system into the user environment. 

The following sections contain brief descriptions of the activities performed in 

each phase of the Scrum process. 
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Figure 25. The Scrum process [Abrahamsson et al. 2002] 
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The two subphases comprising this phase usually overlap. The following activities 

are performed in the Planning subphase: 

1. Development of an initial list of requirements (Product Backlog) for the 

system; the customer is fully involved in producing this initial version of 

the product backlog, but all other possible sources are also used for 

requirements elicitation. The product backlog will be completed and 

updated as the project moves on, always acting as the basis for the 

development effort. It will contain the functional and non-functional 

requirements of the system, as well as bug fixes and enhancements 

necessitated during the development process. Due to its utmost importance, 

a dedicated caretaker (typically a key user of the system), called the 

Product Owner, is put in charge of managing and controlling the product 

backlog. 

2. Estimation of the effort and resources needed for developing the items on 

the product backlog and deploying the final system. 
3. Assessment of the risk involved in developing the items on the product 

backlog. 

4. Prioritization of the items on the product backlog. 

5. Definition of a delivery date for the release of the system. If the system is 

too large, multiple releases might be deemed appropriate, and a delivery 

date specified for each. 

6. Formation of development team(s); each team (called Scrum Team) 

typically has five to ten members with diverse specialties. The teams are 

supposed to be self-organizing, in that team-members collectively decide 

on issues of task assignment, team management and control. Nevertheless, 

a supervisor, or Scrum Master, is assigned to each team to act both as a 

facilitator in charge of removing the obstacles preventing the team's 

progress, and an enforcer of Scrum practices, making sure that the team 

does not digress from the course of action, values and guidelines laid out 
by Scrum. 

7. Provision of tools and resources necessary for the actual development to 

commence. 
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The Architecture/High-level Design subphase consists of the following activities: 

1. Problem domain analysis: based on the items in the product backlog, 

domain models reflecting the context and requirements of the system are 
built. Prototypes may also be built in order to gain better understanding of 

the problem domain. 

2. Definition of the architecture of the system: this is done in such a way as to 

support the context and requirements of the system represented in the 

domain models. 

3. Updating the product backlog: new backlog items are added and/or existing 
items are changed in order to accommodate the architecture designed. 

Development (Scrum) 

As the main development engine of the Scrum process, this phase is where the 

requirements listed in the product backlog are realized through iterative analysis, 
design, and implementation. This phase consists of a number of iterations, or 
Sprints, each of which produces an executable increment to the system. The 

following activities are performed in each sprint: 

1. Sprint Planning: a Sprint Planning Meeting is held at the start of each 

sprint in which all parties concerned with the project - development 

team(s), users, customers, management, product owner and scrum 

master(s) - participate in order to define a goal for the sprint. The Sprint 

Goal defines the objective of the sprint in terms of the product backlog 

Items that it should implement. In defining the sprint goal, special attention 
is given to the priority of the items on the product backlog. The 

development team then sets out to determine a Sprint Backlog, which is a 

list of tasks to be performed during the sprint in order to meet the sprint 

goal. Thus the sprint backlog is a fine-grained, implementation-oriented, 

expanded subset of the product backlog. Items on the sprint backlog thus 

produced are assigned to the development team(s), and will be the basis for 

development activities performed during the rest of the sprint. If the sprint 
planning meeting concludes that no further sprints are necessary, the 
development phase is declared as finished, and the post-game phase is 

started. 
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2. Sprint Development: the development team analyzes, designs, and 
implements the requirements set in the sprint goal through performing the 

tasks detailed in the sprint backlog, all in the 30-day time frame set by the 

sprint. In order to effectively manage and control the activities of the 

sprint, 15-minute Daily Scrum Meetings are held during which the team- 

members discuss what they have achieved since the last meeting, their 

plans for the period leading to the next meeting, and the impediments they 

have encountered. The purpose of the meeting is to maintain and keep 

track of the progress of the team and resolve the problems that might 

adversely affect the team's pace. The management and the scrum master 

also attend the meetings and are to help overcome the problems faced by 

the team-members. 
3. Sprint Review: a Sprint Review Meeting is held at the end of each sprint 

during which the increment produced is demonstrated to all the parties 

concerned. A comprehensive assessment is made of the achievements of 
the sprint in satisfying the sprint goal, and the product backlog is updated 

accordingly; i. e. fully realized requirements are marked as such, necessary 
bug fixes or enhancements are added, and appropriate changes are made to 

partially developed requirements. The sprint can also result in the 
identification of new requirements, or changes to already defined 

requirements, both of which are duly considered when updating the 

product backlog. As another objective of the sprint review meeting, issues 

impeding the progress of the development team are discussed and resolved. 
The meeting is also concerned with updating the system architecture 
according to the insight gained during the sprint. 

Post-game (Scrum) 

The following typical deployment activities are performed in this phase, 
introducing the release into the user environment: 

1. Integration of the increments produced during the sprints. 
2. System-wide testing. 

3. Preparation of user documentation. 

4. Preparation of training and marketing material. 
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5. Training the users and operators of the system. 
6. System conversion/packaging. 
7. Acceptance testing. 

3.3.4.3 XP (1996,2004) 
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XP (eXtreme Programming) was developed by Beck in 1996. Although the 

introductory material on the methodology was available on the Web almost from 

the start, it took three years for the first authentic XP book to appear [Beck 19991, 

with a revised and refined version appearing in 2004 [Beck and Andres 2004]. 

Although some of the methodologies that are nowadays dubbed as agile are older 

than XP, it was the advent of XP that sparked the agile movement. 

XP considers itself a software engineering discipline rather than a methodology, yet 

it does incorporate a process. The XP lifecycle consists of six phases (Figure 26): 

1. Exploration: with the focus on developing an initial list of high-level 

requirements, and determining the overall design of the system through 

prototyping. 
2. Planning: also called Release Planning, this phase's focus is on estimating 

the time needed for the implementation of each requirement, prioritizing 
the requirements, and determining a schedule (as well as a minimal, select 

set of requirements to be implemented) for the first release of the system. 
3. Iterations to First Release: with the focus on iterative development of the 

first release of the system, using the specific rules and practices prescribed 
by XP. Iterations are typically between 1 to 3 weeks in duration. 

4. Productionizing: with the focus on system-wide verification and validation 

of the first release, and its deployment into the user production 

environment. 
5. Maintenance: with the focus on implementing the remaining requirements 

(including any resulting from post-deployment maintenance needs) into the 

running system. Unlike many other methodologies, entering the 

maintenance phase of XP does not mean that the project is over; in fact, 

maintenance is the time for system evolution, and therefore is the time 

when the project is considered to be in its "normal" state. 
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6. Death: with the focus on closing the project and conducting post-mortem 

review and documentation. 
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Figure 26. A general overview of the typical XP process 
[Abrahamsson et al. 2002] 

The activities performed in the second, third and fourth phases of the process 

constitute the development "engine" of the XP methodology (Figure 27), in that each 

execution (run) of these phases produces a new release. According to the XP process, 

a first release of the system is initially produced and deployed, which is then 

incrementally improved and complemented during the maintenance phase through 
further iterations (runs) of the development engine. 
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The following sections contain brief descriptions of the activities performed in 

each phase of the XP process. 

Exploration (XP) 

The main activities performed in this phase of the XP process are as follows: 

1. Formation of the development team: the team typically consists of a coach 

acting as monitor and facilitator, a number of programmers, and a business 

representative (customer) that should be always available to actively 

participate in project activities and supply the team with information and 

feedback. The team may also include a number of analysts to help elicit the 

requirements, a number of testers helping the customer define acceptance 

tests, and a resource manager. 

2. Development of the initial set of User Stories: a User Story defines a 
feature of the system as seen from the customer's point of view. User 

stories are written by the customer in his own terminology on index cards, 

and are nothing but short descriptions (around three sentences) of a certain 

chunk of functionality needed to be delivered by the system. User stories 

are only detailed enough to allow relatively reliable estimation of the time 

needed for their implementation, and'therefore only provide a high-level 

view of the requirements; yet they are the main drivers of the planning and 
development activities. The list of user stories is constantly updated during 

the process to reflect the changes and additions made. 
3. Creation of the system Metaphor. a prototype (called Spike or Spike 

Solution in XP) is developed, exploring potential architectures for the 

system. The prototype helps the team define the system Metaphor, which is 

typically a very simple, high-level description of how the system works. It 

usually takes the form of a description-by-analogy in order to be easily 

understandable to all the team members. Though informal, the metaphor 

gives an extremely useful idea of the overall architecture of the system 

without setting too many constraints. 
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The main activities performed in this rather short phase of the XP process 
(typically taking no more than a couple of days), which is also called Release 

Planning, are as follows: 

1. Estimation of development time: developers estimate the time needed to 

develop each of the user stories as conforming to the system metaphor, and 

write the estimates down on the user-story index cards. User stories that 

need more than 3 weeks to develop are broken down into smaller ones, and 

user stories taking less than 1 week are merged. In cases where estimates 

are not reliable enough, spike solutions (prototypes) are developed in order 

to help the developers mitigate schedule risks, and improve the estimates. 
2. Prioritization of user stories: the customer prioritizes the user stories 

according to their business value. 
3. Planning the first release: the team selects a minimal, most valuable set of 

user stories for implementation in the first release, and agrees on the 

release date. In doing so, the team also decides on the iteration duration 

(between 1 to 3 weeks), which once determined, will be the same for all 
iterations. The resultant release plan will be the framework according to 

which the iterative development effort in the next phase will proceed. 

Iterations to First Release (XP) 

This phase is the iterative development core of the XP process, with the ultimate 

objective of producing the first working release of the system according to the 

release plan. As a result of development activities, new user stories may be 

identified, and the existing ones may change. The following activities are 

performed in each of the iterations (Figure 28): 

1. Iteration planning: at the start of each iteration, a planning meeting is held 

during which the development team performs the following activities: 
1.1. Selection of user stories to implement, as well as failed 

acceptance tests of previous iterations that should be rectified: 
based on the release plan, the customer selects user stories 
(according to their business value) for development in the coming 
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iteration. Failed acceptance tests encountered during previous 

iterations are also considered for inclusion in the list of jobs to be 

attended to. Special attention is given to the experience gained 

during previous iterations as to the development speed of the 

team (called Project Velocity in XP) in order to make sure that 

the selected jobs can indeed be completed by the end of the 

iteration. 

1.2. Identification of programming tasks: the developers on the team 

break down the selected user stories and debugging jobs into 

programming tasks, which are then written down on the user- 

story index cards. 

New User Story, 
Release Project Velocity 

Plan 
User Stories Unfinished Tasks 

1Leam 

and 
Communicate 

New 
Project Its ton Functionality Next velocnr Iteration Plan -- Latest 

Iteration Planning -ý Development eueý. Version 
Failed Acceptance 

Tests 
Day by Day 

Bugs 

Figure 28. Activities in each iteration (XP) [Wells 2003] 

1.3. Task sign-up and estimation: programmers sign-up to do the 

tasks. Each developer then estimates the time he needs for 

completion of each of the tasks he has undertaken, making sure 
that he can develop all of them in the time available. Each task 

should take between 1 to 3 days to complete. 
2. Development: the development activity in each iteration is itself an iterative 

process with daily cycles. The main activities performed during 

development, as shown in Figure 29, are as follows: 
2.1. Holding daily stand up meetings: A short stand up meeting is 

held every morning in order to communicate problems and 

solutions, and help the team keep on track. 



Chapter 3. Analysis 144 

Learn and 
Communicate 

Unfinished Pau Programmng 

Iteration Tasks RefactotMercilessly 
New 

Plan Tasks 
ITOaMuch 

Share 
Move People Around 

To Do CRC Cards 
Functionality 

Stand Up Collective +so%und p Tests Passed 
FalledActeptante 

Meeting NertTask Code Ownership 
Or Failed 

Tests Acceptance Test Acceptanta 

Day by Day Test Passed Bug Fixes 

Figure 29. Development activities in each iteration (XP) [Wells 2003] 

2.2. Analysis, design, coding, testing and integration in a Collective- 

Code-Ownership environment (Figure 30): Collective Code 

Ownership means that all the code developed is put in a shared 

code repository, and any developer can change his or others' code 
in order to add functionality, fix bugs, or refactor. In order to 

make collective code ownership possible, test-driven 

development is applied: the developers have to create unit tests 

for their code as they develop it. All the code in the code 

repository includes unit tests, forming a suite of tests that is 

automatically applied by test tools whenever code is added or 

changed. Builds are frequent in XP, and continuous integration is 

encouraged; yet, for code to be allowed integration into the 

repository, it must pass the entire test suite. The test suite thus 

safeguards the repository from malignant change. 

In order to make sure that the user stories are indeed being 

implemented, black-box acceptance tests based on the user stories 

are defined by the customer and developed by the team during the 
iteration. Acceptance tests are frequently applied (by automated 
tools) to the code; the defects detected are relegated to the next 
iterations if time constraints do not allow their rectification in the 

present cycle. 
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Figure 30. Activities in a Collective-Code-Ownership environment (XP) 
[Wells 2003] 

Other rigorous development practices are also prescribed by XP, 

which will be briefly mentioned here. Although many of these 

development practices are much older than XP itself, XP was the 

first methodology to combine them into a synergistic 
development-practice core: 

o Programmers work in pairs, each pair on one machine 
(a practice called Pair Programming). 

o Programmers use CRC cards (explained in Section 

3.3.2.3) in order to come up with the simplest design 

possible for the programming task in hand. 

o Refactoring is constantly done in order to simplify the 

code and eliminate redundancy. 

oA common coding standard is enforced in order to 

promote code legibility, which in turn enhances 

communication among developers. 

o Developers are moved around so that they acquire 
knowledge about all parts of the system; this will 

reduce the cost of changes made to the team structure 

and will help relieve overloading and coding 
bottlenecks. 
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o Developers are to work at a sustainable pace, with forty 

hours a week as the norm; nobody is allowed to work 

overtime for two weeks in a row. 

Productionizing (XP) 

The main activities performed in this phase of the XP process are as follows: 

1. System-wide verification and validation: the release is tested in order to 

make sure of the user's approval and the system's readiness for 

deployment. Acceptance tests, mostly developed during the iterations-to- 

first-release phase, are used here as regression tests. Defects found are 

resolved through iterations of the main development cycle. 
2. Deployment into the production environment: the release is introduced into 

the user environment. This naturally involves the usual integration, 

conversion, tuning, training, and documentation activities typical of 
deployment efforts. Any tuning and stabilization action on the release itself 

is regarded as a development activity (analogous to user story 
development) and is conducted through short iterations (typically weekly) 

of the development cycle. 

Maintenance (XP) 

This post-deployment phase of the XP process encompasses the same activities as 

those in the previous three phases (the development engine); i. e. Planning, 

Iterations to First Release (the "First" will be dropped though), and 

Productionizing. It is still dependent on the evolving set of user stories and the 

system metaphor, and the activities in the constituent phases are performed in the 

same order as before. The important difference is that the small releases produced 
during maintenance are integrated into an already running and operational system. 
The maintenance phase is when the remaining user stories are implemented into the 

system (thereby evolving the operational first release into a complete system) and 

the system is maintained as such. As customary in iterative and incremental 

processes, requirements arising as a result of maintenance are treated as ordinary 

requirements (also expressed as user stories) and implemented through the same 
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iterative development process. Maintenance in this way employs a uniform process 
for both evolving and maintaining the system over its operational life. 

The maintenance phase continues until either there are no more user-stories to 

develop and none are anticipated in the future (an improbable happy ending for the 

project effort), or the system in no way lends itself to necessary evolution any 

more. 

Death (XP) 

The project is declared dead when evolution is either unnecessary or impossible. 

The main activities performed in this final phase of the XP process are as follows: 

1. Declaring the project as closed: this involves wrapping up the usual legal, 

financial and social loose ends. 
2. Post-mortem documentation and review: this mainly involves preparing a 

short document (no longer than ten pages) providing a brief tour of the 

system, and writing a review report summarizing the lessons learned from 

the project. 

3.3.4.4 ASD (1997,2000) 

ASD (Adaptive Software Development) was introduced by James Highsmith in 

1997 [Highsmith 1997]. A refined and extended version was introduced in 2000 

[Highsmith 2000a]. Evolved from a RAD process and based on the teachings of the 

complexity theory, ASD strives to present a change-tolerant, adaptive alternative to 

the classical Plan-Design-Build and the iterative Plan-Build-Revise lifecycles. The 

component-based development lifecycle prescribed by the ASD methodology 

assumes that all aspects and constituents of the development effort (business 

environment, people, requirements, resources, methods, etc. ) are highly volatile, 

and that building complex systems is an evolutionary process extremely difficult to 

achieve unless special measures are taken to facilitate collaboration among the 

people who are somehow involved or affected by the development of the system. 
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According to ASD, the uncertain and unpredictable nature of the development 

leaves developers no alternative but to use short iterations, or cycles. In order to 

bound the development effort and keep it focused, a specific mission, a set of 

components to develop, and a time box are defined for each cycle. Iterations should 

be planned, but plans are only risk-driven speculations, requiring revision after 

each iteration of the cycle; the actual design and implementation of the system 

components becomes a by-product of intense collaboration; and for the process to 

be adaptive, group reviews are performed at the end of each cycle, to enable the 

people involved to learn from the experience and implement the lessons learned in 

the process. The Speculate-Collaborate-Learn lifecycle thus formed (Figure 31) 

becomes the basic ASD framework for developing software systems. 

ASD goes further than specifying just a framework: it also specifies the concrete 

phases comprising the lifecycle. The five phases constituting the ASD process, the 

three middle phases of which form the iterative development engine of the 

methodology, are as follows [Highsmith 2000a]: 

1. Project Initiation: with the focus on understanding the project's objectives 

and estimating its size and scope, exploring the constraints and the risks 
involved, organizing the development teams, identifying high-level 

requirements, and specifying success criteria. 
2. Iterative Development Phases: 

2.1. Adaptive Cycle Planning: with the focus on setting time frames 

for the project and the development cycles, defining the 

components that should be developed, assigning the components 
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to cycles, and scheduling the iterations. The plan will be revisited 

and revised at the start of each iteration. 

2.2. Concurrent Component Engineering: with the focus on 

concurrent design and implementation of the components 

assigned to individual cycles. 

2.3. Quality Review: with the focus on conducting group reviews of 

the components produced and rectifying the problems confronted. 

3. Final Q/A and Release: with the focus on validating the produced system 

and deploying it into the working environment. 

Figure 32 shows the order of the phases and their relative mapping to the basic 

Speculate-Collaborate-Learn lifecycle. The five phases of ASD and the activities 

performed in each are briefly described in the following sections. 
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Figure 32. The ASD process [Crystal Methodologies Organization 20011 

Project Initiation (ASD) 

The activities performed in this phase are as follows: 

1. Specify the Project Mission, which defines the objectives to he achieved 

and broad requirements to be satisfied by the project. 
2. Identify the project team(s). 

3. Create the Mission Artefacts, consisting of the following: 
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a. Project Vision (Charter), which sets boundaries on the following: 

i. Scope, size, and context of the project. 
ii. Resources allocated to the project. 

iii. Project staff; defining the skills, knowledge, and authority 

required to successfully execute the project. 
iv. Communication among the people involved in or affected 

by the project, i. e. the Project Community. 

b. Product Mission Profile, which identifies the primary factors 

governing the product's success. The main part of this profile is a 

matrix depicting the priority to be assigned to the four project 

variables of scope, quality, schedule, and resources in order to lead 

the project towards a successful product. The matrix also shows the 

target values to be achieved for each variable, and the degree of 

tradeoff allowed. 

c. Product Specification (outline), which contains the results of 

systems analysis and modeling, to be enriched in depth and breadth 

in later phases. At this stage it typically includes a list of 

requirements (also showing their priorities and interdependencies 

and the risks involved in their development), as well as models of 
the system showing the overall functionality, the major object 

classes, and the interactions involved. 

d. Project Data Sheet, which is a one-page document summarizing 

the overall knowledge so far accumulated about the project. It 

typically includes the project's objectives, clients and sponsors, 
development team, main features (system functionality), overall 

scope (in the shape of a Context Diagram), resources, benefits and 
implications, milestones, constraints, priorities, and the key risks 
involved. 

The necessary information for producing the artefacts is usually obtained 
through JAD sessions. 

4. Obtain approval of the clients/sponsors and the permission to go ahead 
with the project. 

5. Share mission values among the project community, through discussing 

and agreeing on quality objectives and evaluation criteria. 
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Adaptive Cycle Planning (ASD) 

The activities performed in this first phase of the iterative-development part of the 

ASD process are as follows: 

1. Determine time boxes for the entire project and each of the development 

cycles. Before specifying time frames for the development cycles, the 

number of cycles necessary for developing the system should be estimated. 
Cycle time boxes in ASD are typically between two to eight weeks in 

duration. 

2. Write objective statements for the development cycles. The objective 

statement will help the development team focus its efforts during the cycle. 
3. Define product components through JAD sessions. The components form 

the ultimate system implementing the requirements, and are of three types: 

feature components, which are domain-specific, analysis components that 

enact the business logic of the system; and technology components and 

support components, which are domain-independent, design components 
that act as the technical infrastructure on which feature components rely 
for execution and perfect run-time operation. 

4. Assign components to cycles according to the risks involved in their 
development and with careful consideration given to their 
interdependencies. The assignment should be such that each cycle delivers 

a tangible result. 
5. Plan the project; an activity that typically involves developing buffered 

schedules for the development cycles (considering the risks involved in 

each and the resources they require), and setting up a suitable medium 
(methods, tools and procedures) for enabling and enhancing collaboration 

among members of the project community. 
6. Develop a Project Task List, consisting of the tasks that should be 

performed during the remaining phases of the project. Naturally, most of 
the tasks are directly related to the development of components. 

Due to the iterative nature of this phase, the speculative plans produced during the 
first iteration are revised and updated during later iterations to reflect the lessons 
learned. 
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Concurrent Component Engineering (ASD) 

The activities performed in this phase, which is rightly considered the heart of the 

iterative-development part of the ASD process, are as follows: 

1. Develop the components assigned to the cycle. Working components are 

typically developed concurrently by development teams working in 

parallel and are delivered as builds on a daily or weekly basis. The 

produced builds are immediately fed into an integration process. Testing 

and refactoring are ongoing processes during this activity. 

2. Manage the project through continuous monitoring and control. 

Maintaining the inter- and infra-team collaboration and keeping the cycle 

on the right track are the main concerns. 

3. Prepare for final QIA by developing system-level test plans and test cases. 
4. Prepare for quality review by planning the review meetings to take place 

in the Quality Review phase. 

Quality Review (ASD) 

The activities performed in this last of the iterative phases are as follows: 

1. Conduct cycle review by holding facilitated customer focus group sessions. 
The result of the cycle is presented to the customers. The feedback and 

change requests are carefully documented in order to be considered in later 

iterations. 

2. Determine next step; decision is made on whether another iteration cycle 

should be initiated, or the system should be prepared for release. 
3. Conduct cycle post-mortem, which typically involves reviewing the 

performance of the teams and the effectiveness of the methods used. The 

problems are then rectified so as not to adversely affect the next iterations. 

Final Q/A and Release (ASD) 

The activities performed in this phase are as follows: 

1. Perform tests, with the main purpose of system-level validation. 
2. Evaluate the test results. 
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3. Fix the problems. 
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4. Make a decision based on the test results, whether to release the system or 

to start a new development cycle. 
5. Transition to production; typically involving deployment activities 

including system conversion, training, and preparation of documents. 

6. Close the project, which, in addition to the usual wrapping-up and 
termination procedures, also includes a project post-mortem summarizing 

the lessons learned from the execution of the project. 

3.3.4.5 dX (1998) 

The dX methodology was introduced by Martin in 1998 as an agile instance of 
RUP [Booch et al. 19981. Although a RUP derivative, dX closely resembles XP 

and is based on the same principles; even the name is XP rotated (Martin has 

claimed, however, that the methodology is referred to as dX because it is "very 

small" [Booch et al. 1998]). The dX process consists of the same four phases as 
RUP, yet the tasks performed in each phase are much simpler, and there is no trace 

of the elaborate disciplines (workflows) prescribed by RUP. The dX versions of the 
four phases are: 

1. Inception: with the focus on determining the major requirements (use 

cases), producing a preliminary version of the project schedule, and 
designing a basic architecture for the system. 

2. Elaboration: with the focus on iterative and incremental design and coding 

of higher- priority (i. e. higher-risk) use cases until the architecture of the 

system and the project-schedule are stabilized to a point that a release 

schedule can be reliably worked out. 
3. Construction: with the focus on designing and coding the remaining use 

cases. In dX, the construction phase is a seamless extension of the 

elaboration phase, with the release schedule being the only milestone 

signifying the transition between the two. 
4. Transition: with the focus on gradual introduction of the implemented 

releases of the system into the user environment, and the subsequent 

maintenance activities. 
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The four phases of dX and the tasks preformed are briefly described in the 

following sections. 

Inception (dX) 

Tasks performed in the inception phase are similar to the generic, and already 

familiar, analysis tasks. A team, consisting of developers and a customer 

representative (analogous to XP), is formed and takes on the following tasks: 

1. The customer representative, taking into account the developers' 

viewpoints, writes simple descriptions of the major use cases on index 

cards. These use case cards are the only intermediate artefacts the 

production of which is enforced by dX. 

2. Simple throwaway prototypes of the major use cases are developed in 

order to measure the efficiency of the development team and to verify that 

the use cases are at the appropriate level of granularity and detail. If there 

are alternative architectures for the system, which is typically the case, 

alternative prototypes are developed in order to obtain better understanding 

of the implications of each alternative architecture. 
3. Based on the results obtained from the prototypes, a preliminary project 

schedule is prepared, which will be revised and improved in the course of 

the project, especially during the elaboration phase. 

4. The results obtained from the prototypes are also used as a basis for 

choosing one of the alternative architectures as the initial version of the 

system architecture, which will be revised and improved during the course 

of the project, especially during the elaboration phase. 

Elaboration (dX) 

The elaboration phase is where the team, having determined the use cases, designs 

and implements the higher-risk ones. Mitigating the major risks in this way allows 

the system architecture and the project schedule to be stabilized, which in turn 

makes it possible for a release schedule to be produced. The design and 
implementation is done in short iterations, and the implemented increments are 

constantly integrated. Other features prescribed in dX are even more suggestive of 
XP's influence; index-card based planning techniques, customer tests, small 
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releases, simple designs, pair programming, test-driven development, stringent 

coding standards, ongoing design improvement, and collective code ownership are 
XP principles explicitly adhered to in dX. 

The main tasks performed during elaboration are as follows: 

1. The customer representative continues writing new use case cards and 

completing the existing ones. 

2. The amount of effort needed for developing each use case is estimated by 

the developers and is written on the corresponding index card. 
3. The use cases are prioritized according to their risk by the customer 

representative. 

4. The actual development is done in short iterations, each of which involves 

the following activities: 

4.1. Iteration Planning: bound by the iteration-duration selected 
(which is typically no longer than one week), the customer 
representative allocates the higher-priority use cases to the 

iteration. 

4.2. Design: the use cases selected for development are designed to fit 

the system architecture. This is done during design sessions, in 

which the team decides on how to implement the use cases. 
Modeling may be done by any means the team finds appropriate 
(e. g. UML diagrams), yet is usually limited to using CRC cards, 

or simply writing the design decisions on the use case cards. 
4.3. Coding: pair programming, test-driven development, and 

constant refactoring are meticulously exercised. Collective code 
ownership is the accepted rule, and integration is performed 
continuously. 

4.4. Post-iteration Revision: after each iteration, the project schedule 
and the system architecture are revised to reflect the lessons 
learned. As soon as the project schedule and the architecture are 
stable enough, a release schedule is produced, and the transition 
to the construction phase takes place. 
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Construction (dX) 
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The construction phase consists of the same activities as the elaboration phase, 

except that the development is now performed according to the release schedule. 
Construction goes on until all the use cases are implemented and released. 

Transition (dX) 

In dX, like XP, releases are frequent, with the first happening as early as possible 
in the project. Transition starts immediately after this first release, running in 

parallel with the construction phase. The purpose of the transition phase is to 

introduce the software produced so far into the user community. This involves beta 

testing the release, integrating the release with existing systems, converting legacy 

databases and systems to support the new release, training the users, and 

ultimately, deploying the new system. Since the early releases of the system are 

generally lacking in functionality, a parallel conversion from the existing system to 

the new one is preferable if these early releases are to be safely introduced into the 

user environment. 

3.3.4.6 Crystal (1998,2004) 

Based on the belief that different projects call for different methodologies, 
Cockburn has proposed Crystal as a family of methodologies [Cockburn 2001]. In 
Crystal, projects are categorized according to their size and the criticality of the 

system being produced. Four levels of criticality have been defined, based on what 
might be lost because of a failure in the produced system: Comfort (C), 
Discretionary Money (D), Essential Money (E), or Life Q. The maximum number 
of people that might have to get involved in a project is regarded as a measure of 
the project's size; therefore, a category L40 project is a project involving up to 40 

people developing a life-critical system. 

Crystal methodologies put heavy emphasis on communication among people 
involved in the project. Therefore, projects with a larger size require heavier 

methodologies since they involve more people, and hence, need better 

coordination, whereas projects with higher criticality call for a more rigorous 
approach, which might be accommodated by tuning a methodology used for a less 
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critical project. Based on this philosophy, Crystal methodologies are categorized 

according to the project size that they address. Each member of the Crystal family 

has been assigned a colour showing its relative complexity: the heavier the 

methodology, the darker the colour assigned to it. Figure 33 shows a portion of the 

project-type grid as defined in Crystal. Moving upward in the grid corresponds to 

higher project criticality, while moving to the right means larger project size and 

therefore more complex methodologies. The figure also shows a number of Crystal 

methodologies assigned to different project sizes and the project categories that 

they cover; i. e. Clear, Yellow, Orange, and Red, in ascending order of complexity. 

Other more heavyweight members of the family - namely Maroon, Blue, and Violet 

- have also been mentioned in the literature (though not shown in this grid), and yet 

others can be added if a usage context arises. 
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Figure 33. Project types in Crystal and the corresponding Crystal methodologies 
(partial grid) - adapted from [Cockburn 20011 

In addition to adhering to the principles of agile development (Beck et al. 20011. 

Crystal methodologies share several other common characteristics as well. Crystal 

methodologies do not support the development of life-critical systems, are 
iterative-incremental with each increment (delivery cycle) lasting no more than 

four months, do not support distributed teams and require the people involved to be 

collocated (e. g. in the same building), and depend on effective communication and 
information flow among team-members for successful enactment. 
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Every Crystal methodology enforces a development process framework and 

requires that a set of certain process elements (typically standard practices, 

strategies and techniques of a relatively general nature) be used, and certain work 

products be produced; yet, a large body of finer-grained detail is left to the 

development team to decide. In many cases, developers are even allowed to use 

techniques borrowed from other methodologies. Crystal methodologies thus 

provide means for tailoring the methodology to fit the project in hand: the 

development team(s) selects a base methodology at the start of the project (in the 

form of a minimal set of working conventions), and gradually refine and perfect it 

during development. This is Crystal's principal technique for making the 

development methodology adaptable to variable levels of project criticality and 

resilient to complications arising during development. In order to monitor and tune 

the development effort, Crystal methodologies make extensive and frequent use of 

Reflection Workshops, during which the project plans, the development 

methodology, and the quality of the system delivered so far, are reviewed and 

necessary adjustments made. 

Of the Crystal methodologies named in the literature, only those that have been 

practically used in real projects have been defined, and the rest remain to be 

developed. The three Crystal methodologies so far defined are Crystal Orange, 

Crystal Orange Web, and Crystal Clear. Crystal Orange was introduced in 1998 

[Cockburn 1998] targeting C40, D40 and E40 projects; Crystal Orange Web is a 

variant of Crystal Orange targeting ongoing web development projects in which a 

continuous stream of deliverables is produced over an indefinite time span 
[Cockburn 2001]. Crystal Clear, the lightest and most widely used member of the 
family, will be briefly described hereinafter. 

Crystal Clear is primarily targeted at C6 and D6 projects [Cockburn 2004]. There is 

only one development team, with members working in close proximity to each 

other. Usable software is delivered at least once every three months, though 
delivery is typically expected to be much more frequent. 

The project lifecycle in Crystal Clear consists of the following three sequential 
phases: 
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1. Chartering: taking a few days to a few weeks, this phase involves forming 

the development team, performing a preliminary feasibility analysis, 

shaping and fine-tuning the development methodology, and developing an 
initial plan for the project. 

2. Cyclic Delivery: this is the main development engine of the process and 

consists of two or more Delivery Cycles. Each delivery cycle takes from 

one week to three months, during which the team updates and refines the 

release plan, implements a subset of the requirements through one or more 

program-test-integrate iterations, delivers the integrated product to real 

users, and reviews the development methodology adopted and the project 

plans. The iteration(s) in a delivery cycle are themselves composed of daily 

and integration cycles. 

3. Wrap-up: during this last phase of the lifecycle, post-implementation 

activities are carried out, the software product is deployed into the user 

environment, and post-deployment reviews and reflections are performed. 

Figure 34 shows an example of the phases, cycles and activities in a typical project 
developed using Crystal Clear. The three phases of Crystal Clear and the cycles 

and activities performed in each are briefly described in the following sections. 

Figure 34. Example of phases, cycles and activities in Crystal Clear - 
adapted from [Cockburn 2004] 
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Chartering (Crystal Clear) 

This phase consists of the following four steps: 

1. Build the core of the team, typically consisting of: 
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a. An Executive Sponsor, who provides monetary and logistical 

support to the project and essential direction to the team, and may 

also act as the domain expert. 

b. A Lead Designer, who also acts as project manager, coordinator, 

and technical expert and trainer. 

c. An Ambassador User, who acts as the expert on system usage. 

Direct and active user involvement is essential to the 

methodology's success. 

d. A number of Systems Analysts, Designer-Programmers, Business 

Experts, Testers, Text-Writers, Coordinators, and others, as 

deemed necessary by the team (especially the above three main 

members). 

2. Perform the Exploratory 360°, which is a preliminary feasibility study 

providing a high-level project-wide review of the key issues governing the 

development of the project. These issues include: expected business value 

of the system and its high-level requirements, domain models, technology 

alternatives, overall project plans and constraints, necessary resources, and 

the development methodology. This step typically results in a decision to 

either go on with the project or terminate the effort due to infeasibility. 

3. Shape and fine-tune the methodology conventions; a minimal set of rules is 

agreed upon by the team as the skeleton of the methodology to be used in 

developing the system. This initial set will be iteratively revised and 

perfected during cyclic delivery, gradually evolving into a methodology 

tailored to fit the project in hand. 

4. Build the initial project plan, which typically includes a Project Map 

showing the development tasks and their dependencies, and a Release Plan 

showing the projected completion dates for delivery cycles and iterations. 

Tasks are identified, prioritized and estimated using a technique called 
Blitz Planning, which is a close variant of XP's card-based planning 
technique. The plans will be revisited and updated during cyclic delivery. 
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Cyclic Delivery (Crystal Clear) 

This phase consists of two or more Delivery Cycles. Each delivery cycle involves 

the following four activities, collectively aimed at implementing, testing and 

delivering working software to the user: 

1. Recalibrate the release plan: the requirements and the project plans are 

reviewed and updated according to the experience gained in the delivery 

cycles performed so far. Refinements are also made to the plans and fine- 

grained detail is added in order to accommodate the iterations to be 

performed in the current cycle. 

2. Develop in iterations: one or more iterations are performed in every 
delivery cycle. Each iteration lasts from one week to three months, and 

consists of the following three activities 
2.1. Iteration planning: a fine-grained plan is produced involving the 

tasks that should be performed in the iteration. 

2.2. Cyclic program-test-integrate: an iteration consists of cyclic 
daily activities (Figure 34). The team's Daily Cycle includes a 

stand-up meeting (similar to that in Scrum), during which the 

team-members exchange information and ideas about their 

achievements, plans and problems. The rest of the day typically 

consists of several Integration Cycles. During each integration 

cycle, designer-programmers perform design-implementation 

Episodes; that is, they start development tasks, and carry out 

designing-programming (considered as one activity in Crystal) 

and unit testing. At the end of an integration cycle, the code 

produced by designer-programmers during the episodes of the 

integration cycle is integrated into the system built so far, and 

appropriate integration tests are performed. Developed code is 

thus continually integrated into the system, typically several 
times a day. 

2.3. Iteration completion ritual: a Reflection Workshop is held for 

reflecting on the quality of the code produced, the effectiveness 

of the development methodology and the reliability of the plans. 
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Necessary changes are made to the working conventions and the 

plans in order to resolve the problem issues. 

3. Deliver to real users: the integrated system produced during the previous 

activity is delivered to a small number of users (preferably only one), and 
feedback is used for improving the system built so far and revising the 

plans and/or the requirements. As in most agile processes, delivery in 

Crystal Clear is frequent, necessitating frequent acceptance testing. 

Therefore, the number of users to which the system is delivered should be 

kept small in order to avoid excessive training and deployment costs. 
4. Reflect on the delivery: through a workshop, the team reflect on the quality 

of the delivered product, the development methodology and the plans. The 

goal is to identify strengths and weaknesses and decide on ways for 

resolving the shortcomings. 

Wrap-up (Crystal Clear) 

The main purpose of this phase is to perform acceptance testing, prepare the final 

product and the user environment for final deployment, and ultimately carry out the 

system conversion. As expected, this phase also includes a final reflection activity 

aimed at compiling and recording the lessons learned from the project, in order to 

use them in future projects. 

