
The Principled Design of Computer System Safety 

Analyses 

David John Pumfrey 

Submitted for the degree of Doctor of Philosophy 

University of York 

Department of Computer Science 

September 1999 



For my parents 

5 

UNIVERSIN 
OF YORK 
LIBRARY 



Abstract 

Safety critical computing is a relatively young and rapidly developing technology, which 

nevertheless is being deployed in applications where a single accident may have extremely severe 

consequences. The safety record of critical systems presently in service is reasonably good, but 

increasing expectations of functionality and performance are challenging the capabilities of 

current design and assessment processes. One specific area where limitations of existing methods 

are becoming obvious is in the analysis techniques that are used to derive safety requirements and 

to provide evidence that they have been satisfied. There are significant practical problems in 

using existing analysis techniques to evaluate computer systems, but few viable new computer- 

specific methods have been developed. 

This thesis proposes and evaluates a set of principles for the design of effective techniques to 

address novel computer system safety analysis requirements. The principles are based on an 

appreciation of the technical concepts underlying successful existing system level analysis 
techniques, and of the practical qualities necessary to make a method industrially acceptable. The 

principles are applied in the development of two new safety analysis techniques for systems 

containing computers. 

The first new technique developed is Software Hazard Analysis and Resolution in Design 
(SHARD), a variant of the process industries' HAZOP technique. SHARD provides a structured 
approach to the identification of potentially hazardous behaviour in software systems. The second 
technique, Low-level Interaction Safety Analysis (LISA), implements a novel analysis approach 
based on a concept of system resources. It provides a method for establishing detailed evidence 

about the safety implications of interactions between software and the hardware upon which it is 

executed. The thesis describes the evaluation of the techniques through a series of large scale 

case studies and industrial trials. 

3 



Contents 

List of Tables ................................................................................................................................ 
11 

Acknowledgments ...................................................................................................................... 
12 

Author's Declaration ................................................................................................................... 
13 

Chapter 1 Introduction .............................................................................................................. 15 

1.1 The Sinking of the Titanic ................................................................................................. 
15 

1.2 The destruction of the Hindenburg .................................................................................... 
18 

1.3 Learning from history ........................................................................................................ 
20 

1.4 Implications for computer system safety ........................................................................... 
22 

1.5 Thesis Proposition .............................................................................................................. 
24 

1.6 Thesis Structure ................................................................................................................. 
24 

Chapter 2 Survey of system safety and hazard analysis techniques ...................................... 27 

2.1 Definitions ......................................................................................................................... 
27 

2.2 System and safety lifecycles .............................................................................................. 
29 

2.2.1 Haza rd Iden tift ca tion ................................................................................................. 
29 

2.2.2 Risk Assessment ......................................................................................................... 
29 

2.2.3 Preliminary System Safety Assessment ...................................................................... 
30 

2.2.4 System Safety Analysis ............................................................................................... 
31 

2.2.5 Common Cause / Common Mode Analysis ................................................................ 
31 

2.2.6 Delivery of safety case ............................................................................................... 
32 

2.3 Selection of analysis techniques ....................................................................................... . 32 

2.4 Example system ................................................................................................................ . 35 

2.5 Preliminary Hazard Identification (PHI) .......................................................................... . 37 

2.6 Naked Man ........................................................................................................................ . 37 

2.7 Functional Failure Analysis (FFA) ................................................................................... . 40 

2.8 HAZard and Operability Studies (HAZOP) ...................................................................... . 43 

2.9 Failure Modes and Effects Analysis ................................................................................. . 48 

2.10 Fault Trees .................................................................................................................... . 50 

2.11 Sneak Analysis .............................................................................................................. . 55 

2.12 Event Trees .................................................................................................................... 
58 

2.13 Cause-Consequence Analysis ........................................................................................ 59 

5 



2.14 Zonal Hazard Analysis (ZHA) ...................................................................................... 61 

2.15 Conclusions ................................................................................................................... 62 

Chapter 3A framework of concepts ........................................................................................ 63 

3.1 Hazards .............................................................................................................................. 63 

3.1.1 Endogenous and exogenous hazards ......................................................................... 65 

3.1.2 Hazards as risk thresholds ........................................................................................ 65 

3.1.3 Hazards as decision points in event sequences ......................................................... 66 

3.1.4 Hazards asfailures ofenergy containment ............................................................... 68 

3.1.5 Summary ofhazard characteristics ........................................................................... 69 

3.2 Faults and failures ............................................................................................................. 69 

3.2.1 Systematic Failure ..................................................................................................... 72 

3.3 A dictionary of concepts in analysis techniques ................................................................ 72 

3.4 Classifying Hazard and Safety Analysis Techniques ........................................................ 77 

3.5 Conclusions ....................................................................................................................... 81 

Chapter 4A survey of computer system safety analysis techniques ..................................... 83 

