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1.1 Introduction 

1.1.1. The Skeleton 

The skeleton is a complex organ that has many purposes. The framework of the 

skeleton comprises different bone structures connected together by tendons, 

ligaments and cartilaginous tissues allowing for movement and locomotion (Seeley 

et al., 1995). As a supportive role, many bones form protective structures around 
internal organs such as the brain, heart and lungs. In addition, the skeleton performs 

an essential role, along with the kidneys, in ion homeostasis (Lian et al., 1999). 

Marrow spaces within the long bones also provide a controlled environment for 

haernatopoiesis to occur during postnatal life (Beresford, 1989). To be able to 

perform on many levels the skeleton as an organ is required to adapt and remodel in 

response to changes in its respective roles. 

1.1.2. Bone 

Bones are made up of two main types of structure, compact (also known as cortical 

bone), and cancellous bone (also known as trabecular bone). Compact bone makes 

up approximately 85% of the skeleton (Mundy, 1999). The structure of compact 
bone is dense, unporous, highly organised, found along the shafts of long bones 

(including the femur, tibia, radius and ulna), and forms the principal component of 
flat bones such as those of the skull. Compact bone contains very few interstitial 

spaces; those present are organised into osteons or haversian systems occupied by 

blood vessels or haversian/central canal. Cancellous bone makes up the remainder of 

the skeleton. Cancellous bone is arranged as a scaffold of trabeculae spanning the 

circumference of the epiphysis of long bones and vertebrae of the spinal column. The 

trabecular arrangement of cancellous bone assumes alignment in the direction of the 

major mechanical forces bones receive during locomotion and physical activity 
(Robey, 1992, Currey, 2002). 

Unlike many other tissues, bone is composed largely of inorganic materials. 
Calcium and phosphorous or inorganic phosphate (Pi phosphate) combine together to 

form hydroxyapatite [Ca5(PO4)30H] providing approximately 65% of the bone 

material (Lian et al., 1999, and Boskey, 1992). Mineralised bone also contains a 

small amount of other ions such as magnesium, fluoride, carbonate, citrate and 

potassium (Boskey, 1992). A network of collagenous fibres, non-collagenous matrix 
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proteins and cells make up the organic component of bone constructing a framework 

for hydroxyapatite deposition. Collagen type I (col 1) constitutes 90% of the 

collagenous material of bone, forming fibrils that are laid down in a distinctive 

direction (Boskey, 1992). Non-collagenous matrix proteins attach to these collagen 

fibres creating a protected environment for the initiation of hydroxyapatite crystal 
formation or a 'nucleation site' (Lian et al., 1999). Hydroxyapatite crystals then 

accumulate, aligning parallel to the orientation of the collagen fibres. In haversian 

systems, collagen fibres alternate in their orientation providing the highly organised 
lamella structure of compact bone (Lian et al., 1999). The structure, organisation, 

size, distribution and orientation of organic matrix proteins and hydroxyapatite can 

significantly affect the mechanical properties of bone. 

1.1.3. The Bone Microenvironment 

The bone microenvironment encompasses many different cell types that 

communicate and interact, mutually regulating their activity and function. 

Mesenchymal progenitor cells located in the bone marrow compartment give rise to 

preosteoblastic cells (Beresford, 1989). In response to systemic and local 

extracellular cues preosteoblast cells differentiate into mature bone-forming 

osteoblasts recognisable by their cuboidal appearance, elongated nucleus, prominent 

golgi body and rough endoplasmic-reticulum (ER) (Lian et al., 1999, Ducy et al., 
2000 and refs therein). Osteoblasts are found at the bone surface and produce bone 

by expressing and secreting extracellular matrix and components required for matrix 

mineralisation. Fibroblast-like bone lining cells also occupy the bone surface. 
Compact bone tissue is populated with osteocytes which are numerous and widely 
distributed (Lian et al., 1999). Osteoclasts are the bone resorbing cells derived from 

a different cell lineage than osteoblasts. Mature multinucleated osteoclasts are 

polarised cells that secrete lysosomal enzymes and collagenases to break down bone 

making way for new bone formation by osteoblasts (Lian et al., 1999, Teitelgaurn, 

2000). Other cells such as megakaryocytes are also found in the bone 

microenvironment and may play a role in bone formation (Lian et al., 1999, 

Compston, 2002). 

2 
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1.2 Osteoblasts 

1.2.1. Defining osteoblasts 

Accumulated evidence suggests osteoblast differentiation is a complex process 

involving numerous interacting factors and mechanisms, many of which are 

seemingly similar to those of other cell types (Ducy, 2000). The understanding and 

research of differentiation of other cell types has been facilitated by distinct changes 

in cell morphology and phenotype at specific stages of differentiation. However, 

osteoblasts are phenotypically very similar to fibroblasts both in vitro and in vivo. 

There are very few genes exclusively expressed by osteoblasts, so far making the 

characterisation of osteoblast differentiation very difficult. The only defining 

attribute of an osteoblast is the ability of mature terminally differentiated osteoblasts 

to produce a mineralised bone matrix (Ducy, 2000, Karsenty, 200 1). 

Despite an extensive search for osteoblast specific factors, only osteocalcin 

and Cbfal have been identified with expression or function that is limited to the 

osteoblast lineage (Ducy, 2000, Karsenty, 2000, Karsenty, 2001). Osteocalcin is 

secreted by osteoblasts, accounting for a large percentage (approximately 20%) of 

the non-collagenous component of the bone matrix (Lian et al., 1999). Within the 6 

kDa of the osteocalcin protein, 3 gamma-carboxyglutarnic acid (Gla) sites with high 

affinity to calcium are contained, enabling 2-3 moles of calcium per mole of protein 

to be bound (Young et al., 1992, Boskey, 1992). There is also a site for apatite 
binding that is dependent upon calcium binding (Young et al., 1992, Boskey, 1992). 

The expression of osteocalcin appears late in osteoblast differentiation, expression 
limited to the mature terminally differentiated osteoblasts (Lian et al., 1999, 

Karsenty, 2000, Ducy et al., 2000 and refs therein). The expression profile of 

osteocalcin indicates a bone specific role, restricted to osteoblasts at sites of bone 

formation. The exact function of osteocalcin in bone is unknown, however evidence 

suggests that it acts to inhibit osteoblast differentiation, and reduce the mineralisation 

process by binding calcium and phosphate, sequestering them from interactions 

required for hydroxyapatite production and matrix mineralisation (Young, et al., 

1992, Boskey, 1992, Lian et al., 1999). 

Examination of the promoter region of the osteocalcin gene identified two 

osteoblast specific elements (OSE I and 2) that were subsequently linked with the 

transcription factor Core binding factor alpha I (Cbfal) (Ducy and Karsenty, 1995, 

3 
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Ducy et al., 1996, for review see Karsenty, 2000). Cbfal, also known as acute 

myeloid leukaemia factor 3 (AMU), polyrnavirus enhancer binding protein 2(XA 

(PEBP2aA), and runt related gene 2 (Runx2), is a transcription factor of the runt 

family, related to a drosoPhilia transcription factor that binds to DNA and activates 

transcription via a conserved domain of 128 amino acids known as the runt domain 

(Komori and Kishimoto, 1998, Westendorf and Hiebet, 1999, Franceschi, 1999, 

Komori, 2002). The runt family of transcription factors function as a heterodimeric 

complex of alpha (Cbfa) and beta (Cbfb) subunits, both of which are required for 

activation of transcription (Yoshida et al., 2002, Kundu et al., 2002). Cbfb is a small 

protein with no DNA binding or transcriptional ability of its own; rather it induces an 

increased affinity of the runt domain of Cbfa for DNA. Apart from the runt domain, 

other sites at the N and C-terminus of the Cbfal gene product are important in 

function. The N-terminus contains a polyglutamine and polyalanine repeat region 

that acts as an activation domain. The C-terminus also contains important activation, 

repression, and nuclear localisation signals within a stretch of proline, serine, and 

threonine (PST) residues. Members of the runt family are established regulators of 

lineage differentiation, e. g. Cbfa2 (also AMLI, PEPBcclA and Runxl) is well 

characterised as a critical element in haernatopoiesis, the most common cause of 

acute myeloid leukaemia occurring via translocation of the Cbfa2 gene locus (Robin 

et al., 2003). Although not exclusively expressed by osteoblasts, the expression of 

Cbfal displays a very specific pattern relating to that of embryonic bone formation 

and mature osteoblast function. 

Characterisation of Cbfal expression during embryonic development 

revealed that regardless of embryonic origin, Cbfal precedes the onset of 

osteogenesis, and is expressed in all cells destined to become osteoblasts and 

chondrocytes (Karsenty, 2000, Ducy, 2000). At the onset of osteogenesis, Cbfal 

expression becomes limited to osteoblasts, with expression in cartilaginous tissues 

rapidly decreasing (Karsenty, 2000, Ducy, 2000). Although homozygous mutants of 

Cbfal produce a lethal phenotype, analysis of the skeletons revealed a complete lack 

of mature osteoblasts and bone ossification, leading to a normally patterned skeleton 

made of only cartilaginous elements, and incomplete intramembranous bones (Otto 

et al., 1997, Lee et al., 1997). The phenotype of Cbfal haploinsufficiency as 

observed in Cbfal heterozygous mice is also comparable to the autosomal dominant 

4 
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human bone disorder Cleidodocranial dysplasia (CCD) that is characterised by 

hypoplastic clavicles, patent fontanelles and sutures of the skull (Lee et al., 1997. 

Mundlos et al., 1997, Mundlos, 1999). Numerous clinical presentations of CCD 

have now been linked to mutations in the Runx2 allele (Yokozeki et al., 2000, Golan 

et al., 2000, Giannotti et al., 2000, Quack et al., 1999). In adult life, all pre- 

osteoblasts and osteoblasts express Cbfal (Ducy, 2000). In vitro studies 

demonstrated activation of the osteocalcin gene by Cbfal via the OSE I and 2 sites, 

and in doing so controlling osteoblast differentiation (Karsenty et al., 2000). It is 

clear that Cbfal plays an essential role in osteogenesis; factors that influence the 

regulation of Cbfal expression and function are therefore important regulators of 

osteoblast differentiation. 

1.2.2. Osteoblastogenesis 

Although only osteocalcin and Cbfal have proved to be predominantly osteoblast or 

bone specific in expression and function, multiple other factors control osteoblast 
differentiation and therefore osteogenesis. Cells of the osteoblast lineage are derived 

from a primitive mesenchymal progenitor cell that has multi-lineage potential, 

generating adipocytes, myoblasts, bone marrow stromal cells, and chondroblasts as 

well as osteoblasts (Caplan and Brunder, 2001). Osteoblastogenesis occurs under 

sequential expression of multiple transcription factors, matrix Proteins, and induction 

by a variety of growth factors and signalling systems. The most recent description of 

osteoblast differentiation defines mesenchymal stem cells that differentiate into 

osteoprogenitor and pre-osteoblastic cells (Lian et al., 1999, Aubin, et al., 2001, and 

refs therein). Proliferation of these populations and the production of a type I 

collagenous matrix is followed by cessation of the cell cycle which induces these 

cells to differentiate further into mature matrix synthesising osteoblasts (See figure 

1.1). At each stage in differentiation, transcriptional control, growth factors and 

matrix composition can influence the further progression of osteoblast differentiation 

and function. 

1.2.3. Transcriptional Control 

As already outlined, mesenchymal cells destined to become osteoblasts express high 

levels of Cbfal. Transcriptional control of cell proliferation by transcription factors 

5 
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Origional in colour 

Mesenchymal stem Stro-1. Sca- I 

cell 1.11 
Self renewal 

Stromal Cbfa-1,, Twist 
Mesenchymal 

Cell 

Cbfa- I, Msx-2, H4 
Osteoprogenitor hi stone, AP I, c-fos,, 

col type I 
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4w 

Bone Lining 
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\\ 
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Figure 1.1 
Osteoblastogenesis 
Osteoprogenitor cells derived from mesenchymal stem cells express the 
osteoblast defining transcription factor Cbfal. Proliferation induced by factors 
such as Msx-2,, API and c-fos creates a population of committed pre-osteoblast 
cells. Synthesis of a collagenous matrix and other transcription factors induce 
pre-osteoblasts to mature and produce bone matrix proteins such as osteocalcin, 
osteonectin and osteopontin. Mature osteoblasts produce a mineralised matrix. 
Osteoblasts that become encapsulated within the bone become osteocytes, and 
others lie dormant on the cell surface (bone lining cells). 

6 
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such as Histone H4, AP-1, c-fos and C-myc allows for the expansion of this 

population (Marzia et al., 2000, Yang and Karsenty, 2002, Harada and Rodan, 2003). 

At around the same time, cells begin to produce the (xpro-peptide required for 

collagen synthesis, fibril formation, and arrangement of a collagenous matrix. Other 

more specific transcription factors such as Msx I and 2, Dlx 5 and 6 members of the 

homeodomain family transcription factors, twist and other members of the basic 

helix-loop-helix DNA-binding transcription factors are also known to play a 

significant role in osteoblast proliferation and differentiation (Hoffmann et al., 1994, 

Ryoo et al., 1997, Dodig et al., 1999, Miyama et al., 1999, Orestes-Cardoso et al., 

2002,, Cheng et al., 2003). Msx proteins require a consensus homeodomain binding 

sequence for interaction with DNA and activation of target genes, which has been 

identified within the osteocalcin promoter (as well as in the Wnt- I gene) (Hoffman et 

al., 1994, Towler et al.,, 1994, Hoffmann et al., 1996, Willert et al., 2002). Msx I and 

2 (formerly known as Hox7 and 8) are expressed in an overlapping pattern in 

numerous tissues during embryogenesis (Davidson, 1995). Evidence suggests that 

Msx1 and 2 can act as transcriptional activators and repressors of target genes acting 

through other protein factors as well their DNA binding homeodomain (Davidson, 

1995, Sasaki et al.,, 2002). For example MsxI has the ability to interact with the 

TATA-binding protein (TBP) to initiate or block transcription (Davidson, 1995). 

Msx proteins play an early role in the patterning of the skeleton and expansion of 

early osteoblast populations. Over expression of Msx2 in vitro was shown to 

suppress osteoblast differentiation. In support of this, antisense inhibition of Msx2 

expression induced osteoblast differentiation (Liu et al., 1999, Dodig et al., 1999). 

Mutations of Msx I and 2 in humans are responsible for skeletal disorders such as 

craniosynostosis, and pariteal foramina, thought to reflect their role in cell 

proliferation within this skeletal region (Wilkie, 1997, Cohen, 2000). Deletion of the 

Bpx gene induces a similar defect in osteoblast proliferation during the development 

of the axial skeleton. This suggests that besides Cbfal, which is expressed in all 

skeletal elements, transcriptional control by other factors may be specific to the 

different regions of the skeleton and the type of ossification that will occur. 

Dlx6 and 5 also display overlapping patterns of expression and play a 

significant role in craniofacial development, tooth formation and limb patterning 
(Robledo et al., 2002). Dlx5 is expressed in all mature osteoblast cells, expression 
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levels increasing as cells becoming more differentiated. Dlx5 expression in vitro 

enhances osteoblast differentiation, inducing matrix production and mineralisation, 

and controlling expression of other transcription factors such as Msx and Cbfal 

(Shirakabe et al., 2001, Tadic, 2002, Lee et al., 2003). Most recently a reciprocal 

regulation of Cbfal, Msx2 and Dlx5 has been described. Firstly, Msx and Dlx 

proteins can form heterodimeric complexes via their homeodomain DNA binding 

domains, antagonising the action of these transcription factors (Zhang et al., 1997, 

Newberry et al., 1998). It is thought that the level of expression of each protein can 

therefore more readily regulate downstream factors. As Dlx5 is expressed after 

Msx2 during osteoblast differentiation, induction of Dlx5 expression could regulate 
Msx2 activity and target gene expression. Secondly, it was identified that that Msx2 

can bind to Cbfal and repress its activity; therefore binding of Dlx5 to Msx2 could 

elevate the repressive action, regulating activity of both Cbfal and Msx2, as well 
inducing its own transcription (Shirakabe et al., 2001). Most specifically a mutation 

of Msx2,, which prevents Dlx5 binding, can induce Boston-type craniosynostosis 
(Shirakabe et al., 2001). 

1.2.4. Growthfactor control 
Multiple signalling systems are established in bone that can affect the different stages 

of osteoblast differentiation by acting upon the transcriptional control of each stage, 

and therefore can exert multiple effects via down stream consequences on gene 

expression. Members of the transforming growth factor beta (TGFP) superfamily 

including the Bone morphogenic proteins (BMP) BMP2 and 4, and TGFP-I and 2 

have been implicated in influencing expression and function of Cbfal, Msx1 and 2, 

and Dlx5 via direct interaction with Smads (Chen et al., 1998, Hoffmann and Gross, 

2001, Valcourt et al., 2002). Smads are transcriptional regulatory proteins that can 
directly bind to the intracellular components of the TGFP superfamily receptors, and 

to transcription factors to mediate their actions (Wrana, 2000, Miyazono et al., 2001). 

Consequently, effects on osteoblast synthesis and secretion of bone matrix proteins, 

and expression of cell surface integrins have been demonstrated by TGF-P super- 
family growth factor treatment (Harris et al., 1994, Horner et al., 1998). Fibroblast 

growth factor (FGFs) signalling, a known regulator of bone formation and patterning, 

can also effect and regulate Cbfal, MsxI and 2 and Dlx5 activity (Pitaru et al., 1993, 
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Goldfarb et al., 1996, Galzie et al., 1997, Debi et al., 1998, Scutt and Bertrom, 1999, 

McIntosh et al., 2000, Mansukhani et al., 2000,, Ornitz and Marie, 2002). Multiple 

other hormonal and growth factor signalling systems are involved in regulating 

osteoblast function and differentiation (e. g. PTH, oestrogen, Vitamin D, IGF, Writ), 

effects of specific growth factor signalling systems will be discussed further in 

Chapter 4. 

1.2.5. Extracellular matrix proteins and osteoblast differentiation 

The runt domain of Cbfal that was found to selectively bind to the OSE elements of 

the osteocalcin promoter, has subsequently been identified in the genes of many 

other proteins already known to play significant roles in osteoblast differentiation 

including type I collagen, osteonectin, and osteopontin (Sato et al., 1998, Tsuji et al., 

1998, Thirunavukkarasu et al., 2000, Tyson et al., 2003). Although it is known that 

type I collagen provides the framework for bone formation, the precise function that 

non-collagenous proteins play during bone development is not fully understood. It is 

believed that in addition to a structural role,, the temporal and spatial expression of 

many non-collagenous proteins is instrumental in regulating osteoblast activity, and 

therefore critically important in the maintenance of bone mass. In particular, 

osteoblast differentiation is heavily reliant upon the cell-matrix interactions mediated 
by these non-collagenous proteins. As already discussed, osteocalcin is the most 

abundantly expressed non-collagenous bone matrix protein. However, its expression 

appears late in osteoblast differentiation. Earlier during osteoblast differentiation and 

matrix production other proteins such as osteopontin, osteonectin, and 

thrombospondin are expressed (Ducy, 1999). Although bone matrix proteins were 

originally thought to simply play a structural role in bone formation and 

mineralisation,, the significant effects upon osteoblast adhesion, migration and 

chemotaxis, and the subsequent effects upon osteoblast function and differentiation 

demonstrate the complexity between cells and the extracellular environment in which 

they reside. The roles of specific extracellular matrix proteins in bone will be 

discussed further in a later chapter (see section 3.1.2.1). 

9 



Chapter I 

1.3 Bone remodelling 

1.3.1 Maintenance of bone 

As the main support for the body in movement and locomotion, bone is put under a 

great amount of stress and strain. It is therefore essential that bone maintain its 

strength and mass to minimise the risk of fracture. To sustain a healthy skeleton, 
bone is continuously remodelled. Old or damaged bone is resorbed by osteoclasts 
followed by new bone formation by osteoblasts. Bone resorption and formation are 

tightly coupled to ensure the maintenance of bone mass; disruption of this 

remodelling cycle can lead to skeletal disorders such as osteoporosis. 

1.3.2 The ARF sequence 

The activities of osteoclasts and osteoblasts are closely regulated to ensure 

appropriate bone turnover. At sites of remodelling, resorption and formation follow 

a consecutive arrangement known as the Activation - Resorption - Formation or 

ARF sequence. Activation of osteoclasts is followed by osteoclast adhering to the 

bone surface and bone Resorption occurring (Baron, 1999). The removal or 
'Reversal' of osteoclasts from the bone surface is followed by 

macrophage/monocyte-like cells sealing the resorbed surface with a 'cement-line', 

marking the end of bone resorption. This cement line acts to bind the old bone with 

the new bone during bone Formation by osteoblasts as they fill in the resorbed area 

with new bone (see figure 1.2). Remodelling of cancellous bone follows the ARF 

sequence with sites of remodelling occurring on the trabecular bone surfaces. 

Remodelling of compact bone is however more complex. Remodelling occurs in 

packets within the bone called haversian systems or osteons, which are recognisable 
by layers of bone surrounding a blood vessel or interstitial space (Baron, 1999, Burr, 

2002). At these sites of remodelling, osteoclasts resorb a long narrow canal that is 

subsequently occupied by invading blood vessels and filled in with layers of new 

bone formed by osteoblasts (see figure 1.3). 

1.3.3 Osteoclasts and bone resorption 
Bone resorption occurs at discrete sites on the endosteal surface of bones or within 
haversian systems (Baron, 1999, Currey, 2002). The exact stimulus that initiates 
bone resorption is largely unknown. However a number of different factors are 
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Figure 1.2 
The ARF sequence 
1. Activation - osteoclasts become activated and are recruited to dormant 
bone surafces 

2. Resorption - Osteoclasts bind to and resorb the bone surface. 

Following removal of osteoclasts from the bone surface the zone of 
resorption is sealed with cement line. 

3. Formation - Osteoblasts invade the area and fill in the resorped region 
with new bone. 

(Diagram redrawn and modified from Baron, 1999, Primer on the metabolic 
bone diseases and Disorders of Mineral Metabolism, 4th edition) 
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Figure 1.3 
Crosssectionof ahaversian system 
1. Osteoclasts resorb a canal of cortical bone, the front of which is called the 
'cutting cone'. The canal is invaded by blood vessels. 
2. Osteoprogenitor cells populate the resorbed area and begin to 
differentiate into osteoblasts. 
3-5. Osteoblasts form layers of bone filling in the resorbed area. 
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known to stimulate osteoclast progenitors cells to differentiate into mature 

osteoclasts (Teitelbaum, 2000, Zaidi et al., 2003). Osteoclasts are highly specialised 

cells that originate from mononuclear cells of the haernatopoietic lineage, most 

specifically the monocyte/macrophage lineage (Teitelbaum, 2000, Zaidi et al., 2003). 

Mature osteoclasts are giant multinucleated cells, possessing up to 20 nuclei per cell, 

which are found in contact with the bone surface in resorptive pits called Howship's 

lacunae (Baron, 1999). The resorptive nature of osteoclasts necessitates these cells 

to contain abundant active Golgi complexes, vesicular transport systems and 

numerous mitochondria (Baron, 1999). Cell surface integrins such as P1 and UA 

that contain RGD recognition sequences mediate the adhesion of osteoclasts to bone 

matrix proteins such as collagen type I and osteopontin (Teitelbaum, 2000, Zaidi et 

al., 2003). Adhesion stimulates polarisation of the osteoclast cell membrane apposed 

to the bone surface to become highly folded to form the characteristic ruffled border 

zone. The ruffled border of osteoclasts provides a greater resorptive surface area 
(Baron, 1999, Teitelbaum, 2000, Zaidi et al., 2003). Focal expression of 
filamentous proteins including F-actin, and other cytoskeletal elements such as 

vinculin, talin and (x-actin form a dense boarder or 'sealing zone' that seals the 

ruffled boarder at the periphery of the cell (Baron, 1999). The sealing zone creates a 

controlled envirom-nent for the breakdown of the bone surface (Teitelbaum, 2000). 

In addition, it is thought that attachment to cell surface integrins activates 

intracellular-signalling pathways that stimulate synthesis, packaging and release of 

secretion enzymes from the ruffled border (Baron, 1999). Targeting of vesicles to 

the ruffled boarder is regulated by the mannose-6-phosphate receptor (Zaidi et al., 

2003). Proton pumps such as the H+ -adenosine triphosphate (ATP) are charged 

coupled to Cl- channels in the apical cellular membrane enabling the development of 

an acidic microenvironment between the bone surface and the resorptive surface of 

the cell (Zaidi et al., 2003). Cl-/HCO_3 and Na+/Ca2+ exchangers found on the distal 

pole of the cell, maintain a neutralised intracellular osteoclast pH. Vesicular release 

of acidic lysosomal enzymes such as tartrate resistant acid phosphatase, cathespin K, 

and matrix metalloproteinases (MMPs) is essential in the degradation process 

(Baron, 1999, Teitelbaum, 2000, Zaidi et al., 2003). These proteins allow the release 

of hydroxyapatite crystals from their immobilised position in the extracellular matrix 

and the acidic environment enables their dissolution. Once the mineral component of 
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bone has been removed, collagenases and other MMPs break up and remove the 

organic component. The degraded bone matrix is phagocytosed by the osteoclasts 

and transported to the distal pole of the cell surface for release (Mostov and Werb, 

1997, Baron, 1999). The exact mechanism that controls the level of bone resorption 
is unclear, but it is thought that high calcium levels in the Howship's lacunae 

produced by dernineralisation initiate breakdown of the sealing zone and release of 
the osteoclast from the bone matrix terminating that phase of bone resorption (Baron, 

1999). 

1.3.4 Osteoblasts, boneformation and mineralisation 
In mature, fully developed bone, the formation of new bone tissue occurs at sites of 

resorption or repair. The recruitment of preosteoblasts to the area is believed to be 

affected by local release of growth factors, cytokines and chemoattractants such as 

transforming growth factors JGF-Ps), fibroblast growth factors (FGFs), and bone 

morphogenic proteins (BMPs) entrapped in the bone matrix and released during 

resorption (Baron, 1999, Mundy, 1999, Ducy, Schinke and Karsenty, 2000). These 

factors also stimulate preosteoblasts to proliferate and populate the area, inducing the 

expression of cell surface adhesion molecules and promoting the differentiation into 

osteoblasts (Baron, 1999, Mundy, 1999, Ducy, Schinke and Karsenty, 2000, Harada 

and Rodan,, 2003). Secretion of collagens such as collagen type I forms the basis of 

the matrix in a material known as osteoid, visibly different from the bone matrix in 

histological sections of bone (Boskey, 1992, Young et al., 1992, Baron, 1999). 

Adhesion of osteoblasts to the osteoid, or contact with circulating growth factors 

initiates cell-signalling cascades that activate genes causing cell differentiation and 

production of other non-collagenous matrix proteins (see section 1.2). The 

collagenous-matrix binds and incorporates the non-collagenous matrix proteins, 

filling the spaces between the collagen fibrils (Young et al., 1992, Boskey, 1992, 

Robey, 1996, Baron, 1999). As the matrix matures, mineralisation occurs at discrete 

sites. Extracellular matrix vesicles (ECM vesicles) released by osteoblasts aid 

mineralisation by concentrating calcium and phosphate ions, inhibitors of mineral 

catabolising enzymes, and acidic phospholipids providing a protective environment 

for hydroxyapatite formation (Boskey, 1992, Anderson, 1995, Baron, 1999). The 

site of initial mineralisation occurs with the formation of a small crystal or 'critical 
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nucleus'. After 'nucleation', subsequent crystal growth and expansion arises from 

this nucleus, crystals of each discrete nucleus eventually coming together to form a 

uniform mineral structure (Boskey, 1992, Baron, 1999). 

As osteoblasts form bone some of these cells become trapped in the matrix, 
forming cells know as osteocytes that occupy fluid filled spaces in the bone called 
lacunae (Lian et al., 1999, Burger et al., 1999, Noble and Reeve, 2000). Large 

process extensions or canaliculi allow for the communication between newly 

embedded osteocytes with others embedded deeper in the bone, or cells at the 

endosteal bone surface such as osteoblasts (Turner and Forwood, 1995, Lian et al., 
1999, Burger et al., 1999, Noble and Reeve, 2000). Osteocytes are thought to play 

an important role in the regulation of bone in its response to mechanical loads and 

systemic hormones (Burger et al., 1999). Gap junctions between the canaliculi of 

osteocytes and others cells provide for a network of communication between deeply 

embedded cells and bone surface (Turner and Forwood, 1995, Noble and Reeve, 

2000). Osteocytes are also thought to be highly responsive to the mechanical strains 

received during locomotion and exercise (Turner and Forwood, 1995, Noble and 

Reeve, 2000). Although they cannot undergo replication, osteocytes remain active 

for the life span of the bone in which they reside (Lian et al., 1999). Other 

osteoblasts cease to be active and lay dormant on the bone surface to become 

fibroblast-like cells known as bone lining cells (Lian et al., 1999, Parfitt, 2001). 

However,, the conclusion of active bone formation results in most osteoblasts 

undergoing apoptosis (Hock et al., 2001). 

1.4 Osteogenesis 

1.4.1 Embryonic Bone Development 

The embryonic development of the skeleton is a complex process still not yet fully 

understood. Patterning of the embryo designates stem cells to specific regions of the 

developing body, producing all tissue types from one primitive stem cell type. 

However in man, by the late gastrula stage (around 14-17 days post coitus (dpc)) 

specific regions of the embryo have become committed to different lineages of cells 

and tissue (Raven and Johnson, 1990, Olsen, 1999). The skeleton is derived from 

three different cell lineages - the neural crest, sclerotome, and lateral plate mesoderm 

(Olsen, 1999). Cells derived from these regions condense and differentiate into 
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mesenchymal cells that form the pattern of the future skeleton. Neural crest cells, 
derivatives of the brachial arch, form the craniofacial skeleton (Olsen, 1999, 

Opperman, 2000). The sclerotome division of somites condense to form part of the 

axial skeleton (Olsen, 1999). The remaining skeletal elements of the limbs arise 
from the lateral plate mesoderm (Olsen, 1999). The developed mesenchymal pattern 

of the skeleton then undergoes further patterning and differentiation forming the 

shape of future bones. At this point bone development can occur via two processes - 
intramembraneous ossification, forming the flat bones such as those of the skull, or 

endochondral ossification to develop the long bones of the limbs and the ribs. The 

distinct difference between these two processes is in the differentiation of the 

mesenchymal skeletal pattern. During intramembraneous ossification, mesenchymal 

cells differentiate directly into osteoblasts (Seeley et al., 1995, Baron, 1999). 

However during endochondral ossification, mesenchymal condensations first 

differentiate to form cartilaginous elements that are then mineralised and replaced by 

osteoblasts and bone (Seeley et al., 1995, Baron, 1999, Kronenberg, 2003). 

1.4.2 Intramembraneous Ossification 

The development of flat bones such as those of the calvarium of the skull and the 

scapula requires no intermediate cartilaginous phase in their formation (Seeley et al., 
1995). Cells derived from the neural crest, migrate, aggregate, condense and 
differentiate into mesenchymal structures that resemble the future skeletal elements 

(Olsen, 1999, Opperman, 2000). This process induces further differentiation through 

cell-cell contact leading to activated signalling systems that can determine future 

patterning, cell fate and activation of genes related to the structures involved (Raven 

and Johnson, 1990). Progenitor cells are found in the mesenchymal precursor tissue, 

and these cells differentiate into mature matrix synthesising osteoblasts (Opperman, 

2000). During the first phase of intramembraneous ossification, osteoblasts produce 

bone in a disordered manner, with a poorly aligned collagenous osteoid leading to 

the production of delicate network made up of woven bone that spans the area 

previously occupied by mesenchymal tissue (Seeley et al., 1995, Olsen, 1999). 

Ossification occurs at discrete central sites called ossification centres. As bone 

develops, osteoblasts secrete a matrix of collagenous and non-collagenous matrix 

proteins that are subsequently mineralised. Remodelling of this mineralised matrix 

occurs by osteoclasts brought to the area by local blood vessels and those that begin 
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to invade the matrix bringing cells that will eventually form the haematopoietic bone 

marrow (Seeley et al., 1995). Osteoblasts replace the resorbed area with the more 

organised lamella bone, joining together the trabeculae structures into an organised 

network of trabecular bone. Periosteal cells lining the mineralised matrix also 

aggregate and specialise to form the periosteum, Some cells of which differentiate 

into osteoblasts that produce a more organised mineralised matrix made of compact 
bone, creating a bone collar surrounding the trabecular network (Seeley et al., 1995, 

Olsen, 1999). The centres of ossification enlarge and gradually generate the marrow 

cavity. Areas of mesenchyme that are covered with a thin epithelial membrane 
known as sutures or fontanelles are interspaced between the bones of the skull 
(Opperman, 2000). Sutures are essential for the co-ordination of neural and skeletal 

elements both during embryonic and postnatal development, and although most 

sutures are almost closed at birth some remain patent during the first years of life to 

allow for further growth of the skull (Opperman, 2000). Suture patency is under 

strict regulation and is a complex process of its own relevance that will be discussed 

in depth in a later chapter (see section 5.1.1 chapter 5). 

1.4.3 Endochondral Ossification 

Endochondral ossification is the process by which the ma ority of the skeleton is 

developed. Mesenchymal tissue derived from the sclerotome condenses and 

aggregates to form the pattern of the future elements of the axial skeleton (bones of 

the thoracic cage, vertebral column, and pelvis) (Seeley et al., 1995, Olsen, 1999, 

Gilbert, 2000, Wolpert, 2002, Kronenberg, 2003). Limb buds shaped from cells 

derived from the lateral plate mesoderm, extend posterior to an epithelial layer of 

cells the apical ectodermal ridge (AER). As the AER expands, the interior limb 

tissue undergoes further patterning events to form the outline of the future limb 

bones (humerus, ulna, and radius of the upper limbs, femur, tibia and fibula of lower 

limbs,, metacarpals and phalanges of the hand, and metatarsals of the feet) (Seeley et 

al., 1995, Olsen, 1999, Kronenberg, 2003). 

Mesenchyrnal condensations differentiate into chondroblasts creating 

cartilaginous elements or models in the shape of the future bones. Chondroblasts of 

this primitive bone model then mature, secreting a primary matrix of type I and III 

collagen, continuing to proliferate expanding the width, length and shape of the bone 

by interstitial and appositional growth (Kronenberg, 2003). A mesenchymal layer or 
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Figure 1.4 
The growth plate 
The cartilage anlagen of future bones form distinct zones of cells known as 
the growth plate that allows for bone growth. 
1. Zone of resting cells 
2. Chondrocytes become active and proliferate. 
3. Chondrocytes enlarge, secrete a collagenous matrix and form columns of 
cells called isogenous groups. 
4. Chondrocytes mineralise their matrix and undergo apoptosis. 
5. Cartilagenous tissue is replaced by bone. 
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perichondrium contouring the primitive bone, and containing an osteoprogenitor 

population, begins to produce a bone collar by intramembraneous ossification at the 

diaphysis of the cartilaginous model (Seeley et al., 1995). Becoming imbedded 

within their own matrix, chondroblasts differentiate into chondrocytes, occupying 
lacunae of the cartilaginous matrix. The elastic nature of the cartilaginous matrix 

allows these cells to remain proliferative, and to do so in a highly organised fashion. 

Chondrocytes form columns known as growth cones or isogenous groups (see figures 

1.4. and 1.5) found in the region from the epiphysis to the diaphysis of the bone 

called the growth plate (Seeley et al., 1995, Gilbert, 2000, Wolpert, 2002). Within 

the growth plate, chondrocytes proliferate upwards to the epiphysis of the bone (zone 

of proliferation). A zone of resting cartilage, containing chondroblasts is found at the 

point nearest to the epiphysis (Seeley et al., 1995). Cells at the distal end of the 

growth plate undergo hypertrophy, where cells rapidly enlarge, presenting large golgi 

apparatuses and change the matrix they secrete to collagens type 11, IX and XI 

(hypertrophic chondrocytes, zone of hypertrophy). Lacunae containing the 

hypertrophic chondrocytes also enlarge as the chondrocytes begin to mineralise their 

surrounding matrix at the metaphysis of the bone before these cell undergo apoptosis 

(zone of calcification) (see figure 1.4) (Seeley et al., 1995, Olsen 1999, Kronenberg, 

2003). 

Osteoclasts begin to resorb the calcified matrix allowing blood vessel 
invasion of the perichondrium and periosteum (Seeley et al., 1995). Vascularisation 

of the cartilaginous model provides further osteoclast precursor and osteoprogenitor 

cells (and bone marrow precursors) that commence remodelling of the calcified 

cartilaginous matrix creating a primary ossification centre (Olsen, 1999) (See figure 

1.5). A bone matrix of trabeculae is formed from the enlarged chondrocyte lacunae 

known as the primary spongiosa, made of disorganised woven bone spanning the 

circumference of the bone metaphysis at the front of the hypertrophic zone (Olsen, 

1999). These trabeculae are remodelled to form an organised trabecular structure 

made of lamella bone, known as the secondary spongiosa (Seeley et al., 1995, Olsen, 

1999). Further interstitial and appositional growth at the growth plate and recurrent 

remodelling of the diaphysis results in longitudinal growth of the bone and the 

production of a mid shaft made predominantly of trabecular bone with a surrounding 

bone collar of compact bone (Seeley et al., 1995, Olsen, 1999, Gilbert, 2000, 

Wolpert, 2002). The mid shaft trabeculae are then near completely resorbed to form 
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the medullary shaft, which is invaded by blood vessels and occupied by marrow 

cells. 
A secondary ossification centre is formed at the upper epiphysis where the 

cartilage mineralises and undergoes remodelling in a similar way as that of the 

primary ossification centre (see fig. 1.5) (Seeley, 1995, Olsen, 1999). The bone 

collar of the diaphysis thickens and extends toward the epiphysis as the bone 

undergoes further longitudinal growth lengthening the mid-shaft. Remodelling 

continues at both centres of ossification and longitudinal growth by the growth plate 

continues into postnatal life (Gilbert, 2000, Wolpert, 2002). 