3.3.4.7 FDD (1999,2002) 

De Luca and Coad introduced FDD (Feature-Driven Development) in 1999, 

originally as a tailored complement to the "Object Modeling in Color" technique 
[Coad et al. 1999]. A revised version of the methodology was published in 2002 

[Palmer and Felsing 2002]. This latter version had been completely decoupled from 

"Modeling in Color", and was general enough to be considered an independent 

methodology. 

As the name implies, FDD is based on expressing and realizing the requirements in 

terms of small user-valued pieces of functionality called Features. Each feature is a 

relatively fine-grained function of the system expressed in client-valued terms, 

conforming to the general template: <action> <result> <object>; for example, 
"calculate the total value of a shipment" or "check the availability of seats on a 
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flight". The granularity of each feature should be such that it would take no more 

than two weeks to develop; otherwise it will be broken down into smaller features. 

Each feature is identified as a Step in one or more Activities (also called Feature 

Sets), and activities in turn belong to Areas (or Major Feature Sets). This three- 

layered structure allows the developers to adequately manage the complexity of the 

requirements. Furthermore, features can also be partitioned according to the 

architectural layer to which they belong: FDD prescribes a layered architecture for 

software systems (as explained later in this section), providing a further means for 

managing the complexity of requirements through architectural partitioning of 
features. 

The FDD process consists of five subprocesses, during the course of which several 

deliverables are produced (Figure 35). The first three subprocesses are concerned 

with requirements analysis and development planning and are performed 

sequentially at the start of the process, whereas the remaining two are design and 

implementation activities, done in iterations of no longer than two weeks. 

The subprocesses of the FDD process, as shown in Figure 35, are: 

1. Sequential Subprocesses: during this primary sequential phase, the problem 
domain is modeled, requirements are identified as hierarchical lists of 
features, and development planning is performed. Although not explicitly 
included in any of the subprocesses, the sequential phase may also include 

the production of an architecture for the system, typically conforming to 

the general layered architecture proposed by FDD (Figure 36). The 

subprocesses, in the order they are performed, are as follows: 

1.1. Develop an Overall Model: with the focus on building a mainly 

structural model of the problem domain called the Object Model. 

This model mainly consists of full-featured class diagrams, yet it 

may also include sequence diagrams (if deemed necessary) for 

capturing important behavioural patterns of interaction in the 

problem domain. The object model will be extensively used, and 

refined, during the design-by-feature subprocess. 
1.2. Build a Features List: with the focus on identifying the required 

functionality of the system. This is done by first identifying the 
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areas of functionality in the system, and the activities performed 

in each area. Features are then identified as steps in the activities, 

and a three-layered pyramid of functionality, taking the form of a 
hierarchy of lists, is thus produced. 

1.3. Plan by Feature: with the focus on scheduling the features for 

development, and then assigning the feature sets (activities), and 

the classes in the object model, to developers. During the iterative 

subprocesses, feature-set-developers (called Chief Programmers) 

will develop the feature sets assigned to them by commissioning 

class-developers (called Class Owners) to cooperate in order to 
design and implement the features. 

2. Iterative Subprocesses: during this iterative development phase, strands of 
design-and-build iterations start off as each chief programmer selects the 

set of features (called the Work Package) that should be developed in each 

of the iterations performed under his supervision, and forms a team of class 

owners to do the job. A chief programmer selects features and schedules 
his iterations according to the overall development plan, taking care that 

each iteration takes no longer than two weeks to complete. Typically, at 

any point during this development period, several iterations are being 

performed concurrently, some of them supervised by the same chief 

programmer, with each of the class owners taking part in several iteration- 

teams simultaneously. The subprocesses, in the order they are performed in 

each iteration, are as follows: 

2.1. Design by Feature: with the focus on determining how the 
features in the work package should be realized at run-time by 
interactions among objects. Sequence diagrams are drawn for 

each of the features, resulting in additions and modifications 
being made to the object model, and refined class and method 
descriptions being produced. 

2.2. Build by Feature: with the focus on coding and unit-testing the 

necessary items for realization of the features in the work 
package. The implemented items that pass the tests are then 
promoted to the main build. 
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Figure 35. The FDD process and its deliverables [Palmer and Felsing 20021 

The FDD methodology cannot be considered an all-inclusive software 

development methodology, in that it starts when the feasibility study and overall 

project planning have already been done, a business case has been established, and 

permission has been granted by the sponsors to go on with the development. It also 

excludes post-implementation activities such as system-wide verification and 

validation, and the ultimate system deployment and maintenance. Before a project 

is started, a Project Manager is assigned who coordinates all development 

activities, making sure that project activities, with the FDD process embedded as 

the core, are performed coherently. The project manager's responsibilities include, 

among other usual project management duties, the forming of the various teams 

that should perform the FDD tasks. 

The five subprocesses of FDD and the tasks performed in each are briefly 

described in the following sections. 

User Interface (UI) Layer 
Human Interaction, User Interaction, Man-Machine Interface, Presentation Logic 

Data Management (DM) Layer System Interaction (SI) Layer 
Persistence Layer, Data Storage Logic System Interface, External Interface Layer 

Figure 36. The general layered architecture of software systems as proposed by FDD 
[Palmer and Felsing 20021 
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Build an Overall Model (FDD) 

The tasks performed in this subprocess are as follows: 

1. Form the Modeling Team, consisting of several software development 

professionals (Chief Programmers), and one or more domain experts. The 

team will operate under the guidance of a modeling expert (called the Chief 

Architect). 

2. Iterate the modeling cycle: an overview of the entire problem domain is 

first presented by the domain experts. The problem domain is then 

partitioned into areas, and the modeling is performed iteratively: each 

problem-domain area is separately analysed and modeled through tasks 2.1 

to 2.4 (below); the resulting sub-model is then integrated into the overall 

model through task 2.5, and model notes are added in task 2.6. This cycle 
is repeated until all problem domain areas are adequately covered and 

modeled to the satisfaction of the chief architect. The tasks performed in 

each iteration of the cycle are: 

2.1. Conduct a domain-area walkthrough, which is also presented by 

the domain experts. 
2.2. Study documents of the problem domain area (if available). 
2.3. Develop small Group Models of the problem domain area by 

breaking the modeling team into small groups (of no more than 

three members), and commissioning each group to develop its 

own version of the object model for the problem domain area. 
Each model will consist of full-featured class diagrams (showing 

classes, their inter-relationships, and their attributes and 

methods), and, if necessary, a number of sequence diagrams 

depicting the typical interactions among objects. 
2.4. Develop a Team Model of the problem domain area, by 

examining the models produced by the small groups. The team 

either approves one of the proposed models as the team model, or 

produces the team model by merging ideas from two or more 
group models. 

2.5. Refine the overall Object Model by integrating the model of the 

problem domain area into the overall problem-domain object 
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model produced so far. This naturally requires a certain degree of 

refactoring to be done. 

2.6. Write model notes, which describe specific aspects of the model 

that are not explicitly addressed by the model itself, especially 

including accounts of the alternatives explored by the modeling 

team during the modeling process. 

Build a Features List (FDD) 

The tasks performed in this subprocess are as follows: 

1. Form the Features-List Team, which consists of the chief programmers 

participating in the modeling team from the previous subprocess. 
2. Build the features list, which is a three-layered hierarchical list with the 

following structure: 

oA list of areas (major feature sets). 

o For each area, a list of activities (feature sets) within that area. 

o For each activity, a list of features representing the steps in the 

activity. 
The features-list is built in a top-down fashion: the features-list team first 

identifies the areas (high-level feature sets) by carefully investigating the 

knowledge acquired about the problem domain, particularly the problem- 

domain areas (partitions) identified while building the overall object model 

in the previous subprocess; the activities (low-level feature-sets) in each 

area, and the features (steps) in each activity are then identified by 

applying functional decomposition. 

Plan By Feature (FDD) 

The tasks performed in this subprocess are as follows: 

1. Form the Planning Team, consisting of the project manager, the chief 

programmers, and a Development Manager (which is put in charge of the 

development effort, and as such, supervises the chief programmers). 

2. Determine the development sequence by scheduling the development of the 

feature sets (activities), specifying a date (month and year) for the 
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completion of each. This requires taking into account the inter- 

dependencies among the feature sets, the workload distribution across the 

development team, and the risks associated with the feature-sets. A 

completion date is then determined for each area (major feature set) as the 

last completion date assigned to its constituent feature sets. 

3. Assign feature sets to Chief Programmers, thereby declaring them as the 

owners of the feature-sets assigned to them. 

4. Assign classes to developers, thereby declaring the developers as class 

owners. 

Design By Feature (FDD) 

The tasks performed in this subprocess are as follows: 

1. Form a Features Team, which will design and build the feature(s) selected 
for development in the current iteration under the supervision of the chief 

programmer who owns the features. After identifying the set of classes that 

might be involved in the realization of the features, the chief programmer 
brings together the owners of these classes and thereby forms the features 

team. 
2. Conduct a domain walkthrough (if at all necessary), by inviting domain 

expert(s) to help the features team grasp all the relevant particulars of the 

features. This task is usually undertaken for high-risk features, the 

development of which usually requires a deeper understanding of the data, 

algorithms, and constraints involved. 

3. Study the referenced documents (if at all existent), in order to obtain a 
better understanding of the features. As with the previous task, this task is 

usually performed for high-risk features for which descriptive 

documentation already exists. 
4. Develop the sequence diagram(s), which as the pivotal part of the design 

models, are required to show how objects should interact at run-time in 

order to implement each of the features. The features team also 

meticulously logs the alternative design models it has explored, as well as 
the constraints and assumptions that apply. 
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5. Refine the Object Model (class diagrams) so that it supports the sequence 
diagrams produced in the previous task. This usually means that new 

elements are added to the model, some of the existing elements are 

changed, and refactoring is necessitated as a consequence. 

6. Write Class- and method-Prologues for the elements of the object model. 

These relatively low-level design details are produced by the class owners 

as the last design artefacts needed before the coding can commence. 

7. Design inspection is performed by the features team (possibly in 

consultation with other people involved in the project) in order to verify 

the integrity of the design artefacts produced. 

The products of this subprocess are transferred to the next subprocess as a package. 

This Design Package consists of the sequence diagrams produced, the refinements 

made to the object model, the prologues, and the notes on the design alternatives 

explored, constraints, and assumptions. 

Build By Feature (FDD) 

The tasks performed in this subprocess are as follows: 

1. Implement classes and methods according to the specifications given in the 

design package. Each of the class owners implements the necessary items 

(including the unit-testing code) in the classes he or she owns. 

2. Conduct a code inspection, either before or after the unit-test, during which 
the features team examines the code to make sure of its integrity and 

conformance to coding standards. 
3. Unit-test the code to ensure that all classes satisfy the functionality 

required. Class owners perform class-level unit-tests, as well as feature- 

level unit-tests prescribed by the chief programmer. 
4. Promote to the build, if the implemented classes are successfully inspected 

and unit-tested. As the leader of the features team, it is the chief 

programmer who makes sure that all the classes necessary to realize the 
features are ultimately integrated into the main build. 
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Process patterns are the results of applying abstraction to recurring processes and 

process components, thereby creating means for developing methodologies through 

composition of appropriate pattern instances. They are an invaluable source of 
insight for researchers, since they typically reflect the state of the practice and are 
based on well-established, refined concepts. 

3.3.5.1 Introduction 

The first recorded reference to the term "Process Pattern" was made by Coplien in 

his landmark paper in 1994 [Coplien 1994]. Coplien defined process patterns as 
"the patterns of activity within an organization (and hence within its project)", and 

almost all his patterns are relatively fine-grained techniques for exercising better 

organizational and management practices, which although quite useful, do not 

constitute a comprehensive, coherent whole for defining a software development 

process. A number of them, however, such as "Prototype" and "Decouple Stages", 

are indispensable in any process. 

Ambler, who is the author of the only books so far written on object-oriented 

process patterns, defines a process pattern as "a pattern which describes a proven, 

successful approach and/or series of actions for developing software" [Ambler 

1998a], and an object-oriented process pattern as "a collection of general 
techniques, actions, and/or tasks (activities) for developing object-oriented 

software" [Ambler 1998b]. 

A brief overview of Ambler's process patterns is presented in the following 

sections. 

3.3.5.2 Types of Process Patterns (Ambler) 

According to Ambler, process patterns are of three types [Ambler 1998a]. These 

types, in the ascending order of abstraction level, are as follows: 

1. Task Process Pattern: depicting the detailed steps to execute a specific task 

of the process. 
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2. Stage Process Pattern: depicting the steps that need to be done in order to 

perform a stage of the process. A stage process pattern is usually made up 

of several task process patterns. 

3. Phase Process Pattern: depicting the interaction of two or more stage 

process patterns in order to execute the phase to which they belong. 

Ambler believes that in any process (even object oriented ones), phase's are 

performed in serial order, whereas the stage patterns inside them can be 

executed iteratively. 

Ambler proposes many patterns of each type in his books, complete with detailed 

steps and guidelines for integrating and shaping the patterns into a comprehensive 

process [Ambler 1998a, Ambler 1999]. 

3.3.5.3 Object Oriented Software Process (Ambler) 

Using his library of patterns, Ambler has proposed a general software development 

process, which he has called the Object Oriented Software Process (OOSP). 

As shown in Figure 37, OOSP consists of four serial phases, each of which is made 

up of a number of stages. Each stage in turn consists of a number of tasks. All the 

phases, stages and tasks have been instantiated from Ambler's library of patterns 

according to guidelines provided in his method. 
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Figure 37. Ambler's Object Oriented Software Process (OOSP) [Ambler 1998a] 
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3.3.6 Process Metamodels 

In a bid to highlight the high-level features of a process or family of processes, 

efforts have been made to apply abstraction to software development processes; 

process metamodels thus produced can be instantiated in order to produce concrete 

processes. 

The two most well-known object-oriented process metamodels are the Open 

Consortium's OPEN Process Framework (OPF) [Firesmith and Henderson-Sellers 

2001], and the OMG's Software Process Engineering Metamodel (SPEM) [OMG 

2002]. OPF was briefly explained when describing the OPEN methodology. A 

brief overview of SPEM is given in the following sections. 

3.3.6.1 The Software Process Engineering Metamodel (SPEM) 

Similar in essence to OPF yet much simpler, SPEM is primarily based on Rational 

Corporation's Unified Software Process Metamodel (USPM) [Kruchten 2001]. 

USPM was chiefly intended as a metamodel for the RUP process; consequently, 
SPEM mainly supports the modeling of UML-based processes similar to RUP. 

Unlike OPF, SPEM does not include a process component library, nor does it offer 

a specific procedure for instantiating a software development process using the 

metamodel. 

3.3.6.2 Process Structure (SPEM) 

SPEM regards a software development process as a collaboration of active entities 
(called process roles) aimed at performing specific operations (called activities) on 

a set of tangible artefacts (called work products) until the artefacts are brought to a 

well-defined state, and declared as complete. SPEM hence regards the core 

structure of a software development process as consisting of process roles, the 

work products they are responsible for, and the activities that they perform on the 

work products (as seen in Figure 38). 



Chapter 3. Analysis 

Role 
LiJesPonsibIeFor 

0 
LW-. 

rkProduct 

0 6, 

input output 

pe s 

Uses p uces 

0' Activity 

173 

Figure 38. Core structure of a software development process, as defined by SPEM 
[OMG 2002] 

The complete structure of a process in SPEM is actually much more complex than 

the core structure mentioned above. A work product may be composed of other 

work products, and can be associated with a state machine showing the states the 

work product can be in, and the permissible transitions between these states. 

Activities can be partitioned into disciplines based on the structural and functional 

themes that they have in common, and each activity may consist of atomic sub- 

activities called steps. An activity can have a precondition and a goal as constraints 

on its enactment, and may be associated with an activity graph, which shows the 

flow of steps in the activity. 

In order to constrain the order in which the activities are performed, and to define 

the lifecycle structure of the process, SPEM incorporates definitions for iteration, 

phase and lifecycle, which are very similar to their corresponding definitions in 

RUP. The process structure proposed by SPEM also includes several abstract 

classes encapsulating the structural and behavioural commonalities of the various 

types of process elements. It also includes well-formedness rules, to be observed 

when instantiating processes. 

3.4 Criteria-Based Evaluation 

This section contains a description of the initial set of analysis criteria and the 

results of its application to the object-oriented methodologies, process patterns and 

process metamodels described in the previous section. The analysis results are 
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reported, along with the final criterion set, which is then used for defining the 

requirements. 

3.4.1 Basic Criterion Set (Seed) 

The criterion set should be initialized to a limited number of features known to be 

significant in a software development methodology, and likely to trigger the 

identification of new criteria and/or refinements to existing criteria when iteratively 

applied to object-oriented software development methodologies. As well as general 

traits and characteristics found in Software Engineering textbooks [Pressman 

2004], features found desirable in object-oriented methodologies are also good 

candidates [Graham 2001]. The important point to have in mind is that the initial 

criterion set is to act as a "detonator": since the criteria are used as focus-pointers 

guiding the analysis process in exposing the processes' strengths and weaknesses, 

the initial criterion set should be expansive and incisive in order to trigger a large- 

scale fan-out effect, ever increasing the breadth and depth of the analysis, and 

thereby uncovering new criteria and refining the existing ones. The initial criterion 

set should therefore be expected to undergo dramatic changes - both in structure 

and content - during the analysis process. 

The following were selected as initial criteria: 

1. Coverage of standard software development activities: covering activities 

constituting or supporting the generic software development lifecycle 

[Pressman 2004]. 

2. Compactness of process: referring to lightness and simplicity of process, 

and its being free of nonessential, excess features; hefty and complex 

processes are hard to understand and master, and difficult to use. 
3. Extensibility of process: the degree to which the process can be extended 

to support software development efforts of different sizes, complexities 

and criticalities. 
4. Traceability of artefacts to requirements: the degree to which artefacts can 

be shown to have stemmed from the requirements. 
5. Consistency of artefacts: mutual agreement and logical coherence of the 

artefacts. 
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6. Testability of artefacts: the degree to which artefacts lend themselves to 

establishment of test criteria and performance of tests to determine whether 

the test criteria have been met. 
7. Tangibility and understandability of artefacts to users and developers: the 

level of consideration given to the balance between abstraction and 

concreteness in producing the artefacts - removal or reduction of low-level 

detail when appropriate and developing physical manifestations when 

necessary (e. g. prototyping) - with the ultimate objective of enhancing the 

perceptibility of the underlying notions. 
8. Rationality of process and artefacts: evident rationality behind every task 

and the order in which the tasks are performed, and undeniable use for 

every artefact produced. 

The seven characteristics listed in Chapter 1- representing the core areas where 
OOSDMs need improvement - have been included in order to reveal what the 

existing processes lack or provide in this regard, thus unearthing features to exploit 

and pitfalls to avoid. The first criterion has been added in order to broaden the 

scope of the analysis to cover the whole lifecycle of the processes, and also to 

prompt scrutiny into the details of the activities performed. 

3.4.2 Evaluation Results 

As a result of iterative-incremental criteria-based analysis of the selected 

methodologies, process patterns and process metamodels according to the dynamic 

criterion set, significant strengths and weaknesses were identified, the final list of 

which is presented in the following subsections. Unlike many criteria-based 

analyses, the results are not represented as ratings denoting the degree of support 

each methodology provides for each of the criteria. As the criteria are used as 
focus-pointers, guiding the analyst towards potential areas of significant strength or 

weakness in the processes, there is no one-to-one relationship between the criteria 

and the results: a process might possess several significant strengths/weaknesses as 

pertaining to one criterion, while having nothing significant to offer in relevance to 

another criterion. Whereas a simple rating procedure would add nothing new to the 

criteria, the focus-pointing approach makes it possible to gradually increase the 
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span and depth of exploration and identify potential areas of improvement, thus 

facilitating the evolution of the criteria. 

3.4.2.1 Seminal Methodologies 

Shlaer-Mellor 

Strengths 

D Partitioning the system into domains, providing distinct layers 

from logical to physical 
Overall process generally governed by the domain structure; the 

base domain model is used as a focal point and as a high-level 

roadmap for development 

Q Infra-object behaviour accurately captured 

Weaknesses 

Excessive number of models 
O Complex behavioural modeling 
ÜD Bottom-up modeling: models are not based on system-wide 

behaviour or functionality; modeling starts from object and intra- 

object structure and then builds upward to inter-object and 

system-wide behaviour 
DD The modeling language used during architectural design lacks 

behavioural features, wrongly suggesting that architectural 

mechanisms have no distributed behaviour to add to the models. 
D No modeling of physical configuration, i. e. processes 

(modules/components) and processors 

Coad-Yourdon 

Strengths 

Q Simple and well-defined process 
Q Seamless development phases based on layered construction of 

analysis models and tiered architecture of design 
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Q Partitioned design corresponding to the three-tiered architecture 
Q Single notation for class structure and inter-object behaviour 
Q Layered construction of class diagrams 

Q Rich structural modeling 

Weaknesses 

No basis in behavioural or functional requirements of the system 

(scenarios, use cases, responsibilities, etc. ), resulting in poor 

requirement traceability 
D Poor behavioural modeling 
D Lack of formal features 

D No modeling of physical configuration 

RDD 

Strengths 

Q Strong basis in system-level functionality (captured as 

responsibilities) 
Q Seamless development, although mostly limited to structural 

models 
Q Support for interfaces (called contracts); classes may have 

multiple interfaces 
Q One of the first instances of fractal (recursive) modeling: 

subsystems and classes are both treated as having interfaces 

Weaknesses 

D Process coverage limited to detailed analysis and design 
D Poor behavioural modeling (almost nonexistent) 
D Lacking in structural modeling features 
O No formal features 
ÜD No modeling of physical configuration 
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Booch 

Strengths 

Q Iterative-incremental (Micro in Macro) 

Rich structural and behavioural modeling features 

(static/dynamic) 

Q The Micro process puts precedence on identification of behaviour 

over identification of structure, avoiding unwanted/unneeded 

relationships 

Modeling support for physical structure (configuration) 

Weaknesses 

D Comparatively complex process 
D Traceability to requirements is not straightforward 
D Poor behavioural modeling at the problem-domain and system 

levels 

O Inadequate formal features 

OMT 

Strengths 

Q Identification of physical architecture prior to detailed design of 

classes (system design before object design) 

Behavioural modeling at the system level (scenarios and event- 

traces) 

Q Functional modeling at the system level (DFDs) 
Q Rich structural and behavioural modeling features 

Weaknesses 

D OMT was a political solution intended to introduce 00 into 

SA/SD communities, and as such, was a temporary remedy 
bound to be pushed aside upon widespread adoption of the 

object-oriented approach 
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D Inadequacy of the DFD as the functional modeling element 
(which does not exactly integrate well with other models; this 

ultimately led to the advent of OMT-2 in 1994 [Rumbaugh 

1994]): orthogonal models need to converge somewhere along 

the process, or be oriented around or based on a common notion. 
D Inter-object behaviour not modeled 
D Lack of formal features 

D No modeling of physical configuration 

OSA 

Strengths 

Rich structural and behavioural modeling features 

D Explicit inter-diagram links (linking object interactions to object 

states and events) 

Weaknesses 

D No process 
O Limited to analysis modeling 
D Traceability and seamlessness not addressed (and is not 

applicable) 

Inadequate modeling of object interactions 
QD Inter-class details not adequately captured in the models 
O Limited support for formality 

OOSE 

Strengths 

Strong basis in problem-domain modeling and functional 

modeling of the system (via use cases and domain object models) 
Q Traceability to requirements (via use cases) 

Seamless use case oriented development (despite a slight hiccup 
in the Robustness Analysis phase) 
Use-case oriented testing 
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0 Rich functional and behavioural modeling (at the system-, inter- 

object-, and intra-object levels) 

D Rich inter-object structural modeling 

Weaknesses 

O Typing of objects in the robustness analysis phase is somewhat 

premature, especially the introduction of control objects 
O Poor infra-object structural modeling 
D Modeling infra-object behaviour is deferred to late design, where 

events typically correspond to method invocations; doing the 

modeling earlier can be more helpful in understanding the 

requirements 
D Lack of formal features 

D No modeling of physical configuration 

BON 

Strengths 

Q Based on system-level behavioural modeling and requirements 
thereby identified 

Q Seamless development 

Q Customizable process through deliverable-based development: 

changing the order of the tasks is permissible as long as all 
deliverables are eventually produced. 

Q Ongoing refinement 
Q Rich structural and inter-object behavioural modeling 
Q Formal features (especially contracts) 
Q Good complexity management in structural models (via the 

notion of cluster) 

Weaknesses 

O Many deliverables, resulting in complexity 
19 Very limited functional modeling (use cases are casually 

described and tabulated) 
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O Intra-object behaviour not modeled 
19 Behavioural modeling starts late in the process: system-level 

behavioural deliverables, especially event-charts, which can be 

useful in identifying classes, are not produced until after class 

definition 

9 No modeling of physical configuration 

Hodge-Mock 

Strengths 

Q Based on structural and behavioural modeling at the system-level 
Q Seamless top-down development based on structure and 

behaviour of the system (gradual well-defined transition from 

system-level models to intra-object models) 
Q Traceability to requirements via evaluation scenarios based on 

scenarios of typical system usage 
Q Continual verification based on evaluation scenarios 
Q Using behavioural modeling in order to verify and refine the set 

of classes identified during structural modeling 
Q Rich functional modeling at the inter-object level 
Q Rich infra-object behavioural and functional modeling 
Q Rich structural modeling 

Weaknesses 

9 Relatively complex process 
Q Poor inter-object behavioural modeling 
19 Inadequate functional modeling at the system level (limited to 

scenarios for evaluation) 
D Lack of formal features 

D Prohibitive number of diagrams and tables 
D No modeling of physical configuration 



Chapter 3. Analysis 182 

Syntropy 

Strengths 

Q Substantial formal features derived from Z 

Q Based on models of the problem-domain 
Q Overall simplicity as to diagram types 

Q Rich structural and behavioural modeling throughout 
Q Smooth seamless transition from logical (problem-domain level) 

to physical; through using type-views and state-views at all levels 

and gradually refining them throughout the process 
Cý1 Well-defined rules for linking different models to each other 
Q Well-defined rules for transition from a logical view to its 

physical counterpart 

Weaknesses 

O Process coverage limited to analysis and design 

Traceability suffers from inadequate attention to functional 

modeling at the system level; especially lack of attention to usage 

scenarios 
L Poor functional modeling 
9 Inter-object communication not modeled until the last stage of 

design 

O No modeling of physical configuration 

Fusion 

Strengths 

2 Based on functional, behavioural and structural modeling of the 

problem-domain and the system 
Q Smooth transition from task to task and from phase to phase 
Q Traceability to requirements via scenarios of system usage 
Q Rich models (structural, functional, and behavioural) 
Q Support for formalism 
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D Strong functional and behavioural modeling at the system level 

through identifying detailed scenarios of interaction with the 

system at the system boundary 
Q Extra attention to details of inter-object visibility and the 

references that objects need to make to each other 
Q Detailed inter-object/inter-class models produced during design 

Weaknesses 

D Partial coverage of the generic analysis phase: the process starts 

when a preliminary informal requirements document is already 

available. 
O Structural model identified during analysis is discontinued in the 

design phase, with its information broken down and then 

perfected, thus damaging seamlessness 
D The number of diagrams and other deliverables is prohibitive 
ÜO No modeling of intra-class behaviour 
D No intra-system behavioural and functional modeling during the 

analysis stage; this has been done intentionally, but nevertheless 
damages the comprehensiveness of analysis 

O No modeling of physical configuration 

3.4.2.2 Integrated Methodologies (Third Generation) 

OPM 

Strengths 

Q Simplicity of process 
Q Some degree of seamless development and traceability to 

requirements due to the singularity of the model type used 
(disrupted, though, because of OPD's limited modeling capacity) 

Q Innovative structural and functional modeling in a single type of 
diagram (OPD) 

Q Strong structural modeling at the inter-object level 
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ÜD Process is defined at a shallow level, with ambiguities and 

inadequate attention to detail 

O Seamlessness and traceability are disrupted due to lack of 

behavioural models (especially at the inter-object and intra-object 

levels, directly affecting the identification and design of class 

operations) 
D No basis in system-level behaviour and usage scenarios 
D Poor behavioural modeling 
D No formalism 

Poor infra-object structural modeling 
D Models are prone to over-complexity 
O No modeling of physical configuration 

Catalysis 

Strenciths 

0 Based on requirements identified and modeled as system 
functionality and behaviour in the context of the problem 
domain: the system is modeled as a class - type - among other 

classes in the problem domain 

2 Seamless development through uniform approach to modeling at 
different levels 

0 Traceability to requirements via usage scenarios and use-case- 
based testing 

Q Gradual refinement from problem domain to the system 
boundary, then to the component architecture of the system, and 
finally to the class architecture of the components 

Q Process patterns identified for different kinds of projects 
Q Special attention to non-functional requirements 
Q Adequate complexity management 
Q Special attention to physical configuration of the system early in 

the process 
Q Smooth transition from logical to physical aspects 
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Component based approach 
Q Fractal modeling 

Rich structural and behavioural modeling at all levels. Functional 

modeling limited to UML's capabilities 

Weaknesses 

0 Heavy process; fractal modeling and process patterns help, but 

are not enough 
D Focus mostly confined to business systems, more or less limiting 

the applicability of the process 

OPEN 

Strengths 

2 Flexibility and configurability due to the framework definition of 

the process 
21 Well-defined framework (generally and in detail) for instantiating 

tailored-to-fit processes 
Q 

Q 

Q 

Q 

Q 

Q 

Accommodates seamless process configurations 

Accommodates process configurations supporting traceability 

Accommodates various lifecycles, including iterative-incremental 

Covers enterprise-level activities and business-process- 

reengineering 

Incorporates a rich library of process components 
Provides guidelines as to how customized processes should be 

built (especially how stages should be structured and organized) 
Q Accommodates comprehensive modeling at all levels (problem 

domain to objects; logical to physical) 
Q Rich modeling-language support (UML and OML) 

Weaknesses 

D As a result of merging various methodologies, OPEN is not a 

specific methodology, but rather a process framework; in trying 
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to remain noncommittal to any single process, it has lost 

concreteness. 
D OPEN is huge and complex; many developers tend to use typical 

instances introduced by the authors rather than instantiate their 

own. 
ÜD The developer is responsible for constructing the methodology, 

and even though OPEN prescribes the framework, components, 

and guidelines as to how to construct the process, bad instances 

can be built (very much like a Lego game). 

RUP/USDP 

Strengths 

Q Iterative-incremental process 
Q Well-documented process 
Q Based on functional, behavioural, and structural modeling of the 

problem domain and the system 
Q Traceability supported through use cases 
Q Seamlessness (though with hiccups, e. g. transforming use cases 

to sequence diagrams) 
Q Architecture-centric process (which necessitates early 

specification of an architectural blueprint) 

Q Customizability addressed 
Q Risk-based development, aimed at mitigating the risks before 

undertaking the tasks 
Q Support for structural, behavioural and functional modeling at all 

levels (problem domain to objects; logical to physical) 
Q Rich modeling language (UML), especially in structural and 

behavioural modeling features 

Support for formalism (through UMLJOCL) 

Weaknesses 

9 Very complex process 
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D The process is confusing to those involved: it is hard to 

understand the logic behind some of the deliverables and tasks 

performed. The iterative-incremental nature of the process further 

complicates the issue. 

D Although advertised as customizable, configuring the process is a 

formidable task in itself. Trying to tailor down the process often 

has the opposite effect. 
D Since the process is very complex, not having a maintenance 

phase, on the grounds that it can be performed by iterating the 

whole process as a cycle, is not convincing. 
O Prohibitive number of models 
O Strict adherence to UML, which is not necessarily constructive, 

especially since UML is not perfect and can exacerbate the model 
inconsistency problem. 

ÜO Substantial potential for inconsistency of models 

EUP 

Strengths 

Q Same benefits as RUP 
Q Addresses enterprise-level issues 

Q Maintenance is a phase in its own right. 
Q Attention is given to post-mortem activities when retiring the 

project (in the form of a new Retirement phase). 
Q Not strictly adherent to UML; other modeling languages such as 

DFDs are also used. 

Weaknesses 

9 Like RUP, EUP is 

  very complex 

  encumbered with a prohibitive number of models 
  suffering high potential for model inconsistency 

  confusing as to the process used 
  hard to customize 
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91 EUP has added further complexity to RUP by adding two new 

phases and two new disciplines. 

Adding the maintenance phase is not sufficient, since any change 

needed will result in a restart of the development process. 

FOOM 

Strengths 

2 Based on functional and structural modeling of the problem 

domain and the system 
Q Traceability to requirements (via transactions) 

Appealing to domain experts and the SA/SD community (due to 

the popularity of DFDs) 
Q Attention to interface design and I/O design based on the 

transactions identified and the OO-DFDs 

Weaknesses 

Z No implementation, deployment and maintenance phases 

Only suitable for data-intensive information systems 
D Seamlessness suffers because OO-DFDs are not exactly object- 

oriented. 
D The process is vague in how operations and transactions 

extracted from the OO-DFDs are assigned to classes; this is the 

same problem that triggered the demise of DFDs in 00 

methodologies, after transformative methodologies and OMT 

failed to resolve the issue. Using DFDs in an 00 context without 

solving the problem of mapping (data-stores to classes and 

processes to operations) and assignment (operations to classes) 

will most probably result in failure. 

D No modeling of logical architecture and physical configuration 
D Poor behavioural modeling (performed only in later stages of 

design at the inter-object level) 

ÜD Lack of formalism 
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ÜD The issue of design-level refinements to the Data Model (class 

diagram) is not properly addressed (only "Form", "Menu", 

"Report", and "Transaction" classes are added). 

3.4.2.3 Agile Methodologies 

DSDM 

Strengths 

D Iterative-incremental process 
D Based on functional and structural modeling performed on the 

problem domain and the system 
Q Early specification of the physical architecture 
El Flexible and configurable process (through defining the main 

development cycle as consisting of interwoven Analyze-Design- 

Implement cycles) 
Q Carefully worked-out process 
Q Especially suitable for projects with highly volatile requirements, 

since it is easily adaptable 
Q Seamless development through using prototypes 
Q Incorporating a Suitability Filter to make sure that the project can 

be carried out with DSDM 

Q Based on careful planning 
Q Test-based development 

Q Active user involvement 

Q Reversibility of changes 
Q Early and frequent releases 
Q Smooth transition from stage to stage 
Q Traceability to requirements achieved through constant testing 

and via the prototype produced (the prototype is the 

manifestation of the requirements and will ultimately evolve into 

the final system) 
Q Based on prioritization of requirements by categorizing them into 

specific types 
Q Design-based development 
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O Not scalable 
D Limited applicability scope: the project should lend itself to RAD 

through evolutionary prototyping. 
O Stringent constraints on time and resources 
D Severe model-phobia: text reports are abundant but visual models 

are avoided unless absolutely essential. The prototype is 

considered the main model. 
9 Lack of formalism 

Scrum 

Strengths 

0 

Q 

0 

Q 

2 

Iterative-incremental process 
Based on modeling the problem domain and the system 
Requirements are allowed to evolve over time. 
Traceability to requirements through the Product Backlog: the 

repertoire of requirements which all the stages are based upon 
Architecture of the system drafted before the development engine 
is started 

2 Iterative development engine governed by careful planning and 

reviewing 
Q Active user involvement 
Q Simple and straightforward process 
Q Early and frequent releases, demonstrating functionality at the 

end of each iteration (sprint) of the development cycle 

Weaknesses 

9 Integration is done after all increments are built 
D Lack of scalability 
QD Based on the assumption that human communication is sufficient 

for running projects of any size and keeping them focused 
D Not necessarily seamless (details of tasks are not prescribed) 
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D No clear-cut design effort 
ÜO Model-phobic 

Models are not prescribed, leaving it to the developer to decide 

what model can be useful. 
Lack of formalism 

XP 

Strengths 

Q Iterative-incremental process 
Q Based on system functionality captured in User Stories 

The process is tuned according to feedback during its execution 
Q Traceability to requirements through the use of user stories 

throughout the process as the basis for tasks and tests 

Q Based on system architecture (Metaphor) identified through 

prototyping 
Q Active user involvement 
Q Test-based development 

Q Stringent standards enforced on coding 
Q Early and frequent releases 
Q Requirements are allowed to evolve over time 
Q Iterative development engine governed by careful planning and 

reviewing 
Q Explicit coverage of maintenance and project retirement 

("Death") phases; maintenance in fact comprises the bulk of the 
development effort 

Q Continuous validation 
Q Continuous integration 

Q Refactoring exercised in order to acquire the simplest code 

possible 

Weaknesses 

Process is rather vague: the process commonly introduced as the 

"XP Process" is just a typical example. 



Chapter 3. Analysis 192 

D More intended as a set of principles and practices rather than a 

methodology 
O Limited evidence of scalability 
QD Seamlessness is not addressed: development is more or less a 

jump from user stories to code, and the little design that is done 

(if at all) does not have to conform to any standard. 
O Requires the use of automated tools and enforcement of 

discipline for "Collective-Code-Ownership" to be practicable. 
O No clear-cut design effort 
O Model-phobic 

D Except for CRC cards, models are not prescribed, leaving it to the 

individual developer to decide what model is useful to him. 

Lack of formalism 

ASD 

Strengths 

Q Iterative-incremental process 
Q Based on structural, functional and behavioural modeling of the 

problem domain and the system 
Q Well-worked-out process 
Q Special attention to quality assessment and control (Q/A is 

performed at all levels: per-project and per-iteration) 
Q Component-based development 
Q Adaptive (tuneable) process; through risk-driven planning, 

conducting reviews, and revising the plans and the development 

process according to what has been learnt during the iterations 
Q Extensive use of JAD sessions for information gathering and 

decision making 
Q Stress on the importance of a collaborative environment for the 

development to be successful: a User Community is established 
and a suitable medium of collaboration (methods, tools and 
procedures) is set up. 

