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A bstract 

Abstract 

Cardiovascular disease is the most common cause of premature death in the developed 

world and is responsible for 39% of all mortalities in the UK. Three quarters of these 

deaths are a consequence coronary heart disease and stroke, conditions that often 

occur as a result of platelet aggregation and thrombus formation causing ischaemia- 

inducing vascular blockages. Currently the prevention of coronary occlusion in high- 

risk patients involves the inhibition of platelet aggregability, however, reducing the 

number of circulating platelets, which are produced by megakaryocytes, remains 

unexplored. Megakaryocytopoiesis is tightly regulated by a spectrum of cytokines 

ensuring differentiation and circulating platelet numbers remain within normal 

physiological restraints. Recently, it was identified that megakaryocytes express 

NMDA-type glutamate receptors and subsequent studies implied a role for the 

glutamate signalling in megakaryocytic cell line differentiation. This thesis 

characterises the expression and role of the megakaryocytic NMDA receptor in both 

cell lines and primary human cells. MEG-O1 and HEL cell lines in addition to primary 

megakaryocytes express a range of regulatory NR2 and NR3 receptor subunits as well 

as the PSD proteins Yotiao and PSD-95. Blockade of the NMDA receptor ion channel 

with MK-801 reduced ERK 1 /2 activation and inhibited primary megakaryocyte 

differentiation. Formation of proplatelets in vitro was dramatically inhibited by MK- 

801 treatment, as were normal ultrastructural characteristics including a-granule 

formation and the expansion of demarcation membrane. It was also demonstrated that 

megakaryocytes express the vesicular glutamate transporter protein VGLUT2, whilst 

MEG-01 cells spontaneously release glutamate, providing a plausible glutamate source 

for NMDA receptor activation. It was also established that transgenic mice with 

significantly lowered levels of the NR1 subunit demonstrated a 5-fold increase in 

bleeding time compared to wildtype control. In the future, therapeutic manipulation of 

the megakaryocytic NMDA receptor may enable a greater level of control over platelet 

production by the modification of megakaryocyte differentiation. 
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Chapter 1 

Chapter 1 

Introduction 

1.1 Cardiovascular disease 

The human body relies on the circulatory system, driven by the heart, for the supply of 

oxygen and nutrients to its tissues. Breakdowns in this system, usually involving 

narrowing or blockages of the blood vessels or failure of the heart muscle, are often 

catastrophic. 

The British Heart Foundation's 2002 statistics confirm that the main cause of death in 

the UK remains diseases of the heart and circulatory system (cardiovascular disease or 

CVD) (Fig. 1.1). CVD resulted in 235,000 UK deaths in 2000,39% of all mortalities. 

Coronary heart disease (CHD; disease of the heart and blood vessels supplying the 

heart) and stroke (interruption of blood supply to areas of the brain) are the main 

forms of CVD, accounting for three quarters of mortalities. Although CVD-induced 

death increases dramatically with old age, it also causes one quarter (73,000) of 

premature mortalities (deaths before 75 years). 

Worldwide, incidences of CHD are decreasing, a statistic mirrored in the UK (Fig. 1.2). 

However, the death rate from CHD in the UK remains amongst the highest in the world. 

Apart from Eastern and Central European countries, where CHD mortalities are 

increasing dramatically, only Ireland and Finland have a higher CHD death rate than the 

UK (Fig. 1.3). Although the death rates are decreasing in the UK, this is not at the same 

rate as other European counties, especially Scandinavia. 

In the UK, CHD mortalities remain higher in males than females, although death rates 

in younger males (45-54) are decreasing more than in females of the same age. 

Incidences of CHD mortalities show a greater decrease in younger age groups. Death 

rates from stroke have also been falling throughout the last century and by 20"o in the 

last 10 years (Fig. 1.4). As well as differences between sexes, there are also worrying 

variations between regions in the UK. Premature death rates in Scotland are 50% and 
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Figure 1.1. Causes of death in the UK in the year 2000. Cardiovascular 
disease (including CHD, stroke and other CVD) accounts for more deaths than 
any other cause, numbering 235,000, equivalent to 39% of all fatalities (taken 
from British Heart Foundation CHD statistics 2002; www. bhf org. uk). 
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80% higher in men and women respectively than those living in East Anglia and CHD 

mortalities are also significantly higher in the North of England and Northern Ireland 

than Wales and Southern England. Notably. the highest mortality rates are localised to 

large urban areas. 

The prevalence of CVD in the UK is reflected by its cost to the health services. CHD 

alone is thought to cost the health care system £1.600 million per annum (p. a. ). the 

majority of which is spent on hospital inpatient care and drug administration. This 

total is over twice the amount of all other diseases. In addition to the costs to the health 

care system, CVD also costs the UK economy in the order of £ 11.000 million p. a. in 

production losses, due to working time lost and informal care, usually provided by 

families. However, the most recent study investigates only selected diseases and does 

not include cancer. The cost to the UK economy is preventable as the majority of risk 

factors leading to CVD are avoidable. These include smoking, poor diet, lack of 

physical activity, obesity, raised blood pressure and raised blood cholesterol. 

1.1.1 Current therapies for CVD 

The treatment of CVD has increased dramatically over the last 20 years. The number 

of operations, including coronary artery bypass surgery and angioplasty have increased 

5-fold since 1980. However, these procedures are extremely invasive and health 

services are focusing on administration of CVD preventative drugs. Diuretics have 

been the most common prescription drugs used in the prevention of CVD in the last 20 

years. Over this time however, other preventative treatments have emerged, most 

notably from the increased use of prescriptive drugs aimed at preventing clotting in the 

blood by anticoagulants and antiplatelet drugs (Fig. 1.5). Platelets are the smallest 

component of blood and are responsible for the formation of a thrombus (clot), 

preventing excessive bleeding following vascular injury (for in-depth platelet review, 

see Introduction 1.2). Platelets are activated at sites of injury, therefore any damaged 

vascular area, especially major and coronary arteries, is at risk of thrombus formation 

(Topol. 1998). Platelet activation and aggregation subsequently causes a positive 

feedback mechanism, resulting in the release of components promoting 

N'asoco>istriction and further platelet aggregation (Verheugt and Gersh. 2002). 

Blockages of blood vessels caused by the formation of clots, reduce the supply of 
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oxygen to the heart and the brain (ischaemia). often causing severe damage by 

ischaemic heart disease and stroke. 

Aspirin is currently the most widely used anticoagulant and consistently reduces the 

incidence of ischaemic attack in high-risk patients (Theroux et al., 1988; The Risc 

Group, 1990) and is also beneficial when combined with low molecular weight heparin 

(The Frisc Study Group, 1996; Cohen et al., 1997; Harding et al.. 2002). Aspirin acts 

as an anticoagulant by inhibiting the production of the aggregation promoting 

thromboxane A2 by platelets (Fig. 1.6). Consequently, platelets exposed to aspirin do 

not respond to the pro-thrombotic agents collagen and adenosine diphosphate (ADP) 

(O'Brien, 1968; Zucker and Rothwell, 1978). Aspirin is cheap and as a preventative, 

greatly lowers the incidence of CVD in high-risk patients (Antithrombotic Trialists' 

Collaboration, 2002). However, recent evidence indicates an increase in aspirin 

resistance and fatal post-operative bleeding (Cambria-Kiely and Gandhi, 2002; 

Howard, 2002), leading to the development of improved therapies for modulating 

platelet function. 

The use of antiplatelet therapies in the UK has increased nearly 60-fold in the last 20 

years (Fig. 1.5). Antiplatelet drugs function by inhibiting the activation of the 

glycoprotein (GP) IIb/IIIa receptor on platelets, the role of which is to initiate the final 

stages of platelet aggregation (Harding et al., 2002) (Fig. 1.6). Intravenous 

administration of antibodies raised against GPIIb/IIIa, especially abciximab, has 

provided very positive results in numerous clinical trials (The CAPTURE 

Investigators, 1997; The PRISM Investigators, 1998; The PURSUIT Trial 

Investigators, 1998; The PARAGON Investigators, 1998; Chew and Moliterno, 2000, 

The GUSTO IV-ACS Investigators, 2001). Similar to aspirin, these antagonists create 

the potential to provoke major haemorrhage and are also extremely expensive 

(Verbeugt and Gersh, 2002). Orally administered GPIIb/IIIa antagonists have proved 

significantly less successful. A recent report indicates that these drugs have no effect 

on ischaemic events and actually increase in the number of mortalities (Chew et at.. 

2001). 

F he control of ischaernic disease is currently managed by a combination of the 

previously mentioned therapeutics. How ever, the "all-or-nothing" irre` ersible effect 

7 



Chapter I 

30000 

N 
ß 

U) 
Z 
0 
Z 

N 
C 
0 

14.1 

a 
C) N 
I- 

a 
%- 
0 
I- 
G) 

E 
Z 
Z 

A 

0 

A 

A. -A' -A- -A- 

-- -t- -- Lipid lowering drugs 
Anti-arrhythmic drugs 

---A---Diruretics 
' Anticoagulants and protamine 

X -Antiplatelet drugs 

i 

i ,{-" 
.. ý_: ý_-   - -- -- -- - 

    

N '\ 

NNNNNNNNNN 

Year 

Figure 1.5. Selected prescriptions used in the prevention and treatment of 
CVD from 1981-2000 in England. The number of prescriptions for CVD have 
increased dramatically over this time, especially anti-platelet and lipid lowering 
drugs. The greater focus on CVD preventative drugs accounts for the decreasing 
death rates (taken from British Heart Foundation CHD statistics 2002, 
www. bllf. org. uk). 

25000 

20000 

15000 

10000 

5000 

8 



Chapter I 

Aspirin 
Platelets 

Thromboxane A2 -ý 

ADP pp- 
U 

U 

Aspirin 

0 

GPIIb/IIIa 
Inhibitors 

.0 
10 

10 
. 

Thrombin 

Fibrinogen 

Fibrin 

""" 

Thrombomodulin 

Arterial Damage 

0 

Thrombus formation 

Figure 1.6. Diagram summarising the action of aspirin and GPIIb/IIIa inhibiting drugs 
on thrombus formation. Aspirin inhibits the actions of ADP and thromboxane A2, whilst the 
GPI Ibi Il la inhibitors prevent the binding of activated platelets to fibrinogen. The methods of 
both drugs successfully reduce the occurrence of CVD, but can complicate the process of 
coagulation, especially following surgery. 

9 

I 
Ný 



Chapter 1 

on all platelets causes subsequent detrimental effects. Rather than ensure that the 

circulating platelets do not function. a more effective mechanism of preventing 

ischaemia would be to tightly modulate the total number of circulating platelets. This 

would ensure that the risk of clotting would decrease, but haemorrhage would be less 

likely to occur. This demands a clear understanding of the cellular mechanisms that 

culminate in platelet production from its "precursor cell", the megakary, ocyte. 

1.2 The Megakaryocyte and Platelet Production 

In 1890, W. W. Howell described the "formation of the giant cells of the marrow" and 

was the first to name these cells megakaryocytes. Sixteen years later, J. H. Wright 

identified the megakaryocyte as the source of blood platelets (Wright, 1906). 

Megakaryocyte research stagnated after these discoveries until the 1970's, when 

molecular and in vitro research provided insight to different stages of normal and 

abnormal megakaryocyte development (megakaryocytopoiesis) and the effects of 

cytokines acting on megakaryocytes. 

1.2.1 Megakaryocytopoiesis 

Megakaryocytes reside in a number of tissues. Predominantly these are the main 

locations of blood cell production, bone marrow and spleen. It is also notable that 

megakaryocytes have also been identified in the lung (Martin et al., 1983; Slater et al., 

1983; Trowbridge et al., 1988) and whole cells passed from the bone marrow to the 

circulation (Tavassoli and Aoki, 1981). In the foetus, the megakaryocyte appears first 

in the yolk sac and then the liver before appearance in the spleen and marrow during 

embryogenesis (Gilman. 1942). The vast majority of megakaryocyte research focuses 

on cells within the bone marrow. Bone marrow fills the cylindrical cavities of long 

bones such as the femur and ulnae and is comprised of fatty "yellow" marrow and 

haematopoietic "red" marrow. Although only 0.5% of cells within the bone marrow 

are megakaryocytes, they are easily recognisable due to their size. A fully matured 

megakaryocyte is several-times the size of any other cell within the bone marrow, 

within the region of 30 µm in diameter. 

10 
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Haematopoiesis is the process by which all mature blood cells are produced from 

multipotent haematopoietic stem cells (HSCs). HSCs are a small subset of blood cells 

with the potential to self-renew and in the relevant conditions, differentiate to all 

components of the haematopoietic system (Fig. 1.7). The HSC differentiates to the 

myeloid lineage, from which the megakaryocyte lineage-committed progenitor cell is 

derived (for review see Bruno and Hoffman, 1998). The earliest megakaryocyte- 

restricted progenitor cell to develop in vitro from the adult bone marrow is the burst 

forming unit megakaryocyte (BFU-MK) (Long et al., 1985; Brindell et al., 1989), 

followed by the colony forming unit megakaryocyte (CFU-MK) (Brindell et al., 1990), 

both of which contain only megakaryocytes. However, some mixed colonies do form, 

the most common is the BFU-erythroid/megakaryocyte (BFU-E / MK). The single 

BFU-E / MK cell has bi-potentiality and after 12 days in culture, mixed erythroblasts 

/megakaryocyte colonies form (Debili et al., 1996). This demonstrates just one of the 

associations between the differentiation of the megakaryocyte and the erythrocyte. 

The CFU-MK is the most differentiated megakaryocyte progenitor cell. The later 

stages of differentiation are essentially characterised by morphological differences 

(Long, 1998). The immature megakaryocyte (or megakaryoblast) has a sparse 

cytoplasm and high nucleus to cytoplasm ratio, due to the large amount of protein 

synthesis at this stage. The nuclear and cytoplasm size both increase at the 

promegakaryocytic stage, in addition to the appearance of platelet-specific particles. 

Megakaryocyte development culminates in cytoplasmic maturation and nuclear 

endoreplication (see Chapter 1.2.2. ). Platelets are then shed into the circulation, 

although the exact means of this remains unknown (see Chapter 1.2.3. ). 

During differentiation, megakaryocytes and their precursor cells express certain cell 

surface markers at stages of differentiation. All haematopoietic progenitor cells 

express CD 34 during the early stages of differentiation. The expression of CD34 

declines during megakaryocytopoiesis and is absent in the terminally differentiated 

cells. Cells of the megakaryocyte lineage express the specific lineage marker CD41 

(also known as platelet dgl coprotein or (GP)Ilb), from the CFI 1-MK stage through to 

maturity. CD61 (GPIIIa) is expressed during early megakaryocyte 
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differentiation, and CD42a (GPIX) expression is limited to terminally differentiated 

cells (Lepage et al., 2000). 

1.2.2 Megakaryocytic Endomitosis 

Megakaryocyte differentiation is characterised by the formation of a polyploid nucleus 

by endomitosis (reviewed in Zimmet and Ravid, 2000). This is a process in which 

nuclear replication takes place in the absence of cellular replication, leading to a large 

number of repeated chromosomes compared with the normal diploid (2N) cell. 

Endomitosis is not exclusive to megakaryocytes in the mammal. Cardiac myocytes 

(Sandritter and Scomazzoni, 1964), hepatocytes (Kudryavtsev et al., 1993) and arterial 

smooth muscle cells (Owens and Schwartz, 1983) all become polyploid at some point 

during normal cellular development as well as smooth muscle cells during pregnancy 

(Heiden and James, 1975) and thyroid cells in hyperthyroidism (Auer et al., 1985). 

Abnormalities in chromosome number are also common in malignant cells. However 

this is a condition known as aneuploidy, in which specific chromosomes are deleted or 

replicated. Quantification of aneuploid cells is now used in prognosis of prostate, 

colon and breast cancers (Barlogie, 1984). However, megakaryocyte polyploidisation 

is unique, as the cell becomes highly polyploid during normal differentiation. The 

immature megakaryocyte is a diploid (2N) cell and in this state is able proliferate at a 

high rate (Zimmer and Ravid, 2000). When the cell differentiates and undergoes 

endomitosis, the cell no longer divides and undergoes further endomitotic cycles, 

leading to cells of 4,8,16,32,64 and even 128N, with the mode being 16N. Polyploid 

megakaryocytes would therefore be able to produce much greater amounts of mRNA 

and protein than a normal diploid cell, enabling the megakaryocytes to perform the 

unique process of platelet production. 

The exact mechanism by which the megakaryocyte achieves such high levels of 

polyploidy is a subject of ongoing research. It appears that the megakaryocvte 

undergoes a quiescent stage following cycles of nuclear division (Odell et al., 1968, 

Zhang et al.. 1996). Previously, it was thought that during mitosis, polyploid 

megakarg ocytes proceed normally up to anaphase A. but do not proceed with anaphase 

B. telophase or cytokinesis (Fig. 1.8) (Nagata, 1997). A more recent publication did 

however identif the characteristics of anaphase (DNA condensation, nuclear 
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membrane breakdown and formation of a mitotic spindle). suggesting that only 

cytokinesis was absent in megakaryocytes compared to normal nuclear replication 

(Vitrat, 1998). It would therefore appear that the formation of a polyploid nucleus is 

due to abortive mitosis. The mechanisms underlying abortive mitosis in the 

megakaryocyte appears to involve the cell cycle regulator cyclin B-dependent cdc2 

kinase (Datta et al., 1996; Zhang et al., 1996; Garcia and Cales, 1996, Carow et al., 

2001). Cyclins are proteins synthesised during interphase of the cell cycle and 

degraded at the end of mitosis (Patel et al., 1999). Lowered levels of cyclin B1 causes 

megakaryocytic cells to undergo polyploidisation (Zhang et al.. 1996) and ubiquitin- 

mediated degradation of cyclin B1 allows re-entry to the S-phase of the cell cycle 

without completing anaphase (Zhang et al., 1998). Datta and co-workers demonstrated 

that polyploidy in megakaryocytic cells is actually associated with increases in levels 

of cyclin B and cdc2, but it is the down regulation of the phosphatase cdc25-C (cdc2 is 

only active in a phosphorylated state) that causes the subsequent inactivity of cdc2 

(Datta et al., 1996). However, considering the rarity of the megakaryocyte, combined 

with the fact that only 1% of megakaryocytes at anytime are undergoing mitosis, the 

exact mechanism of megakaryocytic polyploidisation may remain elusive for some 

time. The reason for megakaryocytes becoming polyploid appears to be important in 

the production of platelets. Idiopathic thrombocytopenic purpura (ITP) is an inducible 

immunologic condition in which platelet number is greatly reduced. This causes an 

increase in levels of megakaryocyte polyploidy as well as increases in megakaryocyte 

number and size, suggesting that the megakaryocyte endomitosis is responding to low 

platelet numbers (Mazur et al., 1988; Tomer et al., 1989). When circulating platelet 

number becomes normal, the level of megakaryocyte ploidy reverts to its normal modal 

score of 16N. Other reports also suggest that high levels of ploidy in megakaryocytes 

have a direct non-linear relationship with mean platelet mass (platelet volume x 

number) (Bessman, 1984). Atherosclerotic patients often display abnormally high 

ploidy megakaryocytes and it is postulated that as platelets produced from these cells 

are larger and more easily activated, they may have a causative effect on this condition 

(Brown et al., 1997). Work by Kuter and Rosenberg conclusively demonstrated the 

existence of a "feedback loop" between the number of circulating platelets and 

megakaryocyte ploidy (Kuter and Rosenberg. 1990). Thrombocvtopenia induced in 

mice by application of anti-platelet serum correlates with increases in megakar` ocv'te 

ploidv. which is reduced by platelet transfusion. Therefore, in response to changes in 
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platelet number. megakaryocyte ploidy varies inversely with and proportionally to 

platelet change. The mediators of this feedback loop remain unclear. However. 

following the finding that circulating platelets actively bind TPO (Fielder et al, 1996). 

it seems likely that platelets can regulate the plasma TPO levels directly by its binding. 

1.2.3 Platelet Production 

Once the megakaryocyte develops a highly polyploid nucleus, the cytoplasm also 

undergoes a unique maturation process. Firstly, the cytoplasm develops a demarcation 

membrane system (DMS), the origin of which remains unknown. In immature 

megakaryocytes, the DMS is concentrated to local areas of the cell, but as the cell 

matures, the DMS is present in the vast majority of the cytoplasm. At this stage, 

primitive platelets begin to form within the cytoplasm of the megakaryocyte (known as 

platelet territories) and the DMS dilates to eventually fragment the cytoplasm and 

release the matured platelets (Nurden et al., 1997). During this process, platelet- 

specific proteins are expressed and small dense bodies known as a-granules, form. 

These contain substances vital for the function of the mature platelet, such as von- 

Willebrand factor (vWF), ADP, GPIIb/IIIa, serotonin and ß-thromboglobulin (Long, 

1998). a-Granule disorders, such as von Willebrand disease type III, Glazmann 

thrombasthenia and Gray platelet syndrome, although quite rare, often result in 

decreased platelet number and aggregation causing clotting abnormalities (Smith et al., 

1997). 

As previously eluded, the major function of the megakaryocyte is in the formation and 

release of mature, functional platelets. The various stages of differentiation ensure that 

the mature megakaryocyte cytoplasm is weak and easily ruptured and the platelets 

which are already formed can be released into the circulation. The process by which 

platelets are released from the mature megakaryocyte is termed thrombocytopoiesis. 

l'ach megakaryocyte can form between 1,000 and 5,000 platelets, which are 

subsequently released into the circulation, but the process by which this is achieved is 

poorly understood. The widely accepted process, hypothesised by Wright in 1910, is 

that megakarvocytes produce platelets from the bone marrow by forming long thin 

cytoplasmic structures known as proplatelets. As mature megakarvocv-tes in the bone 
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marrow are often observed in close proximity to blood-filled sinusoids (Tavassoli. 

1980), it has been suggested that the proplatelet structures are able to invade the 

sinusoid and the circulating blood pressure will cause the proplatelet to disintegrate, 

resulting in platelet release in the sinusoid lumen. Scanning electron microscope 

(SEM) pictures have supported this idea (Ihzumi et al., 1977; Radley and Scurfield. 

1980; Handagama et al., 1984), with the identification of such cytoplasmic extensions 

observed in the canine marrow sinusoid. It is also possible that entire intact 

megakaryocytes can enter circulation via the sinusoid, entailing transendothelial 

migration through parajunctional areas of the sinusoid, approximately 6µm in diameter 

(Tavassoli and Aoki, 1981). The other plausible method of platelet release is by 

passage of whole megakaryocytes from the marrow through the microcirculation of the 

lungs causing cytoplasmic disintegration with pulmonary macrophages destroying the 

released nuclei (Martin et al., 1993; Zucker-Franklin and Philipps, 2000). It is believed 

that splenic megakaryocytes only contribute to thrombocytopoiesis following complete 

bone marrow ablation (Layendecker and McDonald, 1982). The contribution of each 

site to circulating platelet number is far from clear, owing to major experimental 

problems with these investigations. 

Apoptosis is the process of programmed cell death, often induced by extracellular 

signals such as a death signal or withdrawal of factors vital for cell survival. This 

process takes place in virtually all cells during development, to control cell number and 

eradicate senescent or unhealthy cells. The differentiated megakaryocyte however, is 

able to undergo apoptosis completely of its own accord, in the absence of extracellular 

stimuli (for review see Li and Kuter, 2001). Bcl-x is a member of the Bcl-2 family of 

potent antiapoptotic proteins and is expressed at very high levels almost throughout 

megakaryocytopoiesis. Bcl-x expression has however been shown to decrease 

dramatically in large terminally differentiated megakaryocytes on the verge of 

producing platelets (Sanz et al., 2001). Transgenic mice overexpressing Bcl-x in 

rnegakarv ocvtes showed, as expected, a reduction in the number of megakaryocv tes 

undergoing apoptosis, although the majority of these cells were unable to form 

proplatelets in culture and lacked normal DMS morphology (Kaluzhny et al., 2002). 

ON-erexpression of Bcl-' results in a 2-fold reduction in the number of circulating 

platelets, although nlegakarvocvte number remains unchanged (O`gilv'y' et al.. 1999). 

17 



Chapter 1 

More recently a family of proteases, known as caspases. which are activated during 

apoptosis have also been implicated in the formation of proplatelets from bone 

marrow-derived megakaryocytes (De Botton et al., 2002). Cleavage and subsequent 

activation of procaspase-3 and -9 occurs in megakarvocytes undergoing proplatelet 

formation and caspase inhibition with the specific inhibitor z-VAD. fmk. inhibited 

proplatelet formation from mature megakaryocytes. When z-VAD. fmk is added to 

cells already undergoing platelet formation, it has no effects. These results are 

consistent with the theory that platelet formation occurs through a process similar to 

that of apoptosis. 
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1.3 Regulation of Megakaryocytopoiesis 

A wide range of different cytokines regulates the proliferation. survival and 
differentiation of progenitor cells to mature platelet-producing megakaryocytes 

(summarised in Fig. 1.9). The majority of the cytokines identified so far are positive 

regulators, promoting the differentiation of the haematopoietic stem cells down the 

megakaryocyte lineage and a few have been identified that inhibit megakaryocyte 

differentiation (reviewed in Wendling and Han, 1997). This ensures that the number of 

circulating platelets is tightly regulated. Although effects of several different classes of 

cytokines are important in megakaryocytopoiesis, most of which will be mentioned 

here, the most potent effects appear to be mediated by thrombopoietin (TPO). 

1.3.1 Thrombopoietin 

The exact nature of TPO remained a mystery from when it was first named as the 

humoral substance responsible for platelet production in 1958 (Kelemen et al., 1958) 

until it was characterised and cloned in 1994 (de Sauvage et al., 1994; Lok et al., 1994, 

Kaushansky et al.; 1994; Wendling et al., 1994). TPO was identified as a polypeptide 

of 353 amino acids, presumed to consist of two domains due to its homology with the 

major regulator of erythrocyte development, erythropoietin (EPO). The 155 residues at 

the amino-terminal have 46 percent sequence similarity to EPO and binds to the TPO 

receptor, c-Mpl (Bartley et al., 1994). The carboxy-terminal has no homology to any 

haematopoietic cytokines and the deletion of this domain has no overall effect on 

thrombopoietin activity (Hokom et al., 1995). It is clear that TPO affects nearly every 

aspect of megakaryocyte development. TPO, in conjunction with other cytokines 

involved in cell proliferation, supports HSC survival and promotes entry to the 

megakaryocyte lineage (Kaushansky. 1995a; Ku et al., 1996; Sitnicka et al., 1996). 

TPO then stimulates expression of platelet-specific markers associated with 

megakaryocyte differentiation, such as CD61 (Kaushansky et al., 1994), causes the 

development of a polyploid nucleus by endomitosis (Debili et al., 1995) and triggers 

the maturation of the cytoplasm (Choi et al., 1995: Cramer et al.. 1997). The profound 

effects TPO has on megakaryocytes in vitro, lead to the development of transgenic 

mice lacking the genes 
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for c-Mpl (c-Mpl-/-) (Gurney et al.. 1994; Alexander et al.. 1996) or TPO (TPO-`-) (de 

Sauvage et al., 1996). In c-Mpl-/- mice, both megakaryocyte and platelet numbers are 

reduced by approximately 90% compared to c-MpF and c-Mpl+/- without affecting 

any other blood cell lineages. In addition, the mean platelet volume is significantly 

increased in the knockout animals. TPO-"- mice also display a 90% reduction in 

megakaryocyte and platelet numbers and show a decrease in the levels of polyploidy in 

the knockouts compared to wild-types. The TPO-'- mice differ from the c-Mpl-/-, as 

the TPO gene appears to work in a dose-dependant manner with heterozygous mice 

(TPO+/-) with megakaryocyte and platelet counts intermediate of knockout and wild- 

type. However, in c-Mpl+'- mice, megakaryocyte and platelet counts are not 

significantly to wild-types. These data identify that TPO is the major regulator of 

megakaryocytopoiesis, acting through c-Mpl. The actions of TPO although most 

profound in megakaryocytes, are not restricted only to this lineage. TPO also enhances 

the proliferation and expansion of erythroid progenitors (Kaushansky et al., 1995b). 

CFU-granulocyte-macrophage (CFU-GM) lineage in normal mice (Kaushansky et al., 

1996) and the proliferation of human and murine HSCs (Young et al., 1996, Kobayashi 

et al., 1996; Sitnicka et al., 1996). 

The commercial availability of recombinant TPO has enabled the characterisation of 

signalling events induced by its interaction with c-Mpl. On binding TPO, c-Mpl 

becomes a homodimer resulting in the activation of numerous downstream signalling 

events (reviewed in Fig. 1.10). Janus kinases (JAK) are already bound to the 

cytoplasmic domain of the receptor and following dimerisation, the increase in local 

JAK concentration causes cross phosphorylation and subsequent activation (Miyazaki 

et al., 1994). There are four members of the JAK family, JAK 1,2,3 and TYK2. Of 

these JAK2 is the most important in c-Mpl mediated signal transduction as it is the 

only one of the family activated in the presence of TPO (Tortolani et al., 1995: \1u et 

at.. 1995). Once activated, JAK2 phosphorylates tyrosine residues located on the 

cytoplasmic domain of the receptor enabling the receptor to activate independent 

pathways (Drachman et al., 1999). as well as directly activating other signalling 

mechanisms. In nlegakarvocytes, the most studied substrate of J: \K is the signal 

transducers and activators of transcription (STATs) family, of which STAT3 and 5 are 

activated almost immediately following binding of TPO to c-Mpl. STATs bind to 
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phosphotyrosines situated on the receptor and are themselves then activated by JAK. 

The phosphorylated STATs form homodimers and translocate to the nucleus causing 

transcriptional activation (Dorsch et al.. 1997). The adaptor proteins Grb2. SOS and 

Shc, the GTP exchange protein Vav and the phosphatase SHP-2 are also activated by 

JAK2 on c-Mpl almost immediately on binding TPO (Miyakawa et al., 2001). These 

proteins activate the mitogen activated protein kinase (MAPK) pathway, also 

culminating in the activation of transcription factors (Rojnuckarin et al.. 1999). 

Another c-Mpl-activated pathway of great importance to megakaryocyte development 

is phosphoinositide-3-kinase (P13-K). Activation of c-Mpl induces the regulatory 

domain of P13-K to undergo a conformational change and recruits the P13-K kinase 

domain. Activated P13-K can then activate the MAPK pathway, members of the 

protein kinase C (PKC) family and also AKT (also known as protein kinase B (PKB)) 

(Sattler et al., 1997; Geddis et al., 2001; Rojnuckarin et al., 2001; Majka et al., 2002). 

The c-Mpl-mediated activation of MAPK is thought to promote megakaryocyte 

proliferation and differentiation, whilst AKT, via its downstream targets NFKB, ß- 

catenin, forkhead transcription factor and Bad, influences cell survival in addition to 

differentiation (Rojnuckarin et al., 2001; Majka et al., 2002). 

TPO is clearly essential for correct megakaryocyte development. However its 

influence appears to be restricted to megakaryocyte progenitor cell proliferation and 

ploidy. C-Mpi-'- and TPO-/- mice although thrombocytopenic, do not bleed 

spontaneously as would be expected if TPO signalling were the single most important 

cytokine in platelet production. Bunting and co-workers (1997) showed that the 

remaining megakaryocytes and platelets from c-Mpl-/- and TPO-/- mice have normal 

ultrastructural morphology compared to wild-type. Functional studies demonstrated 

that platelets from these mice respond as normal to agonists such as ADP and 

fibrinogen. This suggests that the c-Mpl / TPO system is not solely responsible for the 

production of normal megakaryocytes and platelets. In vitro. mature megakaryocytes 

isolated from mouse bone marrow. do not disintegrate into platelets following 

administration of TPO, but instead require the presence of serum (Kaushanskv, 

personal communication). This observation confirms in vivo studies using baboons 

injected for a 28-day period with human recombinant TPO. in which a 7-day delay in 
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increased platelet numbers was observed after the first administration of TPO (Harker 

et al., 1996). This work also suggests that the role of TPO is predominantly 

megakaryocyte proliferation rather than megakaryocyte differentiation and platelet 

production. 

1.3.2 Other Positive Regulators of Megakaryocytopoiesis 

As previously mentioned a wide range of cytokines, in addition to TPO, have positive 

effects on megakaryocyte differentiation. These remaining cytokines are however 

much less megakaryocyte-specific than TPO and influence the production of nearly all 

cells during haematopoiesis. Stem cell factor (SCF; also known as steel factor and C- 

kit) in conjunction with interleukin (IL)-3 and granulocyte macrophage colony- 

stimulating factor (GM-CSF) has profound effects on megakaryocyte progenitor 

proliferation, greatly increasing colony size (Brindell et al., 1991). Transgenic mice 

lacking either the gene for SCF or its receptor show a decrease in total megakaryocyte 

number, although platelet numbers do not decrease due to a concomitant increase in 

megakaryocyte size and consequently, the ability to produce more platelets (Hunt et al., 

1992). These findings suggest that SCF primarily regulates progenitor cell 

proliferation. IL-3 appears to have a greater effect on megakaryocytopoiesis than GM- 

CSF, with IL-3 treatment increasing platelet numbers in both primates and humans 

(Farese et al., 1993) whilst GM-CSF has no significant effect on platelet number, but 

instead increases the number of CFU-MK colonies (Vannucchi et al., 1990; Stahl et al., 

1991). A greater increase in platelet number has been demonstrated when IL-3 and 

GM-CSF were used in conjunction, compared to independent application 

(O'Shaughnessy et al., 1995). 

The role of IL-6 family of cytokines, comprising of IL-6, Leukaemia inhibitory factor 

(LIF), IL-11, oncostatin M, ciliary neurotrophic factor (CNTF) and cardiotrophin-1 

(CT-1) has been the subject of extensive research in megakaryocytopoiesis. The 

majority of these studies have focused on IL-6. which promotes megakaryocyte 

development, increasing the number and size of cells, as well as endomitosis and 

proplatelet formation (Ishibashi et al.. 1989; Debili et al.. 19933). Increased serum IL-6 

concentrations in rheumatoid arthritis usually results in reactive thrombocvtosis (over- 

active nmegakaryocytopoicsis). indicating that IL-6 may be a cause of pathological 
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megakaryocytopoiesis (de Benedetti et al.. 1991: Hollen et al.. 1991). Doubt was cast 

on these findings however, when the IL-6 knockout mouse was shovm to have no 

platelet number abnormalities (Kishimoto et al., 1994). IL-11 and LIF have similar 

effects to each other, both inducing the maturation of immature megakaryocytes in 

vitro. Mice treated with IL-11 or LIF show a 1-2 fold increase in the circulating 

platelet number, without increasing the overall number of megakaryocytes (Burstein et 

al., 1992; Teramura et al., 1992). This is believed to be due to IL-11 and LIF 

increasing the megakaryocyte ploidy levels. Phase I clinical trials using IL-11 have 

proved disappointing, having no effect on patients suffering from chemotherapy- 

induced thrombocytopenia (Gordon et al., 1996). 

Other factors promoting megakaryocytopoiesis include EPO, which has a proliferative 

action on the bi-potential BFU-E/M cells. Mice treated with low levels of EPO show a 

small increase in platelet number, although chronic EPO treatment causes 

thrombocytopenia (Macdonald et al., 1987), presumably due to the majority of bi- 

potential cells being forced down the erythrocyte lineage (Broudy et al., 1995). 

Granulocyte colony stimulating factor (G-CSF) and fibroblastic growth factor ß 

(FGF3) also stimulate megakaryocyte development, possibly by working in 

conjunction with IL-3 (Glapsy and Golde, 1992). 

1.3.3 Negative Regulators of Megakaryocytopoiesis 

The majority of megakaryocytopoiesis research has focused on positive regulation. 

lowever, it is becoming increasingly apparent that negative regulation is a vital control 

mechanism for platelet release. The majority of these factors are actually released by 

megakaryocytes and platelets, inducing a negative feedback mechanism, inhibiting 

differentiation (Caen and Han. 1995; Gewirtz et al., 1995). Transforming growth 

factor ß1 (TGF31) has the greatest inhibitory effect on megakaryocyte development 

and is extremely potent, with picogram amounts irreversibly affecting both human and 

mouse megakaryocyte progenitors in vitro (Keller et al., 1991; Kuter et al., 1992, Xi et 

al.. 1996) (Fig . 
1.9). Subcutaneous injection of TGFß 1 for a 14-day period decreased 

platelet number (Carlino et al.. 1990) but also increased the number of macrophages 

and granulocytes (Bursuker et al.. 1992). indicating that TGFI 1 may have a bi- 
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directional effect on haematopoiesis. Platelet factor 4 (PF4), released from platelet a- 

granules upon activation (Mantovani et al., 1994), has an inhibitory effect on the 

proliferation of megakaryocyte progenitors in vitro and in vivo (Gerwitz. 1989; Han et 

al.. 1990). Heparin-like molecules expressed on the cell surface of megakaryocv tes 

and platelets are essential for the binding of growth factors involved in the positive 

regulation of megakaryocytopoiesis such as IL-3, IL-6, GM-CSF, bFGF (Rider, 1993) 

and possibly TPO. Many of these growth factors need to bind to heparin before they 

can exert any effect on the cell. PF4 has a very high affinity for heparin-like molecules 

and therefore may block the binding site for positive regulators (Sato et al.. 1993). 

Anagrelide is the most common treatment for thrombocythaemic (characterised by 

increased megakaryocyte and platelet number) conditions such as essential 

thrombocythaemia (ET). Anagrelide reduces megakaryocyte and platelet number and 

lowers the level of ploidy from 32N to a modal of 16N in ET-derived megakaryocytes 

(Lane et al., 2001; Tomer, 2002). Anagrelide therefore has the ability to inhibit 

megakaryocyte proliferation and differentiation. The mechanism by which anagrelide 

achieves this is unknown, although it has been shown to affect megakaryocyte post- 

mitosis (Mazur et al., 1992), identifying the possible means by which ploidy levels are 

decreased. 

1.3.4 Transcriptional Regulation of Megakaryocytopoiesis 

The molecular control of megakaryocytopoiesis still in part remains obscure, possibly 

due to the fact that no megakaryocyte "master gene" has been identified. However, 

three transcription factors, GATA-1, FOG-1 and NF-E2, have been implicated as chief 

regulators of megakaryocytopoiesis at distinct stages during differentiation (for review 

see Shivdasani, 2001). 

GATA- I and GATA-2 have been identified as a key erythro-megakaryocyte 

transcription factors with the majority of megakaryocyte-expressed gene containing 

GAT: \ eis-elements (Lepage et al.. 1999). It is possible to identify the effects of 

G; \TA-l on megakaryocytes and platelet production by using trans`genic mice lacking 

the gelle for GATA-l (tihivdasani et al.. 1997) and also human subjects with critical 
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GATA-1 point mutations (Nichols et al., 2000; Freson et al.. 2001). An 85% reduction 

in platelet number. increased bleeding time, increased platelet size and erroneous 

platelet shapes are some of the identifiable differences between knockout and wild-type 

mice and human patients compared to normal (Vyas et al.. 1999). Interestingly. 

megakaryocytes derived from GATA-1-null mice show massively increased levels of 

proliferation, although the resulting cells are small and do not display any mature 

morphology. It could therefore be hypothesised that GATA-1 inhibits proliferation and 

initiates aspects of megakaryocyte differentiation. 

FOG (Friend Of GATA)-1 is a co-factor of GATA-1. The megakaryocyte phenotypes 

of mice completely lacking GATA-1 are very similar to humans with point mutations 

preventing interaction between GATA-1 and FOG-1. It could therefore be a distinct 

possibility that the characteristics of GATA-1 ablation could be due to the lack of 

FOG-1 function (Nichols et al., 2000). However, mice deficient in only FOG-1 show a 

complete lack of megakaryocyte progenitors, implicating a role in earlier 

megakaryocyte development (Tsang et al., 1998). Consequently, FOG-1 may be a 

positive regulator of megakaryocyte progenitor proliferation and differentiation. So it 

would appear that FOG-1 acts independently of GATA-1 during early megakaryocyte 

differentiation and again in conjunction with GATA-1 in later megakaryocytopoiesis. 

The NF-E2 transcription factor is comprised of two domains. The 45kDa domain is 

expressed exclusively in haematopoietic cells whilst the other 18kDa domain is 

expressed in a wide range of cells. The role of the NF-E2 was initially investigated in 

erythrocyte differentiation, when its role in platelet production was identified. NF-E2 

gene ablation results in mild erythrocyte phenotype (Shivdasani et al., 1995a), whilst 

platelet number was profoundly reduced (Shivdasani et al., 1995b). Apart from the 

great reduction in platelet number, the megakaryocytes differentiate normally, forming 

cells with a mature cytoplasm and high levels of polyploidy. The terminally mature 

megakaryocytes appear not to be able to form and release platelets in vivo and NF-E2 

mutated mice completely lack circulating platelets. The transcriptional targets of NF- 

E2 would therefore appear to be involved in the final stages of platelet release. A 

likely target is ß1 tubulin, which is restricted to haematopoietic cells and limited to 

only mature cells in the megakar -ocyte lineage. Expression of ß1 tubulin is reliant on 
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NF-E2 and localises to the proplatelet shafts during in vitro thrombopoiesis (Lecine et 

al., 2000) and mice lacking 31 tubulin do not produce platelets (Schwer et al., 2001). 

This certainly provides a feasible answer as to why NF-E2-null mice are so severely 

thrombocytopenic, although other genes involved in the extracellular matrix 

reorganisation of platelet production may be under the control of NF-E2. 

The effective control of normal and pathological megakaryocyte development relies 

upon a greater understanding of cellular and molecular events during differentiation. 

The identification of TPO as a principle regulator of megakaryocytopoiesis has 

certainly been the most promising advance in the understanding of megakaryocyte 
biology since the discovery of their function. However, TPO fails to complete the 

story of megakaryocytopoiesis by leaving out the final chapter. Cytokines regulating 

platelet release remain a mystery. 

1.4 Megakaryocytes and the Bone Marrow Microenvironment 

The bone marrow is tightly packed with numerous cell types, most of which will 

constantly interact in the regulation of differentiation and function. The 

megakaryocyte is no exception and has been shown to modulate and be modulated by 

numerous different neighbouring cell types within the bone marrow microenvironment. 

One such interaction currently the subject of intensive study is the role of the 

megakaryocyte in bone remodelling (for review see Compston, 2002). 

Bone and bone marrow can be considered as one concurrent tissue. Not only are they 

adjacent, they share blood supply, as marrow sinuses receive blood from arteries 

supplying nutrients to bone. The process of bone remodelling is effectively a balance 

between osteoblasts which form the calcified bone and the osteoclast, which resorbs 

hone (for review see Seeman, 2002). A disruption in this balance results in 

pathological conditions, the most common of which is osteoporosis. Osteoclasts are 

derived from narrow HSCs ('Teitelbaum, 2000), whilst osteoblasts differentiate from 

stromal stem cells, also present in the marrow (Owen, 1988). Me`gakary-ocytes express 

I'GFI and TGFI receptors (Bord et al.. 2001), osteonectin, osteocalcin (Kelm et al.. 

1992; Thiede et al., 1994), oestrogen receptors (Bord et at., 2001) and RANK ligand 
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(Kartsogiannis et al.. 1999). all of which regulate bone remodelling. implying a role for 

megakaryocytes in bone remodelling. TPO has profound effects on normal bone 

remodelling by inhibiting osteoclastogenesis (Wakikawa et al., 1997) and causing 

osteoporosis in mouse models in which TPO is over-expressed (Yan et al., 1996). 

Postmenopausal women undergoing high-dose oestrogen replacement therapy to 

prevent excessive bone-loss by osteoporosis, display a significant increase in 

megakaryocyte number (Bord et al., 2000), presumably due to activation of the 

megakaryocytic oestrogen receptor. Osteopetrosis, a condition characterised by 

excessive bone formation, has been induced in transgenic rats. These animals known 

as "toothless" (tl/tl) are thrombocytopenic, but do however show an increase in 

megakaryocyte number and size (Thiede et al., 1996). In addition, hyperproliferative 

megakaryocyte conditions such as myelofibrosis often occur in conjunction with the 

bone hardening disease, osteosclerosis (Poulsen et al.. 1998). Only speculative 

conclusions can be drawn on the role of the megakaryocyte in bone remodelling, but it 

certainly appears that dysfunctional bone conditions nearly always coincide with 

changes in megakaryocyte number and function. 

Megakaryocyte differentiation can also be modulated via interactions with both 

endothelial and stromal cells present in the bone marrow. HSCs cocultured either in 

direct contact with or in the presence of bone marrow endothelial cells (BMEC) tend to 

differentiate to the myeloid lineage, especially megakaryocytic (Rafii et al., 1995). 

After 14 days of coculture, in the absence of any exogenous cytokines, 80% of HSCs 

were myeloid (CD 15 or CD 14 positive) and 20% were megakaryocytes (CD61 or 

CD41 positive). BMECs are able to produce IL-6, SCF, G-CSF and GM-CSF without 

stimulation, all of which are able to initiate and support megakaryocytopoiesis. 

Conversely it appears that bone marrow stromal cells (BMSC) can regulate 

megakaryocyte differentiation (Zweegman et al., 2000). In vitro coculture of HS( -s in 

direct contact with BMSCs differentiated to BFU-MK and CFU-MK, but did not 

differentiate past that point. However, HSCs grown in the presence of, but not in direct 

contact with BMSCs did become large, polyploid, mature megakaryocytes. It would 

therefore appear that the interactions between megakaryocvtes and numerous different 

cell types could affect cellular differentiation and function. 
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1.5 Megakaryocytic Disorders 

The majority of megakaryocytic diseases come under the heading of the 

myeloproliferative disorders (MPD), in which excessive proliferation of abnormally 

developed megakaryocytes results in very high platelet numbers and myelofibrosis (for 

reviews see Briere et al., 1997; Cripe and Hromas, 1998). Three of the most common 

malignant megakaryocytic diseases are essential thrombocythaemia (ET). 

polycythaemia vera (PV) and agnogenic myeloid metaplasia (AMM). 

ET is usually diagnosed incidentally, by the presentation of high platelet number 

following blood sample examination. ET bone marrow trephines are characterised by 

profoundly elevated in numbers of enlarged megakaryocytes that usually cluster in 

small groups (Georgii et al., 1996). Although platelet number is increased, the platelets 

can either be over-reactive causing thrombosis, or under-reactive resulting in 

haemorrhage. At first it was thought that the discovery of TPO function and the 

cloning of c-Mpl, would lead to a greater understanding of all MPDs and especially 

ET. However, there is no evidence of c-Mpl mutations, a reduction in level of c-Mpl 

expression, differences in serum TPO levels or c-Mpl-mediated signalling in ET 

patients (Kiladjian et al., 1997; Horikawa et al., 1997). This suggests strongly that the 

c-Mpl/TPO signalling pathway is not altered in ET. The prognosis of ET patients is 

good. There is no significant decrease in lifespan (Fenaux et al., 1990) and only 10% 

of patients suffer from haematological events (Cortelazzo et al., 1990), 13% of which 

are haemorrhage (Hehlmann et al., 1988), the remaining cases being vascular 

thrombotic disorders. However, 4.5% of patients suffering from ET do develop acute 

leukaemia as a direct cause, possibly due to hydroxyurea treatment (Sterkers et al., 

1998). 

FT can also develop into another megakaryocytic MPD. PV (Murphy et at.. 1997). PV 

is similar in many aspects to ET. Megakaryocyte number and size are both increased 

as well as platelet number although not to the same extent as ET. The difference to ET 

is the increase in erythrocyte number and morphology and the development of 

nlvelotibrosis. l'stvelofibrosis results from dramatic increases in the levels of platelet- 

30 



Chapter I 

derived growth factor (PDGF) and TGF-ß from the malignant megakaryocytes. This 

stimulates the bone marrow fibroblasts and causes the production of fibronectin and 

collagen, resulting in fibrous outgrowths into the marrow (Ross et al.. 1986). 