4.1 Inductive Methods ............................................................................................................. 
83 

4.2 HAZOP .............................................................................................................................. 
84 

4.3 Fault Trees ......................................................................................................................... 
86 

4.4 Petri Net Analysis .............................................................................................................. 89 

4.5 Classification of computer system failures ........................................................................ 92 

4.6 FPTN ................................................................................................................................. 94 

4.7 Conclusions ....................................................................................................................... 95 

Chapter 5 Principles for computer system safety analysis .................................................... 97 

5.1 Principle 1: Safety analysis must have value as part of the engineering process .............. 97 

5.2 Principle 2: Method is more important than notation ........................................................ 98 

5.3 Principle 3: Techniques should be as simple as possible ................................................ 100 

5.4 Principle 4: Techniques should guide without unnecessarily constraining ..................... 103 

5.5 Principle 5: The role of the technique should be clear .................................................... 104 
5.6 Principle 6: Safety analysis starts at the system level 

..................................................... 106 

5.7 Principle 7: Projective analyses are key to software safety ............................................. 108 

5.8 Principle 8: Safety analyses must consider hardware and software ................................ 110 

5.9 Principle 9: Techniques should use familiar concepts and models ................................. 113 

5.10 Conclusions ................................................................................................................. 114 

6 



Chapter 6 Putting principles into practice: background to the development of new analysis 
techniques 115 

6.1 Projective analysis for software safety ............................................................................ 115 

6.2 Analysis of hardware / software interactions ................................................................... 118 

6.2.1 Use of operating systems in safety critical applications .......................................... 118 

6.2.2 Monolithic Software vs. Operating Systems ............................................................ 121 

6.2.3 The safety challenges ofoperating systems ............................................................. 125 

6.2.4 First steps ................................................................................................................. 128 

6.3 Conclusions ...................................................................................................................... 128 

Chapter 7 Software Hazard Analysis and Resolution In Design (SHARD) ........................ 129 

7.1 Initial Technical Approach .............................................................................................. 130 

7.2 Case Study I .................................................................................................................... 134 

7.3 Case Study 2 .................................................................................................................... 136 

7.3.1 Working as a team ................................................................................................... 139 

7.3.2 Recording the results ............................................................................................... 141 

7.3.3 Comparison ofSHARD results with previous analyses ........................................... 141 

7.3.4 Technical conclusions .............................................................................................. 142 

7.4 Postscript to Case Study 2- Revised working practices and technical approach ........... 144 

7.5 Case Study 3 ....................................... ............................................................................. 146 

7.5.1 Analysis and Design Revision .................................................................................. 146 

7.5.2 Order of analysis ..................................................................................................... 147 

7.5.3 Revisions to the guide words .................................................................................... 149 

7.5.4 Integrating application, operating system and hardware analyses ......................... 149 

7.5.5 Process issues .......................................................................................................... 152 

7.6 Case Study 4 .................................................................................................................... 152 

7.7 Other case studies ............................................................................................................ 155 

7.8 The SHARD method ........................................................................................................ 155 

7.8.1 Introductory notes .................................................................................................... 156 

7.8.2 Recording the Analysis ............................................................................................ 157 

7.8.3 SHARD Steps ........................................................................................................... 158 

7.9 Conclusions ....................................................................................................................... 173 

Chapter 8 Low-level Interaction Safety Analysis (LISA) ..................................................... 175 

8.1 Background ...................................................................................................................... 175 
8.1.1 Case Study Analysis Requirements .......................................................................... 175 

7 



8.1.2 Case Study Safety Principles ................................................................................... 
177 

8.1.3 Case Study Analysis Approach ................................................................................ 
179 

8.2 LIS A Principles ............................................................................................................... 
180 

8.2.1 Identifying and Classifying Resources .................................................................... 
180 

8.2.2 Resource Dependencies ........................................................................................... 
182 

8.2.3 Safety Argumentsfor Resources .............................................................................. 183 

8.2.4 Failure mode identification in LISA ........................................................................ 185 

8.2.5 Failure mode interpretation and arguments ofacceptability .................................. 186 

8.2.6 Selection ofanalysts ................................................................................................ 187 

8.2.7 Review ofLISA principles ....................................................................................... 187 

8.3 LISA method ................................................................................................................... 188 

8.4 The Cockpit System Case Study ..................................................................................... 194 

8.4.1 System definition ...................................................................................................... 
194 

8.4.2 Analysis ................................................................................................................... 195 

8.4.3 Sample analysis output ............................................................................................ 
198 

8.5 Conclusions ..................................................................................................................... 
199 

Chapter 9 Evaluation .............................................................................................................. 
203 

9.1 Contribution to safety analysis theory ............................................................................. 
203 