D Test-based development 
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Q Refactoring for simplifying the code 
Q Continuous integration 
Q Stress on parallel development of components by collaborating 

teams of developers, thus speeding up the process 
Q Traceability to requirements through ongoing validation and 

quality review 

Weaknesses 

D Not scalable 
D Over-dependence on inter-human communication 
D Need for intensive project monitoring and control in order to 

maintain inter-team and infra-team collaboration during 

component development 

D Seamlessness not addressed 
QO No clear-cut design effort 
D Model-phobic 

D No specific models prescribed 
O Physical configuration modeling is ignored (even though 

necessary in component-based development). 
D Lack of formalism 

dX 

Strengths 

Iterative-incremental process 
Q Based on system architecture identified through prototyping 
Q Prototyping results used in planning and scheduling 
Q Prototypes compensate for lack of analysis modeling 
Q Based on system functionality captured in use cases 
Q Traceability to requirements through the use of use cases 

throughout the process as the basis for tasks and tests 
Q Advantageous development practices borrowed from XP (test- 

based development, early and frequent releases, active user 



; w. 

Chapter 3. Analysis 194 

involvement, refactoring for achieving code simplicity, 

continuous integration, and stringent coding standards) 

Design-based development; design sessions are held in order to 

decide on how the use cases should be implemented to fit the 

system architecture. 
Q Iterative development engine governed by planning and 

reviewing 

Seamlessness observed (though limited) due to use-case based 

activities throughout the process, and design-based development 
Q Risk-based process 
Q Not particularly model-phobic 
Q Formal features can be added via UMUOCL 

Weaknesses 

D Lack of detailed descriptive documentation on the methodology 
QD Not scalable 
O Transition is defined as a phase solely in order to remain 

compliant with RUP; whereas it is, for the large part, a per- 
iteration activity. 
Poor analysis modeling is likely to have an adverse effect on the 

design activity. 

Crystal 

Strengths 

Q Iterative-incremental process 
Continuous integration 

Q Iterative development engine governed by planning and 

reviewing 
Q Flexible and configurable process (in each methodology): 

methodologies are tuned through gradual perfection and revision 
based on cyclic reflection workshops 

Q Methodologies used for a low-criticality project can typically be 

tuned to fit a higher-criticality project (if the criticality level is 
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supported by the methodology), provided that the project size is 

not increased dramatically 
Q Active user involvement 

Q Early and frequent releases 
Q Scalability (though limited) through using different 

methodologies for different project sizes 
Q Continuous validation 
Q Specific work-products prescribed, though details and templates 

are left to the developers to decide 
Q [Crystal Clear] Traceability to requirements (though limited) 

through continuous validation and quality reviews 
Q [Crystal Clear] Requirements are allowed to evolve over time 
Q [Crystal Clear] Preliminary feasibility analysis conducted as a 

risk mitigation mechanism 
Q [Crystal Clear] Based on system functionality, typically captured 

in use cases 
Q [Crystal Clear] Based on structural modeling of the problem 

domain 

Q [Crystal Clear] Based on a system architecture identified and 

refined during the process 
Q [Crystal Clear] Test-based development 
Q [Crystal Clear] Design activities encouraged, with results 

documented as Design Notes 

Weaknesses 

D Only limited scalability 
QD Lack of an unambiguous common process 
D Limited applicability: not suitable for developing highly critical 

systems 
D Over-dependence on inter-human communication 

[Crystal Clear] Seamlessness not addressed 
O [Crystal Clear] traceability to requirements suffers because 

planning and development activities are not necessarily 
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requirements-based (e. g. Blitz Planning is task-based rather than 

requirements-based). 
D [Crystal Clear] Design activities are carried out by individual 

developers in the manner they choose; design is not performed as 

a team effort with globally available results based on which 
implementation can be carried out uniformly. 

D [Crystal Clear] Since the detailed nature of many work-products 
is left to the individual developers to decide, behavioural and 
functional modeling can be poor throughout the process. 

QD [Crystal Clear] No formalism 

FDD 

Strengths 

Iterative-incremental process 
Q Based on a general layered architecture for systems 
Q Based on structural and behavioural modeling of the problem 

domain 

Q Based on system requirements captured as Features 
Q Traceability implemented through using features as a basis 

throughout the process 
Q Simple and straightforward process, yet well thought-out 
Q Continuous integration 

Seamlessness observed throughout the process via feature-based 

modeling activities 
Q Design-based development 
Q Continuous validation 
Q Frequent deliveries once the iterations start 

Complexity management at the features level through layering 
Q Only mild model-phobia 
Q Modeling at the problem-domain-, system-, inter-object-, and 

intra-object levels 
Q Group modeling used as a technique for putting all involved in 

the overall picture 
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0 Iterative modeling in order to enhance the accuracy, 

completeness and consistency of the models 

Weaknesses 

QD Does not cover post-implementation activities and preliminary 

analysis. 
D Lacks adaptability due to inexistence of iteration-level planning, 

reviewing and revision. 
Intensive project supervision is essential 

O No formalism 

3.4.2.4 Process Patterns 

Ambler 

Strengths 

Q Comprehensive and detailed specification document 
Q Full coverage of generic development lifecycle activities 
Q Iterative-incremental process 
Q Full support for umbrella activities 
Q Requirements-based development 
Q Based on functional, behavioural, and structural modeling of the 

problem domain and the system. 
Q Accommodates comprehensive modeling at all levels (enterprise 

to problem domain to system objects; logical to physical). 
Q Rich modeling-language support (UML), especially in structural 

and behavioural modeling features 
Q Support for formalism (through UMIJOCL) 
Q Traceability supported through use cases 

Weaknesses 

D Process patterns are not defined as individual patterns, but as 

components of a specific object oriented methodology (OOSP); 
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this enhances the tangibility of the patterns but damages their 

generality and applicability. 
D Very complex process (OOSP) 

Q Configurability not addressed 
fI Seamlessness damaged due to hitches in model mapping 
0 Prohibitive number of models 
0 Substantial potential for inconsistency of models 

3.4.2.5 Process Metamodels 

SPEM 

Strengths 

Q Flexibility and configurability due to the generality of the 

metamodel (albeit limited, because of dependence on RUP as a 

metamodel basis) 
Q Well-defined general framework 
Q Provision of well-formedness rules to be observed when 

instantiating processes 

Weaknesses 

O Lack of a specific instantiation procedure 
O Lack of a detailed specification document: the specification 

document adopted by the OMG is a very general description of 

the metamodel. 
QD Lack of subtyping for important process components (let alone a 

component library), which makes the metamodel of very little 

practical use. Consequently: 

  Poor coverage of lifecycle activities 

  Lack of explicit support for umbrella activities 
  Modeling and artefact production issues not explicitly 

addressed 
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D Mainly targets the modeling of processes similar to RUP, hence 

limiting applicability and generality (even the terminology is that 

used in RUP). 

ÜD The developer is responsible for constructing the methodology, 

and well-formedness rules are not enough to prevent bad 

instantiations. 

3.5 Final Criterion Set 

The final, stabilized version of the criterion set, refined as the result of iterative- 

incremental application to the selected methodologies, process patterns and process 

metamodels, is as follows: 

1. Process 

1.1. Clarity, rationality, accuracy, and consistency of definition 

1.2. Coverage of the generic development lifecycle activities 
(Analysis, Design, Implementation, Test, Maintenance) 

1.3. Support for umbrella activities, especially including: 

1.3.1. Risk management 
1.3.2. Project management 
1.3.3. Quality assurance 

1.4. Seamlessness and smoothness of transition between phases, 

stages and activities 

1.5. Basis in the requirements (functional and non-functional) 
1.6. Testability and Tangibility of artefacts, and traceability to 

requirements 
1.7. Encouragement of active user involvement 

1.8. Practicability and practicality 
1.9. Manageability of complexity 
1.10. Extensibility/Configurability/Flexibility/Scalability 

1.11. Application scope 
2. Modeling Language 

2.1. Support for consistent, accurate and unambiguous object-oriented 

modeling: 



Chapter 3. Analysis 200 

2.2. Provision of strategies and techniques for tackling model 
inconsistency and managing model complexity 

The final criteria satisfy the validity meta-criteria of [Karam and Casselman 1993], 

in that they are: 

" general enough to be used for evaluating all object-oriented software 
development methodologies, 

" precise enough to help discern and highlight the similarities and 

differences among object-oriented software development methodologies, 

" comprehensive enough to cover all significant features of object-oriented 

software development methodologies, and 

" balanced: adequate attention has been given to all three major types of 

features in a methodology: technical, managerial and usage [Karam and 

Casselman 1993]. 

3.6 Requirements 

The final criterion set and the analysis results can be used for defining a set of 

requirements for object-oriented software development methodologies, as 

suggested by the following observations: 

" Since the analysis criteria can be regarded as a framework defining the 

general features desirable in an object-oriented methodology, requirements 
for such a methodology can be built by detailing and enriching these 

features with information on the degree of support expected in the target 

methodology. Consider risk-management as an example of an analysis 

criterion: in order to evolve it into a requirement, the degree of risk 

management support that the target methodology is expected to provide 

should be defined. 

" Development processes offer alternative ways for implementing desirable 

features; analysis results, when enriched with information as to how 

criteria are met or contradicted, provide a toolkit of methods and 
techniques for implementing features, as well as a list of potential pitfalls. 
The repertoire of ideas thus built (containing lessons learnt from existing 
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software development processes, i. e. features to use and pitfalls to avoid) 

can guide the developers in defining and refining the requirements. 

Thus, using the final criterion set as the basis, and applying the lessons learnt from 

the results of the criteria-based analysis of software processes, the following 

requirements have been identified for the target object-oriented software 
development methodology: 

1. Process 

1.1. Definition: the methodology should be well-documented 
(comprehensive, clear, rational, accurate, detailed and 

consistent description should be provided): 
1.1.1. What should be captured? Lifecycle and work-units, 

producers, modeling language, work-products, 

techniques and rules, and issues pertaining to 

umbrella activities. Metamodels suggested by SPEM 

and OPF provide useful information as to what 

should be captured in the definition. 

1.1.2. How? Mainly process-centred: the structure of the 

documentation should closely resemble that of the 

lifecycle, and everything should be described as 

secondary to the work-units (phases, stages and 

activities) of the lifecycle. Gradual refinement 
(hierarchical layering) should be used in describing 

the process. Since object-oriented process 

metamodels - such as SPEM and OPF - regard 

processes as mainly consisting of work-units, roles 

(producers), and products (artefacts), the definition 

of the methodology should also provide a view 
focusing on the producers involved in the 

methodology (describing the work-units they 

participate in and the artefacts they produce) as well 

as a view focusing on the artefacts produced 
(describing the work-units where they are produced 

and the producers involved). 
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1.2. Coverage: the generic software development lifecycle activities 
(Definition, Development, and Maintenance) should be covered. 
Fusion, RUP, EUP and Catalysis are examples of 

methodologies providing extensive coverage. Close 

examination of the generic software development lifecycle 

[Pressman 2004, Sommerville 2004], Ambler process patterns 
[Ambler 1998a, Ambler 1999], and the OPEN Process 

Framework (OPF) [Firesmith and Henderson-Sellers 2001] 

shows that the following activities should be covered as a 

minimum: 

1.2.1. Definition 

1.2.1.1. Problem domain exploration and 

modeling 
1.2.1.2. Requirements elicitation 
1.2.1.3. Feasibility analysis 

1.2.2. Development 

1.2.2.1. Architectural Design 

1.2.2.2. Detailed Design 

1.2.2.3. Programming 

1.2.2.4. Test 

1.2.2.5. Deployment 

1.2.3. Maintenance 

1.3. Support for umbrella activities: especially including: 

1.3.1. Risk management: through risk assessment and 

risk mitigation activities incorporated into the 

lifecycle. Of special importance are techniques 

proven effective in other methodologies: e. g. 

preliminary feasibility analysis (as seen in OPEN, 

Crystal Clear, and DSDM), prototyping (e. g. RUP, 

DSDM, XP, and dX), risk-based planning (e. g. RUP, 

DSDM and Scrum), iterative-incremental 

development (e. g. RUP and agile methodologies), 

active user involvement (e. g. Scrum and FDD), 

continuous verification and validation (e. g. Hodge- 
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Mock, XP and ASD), iterative process/product/plan 

reviews (e. g. ASD, Scrum and Crystal), early 

releases (e. g. XP and Scrum), and continuous 

integration (e. g. XP and FDD). 

1.3.2. Project management: through planning, scheduling 

and control techniques incorporated into the process 

(as in RUP and EUP; DSDM and Scrum are good 

agile examples). Provision should be made for the 

plans and schedules to be iteratively revisited and 

revised based on experience gained through the 

development (as in EUP, ASD and Scrum). Special 

attention should be given to team management 

aimed at enhancing intra-team and inter-team 

communication and collaboration (as seen in RUP, 

EUP, Scrum and FDD). 

1.3.3. Quality assurance: through quality assessment and 

enhancement techniques incorporated into the 

process. Of special importance are techniques 

proven effective in other methodologies: e. g. 

iterative technical reviews (as seen in agile 

methodologies; e. g. Scrum and Crystal), design by 

contract (e. g. BON), continuous verification and 

validation (e. g. Hodge-Mock, XP and ASD), and 

strategies/techniques enhancing requirements 

traceability (e. g. use-case-driven methodologies 

such as OOSE and RUP, scenario-based 

methodologies such as Hodge-Mock, and agile 

methodologies such as XP and FDD). 

1.4. Seamlessness and smoothness of transition between phases, 

stages and activities: Although seamlessness can be 

incorporated via basing all tasks and artefacts on a common 

concept (e. g. classes in BON, the Domain Model in Shlaer- 

Mellor, and use cases in RUP), the transition between phases, 

stages and activities is not necessarily smooth, since it might 
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involve the production of brand new artefacts; even though not 

violating seamlessness, the effort that is typically required 

damages smoothness of transition. An alternative seamless 

strategy is continuous refinement of a specific set of models, 

around which the development tasks are oriented, which 

provides both seamlessness and smoothness of transition (as 

used in Coad-Yourdon, Syntropy and Catalysis). Fractal 

modeling (as in Catalysis) is an example of a technique that is 

particularly successful in this context. It should be noted that all 

methodologies providing smooth transition are not necessarily 

seamless; many agile methodologies provide smooth transition 

because of the iterative-incremental nature of their development 

strategy and the short cycles they usually have, yet they cannot 

always be considered seamless, since there can be a huge gap 

between analysis and implementation. 

Basis in the requirements (functional and non-functional): 
functional and non-functional requirements should be captured 

early in the process, modeled in their own right, and used as a 

basis for design and implementation (Coad-Yourdon is an 

example of a methodology that neglects this seemingly obvious 

requirement); use-case-driven methodologies such as Catalysis 

and RUP, and agile methodologies such as FDD and Scrum are 

good examples of successful methodologies in this regard. 
Requirements should be allowed to evolve during the process, 

as is the case in many agile methodologies. 

Testability and tangibility of artefacts, and traceability to 

requirements: artefacts should be few, simple, and 

understandable, with dependencies that are minimal and clearly 
defined (Catalysis is a good example, as are many seminal 

methodologies, e. g. BON and Fusion). Artefacts should 

complement each other in the context of the process, not 
decorate each other with clutter. Tangibility of the artefacts to 

the users and the developers should be maximized: executable 

artefacts and artefacts with syntax and semantics 
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understandable to the user are tangible to the user, while 

developers find those artefacts tangible that are visibly useful in 

the process (otherwise they will be ignored or botched, and 

quality may suffer as a result). Artefacts should be traceable to 

the requirements (e. g., as direct or indirect realizations of the 

requirements - as in RUP, or via the use of requirements-based 

evaluation scenarios - as in Hodge-Mock). 

Encouragement of active user involvement: which is vital for 

risk management and quality assurance. Ambassador users, and 

planning and review sessions with user participants are proven 

techniques [Highsmith 2002]. Agile methodologies have a great 
deal to offer in this regard. 

Practicability and practicality: the methodology should be 

employable; and effectively, efficiently and usefully at that. 

Over-complex methodologies are not practicable; 

configurability does not solve the problem since it typically 
involves complex procedures (as is the case with RUP), and 

neither do instantiation frameworks (like OPEN), for the same 

reason. Practicability can also depend on the project in hand; 

performing a feasibility analysis task early in the process 
(possibly involving the deployment of suitability filters) may 

prove essential. There are numerous factors, other than 

complexity, that affect practicality (some adversely), and should 

therefore be taken into account. Tasks that distract the 

developers from mainstream activities or encumber them with 
impertinent or unnecessary details should be deleted; techniques 

and strategies for focusing the development, such as 

requirements-based models (such as those seen in Fusion, 

Catalysis and FDD), system architecture/metaphor (such as 

those seen in RUP and XP), and team management sessions 
(such as those seen in Scrum and FDD) seem to be promising 
techniques in this context. Dependence on error-prone 
techniques and strategies can damage practicality (such is the 

over-dependence of some agile methods on the efficacy of 
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human communication, and dogged adherence of some 

integrated methodologies to UML). Dependency on special 

tools and technologies can also be detrimental to practicality. A 

very important factor affecting practicality is the project 

management strategy; lack of adequate management measures 

can render the methodology impractical or even impracticable, 

especially in large projects with stringent constraints on time 

and resources. 
1.9. Manageability of complexity: the complexity of work-units 

should be manageable, e. g. via partitioning and layering. 

Catalysis is a particularly successful example. 
1.10. Extensibility/Configurability/Scalability/Flexibility: the 

process should be an extensible core, with extension points and 

mechanisms explicitly specified. It is desirable to be able to 

configure the extensions or even the core itself in order to fit it 

to the project in hand (process patterns can be useful in this 

context). The methodology should be applicable to projects of 

different sizes and criticalities (as seen in integrated 

methodologies such as RUP and Catalysis, as well as some 

agile ones such as FDD). It should also be dynamically flexible: 

it should be possible to tune the methodology according to the 

experience gained during the development; useful techniques 

are iterative process review sessions, and feedback-based 

revisions (as seen in ASD and Crystal Clear); it should be 

noted, however, that tuning is a project-wide decision, and 

individual teams and developers should not be allowed to make 

alterations with possible project-wide implications. 

1.11. Application scope: the application scope depends on the 

intended usage context, yet targeting information systems as a 

general usage context seems to be a logical minimum 

requirement, as this is likely to address the minimum modeling 

needs of a general methodology. The application scope in the 

context of this thesis is initially limited to information systems, 
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but can later be expanded depending on the outcome of the 

design. 

2. Modeling Language 

2.1. Support for consistent, accurate and unambiguous object- 

oriented modeling: specifically covering: 

2.1.1. Diverse modeling viewpoints: Structural - 
Functional - Behavioural (as seen in UML, and the 

modeling languages of OMT and OSA) 

2.1.2. Logical to Physical modeling: Business- 

Process/Problem Domain to Solution Domain to 

Implementation Domain (as seen in UML and 

OPEN/OML) 

2.1.3. Diverse levels of abstraction and granularity: 
Enterprise level - System level - 
Subsystem/Package level - Inter-object level - Intra- 

object level (as seen in UML, and the modeling 
languages of Hodge-Mock and Fusion) 

2.1.4. Formal and Non-formal specifications (as seen in 

UML/OCL, and the modeling languages of BON 

and Syntropy) 

Although UML is rich and extensible enough to provide 

ample support, strict adherence to UML should not be 

enforced. The use of data-flow diagramming for functional 

problem-domain modeling - as seen in EUP and FOOM - 
is a successful example of complementing UML with other 

modeling languages. 

2.2. Provision of strategies and techniques for tackling model 
inconsistency and managing model complexity: tackling 

model inconsistency is usually up to the process component of 

the methodology rather than the modeling language; yet 

modeling languages can facilitate consistency-checking through 

providing semantics which define model dependencies and 

constraints. UML lacks such semantics [OMG 2004], leaving it 

to the methodology process to define them; Catalysis is an 
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example of a successful process in this regard. However, 

modeling languages proposed by many seminal methodologies 

offer such semantics (examples include BON and Fusion). 

Another noteworthy contribution in this regard is OPM's 

single-model approach, which facilitates consistency-checking 

through eliminating model multiplicity. Modeling languages 

should also include constructs facilitating complexity 

management; UML's package and component elements are apt 

examples. 

3.7 Summary 

The analysis phase produces the requirements of the target OOSDM through 

analyzing existing object-oriented methodologies, process patterns and process 

metamodels. The analysis process adopted in this thesis starts with process-centred 

review of the methodologies, patterns and metamodels, resulting in descriptions 

which highlight the processes and prepare them for critical examination. 

The processes are then scrutinized according to a set of criteria. The criteria-based 

analysis approach adopted in this thesis is based on iterative review of the 

processes, thereby incrementally identifying the strengths and weaknesses of the 

processes, perfecting the set of criteria along the way. The products of this analysis 

process are the analysis results (a list of strengths and weaknesses for the 

processes), and the refined criterion set. 

The requirements are produced through specifying the degree of support expected 

to be provided by the target methodology for each criterion in the final criterion 

set. The list of strengths and weaknesses is also used in the definition of the 

requirements: the strengths and weaknesses identified in existing processes show 
how processes meet or fail the requirements, and can therefore be used for 

providing a more detailed definition of the requirements through supplying 
instances from existing processes. 

The set of requirements produced in the Analysis phase is fed into the Design- 

Implementation-Test cycle of the methodology development lifecycle (introduced 
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in Chapter 1). This iterative development engine designs, implements and validates 

the target methodology based on the set of requirements. 



Chapter 4 

Design 

The design phase focuses on determining a blueprint for the methodology based on 

the requirements defined during analysis (Section 3.6). The process-centred 

descriptions (Section 3.3) and the criteria-based analysis results (Section 3.4.2) 

provide a rich repertoire of ideas and techniques to be used in the design. The first 

task of this phase, however, is to determine an appropriate design method, which is 

then applied for producing the blueprint of the methodology. 

4.1 Alternative Design Methods 

The following methods were identified as alternative ways of designing the target 

methodology: 

1. Instantiation approach: instantiating an already available process 

metamodel (reviewed in Section 3.3.6) 

2. Artefact-oriented approach: devising a seamless complementary chain of 

artefacts and building the process around it 

3. Composition approach: using one of the already available libraries of 

process patterns (reviewed in Section 3.3.5) 

4. Integration approach: integrating features, ideas and techniques from 

existing methodologies (merits of which were discussed in Section 2.4) 

As pointed out in Section 2.4, the Instantiation and Composition approaches are 

correspondingly analogous to the Paradigm-based and Assembly-based approaches 

of Method Engineering, but the Integration and Artefact-oriented approaches are 

relatively novel in this context. Any of these approaches can be used for designing 

the methodology, but since the approach undertaken should be flexible and 

versatile enough to make use of all of the merits that different approaches have to 

210 
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offer, a Hybrid approach has been devised, using different alternatives from among 

the above-mentioned for different parts of the process and/or at different levels of 

abstraction. 

4.2 The Hybrid Design Process 

The hybrid design process has been devised as a top-down iterative-incremental 

process. The iterative-incremental engine at the core of the design process 

generates the methodology in a top-down fashion - from general lifecycle to finer 

grained detail of process phases and activities - using the requirements, 

methodology descriptions and methodology analysis results as a basis. The design 

approaches used in each iteration are determined according to the scope and 

abstraction level of the design activity undertaken in the iteration. 

Requirements 

Prioritize 
Requirements 

ized Methodology ogy scri tion of 
Pýorit 

Analysis Results hodologies Requirements 

Define and Apply Refine and Revise Identify Next Abstraction Level 

Hybrid Design Method Methodology and Re-prioritize Requirements 

71 
Methodology Final 

Methodology 
Elements Design 

Methodology 
Design 

Integrate Elements If Stabilized and Complete, 
into Methodology Finalize Methodology 

Figure 39. The hybrid design process 

The hybrid design process consists of the following tasks (Figure 39): 

1. Prioritization of the requirements: performed at the start of the process and 

repeated at the end of each iteration, prioritization orders the requirements 

according to their relevance to the current scope and level of abstraction, 
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thus focusing the design process on satisfying requirements of higher 

significance. At the start of the process, abstraction is at its highest level 

and the scope encompasses the whole lifecycle, therefore requirements 

with lifecycle-level impacts are given precedence over others; these 

typically include: 

a. Coverage of generic software development lifecycle activities 
(Requirement 1.2), 

b. Support for umbrella activities (Requirement 1.3), 

c. Extensibility/Configurability/Flexibility/Scalability (Requirement 

1.10), and 
d. Application scope (Requirement 1.11). 

As iterative design progresses to lower levels of abstraction and the scope 
is focused on individual subprocesses and their internal activities, priority 

is gradually shifted to requirements affecting finer-grained aspects. 

Requirements of importance introduced at subprocess- and activity levels 

typically include: 

a. Seamlessness (Requirement 1.4), 

b. Testability and Tangibility of artefacts, and traceability to 

requirements (Requirement 1.6), and 
c. Requirements pertaining to Modeling features (Requirements 2.1 

and 2.2). 

As design is focused on deeper levels, requirements that affect low-level 

task detail are assigned higher priority; these typically include: 

a. Basis in the requirements (Requirement 1.5), and 
b. Encouragement of active user involvement (Requirement 1.7). 

Last but not least, there are requirements that are important regardless of 

what the scope and abstraction level are; these typically include: 

a. Practicability/Practicality (Requirement 1.8), and 
b. Manageability of complexity (Requirement 1.9). 

Prioritization of requirements is mainly performed as a complexity 

management measure, since having to focus on a large repertoire of 

requirements can result in inadequate attention to satisfying the important 

ones. However, it also gives a degree of flexibility to the design process, 
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enabling the designer to assign higher priorities to those requirements 

which he/she considers essential. 
2. Design engine: The following tasks are performed in each iteration: 

a. Selection of the design approaches to be used in the current 

iteration: While all the four approaches listed in the previous 

section can be used regardless of the scope and the level of 

abstraction of the design activity, they have different uses 

depending on the scope and abstraction level of the design activity 

undertaken in the current iteration: Instantiation is more useful 

when designing high-level aspects of the methodology, Integration 

and Composition are more suited to the design needs of low-level 

aspects, and the Artefact-oriented approach comes in between, i. e. 

while less useful at the general lifecycle level, it is indispensable 

when addressing seamlessness issues at the inter-subprocess and 

infra-subprocess levels. Figure 40 provides an idea of the relative 

emphasis typically put on the four design approaches, depicting 

how emphasis can be expected to change as focus shifts from high- 

level to low-level design. Furthermore, although the approaches 

are not totally disjoint, they require focus on different aspects of 

the methodology, and rely on distinct sets of tools and techniques: 

Instantiation relies on metamodels, Integration is dependent on 

existing methodologies (with special attention to analysis results, 

and methodology descriptions), Composition requires libraries of 

reusable process components, and the Artefact-oriented approach 

needs concentration on designing artefact chains using modeling 

languages. Using all approaches in the same iteration is not 

impossible, yet can cause unwarranted complexity. Therefore, in 

order to keep design activities duly focused, the first task in each 

iteration is to decide which design approaches are most suitable to 

the needs of the current iteration. The design tasks in the iteration 

can then be commenced according to the process dictated by the 

design approaches selected. 

b. Application of the selected design approaches aimed at defining 

the methodology at the current scope and level of abstraction: 
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Special attention should be given to the analysis results and 

methodology descriptions, thus implementing features of strength 

and avoiding common pitfalls. The prioritized set of requirements 

focuses the design effort on satisfying requirements of importance. 

The methodology elements designed are then integrated into the 

methodology blueprint. 

c. Revision, refinement and restructuring of the methodology built so 

far in order to accommodate the changes made in the current 

iteration. 

d. Specification of the level of abstraction for the next iteration, and 

definition of the scope and intended level of detail. 

e. Revision and refinement of the requirements, including their 

prioritization according to the scope and level of abstraction 

intended for the next iteration. 

Figure 40. Emphasis put on different design approaches during iterations of the 
hybrid design process 

Transition to the implementation phase occurs when the design process has 

produced a detailed enough blueprint of the methodology. Since the Design, 
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Implementation and Test phases of the methodology development process are 

carried out iteratively, results of design iterations later undergo implementation and 

test; the design is thus perfected gradually as implementation and test activities 

resolve ambiguities and mitigate risks. 

4.3 Design Results 

The design process described in the previous section was applied using the 

requirements, analysis results and methodology descriptions introduced in the 

previous chapter. The first four iterations of the process are briefly described in this 

section along with the resulting methodology design. Iterations are described in 

order to demonstrate the inner workings of the design process, and thereby clarify 

the rationale behind the design decisions. 

4.3.1 Iterations 

The first four iterations were where the essential structure of the methodology took 

shape, with further iterations filling the structure with fine-grained detail during 

later iterations of the Design-Implementation-Test cycle of the methodology 
development lifecycle. Figure 41 shows the gradual formation of the methodology 
during the first four iterations. Highlighted areas show new or modified features 

introduced in each iteration. 

4.3.1.1 First Iteration 

Being at the highest abstraction level, the first iteration's scope encompasses the 

whole lifecycle. Requirements of highest priority are: 

" Coverage of generic software development activities (Requirement 1.2 as 
listed in the previous chapter) 

" Support for umbrella activities (Req. 1.3) 

" Practicability and practicality (Req. 1.8) 

" Manageability of complexity (Req. 1.9) 

" Extensibility/Configurability/Flexibility/Scalability (Req. 1.10) 

" Application scope (Req. 1.11) 
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Figure 41. Gradual refinement of the methodology blueprint during the first four 
iterations of the design process 

The design approach in this iteration was mainly Instantiation, using metamodels - 
including SPEM 1OMG 2002] and OPF [Firesmith and Henderson-Sellers 20011 - 

and general object-oriented development lifecycles such as OOSP [Ambler 1998a]. 

Also used was the Composition approach, which was utilized for populating 

subprocesses with basic activities; OPF's process components (especially stages) 

[Firesmith and Henderson-Sellers 2001] and Ambler's process patterns [Ambler 

1998a] were the main components used. 
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In order to prevent unwarranted complexity from creeping into the design, utmost 

care was taken to keep the blueprint as simple as possible. Therefore, a simple yet 

sufficiently comprehensive and highly cohesive methodology core was targeted, 

encompassing essential software engineering activities assembled into a seamless 

process. Influenced by the generic software development lifecycle introduced in 

[Pressman 2004], a simple lifecycle consisting of the generic subprocesses of 

Analysis, Design, Implementation, Test, and Transition was constructed, each 

populated with basic activities. 

In order to enhance scalability and risk-management (as applicable to information 

systems), a risk-based, plan-driven, model-based, and architecture-centric 

development attitude was implemented into the methodology. This was partly 

achieved in this iteration through splitting the Analysis and Design subprocesses 

and combining Implementation and Test. Analysis was split into Preliminary 

Analysis and Detailed Analysis, and Design was split into Architectural Design and 

Detailed Design, with relevant feasibility analysis, planning and architectural 

design activities duly added. The Implementation and Test subprocesses were 

combined in order to better accommodate test-based development. 

Maintenance has not been added as a subprocess, leaving it to the developers to 

decide what maintenance strategy to use. For small systems, a reiteration of the 

methodology lifecycle is advisable, whereas a separate procedure may be necessary 
for larger systems. Maintenance planning, however, is one of the tasks in the 

Transition subprocess. 

4.3.1.2 Second Iteration 

The second iteration focuses on adding modeling features to the relevant 

subprocesses of the methodology. Requirements of highest priority are: 

" Seamlessness and smoothness of transition between phases, stages and 

activities (Req. 1.4) 

" Testability and tangibility of artefacts, and traceability to requirements 
(Req. 1.6) 

" Practicability and practicality (Req. 1.8) 

" Manageability of complexity (Req. 1.9) 
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" Extensibility/Configurability/Flexibility/Scalability (Req. 1.10) 

" Support for consistent, accurate and unambiguous object-oriented 

modeling (Req. 2.1) 

The design approach in this iteration was mainly an Integration approach, using 

modeling features from existing methodologies and implementing them into the 

process framework designed in the previous iteration. Catalysis [D'Souza and 

Wills 1998] and OPEN [Graham et al. 1997] had the most influence on the design 

produced in this iteration. 

A UML-based modeling approach similar to that used in the Catalysis 

methodology [D'Souza and Wills 1998] was chosen because of its fractal modeling 

approach, which is relatively seamless and highly tangible to developers and end- 

users (the modeling approach has been described in the section on Catalysis in 

Chapter 3). The first in the chain of artefacts thus devised is the Context Model, 

which captures the structural, functional and behavioural aspects of the problem 

domain (with the system as an element therein), and is built during the Detailed 

Analysis subprocess. System requirements are captured in use cases. Focus is then 

shifted to the internals of the system, and an initial version of the System Model is 

built during the Detailed Analysis subprocess, based on the information captured in 

the Context Model. The System Model is perfected with architectural and detailed 

design particulars (including the user interface and the database) during the design 

subprocesses, and ultimately used as a basis for implementing the system and 

producing the Executable Package. 

The artefact chain introduced was perfected and elaborated during this iteration. 

Constituent diagrams were determined and dependencies were identified, and 

corresponding modeling activities were added to the relevant subprocesses. 

4.3.1.3 Third Iteration 

The third iteration focuses on refining and perfecting the model chain, especially 
targeting seamlessness and smoothness of transition. Requirements of highest 

priority are: 
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9 Seamlessness and smoothness of transition between phases, stages and 

activities (Req. 1.4) 

" Testability and tangibility of artefacts, and traceability to requirements 

(Req. 1.6) 

" Practicability and practicality (Req. 1.8) 

" Manageability of complexity (Req. 1.9) 

" Extensibility/Configurability/Flexibility/Scalability (Req. 1.10) 

" Application scope (Req. 1.11) 

" Support for consistent, accurate and unambiguous object-oriented 

modeling (Req. 2.1) 

" Provision of strategies and techniques for tackling model inconsistency and 

managing model complexity (Req. 2.2) 

The design approach in this iteration was mainly an Artefact-Oriented approach, 
focusing on improving the artefact chain, and reshaping the process around it 

accordingly. The design was deeply influenced by FDD [Palmer and Felsing 2002], 

as well as the data-flow-oriented modeling approaches seen in FOOM [Shoval and 
Kabeli 2001] and EUP [Ambler and Constantine 2000a]. 

The artefact chain introduced during the previous iteration suffers from disruptions 

in seamlessness due to the fact that mapping problem-domain (context) models to 

corresponding system models is typically not a smooth process [Isoda 2001]. 

Realizing the need for a smoother transition from problem domain models to 

system models, a novel method was devised resulting in a modified chain of 

artefacts, a brief description of which will be given below. Detailed description of 

the model chain is given in Chapter 5, with examples presented in Chapter 6. 

The fractal modeling approach inspired by Catalysis [D'Souza and Wills 1998] 

(introduced in the second iteration) is preserved: the problem domain is modeled as 

consisting of objects, and the target system is added to this model as a problem 
domain object, which in turn consists of system objects. The Context Model in this 

chain is built through direct object-oriented real-world modeling of the problem 
domain, with human workers, systems and data-stores modeled as collaborating 

objects. A data-flow-oriented approach has been adopted for structural and 
functional modeling - due to the high tangibility of the models produced and their 
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close correspondence to the real-world problem domain - using a notation similar 

to that of UML collaboration diagrams (Version 1.5) [OMG 2003] for modeling 

problem domain objects and the data flowing among them; Figure 56 in Chapter 6 

(page 314) is an example of this diagram. The diagram in fact resembles a data 

flow diagram, and intentionally so, as DFDs used in this context - i. e. with actors 

regarded as objects and modeled as DFD processes - offer a close correspondence 

to problem domains, and are therefore widely used as workflow diagrams 

(alongside UML activity diagrams) for business process modeling [Ambler and 

Constantine 2000a]. Job descriptions and functionalities of problem domain objects 

are identified and expressed as FDD-style Features [Palmer and Felsing 2002]. 

Features have been preferred to use cases in this context, since they are intrinsically 

object-oriented, and the set of conventions governing their definition ensures a 

high-level of expressiveness and provides apt complexity management 

mechanisms. The system is then added to the models as an object of the problem 

domain. Requirements of the system are identified through redistributing features 

among problem domain objects, which results in the assignment of features to the 

system object. New features are then added to the system as additional 

requirements, if deemed necessary. 

Focus is then shifted to the internals of the system, and the System Model is 

produced from the Context Model. Objects sharing features with the system are 

either moved inside the system boundary or assigned system counterparts. The 

system is then designed as a homogeneous extension to the problem domain; this 

means that the same types of entities as seen in the problem domain are used for 

designing the system. In a business system, for instance, this means adding a new 

section or department consisting of staff performing predefined jobs using 

equipment and tools made available to them. In this extension, data-store and 

flowing-data objects are assigned to Custodians, which are proxy objects enabling 

and controlling access to the objects (example in Figure 68, page 327). This 

ensures that all passive objects are coupled with corresponding active objects. 
Features are assigned to objects based on the features assigned to the system. 
Designing the System Model as an extension to the problem domain keeps the 

models tangible to both domain experts and developers, and smoothes the 

transition to software objects. 
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The System Model is then transformed into the Software Model, which depicts the 

internal structure and behaviour of the computer-based system. This is achieved 

through applying specifically adapted patterns by which features are redistributed 

among objects and necessary architectures are introduced. The real-world domain 

modeling approach used for producing the Context Model is a hazardous practice, 

in that it can introduce actors or irrelevant objects among system objects, or allow 

redundant associations and interactions to be entered into the System Model [Isoda 

2001]. The pattern-based transformation approach adopted, however, resolves 

these issues during the transformation of the System Model into the Software 

Model by gradually pruning the models of redundancies. Bearing in mind that the 

target methodology's application scope is confined to information systems, a set of 

patterns specifically targeting business systems (as ubiquitous examples of 

information systems) was compiled and adapted for this purpose. The 

transformation process is similar in essence to an approach advocated by MDA 

[OMG 2001], in which transformation patterns are proposed for transforming 

Platform Independent Models into Platform Specific Models; here, though, models 

of the system designed as an extension to the problem domain are transformed into 

software domain models. 