Myelofibrosis in ET is extremely rare, but by approximately 4 years after presentation, 

20% of PV patients develop bone marrow fibrosis (Georgii et al.. 1996). Myelofibrosis 

is the prominent abnormality in AMM, with over 50% of bone marrow being fibrotic 4 

years after presentation. The large amount of fibrotic tissue in the marrow cavity and 

subsequent loss of progenitor cells results in splenomegaly, enlargement of the spleen 

due to increase blood cell production and extramedullary haematopoiesis. 

Extramedullary haematopoiesis can also occur in the central nervous system, such as 

the brain or spinal column or in the pleural and peritoneal cavities. This results in the 

enlargement of these tissues causing haemorrhage or possible seizures. 

Thrombocytopenic conditions caused by dysfunctional megakaryocytopoiesis are less 

common than the previously mentioned malignant conditions. X-linked 

thrombocytopenia is believed to be due to a 2-base mutation on the X-chromosome 

leading to the substitution of a single amino acid. This substitution inhibits the 

interaction between GATA-1 and FOG-1, resulting in severe thrombocytopenia and 

large platelets (macrothrombocytes) (Mehaffey et al., 2001). Amegakaryocytic 

thrombocytopenia is present at birth and develops into other haematopoietic cell 

cytopenias during childhood. This is the only known megakaryocytic disease thought 

to be as a direct result of abnormal TPO/c-Mpl signalling (Muraoka et al., 1997; Ihara 

et al., 1999; Ballmaier et al., 2001). Patients' megakaryocyte colony formation does 

not respond to TPO treatment and point mutations have since been discovered in the c- 

Mpl gene in all patients in the studies. It has therefore been concluded that this 

condition is caused by the absence of response to TPO by c-Mpl. The finding that 

defective TPO signalling is the single cause only of this very rare disease suggests that 

other factors are involved in the pathogenesis of other megakaryocyte disorders. One 

such factor recently implicated in megakaryocyte differentiation is glutamate signalling 

(Genever et al.. 1999a). 
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1.6 Glutamate Signalling in the Central Nervous System 

The central nervous system (CNS) is subtly regulated by excitatory and inhibitory 

neurotransmission with almost the entirety of the former being mediated by the amino 

acid glutamate. Glutamatergic synaptic activity can essentially be divided into four 

stages; 1. The passage of an action potential along the axon of the pre-synaptic cell 

causes the vesicular release of glutamate into the synaptic cleft. 2. Released glutamate 
diffuses across the synaptic cleft where it binds to glutamate receptors located in the 

extracellular membrane of the post-synaptic cell. 3. Binding of the glutamate agonist 

to the receptor results in receptor activation, leading to an influx of charged ions such 

as Ca 2+ and Na+ or activation of coupled G-proteins in to the post-synaptic cell, causing 

depolarisation, continuing the action potential and the activation of a wide range of 

downstream signalling events. 4. The termination of synaptic transmission by the 

removal of glutamate from the synaptic cleft, via glutamate transporter expressing 

neighbouring neuronal and glial cells (Fig. 1.11). Abnormal glutamate signalling has 

been implicated in a range of neurological conditions, including epilepsy, ischaemic 

brain damage, Huntingdon's chorea, Alzheimer's, Parkinson's disease and 

amyotrophic lateral sclerosis (reviewed in Choi and Rothman, 1990; Lee et al., 1996). 

Glutamate-containing vesicles translocate to the area of the pre-synaptic neuron termed 

the active zones. Following stimulation, the vesicles dock with the plasma membrane 

and the vesicular membrane fuses with the pre-synaptic plasma membrane, releasing 

the vesicular glutamate into the synaptic space. The process of tethering the vesicle to 

the plasma membrane requires the interaction of specific proteins, known as the 

SNARE (soluble N-ethyl maleimide-sensitive factor attachment protein receptors) 

hypothesis, present on both the vesicle and the plasma membrane. The vesicle 

(v)-SNARE proteins bind with the target (t)-SNARE proteins on the plasma membrane 

resulting in the fusion of the membranes and subsequent glutamate release. 

1.6.1 Nletabotropic Glutamate Receptors 

Glutamate receptors can be classified into two main groups: ionotropic. those with an 

integral ion channel and metabotropic, which are coupled to (J-proteins. The finding 
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that glutamate was able to activate inositol phosphate metabolism in striatal and 

cerebellar granule cells (Sladeczek et al.. 1985: Nicoletti. 1986) was supported by the 

discovery that Xenopus oocytes injected with cerebral mRNA develop Cl- oscillations 

when stimulated with glutamate, due to inositol-1,4.5-triphosphate (IP3)-mediated 

release of intracellular Ca 2+ (Sugiyama et al., 1987; Murphy and Miller, 1988). 

Resulting studies identified the existence of a family of metabotropic glutamate 

receptors (mGluR), ranging from mGluR-1 through to mGluR-8 (for review see Oza\ti-a 

et al., 1998). The family subtypes are structurally related. but have different selective 

agonists and activate different downstream signalling events. The mGluR family have 

also been divided into three groups depending on amino acid sequence, agonist 

response and subsequent signalling activation. mGluR-1 and mGluR-5 are members of 

group I, mGluR-2 and mGluR-3 group II and mGluR-4 and 6-8 are members of group 

III. The structure of different mGluR subtypes are however similar, consisting of an 

N-terminal approximately 550 amino acid residues in size, a 250 amino acid 7 

transmembrane spanning domain and a C-terminal domain the length of which depends 

on subtype (for review see Hollmann and Heinemann, 1994, Dingledine et al.. 1998). 

The mGluR subtypes that are members of the same group show similar signal 

transduction characteristics. Group I receptors stimulate Ca 2+ release from intracellular 

stores via phospholipase C (PLC)-mediated formation of IP3 (Masu et al., 1991). The 

mGluR-1 receptor also activates the signalling molecules cyclic adenosine 

monophosphate (cAMP) and arachidonic acid (Aramori and Nakanishi, 1992), whilst 

mGluR-5 does not. The group II and III mGluRs function by inhibiting adenylate 

cyclase and as a consequence reduces the formation of cAMP (Tanabe et al., 1992; 

Tanabe et al., 1993). 

The mGluRs function in numerous neuronal actions, including neuronal excitability by 

the inhibition of K+ currents resulting in depolarisation (Charpak et al., 1990), 

suppression of presynaptic neuroligand release (Nakanishi, 1994) and synaptic 

plasticity in the cerebellar cortex (Ozavv-a et al., 1998). 

1.6.2 lonotropic Glutamate Receptors 

In contrast to the mGluRs, ionotropic glutamate receptors (iG1uR) are ligand-gated ion 

channels, which on activation cause an influx of ions into the cell directly through the 
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receptor (for reviews see Hollmann and Heinemann. 1994: Ozawa et al.. 1998: 

Dingledine et al., 1999). Three families of iGluRs exist. all of which are named after 

their pharmacological agonist. These families are: a-amino-3-hydroxyy-5-methyl-4- 

isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA) and kainate. AMPA 

receptors are found ubiquitously throughout the CNS, although different regions do 

show varying levels of expression (Monaghan et al., 1984). Kainate receptors 

demonstrate similar local expression patterns to AMPA receptors, although strong 

levels are observed in hippocampal regions (Represa et al., 1987). NMDA receptors 

are found throughout the brain but are primarily located in the forebrain (Monaghan et 

al., 1989). The iGluRs all have similar structure, consisting of an extracellular N- 

terminal and intracellular C-terminal and three transmembrane spanning domains 

named M 1,3 and 4 as M2 is re-entrant loop that faces the cytoplasm and does not 

transverse the membrane. Amino acid residues within the re-entrant loop are thought 

to manage the ion permeability of each receptor type. The S1 region, located before 

M1 and the S2 region, located after M3 are believed to be the agonist-binding site (see 

Fig. 1.12). The primary function of iGluRs lies in the formation of experienced-based 

learning and memory, via a complex molecular mechanism referred to as long-term 

potentiation (LTP). 

1.6.2.1 AMPA and Kainate receptors 

AMPA receptors are present at most synapses in the CNS and trigger fast excitatory 

neurotransmission. Four AMPA subunits have so far been identified. The first, GluR1 

was isolated from a rat brain cDNA library (Hollmann et al., 1989) and lead to the 

discovery of three further structurally related subunits, GluR2,3 and 4, all of which are 

approximately 900 amino acids in size (Hollmann and Heinemann, 1994) which form 

either hetero or homo pentamer receptors. All of the AMPA subunits are able to exist 

as two different variants, termed "flip" and "flop", which are created via alternative 

splicing of aI l5bp extracellular region above the M4 domain (Sommer et al., 1990). 

"l'his feature. in conjunction with other RNA-mediated modifications of subunit amino 

acid sequence, results in the AMPA receptor being exceptionally diverse and able to 

produce a wide range of functional responses. 
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Figure 1.12 The iGluR family. (A) Alignment of the members of the iGluR gene 
family based on amino acid sequence (adapted from Das et al, 1998). (B)The generalised 
structure of iGluR subunits, demonstrating the 3 transmembrane (M 1,3 and 4) and the re- 
entreant loop (M2) and the agonist binding sites (S1 and 2). 
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The diversity of the AMPA receptor is demonstrated by cation permeability. It was 

originally believed that AMPA subunits were permeable only to K' and Na-. and 

impermeable to Cat+. However, AMPA subunit expression studies using Xenopus 

oocytes demonstrated that whilst GluR2 homomeric receptors are Ca 2+ impermeable. 

homomeric GluR1,3 and 4 receptors are permeable to Cat+. Expression of GluR2 with 

GluR 1,3 or 4 greatly reduces Ca 2+ permeability, demonstrating that the G1uR2 subunit 

is dominant in controlling AMPA receptor Ca 2+ influx (for review see Seeburg. 1993). 

Native AMPA receptors are likely to be heteropentamers of G1uRl-4 subunits. As 

GluR2 is widely expressed throughout the CNS, many of the AMPA receptors have 

low permeability to Cat+. However, in certain regions of the brain, especially the rat 

hippocampus and cerebellar glia, highly Ca 2+ AMPA receptors are present (lino et al., 

1990; Burnashev et al., 1992). It can therefore be hypothesised that differences in 

calcium permeability between regions of the brain and even cell-to-cell differences 

may be due to the expression of GluR2 subunits by the AMPA receptor. An increase 

in Ca2+ permeability via the AMPA receptor enables it to mediate synaptic plasticity, 

especially during long-term potentiation (LTP) (Jia et al., 1996). 

Both AMPA and kainate act as AMPA receptor agonists, although AMPA has a 

desensitisation effect, which is considered to be due to the subunit composition of the 

receptor. For example, a G1uR4 flop homopentamer receptor channel has the quickest 

desensitisation time, whilst G1uR3 flip is the slowest. Heteropentamers comprised of 

subunits in the flop variation tend to desensitise quicker than flip, demonstrating that 

alternative splicing of AMPA receptor subunits control the receptor kinetics 

(Mosbacher et al., 1994). The differences in AMPA receptor desensitisation. which are 

determined by subunit composition, can have profound effects on the excitatory 

postsynaptic current (ESPC). The time it takes for the ESPCs to decay varies between 

neuronal cell types, depending on their function. It is believed that the differences in 

ESPCs are due to desensitisation, possibly via AMPA receptor subunit structure 

(Barbour. 1994). 

The kainate family of receptors are composed of five subunits GluR5,6.7. KAI and 

KA2, of which alternative splicing of the G1uR5 subunit and mRNA editing of GluR5 

and (iluR(' occurs. increasing the receptor diversity (for review see 1-lollmann and 

I leinenlann. 1994). The fact that kainate elicits an affect on AMPA receptors has 
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resulted in lack of understanding of the kainate receptors functional properties. 
However, recent advances in the field of pharmacological AMPA antagonists have 

ensured that the physiological properties of the kainate receptor can now be 

investigated. Similar to the AMPA receptor. the native kainate receptor composed of 
heteromers of the five subunits, also desensitises rapidly. although it is highly 

permeable to Ca2+ (Egebjerg et al., 1991; Kohler et al.. 1993). The role of the kainate 

receptor in the CNS would appear to be in slow glutamatergic neurotransmission 

(Vignes and Collingridge, 1997), though it also regulates presynaptic neurotransmitter 

release (Malva et al., 1995; Chittajallu et al.. 1996). 

1.6.2.2 The NMDA receptor 

The NMDA receptor was initially considered to be composed of five receptor subunits, 

comprising a selection of NMDA receptor (NR) 1 and NR2A-D, until the discovery of 

two NR3 subunits A and B (previously referred to NMDAR-L or )(-1) (for reviews see 

Hollmann and Heinemann, 1994; Ozawa et al., 1998; Dingledine et al., 1999). All of 

these receptor subunits are encoded from three genes, each of which is present on a 

different chromosome. The stoichiometry of the subunits that form the native NMDA 

receptor remains a point of contention. The NR I subunit is fundamental to receptor 

function (Moriyoshi et al., 1991) and is able to form homomeric channels with NMDA 

receptor characteristics, but display reduced amplitude current responses compared to 

receptors in vivo. This indicated that the NR1 subunit co-localises with the other 

subunits when forming functional receptor channels. It remains unclear as to whether 

the NMDA receptor consists of four (tetrameric) or five (pentameric) subunits and how 

many NR 1 subunits are present in this receptor (Fig. 1.13 ). By co-expressing NR 1 and 

NR2 subunits in Xenopus oocytes and measuring the number of different conductances, 

Behe and co-workers (1995) concluded that the NMDA receptors were tetramers. 

composed of two NR I subunits and two NR2 subunits. Premkumar and Auerbach 

(1997) then carried out the same experiments, only to hypothesise the formation of 

pentamers made up from three NRl subunits and two NR2 subunits. The finding that 

post-translational subunit changes affecting receptor conductance may lead to an over- 

exaggeration of subunit number has further complicated these ideas (Laube et al.. 

1998). 
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A number of characteristics of the NMDA receptor differ to that of the AMP A and 

kainate receptors. One difference is ion permeability, as the NMDA receptor is highly 

permeable to Cat+, whilst a similar cation, Mg 2+ actually blocks the receptor channel 

(Mayer and Westbrook, 1987; Ascher and Nowak, 1988). The binding of Mg 2+ to and 

subsequent blocking of the NMDA receptor is a voltage-dependant mechanism. At 

resting membrane potential, Mg 2+ blocks the NMDA receptor. preventing the action of 

the receptor at the synapse. When the membrane becomes depolarised, possibly via 

activation of AMPA, on the post-synaptic cell, the Mg 2+ block is removed and 

subsequent calcium influx occurs. This may explain NMDA and AMPA receptor co- 

localisation, as AMPA shows an almost immediate activation on agonist binding 

followed by desensitisation and subsequent long-lasting effect of NMDA receptor 

activation. The NMDA receptor-mediated calcium influx has profound effects on the 

cell by activating a wide range of signalling cascades, generating changes in neuronal 

cell function. Another unique characteristic of the NMDA receptor is the fact that 

glycine acts as a co-agonist with glutamate and is a requirement for NMDA receptor 

activation (Johnson and Ascher, 1987; Kleckner and Dingledine, 1988). The glycine- 

binding site appears to be located on the NR1 subunit, whilst glutamate binds to NR2, 

which possibly explains the reason behind the reduced conductance of the homomeric 

NR1 receptors compared to heteromeric NR1/NR2 receptors (Sucher et al., 1996). The 

fact that the NMDA receptor conductance increases as glutamate and glycine bind to 

their relative subunits provides an acceptable explanation as to the slow activation and 

desensitisation kinetics. 

NR3 is a distant relation to the other NMDA receptor subunits and is the most poorly 

understood and its function is unlike any other. NR3A co-immunoprecipitates with 

other NMDA receptor subunits and when co-expressed with NR1 and NR2A in 

Xenopus oocytes, whole cell (Ciabarra et al.. 1995) and single channel (Das et al., 

1998) conductances and Ca 2+ influx were markedly reduced. Das and co-workers 

confirmed these findings by generating NR3 knockout mice that displayed a 3-fold 

increase in channel current. These results identified the NR 3 subunit as a modulator of 

NMDA receptor function. acting as a "volume control" by reducing the activity of the 

receptor. the only ligand-gated ion channel known to do so. Parkinson's disease is 

believed to be due to NN1D. \ receptor hyper-activation due to excessive amounts of 
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extracellular glutamate. Therefore the NR3 subunit. acting to reduce this level of 

activation, may have pertinent therapeutic implications. 

NMDA receptor subunit composition determines the properties of the receptor channel. 

greatly increasing its functional diversity (for review see Cull-Candy et al., 2001). 

NMDA receptor heteromers composed of NR1 and one of the four NR2 subunits 
demonstrate a great diversity in receptor desensitisation time, ranging from 

milliseconds (NR1/NR2A) to seconds (NRI/NR2D) (Wyllie et al., 1998. Vicini et al., 
1998). NR2A and B are also more sensitive to the blocking action of Mg 2+ compared 

to NR2C and D (Momiyama et al., 1996) and although differences in Ca 2 permeability 

are negligible (Burnashev et al., 1995), disparity in Mg 2+ sensitivity is likely to affect 
Ca 2+ conductance. During postnatal development, the NR2B subunit is replaced by 

NR2A, resulting in faster desensitisation and subsequently quicker NMDA-mediated 

ESPC decay, which plays a role in synaptic plasticity (Constantine-Paton and Cline. 

1998). NR1/NR2C receptors also exist, participating in synaptic plasticity via long- 

term depression (LTD), the process opposing LTP, mainly in cerebellar granule cells 

(Hrabetova et al., 2000), however NR1/NR2D heteromers do not exist in the synapse 

(Cull-Candy et al., 1998). 

The effect of Ca 2+ influx via the activated NMDA receptor regulates the action of 

intracellular kinases and phosphatases controlling numerous cellular events. NMDA- 

mediated activation of downstream signalling molecules, of which the most important 

are Cat+/calmodulin-dependent protein kinase II (CaMKII), PKC and PKA (for review 

see Dingledine et al., 1998; Kennedy, 2000), underlie cellular responses at the CNS 

synapse. These molecules in-turn are able to phosphorylate serine and threonine 

residues situated on the NMDA receptor, enhancing its function by decreasing Mg 2+ 

affinity and opening probability (Chen and Huang, 1992; Leonard and Hell, 1997). It 

therefore becomes possible to understand how the NMDA receptor is able to initiate 

LTP by protein phosphorylation, rather than longer-term gene transcription. 

Signalling molecules are organised as a protein complex at the membrane of the 

postsv naptic cell, called the postsY naptic density (PSD). which is visible by 

transmission electron microscopy (TENT) (Gray, 1959). It is likely that the components 

of the P, --, D vary between synapses, however some signalling molecules are highly 

abundant in the protein complex. the identification and function of which shall be 
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discussed in a later chapter. The MAPK pathway culminates in gene transcription and 

protein phosphorylation of fundamental importance to LTP (English and Sww eatt. 1997, 

Sweatt et al., 2001). NMDA-mediated MAPK activation is considered to be via 

several signalling proteins, the most important of which is CaMKII (Kurino et al.. 
1995; Xia et al., 1996; Perkinton et al., 2002). CaMKII inhibits SvnGAP. a synaptic 
Ras GTPase-activating protein. SynGAP is believed to inactivate GTP-ras. the major 

positive regulator of the MAPK pathway (Scheffzek et al.. 1996). Therefore, CaMKII 

releases the SynGAP-mediated constraints on the MAPK pathway by SynGAP 

inactivation (Chen et al., 1998). The NMDA receptor-mediated increase in 

intracellular Ca 2+ also leads to the activation of PKC and PKA, both potent activators 

of downstream signalling events. Other signalling molecules involved in LTP appear 

to be CaMKII-dependent, including the transcription factor cAMP response element 

binding protein (CREB) and nitric oxide (NO), the latter being activated by way of 

neuronal nitric oxide synthase (nNOS) (Fig. 1.13). 

The signalling mechanisms utilised by glutamate receptors during processes such as 

synaptic plasticity, are by no-means specific to the CNS. Indeed, the presence of 

glutamate receptors on any cell type is likely to have profound effects on all aspects of 

cell function. 

1.7 Glutamate Signalling in Peripheral Tissues 

The identification of glutamate receptors expressed by cells outside of the CNS, raises 

new possibilities of glutamate-mediated cellular functions in numerous diverse tissues 

(for reviews see Skerry and Genever, 2001, Gill and Pulido, 2001). Compelling 

evidence exists for the function of GluRs in bone, skin and pancreas, whilst glutamate 

receptors have also been identified in the heart, thymus, testis, taste buds, liver, kidney 

and gastro-intestinal tract. iGluRs appear also to function in plant cells, as mediators 

of light signal transduction (Lam et al., 1998), raising the possibility that the 

mammalian glutamate receptor may have evolved from a more primitive receptor type. 
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1.7.1 Glutamate signalling in bone 

Bone is perhaps the most widely accepted and understood location of peripheral 

glutamatergic signalling. This signalling process was first hypothesised on the basis of 

a differential RNA display, in which changes in the expression of the glutamate 

transporter GLAST-1 following in vivo bone loading (Mason et al.: 1997). This 

transporter was identified in osteocytes (bone matrix cells) and osteoblasts but not 

osteoclasts, leading to further studies focusing upon the discovery of other components 

associated with glutamate-mediated signalling. These investigations proved to be 

extremely productive, identifying a range of glutamate receptors expressed by bone 

cells in vivo, by primary cells and cell lines (Patton et al.; 1998: Chenu et al., 1998). In 

vitro, bone cells treated with the specific non-competitive NMDA receptor antagonist 

MK-801 resulted in the reduction of osteoblastic bone formation (Dobson et al., 2000: 

Taylor et al.; 2000), whilst inhibiting osteoclastic-mediated bone resorption (Peet at al, 

1999). AMPA receptor antagonism also resulted in increased adipocytic lineage 

commitment from marrow stromal cells compared to osteoblast differentiation. The 

ability of glutamate signalling to determine cell lineage from primitive multipotent and 

progenitor cells has not currently been investigated and may prove extremely exciting. 

Attempts to demonstrate glutamate receptor function in bone by agonist-mediated 

response has proved less conclusive. However, electrophysiological studies on 

osteoblastic cell lines and primary cells has demonstrated glutamate receptor-like 

gating characteristics, but similarity of these results to the CNS glutamate receptor 

remains a point of controversy (Laketic-Ljubojevic et al.; 1999; Gu et al.; 2000). Patch 

clamping experiments also identified the existence of NMDA receptor currents in 

osteoclasts (Peet et al.; 1999; Espinosa et al.; 1999). 

It has been established recently that osteoblasts also express components required for 

glutamate release in the CNS synapse. These include SNAREs and associated proteins 

involved in presv naptic vesicle docking and glutamate release. Osteoblasts also 

demonstrate regulated and spontaneous glutamate exocytosis. prevention of which 

leads to inhibition of cell survival and differentiation (Bhangu et al.. ? 001; Genever 

and Skerry, 2001). Further examination of osteoblastic glutamate signalling has 

revealed all the necessary components required 1or LTP in the CNS posts\ naptic cell 
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(G. J. Spencer, personal communication). These include many of the structural and 

signalling proteins present in the PSD of which CaMKII is particularly prevalent. 

Treatment of osteoblastic cells with glutamate resulted in CaMKII activation. 

inhibition of which reduced osteoblastic differentiation and mineralisation in vitro. 

1.7.2 Glutamate signalling in other tissues 

A high level of NR1 expression by proliferative cells in the resting basal epidermis of 

skin, raises the possibility that the NMDA receptor is involved in the differentiation of 

keratinocytes. MK-801 inhibition of human keratinocyte NMDA receptors induced the 

cells to differentiate (Morhenn et al., 1994; Genever et al., 1999b). In addition to 

NMDA receptors, the G1uR2/3 family of AMPA receptors are localised to the basal 

surfaces of rat keratinocytes, which also express the glutamate transporters GLT-1 and 

EAAC-1 and various mGluRs (Genever et al., 1999b). NMDA receptor expression in 

migrating epidermal cells is reduced during re-epithelialisation following wounding, 

implying that glutamate signalling is involved in the process of skin development. The 

supply of glutamate in skin remains unknown, although there are several possible 

sources, including the possibility of keratinocyte glutamate recycling and release 

(Davidson et al., 1997) and glutamate containing nerves that are present in skin 

(Kinkelin et al., 2000). 

Pancreatic cells express glutamate receptors of the NMDA, AMPA and kainate 

families. Electrophysiological patch clamp experiments revealed that the 

characteristics of these receptors were identical to those found in neuronal cells (Gonoi 

et al., 1994; Molnar et al., 1995), with the function of the AMPA and kainate receptors 

possibly determining insulin secretion from pancreatic cells. Glutamate receptor 

expression has been demonstrated throughout the gastro-intestinal tract especially 

NR1, which is present in the oesophagus, stomach mucosa and mast cells (Gill and 

Pulido, 2001). Glutamate-mediated activation of NMDA receptors present in ileum 

results in smooth muscle contraction, a process responsible for gastro-intestinal 

motility (Shannon and Sawyer, 1989), which is blocked by Mgand MK-801. The 

presence of glutamate receptor types and function in other tissues is summarised in 

Figure 1.14. 
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Figure 1.14. Glutamate signalling in selected peripheral tissues. Numerous human 

tissues of widely varying function express glutamate receptors. In these tissues, 

glutamate signalling appears to play fundamental roles in their function (for review see 
Skerry and Genever, 2001) 
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1.8 The Megakaryocytic Glutamate Receptor 

Many of the physiological actions of platelets depend upon the concentration of 
intracellular calcium ([Ca2+]I), including activation and aggregation. The discovery of 

the platelet NMDA receptor raises the possibility of this receptors' involvement in 

platelet [Ca2+]; (Franconi et al., 1996). The addition of arachidonic acid (AA) to 

platelet rich plasma (PRP) is known to induce platelet aggregation. However, AA 

application in conjunction with glutamate or NMDA prevents platelet activation. This 

effect is shown to be NMDA receptor-specific, as MK-801 addition prior to AA and 

glutamate/NMDA application prevented the anti-aggregative effects. Addition of 

glutamate or NMDA in the absence of AA had no effect on platelet function. Similar 

dose-dependent effects were observed with other pro-aggregation agents, ADP and 

platelet-activating factor (PAF). There responses were not expected as activation of 

the NMDA receptor should increase [Ca2+]1, therefore promoting platelet activity. 

However, this effect may be explained by the fact that NMDA also caused an increase 

in intracellular cAMP concentration, known to inhibit platelet activation (Bushfield et 

al., 1985), an effect that was absent in Cat+-free medium. 

Further study from the same group investigated the effect of NMDA receptor 

activation on Ca 2+ influx and thromboxane B2 (TxB2) synthesis (Franconi et al., 1998). 

NMDA increased [Ca2+]; in a dose-dependent manner whilst completely inhibiting the 

synthesis of the pro-aggregation agent TxB2, providing more evidence of the anti- 

aggregation effect of NMDA. The significant therapeutic potential of these findings 

was demonstrated by combining NMDA with aspirin. Aspirin (20µM) alone decreased 

AA-mediated human PRP aggregation to 54% from 84%. However, aspirin combined 

with I OOnM NMDA reduced maximum aggregation to around I%. These results are 

certainly compelling and warrant further investigation. 

The megakaryocytic NMDA receptor was first identified in 1999 (Genever et al., 

1999). However, it seems surprising that Franconi and co-workers' discovery of the 

functional platelet NMDA receptor in 1996 did not lead to a logical investigation of 

megakaryocytic glutamate signalling. Immunohistochemical staining of bone marrow 

with an antibody raised against the cytoplasmic domain of the NRI subunit identified 
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strong expression by megakaryocytes in rat bone marrow. Further studies revealed 

NR1 expression by human megakaryocytes and the megakaryocytic cell line MMEG-01. 

NRI protein expression was confirmed firstly by RT-PCR of rat bone marrow mRNA 

and MEG-O1 cells. using gene specific primers to rat and human brain NR1 

respectively. RT-PCR also amplified products in rat marrow and MEG-01 cells that 

corresponded to the brain NR2D subunit, but not NR2A. B or C. Interestingly, western 

blot analysis of NRl expression by MEG-O1 cells with and without the differentiation- 

promoting agent phorbol myristate acetate (PMA), confirmed that the subunit \\*as in a 

deglycosylated state compared to brain control. This finding is of particular 

significance, as glycosylation is known to provide NMDA receptor membrane stability, 

allowing for orientation only in specific areas of the postsynaptic cell. However, 

deglycosylated receptors would probably distribute evenly over the cell surface, as 

seen in the megakaryocyte. Human megakaryocytes derived from CD34+ umbilical 

cord blood cells were also shown to express NR1 by northern blot analysis of total 

RNA. All acetylcholinesterase (AChE)-positive cells, a megakaryocyte lineage 

marker, in rat bone marrow also expressed NR1, indicating that the receptor is present 

at all stages of megakaryocyte maturation. 

By treating animals with radiolabelled MK-801 ([3H]-MK-801), which selectively 

binds to and blocks open NMDA receptor channels followed by autoradiographic 

examination of bone marrow, it was identified that NMDA receptor subunits formed 

functional channels in l'ivo. This binding was significantly reduced when animals were 

pre-treated with an excess of non-radioactive MK-801. The function of the 

megakaryocytic NMDA receptor was ascertained by treating megakaryocytic cell lines, 

with MK-801. PMA-mediated increases in cell size and expression of the 

inegakaryocyte-specific marker CD41 were significantly reduced following MK-801 

application compared to controls. MK-801 also inhibited cellular adhesion by 

approximately 50% compared to controls, without affecting cell viability. The changes 

in cellular adhesion were also observed following application of a non-competitive 

NNIDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (D-APS) and 

using another megakaryoblastic cell line CNIK. 

These data provided compelling evidence of a functional N\ IDA receptor in 

mc akaryohlastic cells and identified the presence of this receptor on me`gakar\ ocvteý 
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in vivo. Taken in conjunction with the finding that a number of uncharacterised cells in 

the bone marrow express the glutamate transporter GLT-1 (Mason et al., 1997). 

enabling the termination of paracrine glutamate signalling. It is possible to theorise an 

entire glutamatergic signalling system within the bone marrow microenvironment. The 

effect of NMDA receptor inhibition on megakaryoblastic differentiation supports the 

identification of a previously unrecognised megakaryocyte signalling system. At these 

relatively premature stages, this work does however ask more questions than it 

answers. This thesis aims to answer some of these questions. 
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1.9 Primary aims 

9 To determine the NMDA receptor subunit and associated proteins expression 

by megakaryocytic cell lines and human primary megakaryocytes. 

" Establish the function of the megakaryocytic NMDA receptor on human 

primary cells and megakaryocytic cell line differentiation by using the specific 
NMDA receptor antagonist MK-801. 

e Investigate possible sources of glutamate within the bone marrow 

microenvironment with which to stimulate the megakaryocytic NMDA 

receptor. 

" Determine the intracellular signalling cascades mediated by the NMDA 

receptor in the modulation of megakaryocyte differentiation. 

" To determine any changes in megakaryocyte number and possible bleeding 

abnormalities in NR1 hypomorphic mice compared to wild types. 

49 



Chapter 2 

wrr 0_ IPF "/ 
10 

`` 

11,1 '14 

,. 
4 

4 I 
-WO 

"Oof 

Ag. 

" 
Vr > .\4 º' i 

"1 
`" ww 

P 
i 

ýv Aý 

elf 

General Materials 
and Methods 

Freshly immunoisolated umbilical cord blood CD34 cells (original magnitication \4UU) 



Chapter 2 

Chapter 2 

General Materials and Methods 

2.1 Cell Culture 

2.1.1 Cell culture plasticware and reagents 
Tissue culture plasticware and reagents were purchased from Life Technologies 

(Paisley, UK) unless stated otherwise. Cells were maintained in a humidified 

atmosphere at 37°C in 5%CO2/95% air. All media was supplemented \vith 100U/ml 

penicillin, 100µg/m1 streptomycin and 2mM L-glutamine unless otherwise stated. 

2.1.2 Cell line culture 

MEG-O1 and human erythroleukaemia (HEL) human clonal megakaryoblastic cell 
lines were cultured according the standard ATCC protocol, in RPMI 1640 medium 

with 10% foetal bovine serum (FBS). For experiments investigating responses to 

glutamate, cells were incubated overnight in glutamate-free NeurobasalTM media with 

serum replacement N2 supplement (Gibco). Both cell lines are non-adherent and 

media was changed every 3 days, and passaged by centrifugation (400g, 5 min) and 

replated at lx 105 cells/ml. To induce megakaryocyte differentiation, both cell lines 

were treated with I OOnM phorbol myristate acetate (PMA; dissolved in ethanol) for 72 

hours. In non-PMA treated samples, equivalent volume of ethanol was added. 

2.1.3 Human CD34-positive-derived megakaryocytes 

Umbilical cord blood was obtained from the umbilical cord and placenta from pre- 

term mothers giving birth by caesarean section. Blood was collected into heparinised 

tubes, a maximum of 5 minutes after birth. Approximately 50-100ml was extracted 

from each placental preparation. Blood was only taken after the mothers granted 

informed consent, at least 1-1 hours before surgery. CD34-positive (CD 34') cell 

separation took place within 1 hour of blood collection. Umbilical cord blood was 

diluted 2: 1 vol/vol. with Hanks buffered saline solution (11BSS) and overlaid on Ficoll 

paque (Fischer. Loughborough. UK). The preparation was centrifuged at 400U for 35 

minutes and the mononuclear cells removed from the Ficoll interface and washed 
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twice by resuspending cell pellet in IOml cold "buffer A" (phosphate buffered saline 
(PBS) containing 2% bovine serum albumin (BSA) (Sigma) and 5mM EDTA). 100µl 

of cells were taken for purity anal`'sis at this stage and remaining cells were 

centrifuged at 400g for 10 minutes at 4°C. CD34+ cells were isolated using a magnetic 
immunoselection protocol (Miltenyi Biotec GMBH, Germany). Washes were 

performed by adding l Oml of buffer A to the cells followed by centrifugation at 400g 

for 10 minutes at 4°C. Mononuclear cells were suspended in 100µl of IgG blocking 

reagent and 100µl mouse anti- human CD34+ primary antibody against the Q-BEND 

isotype and incubated at 4°C for 15 minutes. After washing, l00µ1 of mouse anti- 
human CD34+- fluorescein isothiocyanate I (FITC) conjugated antibody against 

HPCA-1 isotype was added and incubated for 15 minutes at 4°C and washed. The cell 

pellet was resuspended in 400µl buffer A and 100µl of magnetic anti-hapten 

secondary antibody, incubated at 4°C for 15 minutes and washed. The cells were 

resuspended in 500µ1 of buffer A and passed through a MS+ immunoselection column 

attached to the magnetic base unit (Miltenyi Biotec) and 3x500µ1 of buffer A passed 

through the column to remove the CD34-negative (CD34-) populations. The column 

was removed from the magnetic source and the CD34+ population collected by 

flushing 1 ml of buffer A through the column. 25µl of cells were taken from both 

CD34+ and CD34- for purity analysis by flow cytometry. Average purity of CD34+ 

cells was 91%, ranging from 85.3% to 94.7% (see Fig. 2.1). CD34+ cells were 

cultured in Iscove's modified Dulbecco's medium (IMDM; supplied containing 500µM 

L-glutamate) supplemented with 2mM glutamine, 2mg/ml sodium pyruvate, 1% 

Minimum Essential Medium vitamin solution, I% non-essential amino acids, 0.1 mM 

3-mercaptoethanol and 2mg/ml L-asparganine. The medium was also supplemented 

with 10% cord blood plasma, 0.2% BSA and 25ng/ml thrombopoietin (TPO) 

(Calbiochem, Nottingham, UK). Cord blood plasma was isolated from undiluted 

umbilical cord blood, centrifuged at 800g for 35 minutes at 4°C and the supernatant 

plasma fraction removed. Cells were plated at 5x104 cells/ml in 24-well plates and 

replated at this concentration following 7 days in culture. An additional 25ngi ml TPO 

was added at this point, and the cells were cultured for a further 7 days in culture. 
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Figure 2.1. Purity analysis of isolated CD34+ haematopoietic cells following 
MACS separation from umbilical cord blood. CD34' cells were labeled with a 
mouse anti-human CD34 antibody prior to MACS separation. Following separation, 
CD34- effluent was collected prior to CD34' flow-through and both samples tested 
for purity by flow cytometry. CD34-positivity typically ranged from 85-92% (blue 
filled peak) compared to CD34- (red peak) and antibody control (black peak). 
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2.2 Immunolocalisations 

2.2.1 Cytospin preparations 

A Cytospin 3 cytocentrifuge (Shandon Scientific Ltd, Runcorn, UK) «-as used for all 

cytospin preparations. Polylysine slides (BDH) were cleaned in alcohol, labelled and 

placed under a slide filter card in the sample chamber and placed in the cytospin head. 

Cells were removed from media and washed 3 times with PBS. The cell concentration 

was altered to lx 105 cells/ml and 200µ1 of cell suspension added to the sample 

chamber. Cells were spun for 5 minutes at 100g, "LO" acceleration and the slides 

removed from the slide clip, immediately fixed in 4% paraformaldehyde and kept at 
4°C until use. 

2.2.2 Fluorescent immunocytochemistry 

Cells were fixed in 4% paraformaldehyde for 5 minutes at room temperature and 

washed 3 times with PBS. The cells were then incubated in 10% goat serum (Sigma) 

for 30 minutes at room temperature and excess serum removed. Cells were incubated 

with primary antibody or control IgGs for either 1 hr at room temperature for cytospin 

preparations, or overnight at 4°C for fibronectin bound cells. Excess primary antibody 

was removed, washed 3 times for 5 minutes with PBS and incubated with either FITC 

or tetramethyl rhodamine isothiocyanate (TRITC) secondary antibodies (Sigma) at 

1: 100 dilution for 45 minutes in the dark at room temperature. Excess secondary 

antibody was removed and cells were washed 3 times with PBS for 10 minutes. 

Specimens were then mounted in Vectorshield (Vector Laboratories) and viewed using 

a Leica DMLA microscope (Leica) under U. V illumination. 

2.2.3 Im munohistochemistry 

?.?. 3.1 Tissue collection and cryosectioning 

Spleen, tibiae and femora were removed from adult mice and rats and immediately 

frozen in liquid nitrogen and store at -80°C until use. Specimens were mounted in 

Crvo-m-bed embedding compound (Bright. UK) on brass chucks and frozen in chilled 

isopentane. Frozen sections were cut using a Bright OTF500 cryostat (Bright) fitted 

with a tungsten carbide tipped knife, collected on poly lysine slides and stored at -20°C 

until required. 
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2.2.3.2 Peroxidase immunolocalisations 

Sections were fixed in 4% paraformaldehyde for 5 minutes before the depletion of 

endogenous peroxidase activity with 3% hydrogen peroxide (Sigma) for 30 minutes. 

Non-specific avidin binding to endogenous biotin was prevented using the Vector 

Avidin / Biotin Blocking Kit (Vector Laboratories) according to the manufacturer's 

protocol. For sections incubated in non-mouse raised primary antibodies, 10% 

blocking serum was applied to the tissue sections, chosen to match the species in 

which the secondary antibody was raised. Sections were incubated with primary 

antibody for 30 minutes, followed by exposure to biotinylated IgG secondary 

antibodies (1: 200; Vector Laboratories). Avidin-biotinylated-peroxidase reagent 

(Vectastain Elite ABC reagent, Vector Laboratories, 1: 50 dilution) was then applied to 

the specimens and incubated for 20 minutes followed by incubation with DAB tablets 

(0.5mg/ml 3,3'-diaminobenzidine and 0.3% hydrogen peroxide; Sigma) dissolved in 

dH2O, for 2 minutes. The sections were counterstained with haematoxylin before 

mounting in 90% v/v glycerol/PBS and viewed using a Leica DMLA microscope. 

Antibody negative controls received identical treatment apart from the application of 

normal mouse IgGs (Vector Laboratories; 1µg/ml) instead of the primary antibody. 

All incubations were performed at room temperature with 3x5 minute PBS washes 

between incubations. 
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Chapter 3 

Megakaryocytic NMDA Receptor Expression 

3.1 Introduction 

NMDA receptor subunit organisation has a profound effect on receptor activity and 

conductance (see chapter 1.6.2.2). The functional importance of NMDA receptor 

subunit diversity is indicated by organisational changes during development. mRNA 

taken from the developing rat brain, demonstrates that NR2D expression is restricted 

to the brainstem and diencephalons (region of forebrain underlying cerebral 

hemispheres), whilst NR2B is expressed throughout the brain (Monger et al., 1994). 

Shortly after birth, NR2A is found in most regions of the brain, whilst NR2C 

expression is limited to the cerebellum. It appears therefore that in the CNS, NR2B 

expression is of greatest importance in the early embryo, which decreases during 

development to be superseded by the NR2A subunit (Akazawa et al., 1994). This 

occurrence is believed to underlie the speed of NMDA receptor-excitatory 

postsynaptic currents (EPSC), the phenomenon linked with memory forming synaptic 

plasticity (Constantine-Paton, 1998). 

Alterations in NMDA receptor subunit composition are not however limited only to 

regions of the brain. Indeed, single cells also display differences in subunit 

organisation. One such example is again, the NR2A: NR2B ratio in relation to NMDA 

receptor-EPSC. Receptors composed of mainly NR2A subunits will display rapidly 

decaying EPSC compared to cells composed mainly of NR2B subunits. The 

functional importance of this is explained by studies of rat visual cortex NMDA 

receptor-EPSCs. Animals reared in the dark and subsequently exposed to light, results 

in the rapid insertion of new NMDA receptors with an increased NR2A: NR2B ratio, 

reducing sensitivity by decreasing the time taken for NMDA receptor-EPSC decay 

(Quinlan et al., 1999). 

As previously mentioned (chapter 1.6.2.2). evidence exists for the participation of 

NR2A-. NR-'B- and NR-'C' containing heteromeric NMIDA receptors at the C'NS 
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synapse. The NR1/NR2D receptors have not however been identified at the CNS 

synapse, even though recombinant data indicted that they would be easy to identify by 

their extremely slow deactivation kinetics (Cull-Candy et al., 1998). This theory was 

confirmed by patch-clamp experiments on Purkinje cells (neuronal cells that carry 

output from the cerebellum) expressing pure NR 1 /NR2D receptors. as glutamate- 

mediated receptor activation leads to extremely slow deactivation (Misra et al., 
2000a). Although other cells express NR2D, NMDA receptor-EPSC remains fast. 

demonstrating the lack of pure NR1/NR2D receptors at the synapse (Misra et al., 

2000b). This does not however rule out the existence of triheteromeric receptors, such 

as NR1/NR2B/NR2D that are found in the midbrain (Dunah et al., 1998), which would 

not display pure NR1/NR2D kinetics. 

The above findings clearly reveal that NMDA receptor subunit composition results in 

functionally different receptors. These are subsequently expressed at different times 

during the development of the embryonic CNS and by different regions of the adult 

brain. It is therefore apparent that the structure of the NMDA receptor is directly 

correlated with its required function on the cell by which it is expressed. 

In addition to NMDA receptor subunit composition contributing to its function and 

subsequent downstream effects, proteins binding to the receptor can regulate its 

localisation and its signalling. As previously mentioned, NMDA receptor activation 

underlies the process of synaptic plasticity, by LTD (reduction of synaptic efficacy) 

and LTP (increase of synaptic efficacy) (chapter 1.6.2.2). These mechanisms are 

achieved by changes in synaptic strength, which is in turn achieved by modifications 

in postsynaptic NMDA receptor sensitivity and clustering on the postsynaptic 

membrane, activation of silent receptors and transcriptional changes (Bliss and 

Collingridge, 1993: Bear and Malenka, 1994). The molecules involved in these 

synaptic changes are organised into the post-synaptic density (PSD). The first and 

most abundant protein identified at these peripheral condensations was PSD-95 (also 

known as synaptic associated protein-90 (SAP-90)). PSD-95 belongs to a conserved 

cytoskeletal protein family known as membrane associated guanylate cyclases 

(MAGUKs). of which other principle members are chaps, ' n-110'PSD-9 3. SAP 102 and 

S; AP97%hDlg. All NIAGUKs contain characteristic domains known as PDZ 

(PSD-95'Dlg, ZO-1) and SH3. which mediate protein-protein interactions forming cell 
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membrane protein scaffolds (Craven et al.. 1998). PSD-95 binds to the long 

C-terminus of NR2 subunits (Kornau et al.. 1995; O'Brien et al., 1998) via one of its 

three PDZ domains (for review see Fujita and Kurachi. 2000; Sheng. 2001). PSD-95 

has a variety of multi-faceted roles in NMDA receptor function, including localisation 

of the receptor in the PSD (Steigerwald et al.. 2000), anchoring the receptor to the 

postsynaptic membrane (Sheng et al., 2000) and receptor-mediated activation of 

associated signalling pathways, of which the MAPK pathway is amongst the most 

critical in synaptic plasticity (Migaud et al., 1998). PSD-95 is able to modulate the 

MAPK pathway by interacting with CaMKII, which inhibits the synaptic GTPase 

activating protein SynGAP (Komiyama et al., 2002). In addition to PSD-95, another 

member of the MAGUK family, chapsyn-110, has been implicated in the coupling of 

nNOS to the NMDA receptor (Harris and Lim, 2001). Chapsyn-110 facilitates the 

nNOS activation by linking nNOS to the vicinity of the NMDA receptor, which is 

subsequently activated by the calcium influx resulting from receptor activation. 

Although these four MAGUK proteins account for the majority of the PSD, novel 

PDZ domain-containing MAGUKs have recently been identified. MALS, the 

mammalian homologue of the Caenorhabditis elegans LIN-7 protein (Simske et al., 

1997), contains a single PDZ domain and associate to the NMDA receptor / PSD-95 

complex, possibly also to the c-terminal of the NR2 subunit (Jo et al., 1999). Jo and 

co-workers suggest that MALS is likely to participate in the clustering of NMDA 

receptors and possibly other glutamate receptors in the PSD. Another novel MAGUK 

protein is CASK, the mammalian homologue of the Caenorhabditis elegans protein 

LIN-2. The PDZ domain of CASK binds to numerous other PSD proteins, but also 

specifically to the transmembrane adhesion protein syndecan (Cohen et al., 1998). 

Interestingly, CASK also contains two guanylate kinase (GUK) motifs, neither of 

which possesses enzymatic activity. However, a recent study discovered that CASK 

could translocate from the plasma membrane to the nucleus, and associates via its 

Gt IK domain to the transcription factor T-brain-1 (Tbr-1) (Hseuh et al., 2000), which 

greatly enhances the transcription of Tbr-l-dependant reporter genes. The capability 

of CASK to directly modulate transcription makes it unique in the PSD-MAGUK 

family. 
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SHANK (SH3 domain ankryin repeat) is a common protein in the cytoplasmic face of 

the PSD (adverse to PSD-95 which is located toward the membrane side of PSD). a 
location that puts this molecule in prime position to interact with cytoplasmic proteins 

and endoplasmic reticulum. SHANK has also shown to bind to interact with the actin- 
binding protein cortactin, raising the possibility that SHANK may be involved in PSD- 

mediated regulation of the cellular cytoskeleton (Naisbitt et al.. 1999). These results 
have since been confirmed by overexpression of SHANK in cultured neurones, which 

results in the enlargement of the dendritic spines (Sheng, 2001). 

The PSD also contains other non-MAGUK proteins that mediate glutamate signalling. 

Yotiao, which gains its name from having a similar coiled structure to a popular 

Chinese breakfast, is highly abundant both at CNS synapses and neuromuscular 

junctions that associates with the c-terminal tail of specific NR1 splice variants (Lin et 

al., 1998). Yotiao expression has been confirmed in several tissues apart from brain. 

Abundant signal was demonstrated in both skeletal muscle and pancreas, whilst lower 

levels of expression were also identified in heart and placenta, suggesting that the 

protein may have alternative non-glutamatergic roles. Very little evidence exists on 

the function of Yotiao. The fact that NR1 subunits are able to cluster in the 

postsynaptic membrane in the absence of NR2 subunits (Ehlers et al., 1995) and 

subsequently lacking well characterised NR2-associated clustering proteins, suggests 

that Yotiao may be involved in NR1 clustering. Lin and colleagues, who 

demonstrated that Yotiao fractionates with cytoskeletal-associated proteins. confirmed 

this hypothesis, therefore providing the link between NR1 and the cytoskeleton (Lin et 

al., 1998). Yotiao has also been revealed as being responsible for recruiting PKA and 

protein phosphatase 1 (PP 1) to the NMDA receptor and appear to counteract each 

other in the modulation of NMDA receptor channel conductance. In normal 

conditions, PP 1 is continually active, inhibiting the activity of the receptor channel. 