1.5Acetylcholinesterase (AChE) 

1.5.1. Role ofA ChE in cholinergic signalling. 
Acetylcholine acetyl hydrolase or Acety1cholinesterase (AChE, 3.1.1.7) is most 

commonly known for its important role in the termination of cholinergic 

neurotransmission. Acetylcholine (ACh) is the neurotransmitter used to transmit 

nerve impulses at cholinergic synapses and at the motor end plates of neuromuscular 

junctions (Hammond, 2001). Synthesis of acetylcholine by choline acetyltransferase 

(choline acetylase or ChAT) occurs whereby the acetyl group of acetyl-CoA is 

transferred to choline (Purves, 2001). At cholinergic signalling sites the presynaptic 

cell is separated from the postsynaptic cell or the muscle cells by the synaptic cleft 

(Simmons, 1999). Presynaptic cells concentrate acetylcholine in synaptic vesicles 
(approximately 104 molecules per vesicle) close to the nerve terminal apposed to the 

synaptic cleft (Simmons, 1999). Arrival of a nerve impulse causes a depolarisation 

of the presynaptic membrane creating an influx in Ca 2+ into the cell via voltage- 

sensitive calcium channels (Hammond, 2002). Increased intracellular Ca2+ results in 

a subsequent release of acetylcholine into the synaptic cleft (Hammon, 2002). 

Acetylcholine molecules diffuse across the synaptic cleft and bind to abundant 

receptors found on the postsynaptic membrane (see figure 1.6). There are two known 

receptor types, nicotinic and muscarinic acetylcholine receptors, distinguishable by 

the effects of the alkaloids nicotine and muscarine. The two types of acetylcholine 

receptor produce actions by different mechanisms. Binding of acetylcholine to 

nicotinic receptors found on the postsynaptic membrane opens the receptor acting as 
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Figure 1.6 
Cholinergic neurotransmission 
1. Arrival of a nerve impulse at the presynaptic terminal causes vesicular release of ACh 
into the synaptic cleft. 
2. ACh diffuses across the cleft and attaches to nicotinic or muscarinic receptors found on 
the surface of the postsynaptic cell, inducing intracellular signalling. 
3. Acety1cholinesterase (AChE) found soluble within the cleft and bound to the surface of 
the post and pre-synaptic cell ten-ninates neurotransmission by hydrolysing ACh into 
choline and acetate. 
4. Choline is readily uptaken by the presynaptic cell and combined with Acetyl Co-enzyme 
A to produce moreACh molecules by ChAT. 
5. ACh is packaged and concentrated into synaptic vesicles. 
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a cation gate permeable to Na+ and K+ provoking a rapid influx of ions through the 

postsynaptic membrane (Hammond, 2002). Two non-interacting binding sites for 

ACh are found on nicotinic receptors; binding at both sites is required for channel 

opening (Hammond, 2002). Initial binding of ACh to the receptor causes transitory 

opening of the channel. After a short period of activity the receptor becomes 

desensitised to ACh and the molecule is released (Purves, 1999, Hammond, 2002). 

When the synaptic cleft is highly concentrated with ACh this initial binding is 

followed by binding of further molecules ultimately culminating in further ion 

influxes and a change in membrane potential causing depolarisation of the post- 

synaptic membrane (Hammond, 2002). Muscarinic acetylcholine receptors 

transmembrane regions are G-protein coupled; binding of ACh to these receptors 

activates K+ channels through the coupled G-protein complex also instigating 

depolarisation of the postsynaptic membrane (Purves, 1999, Hammond, 2002). 

Termination of a nerve signal occurs when acety1cholinesterase hydrolyses 

acetylcholine into choline and acetate thereby reducing the concentration of ACh at 

the synaptic cleft and in so doing closing the channels, restoring the membrane 

potential to basal levels (Purves, 1999, Hammond, 2002). 

1.5.2 AChEprotein structure, catalytic capabilities and inhibition. 

AChE is a serine esterase with catalysis resembling that of the serine proteases such 

as lipases, and trypsin, belonging to the large family of serine hydrolyses. The serine 
hydrolyse family is divided into a variety of sub divisions based on structural 
homology, AChE belonging to the carboxylesterase division, of which the only other 

cholinesterase is butyrIcholinesterase (BChE) (Horton, 2002, also see 

http: //bioweb. ensam. inra. fr/ESTHER). Cholinesterases are some of the fastest 

known acting enzymes, the rate of acetylcholine turnover being kcg/Km = 108 M-1 sec- 
1 (4000 ACh molecules per active site per second) (Horton et al., 2002). This renders 

AChE able to hydrolyse vast quantities ACh molecules to enable the rapid 

termination cholinergic signalling. The AChE protein complex consists of a 12- 

stranded P-sheet surrounded by 14 cc-helices (Sussman et al., 1991). The active 

centre of AChE comprises two AChE binding sites and the narrow gorge. At the top 

of the narrow gorge is a negatively charged 'peripheral anionic' binding site for 

ACh, thought to be involved in substrate inhibition of AChE catalysis (Szegletes et 
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al., 1999). This site has also been identified as a possible secondary allosteric site for 

the secondary functions of AChE that will be discussed in depth in Chapter 4. The 

gorge itself is lined with 14 aromatic residues (Taylor and Radic, 1994). The 

choline moiety of ACh interacts with these aromatic side chains that serve as 

'docking sites' to manoeuvre ACh molecules toward the active site in the correct 

alignment and orientation for interacting with the active site (Tan et al., 1993, Taylor 

and Radic,, 1994). 20A from the surface of the protein at the bottom of the gorge, in 

the centre of the protein complex, lies the active site triad common to serine 

hydrolyases (Taylor and Radic, 1994). The catalytic triad of cholinesterase is 

comprised of serine (S200), Histidine (H440), and unlike other carboxyesterases, an 

aspartate residue is replaced by glutarnate (E327) (Shafferman et al., 1992, Taylor and 

Radic, 1994). During hydrolysis the serine hydroxyl element is disprotonated by 

the histidine residue that functions as a general base, and the negatively charged 

glutamate residue balances the positively charged histidine residue (Taylor and 

Radic, 1994). 

The catalysis of the ACh hydrolysis reaction is carried out over multiple 

steps. Firstly, nucleophilic attack of the carbonyl carbon of ACh by the active site 

serine residue oxygen moiety causes binding of ACh to the serine residue and 
formation of an intermediate tetrahedral structure (Taylor and Radic, 1994, Horton, 

2002). Cleavage of ACh at the Ser bond liberates the choline molecule from ACh 

creating an acetyl-enzyme structure (Taylor and Radic, 1994, Horton, 2002). 

Hydrolysis of the acetyl-enzyme intermediate by nucleophilic attack of the acetyl 

moiety, this time via the active site histidine residue, results in deacetylation of the 

enzyme (Taylor and Radic, 1994, Horton, 2002). This final step provides acetate and 

hydrogen products. A chemical description/representation of ACh hydrolysis by 

AChE is presented in figure 1.7. 

Recently a number of catalytically inactive proteins bearing significant 

structural and sequence homology to cholinesterases have been identified based on 

(signature' sequences of the B-carboxylesterase family relating to the catalytic 

domain of AChE (See Cousin et al., 1998i amended to 

http: //bioweb. ensam. inra-fr/ESTHER/, also see Taylor, Luo and Camp, 2000 for 

review). This group of 'esterase-like' proteins show 28-45% sequence homology to 

the signature sequences found within B-carboxylesterases, lacking the active site 
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serine required for catalytic activity, but retaining other residues needed to maintain 

the structural arrangement (Botti et al., 1998) (see figure 1.8. ). 

Other than the conserved extracellular esterase-like domain these proteins possess 

other functional domains such as intracellular segments, and transmembrane regions 

relating to their specific functions. Interestingly, most family members have a 

related role in mediating cell-cell and cell-matrix interactions in a variety of different 

tissues; interactions occurring by their esterase-like domains (Darboux et al., 1996, 

Botti et al., 1998). Neurotactin, the drosophila protein involved in synapse 
formation, expresses an extracellular domain homologous to the cholinesterase 

catalytic domain (De la Escarla, 1998). Mutation analysis established that 

replacement of this domain with the core AChE protein caused no adverse effect on 
function and facilitated cell adhesion. Similarly, gliotactin is another esterase-like 
drosophila protein, involved in the organisation of the blood brain barrier; and 

mediated by the AChE homologous extracellular domain (Olson et al., 1990, Auld et 

al., 1995). More specific to vertebrates, human thyroglobulin shares significant 
homology to the core AChE catalytic protein in its extracellular domain that is 

already established to exert its function (Swillens et al., 1986, Ludgate et al., 1989). 

Moreover the autoimmune Graves disease is characterised by antibody production of 

anti-thyroglobulin antibodies, also shows significant presence of anti AChE 

antibodies that are thought to be produced from the esterase-like domain of 

thyroglobulin (Swillens et al., 1986, Ludgate et al., 1989). 

Although related in structure and catalytic function, BChE can hydrolyse 

multiple choline esters (including acetylcholine) as well as butrylcholine, although 

not all to the same affinity (Chatonnet and Lockridge, 1989). This is unlike AChE 

that is known as the 'true' cholinesterase for its specific affinity to ACh (Taylor and 

Radic,. 1994). Due to the structure of the AChE protein the ligand specify of this 

protein is high. The folding of AChE places the active site for enzyme catalysis at 

the bottom of the narrow gorge, restricting the access of larger less specific esters 

(Taylor and Radic, 1994). The spatial arrangement of the catalytic triad also makes 

it impossible for AChE to bind other choline molecules. However, cholinesterases 

do have the potential to catalyse various other esters such as oxyesters, selenoesters, 

amides, carbarnoylesters and phosphorylesters, creating a great susceptibility for 

inhibitors (for review see Taylor and Radic, 1994). There are two categories of 
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cholinesterase inhibition : irreversible and reversible. Covalent bonding of 
ligands/inhibitors such as Diisopropyl Fluorophosphate (DFP) to the active site 

serine renders the enzyme irreversibly catalytically inactive (Horton, 2002). 

Reversible inhibitors prevent the substrate from binding to the active site. This can 
be either in a competitive manner where the inhibiting ligand binds directly to the 

active site (tacrine, edrophonium), or a non-competitive manner in which ligands 

might bind to alternative sites on the AChE enzyme that would prevent the binding 

of ACh molecules to the active site for hydrolysis (Taylor and Radic, 1994). The 

peripheral anionic site (PAS) functions as one of these sites acting as a site for 

allosteric inhibition of the enzyme. Found at the top of the gorge this site can bind 

ACh as well inhibitors that bind and obscure the entrance to the gorge, (propidium, 

gallamine). Some inhibitors are capable of binding to both the active site and the 

PAS and are known as bis-quarternary inhibitors (BW284c5l and decamethonium). 

Although the crystal structure of many of the known AChE inhibitors has been found 

it is not yet established if such inhibitors are also capable of causing serious 

conformational. changes to the structure of AChE which could independently 

inactivate AChE (Taylor and Radic, 1994). 

1.5.3. A ChE isoforms, tertiary and quaternary associations 

Early in AChE research, prior to the cloning of ACK genes, multiple ACK species 

were identified and characterised according to their physical properties and 

functional localisation (see figure 1.9). A species of AChE was identified in 

erythrocytes that contained numerous hydrophobic sequences at its C-terminal cell 

membranes; hence the term AChEHwas adopted (Massoulie and Bon, 1982). At 

cholinergic synapses (muscle and brain) a species was identified oligomerised with a 

collagen-like tail (CoIQ) anchor, or attached to a then unidentified transmembrane 

anchor (PRiMA) (Massoulie 2002). This type of AChE displayed the most 

resemblance to the well-researched Torpedo AChE, and the term AChET(for tailed) 

was adopted. Subunits of AChE are classified as globular (G) AChE (Massoulie, 

2002). Globular AChE can be expressed as monomers (GI), or multiple subunits can 

form dimers (G2) and tetramers (G4) via a conserved cysteine residues found at the 

C-terminal peptide Massoulie et al., 1998, Massoulie, 2002). Hydrophobic 

sequences and aromatic residues located at the C-terminus give some globular 

species amphiphilic properties and are termed amphiphilic monomers (G, ') and 
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The gene for human AChE comprises of 6 exons. Exons 1 -3 encode the common 
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dimers (G2 a) that are present for both ACIIEH (type 1) and ACIIET (Type II) 

(Massoulie et al., 1998). Secreted subunits of the amphiphilic form are preferentially 

cell surface associated by electrostatic interactions owing to their hydrophobic nature 
(Bonet al., 199 1). 

A number of different AChE forms exist in vivo as a result of oligornerisation 

of subunits,, and quaternary association with anchoring proteins. Globular AChEH 

exists as amphiphilic dimers (type I G2 a) that acquire the addition of a 

glycosylphosphatidyl inositol (GPI) moiety that integrates with cell membranes 
(Coussen et al., 2001, Massoulie, 2002). AChEHis predominantly found in the cell 

membranes of erythrocytes and possibly some other cells of the haematoPoietic 

lineage (Coussen et al., 2001, Massoulie, 2002). Some evidence suggests that 

AChEH also plays a role in myogenesis and muscle development (localisation to 

embryonic muscles, Layer and Wilbold, 1995). However, this isoform was not 
identified or found to play an active role at the mature neuromuscular junction (Layer 

and Wilbold, 1995). AChETglobular species form quaternary associations with two 

types of anchor; the PRiMA subunit or the CoIQ collagen-like tail (Massoulie et al., 
1998). Both anchors are encoded for by genes distinct from that for AChE (ACHE). 

Prior to translocation to the cell surface, tetrameric AChET (Type II G4 a) is attached 

to the 22 kDa glycosylated hydrophobic PRiMA subunit via intercanternary 

disulphide bonds to free cysteine residues located -4 amino acids from the C- 

terminus (Perrier et al., 2002, Massoulie, 2002). The PRiMA subunit is then thought 

to integrate itself into the cell membrane. Other associated proteins in this process are 

yet to be identified (Perrier et al., 2002). This form of AChE is the main type of 

AChE found in the central nervous system (CNS) providing approximately 70-90% 

of catalytic activity of the brain (Layer and Wilbold, 1995). Globular AChETcan also 

be secreted from the cell. Secretion of globular AChE results in cleavage of part of 

the C-terminal peptide and removal of the aromatic residues; these subunits are 

therefore non-amphiphilic (G na) (Morel et al., 2002, Belbeoc'h et al., 2003). At the 

neuromuscular junction (NMJ) the predominant form of AChE is the collagen-tailed 

form. Multiple amphiphilic dimers or tetramers of AChETbind to the CoIQ to form 

the asymmetric (A) forms of AChE (A4, A8, A12) (Massoulie et al., 198). CoIQ (Q 

standing for the French word for tail 'queue') may also exist as multiple isoforms due 

to extensive splicing of the CoIQ gene (Massoulie et al., 2002). The C-terminal 

peptides of AChETcontain a trypyophan (3ýD Amphiphilic tetramerization domain or 
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WAT domain that binds to CoIQ via a string of conserved proline residues found at 
its N-terminus named the proline rich attachment domain (PRAD) (Bon et al., 1997, 

Simon et al.,, 1998, Massoulie, 2002). CoIQ is then organised in a triple helical 

arrangement (Massoulie et al., 1999, Bon et al., 2003). Motifs that would permit 
binding of AChE to extracellular matrix proteins are located distal to the N-terminus 

of CoIQ (Krejci et al., 1997). Binding to a variety of heparan sulphate proteoglycans 

such as perlecan and chondroitin sulphate have been identified that allow for 

localisation of AChE at the basement membrane (Vigny et al., 1983, Rossi and 
Rotundo, 1996,, Arikawa-Hirasawa et al., 2002). The advent of cloning of the AChE 

gene from a variety of species however brought about new names and terms for the 

respective AChE isoforms (see figure 1.9). 

1.5.4. Gene structure, alternative splicing, and post-translational modification. 
Although AChE has retained significant structural homogeneity across species, there 

is considerable diversity in gene size, number, and intron/exon organisation. In 

mammals the AChE gene spans 6-7kb of genomic DNA located to chromosome 

7q22 in humans, and to the distal part of chromosome 5 in mouse (Ehrlich et al., 

1992, Getman et al., 1992,, Rachinsky et al., 1992, Wilson et al., 2001). However in 

other species the AChE gene was found to span a much larger genomic sequence, 

e. g. 25kb in Torpedo. BChE is also encoded for by a single gene that bears 

resemblance to but is distinct from that of AChE, located to chromosome 3 in 

mammals (Getman et al., 1992). Despite this diversity these genes do share some 

similarities (see figure 1.10). In general genes that encode AChE can be divided into 

two segments; exons encoding the 'core' of AChE protein, and exons that encode the 

carboxyl terminus or C-terminal. The core AChE protein comprises the catalytic 

component of AChE. The C-terminal protein governs isoform expression and 

associated attachment to the GPI, CoIQ, or PRiMA anchoring proteins. The catalytic 

domain of Torpedo and human BChE is encoded by a single exon. C. elegans have 

a family of four ACE (1 -4) genes that encode for AChE, all of which have different 

exon organisation in the region that encodes the core catalytic domain (For review 

see Massoulie, 1999). In mammals however the corresponding coding region of 

AChE is divided in multiple exons. The mammalian AChE gene contains 6 exons. 

The first exon is an untranslated region connected to promoter (that is spliced out in 

mature AChE mRNA) (Li et al., 1991, Ben-Aziz Aloya, 1993, Camp and Taylor, 
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1998, Luo et al., 1998). The open reading frame of the AChE gene therefore begins 

in exon 2, with exons 2-4 encoding the core catalytic domain of mammalian AChE 

(Li et al., 1992,, Ben-Aziz Aloya, 1993). As a consequence of diversity in gene 

structure and organisation, differences in the respective catalytic properties have 

been noted which are thought to reflect the relative variations in the cholinergic 

systems of these species. The catalytic domain makes up the bulk of the AChE gene 

and protein. 

Differences in gene structure between species can also be observed in the 

remainder of the AChE gene (see figure 1.10). The 3' end of the AChE gene 

provides only a small part of the overall AChE protein, C-terminal peptides 

contributing just 40-67 residues (Grisaru et al., 1999). However these C-terminal 

regions bear greater significance to the organisation and localisation of the AChE 

species and their functionality. Putative splice sites were identified at the distal 

region of exons 4-6 (Li et al., 1992, Ben Aziz Aloya et al., 1993). Alternative 

splicing of these sites generates multiple AChE mRNA species that produce the 

specific AChE isoforms differing in their C-terminal peptides and ability to form 

quaternary associations (Li et al., 1992, Ben Aziz Aloya et al., 1993). In mammals 

three distinct AChE splice variants exist AChE-S (". ýynaptic" AChET), AChE-E 

("erythrocytic" AChEH), or the recently identified "readthrough" isoform, AChE-R, 

which contains the pseudo-intron 4 (see figures 1.9 and 1.10). Splicing of mRNA 

exon 4 (E4) at the Yand exon 5 (E5) at the 5' results in the removal of exon 5 and a 

mature mRNA product containing only the core catalytic domain and exon 6 (E6) 

(E2, E3, E4, E6). This AChE-S product gives rise to AChE with C-terminal peptides 

that correspond to the AChET isoform and is found in cells of the CNS, NJM and 

cells of haernatopoietic origin (megakaryocytes and lymphocytes) (Soreq and 

Seidman,, 2001, Massoulie, 2002). Splicing of mRNA at a single point at the end of 

exon 5 (E5) results in a mature mRNA product containing the core catalytic domain 

and exon 5 resulting in the expression of the AChEHisoform (E2, E3, E4, E5) (Li et 

al.,, 1992, Ben Aziz Aloya et al., 1993). Readthrough of the AChE gene that 

incorporates the pseudo-intron 4 (14), originally thought to be part of the non-coding 

sequence can give rise to an additional splice variant AChE-R (Li et al.,, 1992, Ben 

Aziz Aloya et al., 1993). Mature mRNA of AChE-R contains the coding region of 

the core catalytic domain, intron 4 and all of the remaining exons (E2, E3, E4,14, E5, 

E6). 
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The resulting protein product contains a 26 amino acid extension at the C-terminus, 

and is subsequently devoid of the free cysteine residues required for subunit 

oligomerisation and attachment to functional anchoring proteins and is therefore 

expressed a soluble monomer that is secreted from the cell (Li et al., 199 1, Kerem et 

al.,, 1993). This isoform of AChE is expressed at high levels in embryonic and 
turnourous tissues, and more recently was identified as the isoform over-expressed in 

the brain in response to psychological stress or chronic catalytic inhibition (Li et al., 
1992,, Ben aziz Aloya et al., 1993, Small et al., 1996, Soreq and Seidman, 2001). For 

simplicity I will refer to the respective AChE isoforms as AChE-S, E and R for the 

remainder of this thesis. Post translational modification of the resulting protein 

products of each mRNA splice variant confers further functional properties of the 

relative subunits (i. e. dimerisation, attachment to anchoring proteins), which is 

thought to be regulated in a tissue specific manner. 

1.6 AChE a multifunctional protein 

1.6.1 Non-cholinergic roles for A ChE 

Cholinesterases such as AChE have received a high level of scientific investigation 

since their discovery in the early 1930s in studies that pioneered the understanding of 

cholinergic neurotransmission. As a result, the physical and catalytic properties of 
AChE are well characterised in relation to its traditional role in cholinergic 

neurotransmission. However over 25 years ago a number of observations lead to the 

idea of 'secondary' functions of AChE unrelated to its cholinergic role. The fact that 

AChE exists in multiple isoforms and species suggests that AChE could have 

divergent roles, especially as one identified isoform is thought to be expressed 

exclusively in erythrocytes, cells known to have no cholinergic innervation or role in 

neurotransmission (Lawson and Barr, 1987, Roberts et al., 1987). In addition, AChE 

is expressed in regions of the brain that do not express the acetylcholine synthesising 

enzyme, choline-acetyltransferase (ChAT) indicating an absence of cholinergic 

signalling in those regions (Silver, 1974, Henderson and Greenfield, 1987). Non- 

cholinergic neurons have also been identified to express high levels of AChE 

(Cheramy et al., 1981, Greenfield et al., 1981, Henderson and Greenfield, 1984, 

Falugi and Raineri, 1985, Greenfield, 1991, Mesulam, 1995, Small et al., 1996). Also 
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AChE release into the cerebrospinal. fluid (CSF) was noted at rates that do not 

coincide with the release of ACh (Greenfield et al., 1986). The number of secondary 
functions for AChE has gradually accumulated with AChE seemingly playing a role 
in many cellular functions, during development, and in disease states. In recent 

years, much AChE research has focused on these secondary functions of AChE, 

proposing that in contrast to immediate assumptions, AChE is in fact a complex 

multifunctional protein. 

1.6.2. Expression ofAChE in non-cholinergic tissues 

Cholinesterases have been identified in a number of non-cholinergic tissues. Firstly, 

expression of AChE and BChE was noted during the development and patterning of 

the brain prior to the emergence of cholinergic signalling and in many cases 

correlated with the phase of neutrite extension. Layer et al. (1991) identified a role 
for cholinesterase in the development of the neural tube; additionally many neural 

tube defects that are a result of incomplete closure of the neural tube are associated 

with a significant increase in the amount of AChE found in the amniotic fluid 

(Bonham and Atack, 1983 and Rakonczay et al., 1985, Layer and Kaulich, 1991, 

Layer and Willbold, 1995). For a number of years the detection of elevated levels of 

AChE in amniotic fluid has been used as a reliable diagnostic measure of neural tube 

defects (Muller et al., 1986). More specifically a role for AChE and BChE has been 

identified in the cell proliferation and migration of neural crest cells and the 

development of cranial nerve fibres (Layer and Kaulich, 1991). The expression of 

AChE was noted in approximately 90% of migrating neural crest cells as identified 

by co-localisation to the HNK-1 epitope a commonly used marker of neural crest 

cells (Drews, 1975, Cochard and Cotley, 1983, Rickman et al., 1985, Bronner and 

Fraiser,, 1986, Layer and Auber, 1990, Layer and Kaulich, 1991). AChE expression 

has also been identified in a number of mature brain regions not innervated by 

cholinergic signalling (Cheramy et al., 1981, Greenfield et al., 1981, Henderson and 

Greenfield, 1984, Falugi and Raineri, 1985, Greenfield, 1991, Mesulam, 1995, Small 

et al., 1996). Intriguingly, AChE expression is also noted in various tissues not 

typically associated with neuronal or muscular tissues or neural signalling in general. 

Expression was found in numerous cells of haematopoietic origin such as 

megakaryocytes, erythrocytes, activated B and T- lymphocytes, and thymocytes 

(Paulus et al.. 1981, Lawson and Barr, 1987, Roberts et al., 1987, Richier et al., 
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1992). Significant levels of AChE expression and activity have also been identified 

in liver, testes, ovaries, skin,, the adrenal medulla, thyroid, cartilage,, bone, 

turnourigenic and developing tissues of a variety of origins (Li et al., 1991, Karpel et 

al., 1994, Grisaru et al., 1999, Genever et al., 1999). The significance of AChE 

expression in such a diverse range of tissues is still poorly understood but has 

received much attention in recent years. In many cases evidence now exists for 

complex non-cholinergic roles for AChE. 

1.6.3. Non-cholinergic role for A ChE in the brain. 

Certain brain regions that express very little ChAT and therefore have minimal 

cholinergic innervation, still express high levels of AChE, such as the cerebellum, 
lateral hypothalamus, dorsal raphe nucleus, and substrata nigra (For reviews see 
Appleyard, 1992, Appleyard, 1994, Small et al., 1996, Greenfield, 1998). A number 

of non-cholinergic neurons have been shown to express and secrete ACK as well as 

other neuronal related cells such as glia, glioma, dendrites, and astrocytes. 
Moreover, release of AChE was found to be modulated by the existing neuronal 

signalling systems of these tissue/brain regions, suggesting that the release of AChE 

has significance and is not a consequence of cell death or matrix degradation (See 

Greenfield, 1998). AChE release from dendrites of neurones of the developing 

substantia nigra was found to be controlled by dopamine in a concentration- 

dependant manner, and could modulate motor control in a non-enzymatic fashion 

(Negergaard et al., 1988, Jones et al., 1995). This effect remained unaltered by 

catalytic inhibition, yet was susceptible to inhibitors of the peripheral anionic site 

(see Greenfield, 1998). AChE release in the cerebellum also induced effects on the 

resident signalling systems. AChE was found to sensitise glutamate receptors to 

their respective ligands and to induce re-uptake of excitatory amino acids in the 

cerebellum and in vitro (Appleyard, 1988, Greenfield, 1991, Webb et al., 1996, 

Rodriguez-1thurralde et al., 1996, and Rodriguez-1thurralde et al., 1997). 

A number of explanations have been proposed for the existence of AChE in no- 

cholinergic regions of the brain. However, in most cases AChE is only a small part 

of a complex mechanism involving multiple other factors, and remains significant 

only to that specific incidence. However, there is compelling evidence suggesting a 

direct role for AChE in axon guidance and neuronal cell adhesion that could be 
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applicable to numerous other tissues and may outline a possible secondary function 

for AChE (Drews et al., 1974, Greenfield, 1991, Umezu et al., 1993, Layer and 
Willbold,, 1994, Bataille et al., 1998, Grifman et al., 1998; Simon et al., 1999, 

Johnson and Moore, 2000). During embryonic development, cholinesterase 

expression in the brain (and possibly other tissues) is highly regulated and 
incomparable to that of the mature brain (Layer and Willbold, 1995). In many 
developing brain areas, AChE expression precedes synaptogenesis and cholinergic 
innervation, and more closely corresponds to the major phase of neurite outgrowth 
(Layer 1983, Layer, 1991, Small et al., 1992). AChE co-localises to areas of 

expression of a number of different neuronal cell adhesion molecules (NCAMs), and 

the HNK- I epitope commonly found on NCAMs is also present on AChE (Layer et 

al., 1991). Significant evidence exists to suggest that AChE possess neurogenic 

properties. In primary culture of nervous-system derived cells such as glioma and 
dorsol root ganglion cells, AChE application has shown to promote neurite 

extensions (Layer et al., 1993, Dupree and Bigbee, 1994, Jones et al., 1995, Karpel et 

al., 1996). Transfection of such cells with AChE cDNA also induced these cells to 

resemble neurons morphogenically and express neuronal markers (Dupree and 
Bigbee, 1994, Jones et al., 1995, Karpel et al., 1996, Keonigsberger et al., 1997, 

Bataille et al., 1998). These effects have consistently proved to be insensitive to 

catalytic inactivation,, suggesting that the neurogenic properties of AChE are of a 

non-cholinergic/non-catalytic nature. 

The effects of AChE on cell adhesion have been identified by numerous 

independent investigations (Jones et al., 1995, Darboux et al., 1996, Johnson and 

Moore,, 1999,, Bigbee et al., 1999). It has been suggested that AChE may facilitate 

heterotrophic interactions in neurons (Song et al., 1999), in a similar manner as that 

observed between neurexins and their ligands, neuroligins (Grifman et al., 1998, 

Soreq and Seidman, 2001). Neuroligin 1 and 2 show significant sequence homology 

to the core AChE enzyme but lack the serine residue required for catalytic activity 

(members of the esterase-like family discussed in section 1.5). A connection 

between AChE and neurexins was identified during the characterisation of AChE 

overexpression. Transgenic mice overexpressing AChE demonstrated significantly 

suppressed neurexin IP mRNA specifically during embryonic development (Andres 
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et al., 1997). In vitro, AChE antisense cDNA expression also induced a significant 

reduction in neurexin Nx expression; this could however be rescued by neuroligin I 

overexpression indicating a linked role, and possible functional redundancy between 

AChE and neuroligin I in this circumstance (Grifffian et al., 1998). It has also been 

hypothesised that neuroligins may act as signalling molecules via neurexins, which 

may attach to intracellular components of signalling systems via PDZ domain 

proteins (Irie et al., 1997, Butz et al., 1998, Missler et al., 2003). It may be possible 

that AChE competes with/for interaction of neurexin, akin to neuroligins or analogs 

thereof. The exact site responsible for the adhesive properties of AChE is still to be 

confirmed, however the peripheral anionic site has been outlined as a possibility. 
Specific inhibitors or functional blockade of this site induced a significant reduction 

of the adhesive function of AChE in vitro (Bataille et al., 1998, Jones et al., 1994, 

Johnson and Moore, 1999 and Simon et al., 1999). 

1.64. Non-cholinergic role for A ChE in Haematopoiesis. 

The discovery of non-cholinergic roles for AChE in neuronal tissues was intriguing, 

but identification of a role for AChE in tissues that have no or limited neuronal 
innervation, and are derived from completely different cell origins, compounded the 

idea of non-cholinergic AChE actions. High levels of both AChE and BChE activity 

are commonly found in human plasma samples, where they are thought to behave as 

scavenging molecules, to hydrolyse circulating toxins and surplus ACh molecules. 

Blood BChE has the ability to hydrolyse cocaine, and reduce its toxicity in vivo 

(Gatley, 1991, Lynch et al., 1997, Duysen et al., 2002, Zhan et al., 2003). AChE 

expression is found in a number of different cells of the haematopoietic lineage, and 

some evidence does exist to implicate AChE in ACh mediated mechanisms (Burstein 

et al., 1980, Burstein et al., 1983, Hu et al., 1990, Costa et al., 1994). However, a 

growing body of data suggests AChE may have regulatory functions in these tissues 

independent of cholinergic signalling, or other non-cholinergic actions of ACh. It is 

well established that erythrocytes express high level of AChE-E, an AChE isoform 

that is specific to only this cell type (Lawson and Barr, 1987). Presentation of ACK 

on the cell membrane of erythrocytes has been linked to the immuno-typing of the 

rare YT blood group (Spring et al., 1992). Study of erythropoiesis demonstrated a 

correlation between the levels of AChE expression and erythroid cell differentiation 
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(Samuels et al., 1967, Lawson and Barr, 1987, Barr and Keokebakker, 1990, Paoletti 

et al., 1992, Soreq et al., 1994, Chan et al., 1998). However, to date there are no data 

that provides a direct mechanism of AChE action, or reason for such AChE isoform 

specificity in erythrocytes, and very little evidence suggesting a cholinergic 
interaction. A correlation between AChE inhibition by exposure to pesticides, and 
increased risk of leukaemia and other haematopoietic malignancies has been 

documented on many occasions by a variety of different research groups and 

governmental studies (Cuneo et al., 1992, Fagioli et al., 1992, Ciccone et al., 1993, 

Crane et al., 1996,, Perry and Soreq, 2001). Moreover, the AChE gene locus is also 
home to a number of factors essential to haematopoiesis, and is commonly mutated 

in association with myelodysplastic syndromes (MDS) and acute myeloid leukaemia 

(AML) (Stephenson et al., 1996, Lewis et al., 1996, Perry and Soreq, 2001). In 

support of this, gene amplification of AChE is also observed not only in cancers of 
haernatopoietic origin, but in a variety of tissues (see below) (Brown et al., 1990, 

Paouletti et al., 1992, Garry et al., 1994, Greenfield et al., 1996, Small et al., 1996). 

Amplified or altered AChE expression is also observed in non-malignant blood 

disorders, in particular platelet disorders and platelet deficiency associated with lupus 

erythernatosus (Lapidot-Lifson et al., 1989, Soreq and Zakut, 1990, Soreq et al., 

1992, Zakut et al., 1992, Paoletti et al., 1992). In humans and rats, but not mice, 

megakaryoblasts the precursor cells of the platelet producing megakaryocytes, 

express AChE, and expression is correlated with cell differentiation and commitment 

of the cell lineage (Lev-Lehman et al., 1997). Megakaryocytes secrete large 

amounts of AChE and AChE activity is associated with platelets (Paulus et al., 1981, 

Tranhem-Jensen and Behnke, 1981a, Tranhem-Jensen and Behnke, 1981b). Using 

the colony forming unit-megakaryoblasts (CFU-Meg) derived from bone marrow it 

was established that AChE expression reached peak levels at the end of mitosis as 

cells undergo polyploidisation (Paulus et al., 1981). Moreover, antisense inhibition of 

cholinesterase expression causes a shift in cell population percentages, with cells 

being driven down the myeloid lineage and a significant reduction in 

megakaryocytopoiesis (Soreq et al., 1994, Lev-Lehman et al., 1994, Lev-Lehman et 

al., 1997). As erythrocytes and megakaryocytes are derived from a common 

precursor cell it is thought that the relative levels of AChE expression could control 

cell fate and commitment to the specific lineages (Paouletti et al., 1992, McDonald 

and Sullivan, 1993). More recently, advances in the understanding of non- 

39 



Chapter I 

cholinergic function of AChE in megakaryocytopoiesis has focused on the role of 

specific AChE isoforms, and a specific upregulation of AChE-R mRNA during 

differentiation of megakaryoblastic cells has been identified (Lev- Lehman et al., 
1997,, Grisaru et al., 2001). Further studies of the AChE peptide sequence revealed a 

possible cleavage site at the C-terminal Peptide of AChE-R (ARP) and AChE-S 

(ASP) (Velan et al., 1994). Antibodies were developed specifically to recognise 

these peptides and in vivo production of AChE-R derived C-terminal peptides was 
demonstrated in haernatopoietic cells. The in vitro application of the ARP peptide 

caused progenitor cell expansion of CFU-Meg cultures, and CD34+ cells derived 

from umbilical cord blood, which was inhibited by antisense inhibition of AChE-R 

(Grisaru et al., 2001, Deutch et al., 2002). Transgenic mice overexpressing only the 

AChE-R isoform also have altered haematopoietic cell numbers, with considerably 

increased megakaryocytes numbers (Grisaru et al., 2001, Deutch et al., 2002). The 

authors suggest that in light of the fact that AChE-R expression is upregulated both 

in response to stress and following catalytic inhibition, it is possible that AChE-R 

overexpression, or AChE inhibition leading to compensatory overexpression could 
be the cause of a variety of blood disorders (Grisaru et al., 2001, Deutch et al., 2002). 

1.6.5. Transcriptionalfeedback response. 
The neurological effects of stress, acute injury, or exposure to toxic compounds are 

well documented, leading to cognitive impairment, depression, irritability, defects in 

motor control and significant fatigue (Kaufer et al., 1998). While it is apparent that 

numerous signalling systems within the brain could have the capacity to compound 

the damaging effects of neurological insults, it remains unclear as to the exact 

mechanisms involved. The effect of inhibiting the cholinergic function of AChE 

can be fatal and requires immediate clinical intervention, acute exposure causing 

severe seizure that can lead to permanent brain damage, muscle failure, and death 

(Karalliedde, 2000, Kwong, 2002). Considering, that there are many naturally 

occurring cholinesterase inhibitors, it seems plausible that a survival mechanism to 

circumvent the effects of such inhibitors may have evolved. Similarly, acute stress 

can result in transiently elevated ACh release causing prolonged or enhanced 

cholinergic signalling and neuronal activity. It was found that under aberrations of 

cholinergic signalling (for example cholinesterase inhibitors) there was a rapid 

induction of genes encoding the cholinergic system as well as immediate early stress 
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responsive genes i. e. c-f6s (Kaufer et. al., 1998, Kaufer et. al., 2000). An increased 

AChE expression was observed, with a corresponding moderate decrease in ChAT 

and VAChT expression. Moreover, alterations in AChE alternative splicing lead to 

an induction of AChE-R over-expression not only in the cholinergic neurons under 
insult, but also in cells not normally expected to express ACK (Kaufer et. al., 1998). 

The proposed mechanism is that elevated levels of ACh cause a greater cholinergic 

capacity leading to constant electrical stimulation, and consequently increased 

depolarisation and Ca 2+ influxes. Ca2+ responsive elements (CRE) found within the 

c-fos promoter induce expression, and in turn modulate the transcription of target 

genes such as AChE, ChAT and VAChT (Kaufer et. al., 2000). However, 

upregulation of AChE was more profound under catalytic inhibition than with stress 

conditions indicating additional feedback systems may exist (Kaufer et. al., 1998, 

Kaufer et. al., 2000). It was suggested that AChE-inhibitor complexes might interact 

with signalling systems by binding with esterase-like proteins as discussed in the 

previous section. As well as the immediate effects of aberrations in cholinergic 

signalling, long-term neurodeterioration is observed and is thought to be the cause of 

many of the symptoms displayed of depression, cognitive impairment and fatigue 

(O'Malley, 1997, Ray, 1998). Increased AChE-R expression under these conditions 

indicated a possible role for this isoform in the regulation of the stress response 

(Kaufer et al., 1998, Kaufer et al., 2000, Meshorer et al., 2002). In support of this 

view, transgenic mice overexpressing the AChE-S were found to have a high density 

of curled neuronal projections, and an accumulation of stress response elements such 

as heat shock protein 70 within neuronal fragments after neuronal insult, which was 

not observed in mice overexpressing the AChE-R isoforrn (Sternfeld et. al., 2000). A 

similar modulation was later observed within the haernatopoietic system (Grisaru et. 

al., 2001, Deutch et al., 2002, see previous section 1.6.4). Considerable similarity 

exists between the effects of cholinergic neurological insult and the symptoms of 

disorders like gulf war syndrome, chronic fatigue syndrome and Myalgic 

encephalomyelitis (ME) (Clauw, 2001, Kipen and Feilder, 2002). The complexity 

of these disorders has complicated the identification of the exact cause of these 

conditions, and as with many other disease states it is likely that multiple factors 

contribute to their aetiology. Many gulf war veterans were treated with the 

peripheral acting carbamate cholinesterase inhibitor, pyridostigmine bromide, as a 

prophylactic in case of chemical warfare (Soreq and Seidman, 2002). Breakdown of 
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the blood-brain-barrier has been reported as a result of stress (Friedman et. al, 1996, 

Esposito et. al., 2001), and it has been suggested that the stress of warfare could 

cause impairment of the blood-brain-barrier allowing the pyridostigmine bromide to 

act on the central nervous system (Haley et. al., 1997, Relyea et. al., 2001, reviewed 
in Soreq and Seidman, 2001). A subsequent initiation of the AChE transcriptional 
feedback response may therefore be causative of the effects of gulf war syndrome 

and other conditions with similar aetiology. 