The pattern-based transformation approach was inspired by observations made by 

the author, indicating that object-oriented reengineering patterns [Demeyer et al. 

2003] and refactoring patterns [Fowler 1999] can be used for redistributing 
features among objects so that anomalies in objects, relationships and interactions - 
introduced as a result of real-world modeling - are rectified. The applicability of 

design patterns [Gamma et al. 1995, Buschmann et al. 1996] for introducing 

object-oriented structure and behaviour in models of business systems is based on 

the author's personal experience, according to which many job definition and task 

assignment techniques in organizational design and personnel management are 

noticeably similar in effect to the transformations seen in design patterns. Applying 

design patterns not only results in improved structures familiar to domain experts, 
but also facilitates the translation of these structures into solution-domain and 

implementation-domain class structures. 

The transformation procedure results in highly cohesive objects and reduced inter- 

object coupling. The procedure culminates in passive objects being combined with 
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their custodians. The Software Model thus built represents the actual model of the 

computer system, to be refined and perfected during the design subprocesses and 

ultimately used as a basis for producing the Executable Package. 

Introduction of the System Model as a transitional model - bridging the gap 

between real-world domain modeling and system modeling - has resulted in the 

introduction of a new System Specification subprocess. The Detailed Design 

subprocess defined in previous iterations is split into a Real-World Domain 

Modeling and Requirements Elicitation subprocess and the new System 

Specification subprocess, where the former is where the context model is produced, 

and the latter is where the System Model is constructed and transformed into the 

Software Model. Activities of the two subprocesses were defined in this iteration, 

as well as the structure of the models produced. 

4.3.1.4 Fourth Iteration 

The fourth iteration's scope encompasses the Detailed Design and Implementation 

and Test subprocesses of the methodology, and focuses on harmonizing the design 

and implementation activities with the feature-driven basis of the models. 
Requirements of highest priority are: 

" Support for umbrella activities (Req. 1.3) 

" Seamlessness and smoothness of transition between phases, stages and 

activities (Req. 1.4) 

" Basis in the requirements (Req. 1.5) 

" Testability and tangibility of artefacts, and traceability to requirements 
(Req. 1.6) 

" Encouragement of active user involvement (Req. 1.7) 

" Practicability and practicality (Req. 1.8) 

" Manageability of complexity (Req. 1.9) 

" Support for consistent, accurate and unambiguous object-oriented 

modeling: 

The design approach in this iteration was mainly an Integration approach, aiming 

to use existing methodologies for transforming the Detailed Design and 
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Implementation and Test subprocesses into feature-driven subprocesses. FDD 

[Palmer and Felsing 2002] had the most influence on this iteration. 

The iteration resulted in the introduction of the FDD methodology's feature-driven 

iterative-incremental development engine into the methodology [Palmer and 

Felsing 2002]. Adapting other methodologies to the purpose was also considered 
(especially Catalysis and Scrum), yet FDD was deemed the logical choice, since it 

suitably addresses the above requirements, and already incorporates a cohesive 
feature-driven development engine. As a result, the Detailed Design and 

Implementation and Test subprocesses were replaced by the cyclic Design by 

Feature and Build by Feature subprocesses respectively. A Plan by Feature 

subprocess was also added, during which the activities of the development engine 

are planned and scheduled. 

In each iteration of the development engine, features are selected from the 

Software Model for design and implementation. The selected features comprise the 

Work Package, based on which detailed design is performed and results are duly 

reflected back to the Software Model. The design results, comprising the Design 

Package, are then implemented and tested, with the resulting System Increment 

ultimately integrated into the Executable Package. Activities of the development 

engine were defined in this iteration, as well as the structure of the artefacts 

produced. 

4.3.2 The Designed Methodology 

The general approach of the designed methodology is based on smooth and seamless 
transition from real-world domain models to system models, and ultimately to 

software design models. In business systems, this can be achieved via the use of 

patterns for iterative transformation of the models through redistribution of 
functionalities and introduction of object structures. The process consists of the 
following subprocesses: 

1. Feasibility analysis and preliminary planning. 
2. Real-world domain modeling and requirements elicitation 
3. System specification 
4. Architectural design 



Chapter 4. Design 

5. Planning by feature 

6. Feature-driven iterative-incremental development 

6.1. Design by feature 

6.2. Build by feature 

7. Transition 
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UML (Version 1.5) [OMG 2003] is the main modeling language used for 

diagramming in the designed methodology. UML activity diagrams and sequence 
diagrams are used for behavioural modeling (in Interaction Models), with UMIL 

component diagrams used for modeling subsystems. UML class diagrams are used 

later in the modeling process to depict software classes and their relationships (in 

Class Models). However, Object Models - which capture functional and structural 

aspects throughout the modeling stages - use a notation similar to UML 

collaboration diagrams, yet in a data-flow-oriented context analogous to Data Flow 

Diagrams (DFD); i. e. Object Models use the same notation that is used for denoting 

message passing in UML collaboration diagrams (without the sequencing), yet the 

notation denotes data/control flow rather than message/signal flow. 

The following sections present a more detailed description of the designed 

subprocesses, specifically targeting business systems as an example. The finer- 

grained detail will be added during the implementation phase, the results of which 

are reported in Chapter 5. Examples of the models mentioned in these sections are 

given in Chapter 6. 

4.3.2.1 Feasibility Analysis and Preliminary Planning 

The main tasks performed in this subprocess are as follows: 

I. Acquire high-level knowledge as to the nature of the project, its scope, and 

the risks and constraints involved. 

2. Perform the traditional activities of feasibility analysis. 
3. Develop rough estimates and an overall Outline Plan for the project. 

4.3.2.2 Domain Modeling and Requirements Elicitation 

The main tasks performed in this subprocess are as follows: 
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1. Real-world modeling of the problem domain, starting with modeling the 

high-level view and gradually moving inside organizational sections, 
focusing on lower-level elements of the problem domain. The tasks 

performed are as follows: 

1.1. Human workers, systems and data-stores of the problem domain 

are modeled as collaborating objects in a Context Object Model. 

A notation similar to UML collaboration diagrams is used for 

representing the model, with links adorned with data/control 

flows instead of messages (without sequence numbers); Figure 56 

in Chapter 6 (page 314) is an example of this diagram. 

Organizational boundaries are preserved, modeled through using 

packages and component diagrams. The resulting functional 

models comprise the main bulk of the Context Model. 

1.2. Typical transaction scenarios are modeled in activity diagrams 

(with swimlanes depicting the participating objects) and/or 

sequence diagrams (example in Figure 58, page 315). The 

resulting Context Interaction Models comprise the behavioural 

part of the Context Model. 

1.3. Job descriptions and functionalities are expressed as areas (major 

feature sets), activities (feature-sets), and features [Coad et al. 
1999, Palmer and Felsing 2002]. Feature lists are compiled and 

added to the Context Model. 

1.4. A glossary of terms from the problem domain is compiled. 
2. Introduction of the system into the problem domain: The system is added 

as an object to the Context Model (in Context Object Models) and feature 

sets are assigned to the system through redistribution and/or duplication 

(example in Figure 57, page 314). New feature sets are added as deemed 

necessary by the Modeling Team, and the feature lists in the Context 

Model are duly updated. Typical scenarios of interaction with the system 

are also modeled and the Context Interaction Models are updated 

accordingly (example in Figure 60, page 317). 
3. Non-functional requirements and constraints are identified and added to 

the Context Model. 

4. The results, the project plan and the requirements are reviewed. 
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4.3.2.3 System Specification 

The main tasks performed in this subprocess: 

1. The Context Model built during the previous subprocess is converted to the 

System Model. The system is designed as an extension to the 

organizational structure into which the system is to be ultimately 
introduced, using the same types of elements already present in the 

problem domain. The major tasks performed are as follows: 

1.1. Human elements, systems and data stores sharing features with 

the system are moved inside system boundaries or assigned 

system counterparts. The system is then designed as a 

homogeneous extension of the problem domain. 

1.2. Each data-store and each flowing data object is assigned to a 

custodian; any access to any such object should be made via the 

custodian. It should be noted that there is no limit on the number 

of staff assigned to the system. The resulting System Object 

Models comprise the functional component of the System Model 

(example in Figure 68, page 327). 

1.3. Typical interaction scenarios are identified, and relevant 
behavioural models (typically activity diagrams and interaction 

diagrams) are produced for each of the system's feature sets. The 

resulting System Interaction Models comprise the behavioural 

component of the System Model (example in Figure 69, page 

328). 

1.4. Feature sets and features are assigned to the active elements 
(staff) based on the functionality assigned to the system as a 

whole and the interaction models produced in the previous task. 

1.5. Review and revision of the requirements of the system and the 

resulting System Model is performed. 
2. The System Model produced so far is converted to the Software Model by 

applying patterns to redistribute functionality among system objects. The 

tasks performed, explained as relevant to business systems, are as follows: 

2.1. Patterns are applied to the System Model to iteratively 

redistribute features among objects (i. e. processing staff and 
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custodians) in order to enhance encapsulation, increase 

cohesion and reduce coupling, and also to introduce 

architecture. Reengineering patterns, especially those suggested 

in [Demeyer et al. 2003] for redistributing responsibilities 

among objects, are of utmost use in the starting iterations. 

These typically include: 

" Moving behaviour close to data 

" Eliminating navigation 

" Splitting up God classes (Blobs) 

Refactoring patterns proposed in [Fowler 1999] can also be 

used in conjunction with the above. Design patterns [Gamma et 

al. 1995, Buschmann et al. 1996] can be used in later iterations 

to help implement specific architectures and mechanisms 

typically present in the problem domain and tangible to users. 

Antipatterns can also be of use in the redistribution procedure 

[Brown et al. 1998]. The redistribution procedure is devised in 

such a way as to resolve the problems typically afflicting 

analysis approaches based on object-oriented real-world 

modeling [Isoda 2001]. Objects irrelevant to the system and 

actor-counterparts without any justification for existence in the 

system are gradually disposed of, and relationships not 

belonging to the system are not introduced into the models 

because of the interaction-oriented and feature-driven nature of 

the System Model and the redistribution procedure (example in 

Figure 71, page 331). Behavioural models are updated in each 

iteration of the redistribution procedure. 
2.2. Applying the patterns ultimately results in custodian objects 

being merged with the data objects they had under custody. 

This marks the transition from the problem-domain-based 

system to the computer system, signifying the transition to 

solution domain. The resulting Software Object Models 

comprise the functional component of The Software Model 

(example in Figure 75, page 335). UML class diagrams are then 

produced based on the Object Models, depicting the classes in 
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the system and their relationships. Inheritance hierarchies are 

introduced in order to enhance abstraction (patterns for 

refactoring inheritance can be of use in this context [Fowler 

1999]). The Software Class Models thus produced comprise the 

main structural component of the Software Model. 

2.3. Behavioural diagrams inherited from the System Model are 

updated according to the new Software Class/Object Models. 

The resulting Software Interaction Models comprise the 

behavioural component of the Software Model. Message 

passing should be clearly depicted. 

2.4. Preparation of initial versions of class and method prologues 
2.5. Review and revision of the requirements 

2.6. Review of the resulting Software Model 

3. Review of the results of the subprocess, the project plan and the 

requirements 

4.3.2.4 Architectural Design 

The tasks performed in this subprocess (mostly in parallel) are as follows: 

1. Convey the Software Model to the implementation domain through adding 
implementation-specific detail and restructuring it in order to facilitate 

implementation and accommodate the domain-independent parts of the 

system. The user interface is designed, and the Software Model is enriched 

with architectural design patterns. 
2. Identify the architecture of the domain-independent parts of the system: 

hardware and software platforms, infrastructure components (such as 

middleware and databases), utilities for logging/exception-handling/start- 

up/shutdown, design standards and tools, and the choice of component 

architecture (such as JavaBeans or COM), are all added to the Software 

Model. 

3. Review the results, the project plan and the requirements. 

4.3.2.5 Planning by Feature 

The main tasks performed in this subprocess are as follows: 
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1. Determine the development sequence by scheduling the development of 

the feature sets (activities), thereby producing a Development Plan. 

2. Assign feature sets to development coordinators. 
3. Assign classes to developers. 

4. Review the resulting development plan, the project plan and the 

requirements. 

4.3.2.6 Feature-Driven Iterative-Incremental Development 

Almost identical to the iterative-incremental engine in the FDD methodology, the 

iterative subprocesses is where strands of design-build iterations start off as each 

development coordinator (called Chief Programmer) selects the set of features 

(called the Work Package) that should be developed in each of the iterations 

performed under his supervision, and forms a Features Team to do the job in the 

timeframe set in the development plan. 

Design by Feature 

The tasks performed in this subprocess are as follows: 

1. Study the Software Model in order to obtain a better understanding of the 

particulars of the features. 

2. Refine and complete the sequence diagrams in the Software Interactions 

Models, which as the behavioural component of the Software Model, are 

required to show how software objects should interact at run-time in order 

to implement each of the features. 

3. Refine the Software Object Models (class diagrams) so that they support 
the sequence diagrams produced in the previous task. 

4. Write Class- and Method-prologues for the elements of the Software 

Object Models. 

5. Inspect the design for errors, inconsistencies and areas for improvement. 

6. Review and revise the Work Package (the features and the iteration 

schedule). 

The products of this subprocess are transferred to the next subprocess as a Design 

Package consisting of the sequence diagrams produced, the refinements made to 
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the Software Model, the prologues, and the notes on the design alternatives 

explored, constraints, and assumptions. 

Build by Feature 

The tasks performed in this subprocess are as follows: 

1. Implement classes and methods according to the specifications given in the 

Design Package. 

2. Conduct a code inspection. 

3. Unit-test the code to ensure that all classes satisfy the functionality 

required. 
4. Integrate the increment with the system built so far, if the implemented 

classes are successfully inspected and unit-tested. 
5. Review the results, the development plan, the project plan and the 

requirements. 

4.3.2.7 Transition 

The main tasks performed in this subprocess are as follows: 

1. Test and validate the complete system. 

2. Integrate the system with existing systems. 
3. Convert legacy databases and systems to support the new release. 
4. Train the users of the new system. 
5. Deploy the new system. 

4.4 Requirements-Based Review of the Design 

Before proceeding to implementation, it is important to review the methodology 
design according to the requirements defined in the previous chapter, and to 

modify the requirements if necessary. Due to the risk-based approach of the 

development effort, the methodology design is volatile at the start of transition to 

the implementation phase, and is bound to be refined and perfected during the 

iterative application of the design-implementation-test cycle introduced in Chapter 

1, yet regular requirements-based reviews of the methodology are essential for 
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ensuring quality and maintaining the focus of the effort. Table 1 shows how each 

requirement has been addressed in the final methodology design, thereby 

identifying the requirements that remain to be addressed, and requirements that 

need modification. It also shows how the design has been influenced by existing 

methodologies and process patterns/metamodels in addressing the requirements. In 

this regard, Table 1 is complemented by Table 2 of Chapter 5 (page 306), which 

tabulates the results of a requirements-based review of the implemented 

methodology. 

4.5 Summary 

An iterative design process has been devised for performing methodology design. 

The process produces a blueprint of the target methodology through flexible and 

adaptive application of a set of four design approaches: instantiation of process 

metamodels, artefact-oriented definition of the process (around an artefact-chain), 

composition of process patterns, and integration of features from existing 

methodologies. 

The design process is dependent on the results of the analysis phase; i. e. the 

process-centred descriptions, the criteria-based analysis results, and the 

requirements. In order to focus the effort on satisfying requirements of highest 

relevance, requirements are prioritized at the start of each design iteration, based on 

the abstraction level and scope of the design activity planned to be undertaken in 

the iteration. The design activities performed in each iteration make use of the 

results of the process-centred review and analysis of object-oriented 

methodologies, process patterns and process metamodels carried out in the analysis 

phase, not the least as a source of ideas as to what features are desirable in a 

methodology and what pitfalls should be avoided. Furthermore, the review and 

analysis results are also the basis of the Integration design approach - one of the 

four design approaches available for use during the iterative design process - in 

which features, ideas and techniques from existing methodologies are integrated to 

form the design. 

Transition to the implementation phase occurs as soon as the blueprint is deemed 

complete enough; i. e. to a degree that ensures the relative stability of the design so 
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that implementation can be started. It should be reiterated that each application of 
the design process is in turn part of an iteration of the Design-Implementation-Test 

cycle of the methodology development lifecycle (as explained in Chapter 1). The 

decision to start implementation is therefore dependent on the level of detail 

targeted in each iteration of the cycle; however, a high level of risk introduced 

during design may prompt an early transition to implementation and test. 
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Table 1. Satisfaction of methodology requirements in the design phase 
(continued on next page) 
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Chapter 5 

Implementation 

The Implementation phase is concerned with detailing, extending and refining the 

methodology blueprint produced during the Design phase. The objective is to 

convert the blueprint (described in Chapter 4) into a detailed methodology 

specification that is directly usable by system developers. This chapter explains the 

implementation process and presents the end result, i. e. the implemented 

methodology. 

5.1 Implementation Process 

In any development effort, implementation means building the designed product in 

a form usable by the intended end users. In a methodology development effort such 

as this, implementation deals with adding pragmatic fine-grained detail to the 

methodology's design and representing it in a form usable to the intended 

audience, i. e. software engineers. A User Guide is the normal medium for 

representing a software development methodology, but there is no single standard 

format for a methodology user guide. Therefore, devising a suitable template for 

the user guide is the first task in the implementation of the designed methodology. 

The User Guide structure thus defined is not only used for representing the final 

methodology, but also guides the perfection and refinement of the methodology 

through focusing the methodology development effort on issues which are 

expected to be addressed in a typical methodology user guide. 

According to the requirements described in Chapter 3, the definition of the 

methodology should provide concise yet comprehensive, clear, rational, accurate, 

detailed and consistent description of the methodology lifecycle and work-units, 

producers (roles), modeling language, work-products, techniques and rules, and 

issues pertaining to umbrella activities. In order to satisfy this set of requirements, 

235 
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a multiple-view and top-down approach has been chosen for describing the 

methodology: three views of the methodology are provided, while focus is 

gradually shifted from high-level specifications to fine-grained detail. The three 

views through which the methodology is represented are as listed below: 

1. Process-Centred: focusing on the lifecycle and the work-units performed 

in the methodology (subprocesses, activities and tasks), describing all other 

elements of the methodology - roles performing the process, work-products 

produced during the process and the modeling languages used for 

expressing them, techniques and rules, and issues pertaining to umbrella 

activities - in the context of the process. 
2. Work-Product-Centred: focusing on the work-products, the modeling 

languages in which they are expressed, their interdependencies and their 

trend of evolution in the course of the methodology. All other elements of 

the methodology are described as secondary to the work-products. 
3. Role-Centred: focusing on the people (producers) involved in the 

methodology and the relevant management issues. All other elements of 

the methodology are described as pertinent to the roles. 

The above is based on the notion supported by prominent methodology 

metamodels - especially the OPEN Process Framework (OPF) [Firesmith and 

Henderson-Sellers 2001] and the Software Process Engineering Metamodel 

(SPEM) [OMG 2002] - that a software development methodology consists of three 

types of basic components: work-units (organized in stages, and ultimately a 

lifecycle), work products (described using modeling languages), and producers 
(roles). This general metamodel has been used for the instantiation and 

composition of software development methodologies [Firesmith and Henderson- 

Sellers 2001]. Furthermore, some form of this multi-view approach (although 

rather unstructured and informal) can be seen in the user guides of a number of 

modern methodologies; RUP [Krachten 2003], USDP [Jacobson et al. 1999], and 

FDD [Palmer and Felsing 2002] are prominent examples. Having three views of 

the methodology not only highlights the issues pertinent to each of these three 

types of components, it also makes it possible to de-clutter the description of the 

methodology through keeping fine-grained detail where it is most relevant. For 

example, low-level development task details are confined to the process-centred 
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view, modeling language and diagramming issues are mainly addressed in the 

work-product-centred view, and team-related issues are solely attended to in the 

role-centred view. 

The template used for describing the user guide has thus taken shape as shown in 

Figure 42. The template excludes examples at this stage, as these are produced 
during testing and can be later added as complements to the user guide. 

User Guide Template 

  Overall Process 
o Lifecycle: subprocesses and their order of execution 
o Work-products 

o Roles and teams 
  Process-centred description of the methodology; consisting of phase descriptions, 

each of which covers the following: 
o Entry criteria 
o Tasks and their order of execution; the following are explained for each 

task: 
  Work to be performed 
  Work-products to be produced 
  Roles involved 

o Verification 
o Exit criteria 

" Work-product-centred description of the methodology; consisting of work- 
product descriptions, each of which covers the following: 

o Structure and modeling language 
o Dependencies 

o Trend of evolution throughout the process: Subprocesses and tasks 
where the work-product is created or modified 

o Producers: Roles involved in producing/modifying the work-product 
throughout the process 

o Production methods and guidelines 
o Consistency issues 

  Role-centred description of the methodology 
o Roles: Responsibilities throughout the process 
o Teams: Constitution and responsibilities 

Figure 42. User guide template 

5.2 End Result: Methodology User Guide 

The following sections contain the detailed description of the methodology as 

presented in the framework of the proposed user-guide template. A high-level view 
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of the methodology is presented before delving into finer-grained detail. Examples 

of models (produced during the Test phase) are presented in Chapter 6, yet have 

been referenced in the relevant sections of this chapter. 

5.2.1 Overall Process 

A general view of the methodology lifecycle, the work-products produced, and the 

roles and teams involved in performing lifecycle activities is herein presented. 

5.2.1.1 Lifecycle: Subprocesses and Their Order of Execution 

The proposed process is based on smooth and seamless transition from real-world 

domain models to system models, and ultimately to software design models. In 

business systems, this can be achieved via use of patterns for iteratively transforming 

the models through redistributing functionalities and structures. The process consists 

of the following subprocesses: 

1. Preliminary Analysis (feasibility analysis and preliminary planning): with 

the focus on preliminary feasibility study of the project, weighing the 

available resources against constraints and complexities involved. An overall 

plan is also produced for the development effort. 
2. Real-world domain modeling and requirements elicitation: with the focus on 

modeling the problem domain into which the system is to be introduced. The 

system is then inserted into this context model, and its requirements are 

specified as FDD-style feature sets [Coad et al. 1999]. 

3. System specification: with the focus on iterative translation of the problem 
domain model first into a system model - in which the system is designed as 

a non-automated subunit of the problem domain - and ultimately to a 

software model, depicting the internal structure and behaviour of the 

computer-based system. In the case of business systems, adapted versions of 

reengineering-, refactoring- and design patterns are iteratively applied to the 

system model in order to produce the target software model. 
4. Architectural design: with the focus on identifying an implementation- 

specific architecture for the system modeled so far, and determining the 

domain-independent infrastructure supporting the system. 
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5. Planning by feature: with the focus on scheduling the features for 

development, and then assigning the feature sets (activities), and the classes 
in the system model, to developers. 

6. Feature-driven iterative-incremental development: During, this iterative 

development phase, Each feature-set-developer (called ('hick/' Programmer) 

selects the set of features (called the Work Package) that should be 

developed in each of the iterations performed under his supervision, and 

develops the feature sets by commissioning class-developers (called Class 

Owners) to cooperate in order to design and implement the features. The 

constituent subphases, in the order that they are performed in each iteration. 

are as follows: 

6.1. Design by feature: with the focus on determining how the 

features in the work package should be realized at run-time by 

interactions among objects. 

6.2. Build by feature: with the focus on coding and unit-testing the 

necessary items for realization of the features in the work 

package. The implemented items that pass the tests are then 

integrated into the main build. 

7. Transition: with the focus on validating the system and releasing it into the 

user environment. 

Figure 43 shows the lifecycle and its subprocesses. 

Figure 43. The lifecycle of the methodology 
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5.2.1.2 Work Products 

240 

The methodology is based on expressing functionality and functional requirements 

as FDD-style Feature Sets and Features [Coad et al. 1999, Palmer and Felsing 

20021. Features are relatively fine-grained user-valued pieces of functionality 

expressed in client-valued terms, conforming to the general template: <action> 

<result> <object>; for example, "calculate the total value of a shipment" or 

"check the availability of seats on a flight". Each feature is identified as a Step in 

one or more Activities (also called Feature Sets), which are expressed as 

conforming to the general template: <action><-ing> a(n) <object>; for example, 

"reserving a seat". Activities in turn belong to Areas (or Major Feature Sets), 

which are expressed using the general template: <object> management; for 

example, "reservations management". This three-layered structure allows the 

developers to adequately manage the complexity of functionalities and 

requirements. 

The following work products are produced in the methodology: 

1. Feasibility Analysis Package, which encapsulates the results of preliminary 

analysis and consists of: 

a. Feasibility Report: The Feasibility Report includes information on 

the scope of the system, high-level requirements, constraints and 

risks involved, the resources required, and alternative approaches 

to developing the system and results of their analysis. 
b. Feasibility Prototype: Used to demonstrate the scope and the 

technical feasibility of the project. 
2. Context Model, which depicts the problem domain and consists of: 

a. Context Object Models: Depicting elements of the problem domain 

as collaborating objects, with data/control now clearly shown. The 

system is later added and modeled as a problem domain object. 
b. Context Interaction Models: Depicting typical transaction scenarios 

among problem domain objects. With the introduction of the 

system, models are produced depicting the typical system usage 

scenarios. 
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c. Feature Lists: Job descriptions and functionalities are expressed as 

areas (major feature sets), activities (feature-sets), and feature. 

With the introduction of the system, system features are identified 

and set as functional requirements. 
d. Context Vocabulary: A glossary of terms from the problem domain 

e. Non-functional requirements and constraints 
3. System Model: The result of extending and refining the Context Model, the 

System Model shows the internal constitution of the system designed as an 

extension to the problem domain, using the same notions and concepts as 

those found in the problem domain. The System Model consists of: 

a. System Object Models: Depicting intra-system elements as 

collaborating objects, using the same element types as those 

present in the problem domain. 

b. System Interaction Models: Showing typical interaction scenarios 

among system elements. 

c. Features list: Composed of features and feature sets assigned to 
intra-system objects and subsystems. 

d. Revised list of non-functional requirements and constraints 
4. Software Model: The Software Model depicts the constituent elements of 

the software system, and is the result of applying feature redistribution 

patterns to the System Model. It consists of: 

a. Software Object/Class Models: Object Models depict typical links 

and data flows among system objects, and are complemented by 

Class Models, showing the classes of the system and their 

relationships. Architectural information and domain-independent 

elements are added to these models in later subprocesses of the 
development lifecycle. 

b. Software Interaction Models: Depicting typical object interactions 

in the software systern. 

c. Class and Method prologues 
d. Revised list of features 

e. Revised list of non-functional requirements and constraints 
5. Project Plan and Development Plan 
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6. Work Packages: A Work Package is the set of features that a Chief 

Programmer has chosen to be designed and built in each iteration of the 
iterative-incremental development engine. 

7. Design Packages: A Design Package encapsulates the results of the Design 

stage in each of the iterations of the iterative-incremental development 

engine, and is used as a basis for implementing the features in the 

iteration's Build-by-Feature stage. It consists of: 

a. Refinements made to the Software Model during detailed design in 

order to facilitate the implementation of the features specified in 

the iteration's Work Package. 

b. Class and method prologues detailing the structure and particulars 

of classes and methods. 

c. Notes on the design alternatives explored, the constraints specified, 

and the assumptions made during design. 

8. Verification and validation reports 
9. Executable Package, consisting of executables and run-time components 
10. User Guides and Operation Manuals 

The models produced: the Context Model, the System Model and the Software 

Model, are in fact different evolution stages of one, single model. The Context 

Model is extended and refined into the System Model, and the System Model is in 

turn converted into the Software Model using pattern-based mapping. The 

Software Model is later perfected and enriched with architectural and detailed 

design specifications, after which it is used as a basis for implementation. 

UML (Version 1.5) [OMG 2003] is the main modeling language used for 

diagramming in the methodology. UML class diagrams (used for producing Class 

Models), activity diagrams (used for producing Interaction Models), sequence 
diagrams (used for producing Interaction Models), and component diagrams (used 

for modeling subsystem architectures in Class Models and Object Models) are all 

produced according to UML specifications. However, Object Models - which 

capture functional and structural aspects of the context, system and software - use a 

notation similar to UML collaboration diagrams, but in a data-flow-oriented context 

analogous to Data Flow Diagrams (DFD), i. e. through replacing message/signal 
flow by data/control flow, and ignoring sequencing. 
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Figure 44 shows the work products and their interdependencies. 

5.2.1.3 Roles and Teams 

The roles involved in the development methodology, many of which are extended 

versions of FDD roles Palmer and Felsing 20021, are as listed below: 

1. Project Manager: Overall manager of the development effort 

2. Client Representative: Makes decisions on behalf of the client 

3. Domain Expert: Provides knowledge on the problem domain 

4. Ambassador User: Supplies user feedback 

5. Chief Architect: Acts as modeling coordinator 

6. Modeling Expert: Provides guidance on object-oriented modeling 
7. Patterns Advisor: Provides assistance on using design, reengineering and 

refactoring patterns for producing the Software Model 

8. Development Manager: Coordinates development teams during iterative- 

incremental development subphases 
9. Chief Programmer: Directs detailed design and implementation activities 

during iterative-incremental development 

10. Class Owner: Performs detailed design, implementation and test on 

classes put under his ownership 

Feasibility Analysis Package 

Context Model 4 Ssstern Model 

Sottvýare Model 

Project Plan Desclopment Plan Work Packages Design Packages 

User Guide and Operation 

als 
Executable Package Verification and Validation 

Manu Reports 

Figure 44. Work products and their interdependencies 
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The teams undertaking the execution of subprocesses and activities in the course of 

the methodology are as follows: 

1. Preliminary Analysis Team: Performing feasibility analysis and 

preliminary planning during the Preliminary Analysis subprocess. 
2. Modeling Team: Performing real-world problem domain modeling and 

requirements elicitation during systems analysis. 
3. Model Conversion Team: Producing the system and software models 

during the System Specification subprocess. 
4. Architectural Design Team: Producing a blueprint for the architecture of 

the system, based on which detailed design and implementation will be 

performed. 

5. Planning Team: Producing a plan for the iterative-incremental 

development phase. 
6. Features Team: In charge of the iterative-incremental design stages of the 

methodology, performing detailed design and implementation in pre- 

planned iterations. 

7. Transition Team: In charge of releasing the system into the user 

environment. 

5.2.2 Process-Centred Description of the Methodology 

In the process-centred view of the methodology, the focus is on the lifecycle and 

the subprocesses comprising it, with work-products and producers (teams and 

roles) viewed in the context of - and secondary to - the process. Figure 45 shows a 
high-level process-centred view of the methodology. The following sections 
describe the details in each of the subprocesses of the methodology. 

5.2.2.1 Preliminary Analysis (Feasibility Analysis and Preliminary 
Planning) 

The Preliminary Analysis subprocess is mainly concerned with acquiring high- 

level information about the system in order to assess the feasibility of the 

development effort and set the groundwork for commencement of the project. 
Figure 46 shows the tasks involved in this subprocess and the work-products 

produced. 
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Figure 45. Process-centred view of the methodology: lifecycle, teams responsible for 
carrying out the subprocesses, and work-products produced or revised 

Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Request made by the client, and case established for considering the 

feasibility of the effort 

o Resources available for performing the preliminary analysis 

Tasks and Their Order of Execution 

Preliminary Analysis is mainly a risk mitigation activity, aimed at identifying the 

characteristics, constraints and risks associated with the system and the 

development project, and assessing the feasibility of the development effort based 

on the knowledge acquired, thus avoiding the embarrassment - not to mention the 

financial implications - of committing to a project that has a significantly high 

possibility of failure. 
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Figure 46. Preliminary Analysis subprocess: tasks and work-products 

The tasks performed in this subprocess, typically performed sequentially, are as 

follows: 

1. Form the Preliminary Analysis Team, consisting of a Project Manager in 

charge of the development effort, a Client Representative who makes the 

decisions on behalf of the client, a number of Ambassador Users and 

Domain Experts to help understand the complexities of the problem 

domain, and a number of Chief Programmers to develop the prototype of 

the system and provide technical expertise. 

2. Acquire high-level knowledge as to the nature of the project, its scope, and 

the risks and constraints involved. A set of high-level requirements, 

expressed as major feature sets (areas) and their constituent feature sets 

(activities), is also compiled. 

3. Perform the traditional activities of feasibility analysis, exploring alternative 

development approaches and architectural configurations paying special 

attention to technical, schedule, financial, operational and political 

feasibilities (performed in traditional methodologies, e. g. SA IDeMarco 
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1978] and SSADM [Downs et al. 1988], as well as in modern ones, e. g. 
DSDM [DSDM Consortium 2003]). The results are summarized in the 
Feasibility Analysis Report. A throw-away prototype of the system, called 

the Feasibility Prototype, is also produced in order to demonstrate the 

technical feasibility of the development effort. Since the Feasibility Analysis 

Report and the Feasibility Prototype are mutually dependent, a parallel 

scheme for producing them should be agreed and implemented by the team. 

An iterative-incremental approach is typically preferable when significant 

risks are involved, since risk management can be exercised continually as 

analysis gradually and tentatively delves deeper into the problem domain. In 

such an approach, functionalities to be implemented in the prototype are 

prioritized according to their development risk, implemented in the 

prototype, and analyzed and assessed according to user feedback. The results 

are then fed back into the feasibility analysis task. Based on the results of the 

feasibility analysis, a decision is made on whether the development effort 

should be commenced or aborted. Subsequent tasks (tasks 4 and 5 on this 

list) are only performed if the decision is to commence the project. 
4. Develop rough estimates and an overall Outline Plan for the project. 
5. Make arrangements for provision of resources for commencement of the 

project. 

Work Products 

The following work-products are produced in this subprocess: 

  The results of the first two tasks are compiled in the Feasibility Report. 

The report may be complemented by a primitive prototype of the system 
(called the Feasibility Prototype), the main purpose of which is to 

demonstrate the scope and the technical feasibility of the project. The 

Feasibility Report includes information on: 

a. scope of the system and high-level requirements (expressed as 
feature sets) 

b. constraints and risks involved 

c. alternative approaches to developing the system and the results of 
their analysis 
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d. resources required 

  Initial Project Plan (only produced if feasibility analysis results in the 

decision to commence the project) 

Roles Involved 

The Preliminary Analysis Team which carries out this subprocess consists of the 

following roles: 

  Project Manager: Responsible for 

a. leading the team 
b. providing and managing resources 

c. facilitating operations 

d. resolving issues with the client and third parties 

e. enforcing standards and schedules 

" Domain Expert: Helping understand the problem domain 

  Ambassador User: Providing realistic and hands-on user feedback 

  Chief Programmer: Developing the prototype of the system and providing 

technical expertise 

" Client Representative: Responsible for: 

a. Defining constraints and high-level non-functional requirements 
b. making decisions as to stopping or commencing the project 

Verification 

The Preliminary Analysis Team verifies the results. The primary concern should be 

ensuring that constraints and risks (functional, managerial, technical, financial, 

schedule, political, etc. ) likely to jeopardize the feasibility of the project have not 
been overlooked. Outside verification may be sought if deemed necessary by the 

client. 

Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 
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0 Decision reached as to the commencement or abandonment of the project, 

based on the results of the feasibility analysis 

" Agreement made on the scope of the system and the constraints set by the 

client 

" Commitments made on both sides to provide the services and resources 

expected from them as agreed by the team 

" Approval of the overall Project Plan 

5.2.2.2 Real-World Domain Modeling and Requirements Elicitation 

As its name implies, this subprocess is where the problem domain is explored and 

modeled as is. The system is then introduced in the models and its requirements are 

identified. Figure 47 shows the tasks involved in this subprocess and the work- 

products produced or modified. 

tr Domain Modeling and Requirements Elicitation 

Form the Modeling 
yearn 

-------- Domain modeling I 

t ik 

Contest 
_ 

Introduction of the system 
M1 xlel into the problem domain 

I Ik. iyn Iw Ic. iýnc 

Identification of non-functional 
requirements and constraints D-Iop em Eng- 

i", , ý,, ----- Review results, plan and 
---- ----- r° requirements 

Figure 47. Domain Modeling and Requirements Elicitation subprocess: tasks and 
work-products 
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Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Decision made by the client to commence the project 

"o Provision of resources required for performing the subprocess 

Tasks and Their Order of Execution 

250 

The Context Model is produced by real-world modeling of the problem domain and 

adding the system to it as an object. 

The tasks performed in this subprocess are as follows: 

1. Form the Modeling Team, consisting of several software development 

professionals (Chief Programmers), and one or more Domain Experts. The 

team will operate under the guidance of a modeling specialist (called the 

Chief Architect) and enjoys the counsel of one or more Modeling Experts. 

One or more members of the user community will also be present as 

Ambassador Users, contact with whom will be maintained during the 

development process. The Project Manager attends team sessions as 

supervisor and facilitator. 