However, increases in cellular cAMP results in PKA phosphorylation of the receptor, 

conferring an increase in receptor channel activity (Westphal et al., 1999). Therefore 

the function of the Yotiao protein is one of NR1 receptor subunit clustering and 

receptor channel modulation. 

It is evident that the presence of the many multi-functional proteins in the PSD gives a 

different picture of the NMD: \ receptor at the CNti synapse. Rather than sinule 
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receptor channels acting independently to increase intracellular calcium concentration. 

NMDA and other glutamate receptors are present and linked to a mass of various 

scaffold and signalling proteins, which together modulate synaptic plasticity. The aim 

of this chapter is to investigate the expression of the regulatory NR2 and NR3 subunits 

and PSD proteins are expressed by megakaryocytes using yell-characterised 

megakaryocytic cell lines and primary human megakaryocytes. This would provide a 

greater understanding of how the NMDA receptor may function in the megakaryocvte 

compared to its neuronal counterpart. 

Basic exploratory research is often performed on megakaryocytic cell lines, two of the 

most common being used during this research are MEG-01 and human 

erythroleukaemia (HEL) cells (for review see Saito, 1997). Megakaryocytic cell lines 

are often derived from the bone marrow of patients with leukaemia and display many 

of the characteristics of megakaryocytopoiesis and differentiated human primary 

megakaryocytic cells. MEG-0l cells were derived from a patient suffering with 

megakaryoblastic crisis of chronic myeloid leukaemia (CML), whilst marrow taken 

from a patient with acute myelogenous leukaemia resulted in the development of HEL 

cells. In an undifferentiated state HEL cells possess features common to macrophages, 

erythrocytes and megakaryocytes (Long et al., 1990). However when stimulated by 

low concentration doses of PMA, the HEL cell gains a more megakaryocytic 

phenotype including expression of the megakaryocyte-specific markers CD41 and 

CD42a, as well as the typical cytoplasmic maturation and the formation of a polyploid 

nucleus. These changes are believed to be due to PMA-mediated activation of PKC, 

which controls the switch between megakaryocyte and erythrocyte lineage (Hong et 

al., 1996), whilst stimulation of HEL cells with erythropoietin (EPO) results in 

crythrocyte development (Chu et al., 1998). These characteristics make the HEL cell 

line a useful model in lineage determination studies. 

The MEG-01 cell line exhibits megakaryocytic properties (CD41, CD61, CD42a, von 

Willebrand factor (\'WF)) whilst lacking markers for other lineages (Ogura et al., 

1985). Fxpression of CD41, CD42a and vNNT by NIFG-O1 cells is increased by P NIA 

stimulation, which also induces a highly differentiated morphology (Ogura et al.. 

1989). Some reports indicate that ? SIEG-0l cells produce platelet-like particles that are 

ot-similar sue and display other features of circulating platelets (Takeuchi et al., 
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1998). Unlike HEL cells, MEG-01 cells do not express the TPO receptor c-NIpl. 
Therefore, PMA is the only known differentiation-promoting agent for NIEG-01 cells. 

whilst HEL cells can be stimulated to differentiate by culture in the presence of TPO 

(Matsumura et al., 1996). 

It is important at this point to consider the potential problems of using phorbol esters 

to induce differentiation of megakaryocytic cell lines. Prolonged exposure to phorbol 

esters causes the almost complete depletion of certain PKC isoforms by proteolysis 
(Hug and Sarre, 1993). Therefore, by following the standard protocol of treating the 

cell lines for 72 hours in the presence of I OOnM PMA to ensure total differentiation 

(see section 2.1.2), it is not surprising that many of the PKC isoforms are 

down-regulated following their activation. PMA treatment of MEG-O1 cells, although 

rapidly activating the majority of PKC isoforms, subsequently leads to the 

down-regulation of the PKC-a, -c and -0 isoforms following 1-2 hours of treatment. 

However, the P1 and II PKC isoforms are down regulated very slowly, suggesting that 

the activation of PKC-a, -c and -0 initiate differentiation whilst PKC-ßI and 131I are 

important in the maintenance of differentiation (Nagata et al., 1996). 

Recently, other signalling molecules have been identified as having phorbol ester 

binding sites, namely chimaerins, protein kinase D (PKD)-1, Ras guanyl-releasing 

protein (GRP), DAG kinase-y and Munc 13 (for review see Brose and Rosenmund, 

2002). These signalling molecules can regulate a range of downstream events, such as 

the MAPK pathway, which are able to stimulate megakaryocyte differentiation. The 

existence of these phorbol ester-binding molecules makes it important to take into 

account that non-PKC molecules may also be mediating PMA-induced megakaryocyte 

cell line differentiation. However, considering that the PKC antagonists GF-109203X 

and Ro-3 1-8220 prevent PMA-mediated megakaryocytic cell line differentiation 

(which may not however be specific PKC inhibitors (Alessi, 1997)). it appears that 

PKC remains the primary activator of megakaryocyte cell line differentiation 

(Lumelskv and Schwartz. 1997). 

The development of stem cell separation techniques combined with the commercial 

availability of human recombinant TPO has meant that C D3-ß haematopoietic cells 
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can now be promoted to form large numbers of differentiated megakaryocytes in vitro. 
There are three main sources of human CD34t cells, umbilical cord blood (UCB). 

bone marrow and peripheral blood (for review see Majka et al.. 2001). Although 

peripheral blood is the most accessible source of these cells, the megakar`-oblast 

recovery after 11 days of culture is significantly less than the other sources. 

Megakaryoblast recovery is greatest in bone marrow, however collection of this tissue 

is invasive and restrictive. Consequently, due to its accessibility and availability. UCB 

is the most widely used source for generating megakaryocytes following CD34' 

separation. CD34+-derived megakaryocytes exhibit numerous characteristics of 

mature bone marrow megakaryocytes, including; expression of the megakaryocyte and 

platelet-specific markers CD41, CD61, CD42a and CD62P. TPO receptor c-Mpl and 

PDGF receptor (Gewirtz, 1995; Majka et al., 2000). 

The megakaryocytic cell lines and primary cells were used to determine the expression 

of NMDA receptor subunits and PSD proteins. 
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3.2 Materials and Methods 

3.2.1. RNA isolation 

Cells were washed twice with PBS before total RNA was extracted by adding 1 ml 
TRIzoi (GibcoBRL) / 5x106 cells, transferred to a 1.5m1 Eppendorf tube and 

incubated for 5 minutes at room temperature. 200 µl of chloroform (Sigma) was 

added to the TRIzol® preparation and samples vortexed for 15 seconds before 

centrifugation at 12,000g for 20 minutes at 4°C. The upper aqueous phase was 

removed and placed into a new 1.5ml Eppendorf containing 500µ1 of isopropanol and 

incubated at -20°C for 20 minutes. RNA was precipitated in the isopropanol and 

pelleted by centrifugation at 12,000g for 10 minutes at 4°C and supernatant removed. 

The RNA pellet was washed in 70% v/v ethanol, centrifuged at 4°C for 5 minutes at 

7,500g, air-dried and resuspended in 11 µl RNase free H2O (Life Technologies). RNA 

quality and yield was quantified by using an Ultraspec 2000 spectrophotometer by 

adding 1µl of purified RNA to 99µl of RNase free H2O at 260nm and RNA quality 

analysed by running samples on a 1% TBE agarose electrophoresis gel. All RNA 

samples were stored at -80°C until use. 

3.2.2 cDNA synthesis from total RNA 

Genomic DNA was removed from RNA samples by using the DNA-free TM DNase 

digestion kit (Ambion) according to the manufacturers protocol. Briefly, total RNA 

was incubated with 0.1 volume of l Ox DNase buffer and 1µl of DNase I for 30 

minutes at 37°C. 0.1 volumes of DNase activation reagent was then added to the RNA 

samples and incubated at room temperature for 2 minutes, before the DNase activation 

reagent was pelleted by centrifugation at 12,000g for 1 minute. cDNA was 

synthesised from 10µg of DNase treated total RNA using the SuperScript II RT-PCR 

system (Life Technologies). l µl oligo (dT)12_18 was added to the RNA, the volume 

adjusted to 12µl using RNasc-free H2O and denatured at 70°C for 3 minutes. A 

master-mix preparation was prepared containing lOx first strand synthesis buffer, 

2ýmNl MgCl-,. 10mM dNTP mix. 0.1M DTT, 200U/µl SuperScript II and RNase-free 

H2O. added to the RNA and incubated at 42°C for 1 hr. The reaction was terminated 

by heating to 80°C for 5 minutes and RNA digested by treating with RNase H for 2() 
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minutes at 37°C. cDNA samples were diluted 1: 5 in RNase-free H2O and stored at 

-20°C until use. cDNA integrity was confirmed by performing a reverse transcriptase 

polymerase chain reaction (RT-PCR) for glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). 

3.2.3 RT-PCR 

R"1T-PCR master mix was prepared containing 0.5U Platinum Taq polymerase, Ix PCR 

buffer, 0.2mM dNTP mix, 1.5mM MgC12,0.2µM forward and reverse primers 

(Genosys) and 5 t1 of 1: 5 diluted cDNA. The final reaction mix was adjusted to a 

volume of 50µl/reaction using RNase-free H2O. The sequence, position, size of 

product and annealing temperatures for each specific primer pair are listed in Table 1. 

RT-PCR reactions were performed in a DNA engine PTC200 thermal cycler (M. J. 

Research) and 10µl of PCR reaction product analysed by gel electrophoresis using a 

1% agarose gel containing 0.2µg/ml ethidium bromide and visualisation by a U. V. 

lamp. 

3.2.4 Northern blot analysis 

3.2.4.1 Denaturing gel electrophoresis and northern transfer 

10µg of total RNA samples were denatured at 65°C for 10 minutes before loading in 

l 0µl of formamide, 3.5µl formaldehyde (37% v/v) and 1µl ethidium bromide. 

Samples were then fractionated on 0.8% denaturing gels containing 1x MOPS 

(3-[N-morpholino] propanesulphonic acid) and 3.7% v/v formaldehyde. Following 

electrophoresis, gels were washed twice in lOx SSC and RNA transferred by capillary 

blotting on to Hybond N+ nylon membrane (Amersham Biosciences, Amersham, UK) 

overnight in l Ox SSC. The nylon membrane was subsequently washed twice in 2x 

SSC and the RNA permanently fixed to the membrane by U. V. irradiation using a 

UVC-508 Ultraviolet Crosslinker (Ultra Lum) and stored at room temperature until 

required. 
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Primer Sequence Position Size Tm Cycle 
number 

2953-3368 415bp 65°C 35 NM DAR 1 F-5'-GGAAGGCGCCCCCCAGAAGC-3' 
R-5'-CGAAGCCCGAGCGGAAAAACAGC-3' 

NMDAR2A F-5'-CCGGCCTGGGTTGCTCTTC-3' 
' ' 2875-3332 457bp 68°C 35 R-5 -AGTTCGCTTTGGATTCTGTGCCTCA-3 

P. M DAR2B F-5'-CTGCCGGACATCACCACCACAACA-3' 
' ' 4283-4727 441 bp 65°C 33 R-5 -CATCACGCGACCCACAGCCTTACC-3 

NMDAR2C F-5'-GAACGGCATCATTGGGGAGGTGTA-3' 
' ' 1629-2088 459bp 68°C 35 R-5 -CGTGTAGCTGGCGAGGAAGATGAC-3 

NMDAR2D F-5'-CCGCCGTGTGGGTGATGATGTTCG-3' 
' ' 1836-2310 474bp 65°C 35 R-5 -ACGCGGGGCTGGTTGTAG-3 

NMDAR3 F-5'-CTGCCGGACATCACCACCACAACA-3' 
' ' 1836-2310 474bp 65°C 35 
-CATCACGCGACCCACAGCCTTACC-3 R-5 

Yotiao F 5'-AAGGGAAGAAGAATTTGGTGTTGA 3' 
' ' 629-1034 405bp ° 60 C 37 R-5 -TGAGGATCTGTTGTTTGGCTTGTA-3 

- PSD 95 F-5'-ACGGCGGGTTGAGCGACGAGAGT-3' 
' ' 2461-2953 492b p 68°C 37 

-CAGGGAGCGGGGGCGGATGAA-3 R-5 

Oh as n-110 
F-5', GCTCGGCTGTATGTGCGTTAGAAG-3' py 

' 
805-1306 501 bp 60°C 36 R-5 -GAGGCCTGGTGTAGTCGTCGTC-3 

MALS F-5'-CCACCCCCGCCCCAATCT-3' 
' ' 143-647 504bp 76°C 36 

-CTCTTTTGAGGCCTCCGTGTCTTTGCAG-3 R-5 

CASK F-5'-GCACTACTAGCCGCTGTGTCAAGTCAC-3' 
' ' 946-1439 493bp 65°Cj 35 

-TCGCCGTTTAAATAGGGAGAGGTG-3 R-5 

SHANK F-5'-AGGACCGGGGACTTCTTGATTGAG-3' 
' ' 239-664 425bp 68°C 37 

-GATTCCTTGGCGTTOGTACACAGAGTT-3 R-5 

GAPDH T 
' 
3' 

' 33-552 519bp 630C 34 R5 GGTCATGAGYCCT CCACGAT3 

Table 1. Primer sequence, gene position, product size, annealing 
temperature and cycle number used by RT-PCR analysis. 
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3.2.4.2 Probe synthesis and hybridisation 

RT-PCR of RNA derived from MEG-01 and HEL cells was used to generate templates 

for the labelling reaction. Radiolabelled probes were synthesised from l Ong of 

template cDNAs in 10mM TRIS HCl (pH 8.0), 1mM EDTA by incubating in random 

prime labelling mix (RediprimeTMI1, Amersham Biosciences) containing 50pCi a', P- 

dCTP at 37°C for 20 minutes. Gel filtration (G-50 sephadex spin column. Boehringer 

Mannheim, (Roche, Basal, Switzerland)) was used to remove radiolabelled probes 

from unincorporated a32P-dCTP and mixed with 100µ1 sheared salmon sperm DNA 

(10mg/ml, Boehringer Mannheim, (Roche)). Northern blots were incubated in 12m1 

Quickhyb buffer (Stratagene, CA) for 20 minutes at 68°C and probes. previously 

denatured at 95°C for 2 minutes, added to the blot. Hybridisation was performed at 

68°C for 1 hour and membranes then washed twice in 2x SSC, 0.1 % v/v SDS at room 

temperature and twice in 0. lx SSC, 0.1% v/v SDS at 60°C. BioMAX films (Kodak) 

were exposed to the northern blots with two intensifying screens (Kodak) for a 

minimum of 18 hours at -80°C. Films were developed using a X-ograph automated 

developer. 

3.2.5 Immunolocalisation 

Cytospin preparation and immunocytochemistry of MEG-O1 cells in the absence and 

presence of PMA were performed as previously described (chapter 2.1.2). Cytospins 

were incubated with anti-NMDARI monoclonal antibody (Pharmingen; 1 µg/ml) for 

30 minutes followed by FITC-conjugated goat anti-mouse secondary antibody (Sigma; 

1: 500 dilution). Antibody-negative controls were incubated with non-specific mouse 

IgGs (Santa Cruz; 1µg/ml) in the place of primary antibody. Stained preparations 

were mounted in Vectorshield (Vector Laboratories) and fluorescence viewed 

immediately using a Leica DMLA microscope (Leica) 

3.2.6 Laser microdissection and single cell RT-PCR 

Rat tibiae were removed and snap frozen in chilled isopropanol. Specimens were 

mounted in Cryo-m-bed embedding compound (Bright. UK) on brass chucks and 

frozen in chilled isopentane. Slide frames and foils (Leica) were U. V. irradiated for 

)0 minutes using a LVC-508 Ultraviolet Crosslinker (Ultra Lum) to remove all 

residual RN: \ses and to reduce the electrostatic charge of the foil. 7µ'ß'I thick frozen 
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sections were collected on slide foils, using a Bright OTF500 cryostat (Bright) fitted 

with a tungsten carbide tipped knife and used immediately. Specimens were air-dried 

and stained with 0.1 % toluidine blue. U. V. laser microdissection (LMD) was 

performed using a Leica DMLA light microscope fitted with a Leica 
. AS LMD 

microdissection unit (Leica). A single megakaryocyte, identified by size. morphology 

and multilobed nucleus was excised from rat bone and collected in a 200µl Eppendorf 

containing 12 µl of lysis buffer (50mM IRIS HC1 (pH 8.0). 100mM NaCl. 5mNI 

MgCl2,0.5% Triton X-100,1mM DTT and 100 units RNAse out (Invitrogen)). 

Samples were centrifuged at 12,000g, 4°C for 10 minutes, chilled rapidly on dry ice 

and stored at -80°C until use. Synthesis of cDNA and RT-PCR master mix 

preparation was performed as previously described in this chapter. Identical primers 

(see Table. 1) were also used to amplify products by single cell RT-PCR. with cycle 

number increased to 50. 
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3.3 Results 

3.3.1 mRNA expression of NMDA receptor subunits and associated proteins by 

megakaryocytic cell lines 

3.3.1.1 mRNA expression of NMDA receptor subunits by megakaryocytic cclls 
RT-PCR was used to confirm expression of NR2D by MEG-O1 cells in the absence 

and presence of PMA (Fig. 3.3.1). However, the expression of other NMDA receptor 

subunits was also identified. In MEG-O1 cells, RT-PCR identified expression of 
NR2A (+PMA only), NR2C (weakly +/- PMA), NR2D (+/- PMA) and NR3 (-PMA 

only). Expression of NR2B by MEG-01 cells was not detected. These findings would 
insinuate expression of specific NMDA receptor subunits only, levels of which appear 

to change during differentiation. 

Parallel investigation of NMDA receptor subunit expression by HEL cells by RT-PCR 

also confirmed the expression of select subunits during PMA-mediated differentiation 

(Fig. 3.3.1). Similar to MEG-01 cells, NR2B expression was not detected, whilst 

NR2C mRNA expression was identified in PMA-treated and untreated cells, with an 

apparent increase in NR2C expression following PMA exposure and a similar pattern 

of NR2D expression was also identified. In HEL cells, NR2A expression was not 

detected, contrasting to MEG-O1 cells. It was also found that HEL cells lacked NR3 

subunit expression at both immature and differentiated stages. All subunits were 

expressed by human foetal forebrain positive controls. Water controls were carried 

out in parallel to the above experiments and no products were amplified. 

Northern blot analysis was used to quantify expression of NR2D by HEL cells during 

differentiation. 10µg of total HEL RNA resulted in the identification expression of a 

4.7 kb species in both PMA-treated and untreated samples (Fig. 3.3.2). Expression of 

NR2D increased following PM: \ treatment by approximately 45% when analysed by 

densitometrv, normalising \vith 28S RNA. 
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HEL MEG-01 

-PMA +PMA -PMA +PMA FB H2O 

600 *-457bp NR2A 400 

600 

äö0 NR2B i- 441 bp 

600 

N R2C 400 --459bp 

600 

0' f474bp NR2D ' 400 

600 

GAPDH 500 f-519bp 
400 

Figure 3.3.1. Expression of NMDA receptor subunits by megakaryoblastic cell 
lines in the absence and presence of PMA. RT-PCR was used to demonstrate 

mRNA expression of NR2A-D and NR3 receptor subunits by HEL and MEG-0l 

megakaryocytic cell lines in the absence and presence of PMA. Human foetal 
forebrain (FB) was used as a positive control and expressed all NMDA receptor 
subunits. Control reactions were performed in parallel, in the absence of cDNA 
(11.0). Results are representative of 2 independent experiments. 
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NR2D 
-PMA +PMA 

IIZ, Yfiý ýi 

f4.7kb 

28S 
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RNA 
Figure 3.3.2. Northern blot analysis of NR2D expression by HEL cells. Northern 
blot analysis of HEL total RNA (10µg) in the absence and presence of PMA was used 
to identify relative expression of NR2D rnRNA. A single 4.7 kDa mRNA species was 
identified. which corresponds in size to the NR2D subunit previous identified in 
human brain. NR2D expression was increased following PMA treatment. Equal 
loading was demonstrated by comparing total RNA. Experiment was performed 
once. 
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3.3.1.2 mRNA expression of N_l1DA associated proteins by megakarv. cocyytic cell lines 

Similar studies using RT-PCR and northern blot analysis were performed on MEG-01 

and HEL cells with and without PMA. to compare mRNA expression of specific 

NMDA receptor associated protein (Fig. 3.3.3). Using RT-PCR, products identical in 

size to those found in human forebrain PSD-95 were amplified in both HEL and 

MEG-01 samples. PSD-95 expression appeared to be independent of differentiation in 

HEL cells, whereas it appeared to be more abundantly expressed by PMA-treated 

MEG-01 cells compared to control untreated cells. Other proteins associated with 

NMDA receptor function and signalling, Yotiao and chapsyn-110, were not detected 

by RT-PCR as being expressed by either MEG-O1 or HEL cells. Human foetal 

forebrain positive control identified expression of chapsyn-110, PSD-95 and Yotiao. 

Water controls were carried out in parallel to the above experiments and no products 

were amplified. 

Northern blot analyses were performed to confirm mRNA expression of PSD-95 and 

Yotiao by HEL and MEG-01 cells (10µg total RNA each; Fig. 3.3.4). PSD-95 

expression was demonstrated in both MEG-0l and HEL cells, with an abundant signal 

identified at 4.2 kb and weak signals present at 6.2 and 8.3 kb. These signals of 

varying sizes may correspond to three of the four known splice variants of the PSD-95 

homologue, which have been identified in numerous tissues (Stathakis et al., 1997). 

Whilst PSD-95 expression appeared to be constant in HEL cells, expression was 

increased in MEG-01 cells treated with PMA compared to relative levels of 28S RNA. 

Northern blot analysis was also used to demonstrate expression of Yotiao by HEL 

cells, even though no product was amplified by RT-PCR (Fig. 3.3.5). Northern blot 

analysis revealed a species of approximately 11 kb, corresponding to that found in 

brain and other tissues (Lin et al., 1998). Although Yotiao appeared to be weakly 

expressed by HEL cells, expression was also notably increased by exposure of HEL 

cells to PMA when compared to relative intensity of 28S RNA. 

The above results confirmed identification of NR2D expression and provided evidence 

of NR2 and NR3 subunit expression by megakaryocytic cells lines. 
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Figure 3.3.3. Expression of NMDA receptor associated proteins by 
megakaryoblastic cell lines in the absence and presence of PMA. RT-PCR was 
used to determine expression of NMDA receptor-associated protein mRNA expression 
by MEG-O1 and HEL cells in the absence and presence of PMA. HEL cells were 
shown to express PSD-95 with and without PMA treatment, whilst MEG-01 cells 
only in the presence of PMA exhibited weak PSD-95 expression. Expression of 
Chapsyn-110 and Yotiao was not detected in HEL and MEG-01 cells. Human foetal 
forebrain (FB) was used as a positive control and expressed all NMDA receptor 
subunits. Control reactions containing were performed in parallel, in the absence of 
cDNA (I LO). Results are representative of two independent experiments. 
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HEL MEG 
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Figure 3.3.4. Northern blot analysis of PSD-95 expression by HEL and MEG-O1 

cells. Northern blot analysis of total RNA (10µg) was used to demonstrate expression 
of PSD-95 by both HEL and MEG-0l cells. PSD-95 expression by MEG-0l cells, 
when compared to total RNA, appears to increase slightly by treating cells with PMA, 

whilst very little difference is observed in between treatment of HEL cells. Experiment 

was performed once. 
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HEL 
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Figure 3.3.5 Northern blot analysis of Yotiao expression by HEL cells. Northern 
blot analysis of total RNA (10µg) was used to demonstrate expression of Yotiao by 
both HEL cells. Yotiao expression by HEL cells was shown to have increased 
following PMA treatment. determined by comparing Yotiao expression to total RNA. 
l xperiment was performed once. 
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3.3.2 Localisation of NR1 in MEG-O1 cells 

Immunocytochemistry of MEG-O1 cell cytospin preparations was used to determine 

the localisation of the NR1 subunit in MEG-O1 cells cultured in the absence and 

presence of l 00nM PMA for 72 hours (Fig. 3.3.6). Anti-NR1 antibodies (1µg/ml) 

were used in conjunction with a FITC-secondary antibody in order to accurately 

localise subunit expression (green positive staining). Nuclei were counterstained with 

DAPI (blue) to identify the location of the nucleus. Cells were examined by 

fluorescent microscopy at a magnification of x40 and results shown illustrate 

representative staining patterns. NR1 expression was restricted usually to a single 

small cytoplasmic area in untreated MEG-O1 cells. PMA-treatment of MEG-O1 cells 

resulted in the characteristic increases in cytoplasm to nucleus ratio, cell size and 

nuclear volume. Following PMA-mediated MEG-01 differentiation, NR1 was 

distributed evenly throughout the cytoplasm and was not restricted to any particular 

cytoplasmic locations. Control samples, in which non-specific mouse IgGs were used 

in place of the anti-NRl primary antibody, exhibit the level of background staining. 

3.3.3 NMDA receptor subunit and associated protein mRNA expression by 

human primary megakaryocytes 

The development of cell separation and culture techniques has made it possible to 

investigate large numbers of human primary megakaryocytes, derived from UCB. 

This technique was utilised to establish the expression of the essential NR1 subunit by 

northern blot analysis (Genever et al., 1999). This section aims to ascertain if primary 

human megakaryocytes express mRNA for the regulatory NR2 subunits and NMDA 

receptor associated proteins. 

RT-PCR analysis was used to determine expression of NR2 subunits and NMDA 

receptor associated proteins by human primary megakaryocytes. derived from CD34+ 

UCB cells, following exposure to 25ng/ml TPO for 14 days. Gene-specific primers to 

human brain NR2: A-D, Yotiao, PSD-95, chapsvn-110. CASK, MALS, and SHANK 

and RT-PCR programmes used in these experiments were identical to those previousl\ 

described in chapter 3.3.1.1 and listed in Table 1. Products from primary human 
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Original in colour 

MEG-01 
-PMA 
NR1 

MEG-01 
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NR1 

Figure 3.3.6. Immunolocalisation of NRl in MEGOl cells in the absence and 
presence of PMA. Cytospin preparations of WG-Ol cells cultured in the absence or 
presence of PMA for 72 hours. Untreated MEG-01 cells expressed NR 1 (green 
staining) which was localised at distinct cytoplasmic regions, whilst NRI was 
prominently expressed throughout the cytoplasm of PMA-treated MEG-01 cells. 
Nuclei were stained blue (DAPI). The experiment was performed once. 
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megakaryocytes identical in size to those found in human foetal cerebellums were 

amplified for NR2A and NR2D. No product was observed for NR2B and C (Fi`g. 

3.3.7 A). Human foetal cerebellum was used as a positive control all four subunits. 

RT-PCR amplified products for the receptor scaffold and signalling proteins Yotiao 

and PSD-95 only (Fig, 3.3.7 B). mRNA expression of other NMDA receptor 

associated proteins, chapsyn-110, CASK, MALS and SHANK were identified in 

human foetal cerebellum only. Water controls were carried out in parallel to the above 

experiments and no products were amplified (data not shown). 

3.3.4 mRNA expression of NMDA receptor subunits by a single ex vivo rat bone 

marrow megakaryocyte 

The recent development of microdissection technology has enabled the excision of 

target tissue from histological samples. Accurate laser microdissection facilitates the 

removal of different sized specimens, from a single cell to large cellular groups, 

identified by high power microscopy and sterile excision allows subsequent 

expression analyses such as single cell RT-PCR. This method was utilised for the 

removal of a single megakaryocyte, identified by the cells large size, morphology and 

multilobed nucleus compared to other cells in the rat bone marrow for subsequent 

analysis of NMDA receptor subunit expression by RT-PCR (Fig. 3.3.8 A). 

Single cell RT-PCR analysis (chapter 3.2.3) using primers specific to NR1, NR2A 

and NR2D genes in human brain (Table 1), identified weak mRNA expression of 

NR2A only (Fig. 3.3.8 B). Products for NR1 and NR2D were amplified in human 

foetal forebrain only. In control reactions lacking reverse transcriptase, no products 

were amplified. 
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Figure 3.3.7. Expression of NMDA receptor subunits and associated proteins by 
human primary megakaryocytes. RT-PCR was used to amplify products for NR2A 

and NR2D from human CD34+-derived megakaryocytes (MK), whilst NR2B and C 

were identified in human foetal cerebellum (CB) only (A). RT-PCR was also 
identified expression of NMDA receptor associated proteins Yotiao and PSD-95 (B). 
Other associated proteins, chapsyn-110, CASK, MALS and SHANK were amplified 
in human foetal cerebellum only. Results are representative of three independent 

experiments. 
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Original in colour 

A 

B 
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Figure 3.3.8. RT-PCR analysis of NMDA receptor expression of a single 
megakaryocyte removed by laser dissection microscopy from rat bone marrow. 
Laser dissection microscopy (LMD) was used to extract a single megakaryocyte from 
toluidine blue stained rat bone marrow (A). Total RNA was extracted from the 
megakaryocyte and RT-PCR identified weak expression of NR2A. NR 1 and NR2D 
were identified in human foetal forebrain only (FB). In control reactions lacking 
reverse transcriptase (No-RT), no products were amplified. Experiment was 
performed once. 
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3.4 Discussion 

Megakaryocytic cells express functional, channel-forming NMDA receptors. a finding 

confirmed by RT-PCR analysis of MEG-O1 cells and bone marrow, 
immunohistochemistry, in vivo studies and northern blot analysis for NR1 expression 
by CD34+-derived primary cells (Genever et al., 1999). However, for a greater 

understanding of NMDA signalling in megakaryocytes, expression of the regulatory 
NR2 and 3 subunits during megakaryocytic cell line differentiation and by primary 

megakaryocytes is required. This chapter addresses the expression of these subunits 

whilst also confirming the expression of proteins identified in the PSD and for the first 

time focuses on the mRNA expression of NMDA receptor subunits by a single rat 

bone marrow megakaryocyte. 

Differences in the expression of NMDA receptor regulatory subunits following PMA 

treatment and between HEL and MEG-O1 cells indicate that the role of the NMDA 

receptor these cells may vary. HEL cells express the NR2C and D subunits, which, if 

expressed as diheteromers with NR1 (there is no evidence that NR1/NR2C/NR2D 

triheteromers exist in the CNS) would confer a "low-conductance" ion channel with a 

lower sensitivity to Mg2+ and slow deactivation (-300ms for NRI/NR2C and -1.7 

seconds for NRI/NR2D; Behe et al., 1999; Momiyama et al., 1996). In the CNS, 

NR 1 /NR2A diheteromers, in contrast to the previously mentioned NR 1 /NR2C or D, 

have extremely high conductance, fast deactivation time (-'50ms; Behe et al., 1999) 

and high sensitivity to Mgt+. The apparent increase in NR2C and confirmed increase 

in NR2D mRNA expression following PMA treatment may influence the function of 

the receptor as the HEL cell undergoes differentiation. MEG-01 cells express NR2A 

following PMA treatment, in addition to NR2C and NR2D, which would provide this 

receptor with a broader activity than the one expressed by HEL cells. It also appears 

that NR2A and NR2C expression is increased by PMA treatment, implying an 

increased role for these receptor subunits either during differentiation or in fully 

differentiated cells, how ever these findings require confirmation by northern blot 

analysis. The lack of NR2B expression by either HEL or MEG-O1 cells may suggest 

that an NNIDA receptor composition of "intermediate" activity is not utilised by the 

mc: gakaryocyte. 
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The functions of various NR2 subunits can be assessed by the use of subunit selective 

pharmacological agonists and antagonists. One such example is the non-competitive 

NMDA receptor channel block, MK-801. which shall be discussed at greater depth in 

chapter 4. Recombinant NR 1 /NR2A has a higher sensitivity to \ IK-801 than 

NR1/NR2B and C (no data exists for recombinant NR1/NR2D: Chazot et al.. 1994). 

which may have implications on the functional studies described in chapter 4, due to 

MK-801 being employed as a pharmacological NMDA receptor antagonist. Many of 

the subunit-specific inhibitors target NR2B-containing receptors, however. 

cis- 1- [phenanthren-2y1-carbonyl] piperaxzin-2,3-dicarboxylic acid (PPDA) 

specifically blocks NR2C and D containing receptors (Hrabetova et al., 2000) and 

N, N, N', N'-tetrakis-[2-pyridmethyl]-ethylenediamine (TPEN) inhibits only NR2A- 

containing NMDA receptors (Paoletti et al., 1997). Electrophysiological experiments, 

which have previously been carried out on megakaryocytes (Thomas et al., 2001). 

could exploit these subunit-specific inhibitors to give a greater idea of megakaryocyte 

receptor composition. 

Expression of the NR3 subunit by non-PMA treated MEG-01 cells further increases 

the diversity of the NMDA receptor in this cell type. This subunit has the ability, 

when co-assembled with the high calcium conductance NRI/NR2A channel (i. e. 

formation of a NR 1 /NR2A/NR3 receptor), to lower calcium influx by five-fold (Das et 

al., 1998; Perez-Otano et al., 2001). The expression of this subunit by MEG-O 1 cells 

only in an undifferentiated state may imply that the receptor is being kept in a 

relatively unresponsive state until the cell becomes differentiated. The reduction in 

NR 
_3' expression in addition to apparent increase in the expression in NR2A by the 

differentiated MEG-O1 cell, suggests that the increase in receptor conductance is 

required only in the mature cell type. The lack of NR3 expression by HEL cells may 

be correlated to the absence of NR2A expression, given that. as the receptor would 

already have a low conductance. hence the "volume control" effect of the NR3 subunit 

would have a minimal effect. 

The confirmation of PSD-95 and Yotiao expression by HEL cells and PSD-95 

expression by MEG-01 cells adds to the NNIDA receptor-signallin`g complex in the 

megakaryocytc. PSD-9- provides an association between the functional 
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megakaryocytic NMDA receptor and activation of downstream signalling pathways 

such as MAPK and nNOS. The presence of PSD-95 may also lead to NMDA receptor 

clustering in the megakaryocyte, although whether interaction is essential in 

megakaryocytes as it is for synaptic plasticity in the postsynaptic neurons remains 

unclear. PMA treatment may also result in a small increase in PSD-95 expression by 

MEG-O1 cells, which could be due either to an increase in PSD-95-mediated 

signalling, or directly correlated to increases in NR2 subunit expression. It is also 

noteworthy that both MEG-O1 and HEL cells express three different PSD-95 

transcripts, which may be of functional importance in non-neuronal tissues (Stathakis 

et al., 1997). Only the ubiquitously expressed 4.2kb transcript has been identified in 

brain, whilst expression of both 6.2 and 8.3kb transcripts found in megakaryocytes has 

also been demonstrated in pancreas, prostate, testis and ovary. Stathakis and 

colleagues state no function for PSD-95 in these tissues, however it is interesting to 

note that glutamate signalling was subsequently identified in many of the tissue 

samples they investigated. The PMA-mediated increase in Yotiao expression by HEL 

cells raises the possibility that NMDA receptor activity can undergo greater regulation 

in mature megakaryocytes. Again, whether Yotiao is also implicated in receptor 

clustering, requires further investigation. 

Indeed, a greater level of NMDA receptor clustering following PMA treatment is not 

supported by the findings of NR1 immunolocalisation in MEG-0l cells in the absence 

and presence of PMA. It was demonstrated that NRl expression appeared to be 

evenly distributed throughout the cytoplasm following PMA treatment, and not at 

distinct membrane regions as observed in postsynaptic neurons. NMDA receptor 

clustering to the postsynaptic plasma membrane is vital for correct function. It seems 

confusing therefore that PMA treated MEG-O1 cells display NR1 diffusely distributed 

throughout the cytoplasm. Matsuda and Hirai demonstrated that disrupting actin and 

microtubule organisation in human embryonic kidney (HEK) 293 cells resulted in 

profound rearrangements of NR1 distribution (Matsuda and Hirai. 1999). 

Interestingly, in actin filament-disrupted cells, NR1 localisation shifted from the 

plasma membrane and formed cytoplasmic "macroclusters", akin to those formed in 

non-PN1A treated NIEG-O1 cells. However, in microtubule-disrupted cells. NRI was 

distributed evenly throughout the cytoplasm, comparable to the findings of 

PNIA-treated MEG-Ol cells. The work by Nlatsuda and l lirai reveals the importance 
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of the cytoskeleton in NMDA receptor clustering, however the changes in cytoskeletal 

organisation observed during MEG-01 cell differentiation may alter NR1 localisation. 

However, NR1 immunohistochemistry performed on primary bone marrow 

megakaryocytes indicate a more membrane located receptor distribution (Genever et 

al.. 1999). This may signify differences in cytoskeletal organisation between cell lines 

and primary cells, leading to different receptor localisations. 

RT-PCR analysis for NMDA receptor subunit and PSD mRNA identified expression 

of NR2A, NR2D, PSD-95 and Yotiao by human primary megakaryocytes for the first 

time. Therefore, in a manner similar to the megakaryocytic cell lines described above, 

expression of NR1/NR2A or NRl/NR2D diheteromers would confer receptors of 

different conductance and magnesium sensitivity and again an "intermediate" receptor 

type expressing NR2B or C would not form. These findings also imply that primary 

cell functional studies using the NMDA receptor antagonist MK-801, described in 

subsequent chapters, should have a high affinity for these receptors. Further work 

regarding primary cell subunit expression should focus on northern blot analysis at 

different time pints to identify changes in receptor subunit composition during 

differentiation. The same conclusions can be drawn regarding the expression of 

PSD-95 and Yotiao. Other PSD proteins, chapsyn-110, CASK, MALS and SHANK 

appear not to be expressed or expressed at negligible levels, implying that the primary 

megakaryocytes express only the components for "specialised" NMDA receptor 

signalling. 

Laser microdissection and subsequent single cell RT-PCR analysis is the first example 

of this technology carried out on a bone marrow megakaryocyte. This technique 

confirmed mRNA expression of the NR2A subunit, but unfortunately due to time and 

technical constraints, it was not possible to optimise the single-cell RT-PCR protocol. 

possibly leading to NR1 and NR2D products not being detected. The absence or 

presence of NMDA receptor subunits expressed by bone marrow megakarvocv'tes 

cannot be confirmed until an exact protocol for laser dissected-megakar 'ocyte single 

cell RT-PCR is achieved. Future use of this technique may provide a greater 

understanding of bone marrow megakarvocyte mRNA expression. 
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This chapter has established that many of the components that encompass the N\ IDA 

receptor signalling system in the CNS are expressed by megakarv ocytes. As 

megakaryocyte NMDA receptor research is still in its infancy, it currently has to he 

assumed that the receptors function in a similar manner to those found in the CNS. 

Such assumptions may however be imprudent. Due to the nature of neuronal cells, the 

function of the NMDA receptor in the CNS is highly unlikely to be identical to those 

expressed by megakaryocytes. The presence of regulatory receptor subunits would 

suggest however, that regulation of the receptor activity is of importance, especially 

before, during and after differentiation. I would also propose that megakaryocytic 

PSD-95 acts as a NMDA receptor associated signalling protein rather than distinct 

receptor clustering. This work still requires clarification. This would include analysis 

of the expression of all NMDA receptor subunits and PSD proteins by cell lines and 

by primary cells at various stages of differentiation by northern blot analysis, in 

addition to receptor subunit/PSD protein co-localisations and 

co-immunoprecipitations. However, the exact nature of the receptor will only be 

clarified by electrophysiological investigation of agonist response and receptor 

conductance. Such confirmation would provide a stronger grounding on which to 

tackle the main aim of this research, how this receptor affects Inegakaryocyte function. 
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Function of the Megakaryocytic 
NMDA Receptor 

The formation of spindle-like proplatelet structures on the surface of 
human primary megakaryocytes demonstrated by scanning 

electron microscopy (magnification x 10,000) 
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Chapter 4 

Function of the Megakaryocytic NMDA Receptor 

4.1 Introduction 

The characterisation of the megakaryocytic NMDA receptor as described in chapter 3, 

confirms the existence of NMDA receptor components required for receptor function. 

These data therefore provoke intriguing questions regarding the function of NMDA 

receptors in megakaryocytes. Exploratory studies by Genever and co-workers 

identified some functions of the NMDA receptor in MEG-O1 cells related to 

PMA-mediated differentiation and adhesion (Genever et al., 1999`). These findings, 

in addition to numerous others directed at determining NMDA receptor function in 

neuronal cells and peripheral tissues, used the specific NMDA receptor antagonist 

dizocilpine, otherwise known as MK-801 (Peet et al., 1999; Genever et al., 1999h, 

Huang et al., 1999; Garcia-Zaragoza, 2000; Sin et al., 2002). By using this antagonist, 

it is possible to identify the effect on a particular cell as a direct consequence of 

aberrant NMDA receptor function. 

NMDA receptor antagonist research has predominantly focused on the ability of these 

compounds to prevent neuronal degeneration in acute brain injury conditions such as 

epilepsy, head trauma and stroke, which are a result of excessive NMDA receptor 

activation (for review see Hickenbottom and Grotta, 1998). The neuroprotective 

actions of the receptor antagonists do however have psychotic side effects, such as 

schizophrenia in humans (Javitt and Zukin, 1991) and neurotoxicity in rats (Olney et 

al., 1991, . 
IeN, Iovic-Todorovic et al., 1998; Farber et al., 2002). Indeed, 

antagonist-induced NMDA receptor hypofunction strongly resembles naturally 

occurring events in the ageing human brain, such as Alzheimer's disease (Olney and 

Farber, 1995; Wozniak et al., 1998). As such, extensive research into the function of 

NMDA receptor antagonists has been able to identify the detailed actions of these 

compounds. 
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MK-801 is an extremely potent, non-competitive antagonist that binds only to NMDA- 

type glutamate receptors (Wong et al., 1986). As a result, MK-801 is a highly 

effective neuroprotectant against extremely high doses of NMDA. but also results in 

extreme psychotic side effects (Woodruff et al.. 1987). MK-801 acts by binding to a 

site within the open NMDA receptor ion channel. thereby blocking receptor-mediated 

calcium entry (DeLorenzo et al., 1998: Ikonomidou et al., 1999). a mechanism that is 

also shared by the common anaesthetic agent ketamine (Stone and Addae, 2002). 

The results of MK-801 treatment on MEG-O1 differentiation as described by Genever 

and co-workers, demonstrated that NMDA receptor inhibition might inhibit the 

PMA-mediated differentiation of these cells. However, other functions of the receptor 

in these cells remain unanswered and will be a subject of this chapter. Although 

immunological, morphological and molecular determination of megakaryocytic cell 

line differentiation is an effective tool by which to start functional investigations, 

certain characteristics of these cell lines are not comparable with primary bone marrow 

megakaryocytes. A more representative in vitro model of megakaryocyte 

differentiation may be achieved by generating primary human megakaryocytes from 

CD34+ HSCs, a technique that has been exploited in this chapter. 

One characteristic of the terminally differentiated CD34+-derived megakaryocyte, 

which is rarely observed in megakaryoblastic cell lines, is the formation of proplatelet 

structures in culture (Haller and Radley, 1983, Cramer et al., 1997; see chapter 1.2.3). 

Identifying the mechanisms regulating platelet production is a key aim of 

megakaryocyte research, therefore the initial events governing the formation of 

proplatelets has recently attracted a significant level of interest. Much study has 

focused on the profound cytoskeletal reorganisation required in the production of these 

structures, although the molecular mechanisms involved in proplatelet production 

remain unclear (Leven and Yee. 1987, Cramer et al., 1997). Microtubule stabilisation 

causes the formation of abnormal proplatelets (Tablin et al.. 1990), whilst disruption 

greatly inhibits proplatelet formation (Handagama et al.. 1987) suggesting a vital role 

for microtubules in the formation of proplatelets. Two tubulin isoforms, (x and ß. 

integrate to form into filaments, which in turn combine to form microtubules 

(I)owning and Nogales. 1998). The X31 tubulin isoty pe is specific to haematopoietic 
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cells, and along with other cytoskeletal components, is considered to be under the 

control of the transcription factor NF-E2 (Lecine et al., 2000). 

The role of actin in proplatelet formation remains confusing as inhibiting actin 

polymerisation causes both the enhancement (Tablin et al.. 1990) and inhibition 

(Handagama et al., 1987) of platelet production in different systems. However. a 

recent study identified that inhibition of PKCa altered the actin dynamics, reducing 

the number of proplatelets formed from TPO-stimulated proplatelet production 

(Rojnuckarin and Kaushansky, 2001). Considering that TPO and other haematopoietic 

cytokines appear to have no control over proplatelet formation, identification of 

NMDA-mediated effects of megakaryocyte platelet production in vitro is a key aim of 

this chapter. 

CD34+-derived megakaryocytes also display comparable characteristics irr Otro to 

bone marrow megakaryocytes. They increase greatly in size during TPO-mediated 

differentiation, with a terminally differentiated cell being around 25-35 µm in 

diameter (see Fig. 1.9). They also express a range of megakaryocyte lineage-specific 

markers including CD61 and CD41, but also express higher levels of platelet-specific 

markers such as CD42a and CD62P at terminal differentiation (Lepage et al., 2000; 

Perez et al., 2001), unlike the currently available cell lines. 

These cells also display similar ultrastructural characteristics to bone marrow 

megakaryocytes (Schmitt et al., 2001). Terminally differentiated primary cells have 

multi-lobed indented nuclei, indicting that normal nuclear maturation has taken place. 

Characteristic cytoplasmic maturation also occurs, with the invasion of dilated 

demarcation membrane and the formation of cytoplasmic a-granules, both of which 

are essential in the process of platelet release and subsequent platelet function. TEM 

and SEM have also previously been used to determine extent of proplatelet formation. 

Such studies have revealed that mature platelets are actually released from the tips of 

proplatelet structures with extensive branching and bending greatly increasing the 

number of proplatelet ends (Italiano et at.. 1999). 
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Although the use of MK-801 to determine the function of the NNIDA receptor is a 

practical and widely used method. it is also important to determine the effect of 

agonist-mediated receptor activation on target cells. NMDA receptor agonist 

responses are regularly studied in neuronal cells (Anderson et al.. 2002. Allgaier. 

2002) and have also been employed in the study of glutamate signalling in bone cells 
(Laketic-Ljubojevic et al., 1999; Gu et al., 2002). NMDA receptor activity in such 

studies is characterised by agonist-induced calcium influx, typically measured using 

the patch-clamp method. However, other methods do exist such as fluorescent-based 

calcium measurements (Pal et al., 1999), as used in this chapter or 

spectrophotometry/microscopy-based calcium imaging which has previously been 

used in the study of calcium oscillations in rat megakaryocytes (Mason et al.. 2000). 

For agonist-mediated NMDA receptor activation to occur, a source of extracellular 

glutamate is required. In the CNS, glutamate is released from presynaptic cells 

following depolarisation, which results in the activation of membrane-bound receptors 

on the postsynaptic cell (see chapter 1.6), whilst keratinocytes and nerve cells have 

been identified as candidates for glutamate release and recycling in skin (Davidson et 

al., 1997; Kinkelin et al., 2000). Glutamate release has also recently been studied in 

osteoblastic cells (see chapter 1.7.1). As previously stated, osteoblasts express the 

functional glutamate transporter molecule GLAST (EAAT1), which has been 

implicated in glutamate uptake in neuronal cells (Mason et al., 1997). As osteoblasts 

have also been shown to express SNARE and other vesicular proteins associated with 

glutamate release in neuronal cells (Bhangu et al., 2001), it is possible to hypothesise 

that the osteoblast may be responsible for glutamate release and recycling in bone. 