1.7 AChEandBone 

Support for a role for AChE in bone comes from a number of sources. AChE 

activity has been observed within developing tissues, in particular limb buds, for 

many years but was attributed to neuronal innervation, other neuronal sources or 

vascularisation. Drews and Kussather suggested an embryological role for AChE in 

chondrogenesis as early as 1971, and Layer and colleagues (1990s) have reported 

AChE and BChE expression during the embryonic development of chick limbs 

suggesting a role for BChE in chondrocyte expansion. However, a specific non- 

cholinergic role for AChE had not been investigated until more recently. Expression 

of AChE was observed in bone in areas that did not correspond to neuronal 
innervation, or the neuronal marker MAP2 (Genever et al., 1999). More specifically, 

expression was identified in osteoblasts and newly formed osteoid at sites of bone 

formation, in the absence of expression of any other components of the cholinergic 

signalling machinery, suggesting a non-cholinergic role for AChE in bone (Genever 

et al., 1999). Subsequently, AChE was found to enhance osteoblast adhesion in vitro, 

to a similar level of that of established bone matrix proteins, including collagen type 

I and fibronectin (Genever et al., 1999). Independently, AChE expression was also 

identified in SaOS-2 osteosarcoma cells, and a role for AChE in osteoblasts was 

indicated when antisense inhibition of AChE expression induced cell proliferation 

(Grisaru et al., 1999). In addition, binding motifs for osteogenic factors, including 

Cbfa-1,17P-estradiol and vitamin D3 responsive elements (VDREs) were also 

located in the upstream extended promotor region of the AChE gene (Grisaru et al., 

1999). Application of 17P-estradiol and vitamin D3; potent regulators of bone 
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remodelling, caused an increased expression of AChE in osteoblasts (Grisaru et al., 
1999). 

Organophosphorous pesticides, potent inhibitors of AChE, are components of 

many commonly used agricultural and household pesticides. Levels of exposure are 

controlled due to the severe effects of poisoning, however it has been outlined that 

low-level exposure can also induce toxicity (as discussed in section 1.6.5). Study of 
farmers using sheep dips containing these pesticides revealed a significant reduction 
in bone mass and density in individuals following chronic low level exposure 
(Compston et al., 1999). This alteration in bone mass was noted without any 
incapacity of individuals due to the effects of inhibitors on cholinergic systems 

within the CNS or muscles (Compston et al., 1999). More recently, UK Gulf war 

veterans presenting with symptoms of gulf war syndrome were found to have a 

similar reduction in bone mass and volume (Compston et al., 2002). However, there 

are multiple factors involved in bone remodelling and it is difficult to point 

singularly to exposure to cholinesterase inhibitors during the gulf war, as incapacity 

was also expected in these individuals. Laws governing pesticide use and testing 

vary greatly between countries and specific governmental reports are not liable for 

publication. Regardless, a variety of reports into the effects of these pesticides 
during embryonic development have identified severe skeletal deformities such as 
digit fusion, dwarfism, incomplete ossification of pariteal bones and hunched 

vertebrae in numerous species (Laarson et al., 1974, Beck, 198 1, Misawa et al., 1982, 

Meenley and Wyttenbach, 1989, Cummings et al., 1992). It is also possible that 

these alterations in the skeleton may be attributable to developmental changes in the 

surrounding neuronal and muscular tissues. Although these pesticides can inhibit 

other esterases, and exert deleterious effects upon DNA, these studies supports a role 

for AChE in bone. 

Consistent with a role as a bone matrix protein AChE can modulate cell 

adhesion,, influence cell differentiation by a variety of mechanisms, and has the 

ability to bind to components of the extracellular matrix (Jones et al., 1994, Small et 

al., 1995, Bataille et al., 1998, Johnson and Moore, 1999 and Simon et al., 1999, 

Johnson and Moore, 2003). Intriguingly, osteonectin and AChE are to date the only 

classically secreted proteins that have been shown to have Ca 2+-binding EF-hand 

motifs (Tsigelny et al., 1998, Tsigelny et al., 2000). Osteonectin is also an 

established component of the basement membrane, where like AChE it plays an 
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essential role (Norose et al., 2000, Yan et al., 2003). The collagen tail of 

asymmetric AChE-S can also associate with heparan sulphate proteoglycans 
(HSPGs) such as perlecan for localisation at the basement membrane (Peng et al., 
1999 Jacobson et al., 2001, Arikawa-Hirasawa et al., 2002). Perlecan and other 
HSPGs are important components of the bone matrix and alterations in the molecular 
interactions that regulate HSPG organisation frequently induce 

osteochondrodysplasias (Forsberg and Kjellen, 2001). Electrostatic interactions of 

globular AChE with matrix components such as lamanin and collagen have also been 

observed (Johnson and Moore, 2003). Collectively, therefore the data suggest 

strongly that AChE is a newly-identified bone matrix protein with fundamental 

role(s) in bone formation and osteoblast function. 

1.8 Aims 

The principal aims of this thesis are to :- 

* Characterise AChE expression during osteo/chondrogenesis. 

e Determine expression and regulation of AChE in osteoblast-like cells and 

primary osteoblastic cultures. 

Seek a functional role for AChE in bone as a matrix protein. 

Analyse isoform-specific expression of AChE in bone. 

Analyse the effects of aberrations in AChE expression on skeletogenesis in 

AChE transgenic mice. 
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2.1 Materials and methods 

2. LI Materials 

Tissue culture plastic ware, media and molecular biology reagents were purchased from 

Invitrogen. PCR primers were ordered from Sigma genosys, and all other reagents were 

obtained from Sigma unless otherwise stated. 

2.1.2 Cell culture 

2.1.2.1 Osteoblast-like cell lines 

Osteoblastic cell lines were maintained in a humidified atmosphere at 370C in 5% 

C02/95% air in culture medium supplemented with 2mM L-glutamine, 100U/ml 

penicillin and 100ýtg/ml streptomycin. Human osteosarcoma cell lines MG63 and TE85 

were cultured in Dulbecco's Modified Eagles Medium (DMEM) containing 10% foetal 

calf serum (FCS). Human osteosarcoma cell line SaOS-2 and murine pre-osteoblast cell 

line MC3T3-EI were cultured in (x-minimum essential medium (oc-MEM) containing 

10% FCS. To encourage differentiation of MC3T3-El cells toward a more osteoblastic 

phenotype, medium was supplemented with 100[tg/ml L-ascorbic acid phosphate 

(Wako, Japan) and 5mM P-glycerophosphate as previously described (Franceschi et al, 

1994). On reaching confluence, cells were passaged at 1: 3 ratio using 0.05% 

trypsin/0.02% Ethylenediamine tetra-acetic acid disodium salt (EDTA) or media 

changed every 3-4 days in time course experiments. 

2.1.2.2 Isolation ofprimary rat osteoblasts 

Primary rodent osteoblasts were isolated from calvariae taken from newborn (day 2-3) 

Wistar rats as previously described (Bellows et al, 1986, Malaval et al, 1994). Briefly, 

calvariae were dissected and cut into small pieces and subjected to sequential 

collagenase (lmg/ml) and EDTA (4mM, pH 7) digestions at 37'C with agitation at 225 

rpm. After an initial collagenase digestion supernatants of subsequent digestions were 

retained and pooled for centrifugation at 10,000 rpm for 5 minutes. Extracted cells were 

resuspended and maintained in DMEM containing 10% FCS. Medium was changed 

after 2-3 hours and cells passaged in a 1: 3 ratio once confluent. 
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2.1.2.3 Isolation ofprimary human osteoblasts 
For isolation of primary human osteoblasts, bone explants of femoral heads from 

surgical hip replacements (York District Hospital) were maintained as above and 

cultured in (x-MEM, 10% FCS. Media was changed every 5-7 days until confluent 

when cells were then passaged at a 1: 3 ratio. To promote differentiation of primary 

cells towards a more osteoblastic phenotype, cells were cultured in standard culture 

medium supplemented with 50ýtg/ml L-ascorbic acid phosphate, 10nM dexamethasone 

and 5mM P-glycerophosphate and media changed every 3-4 days in time course 

experiments. 

2.1.2.4 Colonyforming unit -fibroblasts (CFU-Fs) 

Whole rat marrow extracted from tibiae of 2-month-old male Wistar rats (approximately 

200g) was used to isolate CFU-Fs as previously described (Maniatopoulos et al, 1988). 

Briefly, clean tibias were cut at the growth plate and microfuged at 20OOg for 30 

seconds in Eppendorphs. Marrow extracts were resuspended in 500ýtl of DMEM 

containing 12% heat inactivated FCS and supplemented with 100ýtg/ml L-ascorbic acid 

phosphate, I OOU/ml penicillin, 100ýtg/ml streptomycin, I OnM dexamethasone and 5mM 

P-glycerophosphate. The cell suspension was then diluted in a further 20 ml of medium 

to provide a suspension of approximately 104_105 celIS/CM2 which was distributed to 6 

well or 24 well plates with cover slips and maintained as described for all other cells. 

After 5 days in culture non-adherent cells were removed and fresh medium added. 

Medium was changed every 3-4 days until day 15 in culture when colonies were fixed 

in 70% ethanol for 5 minutes and used for analysis of osteoblastic markers and colony 

formation. 

2.1.3 Analysis of markers of boneformation 

2.1.3.1 Alkaline phosphatase assay 

Cell associated alkaline phosphatase activity was determined using a colorimetric 

microplate activity assay. Cells fixed for 5 minutes in 95% ethanol were assayed for 

activity using a buffer containing 0.02M sodium hydrogen carbonate (NaHC03), 3mM 

magnesium chloride (MgC12), and 1mg/ml paranitrophenol phosphate (Sigma 104 
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paranitrophenol phosphate, PNPP) pH 9.5. Colour development was measured at 

405nm after 2 minutes when 200ýtl aliquots were removed to 96 well plates for 

absorbance determined using a Dynex microplate reader and the revel software package. 

2.1.3.2 Stain for alkaline phosphatase 
Cells were fixed with 95% ethanol for 5 minutes. Fixed CFU-F colonies were then 

stained using Fast Red TR salt (Img/ml) in the presence of alpha napthol phosphate 
(0.05mg/ml) in Tris-HCI buffer (0.08M) pH 8.0 for 30 minutes. After imaging, 

colonies were destained in ethanol for 18 hours. 

2.1.3.3 Stainfor mineralisation and calcium content 
Fixed cells as above were incubated with Alizarin red (Img/ml) pH 6.2 for 30 minutes, 

stain removed and cells washed in dH20 and then allowed to dry. After image analysis 

cultures were dernineralised using 5% perchloric acid to remove staining. 

2.1.3.4 Stainfor total collagen 

Fixed cells as above were incubated overnight (18 hrs) in Direct Red (Img/ml) in 

saturated picric acid. Cells were washed in dH20 and allowed to dry. Removal of 

Direct Red to allow further staining was done by elution of dye with 0.5ml OAM 

NaOH/Methanol (50: 50) for several minutes. 

2.1.3.5 Stainfor total cells 

Incubation of fixed cells was carried out on a shaking platform for 5-30 minutes with 

I mg/ml Methylene blue in I OmM boric acid pH 8.8 with NaOH (borate buffer). Dye 

was removed and colonies washed with dH20- 

2.1.3.6 Analysis 

Images of colonies were captured using a black and white digital camera and colonies 

analysed, the Leica Qwin image processing and image analysis package. 
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2.1.4 Analysis ofprotein expression 

2.1.4.1 Collection and analysis ofprotein samples 
Whole cell lysates were obtained by treating cell layers with PBS containing 0.1% triton 

X-100 and 0.05% protease inhibitor cocktail (Calbiochem) on ice for 10 minutes, and 
harvested using a cell scraper. To remove cell debris, lysates were aspirated through 

microlance needles (Beckton Dickinson) and then centrifuged at I 0,000g for 10 minutes 

at 40C,, and supernatants removed to a fresh eppendorfs for storage at -200C. Total 

protein content was determined by the colorimetric BCA assay (cat No. 23227, Pierce). 

Briefly 25ýd samples of whole cell lysates were incubated with reaction mixture for 30 

minutes at 370C in 96 well plates and absorbances were read at 570nm using a dynex 

microplate reader and the revel documentation system as before. Production of a 

standard curve by parallel assay of know protein concentrations of bovine serum 

albumin (BSA) allowed for the determination of lysate total protein concentration. 

2.1.4.2 De-glycosylation 

For analysis of AChE N-glycosylation state, 50ýtg whole cell lysates was denatured at 

IOOT in the presence of 0.1% sodium dodecylsulfate (SDS) and 50mM P- 

mercaptoethanol for 5 minutes. After addition of nonylphenoxy polyethoxy ethanol 
(NP-40), lysates were treated with 2U/ml recombinant flavobacterium meningosepticum 

N-glycanase (E-5006, Glyko) and incubated for up to 4 hours at 37'C before diluting 

and loading onto gels as described below. 

2.1.4.3 Western blot analysis 

For western blot analyses, samples were diluted with 2% SDS, 50mM 

mercaptoethanol and 1% bromophenol blue loading dye, and between 5-10ýlg loaded 

onto 10% SDS/ polyacrylamide gels (5% stacking, 10% resolving) for separation and 

subsequent transfer to PVDF membrane Hybond P (Amersham Biosciences). Each gel 

was run with a prestained protein kDa marker (Biorad). Prior to immunodection, blots 

were blocked with 4% marvel skimmed milk diluted in Tris buffered solution with 0.1% 

trition X-100 (TBS-T) for I hour on a rocking platform. Immunodetection for AChE 

expression was performed using a monoclonal antibody identifying all AChE isoforms 

(clone 46. BD Transduction Laboratories, A27320, see table 2.1), followed by 
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incubation with a horseradish peroxidase (HRP) conjugated polyclonal secondary 

antibody (Sigma, A-0412). Blots were developed by chemifluoresecent detection using 
ECL reagent (Amersharn Biosciences), followed by exposure to Hyperfilm ECL 

(Amersham Biosciences). Films were developed using a Xograph machine. 

2.1.5 Analysis of mRNA expression 

2.1.5.1 Isolation of total ribonucleic acids (RNA) 

RNA was isolated from cells and whole tissues using the TRIM protocol. Cell layers 

were treated with TRIzol (Invitrogen) at room temperature for 5 minutes and harvested 

using a cell scrapper. Whole tissues (brain or calvarial bone) were collected and stored 
in RNAlater (cat. No. 7020, Ambion) and stored at -200C prior to disruption using a 

dismembrator. Samples were snap frozen and placed into dismembrator capsules 

containing ball bearings that had been pre-submerged in liquid nitrogen. Tissues were 
dismembrated at 20OOrpm for 30 seconds. Powdered tissues samples were then treated 

with trizol until the temperature reached ambient levels. Samples in TRIM were either 

stored at -800C or RNA extracted immediately. To separate protein and RNA fractions 

200ýtl of chloroform was added per Iml of TRIzol and centrifuged at 12,000rpm at 40C 

for 15 minutes in a microfuge (1EC micromax RF). The upper aqueous phase was then 

transferred to clean eppendorfs and RNA precipitated by the addition of isopropanol 

(40C for 15 minutes), followed by centrifugation at 10,000rpm for 10 minutes at 40C. 

After removal of supernatant, the pellet was air dried and resuspended in RNA secure 

(7005, Ambion). RNA concentration and purity was determined by ratio of 

260/280/320 absorbances read using a quartz cuvette and a UV spectrophotometer 

(Ultrospec 2000, Amersharn Biosciences). Contaminating DNA was removed using the 

DNA-free kit (1906, Ambion) where samples where incubated with DNase in a solution 

of I OmM Tris-HCL pH 7.5,25mMMgCI2, ImM CaCl2at 370C for 20 minutes. 

2.1.5.2 cDNA synthesis 

Synthesis of double stranded cRNA was performed using random hexamer primers 

(oligo dTs) and 5-10ýtg of total RNA. After preincubation of primers with RNA for 3 

minutes at 70T, cDNA synthesis was carried using superscript 11 in the presence of 

PCR buffer, 25mMMgCI2, lOmM 2'-deoxynucleo side 5'-triphosphates (dNTPs), and 
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O-ImM dithiothreitol (DTT) at 420C for I hour. The reaction was terminated using 
RNase-H at 700C for 15 minutes, and cDNA stored at -200C. Parallel control cDNA 

samples were prepared using the smae RNA but in the absense of superscript (no RT). 

cDNA quality was determined by RT-PCR using primers for house keeping gene 
Glyceraldehyde-3 -Phosphate Dehydrogenase (GAPDH, see table 2.2 for sequences) and 

analysed by agarose gel electophoresis as below. 

2.1.5.3 Reverse transcriptase polymerase chain reaction 
Reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine 

expression of AChE mRNA in a variety of cDNA samples and in comparison to 

markers of osteoblast differentiation (see table 2.2 for primer sequences). Primers were 

designed from complete CDs using the primer3 (http: //www-genome. wi. mit. edu/cgi- 

bin/primer/primer3_www. cgi) primer design package, when possible sequences of 

various species were aligned using multialign (web address) and primers designed in 

homologous regions. RT-PCR amplification of cDNA was carried out using platinum 

Taq polymerase in the presence of PCR buffer, 50mMMgCI2, I OmM dNTPs, I OmM 

sense primer and I OmM antisense. No RT samples were used in parallel as controls for 

genomic contamination of cDNA. Primer pairs producing amplification products less 

than 400bp or high in their GC content were also performed in the presence of dimethyl 

sulfoxide (DMSO). Appropriate annealing temperatures were determined by 

performing RT-PCR with annealing temperatures varying between IOT of the primer 

pair's lowest melting temperature using a gradient block (Hybaid, PCR express). When 

possible I step RT-PCR was carried out where annealing and amplification 

temperatures were near to 72'C, and amplification was performed for between 30 and 

36 cycles using MJ research Pelyier Thermal Cycler (PTC) 200. RT-PCR products 

were then run on 1-1.5% agarose gels containing ethidium bromide and product size 

determined against aI 00bp ladder (hyperladder IV, bioline), by UV illumination using 

an alpha manager 2000 gel documentation system. 
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2.1.6 Histochemistry 

2.1.6.1 Paraffin embedding 

Fore and hind limbs were dissected from day 3 postnatal rat pups and skin removed 
before fixation in 4% paraformaldehyde for 48 hours. Bones were decalcified in a 14% 

EDTA solution, pH 7.4, for up to I week changing the solution daily. For in situ 
hybridisations, all solutions were prepared using Diethyl Pyrocarbonate (DEPQ treated 

water (I ml/L DEPC with stirring overnight). Limbs were then processed through serial 

dilutions of methanol and chloroform before clearing in xylene using a Tissue-teko VIP 

tissue processor (Sakura). After immersion in paraffin wax under vacuum, samples 

were embedded and mounted onto blocks. 10[tm sections were cut using a Leica 

RM2165 microtome and mounted onto polylysine slides (BDH) which were then air- 

dried. 

2.1.6 2 Immunolocalisation 

2.1.6.2a Cryosections 

Immunolocalisation for AChE on frozen sections was carried out essentially as 

described previously (Genever et al, 1999). Briefly, tissue samples were dipped in 10% 

polyvinyl acetate (PVA) and snap frozen using isopentene at -800C before mounting 

with PVA onto brass chucks and 7-10ýtm sections cut using an OFT 5000 Bright 

cryostat, and collected on polylysine slides (BDH). Sections were fixed in 4% 

paraformaldehyde for 5 minutes and incubated for 30 minutes with hydrogen peroxidase 

to block endogenous peroxidase activity. To prevent non-specific antibody binding, 

sections were incubated with 10% goat serum for 30 minutes. AChE expression was 

localised using anti-AChE antibody (BD Transduction labs) for 30 minutes, biotinylated 

horse anti-mouse secondary antibody (1: 200 dilution) for 15 minutes, and avidin-biotin 

peroxidase reagent (Vector Labs) for 20 minutes. A mouse IgG was used as an 

antibody control at the primary antibpdy stage. Incubation with 0.5mg/ml 

diaminobenzidine and 0.3% peroxidase substrate allowed visualisation of peroxidase 

substrate, sections were counterstained with haernatoxylin and mounted with 9-1 

glycerol/ Phosphate Buffered Saline (PBS). Alkaline phosphatase activity was 

determined on adjacent sections by enzyme histochemistry. Staining was visualised 
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using standard light microscopy with a Leica DMLA microscope, digital camera and 
IM50 documentation software. 

2.1.6.2b Paraffin sections 
Paraffin sections were cleared with xylene and dehydrated through decreasing ethanols. 
Non-specific peroxidase activity was inhibited by incubation with 3% hydrogen 

peroxide in methanol for 10 minutes. Prior to immunolocalisation, heat induced antigen 

retrieval was carried out by emersion of sections in a 10mM citrate buffer brought to a 

rapid boil by placing in a microwave at maximum power repeatedly for 10 minutes. 

Slides were then blocked in 10% donkey/horse serum with 0.3% triton/0.05% tween for 

I hour to prevent non-sPecific binding. Immunolocalisation was performed overnight 

using either goat polyclonal antibody directed against the AChE-S C-terminal peptide 

(ASP) (1: 500, Santa Cruz, SC-6430), goat polyclonal antibody directed to the common 
domain of AChE (1: 500, Santa Cruz, SC-6432 and SC-6431), or rabbit antibody raised 

against mouse AChE-R, (3ýtg/ml, kindly provided by Hermona Soreq, Jerusalem). IgG 

antibodies raised in the same animal as the primary antibodies used were used as 

controls. Sections were incubated for 1 hour with biotinylated donkey anti-rabbit 

(Chemicon), or donkey anti-goat (Jackson) secondary antibodies. Detection and 

visualisation was carried out as for cryosections (see above), and sections were 

counterstained with haernotoxylin and mounted with immunomount (Sigma). 
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Type Company Type Raised concentrati 
cat. No. against/ on 

clone 
AChE BD Transduction Mouse clone 46 WB - 

laboratories IgGI peptide 411 - 1: 2000 
610267 601 amino IH - 1: 500 

acids of I mg/ml 
AChE santa cruz SC- affinity E-19 IH -1: 100- 

6432 and SC- purified N-19 1: 1000 of 
6431 goat (N-terminus) 200ýtg/ml 

polyclonal 
AChE-S c- santa cruz affinity C-16 IH - 1: 100- 
terminal SC-6430 purified (c-terminal 1: 1000 of 
peptide goat peptide 200ýtg/ml 

polyclonal 
AChE-R non-commercial affinity human IH - 3ýtg/ml 

purified recombinant 
rabbit AChE-R 
polyclonal 

msx-2 MBL M027-3 Mouse 2EI2 IH - 5ýtg/ml 
IgG2 

GAPDH Advanced mouse 6C5 >Img/ml 
immunochernical monoclon rabbit 
corporation al IgG2 GAPDH 

Table 2.1 Table of primary antibodies. 

Gene + Accession Sequences product 
positi No. and size base 
on species pairs (bp) 

cross 
reactivity 

AChE +1522 as below 5'CGGGTCTACGCCTACG 
TCTTTGAACACCGTGCTT 
C'3 

AChE-S -2003 as below 3'CACAGGTCTGAGCAGC 481bp 
GATCCTGCTTGCTG'5 

AChE-E/R -1917 as below YGGTTACACTGGCGGGC 396/474bp 
TCC'5 

AChE-R -1939 x56518 3'ATGGGTGAAGCCTGGG 418bp 
human, CAGGTG'5 
rat, mouse 

COIQ +217 AF007583 5'CCGCTTCTCTCCCCAG 434bp 
human, ACY 
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-650 rat, mouse 3'TTTGGACCCATTTCAC 
CTTTC'5 

BChE +53 Mouse 5'TTGGGAAGTCACACAC 527bp 
M99492 TGAAGAAG'3 

-580 AF244349 5'GATCAAATAAACCCAT 
Rat GTTTCCTG'3 

Neurexin a +4175 m96374 5'CTGTGACTGTAGCATG 492bp 
rat, human ACTTCCT'3 

-4667 3'CCCTTTGTCGAGTAGC 
CAT'5 

Neurexin +978 m96375 5'GCACCACATCCACCAT 135bp 
rat, human TTCC'3 

-1113 3'ATGTAATTTGTCCACC 
ACCTTTG'5 

Neuroligin 1 +762 u22952 5'TCTACCACCATTCCAT 735bp 
rat, human CTTTCTCCA'3 

-1497 3'CTTGCCAACACACTCC 
CATC'5 

Neuroligin 2 +2962 u41662 5'CTTCTCTCCATCCCTTT 671bp 
rat, human GGG'3 

-3633 3'GTTATTTCCTTGCTGCT 
CC'5 

Osteopontin 136 rat 5'TGACCCATCTCAGAAG 384 bp 
(M99252) CAGA'3 

520 and mouse 3'AGGTCCTCATCTGTGG 
(J04806) CATC'5 

Osteonectin +6 human 5'GGCCTGGATCTTCTTTC 416 bp 
(BC00801 1), TCCTTTG'3 

-422 rat 3'AGCTTGTGGCCCTTCTT 
(D28875) GGTG'5 
and mouse 

Twist 46 human, rat 5'AGCCTGAGCAACAGCG 486 bp 
and mouse AGGA'3 

532 3'TGCAGCTTGCCATCTT 
GGAGT'5 

GAPDH BC026907 5'GGTGAAGGTCGGWGT 519 bp 
human, rat CAACGG'3 
and mouse 3'GGTCATGAGYCCTTCC 

ACGAT'5 

Table 2.2 Table of PCR primers. 
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probe Sequence modifications 
target 

mE5 51- biotinylated 
AChE-E GAGGAGGAAAAGGAAGAAGAGGAGGGACAGG (50mer) 

GCUAAGUCCGGCCCGGGC-3' 
mE6 51- biotinylated 
AChE-S CCCCUAGUGGGAGGAAGUCGGGGAGGAGUGG (50mer) 

ACAGGGCCUGGGGGCUCGG-3' 
ml4 5' biotinylated 
AChE- AACCCUUGCCGCCUUGUGCAUUCCCUGCUCCC (50mer) 
R CCCACUCCAUGCGCCUAC-31 

Table 2.3 Table of in situ hybridisation probes 
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3.1 Introduction 

3. LI Osteoblasts and bone matrix proteins 
The identification of AChE expression in bone in the absence of cholinergic 

signalling may seem somewhat unusual. However, localisation of AChE expression 
in bone, specifically to osteoblasts and newly formed bone matrix at sites of bone 

formation suggested a role for AChE in bone as a matrix protein. In bone, matrix 

proteins are of significant importance both during remodelling of mature tissues and 
during osteo-chondrogenesis. Although originally bone matrix proteins were thought 

to simply play a structural role in bone formation and mineralisation, the significant 

effects upon osteoblast adhesion, migration and chernotaxis, and the subsequent 

effects upon osteoblast function and differentiation demonstrate the complexity 
between osteoblasts and the extracellular environment within which they reside. 
Although it is known that the collagenous proteins are essential in the make up of the 

bone matrix, the numerous non-collagenous bone matrix proteins expressed by 

osteoblasts have also proved to be invaluable components of the bone matrix that 

impact upon osteoblast differentiation, function and matrix mineralisation. 

3.1.1.1. Non-collagenous bone matrix proteins 
Analysis of the non-collagenous component of the bone matrix has revealed high 

levels of expression of matrix proteins such as osteocalcin, osteopontin, osteonectin, 

tenascin-C and fibronectin but to name a few (Delany et al., 2000, Moursi et 

al., 1996, Mackie, 1994, Mackie and Tucker, 1992, Young et al., 1992). Although 

many of these proteins are not expressed exclusively in bone they have proved to be 

of fundamental importance in normal bone formation and development and often 
display multiple functions. Osteopontin is a secreted, aspartate rich glycoprotein of 

approximately 60-75 kDa, containing multiple regions typical of bone matrix 

proteins (Boskey, 1992). Expression of osteopontin has been identified in the 

osteoid at sites of preosteoblast expansion and migration, and is expressed 

abundantly by osteoblasts during the early phases of differentiation and 

mineralisation (Young et al., 1992). Notably, osteopontin is expressed by osteocytes 

and is often found within the well -established bone matrix. Osteopontin may 

immobilise within the extracellular matrix by attachment to structural collagenous 

proteins and hydroxyapatite (Boskey, 1992 Giachelli and Steitz, 2000, Giachelli and 
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Steitz, 2000, Sodek, Gnass and McKee, 2000). Heavy phosphorylation of 

osteopontin yields a highly acidic protein, this along with putative calcium binding 

sites provide osteopontin with a great affinity for hydroxyapatite (Giachelli and 
Steitz, 2000, Young et al., 1992). However in solution and in vitro osteopontin was 
found to be an inhibitor of hydroxyapatite crystal formation (Boskey, 1992). It has 

therefore been postulated that osteopontin could act to limit hydroxyapatite crystal 
formation when localised to the mineral matrix (Giachelli and Steitz, 2000). 

Osteopontin has also been implicated in the chernotaxis and migration of both 

osteoblasts and osteoclasts, believed to encourage the migration of osteoblast to sites 

of bone resorption. The common arginine-glycine-aspartate (RGD) sequence is 

found within cell attachment proteins such as fibronectin, enabling interactions with 

cell surface expressed integrins, consequently activating intra-cellular signalling 

system, and mediating osteoblast substrate attachment (Butler et al., 1996). 

Osteopontin expressed and localised within the matrix at regions of bone formation 

and resorption can mediate cell attachment of both osteoblasts and osteoclasts via 

this RGD domain (Giachelli and Steitz, 2000). Osteoblasts produce a number of 

RGD containing proteins with the ability to mediate cell attachment and signalling. 

Bone sialoprotein and bone acidic glycoprotein-75 (BAG-75) RGD containing 

proteins expressed also in bone, show considerable similarity to osteopontin in 

structure and function, yet display different expression profiles suggesting a 

specialisation of such proteins to different types of mineralisation or areas of bone 

formation (Young et al., 1992). Bone gla protein (BGP) for example is 

predominantly expressed in mineralising tissues, in particular bone, and has been 

implicated as the principle mediator of hydroxyapatite crystal nucleation in bone 

(Ganss et al., 1999) (see sections 1.1.3 and 1.3.4). 

Expression of osteonectin was also identified during early osteoblast 

differentiation,, where it is limited to osteoblasts and their precursors specifically at 

sites of matrix deposition, in newly formed osteoid and chondroid. One of the most 

abundantly expressed non-collagenous bone matrix proteins, osteonectin has a 

variety of properties that may influence osteoblast activity. Also known as SPARC 

(secreted protein acidic and rich in cystiene), and BM-40, osteonectin is a 38 kDa 

protein containing a number of functional domains, has a high affinity to calcium and 

phosphate, can bind numerous other matrix proteins as well as bind and modulate the 

activity of certain growth factors (Murphy-Ullrich, 2001, Yon and Sage, 1999). 
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Osteonectin contains both low affinity (kd - 10-3) 
, and high affinity (kd- 3x 10-7) 

EF-hand calcium binding motifs which are characteristic of calcium binding proteins 

such as calmodulin (Murphy Ullrich, 2001, Young et al., 1992, Boskey, 1992). 

Although osteonectin-null mice develop a normally patterned skeleton, the late onset 

of osteopenia with significantly reduced bone mass upon reaching adult life suggest a 

significant role for osteonectin in bone mineralisation (Delaney et al., 1999). In 

addition, osteonectin can bind to multiple components of the extracellular matrix, 

most specifically collagens, and is thought possibly to play a role in collagen 
fibrillogenesis, although this is still to be investigated (Boskey, 1992). Osteonectin is 

known to play a significant role in matrix organisation in various tissues. Counter 

adhesive properties have been linked to osteonectin when not immobilised within the 

matrix, inhibiting cell spreading and causing disassembly of focal adhesions in 

osteoblasts and other cells (Yan and Sage, 1999, Murphy-Ullrich, 2001 and 
Bradshaw and Sage, 2001). As well as binding and concentrating growth factors 

platelet derived growth factor (PDGF) and vascular-endothelial derived growth 
factor (VEGF) within the ECM, osteonectin also contains a follastatin-like domain 

that can inhibit TGF-P-like growth factors activin and inhibin (Yan and Sage, 1999). 

Therefore, osteonectin has the potential to control osteoblast differentiation and 

activity via a variety of mechanisms, as well as playing a significant role in bone 

mineralisation. 

Matrix proteins in bone hold a number of important functions. Ultimately, 

they enable the establishment of a mineralised tissue. However, they also perform a 

number of other important functions. Bone matrix proteins have been suggested to 

influence osteoblast proliferation, differentiation, migration and adhesion both during 

development and in mature tissues. More specifically during development cellular 

interactions are fundamental to normal skeletal patterning during both osteo- 

chondrogenesis. 

3.1.2. Cellular interactions during tissue development 

The patterning and differentiation of the developing embryo is a complex tightly 

regulated process that relies heavily on signalling systems that are activated by 

interactions between receptors and ligands during cell-cell and cell-matrix 
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Figure 3.1.1 Cell-cell, cell-matrix interactions during osteoblast and 
chondrocyte differentiation 
During osteoblast differentiation a number of essential cell-cell and cell-matrix 
interactions occur. Osteoprogenitors cell expansion is followed by osteoblast- 
osteoblast adherence enabled by interactions between cell surface proteins such as 
cadherins creating cell aggregation. Adherence can also influence cell phenotype via 
the activation of cell signalling pathways either directly through cadherins or the 
bringing together of other cell surface molecules and their receptors. This close 
proximity of cells also allows for cell-cell communication by gap junctions created by 
interacting connexins presented on adjacent cells. Cell-matrix interactions permit 
osteoblast adherence to the matrix as cell surface expressed intergrins bind to matrix 
components such as fibronectin, Collagen type I and osteopontin. This in turn can 
activate intracellular signalling cascades with down-stream effects upon cell 
differentiation, as well as placing cells juxtaposed to growth promoting agents held 
within the cell matrix. 
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interactions (see figure 3.1.1). Cell-cell adherence, condensation and aggregation, 

are prerequisites for organogenesis. Additionally, this solid-state environment places 

cells in the proximity of growth factors for extracellular signalling. Cell-cell and 

cell-matrix interactions can also directly trigger intracellular signalling pathways that 

may influence cell function and differentiation. In this way adjacent cells or tissues 

can influence the differentiation and development of surrounding cells or tissues. 

3.1.2.1 Cell-cell interactions during skeletogenesis 
Cell-cell interactions are important regulators of skeletal patterning and tissue 

differentiation, and rely on the activities of several key adhesion molecules including 

NCAM, cadherins and proteoglycans. As with many other tissues the condensation 

and aggregation of precursor cells, in this instance mesenchymal cells, allows for the 

formation of the pattern of the future skeleton (see section 1.3.3, Chapter 1). 

Intramembraneous ossification relies heavily upon cell-cell interactions that 

subsequently allow cell-cell communication via gap junctions, and cell matrix 
interactions that allow for recognition of their surrounding environment leading to 

cell differentiation (Marie, 2002). In a similar way mesenchymal aggregation and 

cell-cell contact can influence bone development during chondrogenesis (see figure 

3.1. ). Aggregation is facilitated by adhesive interactions mediated by adhesion 

molecules such as neuronal cell adhesion molecule (N-CAM) and neuronal cadherin 

(N-cadherin) present on the mesenchymal cell surfaces (for reviews see Perris and 
Perissinotto, 2000,, and DeLise et al., 2000). These adhesion molecules display a 

clear spatio-temporal expression pattern during skeletogenesis, being predominantly 

limited to condensing cells, their expression progressively decreasing as the cells 

become more differentiated, for example in the cartilaginous condensations or 

mesenchymal condensations forming the calvaria (Marie, 2002, Serge et al., 2000). 

Cadherins are members of a super-family of Ca+ depenclant transmembrane 

molecules that in conjunction with the Ca+ independent CAMs can modulate cell-cell 

adhesion in a variety of developing tissues (DeLise et al., 2000). Six sub-classes of 

cadherins exist, the most common of which are the classical cadherins type I and IL 

Type I cadherins have the ability to bind to other cadherins expressed on adjacent 

cells via a conserved extracellular domain containing a His-Ala-Val (HAV) motif 

(Serge et al., 2000). Cadherins may therefore act in both capacities as ligand, or as a 

receptor in the absence of other receptor molecules. As transmembrane proteins, 
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cadherins not only have the ability to merely mediate cell-cell association via their 

extracellular domains, but can also modulate the formation of an organised 

cytoskeleton, via binding of intracellular domains to cytoskeletal elements including 

P and 7 catenins (Ferrari et al., 2000, DeLise et al., 2000, and Marie, 2002). P- 

Catenin also plays a role in complex intracellular signalling systems such as those of 

the Writ signalling pathway, and notch signalling which represent important 

signalling systems involved in early cell differentiation and tissue development in a 

variety of organs including bone (for review see DeLise et al., 2000). In this way it is 

thought that cadherin-catenin binding may diverge upon intracellular signalling 

pathways, subsequently influencing downstream gene expression and cell 
differentiation. In addition to N-cadherin and N-CAM, developing bone tissues 

express a moderate repertoire of other cadherin and CAM molecules. Cadherin II 

has been identified in condensing mesenchyrnal cells during chondrogenesis and 

osteogenesis (Oberlender and Tuan, 1994, Marie, 2002). Cadherin-4, cadherin-6 and 

epithelial cadherin (E-cadherin) have also been identified in osteoblastic cells from 

different sources, with distinct expression patterns (Serge et al., 2000). Expression 

profiles of N-cadherin and cadherin- II display the most similarity, suggesting that 

there may be a functional-overlap between cadherin interactions in development. 

Most cadherin knock out mice have proved to be lethal, apart from the cadherin- II 

null mice that appear to have no overt skeletal phenotype (Kawaguchi et al., 2000). 