2. Domain modeling is conducted iteratively, starting with modeling the high- 

level view and gradually moving inside organizational sections, focusing 

on lower-level elements of the problem domain. Real-world modeling is 

intended rather than object/class modeling, though the elements of the 

problem domain are modeled as objects. The tasks performed are as 
follows: 

2.1. Human workers, systems and data-stores of the problem domain 

are modeled as collaborating objects in a Context Object 

Model. A notation similar to UML collaboration diagrams is 

used for representing the model [OMG 2003], except that links 

are adorned with data/control flows, but not sequence numbers 

(example in Figure 56, page 314). Organizational boundaries 

are preserved, modeled through using UML packages and 
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component diagrams. The resulting functional models comprise 

the main bulk of the Context Model. 
2.2. Typical transaction scenarios are modeled in UML activity 

diagrams (with swimlanes depicting the participating objects, as 

shown in Figure 58, page 315) and/or UML sequence diagrams 

(Figure 62, page 319). The resulting Context Interaction Models 

comprise the behavioural part of the Context Model. 

2.3. Job descriptions and functionalities are expressed as areas 
(major feature sets), activities (feature-sets), and features [Coad 

et al. 1999, Palmer and Felsing 2002]. Feature lists are 

compiled and added to the Context Model. 

2.4. A glossary of terms from the problem domain is compiled 
(Figure 63, page 321). 

3. Introduction of the system into the problem domain: The system is added 

as an object to the Context Model (Context Object Models) and feature sets 

are assigned to the system through redistribution and/or duplication (Figure 

57, page 314). New feature sets are added as deemed necessary by the 

Modeling Team, and the feature lists in the Context Model are updated. 
The features of the system comprise the functional requirements and as 

such will guide and focus the development activities throughout the rest of 

the lifecycle (Table 3, page 320). Typical scenarios of interaction with the 

system are also modeled and the Context Interaction Models are updated 

accordingly (Figure 60, page 317). 

4. Non-functional requirements and constraints are identified and added to 

the Context Model. 

5. The results, the plan and the requirements are reviewed and revised. 

Work Products 

The following work-products are produced in this subprocess: 

  Context Model, consisting of: 

a. Context Object Models, with the system added and modeled as a 

problem domain object 



Chapter 5. Implementation 252 

b. Context Interaction Models, including models depicting typical 

scenarios of system usage 

c. Feature Lists, including system features identified and set as 

functional requirements 

d. Context Vocabulary, containing the glossary of terms compiled 

from the problem domain 

e. Non-functional requirements and constraints 

  Revised Project Plan 

Roles Involved 

The Modeling Team which carries out this subprocess consists of the following 

roles: 

  Project Manager: Responsible for 

a. leading the team 
b. providing and managing resources 

c. facilitating operations 

d. resolving issues with the client and third parties 

e. enforcing standards and schedules 

  Domain Expert: Helping understand the problem domain 

  Ambassador User: Providing realistic and hands-on user feedback 

  Chief Architect: Providing modeling expertise and guiding the modeling 

effort 

  Modeling Expert: Providing advice on object-oriented modeling issues 

  Chief Programmer: Development expert 

Verification 

The Modeling Team verifies the results, seeking advice from other Domain Experts 

if necessary. The primary concern should be ensuring that major functionality has 

been captured in the Context Model. Outside verification may be sought if deemed 

necessary by the client. 



Chapter 5. Implementation 253 

Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

" Context Model verified and approved by the team 

5.2.2.3 System Specification 

The System Specification subprocess focuses on the design of the system as an 

extension of the existing system using the types of elements originally found in the 

problem domain, and then converting the result to its computer system counterpart 

using object-oriented patterns. Figure 48 shows the tasks involved in this 

subprocess and the work-products produced or modified. 

Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Context Model approved by the Chief Architect as adequately capturing 

the problem Domain 

o Provision of resources required for performing the subprocess 
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Figure 48. System Specification subprocess: tasks and work-products 
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Tasks and Their Order of Execution 

Focus is shifted to the interior of the system, and the system is designed as an 

extension to the structure presently in place. The System Model thus built is then 

converted to the Software Model through using patterns to enhance encapsulation 

and information hiding. The goal is to provide a smooth transition from the 

problem domain to the solution domain and ultimately to the implementation 

domain, preserving object-orientation at all levels while keeping the artifacts 

tangible to all the people involved in the effort, especially Domain Experts. 

Features are given a pivotal role from the start and act as the basis binding the tasks 

and artifacts together. 

The tasks performed in this subprocess, explained as relevant to business systems, 

are as follows: 

1. Form the Model Conversion Team: The team consists of the same roles as 

the Modeling Team (the people may indeed be the same as those present in 

the Modeling Team), except that one or more Patterns Advisors are also 

present to provide advice during converting the System Model to the 

Software Model. 

2. The Context Model built during the previous subprocess is converted to the 

System Model. The system object treated as a black box during the 

previous subprocess is opened up, and the system is designed as an 

extension to the organizational structure into which the system is to be 

ultimately introduced, using the same types of elements already present in 

the problem domain. In a business system, for instance, this means adding 

a new section or department consisting of staff performing predefined jobs 

using equipment and tools made available to them (Figure 65, page 324). 

The tasks performed, using examples relevant to business systems, are as 
follows: 

2.1. Human elements, systems and data stores sharing features with 
the system are moved inside system boundaries or assigned 

system counterparts if their attachment to the system is partial 
(elements interacting with the system may have system 

counterparts). The system is to be designed as a homogeneous 
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extension of the problem domain; this means that the same types 

of entities as seen in the problem domain are used for designing 

the system. 

2.2. Each data-store and each flowing data object is assigned to a 

custodian; any access to any such object should be made via the 

custodian. Flowing-data custodians are file/document movers, 

transferring the file or document put in their custody between 

processing clerks. In a business system, data-store custodians are 

akin to file clerks and archive keepers. It should be noted that 

there is no limit on the number of staff assigned to the system. 

The resulting System Object Models - depicting non-sequenced 
data/control flowing among objects (intra-system and extra- 

system) - comprise the functional component of the System 

Model (Figure 68, page 327). 

2.3. Typical interaction scenarios are identified, and relevant 
behavioural models (typically activity diagrams and interaction 

diagrams) are produced for each of the system's feature sets. The 

resulting System Interaction Models comprise the Behavioural 

component of the System Model (Figure 69, page 328). 

2.4. Feature sets and features are assigned to the system elements 
based on the functionality assigned to the system as a whole and 

the interaction models produced in the previous task (Table 4, 

page 330). This is analogous to job definition and task 

assignment in manual business systems. The list of feature sets 

and features assigned to the objects will later be used in 

determining class methods. 
2.5. Review and revision of the requirements of the system 
2.6. Review of the resulting System Model 

3. The System Model produced so far is converted to the Software Model by 

applying patterns to redistribute functionality among system objects. The 

model thus produced will ultimately be perfected and extended during later 

design and implementation subprocesses. The tasks performed, explained as 

relevant to business systems, are as follows: 
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3.1. Patterns are applied to the System Model to iteratively 

redistribute features among objects (i. e. processing staff and 

custodians) in order to enhance encapsulation, increase cohesion 

and reduce coupling, and also to introduce architecture. 

Reengineering patterns, especially those suggested in [Demeyer 

et al. 2003] for redistributing responsibilities among objects are 

of utmost use in the starting iterations. These typically include: 

" Moving behaviour close to data 

e Eliminating navigation 

" Splitting up God classes (Blobs) 

A number of Refactoring patterns proposed in [Fowler 1999] can 

also be used in conjunction with the above (indeed, some of them 

already are a part of the above patterns): 

" Move method (feature) 

" Move field 

" Extract class 

" Inline class 

" Hide delegate 

" Remove middle man 

" Encapsulate field 

Design patterns can be used in later iterations to help implement 

specific architectures and mechanisms typically present in the 

problem domain and tangible to users. Applying these patterns 

not only results in structures familiar to the user, but also 
facilitates the translation of these structures into solution domain 

and implementation domain class structures. Design patterns 

especially useful in this context are: 

" GoF patterns [Gamma et al. 1995]: 

o Wrapper: 

  Adapter: to standardize interfaces 

  Decorator: for dynamic reassignment of 

responsibilities (features) 

o Facade: for inter-departmental/inter-group 

interfacing 
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o Proxy: already used in assigning custodians, can 

also be used for adding middle men if necessary 

o Command: to encapsulate features or feature-sets 

(possibly transaction processing chains), making 

it possible to pass them like processing 

instruction manuals 

o Mediator: to centralize complex inter-object 

communications (analogous to appointing a 

facilitator or manager) 

o Observer: to implement change monitors 
(auditors/supervisors) in order to ensure 

consistency and the enforcement of business 

rules 

o State: to facilitate dynamic change of roles 
(dynamic job descriptions) 

o Strategy: to enable dynamic assignment of 

algorithms (changing work procedures) 

o Visitor: for setting up specialized service- 

provider departments/sections, with the 

knowledge of how to provide specific kinds of 

service to each and every client 

department/section 

" GoV patterns [Buschmann et al. 1996]: 

o Broker: for defining inter-departmental go- 
betweens (dispatch-offices) 

o Command Processor: to define special jacks-of- 

all-trades; i. e. dynamically configurable 

clerks/teams that take part in the processing once 

they are supplied with the know-how 

(commands) 

o Layers: for implementing hierarchical 

departmental/management organizational 

structures 
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o Master-Slave: to implement certain team and 

management structures 

o Pipes-and-Filters: to define overall transaction- 

processing architecture 

Antipatterns can also be of use in the redistribution procedure, 

especially the Poltergeist and Swiss-Army-Knife antipatterns 

[Brown et al. 1998]. The redistribution procedure is devised in 

such a way as to resolve the problems typically afflicting 

analysis approaches based on object-oriented real-world 

modeling [Isoda 2001]. Objects irrelevant to the system and 

actor-counterparts without any justification for existence in the 

system are gradually disposed of, and relationships not belonging 

to the system are not introduced into the models because of the 

data-flow oriented and feature-driven nature of the System 

Model and the redistribution procedure (Figure 71, page 331). 

Behavioural models are updated in each iteration of the 

redistribution procedure. 

3.2. Applying the patterns ultimately results in custodian objects 
being merged with the data objects they had under custody. This 

marks the transition from the problem-domain-based system to 

the computer system, signifying the transition to solution 
domain. The resulting Software Object Models comprise the 

functional component of the Software Model. Class diagrams are 

then produced based on the Object Models, depicting the classes 
in the system and their relationships. Inheritance hierarchies are 
introduced in order to enhance abstraction (patterns for 

refactoring inheritance can be of use in this context [Fowler 

1999]). The Software Class Models thus produced comprise the 

main structural component of the Software Model. 

3.3. Behavioural diagrams inherited from the System Model are 

updated according to the new Software Class/Object Models. 

The resulting Software Interaction Models comprise the 

behavioural component of the Software Model. Message passing 

should be clearly depicted (Figure 76, page 336). 
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3.4. Preparation of initial versions of class and method prologues 
3.5. Review and revision of the requirements 
3.6. Review of the resulting Software Model 

4. Review the results of the subprocess, the plan and the requirements 

Work Products 

The following work-products are produced in this subprocess: 

  System Model 

a. System Object Models 

b. System Interaction Models 

c. Revised Features List 

d. Revised list of non-functional requirements and constraints 

  Software Model 

a. Software Object/Class Models, consisting of Object Models 

depicting typical links and data flows among system objects, and 
Class Models, showing the classes of the system and their 

relationships. 
b. Software Interaction Models 

c. Initial versions of class and method prologues 
d. Revised list of features 

e. Revised list of non-functional requirements and constraints 

  Revised Project Plan 

Roles Involved 

The Model Conversion Team which carries out this subprocess consists of the 

following roles: 

  Project Manager: Responsible for 

a. leading the team 

b. providing and managing resources 

c. facilitating operations 
d. resolving issues with the client 

e. enforcing standards and schedules 
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  Domain Expert: Helping understand the problem domain 

  Ambassador User: Providing realistic and hands-on user feedback 

  Chief Architect: Providing modeling expertise and guiding the modeling 

effort 

  Modeling Expert: Providing advice on object-oriented modeling issues 

  Chief Programmer: Development expert 

  Patterns Advisor: Providing expertise on patterns and their application for 

redistributing functionality among system elements 

Verification 

The Model Conversion Team verifies the results, making sure the conversions have 

not resulted in lost information or redundant clutter. The primary concern should 

be ensuring that features have been preserved during model conversion, and have 

indeed been realised and implemented by the designed system, in the System 

Model as well as the Software Model. Outside verification may be sought if 

deemed necessary by the team. 

Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

" Software Model verified and approved by the team 

" Features list reviewed and approved as consistent with the Software Model 

5.2.2.4 Architectural Design 

Focused on designing an overall implementation-specific architecture for the 

system, this subprocess defines the infrastructure based on which multi-team, 
iterative-incremental detailed design and implementation will be carried out in the 

following subprocesses. Figure 49 shows the tasks involved in this subprocess and 

the work-products modified. 
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Figure 49. Architectural Design subprocess: tasks and work-products 

Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Software Model approved by the Conversion Team as adequately complete 

for architectural design to start 

o Provision of resources required for performing the subprocess 

Tasks and Their Order of Execution 

The tasks performed in this subprocess are as follows: 

I. Form the Architectural Design Team: consisting of the same roles as the 

Conversion Team active in the previous subprocess, except that Domain 

Experts are replaced by Design Experts with knowledge on architectural 

design techniques and domain-independent technologies. 

2. Convey the Software Model to the implementation domain through adding 

implementation-specific detail and restructuring it in order to facilitate 

implementation and accommodate the domain-independent parts of the 

system. The user interface is designed in this task, and the Software Model 
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is enriched with architectural design patterns, this time used in their 

original capacity. The components comprising the system and their 

architecture are identified (if a component-based development approach is 

intended); the component (application) architecture is usually described 

with packages and component diagrams showing the components and their 

inter-relationships. Features and feature sets are duly redistributed. 
Interaction among architectural parts is modeled through interaction 

diagrams. 

3. Identify the architecture of the domain-independent parts of the system: 
hardware and software platforms, infrastructure components (such as 

middleware and databases), utilities for logging/exception-handling/start- 

up/shutdown, design standards and tools, and the choice of component 

architecture (such as JavaBeans or COM), are all added to the Software 

Model. Component diagrams are used to show these physical components 

and their inter-relationships. Interactions are shown in collaboration 
diagrams. 

4. Review the results, the plan and the requirements 

Work Products 

The following work-products are produced in this subprocess: 

  Revised Software Model 

a. Revised versions of Software Object/Class Models spanning 

architectural information, user interface and domain-independent 

components added during the subprocess; consisting of Object 

Models depicting typical links among objects, and Class Models, 

showing the classes and their relationships. 
b. Revised versions of Software Interaction Models 

c. Revised versions of class and method prologues 
d. Revised list of features covering feature sets assigned to 

architectural and domain-independent units 

e. Revised list of non-functional requirements and constraints 
  Revised Project Plan 
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Roles Involved 

263 

The Architectural Design Team which carries out this subprocess consists of the 

following roles: 

  Project Manager: Responsible for 

a. leading the team 

b. providing and managing resources 

c. facilitating operations 

d. resolving issues with the client and third parties 

e. enforcing standards and schedules 

  Design Expert: providing knowledge on architectural design techniques 

and domain-independent technologies 

  Ambassador User: Providing realistic and hands-on user feedback 

  Chief Architect: Providing modeling expertise and guiding the modeling 

effort 

  Chief Programmer: Development expert 

  Patterns Advisor: Providing expertise on patterns and their application for 

redistributing functionality among system elements 

Verification 

The Architectural Design Team verifies the results, making sure all major 

architectural and domain-independent elements needed for implementing the 

system are identified. The primary concern should be ensuring that links between 

domain entities and domain-independent components have been adequately set up, 

and system features have been preserved during design and have indeed been 

realised and implemented by the designed system. The user interface should be 

validated by the Ambassador Users. The only remaining design activity is the 

detailed design of the classes, which is performed during the cycles of the iterative- 

incremental development engine in the penultimate subprocess of the lifecycle. 

Outside verification may be sought if deemed necessary by the team. 
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Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

" Software Model (including the user interface) verified and approved by the 

team as covering the implementation-specific architectural and domain- 

independent components necessary for the implementation process to 

commence 

" Features list reviewed and approved as consistent with the Software Model 

5.2.2.5 Planning by Feature 

This subprocess is where the feature-driven iterative-incremental engine of the 

development process is planned and the appropriate feature-development task 

assignments are made. Figure 50 shows the tasks involved in this subprocess and 

the work-products produced or modified. 
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Figure 50. Plan by Feature subprocess: tasks and work-products 
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Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Software Model (especially the Features List therein) approved by the 

Architectural Design Team as adequately complete and stabilized 

o Provision of resources required for performing the subprocess 

Tasks and Their Order of Execution 

The tasks performed in this subprocess are as follows: 

1. Form The Planning Team: The Planning Team typically consists of the 

Project Manager as the leader of the team, the Development Manager as 

the resource manager and coordinator of the Features Teams responsible 

for the ultimate implementation of the system, and the Chief Programmers 

involved in the development as leaders of Features Teams, providing 

practical implementation expertise crucial to reliable estimation and 

scheduling of the feature development subprocesses. 
2. Determine the development sequence by scheduling the development of 

the feature sets (activities), specifying a date (month and year) for the 

completion of each. This requires taking into account the inter- 

dependencies among the feature sets, the workload distribution across the 

development teams, and the risks associated with the feature-sets. A 

completion date is then determined for each area (major feature set) as the 

last completion date assigned to its constituent feature sets. The resources 

needed for the development are also identified and planned to be allocated 

to development teams. 

3. Assign feature sets to Chief Programmers, thereby declaring them as the 

owners of the feature-sets assigned to them. 

4. Assign classes to developers, thereby declaring the developers as Class 

Owners. 

5. Review the resulting Development Plan, the Project Plan and the 

requirements 
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Work Products 

The following work-products are produced in this subprocess: 

  Development Plan, covering 

a. Development schedule 
b. Feature-set and class assignments 

c. Resource allocations 

  Revised Features List (in the Software Model) 

  Revised Project Plan 

Roles Involved 

266 

The Planning Team which carries out this subprocess consists of the following 

roles: 

  Project Manager: Responsible for 

a. leading the team 

b. providing and managing resources 

c. facilitating operations 
d. resolving issues with the client and third parties 

e. enforcing standards and schedules 

  Development Manager: The resource manager and coordinator of the 

Features Teams during the iterative development subprocesses 

  Chief Programmer: Development expert 

Verification 

The Planning Team verifies the results, making sure that all feature sets have been 

scheduled and assigned to Chief Programmers, and all classes have been assigned 

to Class Owners. The primary concern should be ensuring that reasonable 

completion dates have been determined based on inter-dependencies among the 

feature sets, the risks associated, and the workload distribution across the 

development teams. Care should also be taken in ensuring that all major resources 

required have been identified and verified as obtainable and ready to be allocated. 
Outside verification may be sought if deemed necessary by the team. 
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Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

" Development Plan verified and approved by the team as reasonably 

complete 

9 Features list reviewed and approved as consistent with the Software Model 

5.2.2.6 Feature-Driven Iterative-Incremental Development 

Strands of design-and-build iterations start off as each Chief Programmer selects 

the set of features (called the Work Package) that should be developed in each of 

the iterations performed under his supervision, and forms a Features Team to do 

the job. A Chief Programmer selects features and schedules his iterations according 

to the Development Plan. Typically, at any point during this development period, 

several iterations are being performed concurrently, some of them supervised by 

the same Chief Programmer, with each of the Class Owners taking part in several 

iteration-teams simultaneously. 

5.2.2.6.1 Design by Feature 

In each iteration of this subprocess, detailed design of the classes and methods 
involved in the implementation of the features in the Work Package is carried out. 
Figure 51 shows the tasks involved in this subprocess and the work-products 

produced or modified. 

Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Software Model (especially the Features List therein) approved by the 

Architectural Design Team as adequately complete and stabilized to be 

used as the basis for implementation 

o Development Plan verified and approved by the Planning Team as 

reasonably complete 

o Provision of resources required for performing the subprocess 
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Tasks and Their Order of Execution 

The tasks performed in this subprocess are as follows: 

1. Form a Features Team, which will design and build the feature(s) selected 
for development in the current iteration under the supervision of the Chief 

Programmer who owns the features. A Work Package should first be 

defined by the Chief Programmer, showing the projected completion date 

of the current iteration and the features chosen for detailed design and 

implementation therein. After defining the Work Package and identifying 

the set of classes that might be involved in the realization of the features in 

the Work Package, the Chief Programmer brings together the owners of 

these classes. Included in the team are one or more Modeling Experts who 

are commissioned to help with the design modeling. One or more 

Ambassador Users are also present to provide feedback on the design. 

2. Study the Software Model in order to obtain a better understanding of the 

particulars of the features. This task is usually undertaken for high-risk 

features, the development of which usually requires a deeper understanding 

of the data, algorithms, and constraints involved. 

3. Refine and complete the sequence diagrams in the Software Interactions 

Models, which as the behavioural component of the Software Model, are 

required to show how software objects should interact at run-time in order 

to implement each of the features. The features team also meticulously logs 

the alternative design models it has explored, as well as the constraints and 

assumptions that apply. 
4. Refine the Software Object/Class Models so that they support the sequence 

diagrams produced in the previous task. This usually means that new 

elements are added to the model, some of the existing elements are 

changed, and refactoring is necessitated as a consequence. 
5. Write Class- and Method-prologues for the elements of the Software 

Object Models. These relatively low-level design details are produced by 

the Class Owners as the last design artifacts needed before the coding can 

commence. 
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6. Design inspection is performed by the Features Team (possibly in 

consultation with other people involved in the project) in order to verify the 

integrity of the design artifacts produced. 

7. Review and revise the Work Package (the features and the iteration 

schedule) 

The products of this subprocess are transferred to the next subprocess as a package. 

This Design Package consists of the sequence diagrams produced, the refinements 

made to the Software Model, the prologues, and the notes on the design 

alternatives explored, constraints, and assumptions. 

laniwin Mýtleliiif 

�i<III 

V, 1"', 

Development Engine 

Design by Feature 

Form Features'l'eani 

Study Sottwaie Model 

I h" by 

------- ------------ 
r 
I 
r 
1 

1------------------ 

1 

ý-------- 
---------- 

Refine and complete 
Interaction M xiels 

Refine Ohjcct/('lass Models 

Work 

Packjgc 

Design 

Write Class- and Method-Prologues 

Inspect Design Package 

_________ 
Review Development Plan, 

Project Plan and requirements 

I>rývý"y, n r, ii __ 

Iýr, ui. i I i, n 

Figure 51. Design by Feature subprocess: tasks and work-products 
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Work Products 

The following work-products are produced in this subprocess: 

  Work Package: consisting of: 

a. A set of features that the Chief Programmer leading the team has 

chosen to be designed and built in the iteration 

b. A projected completion date for the iteration. 

  Design Package: consisting of: 

a. Refinements made to the Software Model in order to facilitate the 

implementation of the features in the Work Package. The revisions 

typically cover: 

i. Revised Software Interaction Models - typically in the 

form of new or refined sequence diagrams - depicting 

object interactions that implement the set of target 

features. 

ii. Refinements made to the Software Object/Class Models in 

order to accommodate the object interactions. 

b. Class and method prologues 

c. Notes on the design alternatives explored, the constraints specified, 

and the assumptions made during design 

Roles Involved 

The Features Team which carries out this subprocess consists of the following 

roles: 

  Chief Programmer: Responsible for 

a. acting as the leader of the team 

b. defining and revising the Work Package 

c. scheduling the iterations 

d. supervising and monitoring the design activities 

  Modeling Expert: Helping with model revisions 

  Ambassador User: Providing feedback on the design 

  Class Owner: Undertaking the detailed design of software classes and their 

methods 
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Features Teams are collectively coordinated and provided with resources by the 

Development Manager. 

Verification 

The Features Team verifies the results, making sure that all features in the Work 

Package have been covered. The primary concern should be ensuring that the 

behavioural models introduced or revised during this subprocess do indeed 

implement the features specified in the Work Package. Care should also be taken in 

ensuring that necessary refinements and refactorings are made to other models of 

the Software Model, especially the Class Models, and that no inconsistencies have 

crept into the Software Model as the result of the revisions. 

Outside verification may be sought if deemed necessary by the team or the 

Development Manager. 

Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

9 Work Package verified as feasible 

" Design Package verified and approved by the Features Team as covering 
the features in the latest version of the Work Package, and ready for 

implementation in the next subprocess 

" Software Model verified and approved by the Features Team as consistent 

and updated with the necessary revisions 

5.2.2.6.2 Build by Feature 

This subprocess is where the Design Package produced in the previous subprocess 
is implemented, tested and integrated with the system built so far. Figure 52 shows 

the tasks involved in this subprocess and the work-products produced or modified. 
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Figure 52. Build by Feature subprocess: tasks and work-products 

Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Design Package verified and approved by the Features Team as ready to be 

implemented 

o Provision of resources required for performing the subprocess 

Tasks and Their Order of Execution 

The tasks performed in this subprocess are as follows: 

1. Implement classes and methods according to the specifications given in the 

Design Package. Each of the Class Owners implements the necessary items 

(including the unit-testing code) in the classes he or she owns. 
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2. Conduct a code inspection, either before or after the unit-test, during which 

the features team examines the code to make sure of its integrity and 

conformance to coding standards. 

3. Unit-test the code to ensure that all classes satisfy the functionality 

required. Class Owners perform class-level unit-tests, as well as feature- 

level unit-tests prescribed by the Chief Programmer. Tests and test-results 

are logged in Verification Reports. 

4. Integrate the increment with the system built so far, if the implemented 

classes are successfully inspected and unit-tested. The necessary 

refactoring activities and the appropriate integration tests are then carried 

out. As the leader of the features team, it is the Chief Programmer who 

makes sure that all the classes necessary to realize the features are 

ultimately integrated into the main build. 

5. Review the results, the plan and the requirements 

Work Products 

The following work-products are produced in this subprocess: 

" Revised Executable Package, with the executable increment built in the 

iteration (consisting of system executables and run-time components) 

properly integrated. 

  Verification and Validation Reports: containing the results of the tests and 

the feedback provided by Ambassador Users 

  Revised Features List (preserving consistency with the Software Model) 

  Revised Project- and Development Plans 

Roles Involved 

The Features Team which carries out this subprocess consists of the following 

roles: 

  Chief Programmer: Responsible for 

a. acting as the leader of the team 

b. revising the Work Package 

c. scheduling the iterations 
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d. supervising and monitoring the implementation and test activities 

  Modeling Expert: Helping with model interpretation and revision 

  Ambassador User: Providing validation feedback on the system 

  Class Owner: Undertaking the implementation and testing of software 

classes and their methods 

Features Teams are collectively coordinated and provided with resources by the 

Development Manager. 

Verification 

The Features Team verifies the results, making sure that all features in the Work 

Package have been implemented and tested. The primary concern should be 

ensuring that all necessary unit- and integration tests have been carried out, and 

system validation has been performed based on feedback provided by Ambassador 

Users. Care should also be taken in ensuring that necessary refinements and 

refactorings are made to the Executable Package after the increment has been 

integrated, and that all verification and validation results are logged in relevant 

reports. Outside verification may be sought if deemed necessary by the team or the 

Development Manager, especially in case of crucial and high-risk features. 

Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

" Executable Package verified and approved as satisfying the features in the 

Work Package, and validated by Ambassador Users. 

" Verification and Validation Reports properly produced 

" Revised Features List reviewed and approved as consistent with the 

Software Model 

5.2.2.7 Transition 

The Transition subprocess is mainly focused on system-wide verification and 

validation and the deployment of the implemented system in the user environment. 
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Figure 53 shows the tasks involved in this subprocess and the work-products 

produced or modified. 

Entry Criteria 

The following should be satisfied before the subprocess may be commenced: 

o Executable Package verified and approved by the Development Manager 

and the Project Manager as ready to be deployed 

o Provision of resources required for performing the subprocess 
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Figure 53. Transition subprocess: tasks and work-products 
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Tasks and Their Order of Execution 

The tasks performed in this subprocess (many of which in parallel) are as follows: 

1. Form the Transition Team: The Transition Team typically consists of the 

Project Manager as the leader of the team, the Development Manager as 

the coordinator of the Features Teams responsible for rectifying the system 

problems encountered during transition, the Chief Programmers involved 

in system correction as leaders of Features Teams, Class Owners as 

developers responsible for the ultimate debugging and testing during 

system correction activities, and one or more Ambassador Users providing 

system validation feedback. A Client Representative is also present to 

decide whether the project objectives have been achieved. The Project 

Manager usually commissions a host of instructors, documentation 

producers, data- and system conversion experts, and others to undertake 

the finer-grained activities of transition tasks. 

2. Test and validate the complete system: System testing and acceptance 

testing with the appropriate reports produced. Defects are rectified and 

necessary modifications are made to the Executable Package by the 

relevant Features Teams, and the Software Model is updated accordingly. 
3. Prepare user environment for system deployment: Set up the hardware and 

software platforms, convert legacy databases and systems to support the 

new release, produce user guides and operation manuals, and train the 

users and the operational staff 
4. Deploy the new system and integrate it with existing systems: System 

conversion and commencement of system operation in the user 

environment 
5. Organize the Maintenance Team, typically consisting of a Chief 

Programmer as team leader, one or more Class Owners as developers, and 

one or more Ambassador Users for providing user feedback 

6. Declare the project as finished: When Deployment is carried out to the 

satisfaction of the Transition Team, especially the Client Representative, 

project wrap-up is conducted; the project is reviewed and the lessons 

learned from the project are compiled and recorded in order to be used in 

future projects. 
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Work Products 

The following work-products are produced in this subprocess: 

  Revised Executable Package, with the necessary corrections and 

modifications applied based on the results of the system level verification 

and validation carried out in the subprocess 

  Revised Software Model 

  Verification and Validation Reports: containing the results of the system 

tests and the feedback provided by Ambassador Users 

  User Guides and Operation Manuals 

Roles Involved 

The Transition Team which carries out this subprocess consists of the following 

roles: 

  Project Manager: Leader of the team 

  Development Manager: Coordinator of the Features Teams carrying out 

the corrections and alterations to the executable system 

  Client Representative: Deciding whether the project has been successfully 

concluded 

  Chief Programmer: Leaders of Features Teams 

  Class Owners: Active in the Features Teams, implementing corrections and 

modifications made to the Executable Package 

" Ambassador User: Providing system validation feedback 

Verification 

The Transition Team verifies the results, making sure that the system has been 

verified as satisfying the Features List, and validated and deployed in the user 

environment to the satisfaction of Ambassador Users and the Client 

Representative. The primary concern should be ensuring that all necessary tests 

have been carried out, and that the operational platforms and the system have been 

correctly installed. Care should also be taken in ensuring that users and operational 

staff are properly trained and maintenance teams have been set up and organized. 
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Outside verification may be sought if deemed necessary by the team or the ('lieht 

Representative. 

Exit Criteria 

The following should be satisfied before the subprocess may be concluded: 

" Installed system verified and approved as satisfying the features in the 

Features List, and validated by Ambassador Users and the Client 

Representative 

" Verification/Validation Reports and usage/operation manuals duly 

produced 

" Users and operational staff trained, and Maintenance Team organized 

5.2.3 Work-Product-Centred Description of the Methodology 

In the work-product-centred view of the methodology, the focus is on the artefacts 

produced, their structure and their dependencies, with tasks and producers viewed 

in the context of - and secondary to - the work-products. Figure 54 shows a high- 

level work-product-centred view of the methodology, depicting the usage span of 

the work-products and the points in time when they affect each other during the 

enactment of the methodology. 
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Figure 54. Work-products of the methodology: usage span, dependencies and mutual 
effects 
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Many of the packages and models produced in the methodology are composite 

work-products. Figure 55 shows the internal structure of these composite work- 

products and summarizes the interdependencies. Of the work-products shown in 

this figure, only those which are specific to the methodology are described in 

detail; those work-products for which a well-established template and production 

method already exists (and has been approved as sufficient for the needs of this 

methodology) have been excluded from the work-product-centred description of 

the methodology, on the grounds that any description will be a repetition of what is 

already known. 
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Figure 55. Internal structure of composite models and their interdependencies in the 
context of the overall work-product structure 

System Model 



Chapter 5. Implementation 280 

The following sections describe the details of each of the work-products, including 

internal structure and modeling language(s), dependencies, trends of evolution, 

producers involved, production methods and guidelines, and consistency issues. 

5.2.3.1 Feasibility Analysis Package: 

The Feasibility Analysis Package is one of the main products produced during the 

Preliminary Analysis subprocess, and contains high-level knowledge about the 

system and the development project as delineated by the client and explored by the 

analysts. It lays the groundwork for commencement of the development project and 

detailed analysis of the problem domain, and is used as a basis for developing the 

Project Plan and the Context Model. 

Structure and Modeling Language 

The Feasibility Analysis Package consists of two parts: 

1. The Feasibility Report, the exact structure of which is agreed by the 

Preliminary Analysis Team, encapsulates high-level information about the 

system and the development project on the following issues: 

a. Scope of the system 
b. High-level requirements of the system, expressed as major feature 

sets (areas) and their constituent feature sets (activities); each 

activity (feature set) is expressed as conforming to the general 

template: <action> <-ing> a(n) <object>; for example, "reserving 

a seat". Activities belong to areas (major feature sets), which are 

expressed using the general template: <object> management; for 

example, "reservations management". 

c. Constraints imposed on the development effort 
d. Risks involved in the development of the system 

e. Resources required for the development of the system 
f. Alternative general approaches to developing the system and 

results of their feasibility analysis, based on the high-level 

knowledge so far acquired 

g. Verdict on whether the development of the system should go 

ahead; considering the scope and requirements of the system, the 
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constraints imposed, the risks involved, the resources available, 

and the alternative development approaches so far approved as 
feasible 

2. The Feasibility Prototype: a throw-away prototype used to demonstrate the 

scope and the technical feasibility of the project; the prototype specifically 

addresses key requirements, critical technical risks, and alternative 

architectures and development approaches. 

Dependencies 

The following dependencies exist between this work-product and other artefacts 

produced during the enactment of the methodology: 

1. The constituent parts of the package (Feasibility Analysis Report and 

Feasibility Prototype) are mutually dependent. 

2. The knowledge about the system and the development project compiled in 

this package is used for developing the initial version of the Project Plan 

during the Preliminary Analysis subprocess. 
3. The high-level view of the system and the problem domain portrayed in 

this package is elaborated and refined during the Real-World Domain 

Modeling and Requirements Elicitation subprocess, ultimately resulting in 

the Context Model. 

Trend of Evolution 

Creation: The Feasibility Analysis Package is created in the Preliminary Analysis 

subprocess. 

Usage Span: The usage span encompasses the Real-World Domain Modeling and 

Requirements Elicitation subprocess, as well as the subprocess where it is created. 

Update and Revision: This work product is not updated in subprocesses other than 

where it is created. Revision is not performed unless a reiteration of the 

Preliminary Analysis subprocess is carried out, typically as a result of 

circumstances indicating a critical flaw in the knowledge compiled in the product. 
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The Preliminary Analysis Team produces and, if necessary, revises the Feasibility 

Analysis Package. The composition of the team and the responsibilities of the 

team-members, as pertaining to the production of the Feasibility Analysis Package, 

are as follows: 

  The Project Manager responsible for leading the team, providing and 

managing resources, facilitating operations, resolving issues with the client 

and third parties, and enforcing standards and schedules. 

  One or more Domain Experts helping the team gain better understanding 

about the problem domain, the scope and high-level requirements of the 

system, and the complexities and risks involved; they also provide expert 

opinion on financial, operational and political feasibility of alternatives, 

and assess the prototype of the system produced as part of the Feasibility 

Analysis Package. 

  One or more Ambassador Users providing realistic and hands-on 

knowledge about the system; they also provide user feedback on the 

prototype, as well as operational and political feasibility of alternatives. 
  One or more Chief Programmers developing the prototype of the system 

and providing expert opinion on issues pertaining to software 

development; these issues include development risks and constraints, 

resources required, and technical and schedule feasibility of alternatives. 
The Chief Programmers may also commission other programmers to help 

in the development of the Feasibility Prototype. 

  The Client Representative responsible for defining constraints and high- 

level non-functional requirements, ratifying the development approach to 

be taken, and making the ultimate decision on whether the project should 
be commenced or aborted. 

Production Methods and Guidelines 

Methods and guidelines for producing feasibility analysis reports and prototypes 

are relatively well-established, yet the following are suggested as noteworthy 

guidelines: 
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  Since the constituent parts of the package are mutually dependent, a 

parallel scheme for producing them should be agreed and implemented by 

the team. An iterative-incremental approach is preferable when significant 

risks are involved. In this approach, feasibility analysis is conducted in 

each of the iterations, and if further prototyping is deemed necessary by the 

team, functionalities to be implemented in the prototype are identified and 

prioritized according to their development risk, after which high-priority 

functionalities are selected and implemented in the prototype, and the new 

version of the prototype is analyzed and assessed according to user 
feedback. The results are then fed back into the iterative process to be used 

in a new round of feasibility analysis. 

  User involvement is essential if an accurate picture of the system and its 

operational feasibility is to be obtained. The Project Manager should 

encourage and facilitate the involvement of Ambassador Users in the 

activities. 

Consistency Issues 

The following consistency rules should be observed when making changes to the 
Feasibility Analysis Package: 

  If changes are made to system and project parameters (primarily scope, 

requirements, resources, and constraints) that may change subprocess/task 

execution times, alter subprocess/task interdependencies or priorities, or 

require changes to resources or resource-allocation schemes, appropriate 

adjustments should be made to the Project Plan in order to maintain 

consistency and keep the plans up-to-date. 

  Any changes to system parameters (primarily scope and requirements), 

should be duly propagated to the Context Model. 