A more recent study adds further weight to these claims by demonstrating that several 

osteoblastic cell types spontaneously release glutamate at concentrations comparable 

to neuronal cells (Genever and Skerry, 2001 a). The concentration of glutamate 

released was also significantly increased during differentiation. However, unlike 

neurons, osteoblastic K+-mediated depolarisation inhibited glutamate release, 

suggesting that voltage-mediated osteoblastic calcium entry reduced the level of 

glutamate exocytosis. Treating osteoblastic cells with the glutamate release inhibitor 

riluzole (l -10µm1). reduced the osteogenic differentiation without affecting viability. 
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However. addition of higher concentrations (>_25µM) of riluzole, which usually has no 

effect on neuronal viability. resulted in high levels of osteoblastic cell death and 

apoptotic characteristics. including increased Bax/Bcl-2 ratio. membrane blebbing. 

chromatin condensation and DNA fragmentation (Genever and Skerry, 2001 b). 

The vesicular glutamate transporter characterised as brain-specific Na+-dependent 

inorganic phosphate (Pi) transporter I (BNPI), now referred to as VGLUTI (vesicular 

glutamate transporter 1; Ni et al., 1994) has also recently been identified as being 

expressed by osteoblasts (Hinoi et al., 2002). Although VGLUT 1 does cause an 
increase in Na+-dependent Pi uptake, giving the protein its original name, it is now 
believed that its major role is to load recycling vesicles with glutamate in presynaptic 

glutamatergic axon terminals (Bellocchio et al. 1998; Bellocchio et al., 2000; 

Takamori et al., 2000). VGLUTI-positive immunoisolated vesicles display enhanced 
levels of glutamate uptake, whilst over-expression of VGLUTI in non-glutamatergic 

neurons results in these cells releasing glutamate, indicating that VGLUTI expression 

is sufficient to define glutamatergic phenotype. However, VGLUT I expression was 

not identified in some presynaptic cells demonstrated to be releasing glutamate, 

suggesting the existence of other vesicular glutamate transporters (Bellocchio et at.. 

2000). This lead to the cloning of a VGLUTI homologous protein called 

differentiation-associated BNPI (DNPI; later named VGLUT2), which was 

upregulated in expression when pancreatic cells are stimulated to differentiate in 

neuronal cells (Aihara et al., 2000). Subsequent studies revealed that VGLUT2 was 

also functionally homologous to VGLUTI (Takamori et al.. 2001). VGLUT2 was 

previously thought not to be expressed by osteoblasts (Hinoi et al., 2002) however, 

recent unpublished evidence suggests otherwise (P. G. Genever. personal 

communication). 

These findings demonstrate the intricacies of the glutamate signalling system in bone, 

displaying some of the similarities and differences compared to signalling in the CNS. 

Whether such a system exists in megakarvocytes or the bone marrow 

microenvironment is important to consider, as currently no evidence exists as to the 

source of glutamate for the activation of megakaryocytic N ID. \ receptors. The 

existence of uncharacterised GLT-l positive cells in the bone marrow (Mason et al.. 
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1997) indicates that glutamate recycling in the vicinity of the megakaryocyte is 

feasible although the glutamate source and release mechanisms remain elusive. 

This chapter addresses a number of diverse questions. These include further 

determinations of the functional role of NMDA receptors in megakaryocytic cell line 

differentiation, in addition to expanding the study to the role of the receptor in human 

primary megakaryocytes. This work also includes for the first time. investigations to 

identify the effects on MEG-O1 cells of agonist-induced NMDA receptor activation 

and finally provides evidence of megakaryocytic glutamate release mechanisms. 
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4.2 Materials and Methods 

4.2.1 Cell culture 

MEG-01 and HEL cell lines were cultured as previously described (chapter 2.1.2). 

MK-801 (Tocris; Bristol, UK, 50µM unless otherwise stated) was added to cells at the 

same time as PMA and cultured for a period of 72 hours. Human CD34+-derived 

megakaryocytes were cultured as previously described (chapter 2.1.3) and 50µM MK- 

801 added 15 minutes prior to the addition of TPO at day 0 and day 7 of culture. 

4.2.2 Glutamate binding assay 

Prior to each glutamate binding experiment, MEG-01 cells were removed from normal 

culture medium, washed three times in PBS and transferred to glutamate/aspartate-free 

medium (NeurobasalTM) containing N2TM supplement for four hours. Cells were then 

washed twice in cold binding buffer (100mM NaCl, 5mM KC1.2mM CaCl2 in Hanks' 

balanced salt solution (HBSS)) and cell number adjusted to lx106 cells /ml. Cells were 

then incubated with 250µCi [3H]-glutamate (Amersham Pharmacia) with or without 

non-radioactive glutamate, at concentrations ranging from 1x 10-3M to 1x 10-8M and 

with or without MK-801 (50µM) in 500µl of cold binding buffer for 4 hours at room 

temperature. Cells were washed twice in cold binding buffer and solubilised in 0.1 % 

sodium dodecylsulphate (SDS) before the extract was diluted with scintillant 

(Ultragold. Packard) and relative remaining radioactivity counted using a Coulter 

counter (LS-60001 C; Beckman Coulter). 

4.2.3 MEG-O1 fibronectin adhesion assay 

4. '. 3.1 Fibronectin-mediated cellular adhesion and NR1 immunolocalisation 

1 3mm glass coverslips were immersed in 100% ethanol for 30seconds, to ensure 

sterilisation, and washed in sterile distilled water (dH, O) and allowed to air dry. The 

co\'erslips were then placed in 24-well culture plates and 200µl of 25n`/inl fibronectin 

(I'N, sigma : \ldrich). diluted in dH, O and allowed to coat the coverslips overnight at 

4°C. Fibronectin solution was then removed and the bound substrate washed 3 time 
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in dH2O and blocked in 0.1% BSA solution for 1 hour at 37°C before being removed. 

Cells were then plated directly onto FN coated coverslips in 24-well plates at an initial 

cell concentration of 1x105 cells/ml. 500µ1 of cell suspension was added to each well 

and incubated for 72hrs in the presence of I OOnM PMA, with or without 50µ1e1 

MK-801. Media and non-adherent cells were then removed and remaining cells 

washed 3 times with PBS, fixed in 4% paraformaldehyde for 5 minutes and blocked in 

10% goat serum (diluted in PBS) for 30 minutes. Cells were then incubated overnight 

at 4°C with mouse anti-active ß-1 integrin (1: 500; Pharmingen) and antibody binding 

was identified by incubation with FITC-conjugated goat anti-mouse secondary 

antibody for 45 minutes. Following washing (3x PBS). coverslips were mounted with 

Vectorshield mountant (Vector Laboratories) on microscope slides and fluorescence 

viewed under UV illumination. Antibody controls were performed using identical 

antibody concentrations of non-specific mouse IgGs instead of primary antibody. 

4.2.3.2 Adhesion assay 

Fibronectin coating of well bases of 96-well culture plates was performed as described 

above (chapter 4.3.3.1). MEG-01 cells were seeded at a density of lx 104 cells/well 

and cultured the absence or presence of 100nM PMA and 50µM MK-801 and cultured 

for a period of 72 hours. Culture media and non-adherent cells were removed by 

gentle washing with PBS and remaining adherent cells were fixed in 4% 

paraformaldehyde for 5 minutes at room temperature and washed three times in PBS. 

Adherent cells were stained with 0.5% crystal violet in 70% ethanol for 30 minutes at 

room temperature and all non-bound dye was removed by washing thoroughly with 

PBS. Cells were lysed by adding 20Oµ10.01 % Triton-X in MM sodium hydroxide 

and incubated for 30 minutes at room temperature until all bound dye was eluted. 

,, \bsorbance was measured using a Dynex MRX5000 plate reader (Dynatech, 

Billinghurst, UK) at a wavelength of 570nm. Relative absorbance was compared 

between control and treated cells and background absorbance from an average of 

"blank" wells, subjected to identical treatment in the absence of cells, removed from 

each sample. 
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4.2.4 Immunoisolation of NR1-positive MEG-01 cells 

MEG-01 cells were cultured as previously stated (chapter 2.1.2) in the absence and 

presence of 100nM PMA. Following 72 hours of culture, adherent cells were removed 

by the addition of 5mM EDTA and all cells were washed three times with PBS. Cell 

concentration was altered to lx 107 cells /ml and resuspended in 2 ml magnetic 

activated cell sorting (MACS) buffer (PBS (pH 7.2), supplemented with 0.5% BSA 

and 2mM EDTA). Cells were then incubated with anti-NMDARI monoclonal 

antibody (Pharmingen; 1µg/ml) for 30 minutes at 4°C. Cells were washed three times 

(by adding l Ox volume MACS buffer to cell suspension, centrifuged for 5 minutes at 

400g and supernatant removed) and subsequently incubated for 15 minutes at 4°C in 

horse anti-mouse biotinylated secondary antibody (Vector Laboratories; 1: 200) diluted 

in MACS buffer. Following three washes, cells were resuspended in 80µ1 of MACS 

buffer and 20µl of MACS anti-biotin microbeads (Miltenyi Biotec), mixed well and 

incubated at 4°C for 15 minutes. Cells were washed three times and resuspended in 

500µl of MACS buffer prior to magnetic separation by applying the cell suspensions 

over a MACS MS+ column (Miltenyi Biotec). Negative cells were allowed to pass 

through and collected along with the effluent from three subsequent column washes 

(NR1-negative). The column was then removed from the magnetic source and 

positive fraction flushed out by application of 1 ml MACS buffer (NR 1-positive). 

4.2.5 MTT assay 

To determine cell viability, the methylthiotetrazole (MTT) assay was used. Four 

parallel populations; -PMA NR1-negative, -PMA NR1-positive, +PMA NR1-negative 

and +PMA NR1-positive isolated by MACS were plated into 96-well culture plates at 

a concentration of lx 10` cells/ml and cultured in RPMI 1640 without phenol red with 

10% FBS, 100U/ml penicillin. 100µg/ml streptomycin and 2mM L-glutamine for 72 

hours. MTT (Sigma) was then added to each well at a final concentration of 1 niLl/ ml 

and the cells incubated at 37°C for a further 3 hours. Cells were 1v-sed using 0.05M 

HCl containing l 00'o SDS and the absorbance measured at 570nm on a plate reader 

(Dv-natech NIRX5000). 
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4.2.6 Primary megakaryocyte morphological characterisations 

4.2.6.1 Total cell and proplatelet counts 

Human CD34+-derived megakaryocyte cell numbers were determined after 14 days of 

culture, by counting the number of visible cells (magnification x200) in eight 

randomly selected fields of view / well using a Leica DMIL inverted light microscope 

(Milton Keynes, UK). All available wells were counted, for MK-801 treated and 

untreated cells. One proplatelet forming cell was identified by one cell body, forming 

at least 2 cytoplasmic proplatelet extensions in each randomly selected field of view 

taken for cell number counting. Relative proplatelet formation was quantified by 

percentage of proplatelet forming cells compared to total cell number. Experiments 

were carried out blind to treatment and control cell groups. 

4.2.6.2 Cell size quantification 

CD34+-derived megakaryocytes were cytospun onto microscope slides following the 

method described in chapter 2.4.1. Cells were fixed in 4% paraformaldehyde for 5 

minutes at room temperature and stained with Mayer's haematoxylin solution (Sigma) 

for 5 minutes before washing gently in tap water and counter-stained with 1% eosin 

(Sigma) for 10 minutes. Eosin was then removed by washing slides in tap water and 

mounted in PBS containing 10% glycerol. The cell area was digitally quantified using 

Leica Quantimet image analysis system (Leica Q500win standard version 2.2 Leica 

Imaging Systems) and the area of the cells in six random fields determined using a 

Leica DMLA light microscope. 

4.2.6.3 Transmission electron niicroscoply 

Day 14 megakaryocytes were washed twice in PBS before fixation in 4% 

paraformaldehyde/ 2.5% glutaraldehyde in 100mM phosphate buffer (pH7.0) for 90 

minutes at room temperature. Cells were then washed three times for 10 minutes in 

PBS and subjected to secondary fixation in 1% osmium tetroxide (Os04) for 1 hour on 

ice and washed twice for 10 minutes in PBS. The cells were dehydrated through 

graded ethanols. dried over a molecular sieve and washed twice in epoxvpropane for 5 

minute,, each. Embedding was performed by adding 60% epoxypropane 1400 o epon 

araldite for ý0 minutes and left to desiccate with silica gel overnight. Fresh cpon 
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araldite was added the next day. and was allowed to polymerise for 48 hours at 60°C. 

Sections were cut and stained with saturated uranyl acetate in 50% ethanol with 

Reynolds lead citrate and viewed using a transmission electron microscope (JLJEM 

1200 EX; Tokyo, Japan). 

4.2.7 Antigen expression determination by flow cytometrs 

Following media removal, cells were washed 3 times in buffer A (see chapter 2.1.3) to 

prevent clumping. 100µl (1 x 105) of cell suspension was used per sample. and non- 

specific binding blocked by incubating with normal relevant IgGs (Pharmingen) at a 

concentration of 1p g/ml for 10 minutes and washed. All washes were performed by 

adding 1 ml of buffer A to the cell suspension, followed by centrifugation at 400g for 5 

minutes at 4°C and removal of supernatant from the cell pellet. Primary-FITC 

conjugated antibodies, raised against CD61, CD41 (both Pharmingen) and CD42a 

(Sigma) were added to the cells (10µl per 106 cells) and incubated at 4°C for 30 

minutes in the dark. Negative controls were treated with non-specific-FITC 

conjugated antibodies. Cells were washed and remained at 4°C in the dark until 

analysis on a Coulter XL flow cytometer emitting an excitation light at 488nm from an 

argon laser. FITC signal was detected by FL 1 with an emission maximum of 520nm. 

Dead cells and doublets were excluded by light scatter properties and positive staining 

for propidium iodide (PI) after a 30 second incubation. The percentage of live cells 

expressing the different antigenic markers was determined by setting a positive gate at 

1% on negative control samples. 

4.2.8 Apoptosis detection by flow cytometry 

Apoptotic cells were identified using an Annexin V-FITC apoptosis detection kit 

(Oncogene, MA). The kit works on the principle that phosphatidyl serine (PS) is 

exposed on the surface of cells undergoing apoptosis. In the presence of calcium. PS 

binds rapidly to the anti-Annexin V-FITC conjugated antibody, indicating the early 

stages of apoptosis. PI is used as an indicator of late apoptosis by its ability to enter 

cells only through porous membrane and stain DNA red, enabling the identification of 

various stages of apoptosis. The procedure was carried out according to the 
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manufacturer's protocol. Cell suspension concentration was adjusted to lx 106 

cells/ml, without removing media, therefore preventing the onset of apoptosis by 

serum starvation. 500µl of cell suspension was transferred to microcentrifuge tubes 

and l0µ1 of media binding reagent added, followed by the addition of 1.25µl of 

Annexin V-FITC antibody. Cells were incubated in the dark at room temperature for 

15 minutes. The cell suspension was then centrifuged at 400g for 5 minutes at room 

temperature and the media removed. The cells were then gently resuspended in cold 
Ix binding buffer and 10µl of PI added. Samples were kept on ice in the dark and 

analysed by flow cytometry immediately, using a Coulter XL flow cytometer with an 

argon laser exciting at 488nm. The FITC signal was detected at 520nm on FL 1 and 

the PI at 620nm on FL2, adjusting to ensure minimal overlap between the two 

measurements. Log of annexin V-FITC was plotted on the x-axis and log of the PI 

readings on the y-axis. 

4.2.9 Ploidy analysis by flow cytometry 

Megakaryocyte aneuploidy was analysed using a PI DNA staining solution (Quest 

Biomedical, Solihull, UK), according to the manufacturer's protocol. Cells were 

removed from media and washed 3 times in buffer A and the cell concentration 

adjusted to 1x106 cells in a volume of 200µl of buffer A. 500µl of PI solution 

containing 25U/ml of RNase H and detergent was added and the cells were incubated 

in the dark at room temperature for 10 minutes in a horizontal position. The cells were 

then passed through a 25-gauge needle to ensure only single cells were counted and 

were kept on ice and in the dark until flow cytometric analysis. Single cells only were 

analysed by their light scatter properties and PI positive readings were taken on the 

FL2log setting. 

4.2.10 Intracellular calcium measurements 

Intracellular calcium measurements were recorded according to established methods 

developed specifically to cell suspensions (Nelemans: Calcium Signalling Protocols, 

Methods in N lolecular Biology: Volume 114). MEG-O 1 cells were treated with 

IOOnN1 PM: \ for 72hrs and washed 3 times in PBS to remove media and PNL\ before 
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being transferred to NeurobasalTM media containing 1% N2 supplement and incubated 

overnight. Cells were washed 3 times in HBSS (without M(`-. containing lmN1 Ca`-) 

and cell concentration adjusted to 5x106/ml. Cells were then loaded with 1µNI indo-l- 

acetyloxymethyl ester (AM) (Molecular Probes, Oregon) for 30 minutes at 37°C. 

Excess dye was removed by washing 3 times in HB SS and resuspended at acell 

concentration of 5x105 cells/ml. Indo-l-AM fluorescence was analysed using an LS55 

luminescence spectrometer (Perkin Elmer, Cambridge. UK). 2.5m1 of cell suspension 

was added to each cuvette with the ambient temperature kept at 37°C and continually 

agitated by magnetic stirring. Following the addition of 1-10µM NMDA with 100nM- 

1 p. M glycine calcium influx was monitored with an excitation wavelength of 3 3Onm 

and emission wavelengths at 405nm for calcium bound dye and 485nm for calcium 
free dye with 5nm slit width. Relative changes in fluorescence were expressed as a 

ratio of bound and free indo-l-AM. 500nM ionomycin (Calbiochem, Nottingham, 

UK) was added to achieve a maximum figure for bound dye and 5mM EDTA to 

chelate free calcium, thereby determining fluorescence for calcium free dye. [Ca]; can 
be calculated by measuring fluorescent intensity using the following equation; 

[Ca2+1 = Kd X [(R - Rmin) / (Rmax - R)1 X (Sf2/Sb2) 

Where R is the experimentally measured ratio of fluorescent intensities; Rmjn is the 

measured fluorescence ratio intensity in the absence of calcium; Rmax is the measured 

fluorescent ratio of Cat saturated dye; the term (Sf2/Sh2) is the signal ratio of 

fluorescence measured at emission wavelength 485nm in the absence of calcium (f`2) 

and at calcium saturation (b2); and Kd is the dissociation constant for indo-l-AM 

(=0.23). NMDA and AMPA receptor-mediated changes in [Ca, -]; by adding N\IDA 

and glycine or the AMPA receptor antagonist CFM-2 (Tocris) at varying 

concentrations at recorded time points. 

4.2.11 Glutamate release assay 

Glutamate release from NI[: G-O1 cells was determined using an cnizv one-linked 

fluorimetric assay. This assay has previously been employed in the study of neuronal 
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glutamate release (Nicholls et al., 1987; Bezzi et al., 1998) and has recently been 

modified for the study of glutamate release from osteoblastic cells (Genever and 
Skerry, 2001). The assay is based on the principle that addition of glutamate 
dehydrogenase (GDH) and 3-nicotinamide adenine dinucleotide phosphate (NADPt: 

both Sigma) will result in released glutamate being oxidised to a-ketoglutarate. 

resulting in the formation NADPH that can subsequently be determined 

fluorimetrically. MEG-O 1 cells were grown as previously stated (chapter 2.1.2) in the 

absence and presence of 100nM PMA for 72 hours. Following culture, cells were 

washed three times in PBS to remove any traces of exogenous glutamate and replated 

in blacked 96-well plates (µclear, Greiner Labortechnik Ltd., Stonehouse, UK) at 

various cell densities ranging from 1-5 x 104 cells/ml. Cells were incubated in release 

buffer (NaCI (120mM), KC1 (3mM), NaH2PO4 (1.25mM). HEPES-Na (25mM). 

glucose (4mM), MgCl2 (1mM), CaC12 (2mM) and NADP+ (1mM), pH7.4)) 

prewarmed to 37°C prior to use and the reaction initiated by the addition of GDH 

(40U/ml). Fluorescence was then measured using a Dynex MFX fluorescent plate 

reader (Dynatech) at 37°C, at an excitation wavelength of 355nm and emission 

wavelength of 460nm. Standard curves were created by the application of known 

concentrations of glutamate for each assay and protein concentrations determined by 

the BCA protein assay (Pierce). 

4.2.12 VGLUT2 immunolocalisation 

MEG-01 cells and cytospin preparations, rat tibiae cryosectioning and 

immunolocalisations were performed as previously stated (chapter 2.3.3). Rabbit anti- 

VGLUT2 primary antibody (Synaptic Systems, Gottingen, Germany) was used at a 

1: 500 dilution with anti-rabbit biotinylated secondary antibody (1: 200 dilution; Vector 

Laboratories). For co-immunolocalisation of VGLUT2 and NRI in rat 

megakaryocytes. VGLUT2 immunodetection was performed prior to incubating with 

mouse anti-NMDARI (1: 400; Pharmingen) overnight at 4°C and antibody binding 

detected following a 45 minute incubation using FITC-conj ugated goat anti-mouse 

secondary antibody (1: 100; sigma). 
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4.3 Results 

4.3.1 Glutamate binding by MEG-O1 cells 

The ability of NMDA receptors on MEG-01 cells to bind glutamate was determined 

by radioactive binding assay. The addition of increasing concentrations of 

non-radioactive glutamate resulted in the competitive inhibition of specific 
[3H]-glutamate (Fig. 4.3.1 A). Glutamate competed for binding with [3H]-glutamate 

with an IC50 of approximately 5x10-3M, a higher concentration than that observed in 

both osteoblastic cells (Laketic-Ljubojevic et al., 1999) and neuronal cells (Davies et 

al., 1981). Pre-incubation of MEG-01 cells with 50µM MK-801 prior to application 

of non-radioactive and [3H]-glutamate, significantly reduced the levels of specific 

glutamate binding (Fig. 4.3.1 B). 

4.3.2 Functional importance of NMDA receptor activity in megakaryocyte 

differentiation 

4.3.2.1 Function of NMDA receptors in MEG-01 cells 

Some of the morphological characteristics of MEG-O1 cells treated with the NMDA 

receptor antagonist MK-801 were previously characterised (Genever et al., 1999). 

Fibronectin, a substratum glycoprotein, has been shown to greatly increase MEG-01 

adhesion and elongation by the stimulation of cytoskeletal actin reorganisation 

(Yamazaki et al., 1999). PMA-mediated adhesion of MEG-01 cells to fibronectin was 

reduced to basal levels following MK-801 (50µM) treatment. MEG-O1 cells grown in 

the absence of PMA and fibronectin, displayed only low levels of adhesion (Fig. 

4.3.2). Megakaryocyte adhesion to fibronectin is mediated through the integrin u5ß1 

(Schick et al., 1998). Using an antibody directed against the activated conformation of 

ßI integrin, immunoreactnvity was most prominent at the s«Vol len terminals of 

pseudopodia in ME(I-01 cells adhered to fibronectin in the presence of P IA only 

(Fig. 4.3.3). Hox\, c\-er. MK-801 treatment prevented the formation of pseudopodia by 

Nl l-: G-01 cells and reduced the activity of ß-1 integrin expression b%- these cells (1= ig. 

-ý. 1.! /" 
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Figure 4.3.1. Glutamate binding by MEG-O1 cells. The binding of 
glutamate by MFG-O1 cells Evas competed against increasing concentrations of 
non-radioactive glutamate. The levels of bound glutamate are similar to those 
t0und in neuronal cell cultures (A). Glutamate binding kinetics was altered 
following the application of the NMDA receptor antagonist MK-801 (50µM; B). 
Results are representative of two independent experiments. 
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Figure 4.3.2. Effect of MK-801 on MEG-O1 adhesion to fibronectin. Adhesion 
assays were used to determine the effect of NMDA receptor inhibition MEG-O1 

adhesion to fibronectin-coated substratum. Adhesion was increased by the addition 
of PMA and the presence of fibronectin, however MK-801 (50µM) dramatically 

reduced levels of MEG-O1 adhesion to fibronectin (*=p<0.05; one way ANOVA). 
Results represent two independent experiments. 
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Figure 4.3.3. Effect of NMDA receptor inhibition on localisation of active ß-1 
integrin in fibronectin adhered MEG-O1 cells. Immunolocalisation of activated 
ý-1 integrin by MEG-01 cells grown on fibronectin in the absence and presence of 
MK-801. PMA-treated MEG-O1 cells displayed extensive cytoplasmic elongations 
with active P-1 integrin expression highly expressed at the rounded ends of these 

structures (arrows. A). MK-801 treated cells lacked cytoplasmic extensions and ß-1 
integrin appeared to be significantly weaker (B). Results are representative of two 
independent experiments. 
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To determine the effect of NR1 expression on MEG-O1 viability, 'N1EG-01 cells grown 
in the absence and presence of l 00nM PMA were separated into NR 1-positive and 
NR 1-negative expressing populations by MACS. The MTT-assay was then performed 

following continued culture of the separated cell populations for 72-hours. The PNIA- 

treated population revealed basal levels of viability, as did the PMA-untreated NR 1- 

positive population. Only the NR1-negative population in the absence of PMA 

exhibited significant levels of viability, similar to those found in unseparated MEG-01 

cells (Fig. 4.3.4). As PMA is not thought to cause cell death in MEG-O1 cells, (P. G. 

Genever, personal communication of unpublished data) it is likely that the decrease in 

viable cells observed in this experiment is due to reduced levels of proliferation. 

4.3.2.2 Effect of NMDA receptor inhibition on morphological characteristics of 

primary human megakaryocytes 

The primary megakaryocyte undergoes a great number of morphological 

transformations during differentiation, some of which were investigated in this section. 

Increases in cell size, indicative of megakaryocyte differentiation, were studied by 

image analysis of human primary megakaryocytes cytospin preparations (Fig. 4.3.5). 

All cells were cultured in the presence of TPO (25ng/ml) and in the absence or 

presence of 50µM MK-801 for 14 days. MK-801 almost halved the average 

megakaryocyte cell surface area, from approximately 500µm2 to 300µm2. 

The formation of proplatelets by primary megakaryocytes is an indicator of normal 

terminal megakaryocyte differentiation. Indeed, by the latter stages of in vitro 

megakaryocyte differentiation (>10 days of culture), proplatelet structures can be 

clearly observed. The percentage of megakaryocytes producing these structures in the 

absence and presence of 50µM MK-801 was analysed blind and by two independent 

experimenters at day 11 and day 14. After 11 days, MK-801 had no significant effect 

on cell number (Fig. 4.3.6 A), but reduced the percentage of cells producing 

proplatelets from an average of 3.5% to less than 1% in MK-801-treated cells (Fig. 

4.3.6 B). Following 14 days of culture, MK-801-treatment significantly reduced cell 

number (Fig. 4.3.7 : A) and reduced the number of proplatelet forming cells from an 

average of 8.5% to ?% (Fig. 4.3.7 B and C). 
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Figure 4.3.4 Proliferation of MEG-O1 cells following MACS for NR1-positive 
cells in the absence and presence of PMA. MTT assay was used to investigate the 
effect of the NMDA receptor expression on MEG-01 cell proliferation. NR I -positive 
isolated MEG-01 cells failed to proliferate following 72 hours of culture, whilst both 
NR I -negative and unseparated (Unsep. ) cells exhibited significantly (* *= p<0.01, 
one wav ANOVA) greater levels of proliferation. PMA-treatment resulted in both 
NRl-negative and positive cells failing to proliferate. Results are representative of 
two independent experiments. 
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Figure. 4.3.5 Cell area of human primary megakaryocytes with and without 
MK-801 following 14 days of culture. Cytospin preparations of human 
megakaryocytes cultured in the absence and presence of MK-801, were digitally 

analysed for cell surface area (gm2). Cell surface area was almost halved compared 
to control following MK-801 treatment (A, p< 0.001; students t-test ). Example of 
haematoxylin/eosin stained cytospin preparations are displayed in (B). Results are 
representative of 2 independent experiments. 

104 



Chapter 4 

A 
3: 

90 
80 

-a 70 
60 
50 
40 
30 
20 
10 

c0 

B 
4.5 

a, c4 

ö 3.5 
3 -Ln 

(n 
-iD 

2.5 
ö- 

a2 0 
CU 1.5 o_ 
C 
U 

0.5 
a0 

Control 

Control 

MK-801 

*** 

MK-801 

Figure 4.3.6. Effect of NMDA receptor inhibition on megakaryocyte number 
and proplatelet formation after 11 days of culture. MK-801 treatment had no 
significant effect on cell number (A), but significantly (p<0.005; students t-test) 
reduced the percentage of cells displaying proplatelet structures (B). Results 
represent two independent experiments. 
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Figure 4.3.7 Effect of NMDA receptor inhibition on megakar', ocyte number 
and proplatelet formation after 14 days of culture. MK-801 treatment 
signit scantly reduced megakaryocyte number (A. **= p<0.01; students t-test ). and 
proplatelet formation after 14 days of culture (B and C (arrowheads). *** = p<0.005. 
students t-test). Results represent two independent experiments. 

106 

** 



Chapter 4 

The identification of certain ultrastructural characteristics displayed by 

megakaryocytes, makes it possible to determine the platelet producing capabilities of 

the cells. Therefore, primary human megakaryocytes. following 14 days of culture in 

the presence and absence of MK-801 (50µM), were analysed by TEM. Control 

megakaryocytes exhibited multi-lobed nuclei, a dilated demarcation membrane system 

forming platelet territories towards the cell periphery, dense platelet cytoplasmic 

a-granules and proplatelet structure formation on the outside edge of the cell (Fig. 

4.3.8). In contrast, MK-801-treated cells presented rounded, single-lobed nuclei, they 

lacked demarcation membranes and a-granules and proplatelet structures were absent 

(Fig. 4.3.9). These cells also displayed significant cytoplasmic abnormalities, in the 

form of large open cisternae. 

4.3.2.3 MK-801 induced inhibition of megakaryocyte differentiation marker 

expression 

The expression of megakaryocyte-specific cell surface markers reveals the extent of 

TPO-induced expression by primary megakaryocytes. By quantifying the levels of 

differentiation markers by flow cytometry it is possible to document the process of 

megakaryocyte differentiation. MK-801 treatment reduced the level of expression of 

the early megakaryocyte marker, CD61 from an average of 72% of cells in control 

samples to around 50% of cells (Fig. 4.3.10). Similar figures were also observed for 

the expression of the intermediate megakaryocyte differentiation marker CD41, which 

was reduced from an average of approximately 76% of control cells, to 54% of cells 

treated with MK-801 (Fig. 4.3.11). The most profound reduction in expression was to 

the marker for terminally differentiated megakaryocyte/platelet specific marker 

CD42a, from an average of 40% of control cells to 23% of cells following MK-801 

treatment (Fig. 4.3.12). Annexin V/ PI flow cytometric analysis confirmed that 

MK-801 had no significant effect on cell viability, with approximately 91% and 89% 

of cells remaining viable following 14 days of culture with TPO and TPO with MK- 

801 respectively (Fig. 4.3.13). In addition, MK-801 had no significant effect on 

necrosis and early/late apoptosis. 
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Figure 4.3.8. tlltrastructural morphology of human primary megakarvocytes. 
t Jitrastructural analysis by TEM of human primary megakaryocytes cultured with 
TPO for 14 days. Cells displayed normal physiological characteristics, including 

multi-lobed nucleus (N). dilated demarcated membrane (arrowheads), a-granules 
(arrows) and proplatelet formation at the periphery of the cell (* ). Magnification 

x4000. 
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Figure 4.3.9. Ultrastructural morphology of human primary megakarg ocytes 
treated with MK-801. Ultrastructural analysis by TEM of human primary 
nme`gakaryocytes cultured with TPO and 50µM MK-801 for 14 days. Cells lacked 

multi-lobed nuclei (N), dilated demarcation membrane, a-granules and proplatelet 
structures. Large open cisternae were also identified within the cell cytoplasm (*). 
Magnification x6500. 
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Figure 4.3.10. Expression of CD61 by human primary megakaryocytes following 
treatment with MK-801. Flow cytometry was used to determine expression of the 
cell surface marker CD61 by human primary megakaryocytes grown in the presence 
of TPO for 14days, with and without MK-801.78% (±7.6) of control cells (solid blue 
fill) were positive for CD61 expression, which was reduced to 50.9% (±3.6) in cells 
treated with 50µM MK-801(red outline). Positivity is gated at higher than I% of 
antibody control (black outline; Region R1) and data shown is typical of 3 
independent experiments. 
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Figure 4.3.11. Expression of CD41 by human primary megakaryocytes 
following treatment with MK-801. Flow cytometry was used to determine 
expression of the cell surface marker CD41 by human primary megakaryocytes 
grown in the presence of TPO for 14days, with and without MK-801.76.2% (±7.3) 
of control cells (solid blue fill) were positive for CD4lexpression, which was 
reduced to 54.8% (±5.2) in cells treated with 504M MK-801(red outline). Positivity 
is gated at higher than 1% of antibody control (black outline, Region R l) and data 
shown is typical of 3 independent experiments. 
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Figure 4.3.12 Expression of CD42a by human primary megakaryocytes 
following treatment with MK-801. Flow cytometry was used to determine 
expression of the cell surface marker CD42a by human primary megakaryocytes 
grown in the presence of TPO for l4days, with and without MK-801.40.7% (±9.5) 
of control cells (solid blue fill) were positive for CD42a expression, which was 
reduced to 23% (±3.8) in cells treated with 50µM MK-801(red outline). Positivity is 
gated at higher than I% of antibody control (black outline; Region R 1) and data 
shown is typical of 3 independent experiments. 
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Figure 4.3.13. Effect of MK-801 on apoptosis of human primary 
megakaryocytes. Megakaryocytes were labeled with annexin V and PI and analysed 
by flow cytometry to determine the effect of 50µM MK-801 on apoptosis. No 

significant differences were observed between control and treated cells, with 
approximately 90% cells remaining viable (annexin V-negative / PI-negative) 
following 14 days of culture. Results are representative of three independent 

experiments. 
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4.3.2.4 Effect of NMDA receptor inhibition on megakaryocyte polyploid'- 

In addition to cytoplasmic maturation, proplatelet formation and 

megakaryocyte-specific antigen expression. nuclear maturation is also a characteristic 

of normal megakaryocyte maturation and is essential for correct cell function. Flow 

cytometry was used again in this section, to determine the effect of NMDA receptor 

inhibition on megakaryocyte endomitosis. Initial studies were performed on HEL 

cells treated for 72 hours in the absence and presence of I OOnM PMA and 50µM 

MK-801. Untreated cells remained predominantly in the low-ploidy state, with 

approximately 78% of cells at the 2N stage, whilst 16% of cells were at the 4N stage 

and only approximately 3% in the high ploidy (>4N) stages. PMA treatment greatly 

increased the number of cells at stages of high ploidy with approximately 25% of cells 

at the 4N stage and over 7% of cells at >4N, whilst the percentage of cells at 2N were 

notably reduced. Combined treatment with PMA and MK-801 dramatically reduced 

the levels of PMA-mediated endomitosis. Percentages of cells at 2N, 4N and >4N 

were similar to those exhibited by control (-PMA) cells, at 77%, 15% and 3% 

respectively (Fig. 4.3.14). 

The levels of polyploidy were also analysed in human primary megakaryocytes 

following 14 days of culture with TPO with and without 50µM MK-801 (Fig. 4.3.15). 

MK-801 treatment reduced the percentage of cells at 4N from 20% to 12% and >4N 

from approximately 8.5% to 4%. Levels of low ploidy cells (2N) remained higher in 

MK-801-treated cells compared to control. 

4.3.3 Activation of the NMDA receptor by NMDA and glycine 

The response of the megakaryocytic NMDA receptor to its pharmacological agonist 

NMDA and co-agonist glycine has not been previously investigated. To address 

\v Nether the NMDA receptor is readily activated by varying concentrations of NMDA 

and glycinc. MEG-Ol cells were loaded with the calcium indicator indo-l-AM and 

intracellular calcium concentration monitored using a fluorimeter. Calcium 

concentration was measured prior to and following, agonist addition, assuming that any 

increase in concentration would be as a result of N IDA receptor activation and 

calcium influx. The addition of 1µN1 N\ID. \/100n\l glycine and 10µM NMI): \ llt%l 
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Figure 4.3.14 Effect of MK-801 on megakaryocytic cell ploidy. Pliody levels of 
1-IEL cells cultured with or without PMA for 72 hours and in the absence or presence 
of 50µM MK-801 analysed by flow cytometry. PMA treatment considerably 
increased the percentage of cells displaying levels of high ploidy (4N and greater), 
whilst MK-801 treatment reduced ploidy to levels comparable to those displayed by 

untreated cells. Results are representative of two independent experiments. 
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Figure 4.3.15 Effect of MK-801 on human primary mega karv ocyte ploidy. 
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glycine made no significant difference to basal intracellular calcium concentration. 

whilst 100µM NMDA/10µM glycine did cause a slight increase from basal 

intracellular concentration (Fig. 4.3.16). 

The lack of receptor-mediated response to NMDA by MEG-01 cells led to the 

investigation of other possible glutamate receptors expressed by the cells. 

Unpublished data has previously identified the existence of AMPA receptor subunits 

expressed by MEG-01 cells (P. G. Genever, personal communication). Therefore, 

changes in intracellular calcium concentration on addition of the specific AMPA 

receptor antagonist CFM-2 was also investigated. Addition of 25µM CFM-2 

dramatically reduced the concentration of intracellular calcium from approximately 

45nM to 20nM (Fig. 4.3.17). Addition of 50 µM CFM-2 resulted in further reductions 

in intracellular calcium, whilst the addition of 100µM CFM-2 caused no significant 

differences. However, addition of 200µM CFM-2 produced a small increase in 

intracellular calcium concentration. In an attempt to confirm whether changes in 

intracellular calcium observed by the addition of CFM-2 were due to influx of 

extracellular calcium, identical experiments were performed in the absence of 

extracellular calcium (Fig. 4.3.18). Addition of 25µM CFM-2 did cause a slight 

decrease in basal intracellular calcium concentration, whilst further additions of 

CFM-2 resulted in no significant changes in calcium concentrations. The reduction in 

intracellular calcium, from approximately 18nM to 15nM following addition of 25µM 

CFM-2 was however considerably less than the reduction observed in the presence of 

extracellular calcium. 

4.3.4 Megakaryocytic glutamate release 

The identification of the glutamate recycling protein GLT-1 expression b}' unidentified 

cells in the bone marrow certainly indicates that a release and recycle mechanism may 

be present (Genever et al., 1999). However, the source of glutamate used by the 

megakaryocytic NMDf\ receptor remains unclear. The lack of agonist-induced 

effects, but clear antagonist effects with regards to intracellular calcium concentration 

(see chapter 4.3.3). suggests that there may be endogenous `glutamate release. The 

possibility of glutamate being released by the megakarvocyte itself was investigated. 
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Figure 4.3.16. Changes in intracellular calcium concentration in HEL cells 
following addition of NMDA and glycine. Intracellular calcium concentration [Ca], 

was monitored in indo- l -AM-loaded HEL cells using a fluorimeter. Average [Ca], 

(±SD), was measured prior to and following the addition of increasing concentrations 
oINMDA and glycine at known time points. Lower concentrations of NMDA and 
glycine made no significant difference to [Ca],. whilst 100µM NMDA. 10µM glycine 
slightly increased the [Ca],. Results are representative of three independent 

experiments. 
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Figure 4.3.17. Changes in intracellular calcium concentration in HEL cells 
following addition of the AMPA receptor antagonist CFM-2. Intracellular 

calcium concentration [Ca]; was monitored in indo- l -AM-loaded HEL cells using a 
tluorimeter. Average [Ca]; (±SD), was measured prior to and following the addition 
of increasing concentrations of CFM-2 at known time points. Upon addition of 
25µM CFM-2, [Ca], was dramatically reduced. Further reductions were also 

observed following addition of 50 and I00µM CFM-2, whilst 200µM CFM-2 
appeared to increase [Ca],. Results are representative of two independent 
experiments. 
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Figure 4.3.18. Changes in intracellular calcium concentration in HEL cells 
following addition of the AMPA receptor antagonist CFM-2 in a calcium-free 
environment. Intracellular calcium concentration [Ca], was monitored in indo- l- 
AM-loaded HEL cells in a calcium-starved environment using a fluorimeter. 
Average [Ca], (±SD). was measured prior to and following the addition of increasing 

concentrations of CFM-2 at known time points. CFM-2 addition in the absence of 
extracellular calcium caused no significant increase in [Ca],. Results are 
representative of two independent experiments. 
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using a glutamate release assay (Fig. 4.3.19). It was demonstrated that MEG-01 cells 

release low concentrations (around 300pM/µg protein) compared to neuronal (Nicholls 

and Sihra, 1986) and osteoblastic cells (Genever and Skerry. 2001). Glutamate release 

from PMA treated cells (B) was not significantly different to those cells cultured in the 

absence of PMA (A). 

Expression of the vesicular glutamate transporter VGLUT2 was confirmed in cytospin 

preparations of MEG-O1 cells (Fig. 4.3.20). MEG-O1 cells express VGLUT2 both in 

the absence and presence of PMA with expression located throughout the cytoplasm. 

VGLUT2 expression was also identified in rat bone marrow megakaryocytes (Fig. 

4.3.2 1). VGLUT2 immunoreactivity was observed with a cytoplasmic and prominent 

pericellular localisation in all NR1-expressing megakaryocytes. VGLUT2 also 

appeared to be expressed exclusively by megakaryocytes in the bone marrow. 

Antibody negative preparations demonstrated specificity and low background levels. 

VGLUTI expression was not identified in MEG-01 cells or bone marrow 

megakaryocytes (data not shown). 
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Figure 4.3.19. Glutamate release by MEG-O1 cells. Glutamate release assay 
identified that MEG-O1 cells release glutamate proportional to the number of cells in 

the assay. Control (A) and PMA-treated (B) cells displayed no significant 
differences in glutamate release. Results are representative of two independent 

experiments. 
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Figure 4.3.20 VGLUT2 expression by MEG-O1 cells. Immunocytochemical 
identification of VGLUT2 expression by MEG-O1 cytospin presparation in the 
absence and presence of PMA. MEG-01 cells with and without PMA exhibit 
cytoplasmic expression of VGLUT2 (brown staining). Antibody control (Ab 
control) displays background levels of staining. Results are representative of two 
independent experiments. 
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Figure 4.3.21. VGLUT2 expression by rat tibial megakaryocytes. 
Immunohistochemical examinations of rat tibial sections identified pericellular 
expression of VGLUT2 by bone marrow megakaryocytes (brown staining; A). 
Megakaryocytes were identified as being NR 1 positive (green FITC staining; Q. 
Peroxidase and FITC antibody controls (B and D respectively) displayed low levels 
of background staining. The experiment was performed once. 
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4.4 Discussion 

Previously. evidence concerning the function of the megakaryocytic NMDA receptor 

was scant. The original investigations regarding glutamate signalling in 

megakaryocytes identified that by inhibiting the NMDA receptor with MK-801. 

MEG-01 cell differentiation and adhesion was significantly inhibited (Genever et al., 
1999a). How this novel signalling system integrates with other, more recognised 

megakaryocytopoiesis-regulating cytokines, requires a greater understanding of the 

effects that NMDA receptor inhibition has on megakaryocytes. The aim of this 

chapter is to provide greater insight into NMDA receptor function in megakaryocytic 

cell lines, as well as human primary megakaryocytes. 

Evidence that glutamate binds to the megakaryocytic receptor with similar kinetics as 
identified in other cells, along with previous [3H]-MK-801 binding experiments 

(Genever et al., 1999a), support the evidence that the receptor is functionally 

comparable to that present in neuronal cells. The lower affinity of glutamate binding 

by MEG-01 cells compared to both neuronal and bone cells (Davies et al., 1981; 

Laketic-Ljubojevic et al., 1999) may demonstrate one of the differences of this 

receptor compared to that present in other cell types. It is also of interest to note that 

MK-801, which does not directly block the binding of glutamate to its binding site, 

greatly alters the glutamate binding kinetics. The significant role of the NMDA 

receptor in LTP is widely acknowledged (for review see Dingledine et al.. 1998). One 

such characteristic of LTP is clustering of the membrane NMDA receptors, mediated 

by PKC phosphorylation of a serine residue in the cytoplasmic domain of either the 

NR1 or NR2A subunit (Tingley et al.. 1997; Zheng et al.. 1999). Clustering of the 

receptor in the megakaryocyte membrane would therefore increase glutamate binding, 

an effect that is inhibited by NMDA receptor antagonism. Currently, it is only 

possible to hypothesise that this is the case and requires more focused investigation of 

receptor subunit phosphorv Tation and localisation 

Fibronectin (FN) is a key element of the extracellular matrix in bone marrow. The 

role of FN has also been shown to be of major importance in 1ISC differentiation 

(Weiss and Reddy. 1981. Vertaillie et al., 1991). providing anchorage by which HI-"Cs 
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can migrate to specific regions of the bone marrow that promote maturation (Hamilton 

and Campbell, 1991). Megakaryocytes can produce, and in the presence of thrombin. 

secrete FN (Schick et al., 1996), the role of which is believed to be in the formation of 

pseudopodia resembling proplatelet structures (Schick et al.. 1998: Yamazaki et al.. 
1999). The principle integrin involved in the adhesion of megakaryocytes to 

fibronectin is a5ß1, which binds megakaryocytes to fibronectin both "resting" and 

``active" (+ thrombin) state (Schick et al., 1998). The data provided here demonstrated 

that the activation of ß1 integrin was decreased following NMDA receptor blockade 

offering one explanation as to why MEG-01 adhesion to FN was significantly reduced 
by MK-801. MEG-01 adhesion to fibronectin is induced through PMA-mediated PKC 

activation. This suggests that integrin activation could occur either as a direct or 
indirect result of active PKC, possibly via the receptor for activated C-kinase I 

(RACK1), which interacts with the ßl integrin subunit (Liliental and Chang. 1998). 

These findings however, suggest a role for NMDA receptors in the normal process of 

integrin activation. Similar investigations regarding J31 integrin activation in human 

polymorphonuclear leukocytes, identified that increased intracellular calcium 

concentration in synergy with direct PKC activation was required for ßI integrin 

activation (Rowin et al., 1998). Therefore, it is conceivable that increases in 

intracellular calcium concentration induced by the activation of the functional NMDA 

receptor, provides the source of calcium that, in conjunction with activated PKC, 

activates integrin-mediated FN binding. Inhibition of the NMDA receptor-mediated 

calcium influx would thus prevent integrin activation. How PKC and calcium interact 

in the modulation of integrin activation however, remains unknown. These findings 

have major implications not only on cytoskeletal reorganisation, but also on the 

possible effects of integrin signalling (for review see Giancotti and Rouslahti. 1999). 

Adhesion of megakaryocvtes to FN has been shown to directly activate the 

intracellular signalling molecule ERK1/2 (Mizutani et al.. 2002), in turn promoting the 

formation of proplatelet structures (Jiang et al.. 2002). 

In addition to being important in the adhesion of MMEG-01 cells, it is also possible that 

NNIDA receptor activity modulates their proliferative capacity. The role of the 

NNIDA receptor in megakaryocyte differentiation remains unclear. Work described in 

126 



Chapter 4 

this chapter demonstrated that NMDA receptor antagonism caused an inhibition of 
human primary megakaryocyte differentiation on several levels. The reduction in 

expression levels of CD61, CD41 and CD42a by primary megakarvocvtes in the 

presence of MK-801 implies that these cells were of a less differentiated phenotype. 
However morphological studies, confirm that megakaryocv tic NMDA receptor 

activity also has key roles in other aspects of normal megakaryocyte functions. It may 
be that the NMDA receptor activity is able to modulate the activity of intracellular 

signalling molecules that are known to promote differentiation. This hypothesis will 
be addressed in Chapter 5. However, if the receptor expressed by megakaryocvtes and 

neuronal cells is comparable it may be possible to draw analogies, which may have 

functional implications. One such example is in the dramatic antagonism of 

proplatelet production in vitro brought about by inhibition of the NMDA receptor. 
The formation of proplatelets is in many ways similar to the process of neuronal 

outgrowths. Axonal growth is of central importance both during the development of 

the adult nervous system and the regeneration of neuronal systems following injury. 