However,, upon closer inspection cadherin-null mice do display a marked reduction 

in bone density at sites of intramembraneous ossification such as the calvaria, and 

cortical bone at the metaphyses (Kawaguchi et al., 2000, and Marie, 2002). 

Furthermore, characterisation of cadherin II expression in bone revealed that 

expression decreases with age (Groomer et al., 1998). This suggests that cadherin- II 

in particular may play a role in early osteoblast differentiation, and suggests a 

functional overlap of family members. 

Cell adhesion molecules (CAMs) such as N-CAM are members of the large 

immunoglobulin domain superfamily of Ca+ independent cell membrane proteins. 

N-CAM has proved to be of significant importance in cell-cell association during 

bone development. N-CAM expression follows a similar pattern to that of N- 

cadherin, and is lost in mature cartilage and bone matrix. It is believed that like N- 

cadherin, N-CAM may play a role in early osteoblast differentiation and cell-cell 
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communication (DeLise et al., 2000). A variety of N-CAM isoforms can be 

produced by alternative gene splicing and post-translation glycosylation. Inhibition 

of N-CAM expression in developing cartilaginous tissues leads to a reduction in cell 

aggregation and a consequential loss of cell differentiation (DeLise et al., 2000). 

Vice versa over-expression of N-CAM in vitro leads to increased mesenchymal cell 

aggregation and differentiation (Widelitz et al., 1993). 

In addition to the well-characterised interactions mediated by CAMs and 

cadherins, it has become evident that bone cells express a large number of other cell 

surface proteins that may interact with cell surface expressed receptors on adjacent 

cells. In particular, cell surface proteoglycans have proved to be of particular 

importance in embryonic development (Schachner and Martini, 1995, Selleck, 2000, 

Turnbull et al., 2001). Glycan moieties of cell surface expressed proteins can present 

as novel mediators of cell-cell interactions acting as recognition molecules, or 

modifying proteins to allow for ligand-receptor interactions (for review see Sellek, 

2000). The HNK- I epitope has been identified on glycans found on a number of cell 

adhesion molecules and in many cases is localised to glycan moieties (Schachner and 
Martini, 1995). Removal of these glycans leads to a reduction in cell-cell and cell- 

matrix interactions. For example the removal of the oligosaccharide part of 

osteonectin reduces its capacity to cause cell matrix interactions (See section 3.1.2.1, 

Xie and Long, 1995). More specifically, modified or specialised glycan moieties can 
be characteristic of certain families of proteins that have overlapping roles. Heparan 

sulphate proteoglycans are proteins with glycan moieties that are highly sulphated 
(Sellek, 2000, Turnbull, Powell and Guimond, 2001). These proteins represent a 
large family of surface expressed and matrix proteins that play fundamental roles in 

matrix organisation and cell-matrix association. In developing bone numerous 

sulphated proteins such as decorin, perlecan, and chondroitin sulphate are expressed 
(Sellek, 2000, Turnbull et al., 2001). Proteins involved in matrix mineralisation 

(bone sialoprotein, matrix gla protein, osteocalcin) possess highly sialyated glycan 

moieties (Boskey, 1992). Sialyation is thought to contribute to the acidic nature of 

these proteins in relation to their role in matrix mineralisation (Boskey, 1992, Young 

et al., 1992). Cell-cell contact is an essential initiator of synthesis and secretion of a 

specialised extracellular matrix by osteoblastic and chondrogenic cells (Marie et 

al., 2002). 
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3.1.2.2. Cell-matrix interactions during skeletogenesis 
The extracellular matrix surrounding condensations of mesenchymal cells during 

chondrogenesis and osteogenesis displays a regulated pattern of expression. During 

mesenchymal aggregation of developing limb tissues, a matrix composed primarily 

of collagen type I, hyaluronan, and non-collagenous matrix proteins such as tenascin 

and fibronectin is produced (De-Lise et al., 2000). The extracellular matrix can 

influence cell differentiation via a variety of mechanisms. In the developing limb, 

where cartilaginous matrix is constantly being remodelled, cell phenotype may be 

directly affected by change in cell surface protein expression (De-Lise et al., 2000, 

Marie et al., 2002). Collagen type 1, and non-collagenous matrix proteins like 

fibronectin, osteopontin and tenascin bear motifs such as the RGD domain that is 

capable of binding to integrins expressed on the surface of osteoblasts and 

mesenchymal progenitor cells (Makie and Turner, 1992, Moursi et al., 1996, Butler 

et al., 1996,, Yan and Sage, 1999). Integrins are transmembrane receptors composed 

of cc and P subunits forming heterodimeric complexes that bind to the extracellular 

matrix via their extracellular domains (Boudreau and Jones, 1999, Damsky, 1999, 

Ridley, 1999). The interaction of integrins with the cytoskeleton via their 

intracellular domain can also provide a physical link between the inside and the 

outside of the cell (Bourdreau and Jones, 1999). To date 16a, and 8P subunits have 

been identified which can potentially produce a plethora of complexes that are 

capable of interacting with a large variety of extracellular matrix proteins (Bourdreau 

and Jones, 1999). Binding of integrins to matrix components enables cell adhesion to 

the extracellular matrix; as well as leading to the activation of intracellular signalling 

pathways that promote cell differentiation (Gronthos et al., 1997, De-Lise et al., 

2000, Cheng, 2001). Activation of intracellular signals by integrins is thought to be 

mediated by the intracellular portion of the integrin molecules. Attachment of the 

intracellular component of integrins to cytoskeletal elements can influence cell 

phenotype through a number of mechanisms. Firstly, it is known that integrin 

binding to the extracellular matrix can directly activate intracellular signalling via the 

FAK and MAPK pathways to induce downstream signalling stimulating cell 

proliferation or cell differentiation (Ridley, 1999, Bourdreau and Jones, 2000). In 
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addition,, interaction of integrins with cytoskeletal elements may stabilise or alter the 

cytoskeletal organisation to enable cell surface presentation of other receptor 

complexes, or allow the activation of other receptors by placing them in the 

proximity of activity altering proteins i. e. FGFRs (Boudreau and Jones, 1999). 

Furthermore, many ECM components have the ability to bind to a variety of different 

integrin complexes e. g. fibronectin recognises 6 different integrins, therefore the 

same specialised ECM may trigger unique signalling pathways in different cell types 

(Moursi et al., 1996). Integrin binding has proven to be of significant importance to 

both embryonic and mature bone development, osteoblasts expressing 4 of the 

fibronectin binding integrins alone (Opl, cc4pl, a5pl, and avPI) (Moursi et al., 

1996, Gronthos et al., 1997). Fibronectin expression is also abundant in the 

developing cartilaginous condensations of the limb (DeLise et al., 2000). As well as 

providing a base for cell attachment, and further matrix assembly, proteins found 

within the matrix can anchor growth-promoting agents to enable interaction with cell 

surface receptors. In some circumstances anchoring within the matrix or attachment 

to matrix components is fundamental to the signalling process. For example it is 

essential that FGFs are attached to heparin sulphate proteoglycans found within the 

cell matrix to enable docking and interaction with the cell surface expressed FGFR 

ligands (McIntosh et al., 2000, Turnbull et al., 2001). 

3.1.2.3. Matrix organisation 
Remodelling of the extracellular matrix is also an important process during the 

development of tissues (Blobel, 2000, Sage, 2001, Murphy-Ullrich, 2001). 

Importantly in tissue patterning and modelling, it is not just the ability of a cell to 

bind to ECM but also to be able to unbind, and migrate to specific regions (Murphy- 

Ullrch, 2001). Cells can do this by a number of means. Firstly, cells of developing 

tissues can express proteins that promote cellular de-attachment (Sage, 2001). For 

example hyaluronan is associated with cell migration and movement, and is part of 

the machinery involved in the migration of neural crest cells as well as during 

chondrogenesis (Perris and Perissinotto, 2000). Expression of ECM components 

such as hyaluronan is therefore integral to early tissue patterning. Secondly, 

cleavage of cell surface molecules by MMPs enables cellular de-attachment and 

promotes cell migration (Blobel, 2000). Later in cell development, aggregation and 
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formation of 'the solid-state environment' takes precedence in tissue differentiation. 

Consequently, expression of hyaluronan is progressively lost in the condensing 

mesenchyme of the developing cranial and long bones (De-Lise et al., 2000). 

Additionally, condensations of mesenchymal cells maintain high levels of 
hyaluronidase activity that prevent further cell migration, allowing for the creation of 
further cellular interactions. Expression of MMPs can also play an important role in 

creating cell matrix interactions during remodelling in which the matrix is broken 

down to make way for the production of a more mature organised matrix of proteins 

that will interact with different cell-surface expressed molecules (Blolbel, 2000). In 

developing bone this can be important at many stages. For example, as cartilaginous 

elements become progressively more mature they change the collagenous make up of 

their extracellular matrix. MMPs breakdown early collagens such as type I to make 

way for collagens type 11, type IV and type V (Blobel, 2000). These diverse 

collagens have varying affinities for specific integrin complexes, and other cell- 

surface molecules that may activate signalling pathways distinct to those of the less 

mature matrix. Non-collagenous matrix protein expression can also be regulated by 

MMP cleavage or degradation leading to tissue maturation e. g. altered proteins 

matrices are required to promote cellular hypertrophy at the growth plate, and matrix 

mineralisation. Again, when the cartilaginous matrix is replaced by bone by the ARF 

sequence, MMPs play an important role in remodelling the extracellular matrix to 

make way for a more mature matrix suitable for the interactions required by the 

osteoblast for cell adhesion (See section 1.3.2 and figure 1.2. of Chapter 1). 

Although it is clear that signalling pathways are essential in development; equally a 

specialised extracellular matrix can influence primitive cells to induce gene 

transcription of downstream target genes, and directly influence tissue maturation 

(Boudreau and Jones, 1999). 

Taken together the processes of cell migration, cell-cell and cell-matrix 

interactions are essential factors involved in bone remodelling and development. 

Proteins that have the capacity to mediate these processes are therefore of 

fundamental importance in bone. 

3.1.3 A ChE cis a matrix protein 

In bone, matrix proteins are often required to mediate cellular interactions, and to do 

this must be localised in the matrix. Significantly, AChE has been implicated in the 
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mediation of cell-cell interactions, and possesses the ability to bind to components of 
the extracellular matrix in several tissues. The cholinergic capacity of AChE 

necessitates that it must be localised at cholinergic synapses adjacent to receptor 

complexes either in the matrix, on the cell surface or in the extracellular 

environment. Therefore the mechanisms of AChE secretion and cellular localisation 

are well established in other tissues,, known to be influenced by post-translational 

modifications such as glycosylation, and tissue specific isoform expression. These 

same mechanisms of secretion and localisation of AChE characterised for a 

cholinergic role for AChE may also provide a basis for its function as a bone matrix 

protein. 

3.1.3.1. A ChE glycosylation 
It is well established that post-translational modification such as glycosylation, can 

create fundamental changes to protein structure impacting upon biological functions, 

protein stabilisation, intracellular sorting and transport, and recognition by receptor 

molecules (Velan et al., 1993, Meynial-Salles and Combes, 1996, Parodi, 2000). 

Glycosylation of a protein creates a protein carbohydrate hybrid molecule, where 

groups of oligosaccharide side chains are covalently attached to the surface of the 

protein at specific sites. This is a highly intricate, sequential process that occurs 

within the golgi and ER system, but can vary between tissues or cell types (Pfeffer 

and Rothman, 1987). Proteins can be subject to two distinct types of glycosylation, 

differing in the type of glycosidic bond in place; N-glycosylation or 0-glycosylation 

(Meynial and Salles, 1996). N-glycosylation creates links between asparagine 

residues found on the protein to a N-acetyl-glucosamine attached to the 

oligosaccharide backbone of the carbohydrate side chain. A variety of 0- 

glycosylated bonds have been identified to date, the primary type linking a N- 

acetylgalactosamine of a carbohydrate to a hydroxylated chain of either a serine or 

threonme residue of the protein. N-glycosylation can only occur at sites which 

contain a signal amino acid sequence of Asn-X-Thr/Ser, X being any amino acid 

except proline, and the third amino acid either threonme or serine (Meynial-Salles 

and Combs, 1996). AChE is subject to multiple post-translational modifications such 

as phosphorylation, proteolysis and glycosylation (Treskat's et al., 1992, Velan et al., 

1993). Glycosylation of AChE has proved to be of integral importance to the protein 

thermo-stability, retention and degradation, intracellular transport, and secretion 
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compatible folding (Liao et al., 1992, Velan et al., 1993). Mammalian AChE has 

various glycosylation sites and differing glycosylation patterns are thought to 

contribute to their tissue specific properties (Liao et al., 1992). As with many other 

glycosylated proteins, glycosylation of AChE varies greatly between species and cell 
type. However, three conserved N-glycosylation sites found at positions 265,350 

and 464 within exons I and 2 of the AChE gene have been identified within all 

species (Velan et al., 1992). Most AChE proteins were not found to be subject to 0- 

glycosylation even though some mammalian species do have a consensus site for this 

type of glycosylation (Liao et al., 1992). Human, rat and mouse AChE contain only 

the conserved N-glycosylation sites, all of which are functional, to provide different 

catalytic, but mainly structural properties (Velan et al., 1993). 

It is thought that AChE protein glycosylation can provide specialised 
functions. The HNK-l epitope, commonly associated with cell adhesion molecules 

involved in development is located on AChE isoforms from a variety of sources 
(Layer and Wilbold, 1995). Work carried out by Layer and Willbold showed close 

co-locallsation of AChE to the HNK-I binding lectin peanut aggultin (PNA) in 

migrating neural crest cells of the developing brain and condensing retinal cells of 

the eye (Layer and Alber, 1990, Layer and Kaulich, 1991, Alber et al., 1994, Layer 

and Wilbold, 1995). Furthermore they showed that AChE could bind to PNA and 

suggested this may be via conserved oligosaccahride side chains (Alber et al., 1994). 

Modification of oligosaccharide side chains has also been shown to be of 

significance to AChE function. AChE from plasma and red blood cells is 

glycoylated and highly sialyated, and sialyation can contribute to the circulatory 

residence and clearance of AChE and BChE (Saxena et al., 1997, Chitlaru et al., 

2002). Glycosylation has also proved to be of significance to AChE's role in 

Alzheimer's disease. Differential glycosylation of AChE and BChE in the 

Alzheimer's brain and plasma is thought to impact upon the ratio of AChE species 

resident in the plaque regions from the G4 to the GI (for review see Layer and 

Wilbold, 1995). This could affect the functionality of AChE in the brain, influencing 

the aetiology of the disease. N-glycosylation of AChE has also been related to 

assembly and secretion of the enzyme (Kerem et al., 1993). Studies of mutated 

AChE isoforms indicated that elimination of N-glycosylation sites had a pronounced 

effect on AChE secretion in vitro (Velan et al., 1993). N-glycosylation of AChE has 

also been shown to contribute to the secretion-compatible folding and thermo- 
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stability of the AChE polypeptide (Kerem et al., 1993,, Kronman et al.,, 1995). 

Indeed N-glycosylation is of significant importance to many other proteins in 

processing and secretion (Parodi, 2000) 

3.1.3.2. Secretion ofAChE 
In cholinergic tissues the specific localisation of ACK has proved to be essential for 

functionality; clustered close to ACh receptors either in the cell membrane or in the 

extra cellular matrix. It is therefore clear that an intracellular transport system for 

ACK exists to enable efficient regulated externalisation. The secretory system of 

most eukaryotic cells is very similar. After protein synthesis, the sorting, packaging 

and transport of proteins is carried out by the ER-Golgi complexes. This system acts 

upon signal peptides sequences found upon the protein adding peptides that provide 

resistance to degradation and promote protein stability (Pfieffer and Rothman, 1987). 

AChE contains a variety of signals that determine the extent of oligomerisation, 

attachment to anchoring proteins and secretion (Rotundo et al., 1988, Campany et al., 
1992). Newly synthesised AChE transverses the ER-golgi system, and subunits 

attached to anchors are sorted and transported to the surface for incorporisation into 

the membrane, or externalisation in the case of CoIQ (Rotundo, 1984, Rotundo et al., 
1988, Campany et al., 1992). The remaining synthesised AChE is subjected to 

degradation (Rotundo, 1988). It is thought that this degradation prevents over 

secretion of AChE. However, in the presence of high intracellular calcium all stored 

and synthesised AChE is secreted from the cell (Haenou et al., 1993). Calcium 

influxes such as those caused by arrival of action potentials at a motor-nerve terminal 

can induce such rapid secretion of AChE (Bursztajin et al., 1991). In this way the 

regulation of cholinergic neurotransmission by AChE can be reactive to the 

polarisation of the cell. As most of the early work into AChE secretion was carried 

out on cells that possess a cholinergic signalling machinery the exact mechanism of 

AChE secretion in other non-cholinergic cells is still unclear. However, AChE 

secretion has been observed in other cell types i. e. megakaryocytes, lymphocytes, 

doparninergic neurons and astrocytes, in some case in response to stimulation by 

other signalling mechanisms (Henderson and Greenfield, 1984,, Murphy and 

Greenfiled,, 1991, Webbond and Greenfield, 1992). 
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As data indicated the possiblity of a non-cholinergic capacity for AChE in bone as a 

matrix protein, it was first important to characterise the expression of AChE in bone 

in relation to the function(s) that matrix proteins might have in skeletogenesis and 
bone formation. Therefore with the aim of identifying a potential involvement of 
AChE in osteoblast function and differentiation, the work in this chapter describes 

the localisation of AChE during embryonic development, as well as expression, and 

regulated secretion during osteoblast differentiation. 
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3.2 Materials and methods 

3.2.1 Characterisation ofA ChE isoform expression in bone 

3.2. LI In situ hybridisation 

In situ hybridisation using probes to specific AChE isoforms was performed to 

characterise expression in developing day 3 rat limbs. We used non radioactive cRNA 

probes directed specifically to mE5 AChE-E isoform, mE6 AChE-S, or m14 AChE-R 

isoform, designed by Shlomo Seidman, Jerusalem Israel (see table 3.1 for sequences). 
Probes were 5'-biotinylated and 2'-O-methylated to protect from nucleolytic 
degradation. For controls probes of an inverse sequence to the AChE-S probe was 

used. Paraffin sections were cleared with xylene and dehydrated through serial 
dilutions of ethanol. Degradation of DNA and permeablisiation of the tissue was 

carried out by incubating the slides with proteinase K (10 ýtg/ml) for 10 minutes at 3 70C. 

Slides were prehybridised in a humidified chamber with 50ýtg/ml yeast tRNA, 50ýtg/ml 

heparin in a buffer of 50% formamide in a saline-sodium citrate (SSQ, pH 4.5, 

performed for 10 minutes at 60T. Hybridisation with 10ýtg/ml RNA probes was 

carried out overnight as above and subsequently bound to streptavidin alkaline 

phosphatase-conjugate (Sigma). Prior to detection of probe, slides were blocked with 
1% skimmed milk solution containing the alkaline phosphatase inhibitor levamisol 

(2mM). Detection was carried out with fast red (Sigma) for 1-3 minutes, and the 

reaction was stopped by incubating the slides with 25mM EDTA, 0.05% Triton X-100 

solution with ImM levamisol. Slides were mounted with immunomount (Shandon 

Inc. ), and hybridised probes visualised with standard light microscopy. 

3.2.1.2 Immunohistochemistry 

AChE expression was characterised in developing calvaria using cryosections taken 

from embryonic day (E)18 and E21 rat calvaria as described in Chapter 2 (section 

2.1.6.2a). Analysis of AChE expression in developing human bone was performed on 

cryosections of week 12 human embryonic bone kindly provided by Dr Chan, Institute 

of Child Health, London, UK. Expression of specific AChE isoforms by 

immunohistochernistry was determined on paraffin sections of postnatal day 3 rat fore 
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and hind limbs as detailed in Chapter 2 (section 2.1-6.1 and 2.1-6.2b). See table 2.1 for 

antibodies used. 

3.2.1.3 Western blot analysis 
Western blot analysis of AChE expression by osteoblastic cells was carried out 

essentially as detailed in chapter 2 (see section 2.1.4.3. ) See table 2.1 for details of 

antibodies used. 

3.2.1.4 RNA extraction and cDNA synthesis 
Whole RNA was extracted at three day intervals from primary cultures of rat osteoblasts 

that were grown under osteogenic conditions as described in Chapter 2 (see sections 

2.1.2.2 and 2.1.5.1). cDNA was prepared using 5gg of total RNA essentially as 

described in Chapter 2 (see section 2.1.5.2). 

3.2.1.5 R T-PCR 

RT-PCR to identify mRNA expression of AChE was carried out essentially as described 

in chapter 2. See table 2.2 for details of primers used. 

3.2.2 Secretion ofAChE by osteoblasts 

3.2.2.1 Ellman acetylcholinesterase activity assay 

AChE 

Acetylthiocholine iodide --01" Thiocholine + acetate 

Thiocholine + DNTB -Ioý Yellow colour 

AChE activity was measured using a colorimetric assay of cholinesterase activity (the 

Ellman method, Ellman et al, 1961, see reaction schematic above), modified to allow 

microplate analysis and high-throughput screening. This assay uses an altered version 

of acetylcholine (ACh) that incorporates thiol residues, acetylthiocholine iodide (ATCI), 
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as a substrate. Such thiol residues are capable of binding to 5'5 dithiobisnitrobensoate 

(DNTB) to produce a yellow coloration. Adaptation of the Ellman method made 

suitable for a microplate format allowed analysis oif 25 Vtl samples of either conditioned 

media or exogenous added AChE. Activity was assayed using 20mM ATCI, 30mM 

DNTB in PBS pH 7.4 at room temperature. To eliminate the possibility of non-specific 

cholinesterase activity, samples were assayed in the presence of BChE inhibitor 

tetraisopropyl pyrophosoramide (iso-OMPA) at 10-5M (unless otherwise stated). Colour 

development was measured after 10 minutes and concentrations of AChE in samples 
determined using a standard curve constructed from known amounts of exogenous 
AChE prepared in culture medium. Phenol red free culture medium was used in all 

assay experiments. 

FCS used in these assays was pre-treated with an irreversible inhibitor of the 

AChE active site Diisopropyl Fluorophosphate (DFP, I 0-5M, 18 hrs), to deplete serum- 
derived AChE activity. For removal of residual DFP activity, FCS was then 

refrigerated at 40C for 48 hours. To ensure sufficient reduction of AChE activity and 
depletion of DFP activity, samples of treated FCS were assayed for AChE activity alone 

or in the presence of another AChE inhibitor Iý5 -bis(4- 
Allydimethylammoniumphenyl)pentan-5-1 dibromide (BW284C51) and exogenously 

added AChE. DFP-treated FCS was used in all assay experiments unless otherwise 

indicated. 

3.2.2.2 Statistical analysis qfAChE assays 

In all AChE assay experiments 10 samples were taken from each treatment group for 

analysis. Test of each samples for AChE activity was carried out in triplicate and the 

average of each used for statstcal analysis. Prior to this all sample values were 

normalised to total cell protein concentration which was determined by lysis of cells and 

analysis of lysed solution by BCA assay unless otherwises stated (see section 2.1.4.1 for 

methods). The statistical significance of AChE assay results were then determined by 

performing paired t-tests, carried out using SP SS version 10. 

3.2.2.3 Immunofluorescent localisation 

MG63 and MC3T3-El clonal cell lines were grown on coverslips in 24 well plates at a 

density of 5x 104 cells/cm 2. Following 24 hour incubation in low serum-containing 
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medium (0.5%), cells were exposed to monensin at 2[tM, 5ýtM and 10ýtM (Sigma), or 

Brefeldin A (BFA) at 0.35ýM, 0.7VM and 1.4[tM (Sigma) for 6 hours. For detection of 
AChE secretion, samples of conditioned medium were taken and used in the AChE 

activity assay, described above. 
For immunofluorescent localisation of AChE expression, cells were fixed in 4% 

paraformaldehyde, and non-specific binding blocked with 10% goat serum diluted in 

PBS with or without 0.1% triton for 30 minutes. AChE expression was determined 

using a monoclonal mouse anti-AChE antibody (I[tg/ml) (BD Transduction 

laboratories) overnight at 40C followed by exposure to a goat anti-mouse fluorescein 

isothiocyanate (FITC)-conjugated antibody (1: 100) for 45 minutes, and labelling 

observed by fluorescence microscopy using a leica DMLA microscope with a digital 

camera and QFluro documentation system. For co-localisation experiments, cells were 

co-incubated with the secondary antibody and the golgi-specific ceramide dye 

N-((4-(4,4difuoro-5- (2-thienyl)-4-bora-3a, 4a-diaza-s-indacene-3-yl) phenoxy) acetyl) 

sphingosine (BODIPY TR-ceramide, Molecular Probes) 5ýtM. 
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3.3 Results 

3.3.1 Characterisation ofA ChE expression during bone development 

3.3.1.1 A ChE expression in developing rodent calvariae 
We determined AChE expression during bone development in rats at E 18 and E20. 

Immunolocalisation of AChE on cryosections of E 18 calvariae revealed AChE 

expression in the condensing mesenchyme (Figure 3.3.1 A). This corresponded with 

areas of alkaline phosphatase activity before calcification was detectable (Figure 

3.3.1 C). Intense AChE staining was also observed surrounding calcified calvariae 
(E20) in periosteal osteoblasts (Figure 3.3.1 B), also following a similar distribution 

pattern to that of alkaline phosphatase activity (Figure 3.3.1 D). In calvarial. sutures, 
AChE expression was distributed throughout the sutural mesenchyme and in 

periosteal cells, whereas alkaline phosphatase activity was limited to the cells 
immediately adjacent to the calcification fronts (Figure 3.3.1 E and F). 

3.3.1.2 AChE expression in developing rat long bones 

Immunolocalisations on cryosections of developing E16, E18 and E21 rat embryos 

revealed abundant expression of AChE. In E 16 and E 18 developing rat ribs, AChE 

was localised to the condensing chondrogenic tissue and surrounding perichondral 

cells (Figure 3.3.2 A and B). Expression of AChE in more developed calcified long 

bones of E21 rat limbs was observed in the periosteal cells adjacent to the diaphysis, 

and stromal cells of the trabecular compartment (Figure 3.3.2 Q. 

3.3.1.3 Expression ofAChE during human long bone development. 

Immunolocalisation of AChE on cryosections of developing human long bones 

(Week 12) revealed AChE expression in proliferating chondrocytes and surrounding 

perichondral cells (Figure 3.3.3 Q. In more developed calcified sections of bone 

AChE was expressed in hypertrophic chondrocytes and periosteal osteoblasts (Figure 

3.3.3 B). Osteoblasts and condensing cells of the perichondrium also expressed 

abundant AChE (Figure 3.3.3 A). 
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Figure 3.3.1 
1 mmuno local i sation ofAChE in rat E 18 and E20 calvarial bones 
Expression of AChE was observed in condensing mesenchymal tissue of E18 
developing calvaria (A arrows), and in periosteal osteoblasts of E20 calvaria (B 
arrow heads), which corresponded with alkaline phosphatase activity in serial 
sections (C and D respectively). 
At calvarial sutures, AChE expression was observed in cells at periosteal sites and 
throughout the sutural mesenchyme (E arrows). However activity of alkaline 
phosphatase was limited to cells immediately adjacent to the calcification fronts in 
serial sections (F). 
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Figure 3.3.2 
Immunolocalisation of AChE in developing rat E 16, E 18 and E21 long bones. 
(A and B) AChE expression was observed in the chondrogenic tissue of early 
(E 16) and later (E 18) developing rat ribs, expression was also observed in the 
surrounding perichondral tissue. In more developed (E2 1) rat limbs, AChE 
expression was localised to the periosteal tissue of the diaphyses (C 
arrowheads), and within the trabecular compartment (arrows). 
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Figure 3.3.3 
Immunolocalisation ofAChE in developing human long bones (week 12) 
AChE expression can be observed in perichondral cells (A arrowheads) and 
periosteal osteoblasts and matrix (B arrowheads). Intense intracellular AChE 
expression was also observed in chondrocytes of calcified (B arrows) and 
uncalcified tissues (C arrows). 
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3.3.1.4.1soform-specific expression ofAChE in developing rat long bone 

In situ hybridisations were performed to determine the expression patterns of specific 
AChE isoforms in developing bone. Using biotinylated RNA probes on paraffin wax 

sections of neonatal rat limbs, prominent expression of mRNA encoding the AChE-R 

isoform. was observed, most specifically in the periosteum, perichondriurn and 

endosteal osteoblasts surrounding bone trabeculae (Figures 3.3.4 and 3.3.5). Positive 

AChE-R staining was also identified in recently embedded osteocytes (figure 3.3-6) 

and proliferating and pre-hypertrophic chondrocytes (figures 3.3.4 and 3.3.7). 

Expression of mRNA for AChE-E and AChE-S isoforms was more sporadic and less 

abundant compared to AChE-R, but demonstrated similar distribution patterns in 

bone and cartilage. Immunolocalisations for AChE using antibodies directed to the 

conserved domain of AChE, or to isoform-specific AChE C-termini for AChE -S or 

AChE-R confirmed that AChE protein expression patterns corresponded with mRNA 
distribution (Figures 3.3.4,3.3.5,3.3.6, and 3.3.7). 

3.3.2 Characterisation of osteoblastic A ChE 

3.3.2.1. Isoform-specific expression ofAChE in osteoblasts 

The expression of AChE in osteoblasts was determined by RT-PCR. cDNA prepared from 

total RNA,, isolated from day 1-24 primary rat osteoblasts grown under osteogenic 

conditions, was amplified using primer pairs identifying the AChE. Expression of ACK 

mRNAs was apparent after I day in culture and continued throughout the culture period. 

Comparison of the amplified product sizes with positive control cDNA prepared from rat 
brain revealed osteoblastic AChE mRNA was of identical size (Figure 3.3.8). Expression of 

ACK was also compared to that of specific markers of bone formation osteopontin (early), 

osteonectin (late) (Figure 3.3.8). 
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Figure 3.3.4 
In situ hybridisation (A, C, and E) and immunolocalisation (B and D) for specific 
AChE isoforms in the metaphyseal bone. 
A and B abundant expression of AChE-R was found in the pre-hypertrophic 
chondrocytes (arrowhead) and endosteal osteoblast lining trabecular bone (arrows). 
C and D and E expression of AChE-S and E appeared to be less abundant but 
followed a similar pattern of localisation. 
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Figure 3.3.5 
Trabecular compartment of rat postnatal day three long bones. In situ 
hybridisation using probes specific to AChE-R (A), AChE-S (C), or 
AChE -E (E) mRNA, and immunolocalisation using antibodies directed 
to c-terminal protein fragment ofAChE-R (B), orAChE-S (D). 
A and B Abundant expression of AChE-R specifically in endosteal 
osteoblasts lining the trabeculae was observed by both in situ 
hybridisation and immunolocalisation (arrows). 
C, D and E Expression of AChE-S and E appeared to be less abundant 
but localised to same regions as AChE-R (arrows). 
F and G Controls 
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Figure 3.3.6 
Periosteurn of diaphyseal in postnatal day 3 rat limbs. In situ hybridisation using 
probes specific to AChE-R (A), AChE-S (C), or AChE-E (E), and 
immunolocalisation using antibodies specific to AChE-R (B) or AChE-S (D), 
counterstained with haemotoxylin. Antibody control (F). 
Expression of all AChE isoforms was localised to periosteal osteoblast lining the 
diaphysis (arrowheads), and to newly embedded osteocytes of the same region 
(arrows). 
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Figure 3.3.7 
Chondrocyte columns in the growth plate of postnatal day 3 rat limbs. 
Immunolocalisation and in situ hybridisation for AChE-R (A and D), and 
AChE-S (B and E). Expression of AChE-R and AChE-S mRNA and 
protein expression was observed in cells of the prehypertrophic zone 
(arrows A, B, C and D). In situ hybridisation control (C). Antibody control 
(F) 
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Figure 3.3.8 

ladder 

0- grown under osteogenic conditions 
NO - grown under non-osteogenic conditions 
Primary rat osteoblast grown under osteogenic conditions until day 24 in culture, total 
RNA was taken at 3 day intervals and used to prepare cDNA for the use in RT-PCR. 
Using specific primers for AChE-S a 48 1 bp product was observed at all time points in 
culture, through till day 24 (A). This corresponded to the 481bp product from rat 
whole brain cDNA. Expression of mRNA for bone specific proteins osteonectin and 
osteopontin was also noted, but not expressed in rat whole brain cDNA (B and C). 
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3.3.2-2. Expression and glycosylation of osteoblast A ChE protein 
A variety of different osteoblast-like cell lines (TE85, MG63, SaOS-2 and MC3T3- 

EI) and primary osteoblasts (CFU-F, rat and human) were analysed for AChE 

expression by western blot analysis (Figure 3.3.9). A major AChE species of 68 

kDa,, corresponding in size to the synaptic form of AChE, was observed in whole cell 
lysates of all cell types. Primary osteoblasts and MC3T3-E1 cells cultures that had 

been treated with osteogenic supplements also expressed an additional AChE species 

-55 kDa that was not present in untreated human osteoblast-like cell lines (Figure 

3.3.9). In these primary cultures the major AChE species of 68 kDa was expressed 

uniformly throughout culture, whereas expression levels of the less abundant -55 
kDa AChE species peaked at culture day 15 (Figure 3.3.10 A). MC3T3-El cells 

were grown under osteogenic conditions, whole cell lysates taken at 3-day intervals 

and treated with N-glycanase to remove N-linked carbohydrate chains. Western blot 

analysis revealed a shift in AChE kDa in N-glycanase treated cells, which was more 

apparent as cells became more differentiated (Figure 3.3.10 B). 

3.3.2.3. Secretion ofAChE by osteoblastic cells. 
By western blot analysis, AChE was identified in MG63 conditioned medium (Figure 

3.3.11 A). Using the Ellman assay to quantitate AChE activity, it was found that 

exposure to monensin (10ýtM) significantly reduced AChE activity of conditioned 

medium taken from MG63 cultures when compared to untreated cells (Figure 3.3.11 

B). In addition, monensin (5[tM and 10ýLM) and BFA (0.7ýtM and 1.4ýM) induced 

distinct intracellular compartmentalisation of AChE as demonstrated by 

immunofluorescent localisation in MG63 and MC3T3-E1 cells (Figure 3.3.12i). 

AChE in MG63 and SaOS-2 osteosarcoma cells also co-localised to the golgi 

apparatus, which was identified using a specific BODIPY TR ceramide dye (Figure 

3.3.12ii). 

3.3.2.4. A ChE secretion during osteoblast differentiation 

Characterisation of AChE secretion during osteoblast differentiation and matrix 

formation was performed using the modified Ellman assay of AChE activity. 

Cultures of primary rat osteoblasts grown under osteogenic conditions were assayed 

for AChE and alkaline phosphatase activity at three-day time points. Increases in 
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alkaline phosphatase activity, typically associated with differentiation and maturation 

of the osteoblastic phenotype, paralleled that of AChE secretion in the same cells 

(Figure 3.3.13). AChE expression peaked at around day 10 in culture, where a 3-fold 

increase in AChE secretion in cells treated with osteogenic supplements was 

observed when compared to untreated cultures (Figure 3.3.14). 
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Osteoblastic cell lines Primary cells 

A 

B 

1= TE85 
2= MG63 
3= SaOS-2 
4= MC3T3-El day 3* 

*(treated with 5mM 
glycerophosphate 
and 100ýtg/ml L-ascorbic acid 
phosphate) 

Figure 3.3.9 

5= CFU-F day 13** 
6= primary rat osteoblasts day 3** 
7= primary human osteoblasts day 3** 
8= primary rat osteoblasts day 6** 

**(treated with 5mM P-glycerophosphate 
and 1 00[tg/ml L-ascorbic acid phosphate 
and lOnM dexamethasone) 

(A) Western blot analysis using a pan specific AChE antibody. Expression 
of a 68 kDa AChE species was observed in all osteoblastic cells analysed. A 
secondary species was also observed in cultures which had been treated with 
osteogenic supplements (lanes 4-8), not present in untreated osteosarcoma 
cell lines (lanes 1-3). 
(B) GAPDH expression in corresponding lanes. 
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Figure3.3.10 
A) Western blot analysis of whole cell lysates taken at three day intervals from primary 
human osteoblasts grown under osteogenic conditions untill day 24. AChE expression 
was analysed revealing two bands, a major band of approximately 68 kDa was expressed 
uniformly throughout the culture period and corresponded to synaptic AChE (arrow A). 
Expression of a less abundant minor band of approximately 55 kDa appeared to increase 
in size between days 15 and 21 in culture (arrow B). 

B)Western blot analysis of whole cell lysates taken from MC3T3-EI cells grown under 
osteogenic conditions. N-glycanase treatment of samples (D) induced production of a 
seconday smaller band which become more apparent in cultures of a later time point. 
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Figure3.3.11 
A) Western blot analysis demonstrating AChE in whole cell lysates (lane 1), 
unconditioned medium (lane 2) and conditioned medium from MG63 cells (lane 
3). Trace levels ofAChE in unconditioned medium are derived from FBS. 

B) Assay of AChE in conditioned medium taken from MG63 cultures treated 
with I O[tM monensin. A significant reduction in AChE activity was observed in 
cultures treated after 4 hours, allowing time for residual circulating AChE to be 
diminished. 
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Original in colour 

MC3T3-El 

MG63 

ii) 
SaOS-2 

Figure 3.3.12 
i) Effect of monensin and BFA on AChE localisation in MC3T3-EI and MG63 
cells. Immunofluorescent localisation for AChE in permeabilised cells revealed that 
10ýM monensin and 0.7ýM BFA induced compartmentalisation of AChE after 6 
hours (arrows B and D), in comparison to untreated cells (A and Q. 