5.2.3.2 Project Plan 

The Project Plan is initially created in the Preliminary Analysis subprocess, and is 

reviewed, revised and refined at the end of each subsequent subprocess based on 

the progress of the project and any circumstances requiring a change in the plans. It 
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contains subprocess-level and task-level planning and scheduling information, 

governing the management and control of the project. 

The Project Plan depends on the information captured about the project, the 

problem domain and the system, and as the development progresses, analysis, 
design and implementation results affect the plan as better estimation of 
development times and resources becomes possible. Hence, whereas it is the 

information captured in the Feasibility Analysis Package that is used for producing 

the initial version of the Project Plan in the Preliminary Analysis subprocess, the 

plan is also affected by the Context Model and the Software Model during later 

subprocesses. The Project Plan itself is used as a basis for producing the 

Development Plan, which governs the iterative-incremental development engine; at 

the end of each iteration, the Development Plan is reviewed and - if necessary - 

revised, which may in turn necessitate changes to the Project Plan. 

Structure and Modeling Language 

The Project Plan's exact structure is decided by the teams working during the 

project, yet it should include projected completion dates for tasks and 

subprocesses, the resources required and resource-allocation schemes, 

subprocess/task interdependencies and priorities, and project tracking features such 

as progress indicators. 

The initial version of the plan produced during Preliminary Analysis contains 

project-level and subprocess-level scheduling, resource allocation, and 
interdependency information. As analysis progresses, task-level detail and tracking 
features are added to the plan. 

Dependencies 

The following dependencies exist between this work-product and other artefacts 

produced during the enactment of the methodology: 

1. The Project Plan is created during the Preliminary Analysis subprocess 
based on the knowledge about the system and development project 

compiled in the Feasibility Analysis Package. 
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2. The planning and scheduling information captured in the Project Plan is 

used as a basis for producing the Development Plan during the Plan by 

Feature subprocess. The Development Plan governs the iterative- 

incremental development engine, and if altered during the iterations of the 

development engine, might necessitate modifications to the Project Plan. 

Trend of Evolution 

Creation: The Project Plan is created in the Preliminary Analysis subprocess, 

initially consisting of project-level and subprocess-level scheduling, resource 

allocation, and interdependency information. 

Usage Span: The usage span encompasses all the subprocesses in the lifecycle. 

Update and Revision: This work product is reviewed and - if necessary - revised in 

all subprocesses, since it is used by the Project Manager as a dynamic project 

tracking and control tool, and any issues causing changes in the progress of the 

project should be handled with the results duly reflected in the plan. Furthermore, 

the development and evolution of major work-products also affects the Project 

Plan, since it enables better estimation of development time and resources required: 

  The detailed knowledge - about the problem-domain and the system - 
captured in the Context Model is used for adding detail and refining the 

Project Plan at the end of the Real-World Domain Modeling and 
Requirements Elicitation subprocess. 

  The detailed system specifications captured in the Software Model are used 
for refining the Project Plan at the end of the System Specification 

subprocess. 

  The architectural design detail added to the Software Model is used for 

refining the Project Plan at the end of the Architectural Design subprocess. 

  The Development Plan is used for refining and updating the Project Plan at 

the end of the Plan by Feature subprocess. 

  Modifications made to the Development Plan during the execution of the 

iterative-incremental development engine are reflected in the Project Plan 

at the end of each iteration. 
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The Preliminary Analysis Team produces the Project Plan. The composition of the 

team and the responsibilities of the team-members, as pertaining to the production 

of the Project Plan, are as follows: 

  The Project Manager responsible for leading the team, providing and 

managing resources, facilitating operations, resolving issues with the client 

and third parties, and enforcing standards and schedules. The Project 

Manager is the principal producer of the Project Plan, using the 

information provided by other team members and the lessons learned from 

the development of the Feasibility Prototype for estimating development 

times, determining subprocess/task interdependencies and priorities, 
devising resource-allocation schemes, and scheduling tasks. As the main 

user of the Project Plan as a monitoring and control tool, the Project 

Manager is also responsible for refining, updating and maintaining the 

Project Plan during later subprocesses of the lifecycle. 

  One or more Domain Experts helping the team gain better understanding 

about the problem domain, the scope and high-level requirements of the 

system, and the complexities and risks involved, all of which are used in 

estimating development time and determining the resources needed for 

carrying out the project. 

  One or more Ambassador Users providing realistic and hands-on 

knowledge about the system, which complements the information provided 
by Domain Experts. 

  One or more Chief Programmers providing expert technical opinion on 
issues pertaining to software development; these issues include the 
development risks and constraints involved, as well as the time and 

resources required, and are therefore indispensable in the estimation and 

scheduling activities performed by the Project Manager when developing 

the Project Plan. 

  The Client Representative responsible for defining constraints and high- 

level non-functional requirements, and ratifying the initial version of the 
Project Plan. 
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Production Methods and Guidelines 

Project planning is a well-established practice, yet the following can be mentioned 

as useful guidelines for performing the activity in the context of the overall 

methodology: 

  The Project Plan is maintained by the Project Manager, who is also its 

principal user, yet it should also be visible to all participants in the 

development effort. Reflection on the accuracy and rationality of the plan 
is an ongoing process throughout the project (typically resulting in 

modifications made to the plan at the end of every subprocess), and relies 
heavily on feedback obtained from development teams. 

  The Project Plan should be meticulously updated with progress tracking 

data and revised task completion dates during the execution of the 

iterative-incremental development engine. This requires close cooperation 
between the Project Manager and the Development Manager. 

Consistency Issues 

The following consistency rule should be observed when making changes to the 

Project Plan: 

  Any changes made to the Project Plan during the iterative-incremental 

development subprocesses (typically as pertaining to task schedules) 

should be reflected in the Development Plan. 

5.2.3.3 Context Model 

The Context Model is created in the Real-World Domain Modeling and 
Requirements Elicitation subprocess, and is used for producing the System Model 

in the System Specification subprocess. It captures the structure and the dynamic 

behaviour of the elements of the problem domain - as encountered in reality - in 

object-oriented models. The system is later introduced in the model as an element 

of the problem domain, and the functionalities associated with it in the problem 
domain are defined as the functional requirements of the system. 
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The Context Model relies heavily on the information already captured in the 

Feasibility Analysis Package, in that the scope of the system and the high-level 

requirements captured in the Feasibility Analysis Report form the basis for the 

context modeling activity. 

Structure and Modeling Language 

The Context Model consists of the following parts: 

1. Context Object Models: consisting of diagrams with a notation similar to 
UML collaboration diagrams [OMG 2003], but with links adorned with 

data/control flows (no sequence indicators), in which actors and storage 

elements of the problem domain (e. g. human workers, systems and data- 

stores in a business system) are modeled as collaborating objects. While 

based on regarding the problem domain as consisting of objects, the 

data/control-flow-oriented approach of the modeling provides a closer 

correspondence with the problem domain and the workflow-oriented view 

that Domain Experts tend to have of the problem domain, and hence 

facilitates real-world modeling (Figure 56, page 314). The system is later 

added and modeled as a problem domain object (Figure 57, page 314). 

Subsystems and organizational boundaries are preserved, modeled through 

using packages and/or separate component diagrams complementing the 

collaboration diagrams. 

2. Context Interaction Models: consisting of UML activity diagrams with 

swimlanes depicting the participating objects (Figure 58, page 315) and/or 

sequence diagrams (Figure 62, page 319) which depict typical scenarios of 
interaction among problem-domain objects [OMG 2003]. With the 

introduction of the system, models are produced depicting typical system 

usage scenarios (Figure 60, page 317). 

3. Feature Lists: Encompassing Job descriptions and functionalities of 
domain objects (and organizational units and subsystems) expressed as 

areas (major feature sets) and their constituent activities (feature-sets), and 

- where needed - the finer-grained features of each activity. With the 
introduction of the system, system features are also identified and added to 
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the lists, comprising the functional requirements of the system (Table 3, 

page 320). 

4. Context Vocabulary: A glossary of terms from the problem domain (Figure 

63, page 321). 

5. Non-functional requirements and constraints. 

Dependencies 

The following dependencies exist between this work-product and other artefacts 

produced during the enactment of the methodology: 

1. The Context Model is created based on the knowledge compiled in the 

Feasibility Analysis Package about the problem domain and the system. 

2. The information captured in the Context Model about the problem domain 

and the system is used as a basis for producing the System Model during 

the System Specification subprocess. The System Model is in fact produced 

through extending and refining the Context Model. 

3. The detailed knowledge acquired about the system is used for revising the 

Project Plan at the end of the Real-World Domain Modeling and 
Requirements Elicitation subprocess. 

Trend of Evolution 

Creation: The Context Model is created in the Real-World Domain Modeling and 

Requirements Elicitation subprocess. Based on the high-level specifications of the 

system already defined in the Feasibility Analysis Package, real-world-modeling of 

the problem domain is conducted, and results are structured into the Context 

Model. 

Usage Span: The usage span encompasses the System Specification subprocess as 

well as the subprocess where the work-product is created. 

Update and Revision: This work product is not updated in subprocesses other than 

where it is created. Revision is not performed unless a reiteration of the Real-World 

Domain Modeling and Requirements Elicitation subprocess is carried out, typically 



Chapter 5. Implementation 290 

as a result of circumstances indicating a critical flaw in the knowledge compiled in 

the product. 

Producers Involved 

The Modeling Team produces the Context Model. The composition of the team 

and the responsibilities of the team-members, as pertaining to the production of the 

Context Model, are as follows: 

  The Project Manager responsible for leading the team, providing and 

managing resources, facilitating operations, resolving issues with the client 
and third parties, and enforcing standards and schedules. 

  The Chief Architect responsible for coordinating modeling activities; the 

Chief Architect plans modeling iterations, determines the scope and 

abstraction level of the modeling to be performed in each iteration, forms 

modeling sub-teams (if necessary) and assigns responsibilities to teams and 
team-members, arranges and facilitates information gathering activities and 

sessions, coordinates the sub-teams, and verifies and integrates the models 

produced. 
  One or more Domain Experts helping the team gain better understanding 

about the problem domain. 

  One or more Ambassador Users providing realistic and hands-on 

knowledge about the system, which complements the information provided 
by Domain Experts. 

  One or more Modeling Experts providing advice on object-oriented 

modeling methods and techniques. 

  One or more Chief Programmers providing expert technical opinion on 
issues pertaining to software development. Involving Chief Programmers 

early in the modeling process not only familiarizes them with the problem 
domain and system requirements, but also means that the team can benefit 
from their expertise for early identification of technical risk issues 

pertaining to system requirements, thus making it possible to assess the 

technical feasibility of the requirements before committing to them. 
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Production Methods and Guidelines 

Based on the scope of the system delineated in the Feasibility Analysis Package, 

iterative real-world domain modeling is performed in order to produce the Context 

Model. Complemented by the well-established practices of requirements 

engineering, the following is one possible method for conducting context 

modeling: 

" Iterative real-world domain modeling: Conducted by the Modeling Team and 

coordinated by the Chief Architect, exploration and modeling of the problem 

domain is performed iteratively and in a top-down fashion, starting from 

organizational units and subsystems of the problem domain and gradually 

moving deeper, shifting focus on fine-grained system elements. The following 

tasks are performed: 

A. Iteration Planning: The Chief Architect schedules the iterations and 
determines the scope and abstraction level of the modeling to be 

performed in each iteration. 

B. Iterative Modeling Engine: The following tasks are performed in 

each iteration under the supervision of the Chief Architect: 
I. The Chief Architect assigns responsibilities to teams and 

team-members, forming modeling sub-teams to work on 
different parts of the problem domain. The sub-teams are 

briefed on the modeling scope and granularity intended 

in the iteration. 

H. Sub-teams conduct information gathering, domain 

exploration and modeling. System observation and JAD 

sessions are particularly useful in this context. Domain 

Experts, Ambassador Users and Modeling Experts 

should be heavily involved in this activity. Structural 

elements at the subsystem level and the data/control 

flows are modeled in UML component diagrams and/or 

via packages in collaboration diagrams. Fine-grained 

elements (systems, actors and storage elements) and their 
data/control flows are modeled in non-sequenced data- 

flow-oriented collaboration diagrams. Typical interaction 
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scenarios are modeled in UMIL activity diagrams and/or 

sequence diagrams. Functionalities and responsibilities of 

problem domain elements are identified and modeled as 

feature sets and features (depending on the granularity of 

the elements). Constraints and business rules are also 

identified and recorded. A glossary of problem-domain 

terms is compiled and perfected as modeling progresses. 
The Chief Architect arranges and facilitates information- 

gathering activities and sessions, and coordinates the sub- 

teams. 

III. The models produced in the iteration are reviewed, 

verified and integrated into the Context Model by the 

Modeling Team, in team sessions closely supervised by 

the Chief Architect. 

C. Introduction of the target system: The system is added as an object 
to the Context Object Models. Feature sets are then redistributed 

among objects; features and feature sets are thus assigned to the 

system and feature lists are updated. Typical scenarios of 

interaction with the system are modeled and Context Interaction 

Models are updated accordingly. Non-functional requirements, 

constraints and business rules of the system are specified and added 

to the Context Model. 

Consistency Issues 

The following consistency rule should be observed when making changes to the 

Context Model: 

  Any changes to system parameters (primarily scope and requirements), 

should be duly propagated to the System Model. 

  If the changes affect system and project parameters (primarily scope, 

requirements, resources, and constraints), appropriate adjustments should 
be made to the Project Plan in order to maintain consistency and keep the 

schedule up-to-date. 
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5.2.3.4 System Model 

The result of extending and refining the Context Model, the System Model shows 

the internal constitution of the system and its place in the problem domain. It is 

modeled as an extension to the problem domain, using the same notions and 

concepts as those found in the problem domain. In a business system this amounts 

to designing the system as a new addition to the organization already in place, 

staffed and provisioned in its own right as a new department or section, rather than 

a virtual, to-be-computer-based utility. A transition from what is considered 

conceptual or essential in OOSDMs to the so-called specification is thus delayed in 

order to keep the models as tangible as possible for as long as possible to both 

developers and Domain Experts. 

Structure and Modeling Language 

The System Model consists of the following parts: 

1. System Object Models: Mainly consisting of diagrams with a notation 

similar to UML collaboration diagrams (but with links adorned with 
data/control flows with no sequence indicators), in which elements 
belonging to the system or interacting with it (staff of the system, passive 

objects and their custodians, and relevant elements outside the system 
including actors) are modeled as collaborating objects (Figure 68, page 
327). Subsystems of the system are modeled through using packages 

and/or separate UML component diagrams. 

2. System Interaction Models: Consisting of UML sequence diagrams (Figure 

69, page 328) and/or activity diagrams (with swimlanes depicting the 

participating objects from inside and outside the system), depicting typical 

scenarios of interaction among system objects and also between system 

objects and outside actors. 
3. Features list: Based on system functionalities identified and depicted in the 

Context Model, features and feature sets are assigned to intra-system 

subsystems and objects, and listed in the features list (Table 4, page 330). 

4. Revised list of non-functional requirements and constraints. 
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Dependencies 

The following dependencies exist between this work-product and other artefacts 

produced during the enactment of the methodology: 

1. The System Model is created through extending and refining the Context 

Model. 

2. The information captured in the System Model about the problem domain 

and the system is used as a basis for producing the Software Model during 

the System Specification subprocess. The System Model is in fact 

converted to the Software Model through applying feature redistribution 

patterns. 

Trend of Evolution 

Creation: The System Model is created in the System Specification subprocess by 

extending and refining the Context Model. 

Usage Span: The usage span is limited to the System Specification subprocess, 

during the execution of which the System Model is converted to the Software 

Model. 

Update and Revision: This work product is not updated in subprocesses other than 

where it is created. Revision is not performed unless a reiteration of the System 

Specification subprocess is carried out, typically as a result of circumstances 

indicating a critical flaw in the knowledge compiled in the product. 

Producers Involved 

The Model Conversion Team produces the System Model. The composition of the 

team and the responsibilities of the team-members, as pertaining to the production 

of the System Model, are as follows: 

  The Project Manager responsible for leading the team, providing and 

managing resources, facilitating operations, resolving issues with the client 

and third parties, and enforcing standards and schedules. 

  The Chief Architect responsible for coordinating modeling activities. 
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  One or more Domain Experts helping the team gain a better understanding 

of the problem domain and the element types therein; this will then be used 
in designing the system as an extension to the problem domain. 

  One or more Ambassador Users providing realistic and hands-on 

knowledge about the system, which complements the information provided 
by Domain Experts. 

  One or more Modeling Experts providing advice on object-oriented 

modeling methods and techniques. 

  One or more Chief Programmers providing expert technical opinion on 
issues pertaining to software development. 

Production Methods and Guidelines 

The System Model is produced through extending the Context Model. The 

different parts of the System Model are produced as described below: 

1. System Object Models are produced through the following steps: 
A. Through consultation with Domain Experts and Ambassador 

Users, the system is designed as a non-computer-based extension 

to the existing structure, as if a new internal section is added. Early 

models can be informal sketches (Figure 65, page 324). The 

internal structure is for the Model Conversion Team to decide, yet 

a few ground rules should be observed: 

I. Problem domain objects sharing features with the system 

are moved inside system boundaries or assigned system 

counterparts if their attachment to the system is partial 
(elements interacting with the system may have system 

counterparts). 
II. Passive flowing- or storage elements are modeled as 

objects and assigned to custodian objects which act as 

proxies; any access to any passive object should be made 

via the custodian. In business systems, flowing-data 

custodians are akin to file/document movers, transferring 

the file or document put in their custody between 

processing clerks; data-store custodians are akin to file 



Chapter 5. Implementation 296 

clerks and archive keepers. It should be noted that there is 

no limit on the number of staff assigned to the system, so 
the number of custodians is expected to be high. 

III. Additional objects - if needed - should be of the same 

general types as those seen in the problem domain; e. g. in 

business systems, these include clerks, managers, archives, 

etc. 
B. Collaboration diagrams with links adorned with data/control flows 

(without sequence indicators) are produced depicting 

collaborations among system objects and external objects. 

Subsystems of the system are modeled through using packages 

and/or separate component diagrams. 

2. System Interaction Models are produced depicting typical interaction 

scenarios satisfying the system's requirements. Activity diagrams and/or 

interaction diagrams are produced for each of the system's feature sets. 

3. Feature lists are produced through assigning feature sets and features to the 

subsystems and objects of the system based on the functionality assigned 

to the system as a whole and the interaction models produced in the 

previous task. 

4. Non-functional requirements and constraints are updated and added to the 

System Model. 

Consistency Issues 

The following consistency rule should be observed when making changes to the 

System Model: 

  Any changes should be duly propagated to the Software Model. 

5.2.3.5 Software Model 

The Software Model depicts the constituent elements of the software system, and is 

the result of applying feature redistribution patterns to the System Model. Created 

in the System Specification subprocess, the Software Model is the pivotal model 
during design and implementation of the system, and is therefore continually 

revised and updated during the remaining subprocesses of the lifecycle. 
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Structure and Modeling Language 

The Software Model consists of the following parts: 

1. Software Object/Class Models: Object Models - with a notation similar to 

UML collaboration diagrams [OMG 2003], except that data/control flow is 

shown instead of message flow, and sequencing is ignored - depict typical 

links and data/control flows among system objects (Figure 75, page 335). 

Object Models are complemented by Class Models (UML class diagrams 

[OMG 2003]), showing the classes of the system and their relationships. 

2. Software Interaction Models: Typical object interactions are modeled in 

UML interaction diagrams [OMG 2003] (Figure 76, page 336). The 

messages are also denoted. 

3. Class and Method prologues 
4. Revised list of features 

5. Revised list of non-functional requirements and constraints 

Dependencies 

The following dependencies exist between this work-product and other artefacts 

produced during the enactment of the methodology: 

1. The Software Model is created through extending and refining the System 

Model. 

2. The detailed knowledge acquired about the system is used for revising the 

Project Plan at the end of the Software Specification and Architectural 

Design subprocesses, and for producing the Development Plan in the Plan 

by Feature subprocess. 
3. The information captured in the Software Model about the system and its 

requirements is used as a basis for selecting features for development - 

organized as Work Packages - during iterations of the Design by Feature 

subprocess. 
4. The structuraVbehavioural information and requirements of the system 

specified in the Software Model are used as a basis for producing Design 

Packages during iterations of the Design by Feature subprocess. The 
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Software Model is then updated with the detailed design features of the 

system captured in the Design Packages. 

5. The requirements and functional specifications of the system defined in the 
Software Model are used as a basis for performing verification and 

validation of the system during the Build by Feature and Transition 

subprocesses, resulting in the production of the Verification and Validation 

(Test) Reports. Corrections and improvements are then made to the 

Software Model, if necessitated by the test results. 

Trend of Evolution 

Creation: The Software Model is created in the System Specification subprocess by 

applying feature redistribution patterns to the System Model. 

Usage Span: Being the pivotal model in the design and implementation of the 

system, the usage span of the Software Model encompasses the System 

Specification, Architectural Design, Plan by Feature, Design by Feature, Build by 

Feature, and Transition Subprocesses; i. e. over the entire remaining subprocesses 

of the lifecycle. 

Update and Revision: This work product is continually updated and revised 

through the lifecycle. It is augmented with architectural design details during the 

Architectural Design subprocess, enriched with detailed design features during 

iterations of the Design by Feature subprocess, and refined and improved as a 

result of corrections found necessary through verification and validation of the 

executable system in the Build by Feature and Transition subprocesses. 

Producers Involved 

The Model Conversion Team produces the Software Model. The composition of 

the team and the responsibilities of the team-members, as pertaining to the 

production of the Software Model, are as follows: 

  The Project Manager responsible for leading the team, providing and 

managing resources, facilitating operations, resolving issues with the client 

and third parties, and enforcing standards and schedules. 
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  The Chief Architect responsible for coordinating modeling activities. The 

Chief Architect is put in charge of maintaining the Software Model during 

the rest of the lifecycle. 

  One or more Domain Experts helping the team gain better understanding 

about the problem domain. 

  One or more Ambassador Users providing realistic and hands-on 

knowledge about the system, which complements the information provided 
by Domain Experts. 

  One or more Chief Programmers providing expert technical opinion on 

issues pertaining to software development. 

  One or more Patterns Advisors providing expertise on patterns and their 

application for redistributing functionality among system elements 

Production Methods and Guidelines 

The Software Model is produced through iterative application of feature 

redistribution patterns to the System Model. The model thus produced will be 

refined and extended during later design and implementation subprocesses. The 

different parts of the Software Model are produced as described below: 

1. Software Object/Class Models: Patterns are iteratively applied to System 

Object Models and System Interaction Models to redistribute features 

among objects in order to enhance encapsulation, increase cohesion and 

reduce coupling, and also to introduce architecture. During earlier 
iterations, Reengineering patterns [Demeyer et al. 2003] are applied to 

redistribute responsibilities among objects. These patterns typically 

include: 

A. Moving behaviour close to data 

B. Eliminating navigation 
C. Splitting up God classes (Blobs) 

Refactoring patterns [Fowler 1999] are applied in conjunction with the 

above (indeed, some of them already are a part of the above patterns) and 

also in later iterations. Antipatterns [Brown et al. 1998] can also be of use 
in conjunction with refactoring patterns, especially the Poltergeist (for 

identifying redundant objects) and the Swiss-Army-Knife (for breaking up 
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overly complex classes). Design patterns [Gamma et al. 1995, Buschmann 

et al. 1996] are used in later iterations to help implement specific 

architectures and mechanisms typically present in the problem domain and 

tangible to users. 

Applying the patterns (Figure 71, page 331) prunes the models of classes 

irrelevant to the system and actor-counterparts without any justification for 

existence in the system, and relationships not belonging to the system 
(Figure 75, page 335). Applying the patterns ultimately results in custodian 

objects being merged with the data objects they had under custody. Class 

Models (UML class diagrams) are then produced based on the Object 

Models, depicting the classes in the system and their relationships. 
Inheritance hierarchies are introduced in order to enhance abstraction 

2. Behavioural models (UML sequence diagrams or activity diagrams) are 

updated in each iteration of the redistribution procedure, and Software 

Interaction Models are produced (Figure 76, page 336). 

3. Initial versions of class and method prologues are prepared. 
4. Feature sets and features are refined and compiled in feature lists. 

5. Non-functional requirements and constraints are revised. 

Consistency Issues 

The following consistency rules should be observed when making changes to the 

Software Model: 

  If anytime during the lifecycle changes are made to the Software Model 

that affect system and project parameters (primarily scope, requirements, 

resources, and constraints), appropriate adjustments should be made to the 

Project Plan in order to maintain consistency and keep the schedule up-to- 
date. 

  If changes made during the execution of the iterative-incremental 

development subprocesses (Design by feature and Build by Feature) affect 

system and project parameters (primarily scope, requirements, resources, 

and constraints), appropriate adjustments should be made to the 
Development Plan in order to maintain consistency and keep the 
development schedule up-to-date. 
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5.2.4 Role-Centred Description of the Methodology 

The role-centred description of the methodology focuses on the roles involved in 

the subprocesses of the lifecycle, and how they cooperate in teams in order to 

perform their tasks. 

5.2.4.1 Roles: Responsibilities throughout the Process 

The roles involved in the methodology are as listed below: 

1. Project Manager: active in all subprocesses, directs and manages the 

development effort, facilitating development, enforcing the schedule and 

conformance to standards, managing resources, and resolving issues with 

the client and third parties. 

2. Client Representative: mainly active in the first and last subprocesses, 

provides decision and feedback on behalf of the client. 
3. Domain Expert: mainly active in the first two subprocesses, provides 

information on the problem domain, helping clarify complexities and 

risks associated with the problem domain. 

4. Ambassador User: active in nearly all subprocesses, provides continuous 
feedback on the models and the system itself, thus enabling continuous 

validation to be exercised. 
5. Chief Architect: active in all activities where modeling is performed or 

models are revised, coordinates the modeling activities and maintains the 
Software Model. 

6. Modeling Expert: active in all activities where modeling is performed, 

provides modeling advice to the teams. 

7. Patterns Advisor: mainly active when using patterns to map the System 

Model to the Software Model and during design-related activities, 

provides. expertise on the use of patterns. 
8. Development Manager: active during design and implementation 

activities, supervises the development teams and manages the day-to-day 

resourcing required to keep the project on track. 
9. Chief Programmer: active during all activities, providing team 

supervision and development expertise. 
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10. Class Owner: programmer active during detailed design and 

implementation activities and put in charge of implementing, testing and 

maintaining specific software classes. 

5.2.4.2 Teams: Constitution and Responsibilities 

The teams undertaking the execution of subprocesses and activities in the course of 

the methodology are as follows: 

1. Preliminary Analysis Team: The Preliminary Analysis Team obtains high- 

level information on the project and analyses the feasibility of undertaking 

the development effort during the first subprocess of the lifecycle. It 

typically consists of: 

a. The Project Manager in charge of the development effort 
b. The Client Representative who makes the decisions on behalf of 

the client 

c. One or more Ambassador Users providing user feedback 

d. One or more Domain Experts to help understand the complexities 

of the problem domain 

e. One or more Chief Programmers providing prototyping skills and 

technical counsel 
2. Modeling Team: The Modeling Team performs real-world domain 

modeling during analysis. It typically consists of: 

a. The Project Manager as supervisor and facilitator 

b. The Chief Architect as the modeling coordinator 

c. One or more Ambassador Users providing user feedback 

d. One or more Domain Experts helping the team to better understand 

the problem domain 

e. One or more Modeling Experts providing advice on object- 

oriented modeling issues 

f. One or more Chief Programmers providing practical development 

counsel 

3. Model Conversion Team: The Model Conversion Team produces the 

System Model and converts it into the Software Model using pattern-based 
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techniques during the System Specification subprocess. It typically 

consists of: 

a. The Project Manager as supervisor and facilitator 

b. The Chief Architect as the modeling coordinator 

c. One or more Ambassador Users providing user feedback 

d. One or more Domain Experts providing knowledge on the 

problem-domain 

e. One or more Modeling Experts providing advice on object- 

oriented modeling issues 

f. One or more Chief Programmers supplying development-related 

advice 

g. One or more Patterns Advisors providing advice on patterns of 
feature redistribution and architectural design 

4. Architectural Design Team: Active during the Architectural Design 

subprocess, the Architectural Design Team identifies an implementation- 

specific architecture for the system modeled so far, and determines the 

domain-independent infrastructure supporting the system. It typically 

consists of: 

a. The Project Manager as supervisor and facilitator 

b. The Chief Architect as the modeling coordinator 

c. One or more Ambassador Users providing user feedback 

d. One or more Design Experts providing knowledge on architectural 
design techniques and domain-independent technologies 

e. One or more Modeling Experts 

f. One or more Chief Programmers supplying development-related 

advice 

g. One or more Patterns Advisors providing advice on patterns of 
feature redistribution and architectural design 

5. Planning Team: The Planning Team plans the iterative-incremental 

implementation of the features and is active during the Plan-by-Feature 

subprocess. It typically consists of: 

a. The Project Manager as the leader of the team 

b. The Development Manager as the resource manager and 

coordinator of the Features Teams 
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c. The Chief Programmers involved in the development providing 

practical implementation expertise crucial to reliable estimation 

and scheduling of the feature development subprocesses 
6. Features Team: Features Teams are collectively coordinated by the 

Development Manager, and are active during the iterative-incremental 

development subprocesses. A Features Team typically consists of: 

a. A Chief Programmer as the leader of the team supervising the 

design-implementation-test activities of the development engine 

b. One or more Modeling Experts helping with the design 

c. One or more Ambassador Users providing user feedback on user- 

centred aspects of the design and the implemented system 

d. A number of Class Owners undertaking the implementation and 

testing of the software classes 
7. Transition Team: The Transition Team is active during the last subprocess 

of the lifecycle and is responsible for deploying the implemented system 
into the user environment. It typically consists of: 

a. The Project Manager as the leader of the team 

b. The Development Manager as coordinator of the Features Teams 

that will carry out the corrections and alterations to the executable 

system 

c. A Client Representative deciding whether the project has been 

successfully concluded 
d. The Chief Programmers acting as leaders of Features Teams 

e. The Class Owners active in the Features Teams 

f. One or more Ambassador Users providing system validation 
feedback 

5.3 Requirements-Based Review of the 

Implementation 

Table 2 shows how each requirement has been addressed in the final implemented 

version of the methodology, thereby highlighting the requirements that have been 

met and those that have not been satisfied. It also shows how the implemented 

methodology has been influenced by existing methodologies and process 
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patterns/metamodels in addressing the requirements. In this regard, Table 2 

complements Table 1 of Chapter 4 (page 233). 

5.4 Summary 

The blueprint produced in the Design phase of the methodology development 

lifecycle is refined and detailed during implementation. The end product should be 

usable by the users (i. e. software developers), and since user guides are the 

common medium for presenting methodologies in a useable form, the first step in 

implementing the methodology is to devise a user guide template focusing on the 

tasks performed, products produced, and producers involved in the methodology. 

The user guide template describes the methodology from three complementing 

viewpoints: Process-Centred, Work-Product-Centred, and Role-Centred. 

The user template devised has been used for detailing the target OOSDM. The 

resulting methodology specification (implementation) is then fed into the next 

phase of the iterative Design-Implementation-Test cycle of the methodology 
development lifecycle: to be verified as functional and validated as conforming to 

the requirements. 
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Table 2. Satisfaction of methodology requirements in the implementation phase 
(continued on next page) 
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Chapter 6 

Test 

In software engineering, testing is a process intended to build confidence in the 

software [Sommerville 2004]. In an iterative-incremental development process 

such as that prescribed by the meta-methodology applied herein, testing is 

performed iteratively, not only to build confidence in the end product, but also to 

guide the development process through focusing development on satisfying the 

requirements, and to mitigate development risks via early detection of design and 

implementation flaws. 

In this research, testing has been applied as a continual activity to verify and 

validate the results of the two development phases of Design and Implementation. 

Two small business systems have been targeted as case studies for verifying the 

methodology and validating it against the requirements. This chapter contains an 

explanation of the test process and the results of applying the implemented 

methodology for the analysis and design of the two systems used as test inputs. As 

expected, activities directly concerning the model-chain have become the primary 

focus of testing, and the results clearly reflect this. This was mainly due to the 

pivotal role of the model chain in the methodology, and the novelty of the pattern- 

based approach applied in its production. 

6.1 Test Process 

As in any software testing effort, the test activity prescribed by the meta- 

methodology applied in this research consists of the four generic activities of 
designing test-cases, preparing test data, running the software with the test data, 

and comparing the results to test cases [Sommerville 2004]; the difference is that 

the software being tested here is a methodology, with the immediate consequence 

that development situations become the test data. 

308 
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The meta-methodology used for developing the methodology is test-based, in that 

it prescribes testing as part of an iterative-incremental development engine, 

consisting of Design-Implementation-Test cycles. As explained in Chapter 1, 

although validation is iteratively performed at the end of the Design and 

Implementation activities, each Design-Implementation-Test cycle of this engine 

relies on the Test activity to perform verification and final validation of the system 

increment that has been developed. 

In the context of methodology development, verification is performed in order to 

ensure that the methodology correctly implements its functions; in other words, to 

ensure that work products are successfully produced, culminating in the production 

of the target software system. Considering the scope of this research, test cases 

were mostly focused on areas of higher potential risk. 

Validation tests the methodology against the requirements. Requirements-based 

reviews, conducted after each iteration of the Design and Implementation activities 

of the development engine, are validation activities and provide risk management 

and quality assurance, yet they cannot replace validation with test data, performed 

during the Test activity. 

Since the methodology's scope of application is currently limited to information 

systems - with the main focus on business systems - two business systems have 

been chosen to act as development test-beds, providing the development situations 

necessary for testing the methodology. The resulting case studies have taken shape 

during the iterative-incremental development of the methodology, helping to 

gradually refine and sculpt the methodology into its final shape by detecting and 

correcting the flaws and smoothing the rough edges. In order to provide a wider 

coverage of diverse development situations, several points of difference have been 

introduced in the definition of the target systems; for example, one system is 

introduced in a fully manual problem domain, while the other problem domain 

already contains computer-based elements, and whereas one system is to be 

implemented and used as a local-access system, the other is web-based. The 

systems are briefly described below: 
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A Library System providing basic library services to members and 
librarians; the existing library is managed through a manual process and 

depends on index cards for searching for books and keeping track of 

books, members, loans, returns and reservations. The computer-based 

system is to replace the index cards and provide additional facilities for 

searching and transaction management. The selection and definition of this 

particular problem domain as a case study was inspired by and based on 

the author's personal familiarity with the domain, gained through 

commercial and academic development projects. 

" An Estate Agency System providing property search, property promotion, 

and transaction management facilities; the existing agency relies on a 

computer-based record management system used by agency clerks for 

storing information on properties, customers (buyers/sellers), and 

transactions. The target system is to provide online facilities to customers 

for searching properties, putting properties up for sale, requesting 

viewings, making offers on properties, and communicating with agents and 

clerks. It should also provide messaging, documentation and information 

management facilities to clerks, and reporting and communication facilities 

to agents. The definition of this system is loosely based on a preliminary 

user-story, later developed into the eXGrid case study [Ge et al. 2006]. 

Tangibility, simplicity and understandability were the main criteria considered in 

selecting these systems: however testable the methodology itself is, poor test data 

in the form of unfamiliar, complex, poorly documented or unexplored problem 
domains is bound to hamper the testing process. Considering the scope of this 

research, small-scale versions of these systems have been targeted, and where 

possible, selected subsets of the overall system functionality have been focused 

upon in order to avoid unwarranted complexity. 

Due to the pivotal role of the model chain and the novel approaches applied to its 

production, the Real-world Domain Modeling and Requirements Elicitation 

subphase - where modeling starts - and the System Specification subphase - where 

model conversions are performed - have been targeted by the test cases. Other 

subphases are well-established cohesive activities - coupled together according to 

well-established development frameworks and metamodels - that have previously 
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been used in other methodologies [Cockburn 2004, DSDM Consortium 2003, 

D'Souza and Wills 1998, Palmer and Felsing 2002]. What is being tested is the 

ability of the methodology to enable successful production of design models that 

specify the class structure and inter-object behaviour of the software system in such 

a way that satisfies system requirements. The subsequent introduction of 

architectural design details into the models, and the ultimate production of class 

and method prologues leading to the software code, have already been done in 

other methodologies - the most prominent of which are Catalysis [D'Souza and 

Wills 1998] and FDD [Palmer and Felsing 20021 - and therefore pose a relatively 

minor degree of risk. It is true, however, that a comprehensive verification and 

validation of the methodology requires enactment in an industrial context, which 

has been suggested in Chapter 7 as a future task for furthering this research, yet 

verifying the model chain is essential for building an acceptable level of confidence 

in the methodology, and has indeed been crucial for gradual refinement of the 

approach, and the methods and techniques applied. 

The following sections summarise the verification results, focusing on the work- 

products produced through applying the methodology for the analysis and design 

of the two systems mentioned above. Validation results have been tabulated and 

reported separately at the end of the chapter. 

6.2 Case Study 1: Book Library System 

The book library problem domain targeted in this case study is a currently manual 

system providing basic library services to members. Introducing a computer-based 

system through applying the proposed object-oriented methodology starts with 

exploring and modeling the problem domain, and progresses to designing the new 

system first as an extension to the current system and then as a software system. 
The following sections contain the results of the modeling activities performed on 

the system through the application of the development methodology. For sake of 
brevity, when modeling detailed aspects of the system, focus has been limited to 

the two basic functions of borrowing a book and returning a book. 
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Continuous verification was mostly performed on this case study, as a result of 

which the methodology was gradually refined. Some of the more significant results 

are given below: 

" Activity diagrams should be given precedence over sequence diagrams in 

problem domain modeling, but the priority is reversed during later 

subprocesses. Verification showed that using activity diagrams facilitates 

requirements elicitation through highlighting the features, and they are 

better suited for modeling problem domains due to their superior modeling 

power, especially in modeling parallel work flows. Sequence diagrams, on 

the other hand, are better suited to specifying dynamic object 

communications, which come under focus later in the development process. 