The process of neurite elongation followed by extensive branching (similar to the 

structures observed by ultrastructural analysis of proplatelet formation (Italiano et al., 

1999)) relies upon reorganisation cytoskeletal proteins including microtubules and 

actin. Indeed, depolymerisation of actin and tubulin reduces the ability of 

hippocampal neurones to develop the characteristic extensive branching (Allison et al., 

2000). The NMDA receptor has recently been demonstrated to modulate neuron 

outgrowth. MK-801 application to cultured chick neurones inhibits neurite initiation 

outgrowth and branching in a dose dependent manner, resulting in a reduction of the 

"neurite tree" complexity (Cuppini et al., 1999). It is possible that the NMDA 

receptor achieves this by controlling the action of the axonal growth-associated protein 

GAP-43, with MK-801 significantly reducing the levels of GAP-43 mRNA in 

hippocampal granule cells (Cantallops and Routtenberg. 1999). Other evidence also 

suggests that the NR1 and NR2B NMDA receptor subunits directly bind to ß-tubulin 

and modulate microtubule formation (van Rossum et al., 1999). 

It is also of interest to note that the recently characterised NR, subunit has a role in the 

formation of normal dendritic spines and branches (Das et al., 1998). As NR3A has 

been sho\\n to decrease the conductance of the NNIDA receptor both in vivo and in 
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vitro, the expected increase in dendritic spine branching was exhibited in NR3A 

knockout mice. It is therefore a distinct possibility the megakaryocytic NMDA 

receptor is also of great importance in the formation of microtubules from ß1 tubulin 

and actin polymerisation, both of which are key to the formation of normal proplatelet 

structures. The inhibition of proplatelet formation has not only been confirmed by 

examination of cells in vitro, but also by ultrastructural analyses which indicate the 

profound differences in cytoplasmic maturation between control and MK-801 treated 

cells. As shown in chapter 3, the expression of the NR3 subunit is restricted to 

immature cells, therefore providing a possible control mechanism to ensure that 

proplatelet formation occurs only in mature cells. 

These findings are of particular significance when considering that no haematopoietic 

cytokine has currently been identified that directly promotes the formation of 

proplatelets in vitro. Although these data provide the first evidence of a cell surface 

receptor with the ability to regulate proplatelet formation, the connections with the 

other factors involved in proplatelet production, such as the transcription factor NF-E2 

and cytoskeletal proteins, need to be investigated. However, if these links are 

confirmed, the implications to the understanding of how platelets are formed will be 

significant. 

Ultrastructural analyses also confirmed that other characteristics associated with the 

production of normal platelets are affected by NMDA receptor inhibition. The 

apparent lack of a-granules in the cytoplasm is of particular interest, as this is a 

characteristic displayed by peripheral blood CD34+-derived megakaryocytes from 

patients suffering the rare congenital bleeding disorder, gray platelet syndrome (GPS, 

Drouin et al., 2001). It would appear that this condition results from molecules vital 

for platelet function, especially vWF, being released elsewhere in the cell rather than 

the platelet a-granule, explaining the presence of vWF in GPS megakarv ocytes but 

absence in GPS platelets. As a-granules are only identifiable by TEM due to their 

dense packaging, empty granules cannot be identified. \'1hhether the pathology of GPS 

is caused by a lack of or mutation in the megakaryocytic NM DA receptor and how 

NMD. -\ receptor-mediated signalling may promote a-granule formation warrants 

further investigation. 
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Possibly the most striking cytoplasmic abnormality observed in MK-801 treated 

megakaryocytes is the formation of large open cisternae displayed by many of the 

cells examined in this study. Since this work was performed, similar characteristics 

were identified in megakaryocytes treated with monoclonal CD9 antibody (Clay et al., 

2001). The function of CD9 is unknown, even though it is expressed on numerous 

different haematopoietic cells (Boucheix et al., 1985), although it is postulated that it 

may play a role in several different cellular events including proliferation, adhesion 

and maturation (Maeker et al., 1997; Langaudriere-Gesbert et al.. 1997). In addition to 

the cytoplasmic abnormalities, suggestive of dysfunctional membrane remodelling, 

treating megakaryocytes with the monoclonal CD9 antibody increased the levels of 

proliferation whilst reducing expression of CD41. The apparent morphological and 

immunological similarities in MK-801 and CD9 antibody-treated megakaryocytes may 

be coincidental, indirectly linked though other signalling pathways or directly 

associated in normal megakaryocyte differentiation. However, both lines of work are 

still in their relative infancy and associations between the two systems warrant further 

investigation. 

In addition to providing essential evidence regarding cytoplasmic maturation, 

ultrastructural analyses also identified that MK-801 treatment reduced the levels of 

nuclear maturation. This subsequently led to the quantitative analysis of 

polyploidisation, which confirmed that the NMDA receptor has the ability to modulate 

megakaryocytic endomitosis. The mechanism by which this is attained is likely to be 

via an extensive signalling mechanism downstream of the NMDA receptor, such as 

the ERK 1 /2 pathway (Miyazaki et al., 2001), which is able to affect various aspects of 

the cell cycle that underpin endomitosis. The effect of NMDA receptor inhibition on 

intracellular signalling will be addressed in chapter 5. 

The lack of agonist response in MEG-O 1 cells was intriguing. The addition of NMDA 

with the co-agonist glycine to cells expressing the functional NNIDA receptor could be 

expected to induce recordable increases in intracellular calcium concentration. This 

response underpins many of the functions of the NNIDA receptor in the C'\S. 

However. it should be appreciated that the function of the receptor in the 

megakaryocyte is highly unlikely to be identical to that in the CNS. It is possible that 

129 



Chapter 4 

the activation of the megakaryocytic NMDA receptor actually causes very small 

increases in intracellular calcium, which cannot be measured using, the methods 

described in this chapter. It may be the case that the calcium influx is only required 

for the activation of the NMDA receptor in the locality, and it is the activated NNIDA 

receptor that directly influences downstream signalling events rather than large 

increases in intracellular calcium. The presence of the AMP. a and kainate receptors 

has not been studied since their expression was identified by RT-PCR in N IEG-0 l 

cells (P. G. Genever, personal communication). It would appear that MEG-01 cells 

express the AMPA receptor subunit GluR1, as well as the kainate receptor subunit 

KA2 (for review see chapter 1.6.2.1). The existence of AMPA/N NID: A receptor cross- 

talk is now well established and AMPA receptor activation has been shown to 

modulate NMDA receptor activity (Bai et al., 2002). As one of the key roles of the 

AMPA receptor is in depolarisation-induced Mg 2+ removal from the NMDA receptor. 

application of the specific AMPA antagonist CFM-2 may indirectly prevent the 

activation of the NMDA receptor. Therefore, the reduction of intracellular calcium 

concentration observed in the presence of CFM-2 might either be through inhibition of 

an uncharacterised functional megakaryocytic AMPA receptor. or by the prevention of 

Mg 2+ removal from the NMDA receptor. This is in great need of further investigation. 

One requirement is to perform more accurate techniques of measuring receptor 

activation and changes in calcium influx, for example, patch clamping, which has 

previously been used for the characterisation of the osteoblastic glutamate receptor 

(Laketic-Ljubojevic et al., 1999). However, the lack of agonist response has since led 

to the investigation of megakaryocytic glutamate release, which may provide an 

explanation as to why NMDA and glycine application has very little apparent effect on 

receptor activation. 

The release of glutamate from MEG-O1 cells in addition to the identification a protein 

involved in packaging of glutamatergic vesicles in MEG-01 cells and bone marrow 

megakaryocytes, is an extremely exciting finding. It may therefore be the case that 

MEG-01 cells are under constant stimulus of glutamate and starving the cells of 

glutamate to induce a large response to NMDA and glycine application may therefore 

not be viable. It may indeed be the case that the cells will have to be treated with the 

glutamate release inhibitor (such as riluzole) in conjunction with glutamate starving, to 

allow a detectable agonist response. The glutamate release findings also have 
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significant implications regarding the bone marrow microenvironment. It is possible 

to imagine a situation in which megakaryocytes release glutamate primarily for their 

own use (due to their relative sparseness in the bone marrow) and glutamate is 

recycled via the GLT-1 positive cells in the vicinity of the megakarvocvte. The fact 

that megakaryocytes express VGLUT2, which is expressed only by differentiated 

neuronal cells, and not VGLUTI, suggests that glutamate release may only occur in 

differentiated megakaryocytes. However, undifferentiated NIEG-0l cells do express 

VGLUT2 and release glutamate at similar levels to differentiated MFG-01 cells. It 

may therefore be the case that megakaryocytes release glutamate throughout 

differentiation, possibly mediating other cells in the bone marrow. but the high level of 

expression of NR3 by the undifferentiated cells prevents the activation of the 

megakaryocytic NMDA receptor. Currently, this situation is only speculative. 

However, further investigation, along the same lines as that performed on osteoblastic 

cells (Genever and Skerry, 2001 a), would provide a greater understanding of glutamate 

signalling in the bone marrow microenvironment with regards to the regulation of 

megakaryocytopoiesis. 

The data in this chapter provides a greater understanding of the functional effects of 

the megakaryocytic glutamate receptor. Inhibition of the NMDA receptor appears to 

have profound control over many aspects of megakaryocy'te differentiation and 

function and may provide a degree of control similar to the more established 

haematopoietic cytokines. However, to determine if this is indeed true, a greater 

understanding of downstream signalling events is required and will be addressed in the 

next chapter. 
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Chapter 5 

NMDA Receptor-Mediated Signal Transduction 

in Megakaryocytic Cells 

5.1 Introduction 

Since TPO, the key cytokine regulating megakaryocytopoiesis became commercially 

available, intracellular signal transduction studies in megakarv-ocvtes have 

predominantly focused on the events following TPO application (Ievviewt-ed in chapter 

1.3.1). The subsequent findings have defined the action of TPO and provided 

compelling evidence as to its role in megakaryocyte survival, proliferation and 

differentiation. When characterising any membrane receptor signalling system, it is 

essential to define the downstream intracellular effects of receptor activation and/or 

inhibition. Doing so will identify how the signalling systems brings about cellular 

responses as well as potentially allowing pharmacological manipulation of these 

mechanisms. This chapter determines the effects of NMDA receptor activation and 

inhibition on intracellular signalling events in megakaryocv tic cell lines, by 

investigating both established megakaryocytopoiesis-promoting pathways and more 

"neuronal" NMDA receptor mediated signal transduction. 

The signal transduction studies in this chapter use the mcgakaryocvtic cell lines 

MEG-01 and HEL, which are described in depth in chapter 3.1. B using these cell 

lines, it is possible to investigate the effect of PMA-induced differentiation that occurs 

in both cell lines, as well as determining the effects of TPO signalling in the c-Mpl 

expressing HEL cells (Zauli et al.. 1997; Kalina et al. 2001). : gis \ 1I'G-O1 cells do not 

express c-Mpl (Rollinger-Holzinger et al.. 1998). the PKC-activ'atingagent P 1: \ is 

used to trigger differentiation, demonstrating the importance of PKC in 

megakaryocyte differentiation. The phorbol ester PNL\ competes for the same binding 

site on PKC as diacylglycerol (D: AG) and the reversible kinase activity of PKC relies 

on the binding of either DAG or phorbol esters (Sharkey and Blumbcrg. 1985). The 

region of the PKC regulatory domain responsible for the inhibition ot'catalytic activity 
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of PKC is known as the pseudosubstrate site (House and Kemp, 1987) and is inhibited 

by the binding of DAG or phorbol ester, therefore "activating" the catalytic activity of 

PKC. Some PKC isoforms, including PKCa that has been shown to have particular 

importance in megakaryocytopoiesis and platelet production (Rojnuckarin and 

Kaushansky, 2001), also have a calcium specificity domain that is believed to 

influence the translocation of PKC to various regions of the cell, such as the plasma 

membrane and the nucleus (Luo and Weinstein, 1993; Haller et al.. 1994). PKCa has 

also been shown to translocate to the plasma membrane following small increases in 

intracellular calcium concentration just under the plasma membrane. known as 

"calcium sparks", which have local intracellular effects (Haller et al.. 1989: Berridge 

and Dupont, 1994; Maasch et al., 2000). By translocating to the plasma membrane, 

active PKC is able to interact with Raf and stimulate the MAPK pathway. 

Compelling evidence now exists that both PMA and TPO-mediated megakaryocytic 

differentiation is via active PKC, which, initiated by stimulation of Raf, directly leads 

to the activation of the MAPK pathway that comprises ERK1/2, in addition to stress 

activated kinases p38 and Jun kinases (Rouyez et al., 1997: Fichelson et al., 1999, 

Avarham and Price, 1999). In megakaryocytes the effects of inhibiting the ERK1/2 

pathway with the specific inhibitor PD98059 are profound. Even in the presence of 

TPO, megakaryocyte differentiation from HSCs is significantly reduced and the 

number of immature cells greatly increased following PD98059, indicating that the 

ERKI/2 pathway is involved in differentiation rather than lineage determination 

(Fichelson et al., 1999). However, Hong and co-workers have indicated that inhibition 

of PKC with the bisindolylmaleimide GF109203X promoted erythrocvvte 

differentiation of HEL cells in the presence of PMA, indicating that another non- 

FRK 1 /2 PKC downstream signalling mechanism controls megakarvocy'te lineage 

determination (Hong et al., 1996). The application of GF 109203 X to primary 

megakaryocytes has also been shown to significantly reduce the levels of TPO- 

induced nuclear maturation (Rojnuckarin et al., 1999). However the interaction of the 

ERK 1 t'2 pathway and DNA synthesis in unknown. 

The ERK 1/2 pathway is also essentially involved in various aspects of neuronal cell 

function. The stimulation of neuronal NNID: \ receptors leads to the 
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calcium-dependent activation of ERK1/2 (Kurino et al., 1995: Xia et al., 1996). which 
is of great importance in LTP in hippocampal cells and LTD in cerchcllar cells (for 

review see Sweatt, 2001). It is thought that ERK1/2 is able to modulate transient LTP 

by the regulation of voltage-gated potassium channels (Adams et al.. 2000) and late 

LTP via the activation of transcription factors such as cA\IP response element (CRE) 

binding protein (CREB; Huang et al., 2000). CREB is the best-characterised CRE 

binding protein, which on activation by the phosphorylation of the scrine 133 residue, 
directly interacts with TFIIB, an essential constituent of the transcriptional machinery 
(Chrivia et al., 1993). CREB has also been implicated in the promotion of neuronal 

cell survival (Han and Holtzman, 2000), however, it appears that the PI3-K/AKT 

pathway may play a more important role in cell survival (Hetman ct al.. 2000). 

Interestingly, the CREB transcription factor has also been implicated in the lineage 

determination and possibly the differentiation of both megakaryocytic cell lines and 

human primary cells (Zauli et al., 1998). TPO application to FIEL cells results in the 

rapid dose-dependent phosphorylation of CREB in HEL cells, which is not mimicked 

by the erythrocyte lineage stimulants erythropoietin and heroin. This suggests that 

CREB activity promotes megakaryocytopoiesis over ervthrocvtopoiesis and may even 

be involved in megakaryocyte lineage determination. By the use of pharmacological 

inhibitors of PKA, PKC and MAPK, it has also been demonstrated that CREB 

activation in megakaryocytes appears to be MAPK dependent. In human primary 

cells, high levels of phosphorylated CREB were identified in the nucleus following 

TPO application, which corresponded with increases in CD61 expression. These data 

provides significant evidence that CREB may regulate TPO-mediated gene expression, 

which determines entry to the megakaryocyte lineage from ervthrocytc megakaryocyte 

bi-potential cells. 

Considering the profound effects mediated by ERKl/? and CREB pathways in both 

neuronal and megakaryocytic cells, it becomes of great importance to determine 

whether the NMDA receptor has the ability to modulate these path\t av-s in 

megakaryocytic cells. 

Changes in intracellular calcium concentration are common in the malorlty of cell 

types. In neuronal cells, [Ca2+]; is regulated by of various means, including: ligand- 

gated ion channels (such as the NMDA receptor). voltage gated ion channels. Ca 2+ 
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pumps and exchangers as well as from intracellular stores via ry anodine and IP, - 

sensitve channels. [Ca2+]; increases stimulate the activation of a wide range of 

signalling events from localised areas, for example "calcium sparks" through to the 

modulation of gene transcription. An increase in intracellular calcium concentration is 

detected by calcium sensing proteins, of which the most common is calmodulin 

(CaM). The binding of Ca 2+ to CaM to form a Cat-/CaM complex. results in the 

functional adaptation of numerous proteins, possibly the most important of which is 

the serine/threonine kinase CaM kinase (CaMK; for review see Soderling. 2000). 

CaMK remains in a non-active state by interacting with an autoinhibitorv sequence via 

its catalytic domain. CaMK becomes active by Cat-/CaM binding adjacent to the 

autoinhibitory site, disrupting its interaction with the catalytic domain, which results in 

CaMK switching to its active conformation (Braun and Schulman, 1995). 

Autophosphorylation of active CaMK results in Ca 2+ independent prolonged 

activation. Therefore a transient increase in [Ca`+]; can lead to autonomous CaMK 

activity. 

CaMKII is by far the most widespread member of the CaN 1K protein family. CaMKII 

is comprised of one or more of its 10-12 subunits, of, \hicli there are four isoforms, a, 

ß, y, and b and it appears that subunit expression regulate CaMKII function in various 

tissue types (Brocke et al., 1999). Although the aCaN I KI I subunit isoform appears to 

be restricted to the CNS, the ß, y and b isoforms are expressed in a 'wide range of 

tissues (Tombes and Crystal, 1997). The isoform present in any given cell is subject 

to which of the four genes encoding the protein is transcribed and which of a 

substantial number of alternatively spliced forms of each primary transcript is 

translated (Means, 2000). Although CaMKII signalling is not restricted to the CNS. it 

is of interest to note that tissues expressing both a and ß CaMKII subunits also 

express glutamate signalling components. Interaction of CaMKII with the NMDA 

receptor in the CNS has been documented (Leonard et al.. 1999). It has been 

hypothesised that the ß CaMKII subunit binds to F-actin and on NNID: \ receptor 

activation, can translocate to the PSD (Shen and Nlever. 1999). Once in the PSD, 

CaMKII can act on signalling substrates located in the vicinity of the N\1D: \ receptor. 

One such substrate is the novel Ras-GTPase-activating protein SenG: \P. which is 

phosphorylated and potently inhibited by CaNIKIl. which leads to the potentiation of 
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the MAPK pathway (Chen et al., 1998). It is therefore probable that the Ca`1KII 

enzyme links the activated NMDA receptor to the MAPK pathway, via SynGAP and 

plays an essential role during LTP in neuronal cells. It is also believed that CaNIK. II 

can lead to the activation of CREB. although whether this activation is direct or via the 

ERKI/2 pathway remains elusive (Sheng et al.. 1991: Tabuchi et al.. 2001). 

However, Wu and McMurray have also suggested that CaMKII can inhibit the 

function of CREB in neuronal cells by phosphorylating the serine 142 residue. which 

attenuates the mechanism of CREB once bound to DNA (Wu and %Ic\1urray, 2001). 

Another tissue location where CaMKII activity appears to be of particular importance 

is in bone (G. J. Spencer, personal communication). Osteoblasts express the 

neurospecific CaMKII isoforms a and ß and on application of glutamate and glycine 

significantly increase CaMKII activity, demonstrating glutamate receptor-mediated 

activation of CaMKII in osteoblasts. CaMKII inhibition with KN-62 resulted in a 

significant reduction in osteoblast differentiation, whilst mechanical loading of clonal 

osteoblastic cells, which stimulates osteogenesis, produced a rapid increase in CaMKII 

activity. These findings imply a significant role of CaMKII in osteoblastic 

differentiation and owing to the expression a and ß CaMKII isoforms that are thought 

to interact with the NMDA receptor, can be triggered by NMDA receptor activation. 

The NMDA receptor-associated activity of CaMKII in bone leads to similar questions 

being posed about the signalling mechanisms of the megakaryocytic NMDA receptor. 

No evidence exists as to whether CaMKII is expressed by megakaryocy'tes, probably 

due to the signalling system still being regarded as "neurospecific". Therefore the 

aims of this chapter were to determine whether megakaryocytes expressed CaMKII, to 

identify the association between CaMKII and NMDA receptor activity and determine 

the functional importance CaMKII in megakaryocyte differentiation. The effects of 

NMDA receptor activation on adhesion and downstream signalling pathways (ERK I /-, 

and CREB) were also determined in megakaryocytic cells to identify how ligand 

binding may be transformed into a cellular response. 
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5.2 Materials and Methods 

5.2.1 Cell culture 

MEG-O1 and HEL cell lines were cultured as previously described (see chapter 2.1.2). 

PMA (100nM), TPO (25ng/ml), KN-93 (5µM, Tocris) and KN-92 (5µM. Tocris) 

treatments were performed for 72 hours unless otherwise stated. For experiments 

determining ionomycin-induced signal transduction, cells were preincubated with 20µl 

DMSO, KN-92 or KN-93 for 15 minutes prior to the application of 500nM ionomycin 

(Sigma) or DMSO. Following 5 minute incubations, media was removed and cells 

were washed twice with PBS prior to cell lysis. For experiments investigating the 

effects of NMDA and glycine treatment, MEG-01 cells were incubated with PMA for 

72 hours, washed three times to remove exogenous glutamate and cultured overnight 

in glutamate-free NeurobasalTM media containing 1% N2 supplement (Gibco). Cells 

were then treated with various concentrations of NMDA and glycine dissolved in PBS, 

for 15 minutes before media was removed and the cells was twice in PBS prior to 

lysis. 

5.2.2 Western blot analysis 

5.2.2.1 Protein extraction 

Megakaryoblastic cell lines were plated at an initial concentration of 1x 105 cells/ml 

and were exposed to treatments for a maximum of 72hrs. Cells were then removed 

from media and washed 3 times in PBS. Cells were lysed with cold kinase lysis buffer 

(New England Biolabs; l Ox = 25 mM Tris-HCl (pH 7.5). 5 mM beta- 

glycerophosphate, 2 mM dithiothreitol (DTT), 0.1 mM Na3VO4,10 mM MgC12) for 5 

minutes at 4°C. Lysates were centrifuged at 12,000g for 10 minutes to remove cell 

debris and protein concentration determined using a 96-well microplate version of a 

BCA protein assay kit (Pierce). 25µl of BSA standard at concentrations ranging from 

25µg/ml to 2,000 pg'ml and unknown samples were mixed wt ith 200µ1 of working 

reagent 50: 1, Reagent A: Reagent B). mixed thoroughly and incubated at 37-C 

for 30 minutes in a shaking incubator. The plate was allowed to cool to room 

temperature before absorbance was measured at 570nm using Dynex N1RX microplate 
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reader. Unknown protein concentrations were calculated from the standard curve 

given by the known BSA protein concentrations. All samples were plated in triplicate 

and blanks wells, containing only lysis buffer and working reagent. were subtracted 
from the sample averages. 

5.2.2.2 Polyacrylamide gel electrophoresis and protein translcr" 

10-20µg protein lysates were added to SDS loading buffer and denatured at 100°C for 

5 minutes. Protein samples and molecular mass standards were loaded on a 5% 

stacking gel and separated using a 10% SDS-polyacrylamide resolving gel in running 
buffer (25mM Tris, 192mM glycine, 0.1% SDS, pH8) at 200V, 100mA until the dye- 

front ran to the bottom of the resolving gel. Gels were removed from the running 

plates, equilibrated in transfer buffer (25mM Tris, 193mM glycine. 20% methanol) for 

10 minutes and separated proteins electroblotted onto PVDF membrane (Amersham 

Pharmacia Biotech. ) at 100V, 250-350mA for ihr. Membranes were washed twice for 

5 minutes in TBS-T (20mM Tris, 137mM NaCl, 0.1% Tween20, pH 7.6) with gentle 

agitation before immunodetection. 

5.2.2.3 Immunodetection 

Membranes were incubated in blocking buffer (4% (w/v) skimmed milk powder or 5% 

(w/v) BSA in TBS-T, according to manufacturer's recommendation) for either 15 

minutes at room temperature with gentle agitation and 4°C overnight, or for 1 hr at 

room temperature with gentle agitation. Membranes were then rinsed twice and 

washed for 15 minutes before incubating with primary antibodies diluted in blocking 

buffer at the following concentrations; rabbit anti-ERK 1 /2, rabbit 

anti-phosphoERK l /2, mouse anti-CREB, mouse anti-phosphoCREB (all 1: 1000, New 

England Biolabs), CaMKII and phospho-CaMKII (both 1: 2000, Santa Cruz 

Biotechnologies) and GAPDH (1: 800, Immunodetection Laboratories), and incubated 

for I hr at room temperature or overnight at 4°C with gentle ag itatioii. The membranes 

were then rinsed twice quickly, once for 15 minutes and twice for 5 minutes in TBS-T 

to remove excess antibody. Peroxidase-conjugated secondary antibodies were diluted 

in blocking buffer (1: 2000. Santa Cruz Biotechnoloýgies) and incubated with the 

membrane for 1 hr at room temperature. t Inbound antibody was removed by 2 quick 

rinses, one 15-minute wash and tiOur 5 minutes washes and the membrane developed 
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by incubation in ECL chemiluminescent solution (Amersham Pharmacia Biotech) for 

1 minute. Membranes were exposed to Hyperfilm (Amersham Pharmacia Biotech) at 

room temperature, initially for 5 minutes before adjusting exposure time according to 

clarity of positive results. Hyperfilm was developed using a X-ograph automated 

developer. Membranes were kept at 4°C in TBS-T until stripped (see below) and re- 

probed. All washes were performed at room temperature with gentle agitation. 

5.2.2.4 Membrane stripping 

Bound antibodies were removed from the membrane by incubation with pre-warmed 

stripping buffer (62.5mM Tris, pH6.8,0.7% ß-mercaptoethanol. -'° o SDS) at 60°C for 

30 minutes with vigorous agitation. Membranes were then washed twice for 10 

minutes in TBS-T before immunodetection was performed on the stripped blots. 

5.2.3 DNA profiling of cell cycle by flow cytometry 

Cells were grown in the absence and presence of PMA. KN-9-2 and KN-93 for 72 

hours. Cells were then washed three times in PBS. fixed in 70% ethanol for 5 

minutes, washed twice in PBS and DNA stained as previously described (chapter 

4.2.9). To determine the cell cycle phase, cells were analysed b' flow cytometry and 

positive readings taken on the FL2 setting with the first peak being GO/G 1 phase, 

second peak G2/M phase and the trough in between the peaks being S phase. 

5.2.4 Bone marrow megakaryocyte NR1 expression by c-Mpl-'- knockout mice 

Frozen tibiae sections from c-Mpl- - and c-Mp10+'' mice were a kind gift from Dr. M. 

Perry, University of Bristol, UK. To avoid non-specific binding and high background 

caused by using the monoclonal mouse anti-NR1 antibody on mouse tissue, the mouse 

on mouse (MOMTM) staining kit was used (Vector Laboratories) according to the 

manufacturer's protocol. Prior to application of primary antibody. sections were 

incubated for 1 hour in M. O. N11-" mouse I`g blocking reagent ('_' drop 2.5ml PBS), 

washed three times in PBS and incubated for 5 minutes is M. O. M'-" diluent. Excess 

diluent was removed and subsequent antibody incubations: mouse anti-NR1 (3() 

minutes: 1: 400. Pharmingen) and biotinvlated anti-mouse secondary (220 minutes: 
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1: 200, Vector Laboratories), were performed in M. O. MT'" diluent. All other steps 

were performed as previously described (see chapter 2.2.2). 
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5.3 Results 

5.3.1 NMDA receptor-mediated modulation of ERK1/2 activation in 

megakaryocytic cells 

Changes in NMDA receptor-mediated ERK1/2 activation in the megakaryoblastic 

MEG-01 and HEL cells were determined by western blot analysis of cell protein 

lysates using a phospho-ERK1/2 monoclonal antibody. ERK1/2 activation, stimulated 

by PMA (l 00nM), was reduced dose dependently by increasing concentrations of the 

NMDA receptor antagonist MK-801 (Fig. 5.3.1). Decreased levels of ERK1/2 

phosphorylation were determined by comparing to levels of total ERK 1 /2. 

MEG-O1 cells were treated with increasing concentrations of' NMD: \ and glycine in 

order to clarify the effect of agonist-mediated NMDA receptor activation on F RK 1 /2 

phosphorylation. Addition of 10µM NMDA /1 ýtM glvcine resulted in a small 

increase in ERK1/2 activation compared to cells treated with PMA only. Howw, ever, 

cells treated with 100µM NMDA / 10µM glv'cine and 1mM NMDA / 100µM glvvcine 

resulted in significant decrease in levels of' ERK1/2 phosphorvlation. Levels of total 

ERK1/2 demonstrated equal loading (Fig. 5.3.2). 

5.3.2 NMDA receptor-mediated activation of CaMKII in megakaryocytic cells 

Western blot analysis of MEG-0l whole cell lv'sates identified expression of the 50kD 

a isoform as well as the slightly larger ß isoform of CaNIKII (Fig. 5.3.3). PMA 

treatment of MEG-0l cells did not appear to increase levels of CaMKII 

phosphorylation. However increasing concentrations of NIK-801 seemed to decrease 

the phosphorylation of both isoforms. Due to high background levels, it is not 

possible to accurately determine levels of activated CaN1KII. 
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Figure 5.3.1. Western blot analysis of NMDA receptor inhibition-mediated 
expression of phosphorylated ERK by MEG-01 cells. PMA-mediated 
phosphorylation of ERK (PERK, A) was significantly reduced by treating cells with 
increasing concentrations of MK-80 1. Treatment of MEG-01 cells with 100µM 
MK-801 reduced levels of pERK by over a half compared to PMA-only treated 
controls. Equal loading was demonstrated by total levels of unphosphorylated ERK 
(ERK, B). Results are representative of three independent experiments. 
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Figure 5.3.2 Western blot analysis of NMDA receptor activation-mediated 
expression of phosphorylated ERK by MEGO1 cells. PMA-mediated 
phosphorylation of ERK (pERK, A) was altered in glutamate starved MEG-Olcells 
by treating cells by increasing concentrations of NNIDA and glycine. 10µM NMDA 
with I µM glycine slightly increased expression of pERK, whilst treatment of 
MEG-01 cells with 100µM NMDA / 10µM glycine and 1 mM NMDA / 100µM 
glycine dramatically reduced pERK expression levels. Equal loading was 
demonstrated by total levels of unphosphorylated ERK (ERK, B). Results are 
representative of two independent experiments. 
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Figure 5.3.3. Western blot analysis of NMDA receptor-mediated activation of 
CaMKII in MEGO1 cells. Levels of CaMKII activation in MEG-01 cells with and 
without PMA and MK-801 were analysed by western blotting using an antibody 
specific to phosphorylated CaMKII isoforms (A). Both a and ß isoforms were 
identified whilst 10 and 100µM MK-801 appeared to reduce levels of CaMKII 
phosphorylation (pCaMKII) compared to total CaMKII (B). Results are 
representative of two independent experiments. 
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5.3.3 CaMKII signalling in megakaryocytes 

The identification of megakaryocytic CaMKII expression initiated subsequent 

investigation of CaMKII-mediated signalling and subsequent effects of Ca IKII 

inhibition on megakaryocyte differentiation. Treating MEG-01 cells with the calcium 

specific ionophore ionomycin, lead to the activation of ERK 1 i2 compared to DMSO 

control. Calcium-mediated ERKI/2 activation was however significantly reduced in 

cells treated with the CaMKII inhibitor KN-93 compared to DMSO control and the 

inactive KN-93 isoform, KN-92 (Fig. 5.3.4). 

To determine the effect of CaMKII inhibition on TPO-mediated activation of ERK 1 /2, 

HEL cells were used as they express the TPO receptor. c-Mpl. TPO greatly increased 

basal levels of ERKI/2 activation, which, unlike PMA-mediated activation in MEG-01 

cells, was not reduced by MK-801 treatment (Fig. 5.3.5). However, KN-93 did reduce 

ERKI/2 activation compared to cells treated with TPO and KN-92. Indeed. KN-93 

treatment lowered expression of phospho-ERK 1 /2 to approximately basal levels. 

CaMKII also plays a significant role in the cell cycle, possibly by the activation of 

cdc25-C at the G2/M phase of the cell cycle (Patel et al., 1999). To investigate a 

possible role of CaMKII in megakaryocytic G2/M phase transition. HEL cells were 

treated with PMA in conjunction with either KN-92 or KN-93 and the cellular DNA 

content analysed following 72 hours of culture. PMA treatment leads to a small 

increase in the percentage of cells in the G2/M phase, whilst decreasing the number of 

cells in GI and S phases (Fig. 5.3.6). KN-93 treatment in conjunction with PMA 

caused an increase in the percentage of cells found with a G2/M DNA content, from 

approximately 19% to 41%. Whilst performing DNA profiling experiments, it was 

also observed that KN-93 severely inhibited HEL cell adhesion. PMA-mediated 

increases in cellular adhesion were totally prevented by treatment with KN-93. whilst 

KN-92 had no clear effect (Fig. 5.3.7). 
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Figure 5.3.4 Western blot analysis of CaMKII-mediated ERK phosphorylation 
in MEG-O1 cells. lonomycin-mediated activation of ERK in the presence of the 
specific CaMKII antagonist KN-93 (5µM). KN-93 significantly lowered the levels 

of ERK phosphorylation compared to the inactive control KN-92 (A). Equal loading 

was demonstrated by total levels of unphosphorylated ERK (B). Results are 
representative of three independent experiments. 
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Figure 5.3.5 Western blot analysis of NMDA receptor and CaMKII-mediated 
ERK phosphorylation in HEL cells. TPO-mediated expression of phosphorylated 
ERK was dramatically inhibited by the specific CaMKII antagonist KN-93 (5µM) 
compared to KN-92 (54M) control (A). MK-801 (50µM) made no significant 
difference to ERK phosphorylation. Equal loading was demonstrated by total levels 
of unphosphorylated ERK (B). Results are representative of three independent 
experiments. 
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Figure 5.3.6 Effect of CaMKII inhibition on HEL cell cycle. Flow cytometry 
DNA profiling was used for the investigation of PMA-mediated changes in the 
percentage of HEL cells in different stages of the cell cycle following addition of 
KN-93. KN-93 dramatically increased the percentage of cells in the G2/M phase of 
the cell cycle, whilst decreasing the percentage of cells in the GO/GI phase. These 
affects were not observed in KN-92-treated cells. although KN-92 did appear to 
lower the number of cells in the G2/M phase whilst increasing the number in the S 
phase. Results are representative of three independent experiments. 
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HEL -PMA HEL +PMA 

Figure 5.3.7 Effect of CaMKH inhibition on HEL cell adhesion. PMA-induced 
increases in HEL cell adhesion was dramatically reduced following inhibition of 
CaMKII with KN-93 compared to cells treated with PMA only and KN-92. 
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5.3.4 NMDA receptor-mediated modulation of CREB activity in 

megakaryocytic cells 

TPO-mediated activation of CREB transcription factor has recently been identified as 
being important in the transcription of genes with various roles in megakaryocytic 

differentiation (Zauli et al., 1998). The NMDA receptor has also been identified as a 

potent activator of CREB in neuronal cells (Mao and Wang et at., 2002). leading to the 

investigation of NMDA receptor-mediated activation in MEG-O1 and HEL cells. Here 

it was demonstrated that TPO increased the expression levels of phosphorylated 

CREB in HEL cells (Fig. 5.3.8). The NMDA receptor antagonist MK-801 failed to 

affect CREB phosphorylation whilst the CaMKII inhibitor KN-93 caused a significant 

reduction in CREB activation. Interestingly, although MEG-01 cells express CREB, 

the activated phospho-CREB isoform was not identified and was not affected by 

PMA-stimulation (Fig. 5.3.9). 

5.3.5 Expression of NR1 by c-Mpl-/- bone marrow megakaryocytes 

Mice lacking the gene for the TPO receptor c-Mpl display aberrant 

megakaryocytopoiesis (Gurney et al., 1994; Alexander et al.. 1996). Mice lacking 

normal TPO-mediated megakaryocyte signalling also display greatly reduced levels of 

other proteins that are involved in the regulation of megakaryocyte differentiation and 

proliferation. With this in mind, immunohistochemical analysis of NMDA receptor 

expression by c-Mpl-'- bone marrow megakaryocytes was determined. 

Megakaryocyte number was greatly reduced in c-Mpl- - bone marrow, however all 

remaining megakaryocytes expressed NRl at a similar level as wild type (c-Mpl +ý{) 

controls. This indicates that the NMDA receptor is expressed in megakaryocvtes in 

the absence of TPO-mediated signalling (Fig. 5.3.10). 
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Figure 5.3.8 Western blot analysis of NMDA receptor and CaMKII-mediated 
CREB phosphorylation in HEL cells. TPO-mediated phosphorylation of CREB 
(pCREB) and associated transcription factor 1 (pATF 1) was reduced to basal levels 
by KN-93 (5µM) treatment, but remained unaltered by treatment with MK-801 
(50µM, A). Equal loading was demonstrated by total levels of unphosphorylated 
CREB and ATF (B). Results are representative of two independent experiments. 
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Figure 5.3.9 Western blot analysis of NMDA receptor and CaMKII-mediated 
CREB phosphorylation in MEG-O1 cells. PMA-mediated expression of 
phosphorylated CREB and ATF Iwas not identified in MEG-01 cells (A). Total 
CREB and ATF 1 were however identified, confirming megakaryocytic expression of 
the transcription factors (B). Results are representative of two independent 
experiments. 
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Figure 5.3.10 Immunohistochemical analysis of NR1 expression by c-Mpl' 
mouse bone marrow megakaryocytes. NR1 expression by bone marrow 
megakaryocytes was compared in c-Mpl Wildtype (c-Mpl "`) and knockout (c-Mpl ) 
mice. NR 1 was maintained in megakaryocytes from knockout mice, compared to 
wildtypes. Antibody controls (Ab -ve) low background levels. Results are 
representative of three independent experiments. 
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5.4 Discussion 

This chapter provides the first evidence of NMDA receptor-mediated signal 

transduction in megakaryocytes. The confirmation of signalling pathways that have 

previously been identified as being of key importance in mc``akaryocvte 

differentiation, are modulated by megakaryocytic NMDA receptors which is 

significant to our understanding of glutamate signalling in this cell type. 

The dose-dependent reduction in PMA-stimulated ERK 1 /2 phosphorylation (see 

section 3.1 for discussion on the possible drawbacks of using PMA) in MEG-01 cells 
by MK-801 would explain the inhibition of megakaryocyte differentiation as described 

by Genever and co-workers (1999) and observed in chapter 4. The fact that MK-801 

inhibits ERK1/2 activation in the presence of PKC activating agent PMA could 

indicate that the NMDA receptor is either downstream of PKC, possibly involved in 

the regulation of Raf. It is also possible that the activated NMDA receptor provides 

the "calcium sparks" required for the translocation of PKC isoforms with Ca 2+ 

specificity domains, such as PKCa, to the cell membrane. The latter hypothesis is 

further supported by the fact that ERK 1 /2 phosphorylation, although significantly 

decreased, was not abolished by MK-801 application. This implies that the NMDA 

receptor does not have absolute control of ERK 1 /2 activation and PKC retains the 

ability to activate Raf, possibly by binding with other sources of Ca 2+ enabling PKC to 

activate the MAPK pathway. It would be advantageous to confirm the interaction of 

the megakaryocytic NMDA receptor with PKC, by analysing changes in PKC 

regulation in the presence of MK-801 and/or NMDA and glycine (Goldfarb et al., 

2001), and also determining whether inhibition of NMDA receptor can alter the 

translocation of PKC from the cytoplasm to the plasma membrane (Hong et al.. 1998; 

Racke et al., 2001). 

The effect of NMDA and glvcine application on the levels of phospho-ERKI/2 was 

extremely intriguing. The small increase in phospho-FRK1%' in response to low 

concentrations of NMDA and glv cine are encouraging. implying that the activation of 

the NNIDA receptor does increase FRKI12 activation in the presence of P\1. -ß. The 

relatively low levels of NMD: \ and ̀ glv'CIne-stimulated L' Rlt l i, phosphorylation may 
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be due to endogenous glutamate released from \IEG-01 cells as described in chapter 4 

and consequently, these cells were not starved of glutamate. which may mask agonist 

responses. The effect evoked by high concentrations of N\ IDA and glvcine may 

demonstrate bi-directional control of ERK1/2 activation by the megakaryocytic 

NMDA receptor, as observed in neuronal cells (Chandler et al.. 2001). In primary 

cortical neuronal cells the addition of 100µM NN IDA reduced the basal levels of 

active ERKI/2, with 50µM NMDA identified as the optimal concentration for NNIDA 

receptor-mediated ERK1/2 activation. This work perfectly demonstrates the 

complexity of NMDA receptor interactions with ERK 1 /2 in the CNS. It appears that 

the receptor is able to both activate and inhibit the MAPK pathway, depending on the 

concentration of extracellular glutamate, which may have implications in cell 

signalling pathways regulating cell survival follo\v-ih g pathological extracellular 

glutamate concentrations as a result of neuronal injury. The NMDA receptor pathway 

involved in inhibiting ERKI/2 remains unknown. It may therefore be possible that the 

megakaryocytic NMDA receptor has the ability to act in a similar fashion and is able 

to modulate rather than just activate the ERKI/2 pathway. It seems unlikely however, 

that concentrations high enough to inhibit the neuronal ERK 1 /2 activation mediated by 

the NMDA receptor exists in the bone marrow and the concentration of glutamate 

released from MEG-01 cells would only be enough to activate the receptor. 

The work by Chandler et al. (2001) also raises interesting points regarding how the 

neuronal NMDA receptor activates ERK1/2. They demonstrated that the NMDA- 

induced ERKI/2 activation still occurs in the presence of the PKC inhibitor 

GF 109203X, indicating that activation could take place independently of PKC. They 

also showed that CaMKII and P13 )-K antagonists do inhibit NMDA-mediated ERK1! 2 

activation, suggesting that these pathways are involved in \ IAPK activation in the 

CNS. The modulation of the NIAPK pathway- by the megakaryocytic NMDA receptor 

requires greater definition. If it w ere the case tliLit the receptor does mediate bi- 

directional regulation of the MAPK pathway. it could provide a unique level of control 

over megakarv-ocyte differentiation. 

The expression of the Ca\ IKII ct and ß isoforms by \ 11-( 1-0 1 cells further increases 

the complexity of the mcoakan ooc}tic ; ß\1D: \ receptor and prov-idcs an alternativ e 
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means by which the \IAPK pathway can be activated. independent of PKC. This 

finding also allows comparisons to be drawn between the receptor found in the CNS to 

that expressed by the megakaryocyte. Whether the NMD: \ receptor directly activates 
CaMKII, despite MK-801 possibly lowering the levels of activated Cah1KIl. is 

unclear. This can be confirmed by performing a radioactive kinase assay. to determine 

the activity of CaMKII following application of NMDA and MK-801 to 

megakaryocytic cells. The function of CaMKII in megakarvocytes is clearer. Ca 2+ 

induced ERKI/2 activation, as demonstrated by ionomvcin application, is reduced h\ 

the CaMKII inhibition. This demonstrated the regulative ability of Ca 2+ in 

megakaryocytic cells, in addition to providing evidence indicating that signalling 

mechanisms influenced by changes in [Ca2+]; can be mediated by CaMKII. 

Interestingly, TPO-induced activation of ERK1/2 in HEL cells was profoundly 

inhibited by CaMKII inhibition, reducing ERK 1 /- activity to approximately basal 

levels. The fact that MK-801 appeared to have no effect on TPO-mediated ERK 1 /2 

activation in these cells, suggests that TPO. unlike PMA treatment in MEG-01 cells, 

has the ability to activate ERK1/2 signalling independently of PKC, probably via 

adaptor proteins as described in chapter 1.3.1. The dramatic inhibition of the MAPK 

pathway caused by KN-93 suggests that the target of CaN I KI l in megakaryocytic cells 

is downstream to that of TPO signalling events. One possible target of CaMKII, as in 

neuronal cells, is SynGAP. The phosphorylation of SvnG. -\P by CaMKII relieves its 

inhibitory restraints on Ras. therefore inhibition of CaMKII function could prevent 

TPO-mediated Ras activation. Whether megakaryocytes express SynGAP requires 

investigation. However, it has recently been shown that osteoblasts do express 

SynGAP, demonstrating for the first time that this molecule does exist outside the 

CNS (G. J. Spencer, personal communication). It is also possible that megakaryocytic 

CaMKII can interact with other megakaryocytic GAPs. thereby having a profound 

effect of MAPK activation. 

The cellular effects of CaMKII inhibition in mcgakarvocytic cells included 

interruption of the cell cycle and reducing PM. N-induced adhesion. KN-9; induced a 

cell cycle block at G2 phase. an effect previously reported to also occur in IIcLa cells 

(Patel et al., 1999). Patel and colleagues demonstrate that the changes in the cell cycle 

were caused by CaNIKII-mediated phosphorvlation and activation of the tyrosine 

phosphatase cdc25. which in turn dephosphorvlates the protein klnase cdc2. which has 
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been identified as the key mediator of G2/M cell cycle phase transition (reviewed in 
Morgan, 1995). Therefore, by inhibiting the function of CaMKII, the cdc25-mediated 
dephosphorylation of cdc2 does not occur and phase transition is prevented. This may 
be of central importance in the endomitotic cell cycle of megakaryocytes, in which 
highly polyploid cells have been identified as having lowered levels of activated cdc2 
(Zhang et al., 1998; Matsumura et al., 2000). The data in this chapter therefore 

suggests a role for CaMKII in megakaryocytic endomitosis. This role could be one of 
applying a break to endomitosis and ensuring that normal mitosis progresses during 

megakaryocytic proliferation. It has now been established that megakaryocytic 

endomitosis is of fundamental importance in the production of normal platelets (for 

review see chapter 1.2.2). Therefore, the potential role of CaMKII in the cell cycle of 

megakaryocytes may also be of great importance in thrombocytopoiesis. 

The reduction in megakaryocytic cell adhesion caused by CaMKII inhibition raises 

other possible functions of this enzyme in these cells. CaMKII has previously been 

identified as a modulator of (x5 p1 integrin adhesion to FN in addition to integrin- 

mediated inside-out signalling (Bouvard et al., 1998). Interestingly, these 

investigators showed, by using Chinese hamster ovary (CHO) cells transfected with 

the a and ß isoforms of CaMKII, that CaMKII inhibition maintained the high affinity 

state of a5ß1 integrin, whilst addition of CaMKII to cell lysates inhibited binding to 

fibronectin in vitro. They also demonstrated that CaMKII did not affect integrin 

expression, implying that integrin activity was the target of CaMKII in these cells. 

With regards to the effects of CaMKII inhibition observed in this chapter, the findings 

of Bouvard and co-workers are intriguing, as they appear to be completely opposite to 

those found in megakaryocytes. Presently, the effect of CaMKII inhibition on 

megakaryocyte adhesion remains an interesting observation and requires further 

analysis before comparisons to the work by Bouvard and colleagues can be accurately 

drawn (Bouvard et al., 1998). It is also important to recognise the possible limitations 

of KN-93 as a CaMKII antagonist. KN-93 is a quinolonesulfonamide is thought to act 

as a CaMKII-specific ATP antagonist (Tokumitsu et al., 1990), although subsequent 

reports have suggested doubts regarding the specificity of this antagonist (Means, 

2000). This work indicates that KN-93 also acts as an antagonist to other members of 

the CaMK family of enzymes, namely CaMKI and CaMKIV. It is therefore important 
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to take into consideration that if KN-93 has any cellular effects on megakarvocytes. 

they may not necessarily be CaMKII-specific. 