H) AChE expression (A) also colocalised to the golgi apparatus which was identified 
using a BODIPY TR ceramide dye (B), and confirmed by yellow staining of the 
merged image (C). 
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El Untreated control 
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Figure 3.3.13 
Alkaline phosphatase and AChE activity of primary rat osteoblasts grown 
under osteogenic conditions. When assayed at 2 day intervals a significant 
increase in AChE secretion was observed when compared to control cultures 
grown in non-osteogenic conditions (n=10, ** p<0.05). This paralelled 
increasing activity of alkaline phosphatase (n= 10, *** p<0.00 1). 
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Figure 3.3.14 
Primary rodent osteoblasts cultured in the presence of osteogenic supplements 
100[tg/ml L-ascorbic acid phosphate, 10nm dexamethasone, and 5mM P- 
glycerophosphate. Conditioned medium was assayed for AChE secretion using the 
modified Ellman assay at 3 day intervals until day 16 in culture and normalised to total 
protein. A significant 3 fold increase in AChE secretion was observed in treated cells 
at day 10 in treated cells (n=10, ***p<0.001) when compared to untreated cells. 
Secretion of AChE in cells treated with osteogenic supplements then declined to levels 
of untreated cells by day 16 in culture. (**=p<0.05). 
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3.4 Discussion 

3.4.1 A ChE expression during intramembraneous ossification 
It has long been thought that AChE can play significant non-cholinergic roles in 

embryonic development; indeed Drews (1975) suggested the existence of an 

embryonic from of AChE (for review see Drews, 1975). Characterisation of AChE 

expression in developing rat calvaria and long bones revealed a clear spatio- 

temporal expression of AChE in both early and late developing bone tissues. Cell 

adhesion molecules such as N-cadherin and N-CAM are expressed in early cellular 

condensations, and are progressively lost as the tissue becomes more mature and 

begins to create a specialised extracellular matrix (DeLise et al., 2000, Marie, 2002, 

Serge et al., 2000). Furthermore, expression of these proteins is retained in 

perichondrial and periosteal cells, in a manner similar to that observed for AChE 

expression described here. AChE expression was identified in condensing tissues 

of rat E18 calvaria, before significant levels of alkaline phosphatase activity were 

observed. As alkaline phosphatase activity is commonly associated with the 

mature osteoblast phenotype, these data suggest that AChE may play an early role 
in the development of the osteoblast phenotype, and parallels the expression pattern 

of well-characterised bone matrix proteins and mediators of cell-cell contact. The 

onset of expression of common bone matrix proteins such as bone sialoprotein, 

osteonectin and osteopontin can vary between the type of bone analysed (Ikeda et 

al., 1992, Ingram et al., 1993, Sommer et al., 1996, Zhu et al., 2001, Kamiya and 

Takagi, 2001). However, throughout the skeleton in general, the onset of bone 

matrix protein expression (around EI 4-E 15) precedes alkaline phosphatase activity 

(Zhu et al., 2001). 

Expression of AChE in mineralised tissues at a later period in development 

(E20), was more pronounced and could indicate that in addition to influencing 

early osteoblast phenotype, AChE could be a constituent of the bone matrix. The 

development of calvarial bones is still not fully understood and is a complex 

process that involves interaction with surrounding tissues to enable co-ordinated 

growth. The dura-matter that separates the brain and developing bone tissue is 

thought to play a role in this co-ordination. Some evidence exists to suggest that 

cholinergic and catecholaminergic innervation could influence this process, and 
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may mediate signals between these tissues (Greenwald et al., 2000). It is possible 

that expression of AChE by condensing calvarial tissues is related to a neuronal 

innervative role, however such a mechanism is yet to be substantiated, and a 

specific interaction of cholinergic nerves fibres with osteoblastic cells in this region 

was not suggested by the authors (the role of AChE in developing calvarial tissues 

will be discussed further in chapter 5). In addition, an innervative role for AChE in 

calvarial bones would not account for the expression of AChE found within the 

osteoid and osteoblasts specifically surrounding these sites, and other bone forming 

sites of other developing bones. 

3.4.2 A ChE expression during endochondral ossification. 
Previously a number of sources have demonstrated AChE expression in developing 

limbs (Drews and Kussather, 1971, Drews and Drews, 1972, Drews et al., 1986, 

Layer and Wilbold, 1992, Alber et al., 1994). A role for cholinesterases in early 

chick limb development and chondrogenesis has been suggested, in which BChE 

regulated limb expansion and chondroblast proliferation, with AChE playing an 

associated role in cell differentiation and patterning of the future limb bone tissues 

(Alber et al., 1994). In keeping with my observations of AChE expression patterns 

in calvaria, AChE expression in developing long bones was identified in 

condensing mesenchymal tissues, and later in osteoblasts and osteoid at periosteal 

and endosteal surfaces of the bone collar, and trabecular bone. The embryonic 

periosteum is thought to regulate bone development through interactions with 
different matrix components such as bone sialoprotein, osteonectin and osteopontin 

(Shimizu et al., 2001, Fukumoto et al., 2002, O'Driscoll and Fitzsimmons, 2002). It 

is possible that AChE may play a similar role by interacting with as yet 

unidentified binding partners, similar to the role AChE plays in synapse plasticity, 

and axon guidance (Bataille et al., 1998, Grifman et al., 1998; Simon et al., 1999, 

Johnson and Moore, 2000). 

3.4.3 Isoform specific expression ofAChE during osteogenesis. 

The presence of AChE in such high quantities in bone tissue, with a defined pattern 

of developmental expression suggests that AChE may be an important regulator of 

bone formation and osteogenesis. Variety in AChE isoforms, oligomerisation, and 

attachment to anchoring proteins has proved to be of significance to the functional 
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localisation of AChE in a number of tissues. As all three isoforms of AChE are 

expressed in developing and mature bone tissue, it may be that regulation of AChE 

isoform. expression influences any role(s) AChE may play in bone. It was therefore 

important to determine the expression profile of the different AChE isoforms in 

developing bone. Immunolocalisation and in situ hybridisations revealed 

predominant expression of AChE-R in developing rat limb bones. AChE-S and 
AChE-E were expressed to a much lesser extent but followed a similar pattern of 

expression suggesting that each isoform may interact in a similar function. This is 

in contrast to other matrix proteins expressed as multiple splice variants such as 

tenascin,, which expresses different isoforms in mesenchymal, osteogenic and 

chondrogenic tissues of developing bones (Mackie and Murphy, 1998). Prominent 

expression of AChE-R may suggest a significant role of a secreted monomeric 
form of AChE in bone, as this isoform lacks the ability to dimerise or attach to the 

PRiMA and CoIQ subunits. The AChE-S isoform can also be secreted from the 

cell, however AChE-E is expressed as a GPI-linked membrane protein, this may 

account for the limited expression of this isoform observed. Early research into 

expression profiles of the different ACK isoforms indicated that secreted ACK 

accounted for up to 80% of cellular ACK expressed in muscular and brain derived 

tissues, with unused membrane bound forms of AChE subject to intracellular 

degradation (Rotundo et al., 1989). This could indicate that although prominent 

expression of AChE-R was noted in bone it might be a consequence of the 

secretable nature of this isoform. Conversely, it could also be possible that 

monomeric AChE can influence bone formation in a different, or more efficient 

way that membrane bound ACK. Indeed AChE-R has been suggested as a 

candidate for the previously described embryonic AChE origionally identified by 

Drews 1975 (Karpel et al., 1994, Layer and Wilbold 1995, Massoulie et al., 2002). 

In support of this, AChE-R possesses trophic properties through its cleaved C- 

terminal peptide in haernatopoletic tissues (Grisaru et al., 2001). Several secreted 

matrix proteins have the ability to influence osteoblast function by acting as a 

substrate for cell adhesion, interacting with cell surface receptors and activating 

intracellular signalling mechanisms. This multifunctionality is often regulated by 

numerous forms of the same protein, including soluble forms competing with 

membrane bound forms for interaction with surface expressed receptors on other 

cells, or those found within the matrix. This 'decoy' method could prevent cell 
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aggregation and allow cell migration. Sequestered AChE within the cell matrix 

may also in itself mediate cell attachment, as a number of sites are known to 

influence cell adhesion and spreading in other cells. It is known that processes 

such as cell migration and aggregation are instrumental to osteogenesis and bone 

development. Although it is likely that no one protein will prove to be of singular 
importance in such processes, identification of other mediators can provide a 

greater understanding of the mechanism involved. 

3.4.4 Expression and post-translational modification ofAChE in Osteoblasts 

Recently binding motifs for Cbfal, an essential transcriptional regulator of 

osteogenesis, vitamin D and oestrogen have also been identified in the upstream 

promoter region of the AChE gene (Grisaru et al, 1999). 1 characterised AChE 

expression in osteoblasts and identified expression of two isoforms, one 

corresponding to the size of synaptic AChE, the other of approximately 55 kDa, 

which had previously only been identified in recombinant human AChE proteins 

(Kronman et al., 1993, Scheel et al., 1997). An observed increased expression of 

this less abundant isoform as cells differentiated toward a more osteoblastic 

phenotype corresponded with phases of matrix production and secretion in 

osteoblasts. Post-translational modifications, such as glycosylation, proteolysis and 
formation of AChE subunits into dimerised and tetrameric forms have previously 

been identified in other cell types, and are capable of modulating AChE function 

(Massoulie et al., 1999, Velan et al., 1993, Kerem et al., 1993). Phosphorylation of 

AChE, at least in vitro, has been shown to weakly induce the expression of a faster 

migrating AChE species identified in non-denaturing gel electrophoresis due to 

change in isoelectric charge (Grifman et al., 1997). However, this band was not 
detectable by immunoblotting under denaturing conditions, and these observations 

have not been reported in vivo as yet. In addition, the C-terminal peptide of all 

AChE isoforms contains a signal for proteolytic cleavage, and the resulting peptide 

from the AChE-R isoform can act as a growth- stimulating factor in at least one 

tissue (Grisaru et al., 2001). However, as the experiments described here employed 

a C-terminal directed antibody, it is unlikely that my observations are due to C- 

terminal cleavage. Protein glycosylation produces proteoglycans (such as 

glypicans and syndecans), many of which are abundant in the extracellular matrix 

of connective tissues and the basement membrane (Selleck, 2000). 1 have 
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demonstrated that osteoblastic AChE becomes increasingly susceptible to 

deglycosylation with N-glycanase. As AChE has 3 active N-glycosylation sites, it 

is likely that the smaller molecular weight identified in primary osteoblast cultures 

was due to differential or incomplete use of glycosylation sites when processing the 

protein. This could also indicate that AChE subunits in bone become more heavily 

glycosylated as osteoblasts mature. Indeed it has been indicated that some 

glycosylation sequences are more efficient at inducing the addition of glycans than 

others (Meynial-Salles and Combes, 1996). Moreover, one of the conserved AChE 

glycosylation sites has been associated with less efficient glycosylation (Kerem et 

al., 1993, Chitlaru et al., 2002). Differing glycosylation patterns are thought to 

contribute to the tissue specific properties of AChE (Liao et al., 1992). As the 

HNK-1 epitope has been associated with AChE it could be possible that the 

carbohydrate side chains of AChE may play a role in the interaction of AChE with 

other proteins (Alber et al., 1994). Analysis of AChE carbohydrate composition 

demonstrated that AChE linked glycans are highly acidic in nature (70-80% 

acidic), and the majority of N-glycans found on AChE are sialyated (Saxena et al., 

1997). Sialytion of AChE glycans has been linked to the rate of clearance from 

blood plasma (Chitlaru et al., 2002). A number of bone matrix proteins are known 

to contain large amounts of sialated glycans, including bone sialoprotein, owing its 

name to its extensive sialytion. The acidic nature of these proteins, along with their 

ability to bind calcium and phosphate makes them candidates for mediators of 

matrix mineralisation (Boskey, 1992, Boskey, 1996). AChE contains an EF-hand 

motif with calcium binding efficiency to the same level as osteonectin; indeed 

AChE and osteonectin are the only know secreted proteins that contain an EF-hand 

domain (Tsigelny et al., 2000). As AChE becomes more heavily glycosylated as 

osteoblasts differentiate, it is possible that glycosylation of AChE in bone provides 

properties that support matrix mineralisation. The role of AChE glycosylation in 

other tissues has also been linked to the secretion compatible folding of the protein 

and signal peptides required for secretion. Mutation analysis of AChE N- 

glycosylation sites demonstrated that lack of N-glycosylation also prevented 

secretion of AChE (Liao et al., 1992, Kronman et al., 1992, Velan et al., 1993). 
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3.4.5 A ChE a secreted bone matrix protein? 
For AChE to play a role as a bone matrix protein it is essential that osteoblasts not 

only express but also secrete AChE. Identification of AChE in osteoblast- 

conditioned medium by western blot analysis indicated that AChE was secreted by 

osteoblasts. In neuronal and muscular tissues, AChE is secreted via a golgi-ER 

pathway (Rotundo, 1983, Rotundo et al., 1988). My evidence that monensin, a 

potent inhibitor of trans-golgi function, induced intracellular compartmentalisation, 

and significantly reduced AChE activity in osteoblast conditioned medium, 
indicates that these cells could also secrete AChE via a mechanism similar to 

muscular and neuronal tissues. These findings are also supported by observations 

that AChE localised to the Golgi apparatus in osteoblastic cells. While the effects 

of monensin imply similarities in the storage and secretion of AChE in osteoblasts 

and other cell types, these inhibitors could impact effects on many intracellular 

functions. The influence of monensin upon the secretion and production of other 
bone proteins, and the overall effect of inhibiting protein turnover in osteoblasts 

must be taken into consideration. However it should be noted that conditioned 

medium samples tested for AChE activity were done so within the known time for 

intracellular AChE processing and turnover (6hrs), minimising any indirect down- 

stream effects that monensin inhibition may have had on AChE processing and 

secretion (Rotundo et al., 1988). Further characterisations revealed that AChE 

secretion by osteoblasts increased as the cells became more differentiated, peaking 

at around day 10 in culture, paralleling increases in alkaline phosphatase activity. 

This suggests that at least in vitro, AChE secretion is regulated during osteoblast 

differentiation and bone formation. In addition, this evidence suggests that 

intracellular levels of AChE do not vary greatly during osteoblast differentiation, 

however AChE secretion appears to increase markedly in the osteoblast maturation 

phase and this may be influenced by alterations in the degree of AChE 

glycosylation that were have observed. 

It has been indicated that the secretion of many proteins is calcium 

dependant, and this may be linked to the high concentration of calcium found 

within the ER lumen (Pfeffer and Rothman, 1987, Meynial-Salles and Combs, 

1996). In cholinergic tissues, AChE secretion is induced by calcium influxes 

associated with neurotransmitter excitation, in particular the opening of nicotinic 

acetylcholine receptors (Bursztajn et al., 1988). In a tissue highly enriched in 
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calcium such as bone, where large quantities are required In the extracellular 

matrix, it is essential that mechanisms exist to regulate the entry of calcium into the 

cell. Indeed, intracellular calcium concentration can have an effect upon matrix 

secretion and deposition (Bursztajn et al., 1988). Although a cholinergic signalling 

machinery has not been identified in bone,, osteoblasts do express a variety of 
different calcium channels (including voltage gated calcium channels (VGCCs), 

NMDA type glutamate receptors), that could induce calcium influxes to control the 

release of AChE by osteoblasts (Duncan et al., 1998). Moreover such receptors 
have proved to influence osteoblast function significantly (for review see Duncan 

et al., 1998, Genever and Skerry, 2001, Li et al., 1997). It has also been indicated 

that AChE secretion in non-cholinergic tissues of the brain is controlled by the 

resident signalling system for example doperminergic control of AChE release in 

the substantia nigra (Henderson and Greenfield, 1984, Murphy and Greenfield, 

1991 , and Webb and Greenfiled, 1992). 

Characterisation of AChE expression during bone development has 

revealed expression patterns suggestive of a matrix protein with role(s) in early 

osteoblastogenesis. Moreover isoform-specific differences in expression could 

indicate individuality in isoform function. Further to this, regulated expression and 

secretion of AChE osteoblast differentiation has been established. Taken together 

these data suggests a fundamental role for AChE during osteogenesis. However, 

although AChE displays many of the properties of a matrix protein, functional data 

suggesting a mechanism in which AChE can influence osteoblast phenotype is 

required. 
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4.1 Introduction 

4.1.1 Osteogenic stimuli 
In the previous chapter it was demonstrated that AChE was secreted by osteoblasts in 

a differentiation-dependant manner, and appeared to act as a matrix protein. 
Considering the profound influence osteogenic stimuli have on the expression of other 
bone matrix proteins, it was hypothesised that AChE expression may also be 

modulated by these stimuli. Circulating hormones, cytokines, and locally-released 

growth factors can activate signalling pathways to regulate osteoblast function, 

proliferation, differentiation and apoptosis, either positively or negatively. A 

seemingly unending list of signalling mechanisms have been identified that influence 

osteoblasts and bone formation including PTH, Vitamin D, oestrogen, prostaglandins, 

TGF-P, FGF, Wnt, and Notch. As the main support for the body, bone must also be 

responsive to mechanical loads received during everyday life or strenuous activities. 

Adaptive responses to these loading events enables the body to maintain bone mass 

that is capable of receiving the increased levels of loads. Modulation of osteoblast 

function is a main target of mechanical loading and responses to mechanical loading 

are mediated via the activation of signalling systems that impact on downstream gene 

expression to regulate bone formation. 

4. L LI TGF-)6 signalling 

TGF-P signalling can exert diverse effects on cell function. Modulation of cell 

proliferation, differentiation, adhesion and apoptosis by TGF-P signalling has been 

observed in a variety of developing and mature tissues (Massgue et al., 2000, 

Miyazono, et al., 2001). In addition, abnormal TGF-P signalling is known to 

contribute to the progression of disease states such as cancer (Massague et al., 2000, 

Wrana, 2000, Miyazonon et al., 2001). In bone, TGF-P signalling regulates bone 

remodelling via a variety of effects on osteoclasts, osteoblasts and chondrocytes, and 

plays an essential role during osteogenesis (Chen et al., 1998, Hoffmann and Gross, 

2001,, Valcourt et al., 2002). In particular, TGF-P signalling is a major potentiator of 

osteoblast differentiation, matrix formation and apoptosis (Gehron Robey et al., 1987, 

Veikiceivic et al., 1989, Harris et al., 1994, Mackie et al.,, 19981 Geiser et al., 1998, 

Valcourt et al., 2002). The TGF-P superfamily of cytokines/growth factors includes 
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TGF-Ps 1,2 and 3, and other TGF-P-like molecules such as members of the bone 

morphogenic protein family (BMPs), growth differentiation factors (GDFs), activins 

and inhibins and others (for review see Miyazono et al., 2001). Over 30 different 

TGF-P-like molecules have been identified so far in mammals alone, making for a 
diverse signalling system (Miyazono et al., 2001). Members of the TGF-P 

superfamily are predominantly produced as inactive dimers (Miyazono, 2000). 

Although all slightly different in structure, members of the TGF-P superfamily 

predominantly act through serine/theronine kinase receptors to initiate intracellular 

signalling that can positively or negatively regulate target gene expression primarily 

through the Smad pathway (Massague, et al., 2000, Miyazono, 2000) (see figure 

4.1.1). Activation occurs on proteolytic cleavage of a precursor molecule providing an 

active ligand composed of the c-terminal fragment that is capable of interacting with 

TGF-P receptors (Miyazono, 2000). There are two types of receptor capable of 

binding TGF-P-like molecules, type I and type 11 receptors, that co-operate to activate 

signalling. Receptors are composed of an extracellular ligand binding domain, a 

transmembrane domain, and an intracellular domain that has the capacity to interact 

with Smad family members and other factors of TGF-P signalling (Miyazono, 2000, 

Massague et al., 2000, Miyazono et al., 2001, Hoffmann and Gross, 2001). Type 11 

receptors are constitutively active but are unable to initiate signalling alone. However 

on ligand binding, type 11 receptors recruit and interact with type I receptors to form a 

heterodimeric complex. This complex activates type I receptors by phosphorylation of 

a 30 amino acid glycine/serine rich juxtamembrane region called the GS domain 

(Heldin et al., 1997, Massague et al., 2000). Activated type I receptors can 

phosphorylate Smad proteins located close to to the intracellular component of the 

receptor complex, found in the cytoplasm, or anchored to the membrane via proteins 

such as Smad anchor for receptor activation (SARA) (Wrana, 2000). There are 5 

different types of type I receptor and 7 different type 11, making a possible 30 different 

heterodimeric complexes (Massague et al., 2000, Miyazono et al., 2001, Valcourt et 

al., 2002). However it has been observed that certain receptors preferentially interact 

with each other (Miyazono et al., 2001) (see figure 4.1.2). In addition, some ligands 

have a greater affinity for certain receptor types, or complexes than others and 

therefore may exert differential effects (Hoffmann and Gross, 2001). It is 
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Figure 4.1.1 
TGF-P signalling molecules are expressed as inactive soluble extracellular 
precursor dimers. Upon cleavage the ligand becomes active and able to bind to 
type H and type I receptors. Binding to type 11 receptors induces recruitment of 
type I receptors and the formation of a receptor complex. Type 11 receptors then 
activate type I receptors by phosorylation. Activated receptors can phosphorylate 
R-Smad proteins which in turn form a complex with Co-Smads. I-Smads can 
inhibit TGF-P signalling either at the receptor complex by inhibiting R-Smads or 
by preventing R-Smad/CoSmad complexes, which would normally enter the 
nucleus to bind to DNA and transcription factors. Together with co-activators and 
repressor molecules Smads can alter gene transcription. 
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thought that this enables a ligand gradient to be established in developing tissues 

where local signalling may overlap into other tissues, and signal specificity is essential 
(Massague et al., 2000, Miyazono et al., 2000, Hoffmann and Gross, 2001). As with 

many other areas of research, simultaneous identification of receptors by independent 

laboratories has meant that receptors are called by different names according to the 

cell type or signalling system in which they were discovered. For simplicity I will 

refer to type I receptors as ALK (activin receptor-like kinases) 1-7 (See figure 4.1.2). 

TGF-P receptors can be classed into 3 groups. ALKs I and 2 are very similar in 

structure yet bind different ligands (Hoffmann and Gross, 2001). ALKI binds TGF-P 

ligands in osteoblasts and endothelial cells, and ALK2 to BMPs 7 and 2, the ligands 

most commonly associated with bone (Valcourt et al., 2002). ALK3 and ALK6 are 

also very similar in structure and activity, binding members of the BMP family (also 

BMP type IA and 113 receptors or BMPRIA and BMPRIB respectively) (Valcourt et 

al., 2002). ALKs 4 and 5 (Activin receptor 113 or ActR-IB and TGF-P receptor I or 

TPR-I respectively) are again similar in structure and where found to be the activin 

and TGF-P receptors in a variety of cell types (Valcourt et al., 2002). Of importance 

to bone, type I receptors ALK3 and 6 have been shown to play significant roles in 

chondrogenesis, osteoblastogenesis and adipogenesis (Chen et al., 1998). More 

recently additional receptors for some TGF-P superfamily ligands have been 

identified. Termed type III receptors proteins such as betaglycan and endoglin can 

alter type I and type II ligand binding and activity (Massague, 1998, Barbara et al., 

1999, Hoffmann and Gross, 2001). 

Smad proteins can transmit the intracellular signal of TGF-P signalling. 

Activated R-Smads associate with Co-Smads in the cytoplasm to induce translocation 

into the nucleus where these complexes can bind directly to DNA or co-operate with 

other transcriptional complexes or transcription factors (see fig 4.1.1 a) (Wrana, 2000, 

Verschueren and Huylebroeck, 1999). In this context Smads can function as either 

positive or negative regulators of gene transcription by acting as transcriptional co- 

activators or co-repressors depending upon the transcriptional complex the Smads 

interact with (Heldin et al., 1997, Wrana et al., 2000, Miyazono, 2000a and b, 

Miyazono et a, 2001). Smads themselves can influence TGF-P signalling due to 

different affinities for DNA binding or sequence specificity (Verschueren and 

Huylebroeck, 1999). Amongst many others, Smad proteins have high affinity runt 
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homology transcription factors (for review see Miyazono et al., 2001). This family of 

proteins plays significant roles in regulating gene transcription of a number of 
different cell types discussed earlier (see section 1.2.1 Chapter 1). In particular, in 

response to TGF-P signalling, Cbfal an essential factor for osteoblasts and bone 

formation can associate with Smad proteins in the nucleus to induce transcription. In 

addition, a large number of binding sites for Smads have been identified in the 

promoter region for Cbfa-I and osteocalcin. Smad signalling also has considerable 

cross-talk with other signalling pathways, and is capable of interacting with a number 

of other transcription factors that can regulate osteogenesis such as Lef/TCF 

transcription factors and P-catenin of the Wnt signalling pathway, VDR elements of 

vitamin D, and Hox genes (Miyazono et al., 200 1). In many circumstances TGF-P 

signalling can also be regulated by other pathways, such at the MAPK and JAKISTAT 

pathways (see von Bubnoff and Cho, 2001 for review). Consequently, cross-talk 

between the PTH, Shh, Ihh, Wnt, and FGF signalling pathways have also been 

observed in bone both during development and in mature tissues (for review see 

Hoffmann and Gross, 2001, and von Bubnoff and Cho, 2001). Although only one of 

many signalling systems, it is clear that TGF-P signalling represents a complex and 

divergent regulator of bone remodelling. 

4.1.1.2 FGF signalling 

Fibroblast growth factors (FGFs) are another large family of secreted soluble growth 

factors that can interact with an equally large family of cell surface receptors (FGFRs) 

to regulate embryonic development and patterning, as well as cell Proliferation, 

migration, chernotaxis, differentiation and fate determination in a large number of 

adult tissues (Pitaru et al., 1993, Goldfarb et al., 1996, Galzie et al., 1997, Debi et al., 

1998, Scutt and Bertrom, 1999, McIntosh et al., 2000, Mansukhani et al., 2000, Ornitz 

and Marie, 2002). A significant number of mutations in FGF ligand or receptor 

expression and function have proved to be responsible for over 15 human disorders, a 

large number of which have profound skeletal phenotypes as the main symptom or 

reason for diagnosis (Muenke et al., 1998). To date, nearly all FGF ligands and 

FGFRs have been identified in bone, and roles in cell proliferation, differentiation and 
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Figure 4.1.3 
Extracellular soluble FGF monomers interact with heparan sulphate proteoglycans 
to form dimers that bind to two cell membrane associated FGFRs. Upon ligand 
binding receptors undergo autophosphorylation of two tyrosine kinase domains 
found in the intracellular domain to induce activation and signalling through 
RAS/MAPK,, JNKJIERK,, STAT, and PKC. This can induce a direct effect upon 
osteoblast function, proliferation, differentiation and apoptosis, and secondly 
upregulation and activation of ffi"TfIrPand BUIP signalling pathways. 
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apoptosis have been suggested (Pitaru et al., 1993, Debi et al., 1998, Scutt and Bertrom, 

1999, Mansukhani et al., 2000). 

22 different FGF genes have been identified, divided into 6 subfamilles of 
FGFs based on sequence homologies, producing up to 18 diverse FGFs (McIntosh et 

al., 2000, Ornitz and Itosh, 2001,, Omitz and Marie,, 2002). FGFs are expressed as 

soluble monomers that are glycosylated and secreted into the extracellular 

environment. FGFRs are composed of an extracellular domain with three 

immunoglobulin-like domains required for ligand binding, a transmembrane domain, 

and an intra-cellular domain composed of the two tyrosine-kinase domains required 
for auto-phosphorylation of receptors upon ligand binding (See figure 4.1.3) 

(McIntosh et al., 2000, Ornitz and Marie, 2002). 4 FGFR genes provides for 7 

functionally distinct receptors for FGFs. Alternative splicing of 3 of the FGFR genes 

contributes to tissue restricted ligand specificity as a result of differences in the 

sequence of the innermost IgIll domain (Goldfarb, 1996). Another important 

component of the FGF signalling complex are heparan sulphate proteoglycans. These 

molecules are also present in the extracellular environment and allow FGF 

dimerisation, and it is thought may also function in stabilisation of the FGF/FGFR 

complex (Goldfarb, 1996). Due to tissue specific expression of HSPGs an impact on 

cellular specificity of FGF/ligand interactions may also be a consequence (Goldfarb, 

1996,, Ornitz and Marie, 2002). Two monomers of FGF come together with HSPGs 

and bind to FGFR receptors inducing the assembly of FGFR receptor homodimers or 

heterodimers (Ornitz and Marie, 2002). Ligand binding induces FGFR receptors to 

undergo auto-phosphorylation of their intracellular portion leading to receptor 

activation and action upon downstream target pathways (McIntosh et al., 2000). 

The major target pathway of FGF signalling in many cell types is the 

RAS/MAPK pathway (Goldfarb, 1996). FGF signalling has a dual effect on osteoblast 

proliferation and differentiation. FGFs activate FGFRs in osteoblasts leading to 

formation of Grb2/FRs2/Shp2 complex and activation of MAPK. Shc and FRS2 have 

also been implicated in FGF signalling, acting as adapter proteins that target signalling 

molecules to the plasma membrane to link receptor activation with MAPK and other 

signalling pathways (Blaikie et al., 1994, Kouhara et al., 1997, Xu et al., 1998). 

However FGF signalling is also known to impact upon other intracellular downstream 

pathways, and considerable cross-talk between these intracellular pathways has been 

observed. FGF-2 has been found to induce phosphorylation of p44/p42 MAPK to 
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induce VEGF in MC3T3-E1 cells (Tokuda et al., 2003). However, FGF-2 activated 

p38 MAPK negatively regulates VEGF release. FGF also induces up regulation of 

and or phosphorylation of SAPK/JNK, moreover inhibition of SAPK/JNK reduces 
FGF-2 induced VEGF release (Tokunda et al., 2003). MAPK is important for 

activation and phosphorylation of Cbfal (Xiao et al., 2000). Significantly FGF 

signalling has proved to regulate Cbfal expression and activity via a number of 
different pathways. FGF signalling induces Cbfal expression, FGF-2,4 and 

constitutively active FGFR2 stimulate Cbfal expression and binding to osteocalcin 

promoter (Xiao et al., 2002). PKC has also been linked to FGF signalling. Blocking 

PKC-delta completely inhibited FGF-2 induced Cbfal expression. PKC-delta also 

modified Cbfal transcriptional activity via posttranslational modification (Kim et al., 

2003). In contrast, FGF-2 induces phosphorylation of ERKI/2, whilst ERKI/2 

inhibition blocks FGF-2 stimulated Cbfal phosphorylation and binding to osteocalcin 

promoter. Moreover the C-terminal PST domain of Cbfal was found to be required 
for FGF-2 effects (Xiao et al., 2002). Immature osteoblasts respond to FGF with 

proliferation, however in differentiating cells, FGF does not induce DNA synthesis but 

causes apoptosis, by a reduction in AKT phosphorylation along with increased Bax 

levels and a delay in Bc12 accumulation, along with no activation of STATI 

(Mansukhani et al., 2000). 

Considerable cross-talk between FGF signalling and other signalling pathways 

have also been observed. This is clearly demonstrated during development where 

FGF signalling has cross-talk with lhh, Shh, PTHrP pathways, through direct 

activation and upregulation of these genes (Omitz and Marie, 2002). This is important 

for co-ordinated regulation of longitudinal bone growth and maturation as well as in 

skull expansion and co-ordination with brain growth (see next chapter for further 

discussion). Cross-talk with other signalling pathways also play an important role in 

mature tissues. For example TGF-P 0.1-IOng increased all FGF-2 mRNA transcripts 

but did not significantly alter FGFRI or 2 in osteoblasts. Also TGF-P induced FGF-2 

mRNA was markedly reduced by PKA inhibition (Sobue et al., 2002). In addition, 

mechanical loading increased bFGF expression also induced ERKI/2 phosphorylation 

and localisation to the nucleus (Hatton et al., 2003). 

In chondrocytes, FGF signalling down-regulated proliferation through STATI 

phosphorylation and translocation to the nucleus (Sahni et al., 1999). The diversity of 
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FGF signalling molecules and receptors has provided for disparity on the effect of 
FGF signalling on endochondral bone formation. FGF-2 appears to inhibit 

longitudinal bone growth; in contrast FGF-2 also stimulated proliferation of 

chondrocytes (Mancilla et al., 1998). It is thought that FGF signalling either through 
differing molecules and receptors complexes, or even the same molecule may exert 
differential effects upon the chondrocytes at different stages of maturation. This is 

highly important in developing bones and longitudinal bone growth that occurs at the 

growth plate (see Chapter 1.4.3). 

In addition to the tyrosine-kinase activity of FGF receptors some evidence 

exists to suggest a function in phophatidylinositol breakdown by serving as a SH2 

domain for phopholipase C-yl (Mohammadi et al., 1992, Goldfarb, 1996, McIntosh et 

al., 2000). The functional significance of this in bone development is yet to be fully 

explored, and little is known as to the effect on other tissues. 

The complexity of growth factor regulation of osteoblast function and bone 

formation is demonstrated by inter-regulation and cross-talk observed between many 

of the well established signalling systems. To add to this, physical regulation of bone 

mass through mechanical strains received during movement also has a fundamental 

role on osteoblast function, and thus must either regulate or interact with signalling 

systems to influence bone formation. 

4.1.2. Mechanical Strain 

The adaptation of bone through bone remodelling is essential to enable the skeleton to 

respond to the environmental changes in lifestyle and physical activity. Therefore 

responses to mechanical loading of bones are potent inducers of bone remodelling. 

Strain 'responsive' cells such as osteocytes located deep within the bone 

microarchitecture are subjected to strains as a result of physical activity via a number 

of mechanisms. Firstly, it is thought that the physical distortion of bones as a result of 

loading may result in a 'stretching' of these cells which in turn will activate 'stretch' 

induced channels found within the cell membrane (Hert et al., 1971, Chamay et al., 

1972, Lanyon and Baggott, 1976, Frost, 1983, Carter, 1987, Burr et al., 1989, Knothe 

Tate and Knothe, 2000). Secondly, the distortion of the bone forces the movement of 

fluid through the bone microenvironment (fluid flow), and in turn the fluid passing by 

these same cells will also induce a strain on the cell membranes known as 'shear 
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stress' that will subsequently activate membrane-associated channels (Cowin et al.. 
1991, Turner et al., 1994, Duncan and Turner, 1995, Burr et al., 2002). It is known 

through in vitro studies that both these mechanisms (mechanical loading and fluid 

flow) stimulate bone formation (Klein-Nulend et al., 1995, Rawlinson et al., 1995, 

Banes et al., 1995, Knothe Tate and Knothe, 2000, Zaman et al., 2000). Fluid flow can 
induce a strain on cells that is comparable to the weight-induced strain on bones 

(Jacobs et al., 1998, Knothe Tate and Knothe, 2000, Burr et al., 2002). In vivo, 

analysis of mechanical loading has also established that mechanical strain is a 
4 programmed' system, which can adapt its responses. Bone cell sensitivity to 

mechanical strain can reach its maximum rapidly, after which time further strain, or 

increased strain will elicit no further effect (Turner, 1998, Burr et al., 2002). A period 

of rest is required to allow basal conditions to return, and make cells capable of 

responding to strains again (Turner, 1998, Huiskes et al., 2000). It was thus noted 

that a cyclical strain was required to elicit a sustainable effect of physical loading 

(Turner et al., 1998, Burr et al., 2002). In vivo, this may occur through the alternate 

strain of bones during exercise and a consequential change of fluid flow direction that 

would in turn induce a cyclical effect upon the resident cells (Huiskes et al., 2000). In 

this way, short periods of high levels of activity could produce a greater effect upon 
bones than longer sustain periods of low level exercise. 

The exact mechanism by which bones interpret mechanical strains at the 

cellular level and relate this toward altered bone remodelling is still not fully 

understood, and is proving to be a highly complex system. However, it is known that 

the ultimate consequence of mechanical loading is increased bone remodelling and as 

a result increased bone mass. Therefore mechanical loading must have a direct 

influence on a great many of the processes that regulate bone cells. Indeed, 

mechanical loading has been shown to induce osteoblast proliferation, differentiation, 

apoptosis, matrix synthesis and secretion, and mineralisation both in vitro and in vivo 

(Raab-Cullen et al., 1994, Rawlinson et al., 1995, Rawlinson et al., 1996, Cheng et al., 

1997, Webb et al., 1997, Burger and Klein-Nulen, 1999, Rawlinson et al., 2000, 

Nomura and Takano-Yamamoto, 2000, Zaman et al., 2000, Kaspar et al., 2000, 

Huiskes et al., 2000, Wetys et al., 2003). Therefore demonstration of regulated 

expression patterns of any protein as a result of mechanical strains or other established 

regulators of bone formation would suggest a significant role for such proteins in bone 

remodelling. 
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4.1.3. AChE adhesive properties 
Demonstration of regulated AChE expression and secretion in osteoblasts suggests a 

role for AChE in osteoblast function. Moreover, localisation of AChE expression 

specifically to osteoblasts and osteoid at sites of new bone formation could suggest a 

role for AChE as a matrix protein. In light of these observations, and the concensus 

opinion of matrix protein function, it is possible AChE may mediate osteoblast 
function through adhesive interactions with the matrix. In neuronal tissues, numerous 

studies have demonstrated roles for AChE in mediating cellular interactions, 

migration, axon formation and differentiation via a non-cholinergic mechanism 
(Drews et al., 1974, Greenfield, 1991, Umezu et al., 1993, Layer and Willbold, 1994, 

Bataille et al., 1998,, Grifinan et al., 1998; Simon et al., 1999, Johnson and Moore, 

2000). A subfamily of 'esterase-like' proteins, which are involved in cell-cell and cell- 

matrix interactions, share significant sequence homology to the AChE core catalytic 

domain but lack any catalytic activity (de la Escalera et al., 1990, Darboux et al., 1996, 

Botti et al., 1998, see chapter 1.5.2. and fig 1.9. ). The drosophilia 'esterase-like' 

domain of neurotactin is known to mediate neuronal-epithelial interactions during 

development. Mutation analysis revealed that replacement of the neurotactin 

'esterase-like' domain with the corresponding domain of acety1cholinesterase had no 

effect upon adhesion suggesting AChE may also possess adhesive properties (Darboux 

et al., 1996). Included in this esterase-like family is neuroligin-1, the ligand for 

neurexin-1p, involved in the formation of heterophilic cell-cell interactions during 

neuritogenesis (Ichtchenko et al., 1996, Nguyen and Sudhof, 1997, Song et al., 1999). 

Transgenic mice over-expressing AChE demonstrated significantly suppressed 

neurexin-lp mRNA specifically during embryonic development (Andres et al., 1997). 

In vitro, AChE antisense oligonucleotides application also induced a significant 

reduction in neurexin- lot expression, which could however be rescued by neuroligin- I 

overexpression, indicating a linked role between AChE and neuroligin-1 (Grifman et 

al.,, 1998). Members of the 'esterase-like' family are all transmembrane proteins 

making it possible that intracellular signalling may be mediated through binding to 

counterparts found on adjacent cells or in the matrix, akin to the dual functions of 

integrin adhesion and signalling. As described in chapter 1, analysis of the molecular 

structure of AChE has identified a secondary substrate-binding site, termed the 
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peripheral anionic site, which is responsible for modifying catalytic activity and 

mediating inhibitor interactions (Friboulet et al., 1990). In addition, specific inhibitors 

or functional blockade of this site significantly reduced AChE-mediated adhesion in 

vitro,, identifying a possible requirement for the peripheral anionic site in the adhesive 
function of AChE (Jones et al., 1994, Small et al., 1995, Bataille et al., 1998, Johnson 

and Moore, 1999 and Simon et al., 1999). More recently structural analysis of the 

AChE molecule and comparison with the other structurally related 'esterase-like' 

proteins has identified a highly-charged electrostatic region in the vicinity of the PAS 

in AChE, and in the esterase-like domain of related proteins (Botti et al., 1998). As 

electrostatic charge has proved to be of functional significance in the formation of 

protein-protein interactions and complex formation in solution these proteins were 

consequently termed the 'electrotactins' (Botti et al., 1998). In support of this, 

electrostatic interactions were identified between AChE and common matrix 

components such as collagen IV and lamanin-1 via the PAS (Johnson and Moore, 

2003). AChE was also found to interact with amyloid in solution and induce 

aggregation in vitro, and is commonly associated with the plaques developed in the 

brains of Alzheimer's disease patients (Sberna et al., 1998, Bartolini et al., 2003, 

Piazzi et al.,, 2003). It is clear AChE possesses many qualities that could promote 

cellular interactions with both the matrix and other cells. 