" Object Models should be kept data-flow-oriented and feature-driven. 

Verification showed that if data-flows were replaced by message-flows, 

continuity would be disrupted. This is particularly damaging to traceability 

and seamlessness. Specification of operations and message flow is therefore 

left to the System Specification subprocess, where they evolve from 

features, and are modeled in Software Class- and Interaction Models. 

" It is best to apply redistribution patterns in a specific order for transforming 

the System Model into the Software Model. Verification showed that 

Reengineering Patterns should be applied first, then Refactoring Patterns, 

and then Design Patterns (as introduced in Section 5.2.2.3). This ensures 

that major anomalies are removed before the introduction of new structures. 

6.2.1 Context Model 

The Context Model components presented in this section include Context Object 

Models, Context Interaction Models, the Context Features List, and a partial 
Glossary of Terms. The Context Object Models show a representation of the 

problem domain as encountered in the real world, with the target system then 

added as a problem domain object. The Context Interaction Models depict the 

cooperation among problem domain objects for performing the book-borrow and 
book-return processes. Context Interaction models come in two versions: the first 

versions model the real world, and the latter ones depict the interactions after the 

target system is added as a problem domain object and is involved in inter-object 
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cooperation. The Context Features List shows the major feature sets (areas), as 

well as their constituent feature sets (activities) and bottom-level features (steps), 

with the detail mostly confined to features pertaining to book-borrow and book- 

return processes. The list also shows the assignment of feature sets and features to 

problem domain objects. 

6.2.1.1 Context Object Models 

Figure 56 shows the real-world Context Object model of the library problem 
domain. The diagramming notation resembles that of UML collaboration diagrams 

[OMG 2003], yet the semantics of the inter-object interactions does not conform to 

the UML, in that it depicts data flow instead of message/signal flow, and also 
because sequencing is ignored. The diagram also shows the assignment of feature- 

sets and features to objects. Objects and data flowing between them are direct 

models of the real world, yet the modeler can define a specific object to represent a 

typical object encountered in the problem domain, together with its typical 

properties and features; Librarian and Library-Member are examples of such 

objects. These typical objects are not to be called classes yet, in order to keep 

models tangible to Domain Experts and Ambassador Users for as long as possible. 

Figure 57 shows the Context Object Model after the target system is added as a 

problem domain object. Feature sets have been redistributed and new feature-sets 

have been added to the system. 

6.2.1.2 Context Interaction Models 

Figure 58 and Figure 59 show the scenarios for performing the book-borrow and 
book-return processes in the real-world library. UML activity diagrams are used at 

this stage with swimlanes depicting the active objects participating in the 

processes. 

The use of swimlanes is essential in this context, since it is their use that makes the 
diagrams object-oriented. As seen in the figures, Librarian and Member are the two 

active objects cooperating to perform the book-borrow and book-return scenarios. 
Storage objects (such as card-racks) are not modeled as participating objects due to 

their passive roles in the system, nevertheless references to their usage by active 

objects can be seen in activity descriptions. 
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Figure 56. Context Object Model of the Book library problem domain 
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Figure 58. Context Interaction Model, depicting 
the book-borrow scenario 

Figure 60 and Figure 61 show the book-borrow and hook-return scenarios after the 

addition of the system object. The system has been assigned a separate swimlane, 

and activities and functionalities have been redistributed. 
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the book-return scenario 
Figure 59. Context Interaction Model, depicting 
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Figure 60. Context Interaction Model depicting the book-borrow scenario, 
with the system introduced as an object 

Figure 62 is an alternative Context Interaction Model using UML sequence 

diagrams instead of activity diagrams. While activity diagrams provide a simpler 

informal tool for depicting cooperation scenarios, and are therefore quite suitable 

for the starting stages of the development, sequence diagrams tend to force a 
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message-based approach and necessitate the definition of more clear-cut 

operations, thus leading to clearer delineation of feature-sets and features. 
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Figure 61. Context Interaction Model depicting the book-return scenario, 
with the system introduced as an object 
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Figure 62. Alternative Context Interaction Model depicting the book-return scenario, 
including the target system as a problem domain element 

6.2.1.3 Context Features List 

The Features List produced as part of the Context Model is extended and detailed 

in the System and Software Models. It is the main repository for functional 

requirements, and as such acts as the base holding the model chain together, 

therefore maintaining it and keeping it up-to-date is essential for ensuring 

consistency and requirements traceability. 

In the initial version of the library Context Features List, the functions that each 

active object of the problem domain performs are listed and expressed as higher- 

level feature sets (areas and activities) and low-level features. When the target 

system is added as a problem domain object, responsibilities are redistributed and 

feature sets and features redefined. Table 3 shows a partial view of the library 

Context Features List after the system has been added, highlighting feature-sets and 

features related to the book-borrow and book-return functionalities. 

6.2.1.4 Glossary of Terms 

Explanations of the objects, data flows and typical activities and interactions are 

provided in a Glossary of Terms included in the Context Model. Figure 63 shows a 

partial view of the Glossary of Terms in the library system's Context Model, 
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mainly focusing on domain objects and Flowing data. Detailed structural 

information has been left out for sake of brevity. 

Table 3. Partial view of the Context Features List (library system), 
highlighting loan and return processes 

Object 
Major Feature Sets 

(Areas) 

Feature Sets 

(Activities) 

Features 
(Steps) 

Requesting Info 

Searching Card (-analogue 
... 

Browsing Bookshelves 
... 

Retrieving Book 
... 

Member 
_ Studying in Library 

Reserving Book 
... 

Borrowing Book 

Returning Book 
... 

Paying Fine 
... 

Book-Stock Mgmt ... 

Book-Loan M mt 
Passing loan info to System ... g 
Passing results to Member 

... 
Passing Book to System 

... 

Librarian 
Book-Return Mgmt Fining Member 

... 
Reshelving Book 

... 
Reservation Mgmt ... ... 
Info-Request Mgmt ... ... 
Membership Mgmt 

Financial Mgnll 
... ... 

System Book-Stock Mgmt ... ... 

Verifying eligibility 

Lookup loan specifications of book 
-------------------------------------------------- Lookup loan permissions of member 
-------------------------------------------------- Determine eligibility of member 

System Book-Loan Mgmt Registering loan 

Determine loan duration for book 
-------------------------------------------------- I Ipdate loan history of book 
-------------------------------------------------- I 1pdate loan history of member 

System 

Issuing Due-Date Notice 

Retrieve specifications of book 
-------------------------------------------------- Retrieve specifications of member 
-------------------------------------------------- Generate due-date notice for book 

System Book-Return Mgnu 

Calculating fine amount 

Lookup loan history of book 
-------------------------------------------------- Lookup loan specifications of member 
-------------------------------------------------- 

Calculate fine payable by member 

Registering return 
Update loan history of book 
- --------------------------------------- Update loan history of member 

System Reservation Mgmt 
... ... 

System Info-Request Mgmt 
... ... 

System Membership Mgmt 
... 

System Financial Mgmt 
... ... 
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Book Library 
Problem Domain Objects 

Member A person registered as it member and issued with it mcndxrship card lach Metuhrt is assigned a unique 

nxnilership number and it type, based on which the rnaximunt number of books that can be borrowed by 

the member at any one time are determined, as well as the maximum loan duration and the line amount 
that should be paid by the member if it book is returned after its due (Lite, 

Librarian A person providing library services in the library. 

('ard Catalogue A set of index cards - indexed according to title. snbjrrt and author - providing it srarch; ihle ti cihty tm 

obtaining hook information. 

Book-Cards Rack A holder for book cards, which are sorted in the rack according to book number 

Member-Cards Rack A holder for member tcards, which are sorted in the rack according to member number. 

Bookshelves Holders for books, which are sorted in the shelves according to hook number. 

Flowing Data (or Objects) 

Book Each book volume in the library, which is assigned it unique book number and it type hased on which the 

maximum loan duration and the fine amount (in case of delays in returning the item) are determined. Each 

book is issued with it number of cards: two book cards - for recording loan information such as borrower 

numbers, due dates and actual return dates -, one derail card - which contains detailed information about 
the book and is permanently held in the book-cards rack -, and it number of index cards - which are put in 

the card catalogue for searches on author, title and subject. To each hook it card sleeve and it due dare dip 

are attached. The sleeve is used for holding the book's two book cards when it is on the shelves 

Book Card Two issued for each book, hook cards record loan history and current loan data, especially borrowers' 

numbers, due dates and actual return dates. When it book is on the shelves, the cards are contained in the 
book in it special sleeve. When the book is lent, the number of the borrower and the due date are entered in 

the two cards, one of which is attached to the borrower's member card in the member-rnrds rack and the 

other is attached to the book's details card in the book-cards rack, thus enabling the librarian to cross- 
reference the members with their borrowed books. When it book is returned, the book cards are retrieved, 
updated with the return date and then reinserted in the sleeve on the book. 

Member Card Each member is issued with it member card which is permanently held in the member-cards rack and 
contains the member's personal data and loan history, including current loans. For each loan, the hook 

number, due date and return date are recorded. 

Index Card These search cards enable the member to obtain book into from the rnrd catalogue based on search criteria 
including title, author and subject. 

Due-Date Slip A slip which is attached to each book and holds loan history information including borrowers, due dates 

and return dates. When a book is loaned, the borrower's number and the due date are entered in the due- 
date slip. The due date is calculated based on the book type and the member type using loan duration 

tables. When a book is returned, the slip is updated with the return date. 

Book Info Detailed information on a book, which results from a search in the book rnrnlogue or an info request from 

a librarian. 

Info Request A request for book info which is submitted to a librarian and typically includes values for search criteria - 
such as title, author or subject. 

Reservation Request A Request submitted to a librarian to reserve a specific book. Book number is supplied along with the 
request. 

Fine Amount Calculated by the librarian according to fining tables. 

Payment Fine amount paid in by the member. 

Figure 63. Partial view of the glossary of terms for the library case study 
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6.2.2 System Model 

322 

The System Model components presented in this section include System Object 

Models, System Interaction Models, and the System Features List. 

The System Object Models show the internal structure of the target system 

designed as an extension to the existing library structure, i. e. as a separate section 

consisting of library clerks and information storage facilities found in conventional 

offices. Detail has been limited to book-borrow and book-return processes. 

The System Interaction Models depict the cooperation among system objects for 

performing the hook-borrow and book-return processes. 

The System Features List shows the feature sets (activities) and bottom-level 

features (steps) assigned to system objects, with the detail mostly confined to 

functionality as pertaining to book-borrow and book-return processes. 

6.2.2.1 System Object Models 

Since System Model components focus on the two system functionalities of book- 

borrow and book-return, a more restricted view of the latest version of the Context 

Object Model has been presented (Figure 64) as the basis for System Object 

Models. 

Book. 
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Library Member Librarian Library System 

Book. 1,0än Request 
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&x, ký 
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Figure 64. Context Object Model focusing on the loan and return functionalities of the 
library system 
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As already mentioned, the System Model is developed through designing the 

system as an extension to the existing library. Figure 65 shows an example of one 

such design. 

The shaded area in Figure 65 shows the target system, with the objects colour- 

coded in order to be easily distinguished. Although not a part of the System Object 

Model, this type of blueprint can be safely used in order to provide a more realistic 

visualization of the target system to the Ambassador Users and Domain Experts. 

However, it will ultimately be represented as System Object Models. 

As shown in this diagram, a number of custodians are put in charge of providing 

access to data stores and archives, and other custodians are on standby to take 

charge of flowing data when the need arises. 

Each and every item retrieved from data storage (e. g. Book Record), produced by 

clerks, or supplied by entities external to the system, is given to a custodian, who 

controls access to the item until it either has to be returned to storage, is completely 

consumed during processing (and is therefore discarded), or is supplied to external 

entities. This ensures that passive data is always coupled with and encapsulated by 

active objects. 

Custodians are tangible to Domain Experts and Ambassador Users, as they 

correspond to entities normally seen in business systems. Furthermore, they lay the 

groundwork for applying redistribution patterns for transforming the System Model 

into the Software Model. 

Figure 66 shows an initial version of the System Object Model with the loan/return 

functionality performed by one active clerk object. Custodians have been clearly 

shown as objects in charge of providing access to passive data objects. Features of 
the clerk object are added later when the overall structure has taken shape. 
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Figure 66. System Object Model using one system clerk for implementing the loan and 
return functionalities 

Figure 67 shows an alternative design with two clerk objects. The former 

alternative has been chosen for final refinement due to its relative simplicity. 

Figure 68 shows the resulting System Object Model with feature-sets assigned to 

the clerk object, and custody relationships simplified in order to reduce diagram 

complexity. 
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Figure 67. Alternative System Object Model using two system clerks for implementing 
the loan and return functionalities 
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Figure 68. System Object Model, with main feature sets added 

6.2.2.2 System Interaction Models 

Figure 69 and Figure 70 show the scenarios for performing the book-borrow and 

book-return processes in the library system. UML sequence diagrams are used with 
interactions depicted as message passing. 

As shown in the figures, data objects retrieved from data repositories are 

instantiated as transient objects which are assigned to specially instantiated 

custodian objects, and are destructed when the data is returned to the repository. 
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The figures also show how custodians and data objects are created by repository 

custodians, how access to data objects is provided through their custodians, and 

how data objects and their custodians are destructed when they have served their 

purpose. 

System Interaction Models are produced for every feature-set of the system, and 

also for every complex feature. It should be noted that the diagrams depict 

processes in a manual system that has been designed as an extension to the problem 

domain - using the same types of objects encountered therein - and hence some 

processes are running in parallel. 
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Figure 69. System Interaction Model depicting the book-borrow scenario 
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Figure 70. System Interaction Model depicting the book-return scenario 

6.2.2.3 System Features List 

The Features List produced as part of the Context Model is extended in the System 

Model and focus is shifted to intra-system objects. Table 4 shows a partial view of 

the library Service Features List focusing on feature-sets and features related to the 

book-borrow and book-return processes. Distribution of features among system 

objects is emphasized, with custodians providing access/update features and the 

clerk object undertaking the main processing tasks. Data and repository objects 

lack functionality and are therefore devoid of features. 
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Table 4. Partial view of the System Features List (library system), 
focusing on loan and return processes 

330 

Major Feature 
Feature Sets Features 

Object Sets 
(Activities) (Steps) 

(Arens) 

Retrieving Member Record Rctnc c st il t 'I mrrnl, rr rrrurd 
------------------------------------------ --- 

ositor Custodian ber-Re M M mt Member-Re ositor 
Assign custodian to rnr/nher record 

y p em g p y 
Saving Member Record Save lüta Ut IIIenil, er-, e'f(1/'(I 

-------------------------------------------------- Disass, ciate custodian trout member-rernrrl 

di B k R i M 
Retrieving Book Record 

an Book Repository Custo oo - epos tory gmt 
Saving Book Record 

Getting Member Data 
Member-Record Custodian Member-Record Mgmt 

Setting Member Data 

B k R dM 
Getting Book Data 

Book-Record Custodian oo - ecor gmt 
Setting Book Data 

Request bookrecord trout bm)k-rt, jj4mrw% 
--------------------------------------------------- Request member-reeurd tram member-repetetuns 

---------- ----- Veritying eligibility 
-------------------------------- 
Lookup luvt specifications in hook-record 

------------------------- ------------------------- 
la, ukup loan permissions in rnenihei-rerold 
------------------------------------------------ Detennine eligibility for member'-record 

Determine loan duration tor /nerriber-re( uiJ 
----------------------------------- - 

System Book-Loan Mgmt Registering loan ---------- - 
Update loam history in hook-record 
-------------------------------------------------- 
Ullate loan history in member-reenrd 

Retrieve sl eciticutiuns from hook-record 
-------------- ------------------------------------ 

Retrieve specificuttons trout rnernher-rernrd 
- - 

Loan/Return Clerk 
Issuing Due-Date Notice - --------------------------------------------- 

------ 
r-reenrrl Generate due-date notice for 

Return book-record to book-tepmimrv 
------------ ---------------------------------- Return member-record to mernbrr-repu. tsirur 

Request look-re, urd from book repomrom 
--------------------- ------------------------------- 

Request member-record from member-repo cnor 

Calculating fine amount 
-------------------------------------------------- Get loan history trout btwk-recoid 

----------------------- --------------------------- Get Ivan specifications from rnemher-record 
--- - System Book-Return Mgmt - --------------------------------------------- 

t>rtrrmfne fine p: ryuMe fur mernherrernrd 
Update lout history in book-record 

---------------------------------------------------- 

Registering return 
UNate loan history in member-record 
------------------------------------------------- Return Wok-record to book-reposilon, 

---------------- ------------------------------- Return �member-rernrd tu member-re'posiwri 

6.2.3 Software Model 

The Software Model components presented in this section include Software Object 

Models and Software Interaction Models. As was the case with the System Model, 

detail has been limited to book-borrow and book-return processes. 

Software Object Models are produced through iterative application of patterns to 

System Object Models. The Software Interaction Models depict the cooperation 

among software objects for performing the book-borrow and book-retuni 

processes. 
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6.2.3.1 Software Object Models 

Figure 71 shows the System Object Model from the previous section along with the 

patterns that are applied in order to produce the Software Object Model. The 

sequence of pattern application conforms to that prescribed in the methodology, i. e. 

redistribution patterns take precedence, with refactoring patterns complementing 

them where needed. 
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Figure 71. Object Model depicting the major patterns applied to convert the System 
Object Model into the Software Object Model 
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Other figures in this section depict the step-by-step process of pattern application, 

showing how each pattern is applied and the resulting changes in the Object Model. 

Transformations are highlighted in order to emphasize the effects of each pattern 

on the model. 

Figure 72 shows the results of applying the Split-Up-God-Class(Object) pattern to 

the System Object Model. The Loan/Return-Clerk object is thus split up into two 

objects: the Loan-Clerk and the Return-Clerk. The features and data fields are 

moved to their corresponding object. 
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Figure 72. First Step: applying the Split-Up-God-Object pattern 
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Figure 73 shows the way the second and third patterns are applied. The Move- 

Behaviour-Close-to-Data pattern is first applied to move the relative behaviour to 

custodians. The Move-Field refactoring pattern is then applied to do the same with 

data fields. As a result, the two clerk objects lose their structure and behaviour and 

become simple intermediaries between the Librarian outside the system and the 

custodians. 
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Figure 73. Second and Third Steps: applying the Move-Behaviour-Close-To-Data and 
Move-Field patterns 

Figure 74 Shows the last pattern applied. The Return-Clerk and Loan-Clerk objects 

are now little more than empty shells. The Remove-Middleman refactoring pattern 

is hence applied to establish direct links between the custodians and the external 

Librarian. Alternatively, the Poltergeist antipattern can be used with the exact same 

effect. 
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Figure 74. Fourth Step: applying the Remove-Middle-Man pattern 

Figure 75 shows the resulting Software Object Model, with custodians doing the 

processing and data objects providing the data. Design patterns can then be used - 
if applicable - to introduce specialized structure and behaviour in the models. The 

next and last step is to merge the custodians with their data objects, thus producing 

objects encapsulating both state and behaviour. Software Class Models can then be 

produced, highlighting classifications of objects and their relationships, especially 

aggregation and generalization specialization. 
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Figure 75. The resulting Software Object Model before merging custodians with data 
objects 

6.2.3.2 Software Interaction Models 

Figure 76 and Figure 77 show the scenarios for performing the book-borrow and 

hook-return processes in the software system. Here too UML sequence diagrams 

are used with interactions depicted as message passing. 

As these figures show, repository custodians are in charge of initiating the loan and 

return processes. Control is then passed to record custodians to implement the main 

functionality. 
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Figure 76. Software Interaction Model depicting the book-borrow scenario 

Software Interaction Models will later be used alongside Software Object/Class 

Models to produce class- and method prologues during iterative design and 

implementation. Due to the feature-driven nature of models and development tasks, 

feature-based interaction scenarios are preserved as bases throughout the 

development process (as observed in the Library examples above), to ultimately 

influence class- and method prologues, and the final software code. 
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6.3 Case Study 2: Estate Agency System 

The estate agency system targeted in this case study is currently a computer-based 

system, with potential buyers and sellers visiting the premises of the agency in 

person or contacting agency clerks by phone in order to obtain information about 

properties on the market, put new properties up for sale, request viewings, or make 

an offer on a property. Information about properties, customers and transactions is 

stored in a database and maintained via an existing computer-based record 

management system. 

Figure 77. Software Interaction Model depicting the book-return scenario 
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Sellers contact the agency clerks to put their properties on the market. Each 

property is then assigned to an agent, who surveys the property in order to assess 

its marketing potential and decide whether marketing is advisable considering the 

present state of the market. The agent reports the results to the clerks at the agency, 

who then advertise the property on display boards if marketing has been approved. 

As the first point of contact for customers, agency clerks are approached by 

potential buyers mainly to help with searching for properties using the computer 

system. Potential buyers can also browse through the advertisements put on display 

boards. Buyers who request to view a property are put in contact with the agent 

assigned to the property, who then consults with the seller to arrange a viewing 

schedule. Buyers who decide to put an offer after viewing a property do so by 

contacting the agent, who then relays the offer to the seller and announces the 

result to the buyer. Agents also offer advice to the parties involved, and arrange for 

the signing of contracts if final agreement is reached. The results are continually 

reported to agency clerks, who are in charge of updating all records and managing 

the paperwork. 

The aim is to develop an online estate-agency system, which provides property 

search facilities online, and allows registered customers to put properties up for 

sale, request viewings, make offers, negotiate deals, and seek professional advice. 
The system is to make use of messaging as the main means of communication 

among agents, customers and agency clerks. The present computer-based record 

management system is to be considered as an external data storage system, 

interfaced in order to provide database management facilities to the online system. 

The following sections contain the results of the modeling activities performed on 

the system through the application of the development methodology. For sake of 

brevity, when modeling detailed aspects of the system, focus has been limited to 

the three basic functions of putting a property up for sale, arranging a viewing, and 

making an offer on a property. 

As the main purpose in conducting this case study has been to verify the 

applicability of the methodology and the pattern-based model-transformation 

approach to problem domains that already contain computerised elements, 

emphasis has been put on model conversion; Object Models have therefore taken 
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precedence, and some less relevant behavioural models have consequently been 

omitted from the results. Verification using this case study confirmed the findings 

reported in Section 6.2. 

6.3.1 Context Model 

The Context Model components presented in this section include Context Object 

Models, Context Interaction Models, the Context Features List, and a partial 

Glossary of Terms. 

The Context Object Models show a representation of the estate agency problem 

domain as encountered in the real world, with the target system then added as a 

problem domain object. The Context Interaction Models depict the cooperation 

among problem domain objects for performing the put-property-up-for-sale, 

viewing, and make-an-offer processes. Context Interaction models come in two 

versions: the first versions model the real world, and the latter ones depict the 

interactions after the target system is added as a problem domain object and is 

involved in inter-object cooperation. The Context Features List shows the major 

feature sets (areas), as well as their constituent feature sets (activities) and bottom- 

level features (steps), with the detail mostly confined to features pertaining to put- 

property-up for-sale, viewing, and make-an-offer processes. The list also shows the 

assignment of feature sets and features to problem domain objects. 

6.3.1.1 Context Object Models 

Figure 78 shows the real-world Context Object model of the estate agency problem 
domain. The diagram also shows the assignment of feature-sets and features to 

objects. Figure 79 shows the Context Object Model after the target system is added 

as a problem domain object. Feature sets have been redistributed and new feature- 

sets have been added to the system. 

6.3.1.2 Context Interaction Models 

Figure 80, Figure 81, and Figure 82 show the scenarios for performing the put- 

property-up-for-sale, viewing, and make-an-offer processes in the real-world estate 

agency. UML activity diagrams are used at this stage with swimlanes depicting the 
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active objects participating in the processes. As seen in the figures, active objects 

cooperate to perform the put-property-upfor-sale, viewing, and 'nuke-nn-o%/er 

scenarios. Storage objects (such as ud-boards) are not modeled as participating 

objects due to their passive roles in the system, nevertheless references to their 

usage by active objects can be seen in activity descriptions. 
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Figure 78. Context Object Model of the Estate Agency problem domain, 
depicting problem domain objects, feature sets and inter-object data flows 
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Figure 79. Context Object Model of the estate agency, with the system introduced as a 
problem domain object 
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Figure 83, Figure 84, and Figure 85 show the viewing, put-property-up for-sale, 

and make-an-offer scenarios after the addition of the system as a problem domain 

object. The system has been assigned a separate swimlane, and activities and 

functionalities have been redistributed. 

Figure 80. Context Interaction Model, depicting 
the put-property-up-for-sale scenario 
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Figure 81. Context Interaction Model, depicting the viewing scenario 
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Figure 82. Context Interaction Model, depicting the make-an-offer scenario 
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Figure 83. Context Interaction Model, depicting the put-property-up-for-sale scenario, 
with the system introduced as an object 
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Figure 84. Context Interaction Model, depicting the viewing scenario, 
with the system introduced as an object 

345 

With the introduction of the system as a problem domain object, it has assumed the 

responsibility of connecting buyers, sellers, agents and clerks, so that they 

communicate through passing messages to each other. Requests made by objects 

are automatically stored by the system and routed to the corresponding destination 

objects. The system also acts as the interface to the old database system, giving 

clerks access to the records. Buyers and sellers can search for properties via the 

system, and agents can use the system's special reporting facilities to send reports 

to clerks. 
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6.3.1.3 Context Features List 

In the initial version of the estate agency Context Features List, the functions that 

each active object of the problem domain performs are listed and expressed as 

higher-level feature sets (areas and activities) and low-level features. When the 

target system is added as a problem domain object, responsibilities are redistributed 

and feature sets and features redefined. Table 5 shows a partial view of the estate 

agency Context Features List after the system has been added, highlighting feature- 

sets and features related to the viewing, put-property-up-for-sale, and make- 

all-offer functionalities. 

Figure 85. Context Interaction Model, depicting the make-an-offer scenario, 
with the system introduced as an object 
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Table 5. Partial view of the Context Features List (estate agency system), 
highlighting viewing, put-property-up-for-sale, and ºnake-an-ufer processes 

Object 
Major Feature Sets 

(Areas) 
Feature Sets 

(Activities) 
Features 

(Steps) 

Requesting Info 

Browsing Property Ads 

Property 
Viewing Property 

Subout viewing request for a prnpenv 
----------------------------------------- 
View properly 

Buyer Consulting Agent 

Making Offer 
Submit offer , it a proprrhv 
------------------------------------------ 

Closing Purchase 
... 

Requesting Info ... 
Browsing Property Ads 

Property 
Putting Property Up for Sale 

Submit sale request for a proprvrc 
------------------------------------------ 
Set viewing schedule for it propene 

Seller Consulting Agent 

Responding to Offer 
Submit offer resronse on a pn, pem 
------------------------------------------ 

Closing Sale ... 
Creating new Property Record 

Property Mgmt Updating Property Record 

Producing Property Advertisement 

Buyer Mgmt 
... 

Clerk Seller Mgmt 
... 

Agent Mgmt 
Assigning Agent to Property 

Collecting Reports 

Transaction Mgmt 
... 

Financial Mgmt 
... 

Promoting Property 

Inspecting Property 

A ent 
Showing Property 

g _ Offering Advice to Parties 
... 

Closing Deal 

Reporting to Clerk 

Property Records Mgmt 
... 

Record 
ement Mana 

Agent Records Mgmt 
g 

System Customer Records Mgmt 
,.. _. 

Transaction Records Mgmt 
,.. 

User Accounts Mgmt 
... 

Clerical Services Mgmt 
Providing Database Management Facilities 

Providing Messaging Facilities 

Registering/Processing Viewing Requests 

Buyer Services Mgmt Registering/Processing Offers 

Estate Agency Providing Messaging Facilities 

Web-Based Registering/Processing Sale Requests 
System Seller Services M mit b Registering/Processing Offer Responses 

Providing Messaging Facilities 

Registering/Processing Viewing Requests 

Agent Services \lgmt Providing Reporting Facilities 

Providing Messaging Facilities 

Property Search Mgmt 
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Estate Agency 
Problem Domain Objects 

Property Buyer A person intending to buy a property: customers visiting the agency are initially considered potential 

buyers and are allowed to search for properties via browsing ads or requesting information from clerks. A 

buyer will have to be registered with the system in order to request a viewing or place an oiler on a 

property. Registration involves opening a buyer account for the person and storing their particulars in the 

database. Registered buyers will be assigned it unique buyer-Il), which will he used in all their transactions 

with the agency. A registered buyer will have to reregister as a seller it ever intending to sell a property. 

Property Seller A person intending to sell a property; it seller will have to be registered with the system in order to put it 
property up for sale. Registration involves opening it seller account for the person and storing their 

particulars in the database. Registered sellers will be assigned it unique seller-il), which will be used in all 
their transactions with the agency. A registered seller will have to reregister as it buyer if ever intending to 
buy a property. 

Clerk A person in charge of clerical services at the estate agency offices. As the first point of contact with 

customers, a clerk's office duties include: providing information on properties, registering customers, 

entering information into the database, producing property ads, assigning agents to properties, and taking 

care of all paperwork related to transactions. 

Agent A person acting as the representative of the estate agency in performing surveys and valuations, inspecting 

and promoting properties that have been put up for sale, showing properties to potential buyers, acting as 

mediator and adviser to sellers and buyers, and arranging the finalization of transaction'.. tgeni% should 

report all their activities to the clerks involved. 

Record Mani SN steal Ilse Computer-based Database Management System maintaining records of properties, custonxcrs, agents 

and transactions. The system also produces reports of the data upon request, including property ads. 

Property Ads Board A Display board for displaying property advertisements 

Flowing Data (or Objects) 

Property Ad A descriptive advertisement of a property detailing the specifications of the property and the price its 
indicated by the seller. Property Ads are produced by the Record Mgrnt Svstem upon request by the 
clerks, who then put them on display on property ads boards. 

Viewing Request A request made by a buyer to view a specific property. The request is passed to the agent assigned to 
the property, who then contacts the seller of the property and arranges for a viewing schedule. 

Put-Up-for-Sale Request A request made by a seller to the estate agency, giving permission to the agency to act as sale 
representative on behalf of the seller for the promotion and sale of it specific property owned by the 
seller. The request is passed to a clerk who assigns an agent to the property. The agent then inspects 

and evaluates the property. If confirmed as eligible for sale, the property is then registered in the 
database and advertised for sale, with the agent acting as mediator in all transactions. 

Offer A price offered by a buyer on a specific property. 

Response to Offer An acceptance or rejection response by a seller to an offer made by a buyer. 

Info Request A request for property info which is submitted to a clerk and typically includes values for search 
criteria - such as location, price range, number of bedrooms, or type. 

Property info Detailed information on a property, which results from a search in the property ads hoard or an uib� 
request from a clerk. 

Viewing Schedule A schedule set by a seller for the viewing of a property by a buyer, or inspection by an agent. 

Contract Legally binding agreement denoting a transaction between buyers and sellers over a specific property. 
A contract is prepared by a clerk and signed by the parties involved. 

Figure 86. Partial view of the glossary of terms for the estate agency case study 
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6.3.1.4 Glossary of Terms 

Figure 86 shows a partial view of the Glossary of Terms in the estate agency's 

Context Model, focusing on problem domain objects and flowing data. 

Descriptions of typical activities and interactions, and detailed structural 

information have been left out for sake of brevity. 

6.3.2 System Model 

The System Model components presented in this section consist of System Object 

Models; System Interaction Models and the System Features List have been left out 

for sake of brevity. The System Object Models show the internal structure of the 

target system, designed as an extension to the existing estate agency structure, i. e. 

as a separate section consisting of service-attendants and information storage 

facilities found in conventional offices. Detail has been limited to put-property-up- 

for-sale, viewing, and make-an-offer processes. 

Since System Model components focus on the three system functionalities of put- 

property-up-for-sale, viewing, and make-an-offer, a more restricted view of the 

latest version of the Context Object Model has been presented in Figure 87 as the 

basis for System Object Models. 

As already mentioned, the System Model is developed through designing the 

system as an extension to the existing estate agency. Figure 88 shows an example 

of one such design. The shaded area in Figure 88 shows the target system, with the 

objects colour-coded in order to be easily distinguished. 

Figure 89 shows an initial version of the System Object Model, with service 

attendants in charge of interacting with external objects. Custodians have been 

clearly shown as objects in charge of providing access to passive data objects. 
Features of the objects - as pertaining to the put-property-up-for-sale, viewing, and 

make-an-offer functionalities - have been clearly depicted. 
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Record Management 
(leek System 

I'Is petty Records 

Property Mgml Age-ut Records 
Creating Property Record nk"r Records 

I rJamw Fr pens Ree rd Il. e -woou Records 
llmd-, - P-1-1r VI 

Buyer NI gnn Property Renorlls Mgunt 

Seller Mgml Agent Records Mgmt 
Agent Nlgm1 Customer Records MRmt 

A, mvmne Arcnt 1, I'mlkns 
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Transaction Mgml 

M 
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System n l It -age . . 

1) ii e Clerical Services Mgmt 
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Providing Messaging Facilities 
Buyer Services Mgmt 

' 
RegisteringfProcessing Vt eine Rcyuests 

\ Irulnc Registering/Prueessing Ottern 
S. IIe 

Kcyura Keyuc. t 
Pn, vrting Messaging Facilities 

Seller Services Mgml 

Otter 

\1e.. aEeý 
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Registering/Processing Offer Rra, n.. c. 
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Buyer ID Seller 11) 
Personal Into Per. -mal Inter 

Agent 
Viewing Property Tuning Property Up for Sale 

Consulting Agent Agent ID Consulting Agent 
Making Otter 

Per-mal Info 
Resin ne tng to Otter 

Inspecting Property 
Sinus ing Property 

(ttlcring Advice tu Parties 
Relenting to Clerk 

Figure 87. Context Object Model, focusing on the Put-Up-for-Sate, Request-Viewing, 
and Make-Offer functionalities 

As seen in Figure 89, service attendants act as interfaces to the system, interacting 

with buyers, sellers, agents, and agency clerks. Record-Management-Clerks have 

been put in charge of retrieving and updating records through interacting with the 

old database system. A message repository, with its own custodian, has been set up 

to store the messages through which external objects communicate with each other. 

Clerical-Services-Attendant objects not only act as interfaces between agency 

clerks and the system, but also act as intra-system controllers, in that they control 

access from other attendants to the message repository and Record-Managenient- 

Clerks. 
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Existing Estate Agency Structure 

.ýa 
ý° 

on 

Estate Agency System 
introduced as an Extension 

4- ýý 4 

BUYER/SELLER CLERK CUSTODIAN SYSTEM MANAGER AGENT 
CLERK 

Figure 88. Designing the estate-agency system as an extension to the existing structure 
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Record Management 
Clerk 
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Agent Records 

Customer Records 
Transaction Records 

Property Records Mgmt 
Agent Records Mgmt 
Customer Records Mgmt 

Data 

----------------------------- ---- 

Record Management 
System 

Figure 89. System Object Model focusing on the viewing, Put-properly-up-for-sale, and 
make-an-offer functionalities 
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6.3.3 Software Model 

353 

Software Object Models are presented in this section in order to illustrate the 

pattern-based transformation process. As was the case with the System Model, 

detail has been limited to put-property-up-for-sale, viewing, and make-an-offer 

processes. 

Software Object Models are produced through iterative application of patterns to 

System Object Models. Figure 90 shows the System Object Model from the 

previous section along with the patterns that are applied in order to produce the 

Software Object Model. 

The sequence of pattern application conforms to that prescribed in the 

methodology, i. e. redistribution patterns take precedence, with refactoring patterns 

complementing them where needed. Transformations are highlighted in order to 

emphasize the effects of each pattern on the model. 

As shown in this figure, the Move-Behaviour-Close-to-Data pattern is first applied 

to move the relative behaviour to custodians. As a result, the attendant objects lose 

their behaviour and become simple intermediaries between external objects and the 

custodians. The Remove-Middleman refactoring pattern is hence applied to 

establish direct links between the custodians and external objects. Alternatively, the 
Poltergeist antipattern can be used with the exact same effect. 

Figure 91 shows the resulting Software Object Model, with custodians doing the 

processing and data objects providing the data. The main functions- as pertaining 
to the put-property-up-for-sale, viewing, and make-an-offer functionalities - are 

performed by Property-Record-Custodians, yet processing is typically initiated by 

Record-Management-Clerks, who retrieve the relevant property record, assign it to 

a custodian, and then request the custodian to perform the required function. 

The next and last step is to merge the custodians with their data objects, thus 

producing objects encapsulating both state and behaviour. Software Class Models 

can then be produced, highlighting classifications of objects and their relationships, 

especially aggregation and generalization/specialization. 
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Figure 90. Object Model depicting the major patterns applied to convert the System 
Object Model into the Software Object Model 
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Figure 91. The resulting Software Object Model before merging custodians with data 
objects 
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6.4 Requirements-Based Review of the Test Phase 

Table 6 shows the final validation results based on the case studies. As the case 

studies have been conducted on small-scale versions of the Library and Estate 

Agency systems, and since testing has been focused on methodology subphases 

posing the highest development risk, test results have not targeted all requirements 

to the same extent; for instance, while modeling-related requirements have been 

satisfactorily covered, requirements related to umbrella activities have not been 

adequately addressed by the case studies. Therefore, the validation results 

presented in Table 6 should be complemented by requirements-based review tables 

of Chapters 4 and 5 in order to provide a comprehensive picture. 