Published data regarding the action of CREB in megakaryocvte differentiation is 

scarce. However, recent evidence suggests that this transcription factor is activated by- 

TPO binding to the c-Mpl receptor and subsequently has elects on megakaryoc\ to 

lineage determination and possibly also differentiation (Zauli et al.. 1998). We 

confirmed the findings that TPO results in CREB phosphorvlation in HEL cells, but 

also found that blocking the action of CaMKII can inhibit this effect. This 

phenomenon is common in neuronal cells (Huang et al.. 2000; Han and Holtzman, 

2000), where by blocking CREB activity with CaMKII inhibitors can result in changes 

in LIP and cell survival. Interestingly, as MK-801 appeared to have no effect on 

CREB activation, this may be an NMDA receptor-independent effect, implying that 

CaMKII activation occurs via another calcium source. Although CREB exists in 

MEG-O1 cells, the application of PMA did not result in its activation. Two clear 

hypotheses emerge from these findings. The first is that CREB activation in 

megakaryocytes may be PKC independent and occurs following TPO addition via 

adaptor proteins described previously. The second supports the theory by Zauli and 

co-workers (1998) that the role of CREB is in me`gakaryocvte lineage determination. 

As MEG-01 cells are already of the megakaryocytic lineage, unlike HEL cells that are 

erythrocyte/megakaryocyte bipotential, there may not be a requirement for CREB 

activation. 

The interaction between-TPO mediated signal transduction through the c-Mpl receptor 

and NMDA receptor expression is unclear. However, it would appear that expression 

of the NMDA receptor is unaltered in the absence of c-Mpl-mediated signalling, 

which has certain implications regarding both signalling mechanisms. The findings 

that c-Mpl-'- mice produce normal me`gakarvocvtes and platelets suggest that other 

systems are able to influence differentiation in the absence of TI_PO (Buntin`g et al.. 

1997). As the findings in this and previous chapters demonstrate that the N`11). \ 

receptor possesses a level of control over the normal nlegakarvocvte maturation, it is 

possible that megakaryocytic N JDA receptor signalling can compensate for the 

absence of I'PO effects, ensuring that the remaining me`gakarv ocytes do differentiate 
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normally. This theory is strongly supported by the findings in this chapter. which 
demonstrate that many of the signalling systems activated by TPO that are important 

for megakaryocytic differentiation, are also modulated by the NMDA receptor. 

The aim of this chapter was to bridge the gap between the expression of a functional 

NMDA receptor and the cellular effects observed when the receptor was antagonised. 

It has now been demonstrated that the NMDA receptor inflicts control over ERK 1 /2 

activation, possibly in both an inhibitory and excitatory manner, explaining the less 

differentiated phenotype observed in MK-801 treated cells (chapter 4). The 

identification of CaMKII expression by megakarv-ocv tes is a significant finding of its 

own accord, as it appears to influence various aspects of normal megakaryocv tic cell 

maturation. This finding may have implications on megakaryocytic signalling as a 

whole and with further investigation, could be implicated in megakaryocyte lineage 

selection, endomitosis, adhesion and inside-out inte`(rin signalling. As the CaMKII 

isoforms expressed by megakaryocytes were considered to be neuronal and interact 

with the NMDA receptor in the postsynaptic cell. it is a distinct possibility that the 

megakaryocytic NMDA receptor may modulate CaMKII function. Currently. this link 

is tenuous, as the western blot analysis is not clear enough to directly identify the 

effect of NMDA receptor inhibition on levels of active CaN I KII. These studies 

warrant further investigation, and it may be that if the NMD1 receptor is able to 

activate CaMKII, its influence could have widespread implications for megakaryocvte 

differentiation. To fully establish the exact signalling downstream of the 

megakaryocytic NMDA receptors requires focused and dedicated investigation, which 

due to time restraints was not possible in this study. Ho%\ev er. this chapter does 

provide explanations as to how the NMDA receptor modulates megakarvocyte 

differentiation, as well as presenting other possible routes for further analysis. 
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Chapter 6 

Megakaryocytes and Platelets in NR1neo 

Hypomorphic Mice 

6.1 Introduction 

The study of transgenic animals with receptor gene ablation can often provide a 
definitive characterisation of receptor function in vivo. One such example, frequently 

cited in previous chapters, is that of TPO and c-Mpl knockout models (Gurney et al., 
1994; Alexander et al., 1996, de Sauvage et al., 1996, Bunting et al., 1997). Indeed, 

until the development of these knockouts, the process of megakaryocytopoiesis in 

addition to the function of TPO and its receptor was poorly understood. Similar 

studies have also been performed on the NMDA receptor to provide greater insights 

into the mechanisms by which it is able to affect animal behaviour, with most of the 

studies understandably focusing on learning and memory. This chapter concentrates 

on the changes evoked by NMDA receptor gene ablation on megakaryocytes and 

platelets. 

Changes in the expression of individual NMDA receptor subunits add to the clarity of 

function. Several types of NMDA receptor subunit-specific transgenic mice exist, 

including, global knockouts, in which expression of a functional product of the gene of 

interest is abolished, conditional knockouts, in which receptor expression is knocked 

out in only certain regions of the brain, point mutations. which produce complex 

phenotypic and functional changes in the receptor and knock-ins, in which the receptor 

protein is over-expressed. These trans'genic animals have provided substantial 

evidence regarding the function of specific NMDA receptor subunits in the CN. S. 

These include demonstrating the importance of the NR2B subunit in synaptic targeting 

of the receptor (Ito et al.. 1997), that NR2D expression is implicated in juvenile 

epilepsy (Bengzon et al.. 1999) and also identifying the role of the tiR3A subunit as 

an NNIDA receptor "volume control" (Das et al.. 1998). As important as these 

findings are, the majority of N\1D: \ receptor subunit knockouts are targeted at the 
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essential NR1 subunit. NR1 knockout animals have demonstrated that the subunit is 
fundamental for the function of the receptor. In these animals. NMDA receptor- 

mediated Ca2+ influx is totally abolished (Forrest et al., 1994) and several groups have 

also demonstrated that NR1 is implicated in the formation of somatosensory maps 
formation, which are involved in the sensing of external stimuli in the foetal brain (Li 

et al., 1994; Iwasato et al., 1997; Messersmith et al., 1997). However, as much as the 
NR1 transgenic animals provide insight into subunit and receptor function in vivo, the 
diseases in which NMDA receptor dysfunction has been implicated cannot be 

investigated, as the animals usually die within 10 hours of birth. The reasons behind 

neonatal death are believed to be due to defective breathing and suckling mechanisms 
(Sprengel and Single, 1999). 

This fact has frustrated the use of transgenic animals in the research of NMDA 

receptor related psychotic diseases such as schizophrenia. However, recently a 

genetically altered mouse line was produced that expressed lowered levels of the NR 1 

subunit protein (Mohn et al., 1998). The creation of these animals involved using a 

vector targeted to integrate in to the NR1 locus (designated Grin 1) and insert a 

neomycin (neo)-resistant gene into intron 20. The impact of this insertion was to 

reduce the expression of NR1 mRNA and protein to an average of 8.1% and 7.3% 

respectively. It was also demonstrated that insertion of the neo gene did not produce 

any point mutations or novel transcripts, indicating that the NRlneo mutation produced 

a hypomorphic allele. Importantly, although NR1 expression was greatly lowered, it 

appeared that expression of the receptor was at high enough levels for the animals to 

progress from the neonatal stage and develop into normal adults. The adult mice were 

physically normal compared to control (albeit smaller than average, they were still in 

the normal range) and displayed no obvious abnormalities outside the CNS (although 

detailed studies have not been performed on peripheral tissues). The NR 1 ne° mice 

do however have severe psychological abnormalities. The general behaviour of these 

mice including; increased motor activity, stereotypic behaviour (fixed response to 

external stimuli, indicative of learning not taking place), abnormal social behaviour 

and deficient sexual interactions are typical of those seen in animal models of 

drug-induced schizophrenia (Moghaddam and Adams, 1998). Indeed, drugs 

previously shown to induce schizophrenia in mice. such as phencyclidine (PCP) and 
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MK-801, did not have any additional effect on NR1"e0 mice. This psychotic 
behaviour of NR1"'- was prevented by the administration of the widely used anti- 

psychotic drugs, clozapine and halperidol. The expression of functional receptors 
present in the pre-frontal cortex was also determined by [3H] MK-801 binding assay. 
Competition curves demonstrated that the IC50 for both NR I"""' and NR 1 "` °- - were 
identical, demonstrating that the remaining receptors were functionally normal, 
however the maximal binding was only 10% of that of the wild type. The findings by 

Mohn and colleagues support the importance of NMDA receptor function in 

schizophrenia and reveal the action by which anti-psychotic drugs may evoke their 

effects. Further studies using these animals will lead to a greater understanding of the 

role of the NMDA receptor in other diseases of the CNS. 

Currently, no investigations have been performed on these animals with regard to the 

effect of NR1 gene ablation on peripheral tissues. These animals provide an 

unparalleled opportunity to investigate glutamate signalling in peripheral tissues due to 

the fact that they survive to adulthood. Not only would the extraction and 

experimentation on organs and tissues from 10-hour-old neonates prove extremely 

challenging, age-related defects regarding dysfunctional NMDA receptor signalling in 

peripheral tissues cannot be determined in NRI global knockouts. The NRlneo 

transgenic mouse is the only viable model on which to study the effect of NR1 gene 

ablation on megakaryocytopoiesis and platelet production for several reasons. Firstly, 

the site of haematopoiesis changes during foetal development from the yolk sac, to the 

aorta-gonad-mesonephros (AGM) and finally to the liver (Zon, 1995; Traver et al. 

2001). Indeed it is not until 4-7 days after birth that haematopoiesis, including 

megakaryocyte and platelet production appears in the bone marrow. Secondly, many 

of the experiments performed to determine the level of platelet production involves the 

bleeding of the animals and measuring the clotting time (see chapter 6.2.3) and also 

taking a comparatively large amount of peripheral blood for automated or histological 

analysis (see chapter 6.2.4 and 6.2.5). Such procedures would be impossible to 

perform on neonates. 

This chapter is the first to determine the effects on peripheral tissues observed in the 

NR1"e°-, /- mouse by focusing on megakaryocytopoiesis and platelet production. The 
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experiments performed on these animals are comparable to those carried out in the 

c-Mpl and TPO knockout models to determine effect on megakaryocyte and platelet 
function. These investigations should provide a penetrating insight into the role of the 

NMDA receptor in the proliferation and maturation of megakaryocytes and also the in 

the production of functional platelets in vivo. 
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6.2 Materials and methods 

6.2.1 Generation of NR11eo-/- mice 

Transgenic animals were generously provided by Dr. Bev Koller (University of North 

Carolina). These mice were generated as described previously (Mohn et al.. 1999). 

Briefly, cells were transfected with JNS2 vector containing neo gene and positive 

selection markers. Targeted clones were identified by Southern analysis and injected 

into blastocysts to generate chimeras, which were then bred to B6D2 animals, 

obtaining NRIne0+1 animals. Intercrossin`ý between the wild type and heterozygous 

colonies generated NRI"'O+I animals and a breeding colony established. All mice used 
in the following experiments were generated from intercrossing the first 2 

heterozygous animals. The NR1"e°-'- mice expressed 5 -10% of the normal levels of 
NRI compared to wild type, suggesting a hvpomorphic NRl allele enabling the neo 
homozygous mice to survive to adulthood. 

6.2.2 Acetylcholinesterase staining of NR1"`°-l- megakarvocvtes 

Tibiae, femora and spleen were removed from NR 1 "eO+i+ NR 1 neo+l- and 

NRlneo 1 mice, frozen in liquid nitrogen and sections collected and stored as method 

2.4.4.1. Acetylcholinesterase (ACNE)-positive cells within these tissues were 

identified as megakaryocvtes. Substrate was prepared freshly' before use by adding 

5mg of acetylcholine iodide (ACI: Sigma) to 6.5m1 0.1 M Na, 
-11P04 

(pH6.0). The 

following was added, in order to the substrate whilst stirring; 

0.5m1 0.1M C(, IT; Na307. 'l I, O (sodium citrate) 

1. Oml 30mM CuSO4 

1. Oml H2O 

1. Oml 5mM K Fe(CN)(, 

= IOrni ACIhE staining solution 

\Ch1 staining solution was applied to the slides and incubated for ' firs at room 

temperature in a humidified chamber. Aides were rinsed with 0.1 \1 \aI 1P04 and 
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fixed in 4% paraformaldehyde for 5 minutes, washed 3 times for 5 minutes in PBS and 

counterstained for 5 minutes in Mayer's haematoxylin. Slides were mounted in 90% 

v/v. glycerol/PBS and viewed using a Leica DMLA microscope. Spleen sections used 

were approximately of the same size (15mm x 5mm) and all positively stained splenic 

megakaryocytes were counted for each section. Counts were performed blind. 

6.2.3 Bleeding time assay 

Mice were anaesthetised by intraperitoneal injection of avertin, made by mixing equal 

volumes of tribromyl ethyl alcohol and tertiary amyl alcohol (2.5% dilution), at 

250mg/kg body weight. 5mm of the distal end of the mouse-tail was then removed 

and immediately placed in 0.9% saline solution maintained at 37°C. The bleeding 

time was measured as 15 seconds after the time taken for all traces of bleeding to 

cease. If bleeding continued for over 20 minutes, platelet plug formation was 

promoted by applying pressure to cut region using 3MM paper. 

6.2.4 Whole blood cell count 

200µ1 of blood was removed from anaesthetised mice via cardiac puncture of the left 

ventricle in syringes containing 2Oµ1 of 50mM EDTA to prevent clotting. 12µl of 

whole blood was then counted using a Heska's animal blood counter (Heska, CO). 

2Oµ1 remaining blood was used in the production of blood films, by spreading a thin 

layer of blood over polylysine slides and fixing in 70% methanol for 5 minutes and 

allowed to air dry and May-Wright Giemsa counter-stained. 

6.2.5 Transmission electron microscopic analysis of platelets and bone marrow 

Whole blood was collected by cardiac puncture as described in section 6.2.4 from 

NRlneo+/+, NRIne0+/-and NRlneo-' mice. Platelet rich plasnia (PRP) was collected 

from whole blood by centrifugation at 150g for 10 minutes and supernatant collected 

as PRP. To prevent platelet activation, platelets were firstly fixed lightly by adding 

l00µ1 of PRP to 1 ml of 0.2% glutaraldehyde in 0.1 M sodium cacodylate at pH 7.4 

and incubated at room temperature for 30 minutes. Platelet suspension was then 

165 



Chapter 6 

centrifuged at 800g for 10 minutes, the supernatant removed and the platelet pellet 

resuspended in 4% glutaraldehyde in 0.1 M sodium cacodvlate at pH 7.4. Samples 

were then kept at room temperature until TEM preparation. For bone marrow 

examinations, tibiae and femora were extracted from NR 1 "`'°+'+ and NR 1 neo '- and 
immediately fixed in 4% glutaraldehyde in 0.1 M sodium cacodylate at pH 7.4 and 
kept at room temperature until TEM sample preparation. 

TEM sample preparation was performed as previously described (chapter 4.2.6.3). 

Approximately 40 platelet clusters were analysed at various magnifications and 15 

photographs taken for each group at 12,000 and 25,000-x magnification. Due to the 

rarity of the megakaryocyte in the bone marrow, it was possible to examine every 

megakaryocyte in each sample and approximately 15 photographs of each sample 

taken at 4,000 and 10,000 X magnification. 
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6.3 Results 

6.3.1 Splenic megakaryocyte number in NR1"eo mice 

The generation of the NR1 hypomorph, NRl"eo, has made it possible to determine the 

effect of NR1 down-regulation in adult mice. With regard to possible affects on 

megakaryocyte number, spleens removed from wildtype (N R 1"" +/+) heterozygous 

(NR1"+I-) and knockout (NR1"-h'-) mice were snap frozen and 7µm cryosections of 

comparable size taken and stained for the megakaryocyte-specific marker AChE. 

Megakaryocyte counts, performed blind, demonstrated a significant decrease in 

megakaryocyte number, from an average of 82/section in NRI"e0'ß+ to 62/section in 

NRIne0 -'- (Fig. 6.3.1). Interestingly, megakaryocyte number was significantly 

increased to an average of 128/section in NR1ne0+'- animals. 

6.3.2 Bleeding time and platelet counts of NR1? wo mice 

As changes in megakaryocyte number may directly alter the number of circulating 

platelets, consequential variations in clotting time were established. In the following 

experiments, the tail cut assay was used as a method of quantifying clot formation in 

age-matched NR 1 "eO +'+ NR I neo +1- and NR I "eo -/- mice. Bleeding times of NR 1 "e°'- 

were increased nearly four-fold compared to NR 1 "eo +/+, from an average of 2 minutes 

47 seconds to 9 minutes 34 seconds (Fig. 6.3.2). The bleeding times of NRI"" 

mice were not significantly different to wildtype controls. 

As the common cause of increased bleeding time is a reduction in the number of 

platelets, platelet counts and subsequent histological examination of peripheral blood 

smears were performed. Peripheral blood was removed via cardiac puncture and kept 

in 10mM EDTA solution to prevent activation until platelet counts were performed. 

Whole blood counts in NR 1 neo +/+, NR 1 neo +'- and NR I""' -- revealed no significant 

difference in circulating red blood cell number, haemoglobin, haematocrit or platelet 
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Figure 6.3.1. Splenic megakaryocyte number in NR1"`'° wildtype, heterozygous 
and knockout mice. Megakaryocyte number was quantified by counting AC'hE- 
positive cells present in the spleen of wildtype, heterozygous and knockout mice. 
Experiments were performed blind and revealed a decrease in megakaryocyte 
number in knockout animals compared to wildtype , 

but interestingly a significantly 
increased in heterozygotes. (* p<0.05, ***p<0.001; one way ANOVA). 
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Figure 6.3.2. Bleeding times in wildt}ype (NR1m. ), heterozygote (NRl"'""-) and 
knockout (NR1"`~'-) mice. Average bleeding time, measured by tail cut assay, was 
significantly increased in knockout mice compared to wildtype and heterozygous. 
The average bleeding time of wildtype was 2.47 minutes (±S. D. 1.02 minutes) and 
2.17 minutes (±S. D. 1.10 minutes) in heterozygous, whilst bleeding time was 
increased to an average of 9.34 minutes (±S. D. 5.42 minutes) in knockouts. (*** _ 
p<0.001, Mann-Whitney rank sum test) 
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Figure 6.3.3. Complete blood counts from NR1""' mice. Peripheral blood taken 
by cardiac puncture was subjected to automated counting. Counts were performed on 
red blood cells (normal range 5-12x 10'/ml), haemoglobin (normal range 11-18g/L ), 
haematocrit (normal range 36-52%) and platelet number (normal range 140- 
600x 10'/ml). No significant difference was observed between xvildtype. 
heterozygous (hetero) or knockout in any of the selected counts (one-way ANOVA). 
Error bars = standard deviation. n=8 for «ildtpye. heterozygous and knockout. 
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number (Fig. 6.3.3). Counts for all other circulating blood cells were also similar in 

all three groups. 

Peripheral blood films were prepared from remaining blood and May-Wright Giemsa 

stained for histological evaluation. Each blood film was graded according to defined 

criteria determining film quality, platelet clumping, red blood cell number, platelet 

staining, platelet size and platelet number (Fig. 6.3.4). Three independent 

experimenters performed all examinations blind. Results were comparable to 

automated counts, with no significant difference between NR 1 neo +/+ and NR 1 neo -l- 

platelet counts and red blood cell number, whilst platelet size was not obviously 
different in any of the experimental groups. Platelet number was slightly higher in the 
NRlneo +/- group, which may be due higher quality platelet staining. The relatively 
high level of platelet clumping indicates that the experimental techniques employed to 

prevent platelet activation, were unsuccessful. 

6.3.3 NR1"eo megakaryocyte and platelet ultrastructure 

The functional role of the NR1 gene in the formation of normal megakaryocytes and 

platelets was determined by ultrastructural analysis of NR 1 "`'° +1+ and NR 1 neo -/- bone 

marrow megakaryocytes and circulating platelets by TEM. Wildtype megakaryocytes 

were characteristically normal, including being large in size, having a multilobed and 

indented nucleus, extensive cytoplasmic partitioning by demarcation membrane and 

containing many dense a-granule bodies (Fig. 6.3.5). Also, apparent cytoplasmic 

extensions resembling proplatelet structures were observed in many of the mature 

cells. In comparison, NR 1' -'- bone marrow megakaryocytes appear similar in size 

and nuclear maturation and cytoplasmic a-granules were clearly present (Fig. 6.3.6). 

However, the levels of demarcation membrane invasion into the cytoplasm appeared 

less perfuse in many mature cells leading to larger platelet territories. Proplatelet 

structures were also not observed in these cells. 

The ultrastructure of circulating platelets obtained via cardiac puncture and isolation 

of platelet-rich plasma were also analysed by TEM. The general morphology of all 

platelets indicated that they have been activated (non-activated morphology is a 
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uniform discoid shape), again indicating the technical failure to prevent platelet 

activation (Fig. 6.3.7). However. morphological differences between 

NR1'1e° +i+, NR1 "eo +/-and NR 1 "+'+ were not apparent, with normal numbers of 

a-granules and marginal bands of microtubules observed in all platelets observed. 

There was also no obvious difference in platelet size between groups. 
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Figure 6.3.4. Histological grading of peripheral blood smears from NR1""' 
wildtype, heterozygous and knockout mice. Histological examinations performed 
blind by three independent experimenters revealed no differences in red blood cell 
(RBC) number, platelet clumping, size or number in knockouts compared to 
wildtype. Platelet number may be slightly increased in heterozygous mice, although 
this could be due to the films being of a higher quality and better platelet staining. 
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A 

Figure 6.3.5. Ultrastructure of NR1"""" bone marrow megakaryocytes. 
Ultrastructural determination of NR I"""' bone marrow megakaryocyte morphology 
by TEM. Megakaryocytes display normal physiological morphology, including 
multi-lobed, indented nuclei (N), extensive demarcation membrane system leading to 
numerous small platelet territories (PT) and the presence of proplatelet structures (A: 
arrowheads) . 

Higher magnification images reveal normal platelet-territories and (I- 
granule formation (B; arrows). 
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Figure 6.3.6. Ultrastructure of NR I"' '- bone marrow mega kars ocytes. 
Ultrastructural determination ofNR1""--bone marrow megakaryocyte morphology 
by TEM. Megakaryocytes appeared to be of similar size to those found in wildtope 
bone marrow and exhibited multi-lobed, indented nuclei (N). However, the number 
of platelet-terratories (PT), formed by demarcation membrane, was less than wildtope 
controls (A). Higher magnification images demonstrated larger PTs although a- 
granule formation (B, arrows) appears normal. 
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Figure 6.3.7. Circulating platelet ultrastructure from NRI"`' mice. Circulating 
platelets taken from NR l neo wvildtype, heterozygote and knockout mice displayed 

similar cytoplasmic constituents, including a-granules (a) and microtubule 
formation (arrows). 
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6.4 Discussion 

NRIne0 transgenic mice have enabled the function of the NMDA receptor in the adult 
brain to be determined as, unlike other NR1 global knockouts, they survive to 

adulthood (Mohn et al., 1998). The NRIneo mice are able to survive because, rather 
than the expression of NR1 gene being totally abolished, the neomycin-resistance gene 
inserted into intron 20 of the Grin 1 gene, results in the formation of a hypomorphic 

NR1 allele, lowering NR1 expression by over 90%. As such, these animals are the 

ideal models with which to study the effects of greatly lowered NR1 expression on 

peripheral tissue glutamatergic signalling in vivo. This chapter describes changes the 

changes in megakaryocytopoiesis and platelet production observed in the NR 1 neo 1 

mouse. 

It appears that megakaryocyte proliferation in NR1"e. _ mice is significantly reduced 

compared to wild types. Interestingly, the reduction in splenic megakaryocyte number 

is of a similar degree to those observed in human primary cell cultures treated with the 

NMDA receptor antagonist MK-801 (see chapter 4.3.3.2). The effect of the NMDA 

receptor on megakaryocyte proliferation is perhaps not been given the attention it 

warrants in this study. This is probably due the fact that NMDA receptor inhibition 

appeared to have such profound effects on megakaryocyte differentiation and platelet 

production that the less pronounced changes in cell number were not focused on 

initially. However, NMDA receptor-mediated changes in proliferation and possibly 

lineage determination in vivo and in vitro may well be an attractive line of study. It is 

significant that the heterozygous animals display significantly greater number of 

megakaryocytes than wild type. This could demonstrate that the method of counting 

ACNE-positive cells in spleen sections of similar size is not sufficiently accurate 

enough to determine cell number and a more precise method would be to extract the 

bone marrow and count all CD61 -positive cells by flow cytometry. 

To complement the in vitro data described in chapter 4, it was demonstrated that 

bleeding times displayed by NR 1"'0--"- mice significantly increased compared to 

heterozygotes and wild type animals. Indeed, the increased clotting time ofNRl"e° -"- 

compared to wildtype are comparable to that observed in c-Mpl- and TPO-knockout 
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animals, indicating the importance of the N IDA receptor in thrombopoiesis (Gurney 

et al.. 1994: Bunting et al.. 1997). However. increased clotting time can be indicative 

of several conditions in addition to decreased platelet production. One possibility that 

must be considered, following the work by Franconi and co-workers on the platelet 
NMDA receptor. is platelet function (Franconi et al., 1996). Unfortunately, the data 

shown in this chapter cannot provide a tangible explanation as to why clotting, was 
inhibited by NR1 under-expression. The ultrastructure of bone marrow 

megakaryocytes in NR1"e0 _Z_ compared to wild type imply that the demarcation 

membrane system has not developed throughout the cytoplasm, therefore reducilig, tile 

number of platelets being released. Demarcation membrane abnormalities were also 

observed in the ultrastructure of human primary megakaryocytes following \1 K-801 

treatment (chapter 4.3.2.2), which appears to confirm the role of the NN IDA receptor 

in megakaryocyte cytoplasmic fragmentation. However, a reduction in the number of 

circulating platelets was not demonstrated by automated \\-hole blood counts, a findin1-1 

that favours platelet dysfunction rather than reduced platelet production. Platelet 

abnormalities, for example in platelet diseases such as GPS and von \? l'illebrand 

disease, can often be identified from ultrastructural characteristics (Smith et al., 1997). 

The platelets extracted from the peripheral blood of NR l ""-Z- mice however, appear to 

be morphologically similar to those from wildtype and heterozygotes animals, 

suggesting that the observed clotting abnormalities may not be a result of platelet 

dysfunction. 

The findings from the NRlneo transgenic studies underline the complexity of this 

newly-identified signalling mechanism. I lowever, the data presented in this chapter 

was the result of experiments performed over an extremely short period of time. It is 

of integral importance that further experiments are performed on these animals. 

focusing on determining whether the clotting abnormalities are as a result of lowered 

platelet production, or platelet dysfunction. For example, platelet function can be 

determined by platelet adhesion assay (Bunting et al., 1997) or assays determining 

platelet activation (Newsman and Chong, 2000, Falles et at.. 2002) from peripheral 

blood. It would also be possible to culture bone marrow megakaryocytes by 

immunoslecting CD61-positive cells and determining the extent of proplatclct 

production in response to TPO and plasma (Rojnuckarin et al.. I9(f9). It would also he 
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of interest to record the concentration of circulating TPO and other cytokines in the 

NR 1 ̀e°-1- mouse, to determine whether the haematopoietic system compensates for the 

lack of NMDA receptor-mediated effects. It may also be the case that the low levels 

of NRl expression displayed in NRl"e0 -1- mice, remain high enough to not affect 

certain aspects of the NMDA receptor-mediated megakaryocytopoiesis, or that unlike 

neuronal cells, the role of the NRl subunit is not essential to receptor function. 

From these encouraging preliminary studies it is possible to state that mice exhibiting 
decreased levels of the NRl subunit display significant bleeding abnormalities. 

Unfortunately, it was not possible to determine the role of the NMDA receptor in this 

condition because of the contradictions presented with regards to platelet production 

and platelet function. By performing the further experiments described above, it 

would be possible to clarify the cause of the bleeding abnormality and also the role of 

the megakaryocytic NMDA receptor in vivo. 
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General Discussion 

Comparison of human bone marrow trephines from a normal patient (left) 
and a patient suffering from myelfibrosis (right), a condition in which increased 

numbers of megakaryocytes leads to excessive fibrosis of the 
bone marrow (magnification x40) 

(Bristol Biomedical Image Archive, University of Bristol) 
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General Discussion 

Haematopoiesis is tightly regulated by numerous cytokines. N 1e`gakarvocvtopoiesis is 

no exception, with cell survival, proliferation and differentiation all rigidly modulated 
by a large number of growth factors and cytokines (reviewed in chapter 1.3) ensuring 

that the number of platelets released into the circulation is within physiological limits. 

However, since the characterisation of TPO. the key positive regulator of 

megakaryocyte differentiation, a great deal of research has focused on increasing the 

volume of knowledge on the effects of this particular cytokine. Indeed, since the 

cloning and characterisation of TPO and c-Mpl in 1994 (de Sau\-a(., e et al., 1994: Lok 

et al., 1994; Kaushansky et al., 1994, Wendling et al., 1994). studies attempting to 

identify novel regulators of megakaryocytopoiesis have been scarce. This seems 

particularly surprising in view of the findings by Bunting and colleagues that normal 

platelets and megakaryocytes are produced in vii'o in the absence of TPO (Buntin`g ct 

al., 1997) and the acknowledgment by Kaushansky that mouse primary 

megakaryocytes require a component of blood plasma in addition to TPO, to produce 

platelets in vivo (K. Kaushansky. personal communication). The data presented in this 

thesis not only characterises a novel signalling system that regulates megakaryoc}'te 

differentiation and platelet production, but also enhances the field of peripheral 

glutamatergic signalling. 

The principal aim of this \vork was to advance the preliminary findings regarding the 

expression of the NMDA receptor by megakaryocytes and its role in the differentiation 

of megakaryocytic cell lines (Genever et al., 1999). The findings described in this 

thesis clarifies the expression of NMDA receptor expression and its role both in 

megakaryocytic primary cells and cell lines. in addition to determining the function ot- 

the receptor in primary cells. identification of NN1D: \ receptor-mediated intracellular 

signalling lýýlillwa vs anthe effect of lowering NRI gene expression on 

nlegakaryocytopoiesis and platelet production in viva. Howe ever, it was he \ and the 

capacity of this study to concisely determine the action of the receptor in every aspect 

of megakaryocyte differentiation and function. Indeed, the apparent nmultilaceted 
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action of the megakaryocytic NMDA receptor has lead to numerous lines of study 
undergoing preliminary investigation, many of which warrant concise analysis. 

To continue the advances made during this study, it is imperative that certain aspects 
attain further investigation. The selective expression of NMDA receptor subunits by 

megakaryocytes during differentiation suggests that certain adaptations in receptor 
function may alter the effect they have on the cell (Fig. 7.1). It is of key importance to 
determine the full-length sequence of the NMDA receptor subunits NRI, NR2A, 

NR2C, NR2D and NR3 expressed by cell lines and primary cells. Once this is 

determined, it would be possible to compare the sequence with that of human neuronal 
NMDA receptor subunits and this may reveal the expression of splice variants or 

novel megakaryocyte-specific isoforms that modulate the conductivity of the receptor. 
It would then be possible to co-transfect MEG-01 and HEL cell lines with different 

combinations of the full-length cloned NMDA receptor subunits. This would result in 

megakaryoblastic cell lines stably transfected with diheteromeric (for example 
NR 1 /NR2A) and triheteromeric (for example NR 1 /NR2A/NR3) receptors. In 

conjunction with these studies, it would also be possible to transfect the 

megakaryoblastic cells with small interfering RNAs (siRNAs), which would result in 

the knocking down of endogenous NMDA receptor subunit expression. These 

molecular techniques would allow the manipulation of NMDA receptor subunit 

expression in megakaryoblastic cell lines and by performing functional experiments, 

comparable to those described in chapter 4, it would be possible to characterise the 

cellular effects of specific NMDA receptor subunit expression. 

The megakaryocytic NMDA receptor has a number of roles during 

megakaryocytopoiesis and platelet production (Fig. 7.2). Several of these aspects 

warrant fuller examination to accumulate a greater understanding of how the receptor 

imposes such changes on the megakaryocyte. One such experiment would be to 

determine the effect of activation and antagonism of the megakaryocytic NMDA 

receptor on the activity of the transcription factors GATA-1 and NF-E2 (for review 

see chapter 1.3.4), both of which have specific key roles in megakaryocytopoiesis and 

platelet production. By establishing whether there are changes in the action of these 

transcription factors, for example by electromobility shift assay (EMSA), which 
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Chapter 7 

detects the binding of transcription factors to their DNA recognition sequences 
(Freson et al., 2001), the cause of the NMDA receptor-mediated effects would then 
become clearer. Indeed, considering the effects of modulating the transcriptional 

activity of NF-E2 has on the expression of ß 1-tubulin (Lecine et al., 2000), a reduction 

of NF-E2-mediated gene transcription may account for the profound deficits observed 
in the production of proplatelets by human primary cells in vitro following MK-801 

exposure. 

The likelihood of the megakaryocytic NMDA receptor mediating gene transcription is 

supported by the findings reported in chapter 5. Seemingly, the NMDA receptor can 

modulate the activation of the MAPK pathway among others (Fig. 7.3), which directly 

impinges on gene transcription regulating megakaryocytopoiesis. However, as stated 
in chapter 5.4, the exact mechanism by which the NMDA receptor activates this 

pathway in megakaryocytic cells remains unclear. NMDA receptor-mediated 

translocation of PKC isoforms would prove an interesting subject of further study, as 

would the plausible interaction of the receptor with CaMKII, the megakaryocytic 

expression of which was identified for the first time in this study. However, a greater 

understanding of downstream signalling pathways relies upon the immediate effects of 

agonist-induced NMDA receptor activation being determined. The results presented 

in chapter 4.3.3 attempting to address this question are inconclusive. By performing 

patch-clamping experiments, it would be possible to clarify the conductance of the 

megakaryocytic NMDA receptor, by determining whether the receptor causes large 

intracellular increases in calcium, small local increases known as "calcium sparks" or 

possibly no recordable changes in calcium. Once these aspects have been resolved, it 

would then be possible to postulate how receptor-mediated signal transduction occurs. 

It would also be of interest to determine, again by patch clamping, the receptor 

conductance of the afore mentioned transfected cell lines, in addition to that of cells 

undergoing differentiation, particularly with regards to the expression of the NR3 

subunit. 

184 



Chapter 

Original in colour 

z 0 
- 

ý- ,, -ý 
ýý 

1 

Em 

. 92 

D 

c 

rý 

s 

w 

44 

U 

12- 

L 
0 

4-0 
CL 
0) 
V 
0) 
L 

Q 

Z 

ad 

2 

Ln 

öC vi 

°-,, ö 
= 

cý; r ofý 

ý' cY 
-0 

U 

-0 

QUC 
O 

L 

3-3 

to 
"a CO 

c 

"- o- 

"vQý'c cQýý 

CýQ 

L ö. ý 

O 

7. E3E 

Car ýý 
Uam 

c 
ri .on aj 
N 

cý ýC 3 

LU 

185 

Y 
W 

C 

O cß c3) 

c3) J 
NO 

a 

r-, 

LN 

"U 

U" .cý .mý 

N 

Cý Y 
cý 

cý W 

N4- 
cu cu 

W 
S 



Chapter 7 

As implied in chapter 4.4, the fact that megakaryocytes release glutamate could have 

significant implications on the modulation of NMDA receptor-mediated 

megakaryocytopoiesis, in addition to establishing interactions between the 

megakaryocyte and GLT-1 positive cells in the bone marrow microenvironment. 

Research on the subject of megakaryocytic glutamate release is in its relative infancy. 

However, with the current data, it is possible to establish a hypothesis on how 

glutamate release could have an autocrine action on megakaryocytopoiesis (Fig. 7.4). 

As the megakaryocyte is a rare cell in the bone marrow, it is likely that released 

glutamate would act predominantly on the cell from which it has been released and 

that it remains in the vicinity of the megakaryocyte by the recycling activity of GLT-1 

positive cells. Whether bone marrow megakaryocytes release glutamate throughout 

differentiation is unclear, although both immature and differentiated MEG-O1 cells 

release comparable concentrations of glutamate and express the glutamate vesicular 

loading protein, VGLUT2. It would therefore seem that megakaryocytes have a 

constant source of glutamate for NMDA receptor activation. However, as the NMDA 

receptor appears to positively regulate the latter stages of megakaryocyte 

differentiation and platelet release, constant receptor activation may unbalance 

megakaryocytopoiesis and possibly lead to a thrombocythaemic state. It is plausible 

that the NR3 subunit, expressed exclusively by immature megakaryocytic cell lines, 

prevents NMDA receptor activity in an undifferentiated state. It may be that in the 

presence of an externally produced differentiation stimulus, such as TPO, 

megakaryocyte maturation is initiated and NR3 expression down regulated, leading to 

the restoration of normal autocrine NMDA receptor signalling-mediated events. 

These interactions currently remain a hypothesis and require further study, however, if 

these events were confirmed to occur in vivo, it would provide an elegant means by 

which to regulate megakaryocytopoiesis. 

Further investigations regarding NR1"eo transgenic animals are covered in chapter 6.4. 

As these animals are currently only bred and kept at the University of North Carolina, 

USA, access to these animals to perform the required experiments raised logistical 

problems. However, all attempts should be made to further utilise these animals. as 

they represent a unique opportunity to investigate the effects of NRI gene reduction in 

adult megakaryocytopoiesis and also in platelet production. 
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Chapter 7 

It was not possible to address every aspect of NMDA receptor-mediated signalling in 
this study. If future studies suggested in this thesis were to be performed. that many 
identify the true functional role of the NMDA receptor and its role in the 

megakaryocyte. If, as implied by the findings in this study. these experiments confirm 
that the receptor does directly influence multiple aspects of megakaryocyte behaviour. 

the NMDA receptor could be considered as a key regulator of megakaryocytopoiesis. 

7.1 Implications of megakaryocytic NMDA receptor signalling 

It is difficult to predict the degree of impact that the data presented in this thesis will 
have on the current understanding of peripheral glutamatergic signalling, 

megakaryocytopoiesis and platelet production. Functional glutamate signalling has 

been identified in numerous tissues (for review see chapter 1.6. ), however the process 

of NMDA receptor-mediated signalling in megakaryocytes is unique in several 

respects. Unlike the majority of other sites of peripheral glutamatergic signalling, in 

which the tissues consist of a relatively homogeneous population of cells, the bone 

marrow is an extremely heterogeneous collection of cell types. These range from stem 

cells, able to differentiate into numerous different lineages, to mature cell types, such 

as megakaryocytes. Therefore, unlike other peripheral tissues in which glutamate 

signalling occurs within a large collection of cells or even an entire tissue, glutamate 

signalling in the bone marrow is largely restricted to the megakaryocyte, surrounded 

by non-glutamatergic cells. Therefore, as megakaryocyte/megakaryocyte interactions 

do not occur often in normal bone marrow, glutamate signalling is likely to be 

autocrine, as often discussed above, rather than paracrine, as described for example in 

osteoblasts. 

Although there are differences between the nature of glutamate signalling in 

megakaryocytes and other tissues, these are essentially due to the heterogeneous 

nature of the bone marrow. Indeed, the function of glutamate signalling in 

megakaryocytes is comparable to that in other tissues, especially osteoblasts, 

osteoclasts and keratinocytes, in which the primary role for glutamate signalling is in 

cellular differentiation and function (for review see Skerry and Genever, 2001). The 

NMDA receptor associated proteins, found to be expressed by megakaryocytes have 

also previously been identified in osteoblastic cells (G. J. Spencer, personal 
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communication), although whether these proteins are expressed in other tissues that 

utilise glutamate signalling has currently not been defined. However the a and ß 

CaMKII isoforms, identified in megakaryocytes, are also expressed in peripheral 
NMDA receptor expressing tissues (Inagaki et al., 1995; Krizbai et al., 1998). 

Peripheral glutamate receptor signalling is rapidly gaining credibility in a number of 
different fields. A recent report aimed at encouraging research into the role of 

glutamate signalling in cancer (which will be addressed with regards to 

megakaryocytes later in this chapter) and also possibly stem cell lineage selection and 
differentiation (Cavalheiro and Olney, 2001), suggests that studies of peripheral 

glutamate signalling is set to expand, perhaps focusing on aberrant signalling in tissue 
diseases. A minority still treat the role of the glutamate receptor outside the CNS with 

scepticism (Gray et al., 2001). However, the data presented by these authors would 

appear to be over-interpreted, due to the use of a competitive NMDA receptor 

antagonist D-APV, on osteoblastic and osteoclastic cells in high glutamate-containing 

media. The work described in this thesis will add to the escalating evidence 
demonstrating that glutamate may be considered as a more widely distributed 

"cytokine". 

Furthermore, the findings of this study also have significant implications regarding the 

current understanding of megakaryocytopoiesis. The action of TPO, although 

profound on many aspects of megakaryocyte differentiation, does not regulate platelet 

release. This thesis provides fundamental evidence of a signalling system previously 

uncharacterised in megakaryocytes, which is of considerable importance to platelet 

formation and release in vitro. Many cytokines that regulate megakaryocytopoiesis 

are involved in various aspects of cell proliferation and differentiation and also affect 

several different cell types in addition to megakaryocytes. However, current data 

suggests that haematopoietic glutamate signalling is restricted only to cells of the 

megakaryocyte lineage (with exception to osteoclast progenitor cells) and appears to 

affect distinct stages of differentiation. Exactly where the megakaryocytic NMDA 

receptor fits into the more established signalling mechanisms remains unclear. Various 

signal transduction proteins activated by the NMDA receptor are the same as those 

activated by c-Mpl, but it is unclear as to whether the two signalling systems are able 
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to directly interact. Although the tyrosine kinase c-Mpl receptor is far removed from 

the ligand-gated ionotropic NMDA receptor, it is possible that these receptors activate 
convergent signalling pathways that are important in the normal regulation of 

megakaryocytopoiesis. As far as the implications of future megakaryocyte research 

are concerned, the NMDA receptor should at least be recognised as an interesting 

addition to the complex signalling hierarchy controlling normal 

megakaryocytopoiesis. 

This thesis begins by identifying the continuing need for pharmacological agents with 

which to prevent thrombus-induced ischaemic disease. As acknowledged in chapter 1. 

current anti-thrombotic agents, such as the anti-coagulant aspirin and anti-platelet 
drugs, are to an extent, successful in lowering the incidence of CVD in high-risk 

patients. However, the direct prevention of platelet function can often have severe 
bleeding side effects and commonly a number of patients are resistant to these 

therapies. It is likely that by modulating platelet production rather than function, it 

would be possible to obtain a greater level of control over the blood clotting potential 

of high-risk patients. The data presented in this study suggests that, in the future, it 

may be possible to control platelet production by using therapeutic agents aimed at 

modulating the megakaryocytic NMDA receptor. 

MK-801, the pharmacological antagonist used in these studies, although being a 

highly specific NMDA receptor antagonist and having marked effects on 

megakaryocyte differentiation and platelet production, would not be suitable as a 

therapeutic agent due to its ability to easily pass the blood-brain barrier, preventing 

normal synaptic neurotransmission and causing severe psychoses (Leppik et al., 1988). 

However, due to the potentially wide range of therapeutic applications of NMDA 

receptor antagonists, especially with regards to the treatment of neurodegenerative 

diseases such as stroke, Parkinson's disease and Alzheimer's disease, has lead to the 

creation of clinically well-tolerated NMDA receptor antagonists (Parsons et al., 1998). 

One such drug, now widely used as a neuroprotectant in Parkinson's disease, is 

memantine (for review see Parsons et al.. 1999), a non-competitive NMDA receptor 

antagonist that displays minimal side effects (Riederer et at., 1991). How this is 

achieved is unclear, however it is thought that memantine and Mg 2+ block the same or 

a similar site on the NMDA receptor channel. At pathological glutamate 
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concentrations, memantine remains in site and blocks the NMDA receptor ion 

channel. However at physiological concentrations, memantine dissociates from the 

receptor and allows the normal activation passage of calcium through the receptor 
channel (Blanpied et al., 1997; Sobolevsky et al., 1998), unlike MK-801 which can not 
be dislodged from the channel. Memantine would therefore prove a good candidate as 
an NMDA receptor antagonist in peripheral tissues, as it would not result in 

neurological abnormalities, although whether the high physiological concentrations of 

glutamate in neuronal cells is comparable to that of megakaryocytes is yet to be 

determined. 

A more desirable alternative would be a non-competitive NMDA receptor that does 

not cross the blood-brain barrier and will therefore not affect CNS receptors. The 

development of such compounds however is currently restricted as they are 

specifically designed as neuroprotective drugs with the ability to cross the blood-brain 

barrier. As a result, it can only be assumed that blood-brain barrier-impermeable 

drugs do exist, but were not completely developed and therefore are not commercially 

available. Consequently these "failed" compounds, may be exploited to rapidly 

advance the clinical relevance of the megakaryocytic NMDA receptor as a therapeutic 

target to control platelet numbers in high-risk patients. It may also be possible 

discriminate between glutamate receptor expressing tissues by gene therapy by using 

tissue-specific promoters to alter receptor function therapeutically without affecting 

neuronal and peripheral receptors. 

Considering the apparent importance of the NMDA receptor in normal 

megakaryocytopoiesis, it would also be of great interest to address expression of the 

receptor in myeloproliferative disorders (MPDs). As discussed in chapter 1.5, very 

few megakaryocytic disorders are as a result of aberrant TPO/c-Mpl signalling, 

making it increasing likely that such conditions occur as a result of yet unidentified 

dysfunctional signalling systems. It could be postulated that abnormal NMDA 

receptor expression and/or receptor function influences these conditions. For example, 

the considerable effects induced by point mutations of the NR I subunit, such as thosc 

induced in NRl transgenic (N598Q/R) mutants (Single et al., 2000) which completely 

prevent NMDA receptor function, may similarly prevent megakaryocytic NMDA 

receptor signal transduction. Interestingly. I did perform a small-scale study on human 
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bone marrow aspirates, comparing NR1 expression by megakaryocytes from control 
and ET patients. Only a few samples were studied, as ET is a relatively rare condition 
(largely due to the disorder being misdiagnosed or undiagnosed), it did appear that 

expression of NR1 was reduced in ET samples (data not shown). The implications of 
this are difficult to interpret, as the data presented here indicates that reduced NMDA 

receptor signalling should prevent platelet production, whilst the major characteristic 

of ET is a greatly increased number of circulating platelets. To address NMDA 

receptor dysfunction with regards to MPDs such as ET, PV and AMM would require 

extensive retrospective molecular and histological investigations, but may prove to be 

extremely interesting. 

7.2 The megakaryocytic NMDA receptor - Concluding remarks 

It is nearly 50 years since L-glutamate was first championed as a major 

neurotransmitter in the CNS (Hayashi, 1954) although its full importance in neuronal 

synaptic transmission was not realised until over 20 years later (Watkins and Evans, 

1981; Foster and Fagg, 1984). In the last decade, the key importance of glutamatergic 

signalling in memory and learning, in addition to the implications in 

neurodegenerative disorders has been realised. With glutamate now universally 

accepted as the major neurotransmitter in the brain, it seems strange that when the role 

of glutamate was first being postulated, there was considerable scepticism that a 

simple amino acid, abundantly available in the brain, would act as a neurotransmitter 

(for review see Watkins, 2000). However, with time and skilled research, the sceptics 

were overcome as the fundamental roles of glutamate in the CNS were revealed. 

Overall, glutamate signalling in peripheral tissues is at a similar developmental stage 

as the early days of neuroscience, with the signalling mechanism in megakaryocytes 

less well characterised than that in other cell types. This thesis significantly advances 

the understanding of the megakaryocytic NMDA receptor and puts it on a par with 

some of the better-characterised glutamatergic tissues. One question often posed with 

regards to peripheral glutamatergic signalling, is why these tissues require a receptor 

type specifically intended for rapid responses at the neuronal synapse? With reference 

to the megakaryocyte receptor, the high-speed response of the receptor is almost 

certainly not as important as the long-term effects of NMDA receptor-mediated 
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protein phosphorylation and gene transcription. Indeed, with mounting evidence of 

peripheral glutamate signalling. classifying the glutamate receptor as a 

"neuroreceptor" may be a misnomer. It appears that each tissue in which glutamate 

signalling has been identified express certain receptors types, subunits and associatcd 

proteins, of which the megakaryocyte is one such example. indicating that the each 

cell type only express the type of receptor required for its specific function. 