In this chapter, the effects of osteogenic stimuli, including TGF-P, FGF and 

mechanical loading in vitro and in vivo on osteoblastic AChE expression were 
determined. In addition, the functional effects of inhibiting AChE on osteoblast 

activity were identified. These data support the hypothesis that AChE acts as an 

osteoblast derived adhesion molecule in bone. 
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4.2 Materials and methods 

4.2.1 Effects of osteotrophic factors on A ChE expression 

4.2. LI Transforming growth factor-, 81 (TGF-, 81) and basicfibroblast growthfactor 
(bFGF) 

MG63, SaOS-2, MC3T3-El, and primary rat and human osteoblasts were used in these 

studies. All cultures were serum-starved for 24 hours prior to growth factor treatment. 

Cells were then plated and cultured in serum free medium supplemented with 2% 

bovine serum albumin (BSA) and either TGF-P1 (0.5ng/ml - 2ng/ml), or bFGF 

(0.5ng/ml - 5ng/ml). Primary rat osteoblasts were cultured in osteogenic medium (as 

described previously, see section 2.1.2.2) until day 3 when they were serum starved and 

exposed to growth factors on day 4 as described above. Whole cell lysates were taken 

at 24,48 and 72 hours after treatment and AChE expression determined by western blot 

analysis following the protocol described in Chapter 2 (see sections 2.1.4.1 and 2.1.4.3). 

4.2.2 Effects of mechanical stimulus on A ChE expression 

4.2.2.1 Mechanical strain in vitro 
TE85 human osteosarcoma cells were plated onto type I collagen coated FlexerCell 

dishes. Using the FlexerCell FX-3000 system, a cyclical strain of 4,500ý16 (peak) for 10 

minutes at lHz was applied to confluent cultures. Whole cell lysates taken at 1,4,16, 

and 48 hours after loading were analysed for AChE expression by western blot analysis 

and compared to unloaded control cultures as detailed in Chapter 2 (see sections 2.1.4.1 

and 2.1.4.3). 

4.2.2.2 Mechanical strain in vivo 

We determined expression of AChE during in vivo loading events. Tissues were taken 

from loading experiments performed by Dr. Alex Brabbs, University of York. 

Anaesthetised mature male Wistar rat right u1nae were subjected to mechanical strain of 

-4000ýtc, cyclically for 3.3 minutes at 2Hz on 5 consecutive days using a modified 

Instron materials testing device as described previously (Hillam and Skerry, 1995). 

Animals were then killed I week after loading experiments; loaded rat u1nae and 
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unloaded control left u1nae were removed immediately. Transverse sections of the 

proximal u1nae were taken for analysis by immuno/enzyme histochemistry on parallel 

sections as described in Chapter 2 (see section 2.1.6-2). 

4.2.3 Functional role for A ChE in osteoblast adhesion 

4.2.3.1 Adhesion assays 
Osteoblast adhesion was analysed using an adhesion assay system. Firstly MG63, 

SaOS-2, and MC3T3-El osteoblast like cells or primary rat osteoblasts were cultured 

overnight in serum free medium supplemented with 2% BSA. Cells were trypsinised 

and plated at high density (6 x 104 cell/CM2) in 96 well plates. After removal of media 

and non-adherent cells, surface bound cells were fixed in 95% ethanol for 5 minutes 

before staining for 30 minutes with 0.5% crystal violet in 95% ethanol (Sigma). 

Surplus crystal violet was removed by gentle washing, and wells allowed to dry for 4 

hours. Crystal violet was eluted from cells using acidic isopropanol with gentle 

agitation and absorbance read at 570nm using a Dynex microplate reader. To determine 

the optimal time for adhesion of osteoblasts, pilot studies using a variety of time points 

were carried out as above, all subsequent adhesion assays were for 4-6 hours. 

The effect of AChE (torpedo electric organ, Sigma) on osteoblast adhesion was 

compared to that of collagen type I (rat tail, Sigma) or a related cholinesterase, BChE 

(human blood, Sigma). Solutions of these substrates (100ýtg/ml) were prepared in 

medium and used to coat tissue culture plates at 40C overnight. I hour prior to use, 

coated wells were rinsed with PBS and then blocked in 0.5% BSA to prevent non- 

specific binding. MG63 cells were plated as above and adhesion was analysed after 4 

hours. 

4.2.3.2 Effect ofAChE inhibitors on osteoblast adhesion 

The effect of AChE inhibitors on osteoblast adhesion was determined by plating 

MC3T3-El cells in the presence of DFP, BW284C51 or the BChE inhibitor iso-OMPA 

(I 04M _I 0-7M) and assayed for adhesion after 6 hrs. Cell viability was tested by MTT 

assay. 
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4.2.3.3 Inhibition ofAChE expression and osteoblast adhesion 
Antisense studies were performed to determine the effect of inhibition of AChE 

expression on osteoblast adhesion. Antisense oligonuceotides (oligos), 20 nucleotides 
in length and phosphorothioated on their last three 3' internucleotide linkages to prevent 

nucleolytic degradation were used. Oligo and transfection vehicle concentrations were 

optimised for use with MC3T3-E1 and SaOS-2 osteoblast-like cells, using 

concentrations between 0.1ýM and IOOVLM for 24,48 and 72 hours. The effect on 

protein expression was determined by western blot analysis using an antibody directed 

to the core domain of AChE (BD Transduction labs). For adhesion assay experiments 

mRNA oligos targeted to the core AChE domain (exon 2 and exon 3, Griftnan and 

Soreq, 1997) and control oligos directed at BChE, or inverse to AChE oligos (see table 

4.1 for oligos and positions) were used. SaOS-2 osteosarcoma cells were pretreated with 

5ýM oligos in a water vehicle for 24 hrs and then replated in the presence of oligos and 

assayed for adhesion after 6 hrs. Efficiency of oligos to reduce AChE expression was 

again determined by western blot of whole cell lysates. Cell viability was tested by 

MTT assay. 

4.2.3.4 MTT assay 

Mitochondrial dehydrogenases in viable cells convert yellow 3-[4,5-Dimethylthiazol-2- 

yl]-2,5-diphenyltetrazolium bromide Thiazolyl blue (MTT) into a water insoluble 

purple coloured formazan product by the cleavage of the terazolium ring. To test for 

toxicity of antisense oligonucleotides and AChE inhibitors MTT assays were carried out 

in parallel to adhesion assays. Cells plated as above were incubated with 5mg/mI MTT 

(Sigma M 5655) in sterile PBS for 4 hours under standard culture conditions. Converted 

salt product was eluted by cell lysis with acidic 0.5% SDS or acidic isopropanol and 

absorbance read at 405nin on a Dynex microplate reader as detailed in Chapter 2 (see 

section 2.1.3.1). 

4.2.3.5 Statistical analysis 

All MTT and adhesion assay experiments contaianed 10 samples per treatment and were 

carried out in triplicate. To determine the statistical significance of adhesion and MTT 

114 



Chapter 4 

assays multiple anova and paired T-tests and appropriate post hoc tests were carried out 

using SPSS version 10. 
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4.3 Results 

4.3.1 Growth factor regulation ofA ChE expression in osteoblasts 

4.3.1.1 Effect of TGF-, 81 and bFGFon AChE expression by osteoblasts 

Primary rat osteoblasts were treated with TGF-PI (0.5ng/ml, Ing/ml, or 2ng/ml) for up 

to 48 hrs. Western blot analysis of whole cell lysates taken at 24 and 48 hrs after 

treatment revealed increased AChE expression and the appearance of a second AChE 

band after 2ng/ml treatment that was not present in untreated control cultures (Figure 

4.3.1). Whole cell lysates taken from MG63 osteosarcoma cells treated with 0.5ng/ml, 

Ing/ml and 5ng/ml bFGF, were analysed by western blotting, demonstrating increased 

AChE expression in cultures treated with >I ng/ml bFGF after 24 hrs (Figure 4.3.2). 

4.3.2 Regulation ofAChE expression by mechanical stimulus. 

4.3.2.1 In vitro 

TE85 human osteosarcoma cells were subjected to a cyclical strain of approximately 

4,50OVtc (peak) for 10 minutes at lHz, western blot analysis of whole cell lysates taken 

at different time points after loading. No significant short term (2-60 minutes) effect on 

AChE expression was observed (Figure 4.3.3A). At later time points (1-48 hours) an 

increase in AChE expression was identified 4 hrs after loading, which was maintained 

for a further 48 hrs (Figure 4.3.3B). 
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Figure 4.3.1 
Western blot analysis for AChE expression in whole cell lysates of 
primary rat osteoblasts treated with 2ng/ml TGF-01 for 48 and 72 hrs. 
(A) Expression of a 68 kDa species was observed in all cultures. 
Treatment with TGF-01 induced expression of a second AChE species 
of -55 kDa (A arrow) not present in untreated control cultures, or cells 
grown in the presence of FBS. (B) GAPDH expression on same blot. 
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Figure 4.3.2 
Whole cell lysates of MG63 osteosarcoma cells treated with 0.5,1 and 
5ng/ml bFGF for 24 and 48 hours were analysed by western blotting. 
Cells treated with >Ing/ml bFGF after 24 hours increased AChE 
expression compared to untreated controls. 
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Figure 4.3.3 
A) TE85 cells loaded at 4500 ýtp- for 10 minutes at lHz using a 
Flexercell FX300 system. Western blot analysis of whole cell lysates 
taken 2,10 and 20 minutes after loading revealed no apparent effect on 
AChE expression at these time points after loading. 

B) Western blot analysis of TE85 human osteoblast like cells loaded for 
10 minutes at I Hz to induce a strain of 4500ýtF-, whole cell lysates taken at 
1hr, 4hrs 16hrs and 48hrs after loading. A significant increase in AChE 
expression was observed after 4hrs, which is maintained through to 48 
hrs after loading. 
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4.3.2.2 In vivo 

AChE expression was also increased during in vivo loading events. Immunolocalisation 

for AChE on cryosections from loaded u1nae revealed elevated AChE expression when 

compared to unloaded controls, especially at sites of induced bone formation following 

mechanical loading. This corresponded to increased levels of alkaline phosphatase 

activity in serial sections (Figure 4.3.4 ). 

4.3.3 Determination of afunctional rolefor AChE in osteoblast adhesion 

4.3.3.1 Optimising adhesion assays 

To determine the optimal time for assaying osteoblast adhesion with inhibitor treatments 

and onto specific substrates, a time course of assays between 2 and 24 hours were 

carried out using a variety of osteosarcoma cells and primary rat osteoblasts. No 

significant differences in adhesion were observed when cells (controls and treated) were 

plated for 10 hours or greater. All subsequent assays were therefore carried out between 

4 and 6 hours. 

4.3.3.2 Osteoblasts preferentially adhere to AChE substrates 

To determine the effect of AChE substrate on osteoblast adhesion,, MG63 and SaOS-2 

osteosarcoma cells were plated onto wells precoated with AChE (100ýtg/ml), and 

compared to that of cells plated onto the related cholinesterase, BChE (100ýtg/ml), or 

collagen type I (I 00ýtg/ml). Cells adhered to and spread onto AChE substrates in a way 

similar to cells grown on collagen type 1, however they retained a more rounded 

morphology (Figure 4.3.5). In contrast, cells plated onto BChE did not adhere 

successfully when compared to adhesion on collagen type I and AChE substrates, and 

shared a similar morphology to cells plated directly onto tissue culture plastic (Figure 

4.3.5). 

4.3.3.3 The effect ofAChE inhibitors on osteoblast adhesion 

The effect of AChE inhibitors on osteoblast adhesion was determined by plating 

MC3T3-EI cells in the presence of DFP, BW284C51 (AChE inhibitors), or iso-OMPA 

(BChE inhibitor) for 6 hours. A concentration dependent-decrease in osteoblast 
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Figure 4.3.4 
(a) Low level AChE expression was localised on the quiescent medial periosteal 
surfaces of unloaded u1nae. (b) Following the osteogenic response to mechanical 
stimulus, enhanced AChE expression was observed in recruited osteoblasts (b 
arrows, brown staining), in the newly formed osteold layer (d arrowheads, brown 
staining). (c) antibody control, (e and f) alkaline phosphatase activity on serial 
sections. 
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Figure 4.3.5 
SaOS-2 osteosarcoma cells plated to 100[tg/ml torpedo AChE, human 
BChE, or collagen type I coated wells and assayed for adhesion after 4 
hours. (A) Cells plated to AChE substrates adhered and spread to a 
similar level to cells on collagen type 1, albeit with a more rounded 
morphology. Cells plated onto BChE and uncoated well remained 
rounded after 4 hours. 
(B) A significant increase in cell adhesion was observed in cells plated 
on AChE (n=10, ** p<0.01) and collagen type I substrates (n=10, 
***p<0.001), compared to uncoated control wells or cells plated on 
BChE- 
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adhesion was observed in cells plated with AChE inhibitors. Cells plated in the 

presence of iso-OMPA had no significant effect (Figure 4.3.6). Parallel MTT assays 

were carried out to establish the effect of these treatments on viable cell numbers. No 

significant effect of treatment with cholinesterase inhibitors was observed when 

compared to cultures treated with a vehicle control (Figure 4.3.6). 

4.3.3.4 Optimising antisense transfer and concentration 

I carried out antisense studies using mRNA oligonucleotides targeted to the core domain 

of AChE (exon 2 and exon 3, Grifman and Soreq, 1997) and control oligonucleotides 

directed at BChE, or inverse to AChE oligonucleotides. To optimise concentration of 

oligonucleotides and vehicle to use in adhesion assays, SaOS-2 and MC3T3-EI cells 

were treated with between 0.1 ýM and I 00[tM oligonucleotides with either 

lipofectamine or water as the vehicle for 24,48 and 72 hours. Whole cell lysates were 

taken and western blot analysis carried out to determine effect of treatments compared 

to no oligonucleotide or no vehicle controls. Lipofectamine at all concentrations was 

toxic to cells. Oligonucleotide concentrations above that of 50[tM were also toxic. 

Oligonucleotide concentrations between I ýM and I OýM in a water vehicle did however 

cause a significant reduction in AChE expression as identified by western blot analysis. 

However complete inhibition of expression could not be achieved. All subsequent 

antisense experiments were carried out within this range. 

4.3.3.5 The effect of antisense inhibition ofAChE expression on osteoblast adhesion 

The effect of reduction of AChE expression on osteoblast adhesion was carried out 

using the above antisense oligonucleotides. SaOS-2 osteosarcoma cells, pre-treated and 

plated with 5[tM oligonucleotides in a water vehicle, were assayed for adhesion after 6 

hours. Efficiency of oligonucleotides to reduce AChE expression was determined by 

western blot analysis of whole cell lysates. A significant reduction in adhesion was 

observed in cells with combined exposure to AS I and AS4 oligonucleotides (see table 

3.1 for details), adhesion could be rescued by plating these cells onto AChE substrates. 

However there was no significant effect of adding soluble ACK to the culture medium. 

Cultures treated with antisense oligonucleotides were tested for cell viability using an 

MTT assay. Antisense oligonucleotide treatment did not appear to reduce viable cell 

number (Figure 4.3.7). 
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Figure 4.3.6 
MC3T3-EI osteoblast like cells plated in the presence of AChE inhibitors DFP (A), 
BW284C51 (B), or BChE inhibitor iso-OMPA (C). After 6 hrs a concentration- 
dependant decrease in MC3T3-El cell adhesion was observed in both DFP and 
BW284C51 treated cells when compared to vehicle controls (n=10, ** p< 0.01). Iso- 
OMPA had no significant effect. MTT assay for revealed no significant effect of 
inhibitor treatments on cell viability (D, E and F). 
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Figure 4.3.7 
(A) Western blot analysis demonstrating AChE expression in untreated cultures 
(lane 1), cultures treated with antisense RNA oligonucleotides ASI and AS4 
against AChE (lane 2), against BChE (lane 3), or inversed sequence of AS4 
oligonucleotide (lane 4). Areduction inAChE expression was observed in cultures 
treated with anti sense against AChE. 
(B) A significant reduction in adhesion was observed in SaOS-2 cells treated with 
anti sense oligonucleotides against AChE for 6 hours (n= 10, p<0.01)(b), when 
compared to controls (a). Adhesion was rescued by plating these cells on AChE 
substrates (c), but notby the addition of soluble AChE to the culture medium (d). 
(QUsing MTT assays of viable cell numbers, it was demonstrated that antisense 
oligonucleotide treatment for 24 hrs had no significant effect compared to 
untreated control cel Is. 
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4.4 Discussion 

4.4.1. Regulation ofAChE by osteogenic stimuli 
The expression and secretion of bone matrix proteins is an essential function of 

osteoblasts during bone modelling and remodelling that is regulated by numerous 

chemical and mechanical osteogenic stimuli. In particular, TGF-P I is a potent 

stimulator of bone matrix formation, primarily through its action on osteoblasts. TGF- 

PI significantly increases the synthesis of bone matrix proteins such as type I collagen 

and tenascin-C in osteoblastic cells (Gehron Robey et al., 1987, Mackie et al., 1998, 

Harris et al., 1994). We found that TGF-P1 also significantly increased AChE 

expression in osteoblasts, inducing abundant expression of a second AChE species, 

which was absent in untreated cultures. This AChE species is the same size (-55kDa) 

to that observed during primary human osteoblast differentiation and may be a 

characteristic of a mature matrix- synthesising osteoblast phenotype. TGF-P signalling 

has the capability to activate gene transcription through Smad binding of transcription 

factors, and binding sites in promoters of target genes (Miyazono et al., 2001). In 

particular Smad5 interacts with Cbfal bound to OSE1 to regulate osteocalcin gene 

expression (Yoshianki and Heldin et al., 1997, Miyazono et al., 2003). As numerous 

Cbfal binding sites have been identified in the upstream promoter region of the AChE 

gene it is possible that TGF-01 induced Smad activation could initiate AChE gene 

expression. Indeed, TGF-P signalling has the ability to initiate gene transcription via 

other Runx proteins in a number of tissues including cells of the haematopoietic 

lineage in which AChE plays a significant non-cholinergic role (Miyazono et al., 2001). 

Moreover, aberrations in normal TGF-P signalling via Runx proteins, p300, CBP and 

Evi-I can lead to diseases that have been associated with abnormal AChE expression 

i. e. familial platelet disorders, acute myeloid leukaemia (Grisaru et al., 2000, Massague 

et al., 2000, Miyazono et al., 2001). Characteristically, due to the significant effect of 

TGF-P signalling in bone, aberration of this signalling system can also result in bone 

disorders such as cleidocranial displasia (CCD), hereditary chondroplasia and 

osteoporosis (Francis-West et al., 1999, Massague et al., 2000, Miyazono et al., 2001). 

Moreover. TGF-P1 knock out mice have a significantly reduced bone mass and bone 

elasticity due to perturbations in the bone matrix (Geiser et al., 1998). This suggests 

that the bone matrix and bone matrix proteins like AChE are targets of signalling by 
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TGF-P 1. However, the effects on osteoclast function and their contribution to the 

phenotype must also be taken into consideration. In addition, TGF-Pi is just one 

member of the TGF-P super family that exerts effects on osteoblasts. Indeed, other 

members have proved to be potent stimulators of osteoblast differentiation and 
function including members of the BMP family BMPs 2,7 and 4. Cross-talk, 

regulation or synergism between TGF-PI and other TGF-P1 signalling molecules has 

been observed in other tissues (Hoffmann and Gross, 2001, and von Bubnoff and Cho, 

2001). It is therefore possible that the effects of TGF-PI on AChE expression we 

observed only represent a small component of the role of TGF-P signalling. 
Differential effects or regulation of AChE expression may be observed when other 

members of the TGF-P super-family are present in a manner similar to the in vivo 

state. 

Signalling by fibroblast growth factors (FGFs) is well established as a regulator 

of bone remodelling and development. A large number of skeletal dysplasias are 

associated with mutations in FGF signalling components, in particular receptors 

FGFR2 and 3,, develop cranio-facial and limb abnormalities as a result of disrupted 

functioning of osteoblast and chondrogenic cells (Wang et al., 1999, Mansukhani et 

al., 2000, Isaac et al., 2000, for reviews see Goldfarb, 1996, McIntosh et al., 2000, Ornitz 

and Marie, 2002). Analysis of bone samples taken from thanotorphoric dysplasic 

patients, a disorder caused by mutations in the FGFR3 receptor (that in most cases is 

lethal), revealed reduced levels of AChE expression and activity, as well as a severe 

reduction in a number of other bone matrix proteins (Grisaru et al., 1999). Here it was 
demonstrated that a concentration-dependent upregulation in AChE expression was 

observed in MG63 osteosarcoma cells after exposure to bFGF for 48 hours. This could 

implicate AChE as a downstream target molecule for FGF signalling, and lends further 

support to a role for AChE as a matrix protein. FGF signalling is known to activate 

the MAPK pathway. MAPK has been implicated in the phosphorylation of Cbfal 

resulting in increased transcriptional activity. As there are significant numbers of 

Cbfal binding sites present in the AChE promoter region it is possible that FGF 

signalling could target AChE expression via the MAPK pathway (Goldfarb, 1996, 

Xiao et al., 2000, Xiao et al., 2002). In osteoblasts, FGF signalling has been linked 

with increased proliferation. The increased levels of AChE expression observed in this 
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experiment may well be associated with increased proliferation and as a consequence 
increased cell number and availability of protein. However the absence of fluctuations 

in GAPDH on the same blot indicate equal levels of protein loading. In addition, it 

was observed that TGF-PI treatment induced expression of a second AChE isoform, 

which was not observed in the FGF treated cells. This could be a consequence of 

differences in cell type (cell line versus primary cells), but may also be a reflection of 

the different effects of these signalling systems on ACK protein expression. 

Certainly, in osteoblasts FGF signalling is most commonly associated with 

proliferation and TGF-P with differentiation (Mansukhani et al., 2000, Miyazono et al., 

2001). It is possible that AChE may act differently at distinct points in osteoblast 

maturation, this is supported by our previous observations of regulated ACK secretion 

during osteoblast differentiation which was discussed in Chapter 3 (see section 3.3.4). 

Under differentiating conditions, FGF treatment has also been shown to induce 

osteoblast apoptosis (Mansukhani et al., 2000). However, as our treatments were 

carried out under non-differentiating osteoblastic conditions it is unlikely this may be a 
factor. Further analysis of the effect of FGF signalling on ACK expression through 

osteoblast differentiation using primary cell types and more specific FGF molecules 

may increase our understanding of the regulation of ACK by FGFs. 

4.4.2. Regulation ofAChE expression by mechanical loading 

Mechanical loading is one of the most Potent stimulators of bone formation, acting on 

cells of the osteoblast lineage to induce expression and secretion of bone matrix 

proteins. Studies have indicated that mechanical stimulation in vitro can increase 

AChE expression and secretion by muscle cells (Hubatsch and Jasmin, 1997). Here it 

was demonstrated that AChE expression by osteoblasts increased in response to 

mechanical loading both in vitro and in vivo. Observations of a rapid (4hrs) yet long 

lasting (48 hrs) induction in vitro, and specific localisation of AChE expression to 

newly formed osteoid and osteoblasts at sites of load-induced bone formation in vivo 

strongly suggest that AChE is acting as a bone matrix protein. Characterisation of the 

molecular events resulting from mechanical loads indicate an immediate rapid rise in 

intracellular calcium. As discussed in Chapter 3 increased intracellular calcium levels 

induce up regulation in AChE secretion and a subsequent up regulation in AChE 

expression to replenish the intracellular stores of AChE (see section 3.4.5). In 
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addition, it is thought that one mechanism by which mechanical loading in bone 

induces its effects is by increasing fluid flow received by osteocytes located in bone, 

which induces a 'shear stress' (Burr et al., 2002). As a result, shear stress response 

elements have been identified and studied in bone. Factors such as Cox2 and iNOS are 

known to induce and regulate the expression of mitogenic factors such as c-fos/API 

and cAMP. Numerous c-fos/API binding sites are present in the immediate promoter 

of AChE, and API is a common regulator of AChE gene expression in a number of 

different cell types (Aziz Aloya et al., 1993, Getman et al., 1995, Mutero et al., 1995). 

cAMP response elements (CRE) are also present in the immediate and upstream 

promoter region of AChE. cAMP is also known to induce AChE expression in muscle 

cells, another mechanically responsive cell type (Mutero et al., 1995, Wan et al., 2000, 

Choi et al.,, 2001, Siow et al.,, 2002). In addition, studies of the responses to 

mechanical stimulus in periosteal cell expression profiles have indicated an initial 

transient production of mitogenic and growth factors such as c-fos (2hrs), and later 

TGF-Pl and IGF-l (4hrs) (Raab-Cullen et al., 1994). This supports our observations 

of induced AChE expression by growth factor treatments and could suggest that AChE 

expression is a downstream effect of the initial responses to mechanical loading. 

Cbfal has been identified as a target of mechanical loading in vitro, with signalling 

through the MAPK/ERK pathway causing increased activity and inducing activation of 

Cbfal DNA binding and expression (Ziros et al., 2002). This mechanism may 

modulate AChE expression in response to mechanical loading, as the upstream 

promoter region of AChE contains a number of Cbfal binding sites (see section 4.4.1). 

In other tissues,, stress responses similar to those induced by mechanical stimuli 

are known to induce overexpression and modulation of AChE isoforms that results in 

neurodeterioration and haernatopoietic alterations (Beeri et al., 1995, Stephenson et al., 

1996, Grifman et al., 1998, Sternfeld et al., 2000a, Grisaru. et al., 2001, Meshorer et al., 

2002). In addition, study of a chromosomal region immediately upstream to the ACHE 

gene revealed a large locus containing many binding sites for a variety of stress 

responsive elements (Grant et al., 2001). It is thought that AChE could well be a stress 

response element, as many neurological conditions in which AChE expression is 

altered show considerable similarity in aetiology and symptoms to some stress related 

conditions including Gulf war syndrome, manic depression and chronic fatigue 

syndrome (for review see Soreq and Seidman, 2001, see section 1.6.5 chapter 1). 
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Under stress conditions in the brain (forced swim for example) there is a rapid yet long 

lasting switch in AChE alternative splicing resulting in an over expression of the 

AChE-R isoform. (Meshorer et al., 2002, Kaufer et al., 1999). Recently it was 
identified that the AChE-R isoform has the ability to interact with the scaffolding 

molecule RACKI, which is involved in the PKC signalling pathway (Birikh et al., 

2003). PKCPII is capable of mediating stress responses in the brain, and activity and 

expression is unregulated in neurodegenerative disorders (Ono et al., 1987, Paola et al., 

2000, Pakaski et al., 2001). Furthermore AChE-R transgenic mice that display fear 

induced behavioural inhibition associated with stress responses have significantly 

increased RACKI and PKCPII co-localised to stress responsive brain regions (Birikh 

et al., 2003). In addition, expression of PKCPII has been associated with oxidative 

stress in the brain as a response to stress conditions (Paola et al., 2000). PKC is also 

thought to play a significant role in the processing of APP into P-amyloid, a 

characteristic of Alzheimer's disease, a disorder where AChE is well established in the 

disease aetiology (Nitsch et al., 1992). More recently, observations that AChE 

inhibitors lead to a change in APP processing were attributed to increased PKC activity 

and expression (Pakaski et al., 2001). As catalytic inhibition of AChE can lead to an 

over expression of AChE-R similar to that observed under stress conditions, it may be 

possible that a complex regulation of stress pathways through AChE gene expression 

and PKC exists (Sternfeld et al., 2000). Indeed, gene expression regulation via 

modulation of AChE expression has been observed previously (see section 1.6.3 and 
1.6.5 of Chapter 1). APP induced increases in AChE activity in Alzheimer's disease 

were recently linked to the oxidative stress pathway (Melo et al., 2003). As oxidative 

stress is a well established mediator of the effects of mechanical loading in bone 

(Van'T Hof and Ralston, 2001), it could be possible that in bone AChE-R specifically 

may be a target of, or play a role in mechanical loading responses. Further research is 

required to determine the effect of mechanical loading on isoform specific expression 

of AChE in bone. Also an immediate upregulation of AChE expression, contrasting 

with the observations of stress responses in neuronal tissues was observed. This may 

be due to the lesser requirement of an immediate increase in AChE activity in bone, but 

rather a requirement for a matrix production and deposition. Indeed, discrepancies in 

regulation of signalling systems in response to mechanical loading when compared to 

stress responses in the brain have been observed for signalling systems such as 
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glutamate, FGF, Wnt, and TGF-P (Coyle and Puttfarcken, 1993, Agostinho et al., 
1997, Schwarzschild et al.,, 1999, Martin-Blanco, 2000,, Grotewold and Ruther, 2002, 

Chen et al., 2003, Franceschi and Xiao, 2003). Our findings indicate that AChE 

expression in osteoblasts is regulated by osteogenic stimuli in a similar way to that of 

other well characterised bone matrix proteins (Raab-Cullen et al., 1994, Webb et al., 
1997, Mackie et al., 1998, Omitz and Marie, 2002). 

4.4.3. AChE as an adhesion molecule in bone? 

AChE has been shown to possess adhesive properties and displays significant 

sequence homology to a number of neuronal adhesion molecules (Jones et al., 1995, 

Bataille et al.,, 1998, Stemfeld et al., 1998). Previously, it has been shown that 

osteoblasts preferentially adhere to AChE substrates at a level similar to collagen type I 

(Genever et al., 1999). Using cholinesterase inhibitors, we demonstrated a 

concentration-dependent decrease in osteoblast adhesion in cultures treated with 

specific AChE inhibitors, suggesting that inactivation of endogenous AChE is 

sufficient to impair osteoblast adhesive interactions. It is possible that inhibitors may 

cause changes in AChE structure, or bind to and obscure possible adhesive sites on the 

AChE molecule. Studies have implicated the peripheral anionic substrate-binding site 
in the adhesive role of AChE using site-specific blocking antibodies (Johnson and 

Moore, 1999, Simon et al., 1999). BW284C5 1, a specific inhibitor of AChE, is known 

to obscure the peripheral anionic site, however DFP an irreversible inhibitor of AChE 

and BChE 'ages' the protein at the active site (Bataille et al., 1998, Jones et al., 1994). 

Although it is not certain that other changes to the AChE molecule occur due to DFP 

inhibition, it is possible this may be the cause of the reduction in osteoblast adhesion. 

However it is also possible that downstream effects on AChE expression may be a 

factor. Regulation of AChE expression is affected by inhibition of AChE catalytic 

activity in other tissues, where a transcriptional feedback response induces rapid 

changes in AChE isoform expression from the membrane bound synaptic form to over 

expression of the soluble read through form (Grifman et al., 1999, Kaufer et al., 1999, 

Meshorer et al.,, 2002 as discussed above). This transcriptional feedback response also 

affected expression of other cholinesterase-like proteins such as neurexinlP and 

neuroligin I that have been linked to cell adhesion and cell-cell contact (Song et al., 

1999, Grifman et al., 1998, Kaufer et al., 1999, Meshorer et al., 2002) (as already 
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discussed in section 1.6.3, and section 4.4.2 of this chapter). This suggests a 
functional overlap and compensatory overexpression or 'functional redundancy' 
between AChE and neuroligin-I in the brain, and provides a direct functional link 

bewteen AChE and cell-cell contact. We identified neurexins lot and P and neuroligins 

I and 2 in primary rat osteoblasts by RT-PCR. Although these proteins have 

significant roles that are independent of ACK, and numerous proteins that are also 

capable of interacting with neurexins and neuroligins are expressed in bone (including. 

PDZ domain proteins NMDA accessory proteins) it is possible that an adhesion system 

similar to that of brain exists in bone. As already discussed in the previous chapter, 

expression of other neural cell adhesion molecules (NCAMs) has already proved to be 

of vital significance in bone development and osteoblast adhesion. 

To clarify if reduction in osteoblast adhesion was a direct result of ACK, we 
inhibited AChE expression in SaOS-2 osteosarcoma cells. The use of two antisense 

oligonucleotides directed to exons 2 and 3 of the human AChE gene induced a 

significant reduction in AChE expression. This reduction in AChE expression caused 

a significant reduction in osteoblast adhesion compared to cultures treated with 

oligonucleotides directed at BChE or random sites. Furthermore, plating the cells onto 

AChE substrates rescued the antisense mediated reduction in osteoblast adhesion, 

returning adhesion to levels of untreated control cultures. However, the addition of 

soluble AChE to the culture medium had little effect. This suggests strongly that 

AChE can act as an adhesion molecule in osteoblast cultures,, and could indicate that it 

acts as part of the bone matrix not as a free soluble factor. This could also be indicative 

of a polarised adhesive function for AChE in osteoblasts, an important factor for 

directed matrix deposition, which is consistent with the observation of AChE present in 

osteoid of newly formed bone. In support of this, recent studies have demonstrated 

strong electrostatic interactions of soluble AChE with a number of common matrix 

components such as collagen and laminin (Johnson and Moore, 2003). Neurexins are 

thought to mediate some of their adhesive properties through an extracellular region 

homologous to Lamanin A (Darboux et al., 1996). Furthermore, AChE has been 

demonstrated to interact directly with matrix components such as amyloid, and cell 

membrane proteins such as RACKI in brain both in vitro and in vivo (see section 

4.4.3). RACKI has the ability to bind to a number of elements to induce intracellular 

signalling. Certainly, integrins can induce intracellular signals when bound to the cell 
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matrix through RACKI. Although much investigation into the effects of AChE-matrix 

and AChE-cell interactions is required to establish their exact function, these data lends 

support to the idea that AChE may function in cell-cell, cell-matrix interactions, and 

may induce more complex effects than just upon cell adhesion. 

Further to observations of regulated AChE expression and secretion in 

osteoblasts, and observations of AChE localised to the bone matrix, the demonstration 

of AChE mediated osteoblast adhesion provides clear functional data supporting a role 

for AChE as a matrix protein in bone. However the demonstration of isoform specific 

differences in expression in bone could suggest fundamental differences in the 

mechanism of AChE isoform function, and it remains unclear as to what is the overall 

effect of AChE expression in the in vivo state. 
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5.1 Introduction 

Considering the distribution patterns of AChE expression observed in bone, it was 
important to determine how isoform-specific AChE expression influenced bone cell 
function, development and remodelling. As previously discussed there is a multitude 

of data that implicate non-cholinergic roles for AChE, but the specific effects of the 

different AChE isoforms are still poorly understood. Tissue-specific expression of 
AChE isoforms is better defined, and may indicate distinct roles for the differing 

AChE isoforms. Moreover, isoform-specific differences of C-terminal structures and 

sequences provide for divergent ACK variants with distinct differences in capacity 
for cellular localisation and interaction with other proteins. 

5.1.1 Non-cholinergic isoform specific roles for A ChE 

1. LI A ChE-E 

It is clear from the accumulating data that AChE is a multifunctional protein. One of 

the strongest arguments for AChE possessing non-cholinergic roles is the fact that 

AChE is expressed in multiple molecular species that display a tissue-specific 

regulated expression profile (See section 1.5.4 chapter I for full description of AChE 

isoforms). AChE is known to play a role during the development of a variety of 

tissues; expression profiles in these tissues is widely different to that in mature 

tissues and in many cases isoform-specific expression patterns have not been 

established. The one AChE isoform that appears to have restricted cellular 

distribution is the AChE-E isoform, which when expressed in adult tissues appears to 

be limited to cells of the erythrocytic lineage. Although terminal differentiation of 

some haernatopoietic cell types is accompanied by dramatic increases in AChE 

expression, activity and secretion, very few studies have focused on an isoform- 

specific role for this AChE-E (Samuels et al., 1967, Lawson and Barr, 1987, Barr and 

Keokebakker, 1990, Paoletti et al., 1992, Soreq et al., 1994, Chan et al., 1998). 

However, a number of studies analysing the glycosylation and sialyation of AChE in 

the blood and erythrocytes with relation to its involvement in circulatory clearance 

rates have identified a significant regulation of erythrocyte AChE (Saxena et al., 

1997, Chitlaru. et al., 2002). It is thought that blood AChE acts as scavenging 

molecules to clear up possible inhibitory factors absorbed into the blood stream that 

134 



Chapter 5 

may upset normal neuronal and muscle cholinergic signalling (Appleyard, 1994). 

However this is still under significant debate, and there is no direct evidence that 

AChE-E on red blood cells or in the blood stream acts to remove toxins from the 

blood stream. 

5.1.1.2 A ChE-S 

In most other tissues studied with detail in relation to a role for AChE, where both 

the AChE-S and the AChE-R isoforms are expressed, specific roles for these isoform 

have been suggested. AChE-S is by far the most versatile isoform of AChE and can 

be oligomersied in a variety of forms and bound to the cell membrane via anchors 

and electrostatic interactions, as well as immobilised in the basement membrane via 

attachment to a collagen-like tail that has the capacity to bind to heparin sulphate 

proteoglycans (please refer to section 1.5.5). The AChE-S isoform is predominantly 

expressed at the neuromuscular junction where a clear role for AChE in cholinergic 

signalling is present. However, AChE-S is expressed in a number of other cell types 

and tissues of neuronal origin, and multiple functional roles have been identified. 