9.2 Evaluation of new safety analysis techniques ................................................................. 
204 

9.3 Review of SHARD with respect to the analysis principles ............................................. 
207 

9.4 Relationship of SHARD to Def Stan 00-58 HAZOP ...................................................... 
209 

9.5 Review of LISA with respect to the analysis principles .................................................. 209 

Chapter 10 Conclusions ............................................................................................................ 
213 

10.1 Substantiation of the thesis proposition ....................................................................... 
213 

10.2 Concluding remarks ..................................................................................................... 
214 

10.3 Future work areas ........................................................................................................ 
215 

10.3.1 Extension ofSHARD to StateCharts .................................................................... 215 

10.3.2 Extension ofSHARD to Object Oriented Design ................................................ 215 

10.3.3 Integration oftechnical and humanfactors analysis in SHARD ......................... 216 

10.3.4 Further trials and extensions of the LISA approach ........................................... 216 

10.3.5 Further validation oftheprinciples .................................................................... 217 

10.3.6 Designfor analysis and safety argument construction ....................................... 217 

10.3.7 Formal specification of safety properties ............................................................ 218 

References .................................................................................................................................. 219 

8 



List of Figures 

Figure I- Division of Titanic's hull into compartments ................................................................ 
17 

Figure 2-V lifecycle model showing safety activities .................................................................. 
29 

Figure 3- Main components of vehicle speed sensor subsystem .................................................. 
36 

Figure 4- Vehicle speed sensor waveforms .................................................................................. 
36 

Figure 5- Unsafe nrocess nlant concent ........................................................................................ 
39 

Figure 6- Safer mixer concet)t ...................................................................................................... 
39 

Figure 7- Partial function hierarchy tree for a car ......................................................................... 
42 

Figure 8- Fragment of Piping and Instrumentation (P&I) diagram, adapted from Kletz ............. 47 

Figure 9- Standard Fault Tree notation ......................................................................................... 
51 

Figure 10 - Villemeur's decomposition of component failure causes ............................................ 
52 

Figure II- Fault tree for "No vehicle speed data supplied to gearbox controller ......................... 54 

Figure 12 - Simple example of minimal cut-sets ........................................................................... 
54 

Figure 13 - Sneak circuit patterns .................................................................................................. 
56 

Figure 14 - Sample event tree for the vehicle speed sensor example ............................................ 58 

Figure 15 - Symbols used for the consequence part of a Cause Consequence Diagram ............... 59 

Figure 16 - Cause Consequence Diagram for the vehicle speed sensor example .......................... 60 

Figure 17 - Relationship of hazard to causes and possible outcomes ............................................ 66 

Figure 18 - Fenelon's analysis technique classification matrix ...................................................... 77 

Figure 19 - Representing fault tree analysis as a change of state .................................................. 
78 

Figure 20 - Expanded classification matrix ................................................................................... 
78 

Figure 21 - Minimal set of techniques represented as a time line .................................................. 
79 

Figure 22 - "Outside in" model of analysis in a project ................................................................. 
80 

Figure 23 - Leveson's fault tree templates for Ada statements ..................................................... . 87 

Figure 24 - Fragment of template based SFTA analysis ............................................................... . 89 

Figure 25 - Simple Petri Net representation of a level crossing ................................................... . 90 

Figure 26 - Reachability graph for the level crossing example .................................................... . 91 

Figure 27 - Example of a critical state .......................................................................................... . 91 

Figure 28 - Ezhilchelvan and Shrivastava's fault / failure ordering hierarchy .............................. . 92 

Figure 29 -A single FPTN module ............................................................................................... 
94 

Figure 30 - FPTN module showing hierarchical decomposition ................................................... 
95 

Figure 31 - Process with deductive confirmatory analysis .......................................................... 109 

Figure 32 - Fault tree for assignment showing some hardware failure contributions .................. III 

Figure 33 - Monolithic system structure ...................................................................................... 
122 

Figure 34 - System structure with operating system .................................................................... 124 

9 



Figure 35 - Outline of SHARD analysis as an integral design activity ....................................... 145 

Figure 36 - Fault tree representation of inclusion of hardware and operating system failure modes 
inSHARD ........................................................................................................................... 150 

Figure 37 - Relationship between possible, actual, suggested and expectd deviations ............... 154 

Figure 38 - SHARD flowchart .................................................................................................... 158 

Figure 39 - Example to illustrate order of analysing flows in SHARD ....................................... 160 

Figure 40 - Write to / read from store as equivalent of Mascot pool protocol ............................ 162 

Figure 41 - Illustration of different cases of omission failure ..................................................... 166 

Figure 42 - Illustration of failure propagation and transformation .............................................. 168 

Figure 43 - Simple system illustrating generic causes in SHARD .............................................. 169 

Figure 44 - Cockpit display system schematic ............................................................................ 176 

Figure 45 - Illustration of circular resource dependencies .......................................................... 182 

Figure 46 - Case study system hardware ..................................................................................... 194 