Only future work regarding the molecular characterisation and the detailed 1'unction of, 

the receptor will truly clarify the importance of the megakaryoc}-tic VNID1\ receptor. 

The data presented in this thesis provides a stable grounding on which to continue and 

expand such analyses. To borrow a line from `'Winston Churchill when he addressed 

the Lord Mayor's Luncheon, London in November 1942, "This is not the end. It is riot 

even the beginning of the end. But it is, perhaps. the end of the beginning"". 

19? 



List of Suppliers 

List of Suppliers 

Amersham Biosciences UK Ltd., Buckinghamshire, UK. 

http: //www. apbiotech. com 

Amersham Pharmacia UK Ltd., Buckinghamshire, UK. 

http: //www. amershambiosciences. com 

Beckman Coulter, California, USA 

http: //www. beckman. com 

Bright Instrument Co Ltd, Cambridgeshire, UK 

http: //www. brightinstruments. com 

Calbiochem, CN Biosciences UK Ltd. Nottingham, UK 

http: //www. calbiochem. com 

Dynex technologies, Billingshurst, UK 

http: //www. dynextechnologies. com 

Fischer, Lougborough, UK. 

http: //www. fischer. co. uk 

Flowgen, Leicestershire. UK 

http: //NNwiN-w. flowgen. co. uk 

Greiner Labortechnik Ltd., Gloucestershire, UK 

http: //-*-*, Nw--*i-. z), med. com 

I leska, Colorado. tI S. -\ 
http: //Ni, Ni-w-. heska. com 

19.1 



List of Suppliers 

Invitrogen Ltd.. Paisley, UK 

http: //www. invitrogen. com 

Kodak Ltd., Hertfordshire, UK 

http: //www. kodak. co. uk 

Leica UK Ltd, Milton Keynes, UK. 

http: //www. leica. co. uk 

Life Technologies Inc. -BRL. Paisley, UK. 

http: //www. invitrogen. com 

Miltenyi Biotech GMBH, Germany 

http: //www. miltenyibiotec. com 

Molecular Probes, Oregon, USA 

http: //www. probes. com 

New England Biolabs 

http: //www. neb. com 

Oncogene, MA, USA. 

http: //wii, ii,. apoptosis. com 

Perkin Elmer Life Sciences Ltd., Cambridge, UK 

http: //ii, iw'ii,. lifesciences. perkinelmer. com 

Pharmingcn. BD Biosciences. Oxford, t'K 

http: //ii-Nw-ii-. pharmingen. com 

Pierce, Perbio Science UK Ltd. Cheshire. UK 

http: //ii, NN, `ti,. piercenet. com 

1 () o; 



List o`. S'uppliers 

Quest Biomedical, Solihull, UK. 

http: //www. questbiomedical. com 

Roche, Basal, Switzerland 

http: //www. roche. com 

Santa Cruz Biotechnology Inc, Insight Biotechnology- Ltd. Middlesex UK 

http: //www. scbt. com 

Shandon Scientific Ltd, Runcorn, UK 

http: //www. shandon. com 

Sigma-Aldrich Company Ltd, Dorset, UK 

http: //www. sigma-aldrich. com 

Sigma-Genosys, Cambridge. UK 

http: //www. genosys. co. uk 

Stratagene, California, USA 

http: //www. stratagene. com 

Tocris Cookson Ltd, Bristol. UK 

http: //www. tocris. com 

Ultra Lu1n, California, USA 

http: //iN, -*-*, Ni,. ultralum. com 

Vector Laboratories Ltd. Peterborough. t 1K 

http: //wN, v, w. vectorlabs. com 

100 



1 hbreviatioir s 

Abbreviations 

AA arachidonic acid (not the first time this is used) 
AChE acetylcholinesterase 

ACI acetylcholine iodide 

ADP adenosine diphosphate 

AGM aorta-gonad-mesonephros 

AMM agnogenic myeloid metaplasia 

AMPA a-amino-3-hydroxy-5-methyl-4-isoxazolc propionate 

ANOVA analysis of variance 

ATCC American tissue culture collection 

ATF-1 associated transcription factor-1 

BFU-MK burst forming unit megakarvocvte 

BFU-E/MK burst forming unit-crvthroid / megakarvocv to 

BMEC bone marrow endothelial cells 

BMSC bone marrow stromal cells 

BNPI brain-specific Na+-dependent inorganic phosphate (Pi) 

transporter I 

BSA bovine serum albumin 

[Ca2+]; intracellular calcium concentration 

CaM calmodulin 

CaMKII Ca2+/calmodulin-dependent protein kinase II 

cAMP cyclic adenosine monophosphate 

CD cluster of differentiation 

cDNA complementary DNA 

CFM-2 1-(4'Aminophenyl)- 3,5-dihvdro-7.8-dimethoxv-411-2.3- 

henzodiazepin-4-one 

(FU-GM CFt U-granulocyte-macrophage 

CFU-MK Colony forming unit megakaryocy tc 

ehapsyn-110 channel associated protein of synapses- 110 

CHD coronary heart disease 

CHO Chinese hamster ovary 

('\IL chronic my cloid leukaemia 
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CNS central nervous system 

CNTF ciliary neurotrophic factor 

CREB cAMP response element binding protein 

CT-1 cardiotrophin-1 

CVD cardiovascular disease 

DAB 3,3'-diaminobenzidine 

DAG diacylglycerol 

D-AP5 D-(-)-2-amino-5-phosphonopentanoic acid 

dCTP deoxycytosine triphosphate 

dH2O distilled H2O 

Dig Disks large 

DMS demarcation membrane system 

DMSO dimethyl sulphoxide 
DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

DNPI differentiation-associated BNPI 

dNTP deoxyribonucleotide triphosphate 

dpm dissintegrations per minute 

DTT dithiothreitol 

EAAT-1 excitatory amino acid transporter 

EDTA ethylenediaminetetraacetic acid 

EMSA electromobility shift assay 

EPO erythropoietin 

ERK1/2 extracellular signal regulated kinase 1 

ESPC excitatory posts\ naptic current 

ET essential thrombocythaemia 

FBS foetal bovine serum 

FGFß fibroblastic growth factor ß 

FITC fluorescein isothiocvanate I 

FN fibronectin 

FOG friend of G: \T: 

GAP GTPase activating protein 

(; A P-43 growth associated protein-4 
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Abbreviations 

G-CSF granulocyte colony stimulating factor 

GAPDH glyceraldehyde-3 -phosphate dehydrogenase 

GDH glutamate dehydrogenase 

GLAST glutamate/aspartate transporter 

GLT-1 glutamate transporter-1 

GM-CSF granulocyte macrophage colony-stimulating factor 

GP glycoprotein 
GPS grey platelet syndrome 
GTPase guanosine triphosphatase 

HBSS Hank's buffered salt solution 
HEK human embryonic kidney 

HEL human erythroleukaemia 
HSC haematopoietic stem cell 
IgG immunoglobulins G 

IL interleukin 

IMDM Iscove's Modified Dulbecco's Medium 

Indo-1-AM 1 H-Indole-6-carboxylic acid, 2-[4-[bis[2-[(acetyloxy)methoxy]- 

2- oxoethyl]amino]-3-[2-[2-[bis[2- [(acetyloxy)methoxy]-2- 

oxoetyl]amino]-5- methylphenoxy]ethoxy]phenyl]-, 

(acetyloxy)methyl ester 

IP3 inositol triphosphate 

ITP idiopathic thrombocytopenic purpura 

JAK Janus kinase 

KA kainate 

kainate [2S-(2a, 3b, 4b)]-2-carboxyl-4-(1-methylethenyl)-3- 

pyrrolidinaecetic acid 

kb kilobases 

kD kilodalton 

KN-62 (S)-5-isoquinolinesulfonic acid, 4-[2-[(5-isoquinolinesulfonyl)]] 

KN-92 2-[N-(4-methoxynemzenesulfnoyl)]amino-N-(4- 

chlorocinnamyl)-N-methyl-benzlamine 

KN-93 N-(2-[N- [4-chlorocinnamyl]-N-methylaminmethY-l]phenyl)-N- 

(2-hydroxymethyl)-4-methoxysulfonamide 

LIF leukaemia inhibitory factor 
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LTD long-term depression 

LTP long-term potentiation 

m meter 

µ micro 

M molar 

MACS magnetic activated cell sorting 

MAGUK membrane associated guan}-late cvclases 

MALS mammalian analogue LIN-7 

MAPK mitogen activated protein kinase 

mGIuR metabotropic glutamate receptors 

min minute 

MK-801 5-Methyl-10.11-dihydro-5H-dibenzo-[a. b] cyclohcpten-5. I0- 

imine 

ml millilitre 

MOPS 3-[N-morpholino] propanesulphonic acid 

MPD myeloproliferative disorders 

mRNA messenger-ribonucleic acid 

MTT methylthiotetrazole 

n nano 

NADP+ ß-nicotinamide adenine dinucleotide phosphate 

NADPH ß-nicotinamide adenine dinucleotide hydrogen phosphate 

neo neomycin 

NF-E2 nuclear factor-erythrocyte 2 

NMDA N-methyl-D-aspartate 

nNOS neuronal nitric oxide synthase 

NO nitric oxide 

NR NMDA receptor 

PAF platelet-activating factor 

PBS phosphate buffered saline 

PCP phencyclidine 

PDGF platelet-derived growth factor 

PDZ PS D-95, Dl ̀ g/ZO- l 

PF4 platelet factor 4 
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PI propidium iodide 

P13-K phosphatidv, linositol-, -k* nase 
PKA protein kinase A 

PKB protein kinase B 

PKC protein kinase C 

PKD protein kinase D 

PLC phospholipase C 

PMA phorbol myristate acetate 
PP1 protein phosphatase 1 

PPDA cis- 1-[phenanthren-2vl-carbonyl] piperaxzin-2.3-dicarhoxvl'C 

acid 
PRP platelet rich plasma 
PS phosphatidyl serine 

PSD postsynaptic density 

PSD-95 postsynaptic density-9S 

PV polvcythaemia vera 

RACK-1 receptor for activated C-kinase-1 

RANK ligand receptor activator of NF-kB 

RNA ribonucleic acid 

RNase ribonuclease 

rpm revolutions per minutes 

RT-PCR reverse transcriptase polymerase chain reaction 

SAP-90 synaptic associated protein-90 

SCF stem cell factor 

SDS sodium dodecyl sulphate 

SEM scanning electron microscope 

SHANK SH -3 domain ankryin repeat 

siRNAs small interfering RNAs 

SNARE soluble N-ethyl maleimide-sensitive factor attachment protein 

receptors 

(v)-SNARE vesicle-SNARE protein 

(t)-SN: kIZF. target-"protein 

SIC sodium citrate 

STATs signal transducers and activators of transcription 
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SynGAP synaptic GTPase activating protein 

TBE Tris-borate EDT. - 
tbr-1 transcription brain-1 

TEM transmission electron microscopy 

TFIIB transcription factor IIB 

TGFß1 transforming growth factor ß1 

TPEN N, N, N',. '''-tetrakis-[2-pvvridmethvl]-ethvlcnediamine 

TPO thrombopoietin 

TRIS tri (hydroxy) methyl aminomethane 

TRITC tetramethyl rhodamine isothiocyanate 

UCB umbilical cord blood 

U. V. Ultraviolet 

VGLUTI vesicular glutamate transporter I 

VGLUT2 vesicular glutamate transporter 2 

vWf von-Willebrand factor 

ZO-1 zona occludens protein I 

ýýýý 



References 

References 

1990 Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. The RISC Group. Lancet 
336: 827-830. 

1996 Low-molecular-weight heparin during instability in coronary artery disease, Fragmin 
during Instability in Coronary Artery Disease (FRISC) study group. Lancet 347: 561-568. 

1997 Randomised placebo-controlled trial of abciximab before and during coronary 
intervention in refractory unstable angina: the CAPTURE Study. Lancet 349: 1429-14-) S. 

1998 A comparison of aspirin plus tirofiban with aspirin plus heparin for unstable angina. 
Platelet Receptor Inhibition in Ischemic Syndrome Management (PRISM) Study Investigators. 
N Engl J Med 338: 1498-1505. 

1998 Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute 
coronary syndromes. The PURSUIT Trial Investigators. Platelet Glycoprotein lib/Ills in 
Unstable Angina: Receptor Suppression Using Integrilin Therapy. N Engl J Med 339: 436- 
443. 

1998 International, randomized, controlled trial of lamifiban (a platelet glycoprotein llb/Illa 
inhibitor), heparin, or both in unstable angina. The PARAGON Investigators. Platelet llb/lIla 
Antagonism for the Reduction of Acute coronary syndrome events in a Global Organization 
Network. Circulation 97: 2386-2395. 

2002 Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of 
death, myocardial infarction, and stroke in high risk patients. British Medical Journal 324: 71- 
86. 

Adams JP, Anderson AE, Varga AW, Dineley KT, Cook RG, Pfaffinger PJ, Sweatt JD 2000 
The A-type potassium channel Kv4.2 is a substrate for the mitogen- activated protein kinase 
ERK. J Neurochem 75: 2277-2287. 

Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada 
Y, Inoue I, Kojima I, Takeda J 2000 Molecular cloning of a novel brain-type Na(+)-dependent 
inorganic phosphate cotransporter. J Neurochem 74: 2622-2625. 

Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N 1994 Differential expression of 
five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult 
rats. J Comp Neurol 347: 150-160. 

Alessi DR 1997 The protein kinase C inhibitors Ro 318220 and GF 109203X are equally 
potent inhibitors of MAPKAP kinase-1 beta (Rsk-2) and p70 S6 kinase. FEBS Lett 402: 121- 
123. 

Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D 1996 Deficiencies in progenitor 
cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking 

the thrombopoietic receptor c-Mpl. Blood 87: 2162-2170. 

Allgaier C 2002 Ethanol sensitivity of NMDA receptors. Neurochem Int 41: 377-382. 

20 



References 

Allison DW, Chervin AS, Gelfand VI, Craig AM 2000 Postsynaptic scaffolds of excitatory 
and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20: 4545-4554. 

Anderson CM, Norquist BA, Vesce S, Nicholls DG, Soine WH, Duan S, Swanson RA 2002 
Barbiturates induce mitochondrial depolarization and potentiate excitotoxic neuronal death. J Neurosci 22: 9203-9209. 

Aramori I and Nakanishi S 1992 Signal transduction and pharmacological characteristics of a 
metabotropic glutamate receptor, mGluRl, in transfected CHO cells. Neuron 8: 757-765. 

Ascher P and Nowak L 1988 The role of divalent cations in the N-methyl-D-aspartate 
responses of mouse central neurones in culture. J Physiol 399: 247-266. 

Asztely F and Gustafsson B 1996 lonotropic glutamate receptors. Their possible role in the 
expression of hippocampal synaptic plasticity. Mol Neurobiol 12: 1-11. 

Auer GU, Backdahl M, Forsslund GM, Askensten UG 1985 Ploidy levels in nonneoplastic and 
neoplastic thyroid cells. Anal Quant Cytol Histol 7: 97-106. 

Avraham HPDJ 1999 Regulation of Megakaryocytopoiesis and Platelet Production by 
Tyrosine Kinases and Tyrosine Phosphatases. Methods in Enzymology 17: 250-264. 

Bai D, Muller RU, Roder JC 2002 Non-ionotropic cross-talk between AMPA and NMDA 
receptors in rodent hippocampal neurones. J Physiol 543: 23-33. 

Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, 
Janowska-Wieczorek A, Ratajczak MZ 2002 Platelet-derived microparticles stimulate 
proliferation, survival, adhesion, and chemotaxis of hernatopoietic cells. Exp Hematol 30: 
450-459. 

Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, Krukemeier S, 
Eilers M, Strauss G, Welte K 2001 c-mpl mutations are the cause of congenital 
amegakaryocytic thrombocytopenia. Blood 97: 139-146. 

Barbour B, Keller BU, Llano I, Marty A 1994 Prolonged presence of glutamate during 
excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12: 1331-1343. 

Barlogie B 1984 Abnormal cellular DNA content as a marker of neoplasia. Eur J Cancer Cl in 
Oncol 20: 1123-1125. 

Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B, Nichol JL, 
Swift S, . 1994 Identification and cloning of a megakaryocyte growth and development factor 
that is a ligand for the cytokine receptor Mpl. Cell 77: 1117-1124. 

Bear MF and Malenka RC 1994 Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4: 
389-399. 

Belie P, Stern P, Wyllie DJ, Nassar M, Schoepfer R, Colquhoun D 1995 Determination of 
NMDA NRI subunit copy number in recombinant NMDA receptors. Proc R Soc Lond B Biol 
Sci 262: 205-213. 

Behe PCDWDJ 1999 Activation of single AMPA- and NMDA-type glutamate-receptor 
channels. In: Jonas PMH (ed) lonotropic Glutamate Receptors in the CNS, Springer, Berlin, 

pp 175-218. 

204 



References 

Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH 1998 The localization of 
the brain-specific inorganic phosphate transporter suggests a specific presvnaptic role in 
glutamatergic transmission. J Neurosci 18: 8648-8659. 

Bellocchio EE, Reimer RJ, Fremeau RT, Jr., Edwards RH 2000 Uptake of glutamate into 
synaptic vesicles by an inorganic phosphate transporter. Science 289: 957-960. 

Bengzon J, Okabe S, Lindvall 0, McKay RD 1999 Suppression of epileptogenesis by 
modification of N-methyl-D-aspartate receptor subunit composition. Eur J Neurosci 11: 916- 
922. 

Berridge MJ and Dupont G 1994 Spatial and temporal signalling by calcium. Curr Opin Cell 
Biol 6: 267-274. 

Bessman JD 1984 The relation of megakaryocyte ploidy to platelet volume. Am J Hematol 
16: 161-170. 

Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A 1998 
Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391: 281- 
285. 

Blanpied TA, Boeckman FA, Aizenman E, Johnson JW 1997 Trapping channel block of 
NMDA-activated responses by amantadine and memantine. J Neurophysiol 77: 309-323. 

Bliss TV and Collingridge GL 1993 A synaptic model of memory: long-term potentiation in 
the hippocampus. Nature 361: 31-39. 

Bord S, Vedi S, Beavan SR, Horner A, Compston JE 2000 Megakaryocyte population in 
human bone marrow increases with estrogen treatment: a role in bone remodeling? Bone 27: 
397-401. 

Bord S, Beavan S, Ireland D, Horner A, Compston JE 2001 Mechanisms by which high-dose 
estrogen therapy produces anabolic skeletal effects in postmenopausal women: role of locally 
produced growth factors. Bone 29: 216-222. 

Boucheix C, Perrot JY, Mirshahi M, Giannoni F, Billard M, Bernadou A, Rosenfeld C 1985 A 

new set of monoclonal antibodies against acute lymphoblastic leukemia. Leuk Res 9: 597- 
604. 

Bouvard D, Molla A, Block MR 1998 Calcium/calmodulin-dependent protein kinase Il 

controls alpha5betal integrin-mediated inside-out signaling. J Cell Sci 111 (Pt 5): 657-665. 

Briddell RA, Brandt JE, Straneva JE, Srour EF, Hoffman R 1989 Characterization of the 
human burst-forming unit-megakaryocyte. Blood 74: 145-151. 

Briddell RA and Hoffman R 1990 Cytokine regulation of the human burst-forming unit- 
megakaryocyte. Blood 76: 516-522. 

Briddell RA, Bruno E, Cooper RJ, Brandt JE, Hoffman R 1991 Effect of c-kit ligand on in 

vitro human megakaryocytopoiesis. Blood 78: 2854-2859. 

Briere J, Kiladjian JJ, Peynaud-Debayle E 1997 Megakaryocytes and platelets in 

myeloproliferative disorders. Baillieres Clin Haematol 10: 65-88. 

205 



References 

Brocke L, Chiang LW, Wagner PD, Schulman H 1999 Functional implications of the subunit 
composition of neuronal CaM kinase II. J Biol Chem 274: 22713-22722. 

Brose N and Rosenmund C 2002 Move over protein kinase C, you've got company: alternative 
cellular effectors of diacyiglycerol and phorbol esters. J Cell Sci 115: 4399-4411. 

Broudy VC, Lin NL, Kaushansky K 1995 Thrombopoietin (c-mpl ligand) acts synergistically 
with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakarvocvte 
colony growth and increases megakaryocyte ploidy in vitro. Blood 85: 1719-1726. 

Brown AS, Hong Y, de Beider A, Beacon H, Beeso J, Sherwood R, Edmonds M, Martin JF, 
Erusalimsky JD 1997 Megakaryocyte ploidy and platelet changes in human diabetes and 
atherosclerosis. Arterioscler Thromb Vasc Biol 17: 802-807. 

Bruno E and Hoffman R 1998 Human megakaryocyte progenitor cells. Semin Hematol 35: 
183-191. 

Bunting S, Widmer R, Lipari T, Rangell L, Steinmetz H, Carver-Moore K, Moore MW, Keller 
GA, de Sauvage FJ 1997 Normal platelets and megakaryocytes are produced in vivo in the 
absence of thrombopoietin. Blood 90: 3423-3429. 

Burnashev N. Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann 
B 1992 Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. 
Science 256: 1566-1570. 

Burstein SA, Mei RL, Henthorn J, Friese P, Turner K 1992 Leukemia inhibitory factor and 
interleukin-11 promote maturation of murine and human megakaryocytes in vitro. J Cel 
Physiol 153: 305-312. 

Bursuker I, Neddermann KM, Petty BA, Schacter B, Spitalny GL, Tepper MA, Pasternak RD 
1992 In vivo regulation of hemopoiesis by transforming growth factor beta 1: stimulation of 
GM-CSF- and M-CSF-dependent murine bone marrow precursors. Exp Hematol 20: 431-435. 

Bushfield M, McNicol A, Maclntyre DE 1985 Inhibition of platelet-activating-factor-induced 
human platelet activation by prostaglandin D2. Differential sensitivity of platelet transduction 
processes and functional responses to inhibition by cyclic AMP. Biochem J 232: 267-271. 

Caen JP, Han ZC, Bellucci S, Alemany M 1999 Regulation of megakaryocytopoiesis. 
Haemostasis 29: 27-40. 

Cambria-Kiely JA and Gandhi PJ 2002 Possible mechanisms of aspirin resistance. J Thromb 
Thrombolysis 13: 49-56. 

Cantallops I and Routtenberg A 1999 Activity-dependent regulation of axonal growth: 
posttranscriptional control of the GAP-43 gene by the NMDA receptor in developing 
hippocampus. J Neurobiol 41: 208-220. 

Carlino JA, Singh N, Avis PD 1991 Preliminary phenotypic characterization of white blood 

cell changes induced in mice by administration of transforming growth factor-beta 1. Ann N 
Y Acad Sci 628: 59-62. 

Carow CE, Fox NE, Kaushansky K 2001 Kinetics of endomitosis in primary murine 
megakaryocytes. J Cell Physiol 188: 291-303. 

206 



References 

Cavalheiro EA and Olney JW 2001 Glutamate antagonists: deadly liaisons with cancer. Proc 
Natl Acad Sci USA 98: 5947-5948. 

Charpak S, Gahwiler BH, Do KQ, Knopfel T 1990 Potassium conductances in hippocampal 
neurons blocked by excitatory amino-acid transmitters. Nature 347: 765-767. 

Chazot PL, Coleman SK, Cik M, Stephenson FA 1994 Molecular characterization of N- 
methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the 
coexistence of three subunit types within a discrete receptor molecule. J Biol Chem 269: 
24403-24409. 

Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB 1998 A synaptic Ras-GTPase activating 
protein (p 135 SynGAP) inhibited by CaM kinase II. Neuron 20: 895-904. 

Chen L and Huang LY 1992 Protein kinase C reduces Mg2+ block of NMDA-receptor 
channels as a mechanism of modulation. Nature 356: 521-523. 

Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD 1998 Glutamate receptors are 
expressed by bone cells and are involved in bone resorption. Bone 22: 295-299. 

Chew DP and Moliterno DJ 2000 A critical appraisal of platelet glycoprotein IIb/IIIa 
inhibition. J Am Coll Cardiol 36: 2028-2035. 

Chew DP, Bhatt DL, Sapp S, Topol EJ 2001 Increased Mortality With Oral Platelet 
Glycoprotein IIb/IIIa Antagonists :A Meta-Analysis of Phase III Multicenter Randomized 
Trials. Circulation 103: 201-206. 

Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, Henley JM 1996 Regulation 
of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379: 78-81. 

Choi DW and Rothman SM 1990 The role of glutamate neurotoxicity in hypoxic-ischemic 
neuronal death. Annu Rev Neurosci 13: 171-182. 

Choi ES, Nichol JL, Hokom MM, Hornkohl AC, Hunt P 1995 Platelets generated in vitro 
from proplatelet-displaying human megakaryocytes are functional. Blood 85: 402-413. 

Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH 1993 
Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855-859. 

Chu J, Gui CY, Fan J, Tang XD, Qiao RL 1998 STAT1 is involved in signal transduction in 

the EPO induced HEL cells. Cell Res 8: 105-117. 

Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA 1995 Cloning and 
characterization of chi-1: a developmentally regulated member of a novel class of the 
ionotropic glutamate receptor family. J Neurosci 15: 6498-6508. 

Clay D, Rubinstein E, Mishal Z, Anjo A, Prenant M, Jasmin C, Boucheix C, Bousse-Kerdiles 

MC 2001 CD9 and megakaryocyte differentiation. Blood 97: 1982-1989. 

Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM, Wood DF 1998 
Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral 

membrane of epithelial cells. J Cell Biol 142: 129-138. 

Cohen M, Demers C, Gurfinkel EP, Turpie AG, Fromell GJ, Goodman S. Langer A, Califf 

RM, Fox KA, Premmereur J, Bigonzi F 1997 A comparison of low-molecular-weight heparin 

207 



References 

with unfractionated heparin for unstable coronary artery disease. Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q-Wave Coronary Events Study Group. N Engl J Med 337: 
447-452. 

Compston JE 2002 Bone marrow and bone: a functional unit. J Endocrinol 173: 387-394. 

Constantine-Paton M and Cline HT 1998 LTP and activity-dependent synaptogenesis: the 
more alike they are, the more different they become. Curr Opin Neurobiol 8: 139-148. 

Constantine-Paton M and Cline HT 1998 LTP and activity-dependent synaptogenesis: the 
more alike they are, the more different they become. Curr Opin Neurobiol 8: 139-148. 

Cortelazzo S, Viero P, Finazzi G, D'Emilio A, Rodeghiero F, Barbui T 1990 Incidence and 
risk factors for thrombotic complications in a historical cohort of 100 patients with essential 
thrombocythemia. J Clin Oncol 8: 556-562. 

Cramer EM, Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Masse JM, Debili N 1997 
Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. 
Blood 89: 2336-2346. 

Craven SE and Bredt DS 1998 PDZ proteins organize synaptic signaling pathways. Cell 93: 
495-498. 

Cripe LD and Hromas R 1998 Malignant disorders of megakaryocytes. Semin Hernatol 35: 
200-209. 

Cull-Candy S, Brickley S, Farrant M 2001 NMDA receptor subunits: diversity, development 
and disease. Curr Opin Neurobiol 11 : 327-335. 

Cull-Candy SG, Brickley SG, Misra C, Feldmeyer D, Momiyama A, Farrant M 1998 NMDA 
receptor diversity in the cerebellum: identification of subunits contributing to functional 
receptors. Neuropharmacology 37: 1369-1380. 

Cuppini R, Sartini S, Ambrogini P, Falcieri E, Maltarello MC, Gallo G 1999 Control of 
neuron outgrowth by NMDA receptors. J Submicrosc Cytol Pathol 31: 31-40. 

Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, 
Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N 1998 Increased NMDA current 
and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393: 377-381. 

Datta NS, Williams JL, Caldwell J, Curry AM, Ashcraft EK, Long MW 1996 Novel 

alterations in CDKI/cyclin B1 kinase complex formation occur during the acquisition of a 
polyploid DNA content. Mol Biol Cell 7: 209-223. 

Davidson EM, Coggeshall RE, Carlton SM 1997 Peripheral NMDA and non-NMDA 
glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport 8: 
941-946. 

Davies J, Francis AA, Jones AW. Watkins JC 1981 2-Amino-5-phosphonovalerate (2APV). a 
potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett 
21: 77-81. 

de Benedetti F. Massa M, Robbioni P, Ravelli A, Burgio GR, Martini A 1991 Correlation of 

serum interleukin-6 levels with joint involvement and thromboc}-tosis in systemic juvenile 

rheumatoid arthritis. Arthritis Rheum 34: 1158-1163. 

208 



References 

de Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, 
Henzel WJ, Wong SC, Kuang WJ, 

. 1994 Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369: 533-538. 

de Sauvage FJ, Carver-Moore K, Luoh SM, Ryan A, Dowd M, Eaton DL, Moore MW 1996 
Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. 
J Exp Med 183: 651-656. 

Debili N, Masse JM, Katz A, Guichard J, Breton-Gorius J, Vainchenker W 1993 Effects of the 
recombinant hematopoietic growth factors interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory factor on the megakaryocytic differentiation of CD34+ cells. Blood 82: 
84-95. 

Debili N, Wendling F, Katz A, Guichard J, Breton-Gorius J, Hunt P. Vainchenker W 1995 
The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has 
both direct proliferative and differentiative activities on human megakaryocyte progenitors. 
Blood 86: 2516-2525. 

Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J, Vainchenker W 
1996 Characterization of a bipotent erythro-megakaryocytic progenitor in human bone 
marrow. Blood 88: 1284-1296. 

DeLorenzo RJ, Pal S, Sombati S 1998 Prolonged activation of the N-methyl-D-aspartate 
receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in 
hippocampal neurons in culture. Proc Natl Acad Sci USA 95: 14482-14487. 

Dingledine R, Borges K, Bowie D, Traynelis SF 1999 The glutamate receptor ion channels. 
Pharmacol Rev 51: 7-61. 

Dobson KR 2000 The NMDA-type glutamate receptor antagonist MK801 regulates 
differentiation of rat bone marrow osteoprogenitors and influences adipogenesis. J Bone 
Miner. Res 15: SA211-Abstract) 

Dorsch M, Fan PD, Danial NN, Rothman PB, Goff SP 1997 The thrombopoietin receptor can 
mediate proliferation without activation of the Jak-STAT pathway. J Exp Med 186: 1947- 
1955. 

Downing KH and Nogales E 1998 Tubulin and microtubule structure. Curr Opin Cell Biol 10: 
16-22. 

Drachman JG, Millett KM, Kaushansky K 1999 Thrombopoietin signal transduction requires 
functional JAK2, not TYK2. J Biol Chem 274: 13480-13484. 

Drachman JG, Rojnuckarin P, Kaushansky K 1999 Thrombopoietin signal transduction: 
studies from cell lines and primary cells. Methods 17: 238-249. 

Drouin A, Favier R, Masse JM, Debili N, Schmitt A, Elbim C, Guichard J, Adam M, 
Gougerot-Pocidalo MA, Cramer EM 2001 Newly recognized cellular abnormalities in the gray 
platelet syndrome. Blood 98: 1382-1391. 

Dunah AW, Luo J, Wang YH, Yasuda RP, Wolfe BB 1998 Subunit composition of N-methy I- 

D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol 

Pharmacol 53: 429-437. 

209 



References 

Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S 1991 Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351: 745-748. 

Ehlers MD, Tingley WG, Huganir RL 1995 Regulated subcellular distribution of the NR 1 
subunit of the NMDA receptor. Science 269: 1734-1737. 

English JD and Sweatt JD 1997 A requirement for the mitogen-activated protein kinase 
cascade in hippocampal long term potentiation. J Biol Chem 272: 19103-19106. 

Espinosa L, Itzstein C, Cheynel H, Delmas PD, Chenu C Active NMDA glutamate receptors are expressed by mammalian osteoclasts. 

Farber NB, Kim SH, Dikranian K, Jiang XP, Heinkel C 2002 Receptor mechanisms and 
circuitry underlying NMDA antagonist neurotoxicity. Mol Psychiatry 7: 32-43. 

Farese AM, Williams DE, Seiler FR, MacVittie TJ 1993 Combination protocols of cytokine therapy with interleukin-3 and granulocyte-macrophage colony-stimulating factor in a primate 
model of radiation-induced marrow aplasia. Blood 82: 3012-3018. 

Fenaux P, Simon M, Caulier MT, Lai JL, Goudemand J, Bauters F 1990 Clinical course of 
essential thrombocythemia in 147 cases. Cancer 66: 549-556. 

Fichelson S, Freyssinier JM, Picard F, Fontenay-Roupie M, Guesnu M, Cherai M, 
Gisselbrecht S, Porteu F 1999 Megakaryocyte growth and development factor-induced 
proliferation and differentiation are regulated by the mitogen-activated protein kinase pathway 
in primitive cord blood hematopoietic progenitors. Blood 94: 1601-1613. 

Fielder PJ, Gurney AL, Stefanich E, Marian M, Moore MW, Carver-Moore K, de Sauvage FJ 
1996 Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood 87: 
2154-2161. 

Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, Morgan it, Connor 
JA, Curran T 1994 Targeted disruption of NMDA receptor I gene abolishes NMDA response 
and results in neonatal death. Neuron 13: 325-338. 

Franconi F, Miceli M, De Montis MG, Crisafi EL, Bennardini F, Tagliamonte A 1996 NMDA 
receptors play an anti-aggregating role in human platelets. Thromb Haemost 76: 84-87. 

Franconi F, Miceli M, Alberti L. Seghieri G, De Montis MG, Tagliamonte A 1998 Further 
insights into the anti-aggregating activity of NMDA in human platelets. Br J Pharmacol 124: 
35-40. 

Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, Minner K, Hoylaerts 
MF, Vermylen J, Van Geet C 2001 Platelet characteristics in patients with X-linked 
macrothrombocytopenia because of a novel GATA 1 mutation. Blood 98: 85-92. 

Fujita A and Kurachi Y 2000 SAP family proteins. Biochem Biophys Res Commun 269: 1-6. 

Garcia-Zaragoza E, Barrachina MD, Moreno L, Esplugues JV 2000 Role of central glutamate 
receptors, nitric oxide and soluble guanylyl cyclase in the inhibition by endotoxin of rat gastric 
acid secretion. Br J Pharmacol 130: 1283-1288. 

Geddis AE, Fox NE, Kaushansky K 2001 Phosphatidylinositol 3-kinase is necessary but not 
sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as 
well as in primary megakaryocytic progenitors. J Biol Chem 276: 34473-34479. 

210 



References 

Genever PG, Maxfield SJ, Kennovin GD, Maltman J, Bowgen CJ, Raxworthy MJ, Skerrv, TM 
1999 Evidence for a novel glutamate-mediated signaling pathway in keratinocytes. J Invest 
Derm ato l 112: 337-342. 

Genever PG, Wilkinson DJ, Patton AJ, Peet NM, Hong Y, Mathur A, Erusalimskvv JD, Skerrv, 
TM 1999 Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone 
marrow megakaryocytes. Blood 93: 2876-2883. 

Genever PG 2000 Regulated glutamate release exocytosis is necessary for osteoblast differentiation and survival in vitro. J Bone Miner. Res 15: SU 191-Abstract) 

Genever PG and Skerry TM 2001 Regulation of spontaneous glutamate release activity in 
osteoblastic cells and its role in differentiation and survival: evidence for intrinsic 
glutamatergic signaling in bone. FASEB J 15: 1586-1588. 

Genever PG 2001 Autocrine glutamate signalling regulates osteoblast apoptosis. J Bone 
Miner. Res 16: S257-Abstract) 

Georgii A, Buhr T, Buesche G, Kreft A, Choritz H 1996 Classification and staging of Ph- 
negative myeloproliferative disorders by histopathology from bone marrow biopsies. Leuk 
Lymphoma 22 Suppl 1: 15-29. 

Gewirtz AM, Calabretta B, Rucinski B, Niewiarowski S, Xu WY 1989 Inhibition of human 
megakaryocytopoiesis in vitro by platelet factor 4 (PF4) and a synthetic COOH-terminal PF4 
peptide. J Clin Invest 83: 1477-1486. 

Gewirtz AM, Zhang J, Ratajczak J, Ratajczak M, Park KS, Li C, Yan Z, Poncz M 1995 
Chemokine regulation of human megakaryocytopoiesis. Blood 86: 2559-2567. 

Gewirtz AM 1995 Megakaryocytopoiesis: the state of the art. Thromb Haemost 74: 204-209. 

Giancotti FG and Ruoslahti E 1999 Integrin signaling. Science 285: 1028-1032. 

Gill SS and Pulido OM 2001 Glutamate receptors in peripheral tissues: current knowledge, 
future research, and implications for toxicology. Toxicol Pathol 29: 208-223. 

Gilman JR 1942 Normal hemopoiesis in intrauterine and neonatal life. Journal of Pathology 
52: 25. 

Glaspy JA and Golde DW 1992 Granulocyte colony-stimulating factor (G-CSF): preclinical 
and clinical studies. Semin Oncol 19 : 386-394. 

Goldfarb AN, Delehanty LL, Wang D, Racke FK, Hussaini IM 2001 Stromal inhibition of 
megakaryocytic differentiation correlates with blockade of signaling by protein kinase C- 

epsilon and ERK/MAPK. J Biol Chem 276: 29526-29530. 

Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, Miyazaki J, Seino S 1994 Functional 

neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MINE. J 

Biol Chem 269: 16989-16992. 

Gordon MS, McCaskill-Stevens WJ, Battiato LA, Loewy J. Loesch D, Breeden E. Hoffman R. 
Beach KJ, Kuca B, Kaye J, Sledge GW, Jr. 1996 A phase I trial of recombinant human 
interleukin-11 (neumega rhIL-11 growth factor) in women with breast cancer receiving 

chemotherapy. Blood 87: 3615-3624. 

211 



References 

Gray C, Marie H, Arora M, Tanaka K, Boyde A, Jones S, Attwell D 2001 Glutamate does not 
play a major role in controlling bone growth. J Bone Miner Res 16: 742-749. 

Gray EG 2003 Axo-somatic and axo-dendritic synapses of the cerebral cortex. Journal of 
Anatomy 93: 420-433. 

Gu Y and Publicover SJ 2000 Expression of functional metabotropic glutamate receptors in 
primary cultured rat osteoblasts. Cross-talk with N-methyl-D-aspartate receptors. J Biol Chem 
275: 34252-34259. 

Gu Y, Genever PG, Skerry TM, Publicover SJ 2002 The NMDA type glutamate receptors 
expressed by primary rat osteoblasts have the same electrophysiological characteristics as 
neuronal receptors. Calcif Tissue Int 70: 194-203. 

Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW 1994 Thrombocytopenia in c-mpl- 
deficient mice. Science 265: 1445-1447. 

Haller CJ and Radley JM 1983 Time-lapse cinemicrography and scanning electron 
microscopy of platelet formation by megakaryocytes. Blood Cells 9: 407-418. 

Haller H, Smallwood JI, Rasmussen H 1990 Protein kinase C translocation in intact vascular 
smooth muscle strips. Biochem J 270: 375-381. 

Haller H, Lindschau C, Quass P. Distler A, Luft FC 1994 Nuclear calcium signaling is 
initiated by cytosolic calcium surges in vascular smooth muscle cells. Kidney lilt 46: 1653- 
1662. 

Hamilton R and Campbell FR 1991 Immunochemical localization of extracellular materials in 
bone marrow of rats. Anat Rec 231 : 218-224. 

Han BH and Holtzman DM 2000 BDNF protects the neonatal brain from hypoxic-ischemic 
injury in vivo via the ERK pathway. J Neurosci 20: 5775-5781. 

Han ZC, Sensebe L, Abgrall JF, Briere J 1990 Platelet factor 4 inhibits human 

megakaryocytopoiesis in vitro. Blood 75: 1234-1239. 

Handagama PJ, Jain NC, Feldman BF, Farver TB, Kono CS 1987 In vitro platelet release by 

rat megakaryocytes: effect of heterologous antiplatelet serum. Am J Vet Res 48: 1147-1149. 

Handagama PJ, Jain NC, Feldman BF, Kono CS 1987 Scanning electron microscope study of 

platelet release by canine megakaryocytes in vitro. Am J Vet Res 48: 1003-1006. 

Harding SA, Boon NA, Flapan AD 2002 Antiplatelet treatment in unstable angina: aspirin, 

clopidogrel, glycoprotein IIb/IIIa antagonist, or all three? Heart 88: 11-14. 

Harker LA, Marzec UM, Hunt P, Kelly AB, Tomer A, Cheung E, Hanson SR, Stead RB 1996 

Dose-response effects of pegylated human megakaryocyte growth and development factor on 

platelet production and function in nonhuman primates. Blood 88: 511-521. 

Harris BZ and Lim WA 2001 Mechanism and role of PDZ domains in signaling complex 

assembly. J Cell Sci 114: 3219-3231. 

Hayashi T 1954 Effects of sodium glutamate on the nervous system. Keio J Med 3: 183-192. 

Helilmann R, Jahn M, Baumann B, Kopcke W 1988 Essential thrombocythemia. Clinical 

characteristics and course of 61 cases. Cancer 61: 2487-2496. 

212 



References 

Heiden FLJJ 1975 Polyploidy in the human myometrium. Z Mikroskop Anatom Forsch 89: 
18. 

Hetman M and Xia Z 2000 Signaling pathways mediating anti-apoptotic action of 
neurotrophins. Acta Neurobiol Exp (Warsz) 60: 531-545. 

Hickenbottom SL and Grotta J 1998 Neuroprotective therapy. Semin Neurol 18: 485-192. 

Hinoi E, Fujimori S, Takarada T, Taniura H, Yoneda Y 2002 Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts. Biochem Biophys Res Commun 297: 452- 
458. 

Hokom MM, Lacey D, Kinstler OB, Choi E, Kaufman S, Faust J, Rowan C. Dwyer E, Nichol 
JL, Grasel T, 

. 
1995 Pegylated megakaryocyte growth and development factor abrogates the 

lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 86: 4486- 
4492. 

Hollen CW, Henthorn J, Koziol JA, Burstein SA 1991 Elevated serum interleukin-6 levels in 
patients with reactive thrombocytosis. Br J Haematol 79: 286-290. 

Hollmann M, O'Shea-Greenfield A. Rogers SW, Heinemann S 1989 Cloning by functional 
expression of a member of the glutamate receptor family. Nature 342: 643-648. 

Hollmann M and Heinemann S 1994 Cloned glutamate receptors. Annu Rev Neurosci 17: 31- 
108. 

Hong Y, Martin JF, Vainchenker W, Erusalimsky JD 1996 Inhibition of protein kinase C 
suppresses megakaryocytic differentiation and stimulates erythroid differentiation in HEL 
cells. Blood 87: 123-131. 

Hong Y, Durnenil D, van der LB, Goncalves F, Vainchenker W, Erusalimsky JD 1998 Protein 
kinase C mediates the mitogenic action of thrombopoietin in c- Mpl-expressing UT-7 cells. 
Blood 91: 813-822. 

Horikawa Y, Matsumura I, Hashimoto K, Shiraga M, Kosugi S, Tadokoro S, Kato T, 
Miyazaki H, Tomiyama Y, Kurata Y, Matsuzawa Y, Kanakura Y 1997 Markedly reduced 
expression of platelet c-mpl receptor in essential thrombocythemia. Blood 90: 4031-4038. 

House C and Kemp BE 1987 Protein kinase C contains a pseudosubstrate prototope in its 

regulatory domain. Science 238: 1726-1728. 

Howard PA 2002 Aspirin resistance. Ann Pharmacother 36: 1620-1624. 

Howell WW 1890 Observations upon the occurance, structure and formation of the Giat Cells 

of marrow. Journal of Morphology 4: 117. 

Hrabetova S, Serrano P, Blace N, Tse HW, Skifter DA, Jane DE, Monaghan DT, Sacktor IC 
2000 Distinct NMDA receptor subpopulations contribute to long-term potentiation and long- 

term depression induction. J Neurosci 20: RC81. 

Hrabetova S, Serrano P, Blace N, Tse HW, Skifter DA, Jane DE, Monaghan DT, Sacktor TC 
2000 Distinct NMDA receptor subpopulations contribute to long-term potentiation and long- 

term depression induction. J Neurosci 20: RC81. 

213, 



References 

Hsueh YP, Wang TF, Yang FC, Sheng M 2000 Nuclear translocation and transcription 
regulation by the membrane- associated guanylate kinase CASK/LIN-2. Nature 404: 298-302. 

Huang CF and Su MJ 1999 Positive inotropic action of NMDA receptor antagonist (+)- 
MK801 in rat heart. J Biomed Sci 6: 387-398. 

Huang YY, Martin KC, Kandel ER 2000 Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20: 6317-6325. 

Hug H and Sane TF 1993 Protein kinase C isoenzymes: divergence in signal transduction? 
Biochem J 291 (Pt 2): 329-343. 

Hunt P, Zsebo KM, Hokom MM, Hornkohl A, Birkett NC, del Castillo JC, Martin F 1992 
Evidence that stem cell factor is involved in the rebound thrombocytosis that follows 5- 
fluorouracil treatment. Blood 80 : 904-911. 

Ihara K, Ishii E, Eguchi M, Takada H, Suminoe A, Good RA, Hara T 1999 Identification of 
mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl 
Acad Sci USA 96: 3132-3136. 

Ihzumi T, Hattori A, Sanada M, Muto M 1977 Megakaryocyte and platelet formation: a 
scanning electron microscope study in mouse spleen. Arch Histol Jpn 40: 305-320. 

lino M, Ozawa S, Tsuzuki K 1990 Permeation of calcium through excitatory amino acid 
receptor channels in cultured rat hippocampal neurones. J Physiol 424: 151-165. 

Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska 
V, Turski L, Olney JW 1999 Blockade of NMDA receptors and apoptotic neurodegeneration 
in the developing brain. Science 283: 70-74. 

Ishibashi T, Kimura H, Uchida T, Kariyone S, Friese P, Burstein SA 1989 Human interleukin 
6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA 86: 
5953-5957. 

Italiano JE, Jr., Lecine P, Shivdasani RA, Hartwig JH 1999 Blood platelets are assembled 
principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J 
Cell Biol 147: 1299-1312. 

Ito I, Futai K, Katagiri H, Watanabe M, Sakimura K, Mishina M, Sugiyama H 1997 Synapse- 

selective impairment of NMDA receptor functions in mice lacking NMDA receptor epsilon I 

or epsilon 2 subunit. J Physiol 500 (Pt 2): 401-408. 

Iwasato T, Erzurumlu RS, Huerta PT, Chen DF, Sasaoka T, Ulupinar E, Tonegawa S 1997 
NMDA receptor-dependent refinement of somatotopic maps. Neuron 19: 1201-1210. 

Javitt DC and Zukin SR 1991 Recent advances in the phencyclidine model of schizophrenia. 
Am J Psychiatry 148: 1301-1308. 

Jevtovic-Todorovic V, Todorovic SM, Mennerick S, Powell S, Dikranian K, Benshoff N, 
Zorumski CF, Olney JW 1998 Nitrous oxide (laughing gas) is an NMDA antagonist, 
neuroprotectant and neurotoxin. Nat Med 4: 460-463. 

214 



References 

Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A. 
MacDonald J, Carlen P, Abramow-Newerly W, Roder J 1996 Enhanced LTP in mice deficient 
in the AMPA receptor G1uR2. Neuron 17: 945-956. 

Jiang F, Jia Y, Cohen 12002 Fibronectin- and protein kinase C-mediated activation of ERK/MAPK are essential for proplateletlike formation. Blood 99: 3579-3584. 

Jo K, Derin R, Li M, Bredt DS 1999 Characterization of MALSNelis-l, -2, and -3: a family 
of mammalian LIN- 7 homologs enriched at brain synapses in association with the 
postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 19: 3189-4199. 

Johnson JW and Ascher P 1987 Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529-531. 

Kalina U, Koschmieder S, Hofmann WK, Wagner S, Kauschat D, Hoelzer D, Ottmann OG 
2001 Transforming growth factor-betal interferes with thrombopoietin-induced signal 
transduction in megakaryoblastic and erythroleukemic cells. Exp Hematol 29: 602-608. 