Firstly, a general neurogenic role for AChE is well established. In neuronal tissues 

AChE expression or AChE addition can induce neurite extension and outgrowth, 

axon formation,, and organisation of the neuromuscular junction (Bataille et al., 1998, 

Grifman et al., 1998; Simon et al., 1999, Johnson and Moore, 2000). A significant 

body of evidence suggests that AChE has a role in cell adhesion (See section 1.6.3 

chapter 1). However, many of these studies do not determine whether or not this role 

has an isoform-specific function. Many of the earlier studies identified AChE-S as 

the prototype isoform, simply because no in vivo role for AChE-R had been 

established at that time. It would be easy to assume that the adhesive function of 

AChE is fulfilled by the PRiMA membrane bound AChE-S isoform as this is the 

most abundantly expressed isoform in neuronal tissue. Dominant overexpression of 

the variant AChE isoforms in glioma cells demonstrated significant differences in 

isoform. effects in vitro. The AChE-S isoform induced process extensions whereas 

the AChE-R isoform causes cell rounding (Karpel et al., 1996). In vivo, significant 

differences between the effect of AChE-S and AChE-R on cell process and 

neuromuscular organisation have been observed (Shapira et al., 1994, Seidman et al., 

1995, Andres et al., 1997, Andres et al., 1998, Sternfeld et al., 1998). The collagen- 

tailed variant of AChE-S is well characterised, and known to be essential for the 
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normal development and ftinctioning of the neuromuscular junction (see section 
1.5.4 chapter 1). Although the CoIQ collagen-like tail is encoded by a gene distinct 

to ACHE, a specific non-cholinergic role for this AChE-S variant has not as yet been 

identified. However,, this variant does have the potential to possess specific non- 

cholinergic activities. Attachment to the basement membrane via the CoIQ can be 

achieved through a number of heparan-sulphate proteoglycans such as perlecan and 
dystroglycan (Peng et al., 1999, Arikawa-Hirasawa et al., 2002). These heparan 

sulphate proteoglycans have multiple roles in other tissues and therefore interaction 

with AChE in such other tissues, including bone, and could enable the exertion of 
AChE effect. 

5.1.1.3 A ChE-R 

AChE-R was the last of the AChE isoforms to be identified, though this finding has 

been the subject of much scepticism and criticism due to the unconventional intron 

inclusion, and the initial lack of direct in vivo evidence of existence. However 

significant data now suggests that the 'read-through' AChE isoform is a stress 

response molecule with complex transcriptional regulation (see section 1.6.5 chapter 
1). In a number of tissues non-cholinergic roles related to stress responses have been 

established for AChE-R. For example, a novel function for the AChE-R isoform was 
identified in the testes (Mor et al., 2001). Overexpression of AChE-R in mature male 

mice caused significant aberrations in tissue morphology, sperm count and motility 
(Mor et al., 2001). This was thought to be as a result of reduced germ cell 
(progenitor cell) proliferation and expansion. Moreover, stress of mature male mice 
intensified the expression of AChE-R in the testes and spermatozoa. In contrast the 

levels of AChE-S were largely unaffected, suggesting that AChE-R may specifically 

modulate the effects of stress on male fertility (Mor et al., 2001). It is now thought 

that the AChE-R isoform, expressed as a soluble monomer, could be the 

'carcinogenic-embryonic' AChE described by Drews in 1975. Indeed, significant 

evidence exists to suggest that AChE plays a role in carcinogenesis, and many other 

proteins involved in embryogenesis are associated with cancers (Greenfield, 1996, 

Layer and Willbold, 1994, Perry et al., 2002). More recently, the AChE-R isoform 

has been implicated in leukaemias and brain tumours. AChE-R expression parallels 

tumour progression and aggressiveness (Perry et al., 2002). Furthermore, AChE-R 

expression levels were also found to parallel Runxl/AML1 expression patterns and 
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levels, and a splicing shift favouring AChE-R over AChE-S expression was 

observed. Overexpression of AChE-R was also found to induce in vitro cell 

proliferation of U87MG glioblastoma cells (Perry et al., 2002). Elevated levels of 
AChE-R were also detected in blast cells of leukaemia (AML) bone marrow. A 

specific function for the AChE-R isoform has also been identified in the 

differentiation of megakaryoblasts into megakaryocytes (Grisaru et al., 2001, 

Deutsch et al., 2002). Although AChE was already known to be involved in the 

terminal differentiation of this cell lineage, the AChE-R isoform displays regulated 

expression and is localised to the nucleus (see section 1.6.4) (Lev Lehman et al., 
1997,, Grisaru et al., 2001,, Deutsch et al.,, 2002). Moreover, in mice overexpressing 

the AChE-R isoform, a disrupted blood and bone marrow cell composition has been 

described (Grisaru et al., 2001, Deutsch et al., 2002). AChE-R was also found to 

induce CD34+ haernatopoietic progenitor cell expansion in vitro (Deutsch et al., 

2002). The R isoform of AChE was also found to be dramatically increased in 

blood cells exposed to stress both in vitro and in vivo (Grisaru et al., 2001). In 

addition, the C-terminal peptide of AChE-R, ARP, can induce progenitor cell 

expansion and proliferation of haematopoietic cultures (see section 1.6.4 and 
5.1.2.4). 

5.1.1.4 C-terminal effects qfAChE 

The functional differences in the AChE isoforms is predominantly attributable to the 

C-terminal differences produced by alternative splicing. The differences in C- 

terminal peptides composition are instrumental in the establishment of possible 

secondary interactions. However more recent data corroborates that these peptides 

alone have functional roles in vitro and in vivo. Putative cleavage sites found at the 

C-terminus of AChE can give rise to C-terminal peptides differing in composition 

depending upon the AChE isoform from which it is derived. As already indicated, 

the peptide of AChE-R (APR) is detected in stressed mice and can induce 

haernatopoietic alterations both in vitro and in vivo. The peptide of the AChE-S 

isoform was analysed and found to possess a secondary structure that was capable of 

binding to certain transcriptional regulatory proteins, and was localised to the 

nucleus in cancerous cells (Perry et al., 2002). However, these peptide have not yet 

been identified under normal conditions in vivo. It may be that altered gene 

expression such as that occurring under stress conditions and in tumours could create 
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an envirom-nent where cleavage may occur. Certainly, MMPs might have the 

capacity to cleave AChE to generate such peptides, and MMP activity is increased in 

turnours in association with tumour progression (for review see Itoh et al., 2002). 

These newly identified regions of AChE could represent yet another novel function 

of AChE. 

It is clear that some isoform- specific roles for AChE exist. However in most 

tissues where AChE expression has been identified, expression of both AChE-S and 

R was apparent. So do these isoforms play specific roles, or are their differing 

properties involved in a more complex regulation of AChE expression and function 

It has been suggested that AChE-R can counteract the effects of AChE-S and vice 

versa. A specific example of such an occurrence would be the transcriptional 

feedback response where the switch of expression from AChE-S to the AChE-R 

isoform can lead to aberrations in the neuromuscular junction and neurodeterioration 

(Sternfeld et al., 2000, Meshorer et al., 2002). Such transcriptional regulation would 

indeed account for many of the circumstance discussed above. A recent study of the 

pathophysiology of myasthenia gravis, a syndrome characterised by mutation or 

absence of components of the cholinergic machinery, most notably acetylcholine 

receptors, has revealed increased levels of extracellular AChE-R (Brenner at al, 

2003). In this condition AChE-R can in fact compete with membrane associated 

AChE-S to attenuate the effects of the already reduced cholinergic signalling by 

reducing the levels of ACh at the synapse. In addition, antisense treatment targeted 

to AChE-R relieved at least some of the conditions symptoms (Brenner et al., 2003). 

If the AChE isoforms can exert such differences, and competition in cholinergic 

systems it is equally likely AChE can act in a similar way for non-cholinergic roles 

in other tissues. 

5.1.2 AChE transgenic mice 

Due to the imperative cholinergic capacity of AChE, production of AChE knock out 

mice has been both difficult and lengthy. However, mice lacking in AChE 

expression have been produced and used to provide a greater understanding of the 

complex regulation of cholinergic signalling and AChE function. Although viable 

mice can be produced they have significant abnormalities. A definitive way to 

establish isoform-specific functions for any protein is to analyses each isoform. in 

isolation from the other. With this aim in mind, transgenic animals overexpressing 
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the differing AChE isoforms have been developed and characterised in terms of their 

cholinergic capacity and other non-cholinergic functions in a variety of tissues. 
These animals have been instrumental in the considerable advances in the 
identification of functions in non-cholinergic tissues. Work presented in this chapter 
has exploited these transgenic animals to determine the in vivo effects of 

manipulating AChE expression on skeletal development, in particular, craniofacial 

organisation. 

5.1.3 Control o suture patency )f 
Craniofacial development is a complex, poorly understood process that involves both 

endochondral and intramembraneous ossification of skeletal elements derived from a 

number of embryonic sources (See section 1.4.1, Chapter 1). It is therefore not 

surprising that craniofacial deformities are a common birth defect found in 

approximately I in 2,500 live births in the western world (McIntosh et al., 2000). 

Severe craniofacial deformities such as exencephaly, cleft palate, and 

craniosynostosis can be fatal in the absence of clinical intervention, often resulting in 

numerous dangerous operations during the early years of life. A large number of 

craniofacial deformities are a result of aberrations in suture patency and 
development. Sutures form an integral part of craniofacial development, especially 
in the development of the cranial vault. During embryogenesis the mesenchymal 

condensations that form the anlagen of the future skull bones (calvaria) develop 

ossification centres at the centre of the future bones, the bone fronts of which are 

separated by large gaps that eventually form the calvarial sutures (Wilkie and 

Morriss-Kay, 2001, Morriss-Kay, 2002). Most mammalian skulls have four sutures 

important to postnatal skull expansion; two running vertically (the midline sutures) 

across the skull, and two running horizontally (Opperman, 2000, Wilkie and Morriss- 

Kay, 2001, Morriss-Kay, 2002, and Mao, 2002). The metopic or interfrontal suture 

separates the two frontal bones running from the front of the centre of the skull 

(Opperman, 2000, Wilkie and Morriss-Kay, 2001). The sagittal suture, also set 

vertical, separates the two parietal bones running from the centre to the back of the 

skull (Opperman, 2000). Running horizontally is the coronal suture separating the 

two frontal bones from the two parietal bones (centre), and the lambdoid suture 

separating the two parietal bones from the occipital bone (back) (Opperman, 2000) 

(for representation see figure 5.1.1). Midline and horizontal sutures differ in their 
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Figure 5.1.1 
The developing cranial vault. The cranial bones (2 frontal, 2 pareital, and I 

occipital) are separated by sutures running horizontally (A) and vertically (B) 

across the skull, ossifying from the centre outwards. Where the sutures cross open 

unossified areas form known as the anterior and posterior fontanelle (C). The 

bones grow by the addition of bone at the osteogenic fronts which are immediately 

adjacent to the sutures that separate the bones. Once the brain is fully developed 

the sutures fuse to unify the bones of the skull (D). 
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Figure 5.1.2 
Suture formation and fusion. Cranial bone are separated by a mesenchymal 
membrane called sutures (A). During skull development, sutures follow a 
programmed pattern of development and fusion and can either overlap before 
fusion (B and C), or directly fuse (D). At each point in development of the 
sutural tissue, a specific pattern of gene expression is found in the bone, bone 
fronts, mis-sutural mesenchyme and dura mater (see key and figure 5.1.3). 
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development and patency, osteogenic fronts of midline sutures remain flush to each 

other during patency and directly fuse, however coronal and lamdoid sutures overlap 
during development and remain patent before fusion (see figure 5.1.2) (Opperman, 

20001, Wilkie and Morriss-Kay, 2001). The points at which these sutures cross form 

wide opened unossified areas apparent in the newborn known as the anterior and 

posterior fontanelles (see figure 5.1.1) (Wilkie and Morriss-Kay, 2001). Postnatal 

skull expansion in line with the further development of the brain is heavily reliant on 

these sites remaining open and maintaining their size until development is complete 
(Opperman, 2000). This is done both via the osteogenic fronts of the calvarial bones 

and the cranial base sychondroses. As the cranial base lengthens via endochondral 

ossification, so do the cranial bones by adding bone at the osteogenic fronts 

(Opperman, 2000). Once the brain is mature, sutures are ossified to unify the cranial 
bones (See figure 5.1.1 and 5.1.2). Knowledge of the transcriptional regulation of 

suture closure, and the signalling systems that control transcriptional regulation have 

been identified by genetical analysis of disorders that display premature suture fusion 

or craniosynostosis such as Apert syndrome, Crouzon syndrome and Boston type 

craniosynostosis, as well as transgenic mice models (Opperman, 2000, McIntosh et 

al., 2000). Specific roles in suture patency have now been identified for factors that 

are already established as regulators of osteoblast function including Cbfa-1, Msx-1 

and 2,, Dlx 5 and 6, Twist, FGF, TGF-P superfamily members, hedgehog family and 

some matrix proteins (Winograd et al., 1997, Kim et al., 1998, Acampora et al., 

1999, Liu et al., 1999, Davideau et al., 1999, Opperman, 2000, Ducy, 2000, 

Candeliere and Aubin,, 2001, Wagner and Karsenty, 2001, Blin-Wakkach et al., 

2001). Such factors display a clear spatio-temporal expression profile that is tightly 

regulated, and play multiple roles at different stages in suture patency (see Figures 

5.1.3 and 5.1.4) (Kim et al., 1998, Opperman, 2000, Holleville et al., 2003, 

Greenwald et al., 2003). 

In addition to transcriptional control, postnatal cranial development is 

influenced by a number of chemical and physical factors. Essential to suture patency 

is the dura mater that lies between the brain and the developing cranial bones. Both 

in vitro and in vivo experiments have demonstrated that an absence of dura mater 

tissue can result in premature suture fusion (Greenwald et al., 2000). Moreover, the 

type of dura mater tissue is specific to the suture type, and therefore must display a 
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Figure 5.1.3 
Distribution of transcription factors, growth factors and matrix proteins in the 
developing suture. 
A) in the newly formed patent suture the dura mater plays an essential role providing 
signals to the undifferentiated sutural mesenchyme that determine suture patterning 
and patency. 
B) as the suture begins to overlap, the signals from the dura mater are changed and 
downregulated. The sutural mesenchyme starts to specialise its matrix and express 
more osteogenic factors. 
C) in the fusing suture, dura mater signals are less Important and signals from the 
osteogenic bone fronts cause the sutural mesenchyme to differentiate and start to 
fuse. 
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suture specific spatio-temporal expression profile during suture development and 

patency (see figure 5.1.2). In mice the lambdoid suture remains patent until later life, 

and closes much later than the coronal suture in humans (Warren and Longaker, 

2001). Exchange of dura mater tissue between the fusing coronal suture and the 

patent lambdoid suture resulted in early closure of the lambdoidal suture and 

prolonged patency of the coronal. suture (Opperman, 2000, Greenwald et al., 2003, 

Helms and Schneider, 2003). It is thought the difference in the dura mater from 

these regions reflects the specific changes in the underlying brain regions 
(Greenwald et al., 2003). The brain is also known to influence suture patency 

through mechanical load received to the sutural mesenchyme as the brain grows 
(Mao, 2002, Kopher and Mao, 2003). Mechanical loads to the sutures are also 

received during mastication, which would only occur later in infancy after tooth 

eruption (Mao, 2002, Kopher and Mao, 2003). 

Considering the AChE localisation pattern observed in developing calvarial 
bones (see chapter 3, section 3.3.1.1) work presented in this chapter describes the 

effects of AChE isoform overexpression and gene ablation on craniofacial 
development in transgenic mice. Further analyses of whole skeletons, long bones 

and ex vivo cultures provide evidence that AChE has a significant influence on bone 

development in vivo. 
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5.2 Materials and methods 

5.2.1 TransgenicAChE mice 

5.2.1.1 Maintenance and genotyping 
Five different lines of AChE transgenic mice were used in these studies. Transgenic 

lines of mice with constitutively dominant over expression of the synaptic form of 

AChE (AChE-S mice) or the 'readthrough' (AChE-R mice), dominant expression of an 
inactive form of AChE (inactive mice), or expressing antisense against AChE (antisense 

mice) have been developed and characterised at the Hebrew University of Jerusalem, 

Israel (see refs for details - Beeri et al, 1995, Beeri et al, 1997, Andres et al, 1997, 

Andres et al, 1998, Sternfeld et al, 1998, Sternfeld et al, 2000, Lev-Lehman et al, 2000, 

Grisaru et al, 2001 , Mor et al, 2001 Erb et al, 2001 and Farchi et al, 2003). AChE-R, 

AChE-S. inactive, and antisense mice lines were bred and maintained at the Hebrew 

University of Jerusalem by Tamah Evron, Liat Ben-Moyal and Al Grant. Day 3 

newborn pups were killed and tail tips were taken for genotyping before fixation, 

storage and shipment in 95% ethanol (procedure kindly carried out by Tamah Evron). 

Mice lacking in expression of AChE (AChE -1- ) were developed by Professor 

Oksana Lockridge and Dr. Weihua Xie, and characterised by Dr Ellen G Duysen, Epply 

Institute, University of Nebraska Medical Centre, Omaha. Briefly, homozygous 

knockouts were obtained by stable transfection of embryonic stem cells with an AChE 

knockout gene targeting vector and microinjection into blastocytes, followed by 

homologous recombination of heterozygous mice (see Xie et al, 1999, and Duysen et al, 

2002 for detailed methods). Due to weakening of the muscles, suckling was impaired 

and therefore litters of nullizgous mice were weaned at postnatal day 14 and maintained 

on a high glucose/fat/calorie liquid diet of Ensureo (Abott laboratories 
, Ross Product 

Division, Columbus, OH). Mice genotyping carried was out by RT-PCR was kindly 

performed by Dr Ellen Duysen. Animal skeletons were cleared by African flesh eating 

beetles. Bone samples and newborn pups were kindly collected by Dr Ellen Duysen 

and Dr Paul Genever before shipment to the UK. 

5.2.1.2 "ole mount skeletal staining 

AChE-R, AChE-S, inactive, antisense and knock-out AChE lines were analysed for 

bone and cartilage using alizarin red and alcian blue as previously described (Dingerkus 
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and Uhler,, 1977, Rosa-Moliner et al, 1999). Postnatal day 0 and 3 (PO and P3) pups of 

all transgenic mice, and embryonic day 19 (E19) and 21 (E21) knock-out mice only 

were skinned and eviscerated before fixation in 95% ethanol for at least 5 days, and 

acetone for 4 days. Staining with 0.3% alcian blue and 0.1% alizarin red was followed 

by clearing of the non-skeletal tissue with OAM potassium hydroxide (KOH) in a 20% 

glycerol solution until the stained skeleton was visible. KOH solution was then 

replaced with increasing concentrations of glycerol. 

5.2.1.3 Ex-vivo culture of whole marrow extractedftom transgenic A ChE lines. 

Whole marrow extracted from mature male mice of the AChE-S, AChE-R, inactive and 

antisense AChE transgenic mice were culture as described for rat marrow in chapter two 

(see section 2.1.2.4). Analysis of surface bound alkaline phosphatase activity was 

carried out either at end point day 16, or at 3-day intervals during the culture period also 

as previously described in chapter two (see section 2.1.3.1). 

5.2.1.4 Statistical analysis of ex-vivo cultures 

Alkaline phosphatase assays were carried out in repeats of 10 samples per 

treatment/sample origin. Each sample was anylsed in duplicate and normalised to total 

protein concentration carried out as indicated in section 2.1.4.1. Samples were then 

analysed using paired t-tests carried using SPSS version 10. 

5.2.1.5 Contact x-ray analysis 

Postnatal day zero (PO) AChE knock-out (AChE-l-), heterozygote (AChE+'-) or wildtype 

(+/+) mice pups were fixed in 95% ethanol, and dried skeletal samples cleared of flesh 

by African flesh eating beetles were subjected to transmission x-ray analysis using a 

Faxitron 120KV x-ray machine, at the Department of Archaeology, University of York. 

Briefly, pups or skeletons were arranged in a variety of positions on blackout cassettes 

containing Kodak x-ray film. KV exposure and time were optimised to between 20-30 

kV for 2-3 minutes. X-ray films were developed by hand using a traditional method, 

and finished using a film drier. X-rays were then visualised with the aid of a light box 

and digital images taken using a digital camera. 
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5.2.1.6 Histology 

The mice hind and fore limbs of postnatal day zero (PO) AChE knock Out, heterozygote 

and wild type mice were decalcified and paraffin wax embedded prior to cutting 10ýtm 

longitudinal sections of the proximal tibiae and fibiae using a microtome as described in 

chapter two (section 2.1.6.2a. ) Postnatal day 18,21,36,72,181 calvariae were 

processed as above using varying times for decalcification for traverse sectioning across 

the sagittal suture. After deparaffinisation in xylene and rehydration through graded 

ethanols,, histological staining with haematoxylin and eosin was performed. Tissue 

morphology was observed by standard light microscopy using DMLA upright 

microscope (Leica). 

5.2.1.7 Immunolocalisation 

Immunolocalisation of AChE and Msx-2 (see Chapter 2, table 2.1 for description of 

antibodies used) was carried out on paraffin sections of AChE-/-, AChE+/- or wild type 

calvariae essentially as described in chapter two (see section 2.1.5.2b). 

5.2.1.8 Dual energy x-ray absorptiometry (DX4) analysis 

Age and sex matched -/- (n= 10), +/- (n= 10), and +/+ (n= 10) were weaned early at day 

14 on a controlled diet of Ensure, kindly carried out by Dr Ellen Duysen. Mice were 

sacrificed on day 21 and perfused with formalin before removal of some organs and 

brain tissue. Complete skeletons were then post fixed in 95% ethanol before shipping to 

the UK. Whole skeleton DXA analysis was kindly performed by Dr Mark Perry, 

University of Bristol, Bristol, UK. 

5.2.1.9 Statistical analysis of DXA 

Analysis of variance using multiple t-tests, one-way ANOVA and Bartletts and Tukey's 

post hoc tests were carried out using SPSS (version 10) statistics programme. 
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5.3 Results 

5.3.1 Skeletal phenotype ofAChE transgenic animals 

5.3. LI Isoform-specific effects of AChE transgenesis on craniofacial development in 
vivo 

The skeletal phenotype of transgenic mice over specifically expressing AChE-R, AChE- 

S, expressing antisense oligonucleotides against AChE or expressing an inactive form 

of AChE was characterised using neonatal day 3 mice pups stained for bone and 

cartilage using alizarin red and alcian blue. Although there was an apparent reduction 

in body size of mice overexpressing AChE-R or antisense against AChE, no overt 

skeletal abnormalities were apparent in the long bones of the fore or hind limbs, or the 

bones of the rib cage (Figure 5.3.1). However, significant differences in the calvarial. 
bones of AChE-R and antisense transgenic lines in comparison to other lines and wild 

type littermate controls were observed (Figure 5.3.1). A reduction in alizarin red 

staining in the cranial bones was apparent in mice specifically overexpressing the 

AChE-R isoform, and in mice expressing antisense against AChE. An absence of 

staining in the parietal foramen region of the skull also in the AChE-R and antisense 

AChE mice could suggest a widening of the posterior cranial fontanel and possibly 
developmental delay of the sagittal and lambodial sutures. 

5.3.1.2 Isoform-specific effects of AChE transgenesis on osteoblast differentiation ex 

vivo 

Whole bone marrow stromal cells were extracted from mature male AChE transgenic 

mice and cultured in the presence of osteogenic supplements (Malaval et al, 1994). In 

all cultures overexpressing AChE, a marked increase in alkaline phosphatase activity 

was observed after 16 days in culture, most significantly in cells overexpressing the 

AChE-R isoform when compared to wild type controls (Figure 5.3.2). To characterise 

this further,, cultures were analysed for alkaline phosphatase activity at different time 

points in culture up to day 15. Alkaline phosphatase activity of AChE overexpressing 

cultures followed a similar pattern to that of wild type cultures, however a progressive 

increase in alkaline phosphatase activity was observed in AChE-R and AChE antisense 

cultures when compared to wild type controls at later time points in culture (Figure 

5.3.3). 
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Figure 5.3.1 
Whole mount skeletal staining using alizarin red (bone) and alcian blue (cartilage), 
of 3 day old transgenic mice. Absence of staining in the parietal foramen region of 
the calvaria was identified in AChE-R (B arrows) and antisense transgenic mice (C 
arrows) in comparison to wild type controls (A), indicative of delayed closure of 
the sagittal and lambodial sutures. (D) Cranial vault of AChE-S overexpressing 
mice. 

150 



Chapter 5 

0.06 
=1 

0.05 

0.04 

0.03 

CL 'A 0.02 0 

0.01 

4 

0 

Cell type 

Figure 5.3.2 
Alkaline phosphatase assay of whole marrow extracted from AChE 
transgenic animals and grown under osteogenic conditions until day 16. 
All cultures overexpressing AChE had significantly increased alkaline 
phosphatase activity when compared to Wild type controls, with 
greatest increases observed in cultures overexpressing the AChE-R 

isoform (n=6, ** p<0.01, * <0.05). 
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Figure 5.3.3 
Alkaline phosphatase activity of whole marrow extracted from AChE 
transgenic mice overexpressmg AChE-R or antisense against AChE, and 
wild type animals was determined at different time intervals In culture until 
day 15. A significant and progressive increase in alkaline phosphatase 
activity was observed 'in AChE-R cultures when compared to wild type 
control cultures. AChE antisense cultures constantly displayed 
significantly increased alkaline phosphatase activity when compared to 
both AChE-R and wild type control cultures. 
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5.3.2 Skeletal phenotype ofAChE"- mice 

5.3.2.1 Effect ofAChE knockout on skeletal development 

AChE knock out mice samples were kindly provided for analysis of skeletal phenotype 
by Professor Oksana Lockridge and Dr Ellen Duysen, University of Nebraska, USA. 

Whole mount alizarin red and alcian blue staining of PO AChE knock out skeletons 

revealed a similar phenotype to that observed in the AChE-R and antisense AChE 

animals. Although no gross skeletal abnormalities were observed, reduced alizarin red 

staining, specifically in the cranium, and an absense of any staining at the parietal 
foramen region was identified suggesting widening of the posterior fontanel. 

Haemotoxylin and eosin staining of sections taken from PO hind and fore limbs revealed 

no overt effects on limb development, with all bones appearing to have developed a 

normal phenotype with a growth plate organised in a conventional manner (Figure 

5.3.4). However upon closer inspection there may be a possible reduced cortical 

thickness at the metaphysis of the bones analysed (Figure 5.3.4). 

5.3.2.2 Specific effect of knock out ofAChE on craniofacial developmental 

Haernotoxylin and eosin staining of calvaria taken from AChE knock out mice at days 

II and 18 after birth revealed a significant reduction in thickness and development 

(Figure 5.3.5), which was also observed when skulls taken from AChE knock out mice 

were compared to sex matched wild type samples under back illumination (Figure 

5.3.6). Immunolocalisation for Msx-2, a regulator of calvarial development and suture 

patency, in AChE knock out mice calvaria did not reveal significant differences in 

expression levels or localisation compared to wild type controls (Figure 5.3.7). 

5.3.2.3 Reduced bone mass in A ChE'_ý animals 

Whole PO AChE-1- and wild type mice were compared by x-ray analysis, an increased 

radiolucency of the AChE-1- skeletons compared to wild-type controls, indicative of 

generalised osteopenia was observed (Figure 5.3.8). This was particularly marked in 

the skull bones of older AChE-/- mice. Reduction in bone mass was confirmed by DXA 

analysis of sex-matched day 21 mice which revealed a significantly reduced bone 
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Figure 5.3.4 
Haematoxylin and eosin staining of paraffin sections taken from PO wild type and 
AChE knock out mice lower limbs. Anatomically, bones of wild type (A, C and E) 
and AChE knock out mice (B, D and F) appear very similar with fully developed 
growth plate, established trabecular bone, and marrow cavity. Close inspection and 
comparison of the compact bone of the diaphysis of the bones suggests a reduced 
thickness in the knockout mice (E) when compared to wild type controls (F). 
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Figure 5.3.5 
Haemotoxylin and eosin staining of paraffin wax sections taken at similar 
anatomical locations from postnatal day II and day 18 wild-type and AChE 
knockout mice. A reduction in calvarial width and vascularisation was 
observed inAChE knockout mice when compared to wild type control mice. 

155 



Chapter 5 

Original in colour 

Female 

Male 

Figure 5.3.6 
Images of back illuminated skulls of male and female, wild type and AChE knock 
out mice skulls under identical exposure conditions. Thinning of the parietal 
bones in AChE knockout mice can be seen when compared to sex matched wild 
type controls of a similar age under identical exposures. 
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Figure 5.3.7 
Immunolocalisation Msx2 (brown staining) on paraffin wax sections of 
postnatal day 18 wild type (a) and AChE knockout calvaria (b). Expression of 
AChE (brown staining) in wild type calvaria (c). 
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Figure 5.3.8 
X-ray analysis of wild type (WT) and AChE_'_ neonatal mice pups, demonstrating 

a reduced bone mass in AChE_'_ (A and B) when compared to wild type littermate 
controls. Images where taken using identical exposure times 
Q X-ray analysis of wild type (WT) and AChE-'- postnatal day 23 skulls revealing 
a continued reduction in bone mass seen most specifically in the cranium. Images 
were taken using identical exposures. 
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mineral density (BMD) (p<0.001), and bone mineral content (BMC) (p<0.001) and 
bone area (p<0.001) in AChE-1- mice when compared to wildtype and AChE+I- mice 
(Figure 5.3.9). A significant reduction in BMC (p<0.05) and bone area (P<0.05) was 
also observed in AChE+'- mice. A reduced overall body mass in AChE-1- samples was 

observed, however the percentage body fat to lean tissue of AChE-1- samples was within 
the same range as wild type and AChE+'- mice (Figure 5.3.10). 
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Figure 5.3.9 
DXA analysis of day 21 AChE knock out, heterozygotes and wild type mice. 
Significantly reduced bone mineral content (BMC) and area was observed in 
knock out and heterozygous mice when compared to wild type controls. Bone 
mineral density (BMD) was also significantly decreased in AChE-'- mice 
compared to wild type controls (n=10, ** p<0.05, *** p<0.001). 
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Figure 5.3.10 
DYA analysis of day 21 AChE-/-,, AChE"- and wild type mice. AChE 
knock out mice have a significantly reduced body mass when compared to 
wild type controls. However no significant differences in the percentage 
of body fat to lean tissue were observed (n=10, **P<0.05). 
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5.4 Discussion 

5.4.1 Isoform specific roles for A ChE in bone formation and development. 

Data presented in chapter 4 suggests a role for ACK as a matrix protein, involved in 

bone development and formation. Although expression of all ACK isoforms had been 

established, the specific functions for each isoform during osteogenesis was still 

unclear. Here, the findings suggest that specific expression of different ACK isoforms 

is required for normal bone development in vitro and in vivo. Characterisation of ACK 

isoform specific expression during long bone development revealed overlapping and 

specific patterns of expression (see section 3.3.1 and 3.4.3 Chapter 3). This suggested 

that the temporal and spatial expression of specific ACK isoforms is important to bone 

development and could provide an insight into the precise roles of the different AChE 

isoforms in bone. To further characterise the possibility of an isoform-specific role for 

AChE in bone development we used bone marrow stromal cells derived from transgenic 

mice over-expressing the different AChE isoforms and compared them to cultures of 

cells taken from mice expressing antisense against AChE or expressing catalytically 

inactive AChE. These cultures showed significant differences in osteogenic capacity as 
determined by alkaline phosphatase activity. A significant increase in alkaline 

phosphatase activity was observed in all cultures over-expressing AChE, including the 

cultures over-expressing inactive AChE. This suggests that overexpression of AChE 

can influence osteoblast differentiation, in a manner that is independent of catalytic 

activity. As the most significant effect on alkaline phosphatase activity was observed in 

cultures over-expressing the soluble secreted AChE-R isoform, it could be that secreted 

AChE influences osteoblast differentiation more specifically than membrane-associated 

isoforms. These data would support previous observations that AChE secretion was 

regulated during osteoblast differentiation, and that ACK matrices supported osteoblast 

adhesion (see section 4.5.1). Accordingly, it may also explain why a partial effect of 

overexpression of AChE-S was observed, as only a small ratio of the AChE-S produced 

by the cell is secreted (Rossi and Rotundo, 1992, Belbeoch et al., 2003). Further 

analysis of the exact cellular localisation of the AChE isoforms is important to 

determine the role of AChE in osteoblast function and the establishment of any isoform- 

specific effects. A similar, yet more substantial increase in alkaline phosphatase activity 

was also observed in cultures expressing antisense oligonucleotides against AChE. The 

dramatic increases in alkaline phosphatase activity observed in cultures overexpressing 
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AChE-R or antisense against AChE at later time points in differentiation could be 

indicative of aberrations in osteoblast differentiation. As alkaline phosphatase activity 

typically reaches peak activity during the matrix production and mineralisation phase of 

osteoblast differentiation it is possible that increased alkaline phosphatase activity 

observed in the AChE-R and antisense cultures is a result of delayed osteoblast 

maturation, or even increased proliferation resulting in a larger population of cells. 

Although alkaline phosphatase activity is a widely excepted marker of osteoblast 
differentiation it is highly important to establish isoform-specific effects of AChE on 

other markers of osteoblast phenotype such as osteocalcin, osteonectin, osteopontin and 

Cbfal. Moreover, whole marrow cultures can be used to analyse osteoprogenitor cell 
frequency if analysed for bone nodule formation in addition to alkaline phosphatase 

activity and calcium content. 

It may seem counter intuitive that over-expression of AChE and inhibition of 

expression appear to have similar effects upon osteoblast differentiation. However 

similar effects have been previously observed in bone marrow. Recent publications 
indicate that the AChE-R C-terminal peptide (ARP) can act as a growth-promoting 

agent in stem cells of haematopoietic origin (Grisaru et al., 2001, Deutsch et al., 2002). 

In addition, in vivo application of AChE antisense oligonucleotides has also been shown 

to induce progenitor cell expansion in ex vivo haematopoietic bone marrow cell cultures 

(Soreq et al., 1994). It is therefore also possible that enhanced alkaline phosphatase 

activity may be a result of an increased incidence of osteoprogenitor cells. This could 
indicate that AChE expression plays a role early in osteoblast differentiation and in vitro 
bone formation. It is possible that overexpression or inhibition of AChE expression 

renders osteoProgenitors at a definite stage in maturation. Numerous independent 

investigators have suggested functional redundancy of AChE with other molecules, in 

that compensatory mechanisms exist that operate in the absence of AChE expression or 

activity (Sternfeld et al., 1999, Meshorer et al., 2002, Me et al., 2000). For example 

AChE inhibition or antisense suppression can invoke a transcriptional compensatory 

response resulting in AChE-R over-expression (Grifman et al., 1998). AChE knock out 

animals also appear to have a functional compensatory overexpression of BChE in the 

brain and muscle (Li et al., 2000). It is possible that a functional redundancy of AChE 

with other molecules exists in osteoblasts, which could explain parallels in the effects of 

inhibition and overexpression observed. If distinct isoform-specific roles for AChE are 

apparent in bone, it may be that the switch of expression from one AChE isoform to 
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another AChE isoform, or a similar substitute molecule could exert substantial effects 

on osteoblast function and maturation. Further work along these lines is warranted. 

5.4.2 A rolefor AChE in suture patency 
Analysis of the craniofacial phenotype of AChE transgenic mice also indicated a 

possible isoform- specific role for AChE in bone development. Specifically the 

AChE-R, antisense, and knock-out AChE transgenic mice exhibited a widened 

posterior fontanel indicative of delayed closure or developmental delay of the 

lambodoid and saggital sutures in the region of the parietal foramen. This suggests 

that expression of AChE-R during suture development could be concentration- 

dependent, or could indicate that a secretable AChE isoform plays a role in suture 

patency. In addition, the data suggest a specific function for AChE-R, or properties 

possessed by AChE-R (i. e. ARP), in the differentiation of early mesenchymal 

tissues. The exact nature of suture patency is still unresolved. Analyses of cytokine, 

receptor and matrix protein distribution patterns in the developing cranial bones 

suggest that a specific spatio-temporal expression profile(s) is required. The 

identification of AChE in the developing calvaria prior to significant levels of 

alkaline phosphatase activity suggest AChE does play an important role in early 

mesenchymal tissues (see sections 3.3.1 and 3.4.1 Chapter 3). AChE expression 
displays a diffuse profile throughout the sutural mesenchyme, but is also 

prominently expressed in periosteal tissues and at osteogenic fronts. This could 

suggest multiple functions for AChE during suture development and patency, with 

roles both in ossification and plasticity of the mid-sutural mesenchymal tissue. 

Although many factors have been identified in the patency of sutures, two signalling 

pathways, FGFs and the TGF-P super-family, have received most attention (Ornitz 

and Marie, 2002, Massague et al., 2000). Not only do these two signalling families 

have a large repertoire of effects on osteoblast differentiation and bone formation, 

but significant numbers of craniofacial malformations are a result of mutations in 

members of these signalling systems. Moreover, there are data detailing a complex 

inter-regulation of suture patency through these signalling cascades (Kim et al., 

1998, Greenwald et al., 2000, Opperman, 2000). In support of a role for AChE in 

suture patency, it was demonstrated that AChE expression by osteoblastic cells of a 
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calvarial origin was regulated by both these signalling systems (see chapter 4, 

sections 4.3.1 and 4.4.1 ). 

Before any isoform-specific role for AChE may be concluded from these 

results it is important not to assume that the effects observed are directly attributable 

to a role of AChE in bone or suture patency. Many other factors also impact on 

suture patency, such as surrounding tissue development including the brain and 

other cranio-facial skeletal elements. Co-ordination between skull expansion and 
brain development is maintained via the sutures. As AChE is thought to play 

significant roles in brain development it may be that as a result of disruption in 

AChE expression a change in the way signals to the sutures have occurred (Layer 

and Willbold et al.,, 1994). Mechano-transductional signals are also thought to 

influence suture patency; disturbed brain development as a result of altered AChE 

expression may have an effect on such a mechanism, rendering sutures in a 
hypoplastic state (Kopher and Mao, 2003). However, this may also fit with the 

observations that AChE expression is regulated in response to mechanical loading 

(see chapter 4 sections and 4.3.2 and 4.4.2). The in vivo loading model in particular 

could be likened to the mechanical loads received by sutural mesenchyme in 

response to the growing brain. The dura mater lying between the developing 

cranium and the brain is also thought to aid in maintaining co-ordinated brain-skull 

growth (Greenwald et al., 2000). Alterations in AChE expression may also result in 

a disruption in signalling between the dura mater, the brain, and the developing 

cranium. Innervation of the dura mater via a catecholaminergic mechanism has been 

suggested, however not studied in depth and is based on analysis of expression 

patterns, using AChE activity as the basis of evidence for cholinergic innervation 

(Artico and Cavallotti, 2001). While this must not be dismissed, a cholinergic role 

for AChE in the dura mater is still to be substantiated. 