10 



List of Tables 

Table I- Summary of safety analysis techniques identified ......................................................... 34 

Table 2- Fragment of FFA output for the vehicle speed sensor example ..................................... 41 

Table 3- Process HAZOP guide words ......................................................................................... 45 

Table 4- Fragment of HAZOP output ........................................................................................... 47 

Table 5- Fragment of FMEA for the vehicle speed sensor example ............................................ 50 
Table 6- Failure classifications used to structure SHARD guide words ..................................... 131 

Table 7- Example guide words for MASCOT 3 ......................................................................... 133 

Table 8- Sample of SHARD output for the Computer Assisted Braking system ...................... 151 

Table 9- Properties of MASCOT Pool and Signal communication protocols ............................ 163 

Table 10 - Sample of LISA event analysis output ....................................................................... 200 

Table II- Sample generic arguments used in the LISA case study ........................................... 201 

Table 12 - Sample of LISA resource analysis output .................................................................. 202 

Table 13 - SHARD and LISA evaluation activities ..................................................................... 206 

II 



Acknowledgments 

I would like to thank my supervisor, Professor John McDermid, whose help, encouragement and 

patience have been invaluable. 

This thesis has a large practical element, and I would like to thank British Aerospace for allowing 

me to observe and participate in so many of their projects, and for the time and resources they 

have committed to case studies and discussions of the work. Particular thanks must go to John 

Anderson and Mike Burke, the British Aerospace Dependable Computing Systems Centre 

(DCSC) research managers at York, for the time and effort they have devoted to finding suitable 

case studies, arranging contacts, and promoting this work within the company. 

Too many engineers within the company have participated in case studies to name everyone 
individually, but special thanks are due to the co-ordinators of the biggest projects: Chris Harper, 

formerly of British Aerospace Airbus, Matt Tucknott of British Aerospace (now Matra-BAe) 

Dynamics, and Dave Ogden and Duncan Rawsthome of British Aerospace Military Aircraft and 
Aerostructures (BAe MA&A). 

Within the Department at York, I would particularly like to thank John Clark, Tim Kelly and 
Mark Nicholson for their friendship, support and constructive comments; also Neil Audsley for 

his contribution to the LISA case study. 

Finally, on a personal note, I could not have got this far without the support and encouragement 

of Abi Robertson, who has helped me keep life in perspective throughout the writing up of this 

thesis. 

12 



Author's Declaration 

Some of the material presented in this thesis has previously been published in the following 

papers: 
J. A. McDermid and D. J. Purnfrey, 1994, "A Development of Hazard Analysis to 

aid Software Design, " COMPASS 94: Proceedings of the Ninth Annual Conference 

on Computer Assurance, Gaithersburg, MD, pp. 17-25, IEEE, ISBN 0-7803-1855- 

2. 

J. A. McDermid, M. Nicholson, D. J. Pumfrey, and P. Fenelon, 1995, "Experience 

with the Application of HAZOP to Computer-Based Systems, " COMPASS 95: 

Proceedings of the Tenth Annual Conference on Computer Assurance, 

Gaithersburg, MD, pp. 37-48, IEEE, ISBN 0-7803-2680-2. 

J. A. McDermid and D. J. Purnfrey, 1998, "Safety Analysis of Hardware / Software 

Interactions in Complex Systems, " Proceedings of the 16th International System 

Safety Conference, Seattle, Washington, pp. 232-241, System Safety Society, P. O. 

Box 70, Unionville, Virginia 22567-0070, USA. 

J. A. McDermid and D. J. Purrifrey, 2000, "Assessing the Safety of Integrity Level 

Partitioning in Software, " Lessons in System Safety: Proceedings of the Eighth 

Safety-critical Systems Symposium, Southampton, Ed. F. Redmill and T. Anderson, 

pp. 134-152, Springer, ISBN 1-85233-249-2. 

Some of the examples and diagrams used in Chapter 2 were originally written by the author for 

use in course notes and exercises for the Safety and Hazard Analysis module of the Department 

of Computer Science's MSc in Safety Critical Systems Engineering and a related series of 
industrial courses. 

All of the work contained within this thesis represents the original contribution of the author. 

13 





Chapter I 

Introduction 

1.1 The Sinking of the Titanic 

Early in the afternoon of I Ph April 1912, the R. M. S. Titanic left Queenstown (now Cobh), 

Ireland, her last port of call before her maiden transatlantic voyage. 882Y2 feet long, 92Y2 feet 

wide, over 175 feet from the keel to the top of her four smokestacks and displacing 52,3 10 tons, 

she was the largest vessel afloat. On that voyage, she carried 1,316 passengers (far less than her 

capacity of 2,566) and a crew of 885 (again, less than her maximum complement of 945) -a total 

of 2,201 people. 