6.5 Summary and Conclusion 

Rather than a one-off activity performed at the end of the development effort, 

testing is a continuous, ongoing activity in the meta-methodology applied in this 

research, gradually shaping the target methodology through uncovering the flaws 

and smoothing the rough edges. Verification and validation is conducted at the end 

of each Design-Implementation-Test cycle of the iterative-incremental 

methodology development engine. The tasks performed during methodology 

testing are the same as in software testing, but since the software being tested here 

is a methodology, development situations are used as test data. 

Two small-scale business systems -a Library and an Estate Agency - have been 

used as test-beds for verifying and validating the methodology. What is being 

tested is the ability of the methodology to result in the production of the work- 

products, and ultimately the target software system. Since many subphases and 

activities of the methodology are either based on well-established software 

engineering practices or have been previously used in other object-oriented 

methodologies, testing has been mainly focused on activities producing the model 

chain, which due to the novel methods and techniques used in its production, poses 

the highest development risk. 

Verification results have been reported in this chapter as case studies, showing that 

enacting the final version of the methodology does indeed result in successful 
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production of design models, which can then be enriched with architectural design 

detail and class- and method prologues, and ultimately converted into the software 

system. Validation results, however, are not comprehensive, mainly due to the 

limited scale and focus of the testing conducted. Validation results should therefore 

be complemented with the requirements-based review results reported in Chapters 

4and5. 
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Table 6. Validation results (continued on next page) 

358 

REQUIREMENT I VALIDATION RESULTS I COMMENTS 

( I: Irit,. rat1otiulity. Flaws detected III nnideling act stiles in it user guide Al- refer t(, Itx" result -111x 

accur'ac), consistency it Instructions refined and perfected In Or flnul version of requirenx rn. hued rr, le.. tabulated it 11M 

detinitiun the user guide. end Of Chapter S 

('overage if generic Analysis and preliminary design activities, espe'etall\ as Also rvier to fix' re-out, it 11111111 ei s'lit 
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Conclusion 

This chapter presents a summary of the results and contributions of the 

development effort reported in previous chapters, together with an analysis of the 

achievements and shortcomings. Several suggestions for furthering this research 

have also been provided. 

7.1 A Summary of Research Results 

The following are the main results and contributions of this thesis: 

1. A proposed object-oriented software development methodology addressing 

some of the problems found in existing methodologies; the following are 

the major contributions of this methodology: 
1.1. A model-based approach to the development of business 

systems integrating the agile feature-driven merits of the FDD 

methodology [Palmer and Felsing 2002] with design-based 

features of third-generation OOSDMs, particularly Catalysis 

[D'Souza and Wills 1998]. 

1.2. A novel modeling approach built into the methodology 

providing seamless and smooth transition from real-world 

models of the problem domain to system models and ultimately 
to design models, using fractal modeling and pattern-based 
transformation 

2. A proposed meta-methodology for developing object-oriented software 
development methodologies based on a software engineering approach; the 
following are the major contributions of this meta-methodology: 

2.1. An iterative-incremental lifecycle based on the generic 
activities of software development 

360 
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2.2. A process-centred template for describing OOSDMs, and the 

results of applying this template to 24 prominent object- 

oriented methodologies, process patterns and process 

metamodels 
2.3. A criteria-based analysis method for identifying strengths and 

weaknesses in object-oriented processes (and thereby defining a 

set of requirements for the target OOSDM), plus the results of 

applying this method to the 24 methodologies, process patterns 

and process metamodels mentioned above 

2.4. An iterative-incremental requirements-based design method for 

producing the blueprint of the target methodology; the method 
has been designed in such a way as to provide flexible use of a 

multitude of design approaches. 

2.5. A User Guide template for providing a pragmatic description of 

object-oriented software development methodologies 

7.2 Objectives Achieved 

As expected in any software engineering effort, the objectives of this methodology 

development effort are manifested in the set of requirements identified through 

problem-domain analysis (reported in Chapter 3). Identifying the features that 

address the requirements is facilitated by the fact that the list of requirements also 

provides extensive coverage of methods and techniques found in existing 

methodologies that can be adopted to satisfy the requirements. By focusing on 

requirements and integrating ideas from existing methodologies, a methodology 

has been produced that is relatively simple, makes use of established techniques in 

a coherent and intuitive fashion, and addresses key issues of practicality, tangibility 

and seamlessness, all of which contribute to its usability by practitioners. 

Table 7 shows the requirements addressed in the production of the target 

methodology, detailing the methodology features through which the requirements 

have been met. As shown in this table, some requirements (i. e. extensibility and 

application scope) have been satisfied partially, and will therefore be further 

discussed in the next section. 
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Table 7. Methodology requirements that have been addressed 
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Project 
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wabernd 
management 

throughout the process. 

achy lies a- Addressed through regular technical reviews, continuous verification and validation during sel"In- 
QU: 111I j 

rance s 
development, rryuirenx'nts traceability incorporated in the feature based model cumin, and it. 

as u 
feature-driven nature of activities and tasks, 

Y Addressed through 11w anefa -t chain and the iterative-inerenrntal devek, pinent engine n. l. l, ti Seantlessnes and 
modeling, systeltl design through homogeneous extension, and pattern-based trau for llaiiou modeling, 

vnlue)tl mess of transition 
provide a seamless and snnlxlth modeling process - 

having the satlr effect on 11w subpl otecct"v milli 
between phases, stages and 

PI'lll' e\\ around the artefact chain, while plan-bawd feature-driven cyclic developnlrllt provides viltnetll 
activities 

transition between the design and build activities of the iterative devekipitieiit engine 

Y Addressed through 
. 
features: i. e. due feature-based description of the n"ymrenrnts. and the 1-ti- 

Baas in the requirements driven approach governing all development activities throughout the Process 

Testability and tangibility of Y Addressed via basis in real-world ur. ldeling, fractal ukldeling, gradual seamless transh nnan, ui 

artefacts, and traceability to artefacts through analysis and design, initial design of the system as a IYII111ge11eius entrtmci. ii In 

requirements the prohlettl dontain, and the feature-based nature of artefacts throughout 11w process 

Encliuragenlent of active / Addressed through constant participation of user re(1rrseniatlves throughout the ptocesS, a feil ice 

user involvement adapted from agile development. 

Addressed through avoiding complexity at all levels, adhering tu risk-bused drveklpurnt, 

Practicability and incorporating project management activities, snaking use of ttrlhods and techniques already Icard 

practicality in existing methodologies, and using techniques and strategies for focusing the devrklpurnl 1e- g 
feature-driven nadel chain). 

Y Addressed through the hierarchical structure of the methodology defuntton. and also via krrlrme 
Manageability of complexity 

subprocesses, activities and tasks cohesive and easy tu understand. 

Y Scalability was addressed through plan-bused, nudel-driven and a cttitecture-centre process 

Scalahllity / Extensibility / Extensibility was addressed through keeping the process as a cohesive core organized around a i1"'Irl 

chain. Further work is required on defining extension points and extension nrcharnsim 

Partially addressed through concentrating on business systems as enllutnmly encounlrn"d into, mit I, ýil Application scope 
, y. ten>_.. 

(DI(orrnuriurt Systems) 
Y Applicability to other kinds of information syste1111 h us not been esphired 

.- Addressed through using appropriate l, IML-based diagrams :u different lese Is . nu. lural undo rig I. Structural - 
addressed through the use of Object Models and Class Models, functional features are uribi, I Functional - 
data-flow-oriented Object Models, and Activity Diagral, and luter: r-tkm Diagramm' are used I, 

Support for Behas1o Ural 

modeling behavioural features. 
Lo 

gical to Y Addressed through the nv. ldel chain, starting at the prohlenrduncun level and pnxreding e le l. nlyd 
oriented 

Physical design. 
Modeling nnideling 

At different 
Language >" Addressed through fractal modeling at difherrnt granularity levels (Finterpnse level System level 

ut levels 
Suhsystenl(Package level 

- 
litter-object level 

- 
llltra-object level). 

gr: uwlarity 

Provision of strategies and Y Inconsistency prevention and resolution is inyllemented through detailed specification of 

leclmiyues for tackling dependencies and consistency guidelines. 

Inconsistency and 'r Complexity is tackled through fractal nºrdeling, the layered structure of the mKlel%, and IIMI-% 

con>rlexity complexity management features. 
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The hybrid iterative process used for designing the methodology is based on 

prioritizing the requirements, both as a complexity management technique and a 

flexibility enhancement feature (as reported in Chapter 4). As a result, 

requirements relevant to the core target areas in object-oriented methodologies 

where improvement is needed (Compactness, Extensibility. True eab, Iiýv to 

Requirements, Consistency. Testability of Arte/ acts, Tangibility of Arie/runts, and 

Visible Rationality; as listed in Chapter 1) have been assigned higher priority 

during the first few crucial iterations of the design engine. This explains why 

fractal modeling and the seamless model chain, for example, have been assigned 

such a pivotal role in the methodology. 

7.3 Shortcomings 

A number of requirements have not been addressed, mainly due to the need for 

further practical experience with the current version of the methodology, or in 

order to avoid undue complexity. Table 8 shows the requirements that have not 

been addressed in the current version of the methodology, along with details of 

why implementation has not been considered and ideas for future enhancements to 

the methodology in order to satisfy the requirements. 

Table 8. Methodology requirements that have not been addressed in the current 
version of the methodology 

REQUIREMENT DETAILS IDEAS FOR IMIll. EMENI': \'I'ION 

Practical application of the methodology to 

industrial projects, i. e. basest on industrial -' In cases where 1-D[) has been shown to hr 

scenarios and taking place to an industlcii 
sperutnlnally useful, an imploded vrrshln ot tlr 

context, is required in order to identity unplena"nted nx"thidnklgy with the rnxlel (' nntiguruhility 
potentials for variation, and thereby detennine chain Jrengllnstzrd seenis to he of Ixataal 

ways tu parameterize the process therefore, merit. The model chain is t1wn"bsre n Is. Irnn. l 

contigurability has not been incorporated at area for purwlrtenznnom Prurris 
this stage. 

. Although useful methods for implementing : Inyplrnwutmg I t' stsshly (Jyn: wuc 
flexibility already exist, it has been decided to clsntigurubilityt via incorporating pi-r. ' 

Plcvlhlfily keep the mrthxk)k)gy in its present fhan until review sessions Isnntlur tu these seen m 
data from practical experience wllh Ih" c'111Tc111 ( 'rysl: ll (Tear I ('o LI u11 1nl4II - 111, 

ser'llsn of the Inethxklklgy has Irr. n v: uh"rest IsisIisissisg 11k, 11Fssl 

Suptw, n for il urncrl features not considered in il. im nl 
Mudding Funlwl 

abject unewed versioon in order to keep the nrth doingy , 'e Incorporating (IMIJI n'l. 
La, intl11, nP 

loodeling 

fe. iture\ 

def notion as simple as possible. 
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In addition to requirements not addressed in the current version of the 

methodology, there are also requirements that admittedly have not been fully met. 

As shown in Table 7, these requirements include: 

o Extensibility: extension points and extension mechanisms have not been 

defined, mainly due to the need for further practical experience with the 

methodology in order to identify potential ways of extending the process. 
Exploring the applicability of the methodology to various types of systems, 

at different levels of criticality and scale, is necessary in order to gain 

adequate knowledge of extensions required and the feasibility of their 

incorporation into the methodology. However, designing the methodology 

as a core - avoiding complexity and undue commitment to unessential and 

complementary methods and techniques at all levels - is definitely 

instrumental in allowing extensibility to be implemented in future versions 

of the methodology. 

o Application Scope: although the methodology is targeted at Information 

Systems, the focus has been mostly limited to Business Systems; hence, 

behavioural modeling features are lacking. As an indicative example, state- 
dependent behaviour - which is the distinguishing feature of real-time 

aspects of information systems - is not captured. Improving the 

methodology in this regard requires the incorporation of State-Transition 

modeling into the modeling process, and emphasizing the mechanisms 

already available in UML for expressing timing constraints. 

7.4 Suggestions for Further Research 

There are several potential courses for furthering or complementing the research 

reported in this dissertation, some of which are listed below: 

" Engineering variants of the methodology targeting other types of 
systems, e. g. safety-critical: the pattern-based model transformation 

approach can potentially be used for developing system types other than 
Business systems, yet the current model chain lacks formal modeling 
features, and its applicability to systems requiring more precise behavioural 

modeling is not certain. Variants of the methodology should also address 
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the use of specialized sets of design patterns for model transformation, 

especially for introducing context-specific structure and behaviour in the 

models. 

" Applying the methodology to case studies of larger scope: the sample 

systems used for the verification and validation of the methodology have 

been intentionally selected to be small in scope, and the focus has mostly 
been on the practicability of the modeling approach. In order to test the 

scalability of the methodology, larger systems should be considered for 

testing. 

" Expressing the methodology and meta-methodology processes in a 
Process Modeling Language (PML): this will be especially useful for 

static verification of the methodology and/or enactment in a Process- 

centred Software Engineering Environment (PSEE) [Ambriola et al. 1997, 

Barthelmess 2003]. 

" Empirical analysis of the usability of the methodology: an empirical 

analysis will also complement the testing results already obtained: although 

many components of the methodology have already been used in existing 

methodologies, the overall effectiveness of many aspects of the 

methodology - especially the umbrella activities and the actual 
development tasks of the iterative-incremental engine - cannot be properly 
tested without enactment in actual development projects based on industrial 

scenarios and taking place in an industrial context. Practical experience 

will also help identify potential for making enhancements to the 

methodology, e. g. to implement features such as configurability and 

extensibility. 

" Comparison of the methodology to other OOSDMs: the aim is to assess 
the contributions of the methodology using existing comparison 
frameworks. The criteria-based evaluation method presented in this thesis 
is of little use for this purpose, since it has already been used for defining 

methodology requirements, based on which the methodology was 
developed in the first place. 

" Application of the meta-methodology to the development of other 
methodology types: the meta-methodology is general enough to be used 
for developing any type of methodology, provided that there are enough 
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base methodologies to provide the requirements and process components. 
Agent-oriented development, for example, is a suitable candidate, since the 

field is mature enough to provide established development methodologies 

for analysis and integration. 



Abbreviations 

ADFD Action Data Flow Diagram 

ADISSA Architectural Design of Information Systems based on 
Structured Analysis 

ASD Adaptive Software Development 

BON Business Object Notation 

CORBA Common Object Request Broker Architecture 

CRC Class-Responsibility-Collaborator 

DFD Data Flow Diagram 

DM Dynamic Model 

DMC Data Management Component 

DSDM Dynamic Systems Development Method 

ERD Entity-Relationship Diagram 

EUP Enterprise Unified Process 

FDD Feature-Driven Development 

FM Functional Model 

FOOM Functional and Object-Oriented Methodology 

HIC Human Interaction Component 

IDL Interface Definition Language 

JAD Joint Application Development 

MDA Model-Driven Architecture 

OBM Object-Behaviour Model 
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OCL Object Constraint Language 

OIM Object Interaction Model 

OM Object Model 

OMG Object Management Group 

OML OPEN Modeling Language 

OMT Object Modeling Technique 

00 Object-Oriented 

OOA Object-Oriented Analysis 

OOD Object-Oriented Design 

OODLE Object Oriented Design LanguagE 

OOP Object-Oriented Programming 

OOSDM Object-Oriented Software Development Methodology 

OOSE Object-Oriented Software Engineering 

OOSP Object-Oriented Software Process 

OPD Object Process Diagram 

OPEN Object-oriented Process, Environment, and Notation 

OPF OPEN Process Framework 

OPL Object-Process Language 

OPM Object-Process Methodology 

ORM Object-Relationship Model 

OSA Object-oriented Systems Analysis 

PDC Problem Domain Component 

PIM Platform-Independent Model 

PML Process Modeling Language 



Abbreviations 

PSEE Process-centred Software Engineering Environment 

PSM Platform-Specific Model 

Q/A Quality Assurance 

RAD Rapid Application Development 

RDD Responsibility-Driven Design 

RUP Rational Unified Process 

SA Structured Analysis 

SD Structured Design 

SDM Software Development Methodology 

SPEM Software Process Engineering Metamodel 

SQL Structured Query Language 

SSADM Structured Systems Analysis and Design Method 

TMC Task Management Component 

UI User Interface 

UML Unified Modeling Language 

USDP Unified Software Development Process 

USPM Unified Software Process Metamodel 

XP eXtreme Programming 

369 



References 

ABRAHAMSSON, P., SALO, 0., RONKAINEN, J., AND WARSTA, J. 2002. Agile 

Software Development Methods: Review and Analysis. VTT Publications, Oulu, 

Finland. 

ABRAHAMSSON, P., WARSTA, J., SIPONEN, M. T., AND RONKAINEN, J. 2003. New 

directions on agile methods: A comparative analysis. In Proceedings of the 

International Conference on Software Engineering -ACM/1CSE 2003,244-254. 

ALABISO, B. 1988. Transformation of dataflow analysis models to object oriented 
design. In Proceedings of ACM/OOPSLA'88 Conference, 335-353. 

AMBLER, S. W. 1998a. Process Patterns: Building Large-Scale Systems Using 

Object Technology. Cambridge University Press, New York, NY. 

AMBLER, S. W. 1998b. An introduction to process patterns. Published on the Web 

at: http: //www. ambysoft. com/processPattern df, visited in April 2006. 

AMBLER, S. W. 1999. More Process Patterns: Delivering Large-Scale Systems 

Using Object Technology. Cambridge University Press, New York, NY. 

AMBLER, S. W. 2005. Introduction to the Enterprise Unified Process. Available at: 
http: //www. enteryriseuniuiednrocess. info/downloads/euplntroduction pdf, visited in 

April 2006. 

AMBLER, S. W., AND CONSTANTINE, L. L. 2000a. The Unified Process Inception 

Phase. CMP Books, Gilroy, CA. 

AMBLER, S. W., AND CONSTANTINE, L. L. 2000b. The Unified Process Elaboration 

Phase. CMP Books, Gilroy, CA. 

370 



References 371 

AMBLER, S. W., AND CONSTANTINE, L. L. 2000c. The Unified Process 

Construction Phase. CMP Books, Gilroy, CA. 

AMBLER, S. W., AND CONSTANTINE, L. L. 2002. The Unified Process Transition 

and Production Phase. CMP Books, Gilroy, CA. 

AMBLER, S. W., NALBONE, J., AND VIZDOS, M. J. 2005. The Enterprise Unified 

Process: Extending the Rational Unified Process. Prentice-Hall, Englewood Cliffs, 

NJ. 

AMBRIOLA, V., CONRADI, R., AND FUGGETTA, A. 1997. Assessing process-centered 

software engineering environments. ACM Transactions on Software Engineering 

and Methodology 46,3 (July), 283-328. 

AVISON, D. E., AND FITZGERALD, G. 2003. Where now for development 

methodologies? Communications of the ACM 46,1 (January), 79-82. 

BARTHELMESS, P. 2003. Collaboration and coordination in process-centered 

software development environments: A review of the literature. Information and 
Software Technology 45,13,911-928. 

BECK, K. 1999. Extreme Programming Explained: Embrace Change. Addison- 

Wesley, Reading, Mass. 

BECK, K., AND ANDRES, C. 2004. Extreme Programming Explained: Embrace 

Change, 2nd ed. Addison-Wesley, Reading, Mass. 

BECK, K., ET AL. 2001. Manifesto for agile software development. Published on the 
Web at: http: //agilemani esto. or , visited in November 2004. 

BOEHM, B. 2006. Some future trends and implications for systems and software 

engineering processes. Systems Engineering 9,1 (Spring), 1-19. 



References 372 

BOEHM, B., AND TURNER, R. 2004. Balancing Agility and Discipline: A Guide for 

the Perplexed. Addison-Wesley, Reading, Mass. 

BOEHM, B., AND TURNER, R. 2005. Management challenges to implementing agile 

processes in traditional development organizations. IEEE Software 22,5 

(September/October), 30-39. 

BOOCH, G. 1986. Object-oriented development. IEEE Transactions on Software 

Engineering 12,2 (February), 211-221. 

BOOCH, G. 1991. Object-Oriented Design with Applications. 

Benjamin/Cummings, Redwood City, CA. 

BOOCH, G. 1994. Object Oriented Analysis and Design with Applications. 

Benjamin/Cummings, Redwood City, CA. 

BOOCH, G., MARTIN, R. C., AND NEWKIRK, J. 1998. Object Oriented Analysis and 

Design with Applications, 2nd ed. (Unpublished). Addison Wesley, Reading, Mass. 

The unpublished chapter on RUP and dX is available on the Web at: 
http: //www. objectmentor. com/resources/articies/RUPvsXP. i)dL 

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1999. Unified Modeling Language- 

User's Guide. Addison-Wesley, Reading, Mass. 

BRINKKEMPER, S. 1996. Method engineering: engineering of information systems 
development methods and tools. Information and Software Technology 38,4,275- 

280. 

BROWN, W. J., MALVEAU, R. C., MCCORMICK, H., AND MOWBRAY, T. 1998. 

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley, 

New York, NY. 



References 373 

BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 

1996. Pattern Oriented Software Architecture: A System of Patterns. Wiley, New 

York, NY. 

CAPRETZ, L. F. 2003. A brief history of the object-oriented approach. ACM 

SIGSOFT Software Engineering Notes 28,2 (March). 

COAD, P., LEFEBVRE, E., AND DE LUCA, J. 1999. Java Modeling in Color with 
UML: Enterprise Components and Process. Prentice-Hall, Englewood Cliffs, NJ. 

COAD, P., AND YOURDON, E. 1991a. Object-Oriented Analysis, 2nd ed. Yourdon 

Press/Prentice-Hall, Englewood Cliffs, NJ. 

COAD, P., AND YOURDON, E. 1991b. Object-Oriented Design. Yourdon 

Press/Prentice-Hall, Englewood Cliffs, NJ. 

CocKBURN, A. 1998. Surviving Object-Oriented Projects: A Manager's Guide. 

Addison-Wesley, Reading, Mass. 

COCKBURN, A. 2001. Agile Software Development: Software through People. 

Addison-Wesley, Reading, Mass. 

COCKBURN, A. 2004. Crystal Clear: A Human-Powered Methodology for Small 

Teams. Addison-Wesley, Reading, Mass. 

COLEMAN, D., ARNOLD, P., BODOFF, S., DOLLIN, C., GILCHRIST, H., HAYES, F., 

AND JEREMAES, P. 1994. Object-Oriented Development: The Fusion Method. 

Prentice-Hall, Englewood Cliffs, NJ. 

COLEMAN, D., JEREMAES, P., AND DOLLIN, C. 1992. Fusion: A Systematic Method 

for Object-Oriented Development. Hewlett Packard Laboratories. 



References 374 

COOK, S., AND DANIELS, J. 1994. Designing Object Systems: Object-Oriented 

Modeling with Syntropy. Prentice-Hall, Englewood Cliffs, NJ. 

COPLIEN, J. 0.1994. A development process generative pattern language. In 

Proceedings of the First Annual Conference on Pattern Languages of 

Programming (PLOP). 

CORAM, M. AND BOHNER, S. 2005. The impact of agile methods on software 

project management. In Proceedings of the 12th IEEE International Conference 

and Workshops on the Engineering of Computer-Based Systems (Ecbs'OS), 363- 

370. 

CRYSTAL METHODOLOGIES ORGANIZATION. 2001. Adaptive Software 

Development process framework. PowerPoint presentation available on the Web at: 

htty: //crystalmethodologies. orR/processes/asd/asdprocess. ppt, visited in January 

2003. 

D'SoUZA, D. F., AND WILLS, A. C. 1995. Catalysis - practical rigor and refinement: 
Extending OMT, Fusion, and Objectory. Available on the Web at: 

htt "//www. catalysis. ore/publications/papers/1995-catal sis fusion. pdf, visited in 

April 2006. 

D'SOUZA, D. F., AND WILLS, A. C. 1998. Objects, Components, and Frameworks 

with UML: The Catalysis Approach. Addison-Wesley, Reading, Mass. 

DEMARCO, T. 1978. Structured Analysis and System Specification. Prentice-Hall, 

Englewood Cliffs, NJ. 

DEMEYER, S., DUCASSE, S., AND NIERSTRASZ, O. 2003. Object-Oriented 

Reengineering Patterns. Morgan-Kauffman, San Francisco, CA. 

DERR, K. W. 1995. Apply OMT. " A Practical Step-by-step Guide to Using the Object 

Modeling Technique. Cambridge University Press, New York, NY. 



References 375 

DORI, D. 1995. Object-process analysis: Maintaining the balance between system 

structure and behaviour. Journal of Logic and Computation 5,2 (April), 227-249. 

DORI, D. 2002a. Object-Process Methodology: A Holistic Systems Paradigm. 

Springer, Berlin-New York. 

DORI, D. 2002b. Why significant UML change is unlikely. Communications of the 
ACM 45,11 (November), 82-85. 

DOWNS, E., CLARE, P., AND COE, I. 1988. Structured Systems Analysis and Design 

Method: Application and Context. Prentice-Hall International, UK. 

DSDM CONSORTIUM. 2003. DSDM: Business Focused Development, 2nd ed. J. 

Stapleton, Ed. Addison-Wesley, Reading, Mass. 

EMBLEY, D. W., KURTL, B. D., AND WOODFIELD, S. N. 1992. Object-Oriented 

Systems Analysis: A Model-Driven Approach. Yourdon Press/Prentice-Hall, 

Englewood Cliffs, NJ. 

ENGELS, G., AND GROENEWEGEN, L. 2000. Object-oriented modeling: a roadmap. 
In Proceedings of the Conference on the Future of Software Engineering - 
ACM/ICSE 2000,103-116. 

FiNKEISTEIN, A., AND KRAMER, J. 2000. Software engineering: a roadmap. 
Proceedings of the Conference on the Future of Software Engineering -ACM/ICSE 
2000,3-22. 

FIRESMITH, D., AND HENDERSON-SELLERS, B. 2001. The OPEN Process 

Framework: An Introduction. Addison-Wesley, Reading, Mass. 

FOWLER, M. 1999. Refactoring: Improving the Design of Existing Code. Addison- 

Wesley, Reading, Mass. 



References 376 

FOWLER, M. 2004. Model Driven Architecture. Published on the Web at: 
httn: //martinfowler. com/bliki/ModelDrivenArchitecture. html, visited in April 2006. 

FUGGETTA, A. 2000. Software process: a roadmap. In Proceedings of the 

Conference on the Future of Software Engineering -ACM/ICSE 2000,25-34. 

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: 

Elements of Reusable Object-oriented Software. Addison-Wesley, Reading, Mass. 

GE, X., PAIGE, R. F., POLACK, F. A. C., CHIVERS, H., AND BROOKE, P. J. 2006. 

Agile development of secure web applications. In Proceedings of the International 

Conference on Web Engineering (ICWE2006). 

GERVAIS, M. P. 2002. Towards an MDA-oriented methodology. In Proceedings of 

the 26th Annual International Computer Software and Applications Conference 

(COMPSAC2002), 265-270. 

GRAHAM, I. 2001. Object-oriented Methods: Principles and Practice, 3rd ed. 
Addison-Wesley, Reading, Mass. 

GRAHAM, I., HENDERSON-SELLERS, B., AND YOUNESSI, H. 1997. The OPEN 

Process Specification. Addison-Wesley, Reading, Mass. 

HARMSEN, A. F. 1997. Situational Method Engineering. Moret Ernst & Young. 

HENDERSON-SELLERS, B. 2003. Method engineering for 00 systems development. 

Communications of the ACM 46,10 (October), 73-78. 

HENDERSON-SELLERS, B., AND GRAHAM, I. 1996. OPEN: Toward method 

convergence? IEEE Computer 29,4 (April), 86-89. 

HIGHSMTTH, J. 1997. Messy, exciting, and anxiety-ridden: Adaptive software 
development. American Programmer 10,4 (April), 23-29. 



References 377 

HIGHSMITH, J. 2000a. Adaptive Software Development: A Collaborative Approach 

to Managing Complex Systems. Dorset House, New York, NY. 

HIGHSMITH, J. 2000b. Retiring lifecycle dinosaurs. Software Testing and Quality 

Engineering 2,4 (July/August), 22-28. 

HIGHSMITH, J. 2002. Agile Software Development Ecosystems. Addison-Wesley, 

Reading, Mass. 

HODGE, L. R., AND MOCK, M. T. 1992. A proposed object-oriented development 

methodology. Software Engineering Journal 7,2 (March), 119-129. 

ISODA, S. 2001. Object-oriented real-world modeling revisited. Journal of Systems 

and Software 59,2 (November), 153-162. 

JACOBSON, I. 1987. Object-oriented development in an industrial environment. In 

Proceedings of ACMIOOPSLA'87,183-191. 

JACOBSON, L, BOOCH, G., AND RUMBAUGH, G. 1999. Unified Software 

Development Process. Addison-Wesley, Reading, Mass. 

JACOBSON, I., CHRISTERSON, M., JONSSON, P., AND ÖVERGAARD, G. 1992. Object- 

Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley, 

Reading, Mass. 

KABELT, J., AND SHOVAL, P. 2003. Software analysis process - which order of 

activities, is preferred? An experimental comparison using FOOM methodology. In 

Proceedings of the IEEE International Conference on Software-Science, 

Technology and Engineering, 111-122. 

KARAM, G. M., AND CASSELMAN, R. S. 1993. A cataloging framework for software 
development methods. IEEE Computer 26,2 (February), 34-45. 



References 378 

KROLL, P., AND KRUCHTEN, P. 2003. The Rational Unified Process Made Easy: A 

Practitioner's Guide to Rational Unified Process. Addison-Wesley, Reading, Mass. 

KRUCFTEN, P. 2001. A process engineering metamodel. Available on the Web at: 
httn"//www_forsoft. de/zen/sdnn02/naners/KrucOl. pdf, visited in April 2006. 

KRUCHTEN, P. 2003. Rational Unified Process: An Introduction, 3rd ed. Addison- 

Wesley, Reading, Mass. 

KuMAR, K., AND WELKE, R. J. 1992. Method engineering: a proposal for situation- 

specific methodology construction. In Systems Analysis and Design: A Research 

Agenda. Cotterman, W. W., and Senn, J. A. Eds. Wiley, 257-268. 

LANG, N. 1993. Shlaer-Mellor object-oriented analysis rules. Software Engineering 

Notes 18,1 (January), 54-58. 

LANG, K., FRANCE, R., AND BRUEL, J. 2000. A semantic comparison of Fusion and 
Syntropy. The Computer Journal 43,6,451-468. 

MEYER, B. 1997. Object-oriented Software Construction, 2nd ed. Prentice-Hall, 

Englewood Cliffs, NJ. 

MOCK, M. T., AND HODGE, L. R. 1992. An exercise to prototype the object-oriented 
development process. Software Engineering Journal 7,2 (March), 114 -118. 

MONARCHI, D. E., AND PUHR, G. I. 1992. A research typology for object-oriented 

analysis and design. Communications of the ACM 35,9 (September), 35-47. 

NERSON, J. 1992, Applying object-oriented analysis and design. Communications 

of the ACM 35,9 (September), 63-74. 

NERUR, S., MAHAPATRA, R., AND MANGALARAJ, G. 2005. Challenges of migrating 

to agile methodologies. Communications of the ACM 48,5 (May), 73-78. 



References 379 

NUSEIBEH, B., AND EASTERBROOK, S. 2000. Requirements engineering: A 

roadmap. In Proceedings of the Conference on the Future of Software Engineering 

- ACM/ICSE 2000,35-46. 

OMG. 2001. Model Driven Architecture (MDA). Object Management Group 

(OMG). 

OMG. 2002. Software Process Engineering Metamodel Specification (v1.0). Object 

Management Group (OMG). 

OMG. 2003. Unified Modeling Language Specification (v1.5). Object Management 

Group (OMG). 

OMG. 2004. Unified Modeling Language Specification (v2.0). Object Management 

Group (OMG). 

OPEN CoNsoRTIUM. 2000. What is OPEN? Published on the Web at: 
http: //www. open. org. au/Introduction/main. html, visited in April 2006. 

OSTERWEIL, L. J. 1987. Software processes are software too. In Proceedings of the 
9`h International Conference on Software Engineering, 2-13. 

OSTERWEIL, L. J. 1997. Software processes are software too, revisited: An invited 

talk on the most influential paper of ICSE 9. In Proceedings of the 19'h 

International Conference on Software Engineering, 540-548. 

PAIGE, R., AND Osmon , J. S. 2002, The single model principle. Journal of Object 

Oriented Technology 1,5 (November-December), 63-81. 

PALMER, S. R., AND FELSING, J. M. 2002. A Practical Guide to Feature-Driven 

Development. Prentice-Hall, Englewood Cliffs, NJ. 



} 

References 380 

PRESSMAN, R. S. 2004. Software Engineering: A Practitioner's Approach, 6th ed. 
McGraw-Hill, New York, NY. 

RALYT$, J., DENECK$RE, R., AND ROLLAND, C. 2003. Towards a generic model for 

situational method engineering. In Proceedings of CAiSE 2003 (LNCS 2681), 95. 

110. 

RALYT$, J., ROLLAND, C., AND DENECK$RE, R. 2004. Towards a meta-tool for 

change-centric method-engineering: A typology of generic operators. In 

Proceedings of CAiSE 2004 (LNCS 3084), 202-218. 

RAMSIN, R. 1995. Detailed Inspection and Evaluation of Object-Oriented Software 

Development Methodologies. MSc Thesis (in Persian). Department of Computer 

Engineering, Sharif University of Technology, Tehran, Iran. Submitted in February 

1995. 

RAMsIN, R., AND PAIGE, R. F. 2004. Process-centred review of object-oriented 

software development methodologies. Technical Report YCS-2004-381. University 

of York, York, UK. 

REENSKAUG, T., WOLD, P., AND LEHNE, 0.1996. Working with Objects: The 

OOram Software Engineering Method. Manning Publications, Greenwich, Cr. 

RUMBAUGH, J. 1994. Getting started: Using use cases to capture requirements. 
Journal of Object-Oriented Programming 7,5 (September), 8-23. 

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN, W. 1991. 

Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ. 

SCHUH, P. 2005. Integrating Agile Development in the Real World. Charles River 

Media, Hingham, Mass. 



1ý 

References 381 

SCHWABER, K. 1995. SCRUM development process. In Proceedings of the 

ACM/OOPSLA'95 Workshop on Business Object Design and Implementation, also 

available on the Web at: http: //jeffsutherland. conVoopsla/schwapub. pdf. 

SCHWABER, K. 2004. Agile Project Management with Scrum. Microsoft Press, 

Redmond, WA. 

SCHWABER, K., AND BEEDLE, M. 2001. Agile Software Development with Scrum. 

Prentice-Hall, Englewood Cliffs, NJ. 

SEIDEWITL, E., AND STARK, M. 1986. Towards a general object-oriented software 

development methodology. In Proceedings of the First International Conference 

on Ada Programming Language Applications, 1-14. 

SHLAER, S., AND MELLOR, S. J. 1988. Object-Oriented Systems Analysis: Modeling 

the World in Data. Prentice-Hall, Englewood Cliffs, NJ. 

SHLAER, S., AND MELLOR, S. J. 1992. Object Lifecycles: Modeling the World in 

States. Prentice-Hall, Englewood Cliffs, NJ. 

SHLAER, S., AND MELLOR, S. J. 1996. The Shlaer-Mellor method. Published on the 

Web at: httn: //www. nrt. se/nrt/PTpdf/smmethod. pdf, visited in January 2003. 

SHOVAL, P. 1988. ADISSA: Architectural design of information systems based on 

structured analysis. Information Systems 13,2,193-210. 

SHOVAL, P., AND KABELI, J. 2001. FOOM: Functional- and object-oriented analysis 

and design of information systems: An integrated methodology. Journal of 
Database Management 12,1 (January-March), 15-25. 

SIEGEL, J., AND OMG. 2001. Developing in OMG's Model Driven Architecture 

(MDA). Object Management Group (OMG). 



References 382 

SOMMERVILLE, I. 2004. Software Engineering, 7th ed. Addison-Wesley, Reading, 

Mass. 

THOMAS, D. 2004. MDA: Revenge of the modelers or UML utopia. IEEE Software 

21,3 (May/June), 22-24. 

TURK, D., FRANCE, R., AND RUMPE, B. 2005. Assumptions underlying agile 

software-development processes. Journal of Database Management 16,4 

(October-December), 62-87. 

WALDEN, K., AND NERSON, J. 1995. Seamless Object-Oriented Software 

Architecture. Prentice-Hall, Englewood Cliffs, NJ. 

WALKER, I. J. 1992. Requirements of an object-oriented design method. Software 

Engineering Journal 7,2 (March), 102-113. 

WEBSTER, S. 1996. On the evolution of 00 methods. Available on the Web at: 

http: //dec. bournemouth. ac. uk/staff/swebster/OOmeth_evol_complete. html, visited 

in January 2003. 

WELLS, D. 2003. Extreme programming: A gentle introduction. Published on the 

Web at: http: //www. extremeproQramming. or9. visited in April 2006. 

WIRFS-BROCK, R., AND MCKEAN, A. 2002. Object Design: Roles, Responsibilities 

and Collaborations. Addison-Wesley, Reading, Mass. 

WIRFS-BROCK, R., WILKERSON, B., AND WIENER, R. 1990. Designing Object. 

Oriented Software. Prentice-Hall, Englewood Cliffs, NJ. 

WORDSWORTH, J. 1992. Software Development with Z: Practical Approach to 

Formal Methods in Software Engineering. Addison-Wesley, Reading, Mass. 



References 383 

YOURDON, E., AND CONSTANTINE, L. L. 1979. Structured Design. Prentice-Hall, 

Englewood Cliffs, NJ. 