Kaluzhny Y, Yu G, Sun S, Toselli PA, Nieswandt B, Jackson CW, Ravid K 2002 BclxL 
overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood 100: 1670- 
1678. 

Kartsogiannis V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JM, Niforas P, Ng 
KW, Martin TJ, Gillespie MT 1999 Localization of RANKL (receptor activator of NF kappa 
B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25: 525-534. 

Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, 
Oort PJ, Hagen FS, 

. 1994 Promotion of megakaryocyte progenitor expansion and 
differentiation by the c-Mpl ligand thrombopoietin. Nature 369: 568-571. 

Kaushansky K 1995 Thrombopoietin: the primary regulator of platelet production. Blood 86: 
419-431. 

Kaushansky K, Broudy VC, Grossmann A, Humes J, Lin N, Ren HP, Bailey MC, 
Papayannopoulou T, Forstrom JW, Sprugel KH 1995 Thrombopoietin expands erythroid 
progenitors, increases red cell production, and enhances erythroid recovery after 
myelosuppressive therapy. J Clin Invest 96: 1683-1687. 

Kaushansky K, Lin N, Grossmann A, Humes J, Sprugel KH, Broudy VC 1996 
Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocytic progenitor 
cells in normal and myelosuppressed mice. Exp Hematol 24: 265-269. 

Kelemen E 1958 Demonstration and some properties of human thrombopoietin 
thrombocythaemic sera. Acta Haematologica 20: 350-355. 

Keller JR, Jacobsen SE, Sill KT, Ellingsworth LR, Ruscetti FW 1991 Stimulation of 
granulopoiesis by transforming growth factor beta: synergy with granulocyte/macrophage- 
colony-stimulating factor. Proc Natl Acad Sci USA 88: 7190-7194. 

Kelm RJ, Jr., Hair GA, Mann KG, Grant BW 1992 Characterization of human osteoblast and 
megakaryocyte-derived osteonectin (SPARC). Blood 80: 3112-3119. 

Kennedy MB 2000 Signal-processing machines at the postsynaptic density. Science 290: 750- 
754. 

215 



References 

Kiladjian JJ, Elkassar N, Hetet G, Briere J, Grandchamp B, Gardin C 1997 Study of the 
thrombopoitin receptor in essential thrombocythemia. Leukemia 11: 1821-1826. 

Kinkelin I, Brocker EB, Koltzenburg M, Carlton SM 2000 Localization of ionotropic 
glutamate receptors in peripheral axons of human skin. Neurosci Lett 283: 149-152. 

Kishimoto T, Taga T, Akira S 1994 Cytokine signal transduction. Cell 76: 253-262. 

Kleckner NW and Dingledine R 1988 Requirement for glycine in activation of NMDA- 
receptors expressed in Xenopus oocytes. Science 241: 835-837. 

Kohler M, Burnashev N, Sakmann B, Seeburg PH 1993 Determinants of Ca2+ permeability in 
both TMl and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10: 491-500. 

Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK 2000 Three-dimensional reconstructions 
of calcium/calmodulin-dependent (CaM) kinase Ilalpha and truncated CaM kinase Ilalpha 
reveal a unique organization for its structural core and functional domains. J Biol Chem 275: 
14354-14359. 

Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, 
O'Carroll CM, Martin SJ, Morris RG, O'Dell TJ, Grant SG 2002 SynGAP regulates 
ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic 
density 95 and NMDA receptor. J Neurosci 22: 9721-9732. 

Kornau HC, Schenker LT, Kennedy MB, Seeburg PH 1995 Domain interaction between 
NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269: 1737- 
1740. 

Krizbai IA, Deli MA, Pestenacz A, Siklos L, Szabo CA, Andras I, Joo F 1998 Expression of 
glutamate receptors on cultured cerebral endothelial cells. J Neurosci Res 54: 814-819. 

Ku H. Yonemura Y, Kaushansky K, Ogawa M 1996 Thrombopoietin, the ligand for the Mpl 
receptor, synergizes with steel factor and other early acting cytokines in supporting 
proliferation of primitive hematopoietic progenitors of mice. Blood 87: 4544-4551. 

Bukmvsgasgi K 1993 Human hepatocyte polyploidization kinetics in the course of life cycle. 
Virchows Arch 64: 387. 

Kullmann DM, Asztely F, Walker MC 2000 The role of mammalian ionotropic receptors in 
synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci 57: 1551-1561. 

Kurino M, Fukunaga K, Ushio Y, Miyamoto E 1995 Activation of mitogen-activated protein 
kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J 
Neurochem 65: 1282-1289. 

Kuter DJ and Rosenberg RD 1990 Regulation of megakaryocyte ploidy in vivo in the rat. 
Blood 75: 74-81. 

Kuter DJ, Gminski DM, Rosenberg RD 1992 Transforming growth factor beta inhibits 

megakaryocyte growth and endomitosis. Blood 79: 619-626. 

Lagaudriere-Gesbert C, Lebel-Binay S, Wiertz E, Ploegh HL, Fradelizi D, Conjeaud H 1997 
The tetraspanin protein CD82 associates with both free HLA class I heavy chain and 
heterodimeric beta 2-microglobulin complexes. J Immunol 158: 2790-2797. 

216 



References 

Laketic-Ljubojevic I, Suva U, Maathuis FJ, Sanders D, Skerry TM 1999 Functional 
characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 25: 631-637. 

Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G 1998 Glutamate- 
receptor genes in plants. Nature 396: 125-126. 

Lane WJ, Hattori K, Dias S, Peerschke EI, Moore MA, Blanset DL, Lang PC, Petrone M. 
Rafii S 2001 Anagrelide metabolite induces thrombocytopenia in mice by inhibiting 
megakaryocyte maturation without inducing platelet aggregation. Exp Hematol 29: 1417- 
1424. 

Laube B. Kuhse J, Betz H 1998 Evidence for a tetrameric structure of recombinant NMDA 
receptors. J Neurosci 18: 2954-2961. 

Laube B, Kuhse J. Betz H 1998 Evidence for a tetrameric structure of recombinant NMDA 
receptors. J Neurosci 18: 2954-2961. 

Layendecker SJ and McDonald TP 1982 The relative roles of the spleen and bone marrow in 
platelet production in mice. Exp Hematol 10: 332-342. 

Lecine P. Italiano JE, Jr., Kim SW, Villeval JL, Shivdasani RA 2000 Hematopoietic-specific 
beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription 
factor NF-E2. Blood 96: 1366-1373. 

Lecine P, Italiano JE, Jr., Kim SW, Villeval JL, Shivdasani RA 2000 Hematopoietic-specific 
beta I tubulin participates in a pathway of platelet biogenesis dependent on the transcription 
factor NF-E2. Blood 96: 1366-1373. 

Leonard AS and Hell JW 1997 Cyclic AMP-dependent protein kinase and protein kinase C 

phosphorylate N-methyl-D-aspartate receptors at different sites. J Biol Chem 272: 12107- 
12115. 

Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW 1999 Calcium/calmodulin- 
dependent protein kinase II is associated with the N- methyl-D-aspartate receptor. Proc Natl 
Acad Sci USA 96: 3239-3244. 

Lepage A, Uzan G, Touche N, Morales M, Cazenave JP, Lanza F, de La SC 1999 Functional 

characterization of the human platelet glycoprotein V gene promoter: A specific marker of late 

megakaryocytic differentiation. Blood 94: 3366-3380. 

Lepage A, Leboeuf M, Cazenave JP, de La SC, Lanza F, Uzan G 2000 The alpha(Ilb)beta(3) 
integrin and GPIb-V-IX complex identify distinct stages in the maturation of CD34(+) cord 
blood cells to megakaryocytes. Blood 96: 4169-4177. 

Leppik IEMKGNMaRCA 1988 MK-801 for epilepsy: a pilot study. Neurology 38(Suppl. 1): 
405. 

Leven RM and Yee MK 1987 Megakaryocyte morphogenesis stimulated in vitro by whole and 

partially fractionated thrombocytopenic plasma: a model system for the study of platelet 
formation. Blood 69: 1046-1052. 

Li J and Kuter DJ 2001 The end is just the beginning: megakar-, -oc}te apoptosis and platelet 

release. Int J Hematol 74: 365-374. 

217 



References 

Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S 1994 Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDARI knockout mice. Cell 76: 427- 
437. 

Liliental J and Chang DD 1998 Rack 1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem 273: 2379-2383. 

Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M 1998 Yotiao, a novel 
protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR I. J Neurosci 18: 2017-2027. 

Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M 1998 Yotiao, a novel 
protein of neuromuscular junction and brain that interacts with specific splice variants of 
NMDA receptor subunit NR1. J Neurosci 18: 2017-2027. 

Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, 
Burkhead SK, Kramer JM, . 1994 Cloning and expression of murine thrombopoietin cDNA 
and stimulation of platelet production in vivo. Nature 369: 565-568. 

Long MW, Gragowski LL, Heffner CH, Boxer LA 1985 Phorbol diesters stimulate the 
development of an early murine progenitor cell. The burst-forming unit-megakaryocyte. J 
Clin Invest 76: 431-438. 

Long MW, Heffner CH, Williams JL, Peters C, Prochownik EV 1990 Regulation of 
megakaryocyte phenotype in human erythroleukemia cells. J Clin Invest 85: 1072-1084. 

Long MW 1998 Megakaryocyte differentiation events. Semin Hematol 35: 192-199. 

Lumelsky NL and Schwartz BS 1997 Protein kinase C in erythroid and megakaryocytic 
differentiation: possible role in lineage determination. Biochim Biophys Acta 1358: 79-92. 

Luo JH and Weinstein IB 1993 Calcium-dependent activation of protein kinase C. The role of 
the C2 domain in divalent cation selectivity. J Biol Chem 268: 23580-23584. 

Maasch C, Wagner S, Lindschau C, Alexander G, Buchner K, Gollasch M, Luft FC, Haller H 
2000 Protein kinase calpha targeting is regulated by temporal and spatial changes in 
intracellular free calcium concentration [Ca(2+)](i). FASEB J 14: 1653-1663. 

Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara 
T, Hori M, Matsumoto M 2001 Phosphorylation of cAMP response element-binding protein in 
hippocampal neurons as a protective response after exposure to glutamate in vitro and 
ischemia in vivo. J Neurosci 21: 9204-9213. 

Maecker HT, Todd SC, Levy S 1997 The tetraspanin superfamily: molecular facilitators. 
FASEB J 11: 428-442. 

Majka M, Janowska-Wieczorek A, Ratajczak J, Kowalska MA, Vilaire G, Pan ZK, 
Honczarenko M, Marquez LA, Poncz M, Ratajczak MZ 2000 Stromal-derived factor I and 
thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 96: 4142-4151. 

Majka M, Baj-Krzyworzeka M, Kijowski J, Reca R, Ratajczak J, Ratajczak MZ 2001 In vitro 
expansion of human megakaryocytes as a tool for studying megakaryocytic development and 
function. Platelets 12: 325-332. 

218 



References 

Majka M, Ratajczak J, Villaire G, Kubiczek K, Marquez LA, Janowska-Wieczorek A, 
Ratajczak MZ 2002 Thrombopoietin, but not cytokines binding to gp 130 protein-coupled 
receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, 
megakaryocytes, and platelets. Exp Hematol 30: 751-760. 

Malva JO, Ambrosio AF, Cunha RA, Ribeiro JA, Carvalho AP, Carvalho CM 1995 A 
functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 
subregion. Neurosci Lett 185: 83-86. 

Mantovani A and Sozzani S 1994 Chemokines. Lancet 343: 923. 

Mao L and Wang JQ 2002 Interactions between ionotropic and metabotropic glutamate 
receptors regulate cAMP response element-binding protein phosphorylation in cultured striatal 
neurons. Neuroscience 115: 395-402. 

Martin JF, Trowbridge EA, Salmon G, Plumb J 1983 The biological significance of platelet 
volume: its relationship to bleeding time, platelet thromboxane B2 production and 
megakaryocyte nuclear DNA concentration. Thromb Res 32: 443-460. 

Mason DJ, Suva U, Genever PG, Patton AJ, Steuckle S, Hillam RA, Skerry TM 1997 
Mechanically regulated expression of a neural glutamate transporter in bone: a role for 
excitatory amino acids as osteotropic agents? Bone 20: 199-205. 

Mason MJ, Hussain JF, Mahaut-Smith MP 2000 A novel role for membrane potential in the 
modulation of intracellular Ca2+ oscillations in rat megakaryocytes. J Physiol 524 Pt 2: 437- 
446. 

Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S 1991 Sequence and expression of 
a metabotropic glutamate receptor. Nature 349: 760-765. 

Matsuda S and Hirai H 1999 The clustering of NMDA receptor NR I subunit is regulated by 

the interaction between the C-terminal exon cassettes and the cytoskeleton. Neurosci Res 34: 

157-163. 

Matsumura I, Kanakura Y, Ikeda H, Ishikawa J, Yoshida H, Horikawa Y, Nishiura T, Tahara 

T, Kato T, Miyazaki H, Matsuzawa Y 1996 Coexpression of thrombopoietin and c-mpl genes 
in human acute myeloblastic leukemia cells. Leukemia 10: 91-94. 

Matsumura I, Tanaka H, Kawasaki A, Odajima J, Daino H, Hashimoto K, Wakao H, 

Nakajima K, Kato T, Miyazaki H, Kanakura Y 2000 Increased D-type cyclin expression 

together with decreased cdc2 activity confers megakaryocytic differentiation of a human 

thrombopoietin-dependent hematopoietic cell line. J Biol Chem 275: 5553-5559. 

Mayer ML and Westbrook GL 1987 Permeation and block of N-methyl-D-aspartic acid 

receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394: 501 - 
527. 

Mazur EM, Lindquist DL, de Alarcon PA, Cohen JL 1988 Evaluation of bone marrow 

megakaryocyte ploidy distributions in persons with normal and abnormal platelet counts. J 

Lab Clin Med 111: 194-202. 

Mazur EM, Rosmarin AG, Sohl PA, Newton JL, Narendran A 1992 Analysis of the 

mechanism of anagrelide-induced thrombocytopenia in humans. Blood 79: 1931-1937. 

219 



References 

McDonald TP, Cottrell MB, Clift RE, Cullen WC, Lin FK 1987 High doses of recombinant 
erythropoietin stimulate platelet production in mice. Exp Hematol 15: 719-721. 

Means AR 2000 Regulatory cascades involving calmodulin-dependent protein kinases. Mol 
Endocrinol 14: 4-13. 

Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG 2001 X-linked 
thrombocytopenia caused by a novel mutation of GATA-1. Blood 98: 2681-2688. 

Messersmith EK, Feller MB, Zhang H, Shatz CJ 1997 Migration of neocortical neurons in the 
absence of functional NMDA receptors. Mol Cell Neurosci 9: 347-357. 

Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, 
Ramsay MF, Morris RG, Morrison JH, O'Dell TJ, Grant SG 1998 Enhanced long-term 
potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. 
Nature 396: 433-439. 

Misra C. Brickley SG, Wyllie DJ, Cull-Candy SG 2000 Slow deactivation kinetics of NMDA 
receptors containing NRI and NR2D subunits in rat cerebellar Purkinje cells. J Physiol 525 Pt 
2: 299-305. 

Misra C, Brickley SG, Farrant M, Cull-Candy SG 2000 Identification of subunits contributing 
to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J Physiol 
524 Pt 1: 147-162. 

Miyazaki R, Ogata H, Kobayashi Y 2001 Requirement of thrombopoietin-induced activation 
of ERK for megakaryocyte differentiation and of p38 for erythroid differentiation. Ann 
Hematol 80: 284-291. 

Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi 1, Silvennoinen 0, 
Witthuhn BA, Ihle JN, . 

1994 Functional activation of Jakl and Jak3 by selective association 
with IL- 2 receptor subunits. Science 266: 1045-1047. 

Mizutani C, Tohyama Y, Miura Y, Hishita T, Nishihara T, Yamamura H, Ichiyama S, 
Uchiyama T, Tohyama K 2002 Sustained activation of MEK1-ERKI/2 pathway in membrane 
skeleton occurs dependently on cell adhesion in megakaryocytic differentiation. Biochem 
Biophys Res Commun 297: 664-671. 

Mizutani C, Tohyama Y, Miura Y, Hishita T, Nishihara T, Yamamura H, Ichiyama S, 

Uchiyama T, Tohyama K 2002 Sustained activation of MEKI-ERKI/2 pathway in membrane 

skeleton occurs dependently on cell adhesion in megakaryocytic differentiation. Biochem 

Biophys Res Commun 297: 664-671. 

Moghaddam B and Adams BW 1998 Reversal of phencyclidine effects by a group 11 

metabotropic glutamate receptor agonist in rats. Science 281: 1349-1352. 

Moghaddam B and Adams BW 1998 Reversal of phencyclidine effects by a group 11 

metabotropic glutamate receptor agonist in rats. Science 281: 1349-1352. 

Mohn AR, Gainetdinov RR, Caron MG, Koller BH 1999 Mice with reduced NMDA receptor 

expression display behaviors related to schizophrenia. Cell 98: 427-436. 

Molnar E, Varadi A, Mcllhinney RA, Ashcroft SJ 1995 Identification of functional ionotropic 

glutamate receptor proteins in pancreatic beta-cells and in islets of Langerhans. FEBS Lett 

371: 253-257. 

220 



References 

Momiyama A, Feldmeyer D, Cull-Candy SG 1996 Identification of a native low-conductance 
NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. J Physiol 494 ( Pt 
2): 479-492. 

Monaghan DT, Yao D, Cotman CW 1984 Distribution of [3H]AMPA binding sites in rat brain 
as determined by quantitative autoradiography. Brain Res 324: 160-164. 

Monaghan DT, Bridges RJ, Cotman CW 1989 The excitatory amino acid receptors: their 
classes, pharmacology, and distinct properties in the function of the central nervous system. 
Annu Rev Pharmacol Toxicol 29: 365-402. 

Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH 1994 Developmental and 
regional expression in the rat brain and functional properties of four NMDA receptors. 
Neuron 12: 529-540. 

Morgan DO 1995 Principles of CDK regulation. Nature 374: 131-134. 

Morhenn VB, Waleh NS, Mansbridge JN, Unson D, Zolotorev A, Cline P, Toll L 1994 
Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur J 
Pharmacol 268: 409-414. 

Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S 1991 Molecular cloning 
and characterization of the rat NMDA receptor. Nature 354: 31-37. 

Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP 1994 A 

molecular determinant for submillisecond desensitization in glutamate receptors. Science 266: 
1059-1062. 

Mu SX, Xia M, Elliott G, Bogenberger J, Swift S, Bennett L, Lappinga DL, Hecht R, Lee R, 
Saris CJ 1995 Megakaryocyte growth and development factor and interleukin-3 induce 

patterns of protein-tyrosine phosphorylation that correlate with dominant differentiation over 
proliferation of mpl-transfected 32D cells. Blood 86: 4532-4543. 

Muraoka K, Ishii E, Tsuji K, Yamamoto S, Yamaguchi H, Hara T, Koga H, Nakahata T, 
Miyazaki S 1997 Defective response to thrombopoietin and impaired expression of c-mpl 
mRNA of bone marrow cells in congenital amegakaryocytic thrombocytopenia. Br J 
Haematol 96: 287-292. 

Murphy SN and Miller RJ 1988 A glutamate receptor regulates Ca2+ mobilization in 
hippocampal neurons. Proc Natl Acad Sci USA 85: 8737-8741. 

Nagata Y, Muro Y, Todokoro K 1997 Thrombopoietin-induced polyploidization of bone 

marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J Cell Biol 

139: 449-457. 

Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M 

1999 Shank, a novel family of postsynaptic density proteins that binds to the NMDA 

receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569-582. 

Nakanishi S 1994 Metabotropic glutamate receptors: synaptic transmission, modulation, and 

plasticity. Neuron 13: 1031-1037. 

Nelemans A 1999 Measurement of [Ca2+]i in cell suspensions using indo- 1. Methods Mol 

Biol 114: 41-47. 

221 



References 

Newman PM and Chong BH 2000 Heparin-induced thrombocytopenia: new evidence for the 
dynamic binding of purified anti-PF4-heparin antibodies to platelets and the resultant platelet 
activation. Blood 96: 182-187. 

Ni B, Rosteck PR, Jr., Nadi NS, Paul SM 1994 Cloning and expression of a cDNA encoding a 
brain-specific Na(+)- dependent inorganic phosphate cotransporter. Proc Natl Acad Sci USA 
91: 5607-5611. 

Nicholls DG and Sihra TS 1986 Synaptosomes possess an exocytotic pool of glutamate. 
Nature 321: 772-773. 

Nicholls DG, Sihra TS, Sanchez-Prieto J 1987 Calcium-dependent and -independent release of 
glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 49: 50-57. 

Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM, Weiss MJ 2000 Familial 
dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA 1. 
Nat Genet 24: 266-270. 

Nicoletti F, Wroblewski JT, Novelli A, Alho H, Guidotti A, Costa E 1986 The activation of 
inositol phospholipid metabolism as a signal- transducing system for excitatory amino acids in 

primary cultures of cerebellar granule cells. J Neurosci 6: 1905-191 1. 

Nurden P, Poujol C, Nurden AT 1997 The evolution of megakaryocytes to platelets. 
Baillieres Clin Haematol 10: 1-27. 

O'Brien JR 1968 Effect of salicylates on human platelets. Lancet 1: 1431. 

O'Brien RJ, Lau LF, Huganir RL 1998 Molecular mechanisms of glutamate receptor clustering 
at excitatory synapses. Curr Opin Neurobiol 8: 364-369. 

O'Shaughnessy JA, Venzon DJ, Gossard M, Noone MH, Denicoff A, Tolcher A, Danforth D, 

Jacobson J, Keegan P, Miller L, . 
1995 A phase I study of sequential versus concurrent 

interleukin-3 and granulocyte-macrophage colony-stimulating factor in advanced breast cancer 

patients treated with FLAC (5-fluorouracil, leucovorin, doxorubicin, cyclophosphamide) 

chemotherapy. Blood 86: 2913-2921. 

Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM 1999 Constitutive Bcl-2 

expression throughout the hematopoietic compartment affects multiple lineages and enhances 

progenitor cell survival. Proc Natl Acad Sci USA 96: 14943-14948. 

Ogura M, Morishima Y, Ohno R, Kato Y, Hirabayashi N, Nagura H, Saito H 1985 

Establishment of a novel human megakaryoblastic leukemia cell line, MEG- 01, with positive 
Philadelphia chromosome. Blood 66: 1384-1392. 

Ogura M, Morishima Y, Okumura M, Hotta T, Takamoto S, Ohno R, Hirabayashi N, Nagura 

H, Saito H 1988 Functional and morphological differentiation induction of a human 

megakaryoblastic leukemia cell line (MEG-01 s) by phorbol diesters. Blood 72: 49-60. 

Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA 1991 NMDA antagonist 

neurotoxicity: mechanism and prevention. Science 254: 1515-1518. 

Olney JW and Farber NB 1995 Glutamate receptor dysfunction and schizophrenia. Arch Gen 

Psychiatry 52: 998-1007. 

Owen M 1988 Marrow stromal stem cells. J Cell Sci Suppl 10: 63-76. 

1) 1) 1) 



References 

Owens GK and Schwartz SM 1983 Vascular smooth muscle cell hypertrophe and hvperploidv 
in the Goldblatt hypertensive rat. Circ Res 53: 491-501. 

Ozawa S, Kamiya H, Tsuzuki K 1998 Glutamate receptors in the mammalian central nervous 
system. Prog Neurobiol 54: 581-618. 

Pal S, Sombati S, Limbrick DD, Jr., DeLorenzo RJ 1999 In vitro status epilepticus causes 
sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res 851: 20- 
31. 

Paoletti P, Ascher P, Neyton J 1997 High-affinity zinc inhibition of NMDA NR I -NP,, 'A 
receptors. J Neurosci 17: 5711-5725. 

Parsons CG, Danysz W, Quack G 1999 Memantine is a clinically well tolerated N-methv. l-D- 
aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology 38: 
735-767. 

Parsons CGDWQG 1998 Glutamate in CNS Disorders as a target for drug development-an 
update. Drug News Perspect 11: 523-569. 

Patel R. Holt M, Philipova R, Moss S, Schulman H, Hidaka H, Whitaker M 1999 
Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the 
G2/M phase transition in HeLa cells. J Biol Chem 274: 7958-7968. 

Patton AJ, Genever PG, Birch MA, Suva Li, Skerry TM 1998 Expression of an N-methyl-D- 
aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel 
glutamate signaling pathway in bone. Bone 22: 645-649. 

Peet NM, Grabowski PS, Laketic-Ljubojevic I, Skerry TM 1999 The glutamate receptor 
antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly 
involving osteoclast differentiation. FASEB J 13: 2179-2185. 

Perez LE, Rinder HM, Wang C, Tracey JB, Maun N, Krause DS 2001 Xenotransplantation of 
immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model 
for human megakaryocytopoiesis and platelet production. Blood 97: 1635-1643. 

Perkinton MS, Ip JK, Wood GL, Crossthwaite AJ, Williams RJ 2002 Phosphatidylinositol S- 
kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk 1/2), AktJPKB 
and CREB in striatal neurones. J Neurochem 80: 239-254. 

Poulsen LW, Melsen F, Bendix K 1998 A histomorphometric study of haematological 
disorders with respect to marrow fibrosis and osteosclerosis. APMIS 106: 495-499. 

Premkumar LS and Auerbach A 1997 Stoichiometry of recombinant N-methyl-D-aspartate 
receptor channels inferred from single-channel current patterns. J Gen Physiol 110: 485-502. 

Quinlan EM, Philpot BD, Huganir RL, Bear MF 1999 Rapid, experience-dependent 
expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2: 352-357. 

Racke FK, Wang D, Zaidi Z, Kelley J, Visvader J, Soh JW, Goldfarb AN 2001 A potential 
role for protein kinase C-epsilon in regulating megakaryocytic lineage commitment. J Biol 
Chem 276: 522-528. 

Radley JM and Scurfield G 1980 The mechanism of platelet release. Blood 56: 996-999. 

-) -N ; 



References 

Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA, Asch AS 1995 Human 
bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86: 3353-3363. 

Represa A, Tremblay E, Ben Ari Y 1987 Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience 20: 739-748. 

Rider C 1993 Many cytokines and interleukins bind to glycosaminoglycans. Immunol Today 
14: 615. 

Riederer P, Lange KW, Kornhuber J, Danielczyk W 1991 Pharmacotoxic psychosis after 
memantine in Parkinson's disease. Lancet 338: 1022-1023. 

Rojnuckarin P, Drachman JG, Kaushansky K 1999 Thrombopoietin-induced activation of the 
mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: role in 
endomitosis. Blood 94: 1273-1282. 

Rojnuckarin P and Kaushansky K 2001 Actin reorganization and proplatelet formation in 
murine megakaryocytes: the role of protein kinase calpha. Blood 97: 154-161. 

Rollinger-Holzinger I, Griesser U, Pollak V, Zwierzina H 1998 Expression and regulation of 
the thrombopoietin receptor variants MPLP and MPLK in PBMC. Cytokine 10: 795-802. 

Ross R, Raines EW, Bowen-Pope DF 1986 The biology of platelet-derived growth factor. 
Cell 46: 155-169. 

Rouyez MC, Boucheron C, Gisselbrecht S, Dusanter-Fourt I, Porteu F 1997 Control of 
thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein 
kinase pathway. Mol Cell Biol 17: 4991-5000. 

Rowin ME, Whatley RE, Yednock T, Bohnsack JF 1998 Intracellular calcium requirements 
for betal integrin activation. J Cell Physiol 175: 193-202. 

Saito H 1997 Megakaryocytic cell lines. Baillieres Clin Haematol 10: 47-63. 

Sandritter WSG 1964 Deoxyribonucleic acid content (Feulgen photometry) and dry weight 
(interference microscopy) of normal and hypertrophical heart muscle fibres. Nature 202: 100. 

Sanz C, Benet I, Richard C, Badia B, Andreu EJ, Prosper F, Fernandez-Luna JL 2001 
Antiapoptotic protein Bcl-x(L) is up-regulated during megakaryocytic differentiation of 
CD34(+) progenitors but is absent from senescent megakaryocytes. Exp Hematol 29: 728- 
735. 

Sato Y, Waki M, Ohno M, Kuwano M, Sakata T 1993 Carboxyl-terminal heparin-binding 
fragments of platelet factor 4 retain the blocking effect on the receptor binding of basic 
fibroblast growth factor. Jpn J Cancer Res 84: 485-488. 

Scheffzek K, Lautwein A, Kabsch W, Ahmadian MR, Wittinghofer A 1996 Crystal structure 
of the GTPase-activating domain of human p 120GAP and implications for the interaction with 
Ras. Nature 384: 591-596. 

Schick PK, Wojenski CM, Bennett VD, Ivanova T 1996 The synthesis and localization of 

alternatively spliced fibronectin EIIIB in resting and thrombin-treated megakaryocytes. Blood 

87: 1817-1823. 

224 



References 

Schick PK, Wojenski CM, He X, Walker J, Marcinkiewicz C, Niewiarowski S 1998 Integrins 
involved in the adhesion of megakaryocytes to fibronectin and fibrinogen. Blood 92: 2650- 
2656. 

Schwer HD, Lecine P, Tiwari S, Italiano JE, Jr., Hartwig JH, Shivdasani RA ? 001 A lineage- 
restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 11: 579-586. 

Seeburg PH 1993 The TINS/TIPS Lecture. The molecular biology of mammalian glutamate 
receptor channels. Trends Neurosci 16: 359-365. 

Seeman E 2002 Pathogenesis of bone fragility in women and men. Lancet 359: 1841-1850. 

Shannon HE and Sawyer BD 1989 Glutamate receptors of the N-methyl-D-aspartate subtype 
in the myenteric plexus of the guinea pig ileum. J Pharmacol Exp Ther 251: 518-523. 

Sharkey NA and Blumberg PM 1985 Kinetic evidence that 1,2-diolein inhibits phorbol ester 
binding to protein kinase C via a competitive mechanism. Biochem Biophys Res Commun 
133: 1051-1056. 

Shen K and Meyer T 1999 Dynamic control of CaMKII translocation and localization in 
hippocampal neurons by NMDA receptor stimulation. Science 284: 162-166. 

Sheng M, Thompson MA, Greenberg ME 1991 CREB: a Ca(2+)-regulated transcription factor 
phosphorylated by calm oduIin-dependent kinases. Science 252: 1427-1430. 

Sheng M and Pak DT 2000 Ligand-gated ion channel interactions with cytoskeletal and 
signaling proteins. Annu Rev Physiol 62 : 755-778. 

Sheng M 2001 Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci 
USA 98: 7058-7061. 

Shivdasani RA and Orkin SH 1995 Erythropoiesis and globin gene expression in mice lacking 
the transcription factor NF-E2. Proc Natl Acad Sci USA 92: 8690-8694. 

Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH 
1995 Transcription factor NF-E2 is required for platelet formation independent of the actions 
of thrombopoietin/MGDF in megakaryocyte development. Cell 81: 695-704. 

Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH 1997 A lineage-selective knockout 

establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and 
platelet development. EMBO J 16: 3965-3973. 

Shivdasani RA 2001 Molecular and transcriptional regulation of megakaryocyte 
differentiation. Stem Cells 19: 397-407. 

Simoons ML 2001 Effect of glycoprotein Ilb/111a receptor blocker abciximab on outcome in 

patients with acute coronary syndromes without early coronary revascularisation: the GUSTO 

IV-ACS randomised trial. Lancet 357: 1915-1924. 

Simske JS, Kaech SM, Harp SA, Kim SK 1996 LET-23 receptor localization by the cell 
junction protein LIN-7 during C. elegans vulval induction. Cell 85: 195-204. 

Sin WC, Haas K, Ruthazer ES, Cline HT 2002 Dendrite growth increased by visual activity 

requires NMDA receptor and Rho GTPases. Nature 419: 475-480. 

225 



References 

Single FN, Rozov A, Burnashev N, Zimmermann F, Hanley DF, Forrest D, Curran T, Jensen 
V, Hvalby 0, Sprengel R, Seeburg PH 2000 Dysfunctions in mice by NMDA receptor point 
mutations NR 1(N598Q) and NR I (N598R). J Neurosci 20: 2558-2566. 

Sitnicka E, Lin N, Priestley GV, Fox N, Broudy VC, Wolf NS, Kaushansky K 1996 The effect 
of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87: 4998-5005. 

Skerry TM and Genever PG 2001 Glutamate signalling in non-neuronal tissues. Trends 
Pharmacol Sci 22: 174-181. 

Skoda RC, Seldin DC, Chiang MK, Peichel CL, Vogt TF, Leder P 1993 Murine c-mpl: a 
member of the hematopoietic growth factor receptor superfamily that transduces a 
proliferative signal. EMBO J 12: 2645-2653. 

Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S 1985 Glutamate stimulates inositol 
phosphate formation in striatal neurones. Nature 317: 717-719. 

Slater DN, Trowbridge EA, Martin JF 1983 The megakaryocyte in thrombocytopenia: a 
microscopic study which supports the theory that platelets are produced in the pulmonary 
circulation. Thromb Res 31: 163-176. 

Smith MP, Cramer EM, Savidge GF 1997 Megakaryocytes and platelets in alpha-granule 
disorders. Baillieres Clin Haematol 10: 125-148. 

Smith MP, Cramer EM, Savidge GF 1997 Megakaryocytes and platelets in alpha-granule 
disorders. Baillieres Clin Haematol 10: 125-148. 

Sobolevsky Al, Koshelev SG, Khodorov BI 1998 Interaction of memantine and amantadine 
with agonist-unbound NMDA- receptor channels in acutely isolated rat hippocampal neurons. 
J Physiol 512 (Pt 1): 47-60. 

Soderling TR 2000 CaM-kinases: modulators of synaptic plasticity. Curr Opin Neurobiol 10: 
375-380. 

Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi 
T. Sakmann B, Seeburg PH 1990 Flip and flop: a cell-specific functional switch in glutamate- 
operated channels of the CNS. Science 249: 1580-1585. 

Sprengel R and Single FN 1999 Mice with genetically modified NMDA and AMPA receptors. 
Ann NY Acad Sci 868: 494-501. 

Stahl CP, Zucker-Franklin D, Evatt BL, Winton EF 1991 Effects of human interleukin-6 on 
megakaryocyte development and thrombocytopoiesis in primates. Blood 78: 1467-1475. 

Stathakis DG, Hoover KB, You Z, Bryant PJ 1997 Human postsynaptic density-95 (PSD95): 
location of the gene (DLG4) and possible function in nonneural as well as in neural tissues. 
Genomics 44: 71-82. 

Steigerwald F, Schulz TW. Schenker LT, Kennedy MB, Seeburg PH, Kohr G 2000 C- 
Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of 
NMDA receptors. J Neurosci 20: 4573-4581. 

Sterkers Y, Preudhomme C, Lai JL. Demory JL, Caulier MT, Wattel E. Bordessoule D. 

Bauters F, Fenaux P 1998 Acute myeloid leukemia and myelodysplastic syndromes following 

226 



References 

essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p 
deletion. Blood 91: 616-622. 

Stevens CF, Tonegawa S, Wang Y 1994 The role of calcium-calmodulin kinase II in three forms of synaptic plasticity. Curr Biol 4: 687-693. 

Stone TW and Addae JI 2002 The pharmacological manipulation of glutamate receptors and 
neuroprotection. Eur J Pharmacol 447 : 285-296. 

Sucher NJ, Awobuluyi M, Choi YB, Lipton SA 1996 NMDA receptors: from genes to 
channels. Trends Pharmacol Sci 17: 348-355. 

Sugiyama H, Ito I, Hirono C 1987 A new type of glutamate receptor linked to inositol 
phospholipid metabolism. Nature 325: 531-533. 

Sweatt JD 2001 The neuronal MAP kinase cascade: a biochemical signal integration system 
subserving synaptic plasticity and memory. J Neurochem 76: 1-10. 

Tablin F, Castro M, Leven RM 1990 Blood platelet formation in vitro. The role of the 
cytoskeleton in megakaryocyte fragmentation. J Cell Sci 97 ( Pt 1): 59-70. 

Takamori S, Rhee JS, Rosenmund C, Jahn R 2000 Identification of a vesicular glutamate 
transporter that defines a glutamatergic phenotype in neurons. Nature 407: 189-194. 

Takamori S, Rhee JS, Rosenmund C, Jahn R 2001 Identification of differentiation-associated 
brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J 
Neurosci 21: RC 182. 

Takeuchi K, Satoh M, Kuno H, Yoshida T, Kondo H, Takeuchi M 1998 Platelet-like particle 
formation in the human megakaryoblastic leukaemia cell lines, MEG-01 and MEG-01 Is. Br J 
Haematol 100: 436-444. 

Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S 1992 A family of metabotropic 
glutamate receptors. Neuron 8: 169-179. 

Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S 1993 Signal 
transduction, pharmacological properties, and expression patterns of two rat metabotropic 
glutamate receptors, mGluR3 and mGluR4. J Neurosci 13: 1372-1378. 

Tavassoli M 1980 Megakaryocyte--platelet axis and the process of platelet formation and 
release. Blood 55: 537-545. 

Tavassoli M and Aoki M 1981 Migration of entire megakaryocytes through the marrow-- 
blood barrier. Br J Haematol 48: 25-29. 

Taylor AF 2000 Bone formation/resorption and osteoblast/adipocyte plasticity mediated by 

AMPA/kainate glutamate receptors in vitro and in vivo. J Bone Miner. Res 15: SA222- 

Abstract) 

Teitelbaum SL 2000 Bone resorption by osteoclasts. Science 289: 1504-1508. 

Teramura M, Kobayashi S, Hoshino S, Oshimi K. Mizoguchi H 1992 Interleukin-1 I enhances 
human megakaryocytopoiesis in vitro. Blood 79: 327-331. 

2'7 



References 

Theroux P, Ouimet H, McCans J, Latour JG, Joly P, Levy G, Pelletier E, Juneau M. Stasiak J. 
deGuise P, . 1988 Aspirin, heparin, or both to treat acute unstable angina. N Engt J Med 319: 
1105-1111. 

Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK 1994 
Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in 
bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135: 929-937. 

Thiede MA, Smock SL, Mason-Savas A, MacKay CA, Odgren PR, Marks SC. Jr. 1996 
Thrombocytopenia in the toothless (osteopetrotic) rat and its rescue by treatment with colon- -stimulating factor-1. Exp Hematol 24: 722-727. 

Thomas D, Mason MJ, Mahaut-Smith MP 2001 Depolarisation-evoked Ca2+ waves in the 
non-excitable rat megakaryocyte. J Physiol 537: 371-378. 

Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL 1997 
Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D- 
aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 
272: 5157-5166. 

Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H 1990 KN-62, I- 
[N, O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazi ne, a specific 
inhibitor of Ca2+/calmodulin-dependent protein kinase 11. J Biol Chem 265: 4315-4320. 

Tomer A, Friese P, Conklin R, Bales W, Archer L, Harker LA, Burstein SA 1989 Flow 
cytometric analysis of megakaryocytes from patients with abnormal platelet counts. Blood 74: 
594-601. 

Tomer A 2002 Effects of anagrelide on in vivo megakaryocyte proliferation and maturation in 
essential thrombocythemia. Blood 99: 1602-1609. 

Topol EJ 1998 Toward a new frontier in myocardial reperfusion therapy: emerging platelet 
preeminence. Circulation 97: 211-218. 

Tortolani PJ, Johnston JA, Bacon CM, McVicar DW, Shimosaka A, Linnekin D, Longo DL, 
O'Shea JJ 1995 Thrombopoietin induces tyrosine phosphorylation and activation of the Janus 
kinase, JAK2. Blood 85: 3444-3451. 

Traver D, Miyamoto T, Christensen J, Iwasaki-Arai J, Akashi K. Weissman IL 2001 Fetal 
liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood 
98: 627-635. 

Trowbridge EA 1988 Pulmonary platelet production: a physical analogue of mitosis? Blood 
Cells 13: 451-465. 

Tsang AP, Fujiwara Y, Hom DB, Orkin SH 1998 Failure of megakaryopoiesis and arrested 

erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev 12- 

1176-1188. 

Valles J, Santos MT, Aznar J, Martinez M. Moscardo A. Pinon M. Broekman MJ, Marcus AJ 

2002 Platelet-erythrocyte interactions enhance alpha(lIb)beta(3) integrin receptor activation 

and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. 
Blood 99: 3978-3984. 

228 



References 

van Rossurn D, Kuhse J, Betz H 1999 Dynamic interaction between soluble tubulin and C- 
terminal domains of N- methyl-D-aspartate receptor subunits. J Neurochem 72: 962-97;. 

Vannucchi AM, Grossi A, Rafanelli D, Ferrini PR 1990 In vivo stimulation of 
megakaryocytopoiesis by recombinant murine granulocyte-macrophage colon}-stimulating factor. Blood 76: 1473-1480. 

Verfaillie CM, McCarthy JB, McGlave PB 1991 Differentiation of primitive human 
multipotent hematopoietic progenitors into single lineage clonogenic progenitors is 
accompanied by alterations in their interaction with fibronectin. J Exp Med 174: 693-703. 

Verheugt FW and Gersh BJ 2002 Aspirin beyond platelet inhibition. Am J Cardiol 90: 39-41. 

Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB. Grayson DR 1998 
Functional and pharmacological differences between recombinant N-methyl- D-aspartate 
receptors. J Neurophysiol 79: 555-566. 

Vignes M and Collingridge GL 1997 The synaptic activation of kainate receptors. Nature 
388: 179-182. 

Vitrat N, Cohen-Solal K, Pique C, Le Couedic JP, Norol F, Larsen AK, Katz A. Vainchenker 
W, Debili N 1998 Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 
91: 3711-3723. 

Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA 1999 Consequences of GATA-1 
deficiency in megakaryocytes and platelets. Blood 93: 2867-2875. 

Wakikawa T, Shioi A, Hino M, Inaba M, Nishizawa Y, Tatsumi N, Morii H, Otani S 1997 
Thrombopoietin inhibits in vitro osteoclastogenesis from murine bone marrow cells. 
Endocrinology 138: 4160-4166. 

Watkins JC and Evans RH 1981 Excitatory amino acid transmitters. Annu Rev Pharmacol 
Toxicol 21: 165-204. 

Watkins JC 2000 I-glutamate as a central neurotransmitter: looking back. Biochem Soc Trans 
28: 297-309. 

Weiss RE and Reddi AH 1981 Appearance of fibronectin during the differentiation of 
cartilage, bone, and bone marrow. J Cell Biol 88: 630-636. 

Wendling F, Maraskovsky E, Debili N, Florindo C, Teepe M, Titeux M, Methia N, Breton- 
Gorius J, Cosman D. Vainchenker W 1994 cMpl ligand is a humoral regulator of 
megakaryocytopoiesis. Nature 369: 571-574. 

Wendung F and Han ZC 1997 Positive and negative regulation of megakaryocytopoiesis. 
Baillieres Clin Haematol 10: 29-45. 

Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD 
1999 Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. 
Science 285: 93-96. 

Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL 1986 The 

anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci US 

A 83: 7104-7108. 

�q 



References 

Woodruff GN, Foster AC, Gill R, Kemp JA, Wong EH, Iversen LL 1987 The interaction 
between MK-801 and receptors for N-methyl-D-aspartate: functional consequences. Neuropharmacology 26: 903-909. 

Wozniak DF, Dikranian K, Ishimaru MJ, Nardi A, Corso TD, Tenkova T, Olney JW, Fix AS 1998 Disseminated corticolimbic neuronal degeneration induced in rat brain by MK-801: 
potential relevance to Alzheimer's disease. Neurobiol Dis 5: 305-322. 

Wright JH 1906 Th origin and nature of blood platelets. Boston Medical Surgery, Journal 154: 
643-645. 

Wright JH 1910 The histogenesis of the blood platelets. Journal of Morphology 21: 263. 

Wu X and McMurray CT 2001 Calmodulin kinase II attenuation of gene transcription by 
preventing cAMP response element-binding protein (CREB) dimerization and binding of the 
CREB-binding protein. J Biol Chem 276: 1735-1741. 

Wyllie DJ, Behe P, Colquhoun D 1998 Single-channel activations and concentration jumps: 
comparison of recombinant NR 1 a/NR2A and NR I a/NR2D NMDA receptors. J Physiol 510 
Pt 1): 1-18. 

Xi X, Caen JP, Fournier S, Schlegel N, Amiral J, Sibony 0, Blot P, Han ZC 1996 Direct and 
reversible inhibition of platelet factor 4 on megakaryocyte development from CD34+ cord 
blood cells: comparative studies with transforming growth factor beta]. Br J Haematol 93: 
265-272. 

Xia Z. Dudek H, Miranti CK, Greenberg ME 1996 Calcium influx via the NMDA receptor 
induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J 
Neurosci 16: 5425-5436. 

Yamazaki Y, Sanokawa R, Fujita Y, Zhou D, Kawasaki K, Tanaka H, Komatsu T, Nagasawa 
T, Oka S 1999 Cytoplasmic elongation and rupture in megakaryoblastic leukemia cells via 
activation of adhesion and motility by staurosporine on fibronectin- bound substratum. J Cell 
Physiol 179: 179-192. 

Yan XQ, Lacey D, Hill D, Chen Y, Fletcher F, Hawley RG, McNiece 1K 1996 A model of 
myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl 
ligand): reversal of disease by bone marrow transplantation. Blood 88: 402-409. 

Young JC, Bruno E, Luens KM, Wu S, Backer M, Murray U 1996 Thrombopoietin stimulates 
megakaryocytopoiesis, myelopoiesis, and expansion of CD34+ progenitor cells from single 
CD34+Thy-1 +Lin- primitive progenitor cells. Blood 88: 1619-1631. 

Zajaczkowski W, Frankiewicz T, Parsons CG, Danysz W 1997 Uncompetitive NMDA 

receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and 
LTP. Neuropharmacology 36: 961-971. 

Zauli G, Bassini A, Vitale M, Gibellini D, Celeghini C, Caramelli E, Pierpaoli S, Guidotti L, 

Capitani S 1997 Thrombopoietin enhances the alpha Ilb beta 3-dependent adhesion of 

megakaryocytic cells to fibrinogen or fibronectin through PI 3 kinase. Blood 89: 883-895. 

Zauli G, Gibellini D, Vitale M, Secchiero P. Celeghini C, Bassini A. Pierpaoli S. Marchisio 

M, Guidotti L, Capitani S 1998 The induction of megakaryoc}Ie differentiation is 

accompanied by selective Ser133 phosphorýylation of the transcription factor CREB in both 

HEL cell line and primary CD34+ cells. Blood 92: 472-480. 

'30 



References 

Zhang Y, Wang Z, Ravid K 1996 The cell cycle in polyploid megakaryoc, )Ies is associated 
with reduced activity of cyclin B 1-dependent cdc2 kinase. J Biol Chem 271: 4266-4272. 

Zhang Y, Wang Z, Liu DX, Pagano M, Ravid K 1998 Ubiquitin-dependent degradation of 
cyclin B is accelerated in polyploid megakaryocytes. J Biol Chem 273: 1387-1392. 

Zheng X, Zhang L, Wang AP, Bennett MV, Zukin RS 1999 Protein kinase C potentiation of 
N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D- 
aspartate receptor subunits. Proc Natl Acad Sci USA 96: 15262-15267. 

Zimmet J and Ravid K 2000 Polyploidy: occurrence in nature, mechanisms, and significance 
for the megakaryocyte-platelet system. Exp Hematol 28: 3-16. 

Zon LI 1995 Developmental biology of hematopoiesis. Blood 86: 2876-2891. 

Zucker-Franklin D and Philipp CS 2000 Platelet production in the pulmonary capillary bed: 

new ultrastructural evidence for an old concept. Am J Pathol 157: 69-74. 

Zweegman S, Veenhof MA, Huijgens PC, Schuurhuis GJ, Drager AM 2000 Regulation of 
megakaryocytopoiesis in an in vitro stroma model: preferential adhesion of megakaryocytic 
progenitors and subsequent inhibition of maturation. Exp Hematol 28: X101-410. 

2:, 1 