Four days later, at 11: 40 p. m. on Sunday 14 th April, travelling at a speed her navigator estimated 

to be in excess of 22 knots, the Titanic struck an iceberg in the area of the Grand Banks of 
Newfoundland. It quickly became obvious that the damage was extensive, and at 12: 45 am the 

first of the lifeboats was launched. Titanic carried 20 lifeboats, but with capacities of between 40 

and 65 there was room for only 1,178 people. In the event, the Titanic sank very slowly at first 

and many people were reluctant to leave the apparent safety of the ship for small open lifeboats, 

with the result that many of the boats were launched with less than their full complement. By the 

time the last lifeboat was launched at 2: 05 am, there were still 1549 people left on the ship. The 

first ship to arrive on the scene was Carpathia, which picked up the 652 occupants of the 

lifeboats, and rescued a further 60 people found swimming or clinging to wreckage at the scene. 

The accident - dubbed "the greatest maritime disaster in history" - was investigated by a United 

States Senate Inquiry and later, more thoroughly, by a British Board of Trade Inquiry [60]. Some 

of the findings of this inquiry make almost unbelievable reading. 

The number of lifeboats that the standards of the time required ship to carry were based not on 

the permitted passenger complement, but on the ship's gross tonnage. Around the turn of the 

century, there was a spectacular increase in the size of the ships being built, mostly, like Titanic, 

for use on the profitable and prestigious transatlantic routes. Despite this, the tables relating 

number of boats to tonnage had last been updated in 1894. The tables only gave requirements for 

ship up to 10,000 tons - less than 1/4of the size of the Titanic. In fact, the Titanic carried more 

15 



lifeboats than were required, as vessels with double bottoms and radio equipment, both of which 

the Titanic had, were entitled to claim reductions in the required number of boats. 

Ice was a well-known hazard of the north Atlantic routes in spring. Pilots' guides and charts of 

the time note that there was a high probability of encountering southward drifting ice north of 430 

N (although sightings of individual bergs had been reported as far south as 39* N), and west of 
451 W (the eastward limit of exceptional sightings being about 38* W). The Titanic was 
following a route known as the Outward Southern Track, which followed a great circle route 
from Fastnet to 42' N, 470W, then struck out westwards to pass just south of the Nantucket 

Shoals and thence via coastal waters to New York. This route would have taken her less than 100 

miles south of the normal southern limit of ice, and at least 300 miles north of the most southerly 

reported sightings. 

During the 24 hours leading up to the accident, the Titanic was shown to have received at least 

six separate radio messages from other ships warning of ice. However, there is no evidence that 

more than three of these were ever passed to the captain or other bridge officers. At that time, 

radio on board ship was a recent innovation. The operators were all employees of the Marconi 

Company, and it is clear that their main role was as a service for passengers, rather than an 
integral part of the navigation and management of the ship. At about 10: 20 p. m. on the 14 th April, 

the Californian, which had been steaming west on a course only 10 miles north of the Titanic, 

sent a radio message warning that she had stopped for the night after encountering heavy ice. The 

Titanic's radio operator was busy; Cape Race, the first of the American shore stations, had just 

come in range, and he was clearing a backlog of messages for the passengers. He curtly told the 
Californian "Shut up. I'm working Cape Race". Taken together, even the three messages known 

to have been taken to the bridge clearly showed the existence of an extensive field of floating 

sheet ice, "growlers" (small icebergs) and substantial icebergs extending down to 4 ION and from 

49" to 51*W- directly ahead of the Titanic. 

The only action that Captain Smith is known to have taken in response to the warnings was to tell 

the lookout to keep a sharp watch for ice. Some of the hatches forward of the bridge and crow's 

nest were closed to avoid spoiling the lookout's night vision. Incredibly, the lookout was not 

provided with binoculars, with the result that when he spotted the iceberg dead ahead, it was less 

than 500 yards from the ship. The time from the lookout's call to the bridge to impact was a mere 
37 seconds, during which time the engines were signalled "full astern", and the helm swung hard 

over. These actions ensured that, rather than hitting head-on, the Titanic struck the berg 

16 



obliquely, scraping past hard along the starboard bow. The impact was so gentle that many on 
board were unaware of it, but it was sufficient to open a long narrow tear in the side of the ship. 

The Titanic's hull was divided into sixteen compartments, and had been designed so that she 

would remain afloat if any two compartments were completely flooded. Further, she could 

survive the flooding of all of the front four compartments. The intention was that the ship should 
be her own lifeboat - whatever went wrong, she was expected to remain afloat, although her 

owners (the White Star Line) and builders (Harland and Wolff in Belfast) never actually went so 
far as to claim she was unsinkable. Openings in the bulkheads dividing the hull compartments 

could be sealed by automatic watertight doors, and this was done in the first few seconds after the 

impact. However, the long tear in the side of the ship had penetrated as far as boiler room 6- the 

crucial fifth compartment from the bow. Since the compartments were not closed at the top (the 

bulkheads extended well above the waterline, but the decks above were not strengthened or 

watertight - see Figure 1) it was now inevitable that the ship would sink as her bow went down 

and water spilled over into successive compartments. 