Although the cranium is primarily developed by intramembraneous 

ossification, the skull base and a number of other cranio-facial elements are 

developed through endochondral ossification. Disrupted AChE expression may 

exert effects upon these skeletal elements resulting in knock-on effects on the 

developing calvarial bones. It is likely that as a result of disrupted AChE expression 

a combination of effects caused the developmental delays in cranial development 

observed. Nonetheless, taking all these points into consideration, an i soform- specific 
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phenotype is apparent and may be instrumental in understanding the role of AChE in 

bone. 

A great many skeletal malformations caused by genetic mutations have been 

identified, the majority displaying significant craniofacial abnormalities. Largely, 

abnormalities in suture closure are observed as a result of premature closure or 

craniosynostosis. However more recently, a small number of disorders with 

aberrations in suture patency that results in open fontanelles have been identified 

(Opperman, 2000, Ornitz and Marie, 2002). Cleidocranial. dysplasia (CCD) is a 

skeletal disorder characterised by absent or delayed suture closure. This disorder is 

thought to be caused by mutations in the osteoblast specific transcription factor 

Cbfa-I/RUNX2 gene (Otto et al., 1997, Lee et al., 1997). Although full knock out 

of Cbfa-I produces a lethal phenotype with normal bone pattern formation but 

complete absence of mineralisation and lack of osteoblasts, partial knock out found 

in the heterozygotes generates a severe bone phenotype displaying similarities to 

CDD. Transgenic Cbfa- I heterozygous mice also have a cranial phenotype similar to 

that reported here for the AChE-R and antisense AChE animals, however widening 

and patency of all sutures was identified in Cbfa-I heterozygotes. As various bone- 

related elements, including Cbfa-I binding motifs, have been identified in the 

extended AChE promoter region (Grisaru et al., 1999), AChE may act downstream 

of Cbfa-I in suture development. Congenital parietal foramina (CPF) is another 

human disorder resulting in delayed suture closure and reduced membraneous 

mineralisation in the cranium (Winograd et al., 1997, Wilkie et al., 1999, Liu et al., 

1999). This disorder displays most similarity to the phenotype observed in AChE 

transgenic animals (Wilkie et al., 1999). Loss of function mutations in the Msx2 

gene have been identified in patients with this disorder and Msx2 knock-out mice 

present with multiple craniofacial abnormalities, as well as delayed suture closure. 

Msx2 plays a fundamental role in osteoblast differentiation and function (see section 

1.2.3). After suture closure, Msx2 expression is still apparent in proliferating and 

expanding populations of osteoblasts. Using immunolocalisations, there was no 

apparent effect of AChE knock-out upon Msx2 levels in the region of the coronal 

suture, which undergoes most active postnatal closure in the first few weeks of life. 

These findings suggest that AChE might play a role downstream to Msx2. Another 

rare, but severe bone disorder, cranium bifidium, also results in gaps between the 
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skull bones (Wilkie et al., 1999). This phenotype is caused by duplication of the 

Twist gene in patients. Twist plays an early developmental role in osteoblast 
differentiation, with expression progressively decreasing as cells become more 

mature (Opperman, 2000). It seems that aberrations in the factors that control early 

osteoblast maturation result in developmental effects on suture patency and skull 
bone development. It could therefore be suggested from our results that AChE may 

play an early role in osteoblast differentiation. 

5.4.3 A role for A ChE in intramembraneous bone formation and mineralisation 
Although an obvious craniofacial phenotype was observed in the AChE transgenic 

mice, initial inspection of the overall skeletal phenotype revealed no overt 
deformities although more detailed histomorphometric studies are required. 

However,, further characterisation of the skeletons yielded data suggesting a role for 

AChE in bone development. Skeletons of AChE-/- mice are reduced in density by 

visual inspection and handling. Whole mice analysed by DXA and x-ray also 
displayed a significant reduction in BMD and BMC. Such reductions could be 

attributable to a number of factors. Firstly, as already suggested, AChE-/- may 
impact upon osteoblast maturation and proliferation (see 5.4.1 and 5.4.2). Many 

other knock-out mice that present with reduced bone mass, also have a significant 

reduction in osteoblast number (including mice lacking Msx-2, Dlx5, TGF-Pl, 

cadherin- I I,, osteonectin, Cbfa- 1) (Otto et al., 1997, Lee et al., 1997, Acompora et 

al., 1999, Kawaguchi et al., 2001). TGF-P1 knock out mice for example have a 

reduced bone mass, reduced osteoblast number, and in addition, a reduced functional 

activity in ex-vivo osteoblastic cultures. Analysis of osteoblast number and 

functionality in AChE-1- mice could clarify such factors. Reductions in osteoblast 

number if present in AChE-1- mice could be as a result of functions for AChE that 

regulate osteoprogenitor and osteoblast differentiation, possibly mediated via cell- 

cell contact and cell-matrix interactions (see sections 3.4.1,4.4.1, and 5.4.1). 

Secondly, reduction in AChE expression and deposition may impact upon matrix 

composition and calcification. As previously discussed, AChE possesses a calcium 

binding EF-hand motif similar to that of osteonectin, which may play a role in 

matrix mineralisation. Indeed, osteonectin knock-out mice present with an 
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osteopenic phenotype. Thirdly, it is possible that AChE could act as a survival 

factor. 

Reductions in bone mass in AChE knock-out mice were most apparent in the 

skull region of the skeleton. Histological analysis of the long bones of AChE-/- mice 

also revealed a possible reduced cortical thickness though further studies are 

required to support this finding. Cortical thickness is achieved primarily through 

intramembraneous ossification and the ARF sequence, in a similar way to that of the 

calvarial bones. Therefore it would seem logical that reduction in bone density in 

membranous bones would be reflected in cortical bone thickness. A similar 

phenotype to the AChE-/- mice has been observed in cadherin-11 knockout mice, 

which also display an open posterior foritanelle. This would suggest that cell-matrix 

contact is important during intramembraneous bone deposition and development, 

and would support the data that indicate a role for AChE in osteoblast adhesion (see 

section 4.4.3). Histomorphometrical analysis of bones taken from AChE knockout 

mice at various other time points in maturation would provide a greater insight into 

the of effect of AChE knockout on bone remodelling. Other knockout models 

targeted to bone matrix proteins have provided a limited phenotype during early life, 

yet display severity as animals age (for example biglycan and thrombospondin 

knockout mice). Although further studies are required, taken together these data 

suggest that knockout of AChE expression has a significant effect upon bone 

development. 

5.4.4 How reliable are transgenic and knock out mouse models 

In recent years it has become common for knockout and transgenic animals to be 

used in the determination and analysis of protein function. In the bone field this 

technology has been extremely useful in defining the essential elements required for 

osteoblast function and differentiation, with a good example being the Cbfa- I knock 

out mice. Generation of whole knockout animals for the analysis of protein 

function in specific tissues has also undoubtedly lead to the discovery of roles for 

proteins in tissues other than for their primary function, and in many cases 

secondary or multiple functions. In this way studies on AChE transgenic mice have 

complemented the data that suggest a role for AChE in bone development. 

However, analyses of such animals must be performed with some caution. Not only 

Is it unknown if the effects are a direct result of the proteins studied, possible 
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downstream effects that may have contributed to the phenotype are impossible to 

extrapolate. Moreover, the possibility of functionally redundant proteins that are 

interchangeable and co-regulated with other similar proteins cannot be discounted, 

and may obscure the true function of the proteins analysed. A more direct approach 

to transgenic mice has been adopted in recent studies, using tissue or cell type- 

specific promoters to establish a tissue specific role for proteins and signalling 

systems whilst removing side effects produced on surrounding tissues. The effect 

upon embryonic development may also be overcome by using promoters of genes 

that are only activated upon birth or maturation of the tissue. This would enable the 

analysis of protein function specifically in mature tissues, which are often dissimilar 

to developmental roles. The effects of AChE knock-out and overexpression 

observed must therefore be considered with this in mind -the observations may not 
be a direct result of disruption in AChE expression, and may not identify the actions 

of AChE due to functional redundancy. 

A particularly important factor in bone is the behavioural and physical 

effects of knock-out or overexpression. Firstly, behavioural changes as a result of 

disruption in neuronal and muscular signalling may impact on general exercise and 

movement. Increased or decreased exercise would have a significant effect on bone 

remodelling and may have consequence for bone mass (Goldspink, 1999, Robling 

and Turner, 2002). In addition, dietary changes can also affect bone deposition, 

mass and volume (Ducy et al., 2000, Paakkunainen et al., 2001, Murray et al., 2003). 

Due to poor suckling reflexes, AChE-1- mice are weaned early on a special diet high 

in glucose (Duysen et al., 2002). Although this may be compensated for by feeding 

control mice on the same diet as done with the DXA analysis of this chapter. As the 

insulin like growth factor (IGF) family are known to exert considerable effects upon 

bone remodelling, increased blood glucose could have an effect on bone mass as a 

result of a high glucose diet (D'Ercole, 1993, Cornish et al., 2002, Banu et al. 5 
2003). However, it has not been established that there are increases in blood glucose 

in the AChE -/- mice, and without such a diet animals fail to survive to maturity. 

Similar to this, leptin is known to regulate bone mass, and diabetic mice have 

decreases in bone mass (Thomas and Burguera, 2002, Khosla, 2002, Takeda et al., 

2003, Watanabe, 2003). All AChE transgenic mice, other than the knock-out strain 

survive on a normal diet and still display a similar bone phenotype to the knock-out 

animals. Further analysis of the bone mass and volume of AChE transgenic and 
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knock out mice would clarify such matters. Furthermore analysis of knock-out 

animals at birth before behavioural or dietary effect could have an impact on bone 

mass did reveal a bone phenotype, suggesting that AChE may play a role in the 

maintenance of bone mass. 
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AChE : Non-cholinergic roles as a bone matrix protein 

AChE is one of the fastest acting enzymes known to man. Which begs the question of 

why it should be expressed in a mineralised tissue in the absence of a relevant 

cholinergic signalling pathway? In addition to theories of novel signalling systems, or 

interactions with resident nervous or surrounding muscular tissues, there is a growing 

body of studies that implicate multiple non-cholinergic, non-catalytic roles for AChE. 

This thesis has focused upon non-cholinergic roles for AChE in bone, and indeed there 

is a remit for a great many of the proposed 'secondary' functions of AChE within this 

tissue. The challenge has not been to determine a non-cholinergic function for AChE in 

bone, rather to define which of the multifunctional properties of AChE lends most 

significance in bone. Although this project is still very much in its infancy, I would like 

to use this next chapter to discuss what conclusions could be drawn from current 

knowledge of AChE in bone. 

Complex regulation ofAChE isoform expression in bone 

"Two paradoxes are better than one; they may even suggest a solution. " 

Edward Teller 

Considering the essential role that AChE plays in cholinergic signalling, and 

consequently in the developing nervous system, it is surprising that AChE knock out 

mice survive. Moreover, in light of the accumulating data on non-cholinergic roles for 

AChE, the survival of AChE knock out mice could be seen as almost impossible. For 

AChE knock out animals to survive, it is most likely that a functional redundancy 

between AChE and other proteins must exist. Certainly, this has already been 

established in the brain, where continued cholinergic signalling in the absence of AChE 

has been attributed to a functional increase in BChE expression and activity (Li et al., 

2000). In spite of this we have identified a significant skeletal phenotype in AChE 

knock out mice that not only supports a role for AChE in bone, but also contributes to 

the growing data on non-cholinergic roles for AChE. Furthermore, the skeletal 
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phenotype of AChE overexpressing transgenic mice presents yet another enigma, and 

indicates a complexity in the functioning of AChE in bone. Observations of an 

analogous skeletal phenotype in AChE transgenic mice both lacking and over- 

expressing specifically AChE-R would appear to contradict previous observations in 

vitro. It would appear that although AChE isoform expression shows considerable 

overlap in bone, distinct roles do exist. Exploration of i soform- specific functions may 

therefore be vital in the understanding of AChE function in bone. In a number of other 

tissues, overexpression of AChE-R shows considerable parallels to inhibition of 

expression or activity of AChE both in vitro and in vivo (Griftnan et al., 1998, Grisaru 

et al., 2001,, Deutsch et al., 2002). Taken together, transcriptional feedback and 

functional redundancy as demonstrated in neuronal tissues could provide a mechanism 

by which over expression may cause the same effect as knocking out the expression in 

bone (See Chapter I and chapter 5, and figures 6.1 and 6.2). 

Isoform- specific differences in functional localisation of AChE could provide 

for competition in cell-cell, cell-matrix interactions, as will be discussed in further detail 

later in this chapter. Additionally, the AChE-R isoform can generate a functional C- 

terminal peptide, which is distinct from that of AChE-S (Grisaru. et al., 2001, Deutsch et 

al., 2002, Perry et al., 2002). Hence, transcriptional feedback resulting in 

overexpression of AChE-R in bone may potentiate the normal function of AChE-R in 

bone. Two independent studies have already indicated that low-level exposure to AChE 

inhibitors that would induce transcriptional feedback in the brain, can cause severe bone 

loss in humans (Compston et al., 1999, Compston et al., 2003). If indeed a complex 

transcriptional regulation was present for AChE in bone, it could suggest that excessive 

AChE-R may in fact have deleterious effects on bone formation. 

Analysis of the bone mineral density of AChE-R mice may perhaps provide 

support for this theory, as well as providing further support for isoform- specific 

functions in bone. As AChE inhibitors are currently used as treatment for a number of 

disorders, including Alzheimer's disease and myasthenia gravis, the significance of a 

compensatory mechanism should not be overlooked (Millard and Broomfield, 1995). 

Furthermore, additional stringent measures to avoid occupational and environmental 

exposure to these agents should be explored. It is clear that there are functional 

differences in the AChE isoforms in bone, and therefore a complex regulation of AChE 
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expression might be present in bone. If that is so how might this impact upon bone at 

the cellular level? 

A ChE a mediator of cell-cell and cell-matrix interactions in bone 

Accumulating data from a variety of sources suggests that AChE can mediate cellular 
interactions with the matrix and other cells. In bone, cell-cell and cell-matrix 
interactions are essential for osteo/chondrogenesis (see section 3.1.1). Osteoblast 

adhesion and migration is also fundamental to the bone remodelling process. The 

effects of AChE on cell adhesion have been highlighted in other tissues and discussed in 

previous chapters (See sections 1.6.3 and 4.1.2,4.4.3) (Jones et al., 1995, Darboux et 

al., 1996,, Johnson and Moore, 1999, Bigbee et al., 1999). In neuronal tissues, AChE 

can induce cell adhesion, spreading, neurite extension, and axon guidance; moreover 

this can be inhibited by functional blockade of the adhesive site (Shapira et al., 1994, 

Seidman et al., 1995,, Jones et al., 1995, Darboux et al., 1996, Andres et al., 1997, 

Andres et al., 1998, Sternfeld et al., 1998, Johnson and Moore, 1999, Bigbee et al., 

1999). In vivo, AChE has also proved to be involved in the organisation of the 

neuromuscular junction, with aberrations in AChE expression resulting in disarray and 

disorganised morphology (Shapira et al., 1994, Seidman et al., 1995, Andres et al., 

1998). In addition, AChE possesses a number of sites with potential adhesive or 

electrostatic properties that have proved to be functionally active (Darboux et al., 1996, 

Botti et al., 1998, Johnson and Moore, 2003). Most significantly however is the 

esterase-like family of proteins sharing homology to AChE in the esterase-like domain, 

many of which have roles in mediating cell-matrix, cell-cell interactions in vivo. 

Furthermore, a transcriptional inter-regulation and functional redundancy of AChE with 

other esterase-like proteins has been identified,, suggesting AChE has the potential to 

interact with other proteins to mediate cellular interactions (Andres et al., 1997, GrifMan 

et al., 1998). 

1 have provided data to suggest AChE can mediate osteoblast adhesion when 

present as a matrix component, but not if present as a soluble factor in the extracellular 

environment (See sections 4.3.3.2,4.3.3.3, and 4.3.3-5). The previous chapter outlines 

that AChE in bone may also play an isoform-specific role both in development and 

osteoblast differentiation (see section 5.4.1 and 5.4.2). In particular, it is demonstrated 

that the AChE-R isoform is predominantly expressed in bone and can affect osteoblast 
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Figure 6.1 
Inhibition of AChE catalytic activity, or reduction in AChE expression due to 
antisense inhibition results in a transcriptional feed back response leading to a fast 
but long lasting switch of expression of AChE-S to AChE-R, soluble monomer, or 
other homologous proteins such as BChEand neuroligin. 
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differentiation in vitro. This would fit with observations of regulated AChE secretion 
during osteoblast differentiation as the AChE-R isoform is secreted as a soluble 

monomer. However as the other AChE isoforms are also expressed in bone as well as 
ColQ, and considering previous evidence that AChE is also localised to the cell 

membrane in osteoblasts (Genever et al., 1998), there could be a number of mechanisms 
by which AChE might mediate osteoblast adhesion or cell-cell contact in bone 

Firstly, AChE present on the cell surface of osteoblasts could attach to the bone 

matrix through its adhesive domain or through electrostatic interactions to induce cell 

adhesion (see figure 6.3). Adhesion through AChE could provide the cell-matrix 

proximity for the establishment of focal adhesions with more specific adhesion 

molecules found on the cell surface and in the matrix. 
Secondly, secretion and deposition of AChE into the matrix would provide an 

AChE substrate for osteoblast adhesion. AChE could be localised in the matrix through 

electrostatic interactions with other matrix proteins, or through binding of CoIQ to 

heparan sulphate proteoglycans in the matrix (Peng et al., 1999, Rotundo et al., 2002). 

Indeed, the collagen-like tail has proved essential in localisation of AChE in the 

basement membrane, for example perlecan knock out animals have an absence of AChE 

at the basement membrane (Rotundo et al., 2002). AChE molecules may also be 

localised in the matrix through interactions with as yet unidentified receptor molecule(s) 

or matrix proteins through its adhesive domain (see sections 1.5.2,4.1.2 and figure 6.3). 

Osteoblasts could then bind to the AChE present in the matrix, again through a number 

of ways. It has been suggested that AChE may bind to other AChE molecules present 

on other cells or in the matrix using a mechanism similar to oligomerisation of multiple 

AChE molecules (Botti et al., 1998). AChE localised on the cell surface via the PRiMA 

subunit or through electrostatic interactions could therefore bind to AChE in the matrix 

causing cell-matrix adhesion. Conversely, AChE localised in the bone matrix could 

interact with receptor molecules found on the cell surface. Functional redundancy of 

AChE with neuroligin I has been demonstrated in neuronal tissues (Grifman et al., 

1998, Sternfeld et al., 1999). Neurexin-neuroligin interactions are well established in 

the mediation of cell-cell interactions at synaptic sites (see figure 6.3) (Nguyen et al., 

1997,, Scheiffele et al., 2000). Expression of a number of neurexin and neuroligin 

partners has been demonstrated in bone (see section 4.3.5), therefore it is possible that 

AChE localised in the bone matrix could interact with neurexins or analogs thereof 
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Possible interactions of AChE as a matrix component to induce or inhibit cl 
adhesion/attachment. 
1. AChE could induce cell-matrix adhesion through matrix immobilisedAChE interactii 
with yet to be identified cell surface ligands (A), or inhibit adhesion through secret, 
AChE blocking matrix bound receptor molecules from cell surface AChE (B). 
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ligands may however block cell surface expressed AChE from binding to the matrix. 
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present on the cell surface to cause osteoblast adhesion. Due to the large size of the 

neurexin and neuroligin genes, and the extensive inter-gene splicing and post- 

translational modification, over 1000 possible variants of neurexin and numerous 

neuroligin members could be expressed (Ullrich et al., 1995, Ichtchenko et al., 1996). 

It is conceivable that bone-specific partners for AChE exist that may belong to the 

neurexin family. It has also been hypothesised that neuroligins may act as signalling 

molecules via neurexins, which may attach to intracellular components signalling 

systems via PDZ domain proteins, some of which have already been identified in bone 

and osteoblasts (see figure 6.3) (Nguyen et al., 1997, Littleton et al., 1997, Songyang et 

al., 1997, Grifinan et al., 1998, Spencer et al., 2000). 

Thirdly, it may be possible that surface bound AChE via the GPI anchor or the 

PRiMA subunit could bind to other novel matrix components. Again the neurexin- 

neuroligin parallel may play a factor, or AChE may bind to other matrix components 

through it adhesive domain such as lamanin or collagen which are known to bind to 

AChE (Johnson and Moore, 2003). A graphical representation of these possibilities can 

be found in Figure 6.3. 

The data presented in chapter 4 would suggest that the second possibility 

discussed might be more favourable, with AChE present as a matrix component for 

osteoblast attachment. Although the complex regulation and multiple isoforms of 

AChE suggest that it is likely that many different circumstances with differing needs 

could be fulfilled. In contrast to a role in mediating cell adhesion, it is also possible 

AChE could block adhesion. Competition between cell-surface bound, matrix bound 

and free soluble AChE for receptor molecules such as neurexins may exist. This could 

be useful both during development and remodelling. Production of secreted AChE may 

block matrix bound receptor molecules from surface expressed AChE binding allowing 

cell motility and migration, an important factor in osteogenesis and remodelling (see 

figure 6.3). In addition, it could block cells from binding to the cell surface and 

encourage them to form complexes with molecules on other cells to cause cell-cell 

contact. Again during development this would be essential. Conversely, it could also 

prevent cell-cell contact and encourage cell adhesion. This is true for a number of bone 

matrix proteins (e. g. osteonectin, osteopontin) that have been classed along with a 

number of other proteins as matricellular proteins (Sodek et al., 2002). This new family 
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of proteins display roles in a variety of tissues in adhesion, migration, and differentiation 

and often possess these properties secondary to their primary role (Bornstein and Sage, 

2002). It has been suggested that such proteins have the ability to maintain an 
intermediate adhesive state in which no focal adhesions of cells occur; rather cells are 

associated with the matrix but can freely migrate (Murphy-Ullrich, 2001). This would 

be of considerable use for osteoblasts, especially during remodelling where bone lining 

cells and osteoblasts are required to be removed from the surface for osteoclastic bone 

resorption. It is clear that AChE is capable of self-regulation of function and can provide 

a number of mechanisms to regulate bone development and remodelling. 

A ChE as a growth promoting agent 

Demonstration of regulated AChE expression in response to growth promoting agents, 

mechanical loading and regulated expression during osteoblast differentiation, indicated 

that AChE may play a role in osteoblastogensis. AChE is thought to possess properties 

that can promote cell proliferation and differentiation. However the specific 

mechanisms involved have yet to be identified. In cholinergic and other neuronal 

tissues it has been proposed that AChE can act through a cholinergic mechanism to 

assert its growth promoting effects. However, increases in AChE expression that 

parallel cell proliferation and differentiation in other tissues, in which cholinergic 

signalling is absent, could present us with a novel mechanism. One tissue in which 

AChE plays a recognised non-cholinergic function is the retina. Characterisation of 

AChE and BChE expression profiles in retina and retinal spheroid systems has revealed 

that AChE is specifically expressed in tissues that are differentiating. BChE expression 

however, is limited to proliferating cells, and is progressively lost in culture as cells 

become more differentiated (Layer, 1983, Willbold and Layer, 1992, Layer and 

Willbold, 1994). Indeed, in the developing nervous system AChE/BChE expression 

profiles are mutually exclusive, with AChE apparent in areas of migration or 

differentiation, and BChE expressed only in mitotically active areas (Vollmer and Layer, 

1986 and 1987, Willbold and Layer 1992). In contrast, AChE expression levels appear 

to increase in cancerous conditions where dramatically increased cell proliferation is 

observed (Perry et al., 2003). Although there is enough data to implicate a role for 

AChE in cell differentiation, in a system that may include BChE, there is no evidence of 
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a direct involvement. It is possible that cell-cell/cell-matrix interaction could Initiate 

downstream signalling either by allowing interaction with other signalling systems, or 

by activating its own signalling systems. As discussed above, AChE could be involved 

in mediating cell-cell matrix interactions in bone, and data from other tissues suggest 

neurexin-neuroligin like signalling may occur through AChE. In addition, AChE-R was 

recently found to interact with RACKI and PKC? I1 to induce intracellular signalling 

cascades in response to stress conditions in the brain (Birikh et al., 2003). 

It has long been recognised that the expansion of haernatopoietic progenitors and 

the terminal differentiation of certain haematopoietic cells is co-related to increasing 

levels of AChE expression. Most recently direct evidence both in vitro and in vivo 

suggests that the AChE-R isoform can control haematopoietic cell fate. Moreover the 

AChE-R peptide ARP can induce progenitor cell expansion directing cell differentiation 

toward that of the megakaryoblastic/cytic lineage. The mechanism by which ARP 

induces such actions has yet to be identified. However it is clear that ARP can exert 

considerable influence on the differentiation of this cell type. As haematopoietic cells 

share a common lineage, it is possible that effects on one cell type might well influence 

differentiation of other cell types as a consequence. Indeed, differences in populations 

of other cell types have been observed in AChE-R mice, and in mice with AChE 

expression inhibited by antisense treatments (Soreq et al., 1994, Grisaru et al., 2001, 

Deutsch et al., 2002). Such influences may also subsequently have down stream effects 

on osteoprogenitor cell differentiation. Additionally, mesenchymal cells in bone 

interact with megakaryocytic cells and are thought to influence each other through 

cross-talk of signalling systems. ARP may represent yet another molecule that can 

mediate signals between cell types of different tissues which occupy the same biological 

environment. Cross-talk between the dura mater and the developing calvarium is also 

an essential mechanism by which ARP may act. The data presented in Chapter 5 

already implicate a specific role for the AChE-R isoform in calvarial development. 

Conversely, AChE peptides may act directly to affect osteoprogenitor expansion 

and differentiation. At the suture, this may mean that elevated AChE-R could 

subsequently give rise to increased levels of ARP, which in turn may cause a prolonged 

period of osteoprogenitor cell proliferation resulting in greater cell masses within the 

suture and delayed closure. My data already indicate this could also be true for the 
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marrow where increased ARP as a result of increased AChE-R expression may cause 
nil aberrations in stem cell proliferation with down-steam effects on osteoblastogenesis. 

Novel cholinesterases as treatmentsfor bone diseases 

From the data presented in this thesis, it is clear that a functional role for AChE exists in 

bone. The extensive knowledge of AChE in relation to cholinergic signalling and the 

growing body of data on AChE non-cholinergic activities could yet provide novel 

approaches in the treatment of bone disorders such as osteoporosis and osteoarthritis. As 

a relationship between chronic exposure to cholinesterase inhibitors and decreased bone 

mass has been identified, it is unlikely that already established inhibitors against AChE 

could be exploited as possible treatments (Compston et al., 1999, Compston et al., 
2003). However, because cholinergic signalling pathways have yet to be identified in 

bone cells, design of novel drugs for AchE, targeted specifically to bone could be 

developed without any disruption to cholinergic signalling systems. Moreover, since it 

has become evident that AChE represents only one member of larger family of esterase- 
like proteins, the possibility of identifying new therapeutic targets is further expanded. 

Understanding of isoform- specific functions of AChE in bone may also provide an area 
for targeted treatment development. Peptides such as those found on the C-terminus of 

AChE,, if involved in bone modelling and remodelling, are ideal candidates for the 

development of new treatments of bone disorders. Both are easy and inexpensive to 

produce, and these peptides would pose little disturbance to cholinergic signalling. 

Future work 

As this project has progressed it has moved in directions that were not first envisaged. 

The analysis of AChE transgenic mice has proved to be essential not only in providing a 

definitive physiological function for AChE in bone, but in identifying isoform- specific 

differences in function. Furthermore, significant complexity in the regulation of AChE 

isoform expression has become evident. However, this leap from characterisation to 

functionalisation has left behind what I feel are unanswered questions and gaps in the 

story. Additionally, a number of new avenues of investigation have been identified. 

Therefore future work could progress in three directions. 

1. Further characterisation of osteoblastic AChE regulation 

2. Further characterisation of AChE transgenic mice 
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3. Investigation of isoform- specific functional roles for AChE in osteo/chondrogenesis. 

1. Although expression of a number of AChE accessory proteins and cholinesterase-like 

proteins has been established in this thesis, the exact nature of their role in AChE 

function is still very unclear. This is an area of its own relevance and interest and 

should be treated as such. 
Functional localisation of AChE!, and means of localisation may also prove important. 

Characterisation of anchoring proteins such as the PRiMA subunit and CoIQ in 

osteoblasts and bone may provide further clarification. Further analysis of the AChE 

isoforms secreted by osteoblasts may also be important in establishing potential 

interaction between AChE and the matrix (i. e CoIQ or AChE-R). 

2. Characterisation of the AChE transgenic mice is still in the very early stages. 

Thorough histological analysis at varying ages of all skeletal elements is required to 

determine the extent of reduction in intramembraneous ossification. This should 

parallel further characterisation of bone mass and volume using DXA, micro CT, or 

QCT. It would be most interesting to see if the similarities in skeletal morphology 

observed in AChE-R overexpressing mice, antisense mice and AChE knock out mice 

are carried over to the effect on bone mass observed in AChE knock out mice. Micro- 

CT could also be used to analyse developmental delays in suture closure, and to 

establish differences in suture width in transgenics in comparison to wild type mice. 

Furthermore, this could be done independantly of any changes in the skull base 

sychondroses to clarify the nature of the defect. Suture closure could also be 

investigated by the use of whole calvarial organ cultures systems, to see if specific 

signalling pathways have been affected by aberrations in AChE expression. Responses 

of AChE animals to mechanical loading and cytokine administration are also a 

possibility. Ultimately, transgenic mice with bone targeted AChE disruption using 

osteoblast and chondrocyte specific promoters would be very beneficial. 

3. Transgenic AChE mice are also an invaluable source of tissue for ex vivo 

experiments. Tissues from AChE transgenic mice could be analysed for alterations in 

RNA and protein levels of established regulators of bone formation and 

osteoblastogenesis. Ex vivo culture of bone marrow from mice over expressing AChE 

have already provided indications of isoform-specific differences in osteoblast 
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differentiation. To clarify isoform- specific roles for AChE in osteoblast function, 

differentiation, proliferation, and apoptosis, ex vivo whole marrow cultures and primary 

cultures of mouse calvaria could be employed. Further to this, transfection of primitive 

cell lines and primary osteoblast-like cells with dominant-negative and dominant- 

positive plasmid constructs containing sequences specific to the different AChE 

isoforms could be also be used. To determine specific functions for AChE, plasmids 

containing sequences targeted to specific regions of the AChE protein (i. e. adhesive 

domain, EF calcium binding domain), or mutated sequences could be used to establish 

effects on osteoblast adhesion and differentiation. This approach could also be used to 

determine any effects of the C-terminal peptides of AChE, ARP and ASP. As ASP has 

been linked to translocation and transcriptional activity of a Runxl, the possibility of 

ASP maintaining a similar influence on Runx2/Cbfal in osteoblasts is another potential 

area for investigation. 

I have proposed a functional redundancy and transcriptional feedback response 

to explain the skeletal phenotype analogies, and in theories of cellular interaction, this is 

a key point. Therefore it is imperative to establish if a transcriptional feedback response 

exists within bone and osteoblasts. This could be approached in two ways. Firstly, 

using cell culture models, and secondly, using cells and tissues from the variety of 

AChE transgenic mice. Potentially, this could also provide an indication of possible 

interacting signalling systems for AChE and others established within bone. 

Summary and Conclusions : Functional redundancy, or a poor substitue for the 

realthing? 

Multifunctionality and functional redundancy are by no means new concepts. Although 

it may be easy, it is foolish to assume that a protein may exist for a singular purpose. 

The basis of this project is rooted in these concepts. The recent discovery of multiple 

non-cholinergic functions for AChE provided the possibility of numerous roles within 

bone. The analogy of AChE to other bone matrix proteins, both in expression and 

structure could also suggest functional redundancy. The data presented in this thesis 

suggest strongly that AChE has a role as a bone matrix protein. However, functional 

data are limited, mainly because of the growing number of functional roles of AChE. I 

have been lucky enough to have access to a number of sources of AChE transgenic 

mice, from which isoform- specific roles for AChE and a complex regulation of AChE 
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isoform expression in bone has become evident. Expression of AChE-R, in particular, 

showed considerable parallels to a number of bone disorders, as well as similarities to 

the inhibition of AChE expression. This suggests that expression of AChE-R outside of 

its normal capacity has adverse effects. Again the multifunctional nature of AChE and 

functional redundancy with other proteins may provide a mechanism by which this is 

possible. In spite of such potential remedies, AChE-/- mice do display a bone phenotype 

characterised by reductions in BMD and BMC. Therefore, could it be that a functional 

redundancy of AChE variants in one of its capacities, could provide for problems in 

another capacity in which it might be a poor substitute. Functional redundancy may just 

be a quick fix that presents no real solution to a greater problem. Taken together these 

data suggest that this intriguing molecule plays a fundamental role in bone of which we 

have only touched the surface. 
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List of Abbreviations 

List of abbreviations 

ACh Acetylcholine 

AChE - Acety1cholinesterase 

AChE-1- - Acety1cholinesterase knock out mice 

AChE+/- - Acety1cholinesterase heterozygous mice 

AER - Apical. ectodermal ridge 

ALK - Activin receptor-like kinases 

AML3 - Acute myeloid leukaernia factor 3 

APP - Amyloid precursor protein 

ARP - C-terminal peptide of AChE-R 

ASP - C-terminal peptide of AChE-S 

AM - Acetylthiocholine iodide 

BCA - Bicinchoninic acid 

BChE - Butry1cholinesterase 

BFA - Brefeldin A 

bFGF - Basic fibroblast growth factor 

BMPS - Bone morphogenic proteins 

BODIPY - N-((4-(4,4difuoro-5-(2-thienyl)-4-bora-3a, 4a-diaza-s- 
TR ceraminde indacene-3-yl)phenoxy)acetyl)sphingosine 

BSA Bovine serum albumin 

BW284C51 - 1.5-bis(4-Allydimethylammoniumphenyl)pentan-5-1 
dibromide 

Cbfal - Core binding factor alpha I 

CFU-Fs - Colony forming unit - fibroblasts 

ChAT - Choline acetyltransferase 
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List of Abbreviations 

CRE cAMP response elements 

CSF Cerebrospinal fluid 

CCD Cleidodocranial dysplasia 

COIQ Collagen-like tail 

dpe - Days post coitus 

DEPC - Diethyl Pyrocarbonate 

DFP - Diisopropyl Fluorophosphate 

DMEM - Dulbecco's modified Eagles Medium 

DMSO - Dimethyl sulfoxide 

DNA - Deoxyribonucleic acid 

DNTB - 5'5 dithiobisnitrobenoate 

dNTP's - 2'-deoxynucleoside 5'-triphosphates 

DTT - Dithiothreitol 

EDTA - Ethylenediamine tetra-acetic acid disodium salt 

ECL Enhanced chemiluminesence 

ER Endoplasmic reticulum. 

FCS Foetal calf serum 

FGF - Fibroblast growth factor 

FGFR - Fibroblast growth factor receptor 

FITC - Fluorescein isothiocyanate 

GAPDH - Glyceraldehyde-3 -Phosphate Dehydrogenase 

GDFs - Growth differentiation factors 

Gla - 3 gamma-carboxyglutamic acid 

GPI Glycophospholipid 
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List of Abbreviations 

HSPGs Heparan sulphate proteoglycans 

HRP Horseradish peroxidase 

1hh Indian hedgehog 

1GFs - Insulin-like growth factors 

iso-OMPA - Tetraisopropyl. pyrophosoramide 

kDa - Kilodaltons 

KOH - Potassium hydroxide 

MAPK - Mitogen activated protein kinase 

oc-MEM - cc-Minimum Essential Medium 

MDS - Myelodysplastic syndromes 

ME - Myalgic encephalomyelitis 

MMPS Matrix metalloproteinases 

micro CT - Micro computed tomography 

MTT - 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 
bromide Thiazolyl blue 

NCAMs - Neuronal cell adhesion molecules 

NMDA - N-methyl-D-aspartate 

NMJ - Neuromuscular junction 

NP40 - Nonylphenoxy polyethoxy ethanol 

OSE - Osteoblast specific elements 

PAS - Peripheral anionic site 

PBS - Phosphate Buffered Saline 

PCR - Polymerase chain reaction 

PDGF - Platelet derived growth factor 

PDZ PSD-95/Dlgl/ZO-l 
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List of Abbreviations 

PEBP2ccA Polymavirus enhancer binding protein 2ccA 

PKC - Protein kinase C 

PNPP - Paranitrophenol phosphate 

PRAD - Proline rich attachment domain 

PTH - Parathyroid hormone 

PVA - Polyvinyl acetate 

RGD - Arginine-glycine-aspartate 

RNA - Ribonucleic Acids 

Runx2 - Runt related gene 2 

RT-PCR - Reverse transcriptase polymerase chain reaction 

SARA - Smad anchor for receptor activation 

SDS - Sodium dodecycl sulphate 

Shh - Sonic hedgehog 

SSC - saline-sodium citrate 

TBS-T - Tris buffered solution with Tween 20 

TGF - Transforming growth factor 

TGF-PI - Transforming Growth Factor - type PI 

TRIS - Trisodium citrate 

TRIS-HCL - Tris solution pH with HCL 

UV - Ultra violet 

VAChT - Vesicular acetylcholine transporter 

VDRIF, s - Vitamin D3 responsive elements 

VEGF Vascular-endothelial derived growth factor 

WAT trypyophan (W) amphiphilic tetramerization 
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List of suppliers 

Amersham Bioscience 
www4. amershambiosciences. com 

Ambion 
www. ambion. com/ 

Beckton Dickinson 
www. bdbiosciences. com/ 

BD transduction labs 
www. pharmingen. com/ 

Biorad 
www. bio-rad. com/ 

Bioline 
www. bioline. com/ 

BDH 
www. bdh. com/ 

Bright Instrument Company Limited 
www. brightinstruments. com/ 

CalBiochem 
www. calbiochem. com. 

Chemicon 
wwww. chemicon. com 

Dynex 
www. dynextectinologies. com/ 

FlexerCell 
www. dunnlab. de/ 

Faxitron 
www. faxitron. com/ 

Fisher Scientific 
www. fisherscientific. com/ 

Glyko 
www. glyko. com/ 

Hybaid 
www. thermohybaid. de/ 

189 



IEC micromax RF 
www. thermo. com/ 

Invitrogen 
www. invitrogen. co. uk 

Jackson Immunochemicals Inc. 
www. jacksonimmuno. com 

Leica 
www. leica. co. uk/ 

Molecular probes 
www. probes. com 

MJ Research 
www. mjr. com/ 

Pierce 
www. piercenet. com/ 

Santa Cruz 
www. scbt. com/ 

Sigma 
www. sigmaaldrich. com/ 

Sigma genosys 
www. genosys. co. uk/ 

Shandon 
www. shandon. com/ 

Vector labs 
www. vectorlabs. com/ 
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