Figure 1- Division of Titanic's hull Into compartments 

The Board of Trade Inquiry into the sinking concluded that the cause of the accident was Captain 

Smith's failure to reduce speed and maintain an adequate lookout when ice was expected. The 

massive loss of life was blamed on the shortage of lifeboats, and the main recommendation of the 

inquiry was that all ships should be equipped with sufficient lifeboats for the number of people 

they carried, regardless of other provisions such as life jackets and flotation aids. Interestingly, 

the Inquiry conclusions make no reference to the design assumptions of the ship, merely noting 

that she complied with regulations and had passed the necessary sea trials (a very superficial 

affair, lasting less than 24 hours). Other factors that seem incredible by modem standards, such as 

the lack of binoculars, are merely noted as normal for ships of her class. 

17 



In 1985, an expedition led by Dr. Robert Ballard [3] located the wreck of the Titanic, lying in two 

major parts (the ship broke in two upon sinking) at a depth of 12,460 feet. Subsequent 

expeditions recovered parts of the vessel's structure, and concluded that the long split in the hull 

caused by the collision was partly a result of poor materials. There was too high a proportion of 

clinker in the wrought iron rivets joining the ship's steel plates, and the impact had caused a 
horizontal seam to "unzip" as the rivets failed. The deficiency was relatively minor, and would 

probably never have been discovered had it not played a part in the sinking. The Titanic's sister 

ship the Olympic, built at the same time and to a virtually identical hull design (her superstructure 

was slightly smaller), made over 500 Atlantic crossings before being retired from service in 1935. 

The third ship built to the same pattern, the Brittanic was sunk by German mines in 1916. 

1.2 The destruction of the Hindenburg 

The airship LZ-129 Hindenburg was conceived as the ultimate in luxury transatlantic travel. 

Almost as long as the Titanic, her 7 million cubic feet of hydrogen and helium gases provided 
242 tons of gross lift, sufficient to carry 50 passengers and 60 crew in futuristic living quarters 
built into the keel of the 112 ton airship. The Hindenburg was the flagship of the Zeppelin 

Company, at the time the undisputed world leaders in airship design and construction. She had 

originally been intended to use only inert helium gas, but the only world's only sources of natural 
helium were in the United States, which had just passed an act controlling its use and export. The 

design was altered to use dual gas cells, with an inner cell containing hydrogen surrounded by 

helium in the outer cell. 

The Hindenburg was the largest airship the company had built, and was specifically designed for 

the transatlantic service which began in 193 6, making 10 successful return journeys between her 

German base at Friedrichshaven and Lakehurst Naval Air Station, New Jersey. The first trip of 
1937 arrived at Lakehurst on 6'h May. The crossing had been delayed by headwinds, and the first 

attempt at landing had to be abandoned because of the unsettled weather left by passing 

thunderstorms, but by early evening the winds had dropped, and the Hindenburg approached the 

mooring mast. The landing lines had just been dropped to the ground crew when a fire broke out 

near the tail of the craft. The flames spread rapidly forward, and the entire airship was destroyed 

in just 34 seconds. Amazingly, several people survived, either jumping from the blazing wreck or 

crawling out after it crashed to the ground, but 40 people were killed. 

The official enquiry investigated two possibilities. The first was that the fire was the result of an 

act of sabotage. Relations between the USA and Nazi Germany had deteriorated, and the 

18 



Hindenburg was a potent symbol of German national pride. However, there was no evidence to 

support this theory, and it was soon abandoned in favour of the eventual conclusion, that 

escaping hydrogen gas had been ignited by lightning. 

The hydrogen fire explanation was not challenged publicly until Addison Bain, a former engineer 

on the Space Shuttle programme, became interested in the accident [36]. Studying photographs, 
film footage and witnesses accounts, Bain realised that there were many inconsistencies in the 

evidence. Photographs show the Hindenburg well alight, with flame pouring from more than half 

the envelope, and yet the airship is still horizontal -the hydrogen could not have escaped in large 

quantities to fuel the blaze, as at this point it was still providing lift. Moreover, all the witnesses 

agreed that the fire had burnt with yellowish or orange flames, but hydrogen flames are virtually 

colourless, and blue if visible at all. 

Bain suspected that the fire started on the fabric of the airship's outer skin. This was made of a 

cotton cloth coated with various treatments to make it stiffer, water-resistant and reflective, to 

avoid excessive solar heating of the lifting gases. The preparations applied to the Hindenburg 

were unique; the ship was expected to fly higher and in worse weather than any previous 
Zeppelin, and new combinations of chemicals were used to try to meet the tougher requirements. 
Various fragments of the cloth survived, and chemical analysis revealed the principal constituents 

of the treatments applied. The fabric had first been coated with a varnish of cellulose acetate and 

nitrate; the reflective layer consisted mainly of aluminium powder, but also contained iron oxide. 

Iron oxide and aluminium powder are the reagents in the Thermite reaction used to weld railway 
lines, and are also components of solid rocket fuel. The cellulose acetate and nitrate (a 

component of gunpowder) are also highly flammable, and their combustion provides sufficient 
heat to ignite the metallic fuels. 

Laboratory tests proved that, although this is an exceedingly flammable mix, electrical discharge 

striking the fabric perpendicular to the surface (as lightning would) punched a hole in the cloth 

without igniting it. However, when the discharge ran along the surface of the cloth, it ignited 

almost instantaneously. Static electric discharge was a known problem with airships; the 
Zeppelin design went to great lengths to ensure that all metallic parts of the airship were 

electrically bonded to the duralmin frame to avoid charges building up. What had been missed in 

the case of the Hindenburg was the potential for the metallic-coated cloth to build up huge 

charges; the cloth panels were tensioned to the frame using non-conductive cords. 

19 



The wet conditions and highly charged atmosphere left by the thunderstorms at Lakehurst on the 

evening of May Oh meant that the charge that built up on the skin of the airship was higher than 

ever encountered before. Whilst the craft was airborne, the whole structure was at a similar 

potential, but as soon as the mooring rope was dropped, the charge on the well-bonded frame 

flowed away to earth, leaving a huge potential difference between the cloth panels and adjacent 

metalwork. Bain believes that this was the source of the discharge that ignited the outer covering 

of the ship. There is no doubt that the hydrogen burned; however, it was not released until the 
heat of the fire caused the gas cells to rupture. 

Subsequent to Bain's investigation, it emerged that the engineers working for the Zeppelin 

Company had uncovered the real cause of the accident very soon after it happened. Later 

Zeppelin airships such as the Graf Zeppelin built in 1938 were coated with bronze instead of 

aluminium, and the cords lacing the skin panels were treated to make them conductive. However, 

the official explanation of lightning igniting escaping hydrogen was convenient for all involved; 

it avoided the Zeppelin Company appearing liable, and insurance companies could claim an "act 

of God" and reduce their pay-outs. 

1.3 Learning from history 

Although both over 60 years ago, the Titanic and Hindenburg disasters provide a challenging 

starting point for a consideration of the state of system safety engineering at the end of the 20th 

century. Both were the biggest, most advanced technology of their day - very much equivalent to 

the status of the safety, critical, computer controlled systems being developed and deployed in a 

range of industries today. Perhaps the most frightening aspect of these examples is not the serious 

mistakes obvious with the benefit of hindsight, but the similarities between these and much more 

recent accidents. 

The most striking aspect of the sinking of the Titanic (and the subsequent investigation) is the 

almost unbelievable complacency of so many of the people concerned. The end of the Edwardian 

era was a time of great confidence in engineering and scientific progress, and the decisions that 

condemned so many may be seen as a product of this extreme confidence. However, Ballard 

himself draws parallels between the Titanic and the much more recent loss of the space shuttle 
Challenger in January 1986, pointing out the ways in which an overconfidence in technology and 

an underestimation of the power of the natural environment led to negligence by those in 

command in both instances. 

20 



Even the official report of the Board of Trade displays an air of unjustified self-assurance; it 
discusses the inadequacy of the requirements for lifeboat provision without any apparent 
criticism other than a mild note that they are outdated. Similarly, it notes that binoculars, 

floodlights and other aids to watch-keeping are not required for a ship of Titanic's class, without 

acknowledging that this might be a deficiency in the Board's requirements. The general tone, that 

a regrettable incident has occurred but the blame lies elsewhere, can be observed in any number 

of more recent accident reports. 

There are also technical questions posed by the Titanic disaster. How was the structure of the hull 

decided? What analysis decided the number of compartments, the height of the bulkheads and the 

survivability requirements? These may seem unfair questions given the technology of the time, 
but again there are modem parallels. For example, compare the apparent assumption of the 
likelihood of head-on collision (evinced by the ability of the ship to survive the flooding of the 
four ý forward compartments as compared to - only two elsewhere) to, the almost identical 

assumption made by car manufacturers for crash testing of new vehicles until the regulations 

were strengthened in 1997. 

The Hindenburg highlights other problems of safety engineering which continue to challenge 

modem engineers. Perhaps the most obvious of these is the problems associated with re- 

assessment of safety after design changes. In the Hindenburg's case, this change was two-fold; it 

was a modification (enlargement) of a previously successful design, and there was revision of the 

concept when it became clear that sufficient helium would not be available to lift a ship of that 

size. The serious engineering challenges of constructing such a huge, lightweight structure were 

solved admirably, but there was no consideration of the impact of the (apparently minor) change 
in the fabric treatments applied. This is particularly interesting given that static electric build-up 

was clearly a known problem, and care had been taken to provide discharge paths for the frame 

and metal components. 

Also interesting in this case was the recently revealed cover-up by the Zeppelin Company. Again, 

there are an alarming number of modem parallels; the aftermath of accidents such as Piper Alpha 
[20], Bhopal [72) and Seveso (described in [50]) all revealed attempts to hide, or at least play 
down, evidence of previous accidents, operating problems and inadequate safety management. 

These observations could apply to safety engineering and management in any industry. Safety is 

essentially an experiential discipline; accidents are avoided by applying the lessons learned when 

21 



things go wrong, and historical data is one of its most important resources. To illustrate this, 

consider the development of aviation over the last 150 years. Early developments were 

characterised by a fly-fix-fly approach - perhaps better characterised as fly-hope to survive-fix- 
fly. The more cautious early pioneers of flight either paid or tried to persuade others to pilot their 

creations. Sir George Cayley's coachman reputedly resigned with the words "With respect, Sir, I 

was not hired to fly" after completing a brief and rather uncontrolled flight across a Yorkshire 

valley in one of Cayley's gliders in 1853 [13]. Accidents, injuries and fatalities were common as 

engineers struggled to master the basics of flight, and relatively little thought was given to safety. 

By contrast, at the end of the 20th century, flying is one of the safest ways to travel. Figures from 

Boeing for 1996 [6] show that by the end of the year there was a world-wide fleet (excluding 

former Soviet Union countries) of 12,343 commercial jet aircraft, which provided a combined 

total of 16.3 million flights. During 1996 there were only 30 accidents involving deaths of 

passengers or aircrew, resulting in 1,300 fatalities -a rate of 80 deaths per million flights. Every 

accident is followed by an extensive investigation that tries to establish what went wrong, and 

whether there is a need to modify aircraft or improve crew training or procedures to prevent a 

recurrence. The reports from these enquiries are widely disseminated (in the UK, the Air 

Accident Investigations Branch publishes its reports on the world-wide web [1]) for the benefit of 
the whole industry. 

1.4 Implications for computer system safety 

For safety critical computing, the implications are clear. This is a relatively young and rapidly 
developing technology, which nevertheless is being deployed in many contexts such as nuclear 

power generation, civil aerospace, rail transportation and others, where a single accident may 
have extremely severe consequences. Safety critical computing simply cannot afford the sort of 
learning experiences that aviation technology obtained from the early days of fly-fix-fly 

experimentation. It is essential that lessons and skills learned in the more traditional engineering 
disciplines are transferred to the new technology quickly and effectively. 

In 1994, MacKenzie published what remains the most comprehensive attempt to date to 

catalogue computer-related accidental deaths [56], to try to provide answers to fundamental 

questions about the safety (or otherwise) of computer systems in critical applications. His survey 

estimates that world wide up to the end of 1992,1,100 people (± 1,000) died in computer-related 
incidents. The high uncertainty in this figure represents the difficulty in deciding which incidents 

22 



should be attributed to computer related failures. The survey details 34 specific incidents, 

concluding that physical failures of computer equipment accounted for approximately 4% of the 
deaths, software failures 3%, and failures in human-computer interaction 92%. Again, these 
figures are qualified by warnings that the data available is too poor to draw statistically sound 

conclusions. 

MacKenzie concludes that computing is an error-ridden technology that nevertheless has a 

reasonably good safety record in practice. This should not be a surprising result. Recognition of 
the possibilities for, and potential consequences of, computer system failures has led to 

conservatism in design, with redundancy, backup devices and mitigation implemented in 

alternative technologies to reduce the impact of computer failure. 

As computers are deployed in more and more safety critical applications, it is becoming obvious 
that there are still many significant problems to be solved. Widely publicised incidents such as 
the collapse of the London Ambulance Service computer-aided despatch system [32] and the 
destruction of Ariane 5 [55] emphasise the need for improvement in both the management and 

technical aspects of safety critical systems development and deployment. The diversity of current 

standards and practices, and disagreement over concepts such as the use of Safety Integrity 

Levels (SILs) illustrate the absence of common understanding and agreement within the industry 

on the best route to improved products. 

Even the idea of computer safety itself remains controversial. Some researchers and practitioners 

maintain that safety is strictly a systems issue. In their view, it is the responsibility of the systems 

engineers to specify the properties required from the computers in order to guarantee safety; the 

problem for the computer system designers is strictly one of correct implementation of the 

specifications. Others maintain that there is so much functionality and complexity incorporated 

into modem computer systems that it is essential to regard safety engineering activities as an 
integral part of their development. (For a recent example of this debate, see the discussion of the 
Ariane 5 failure in the archives of the hise-jafeoýsritical mailing list [35]). 

Although safety critical computing is a large and active research area, most authors concentrate 

on aspects such as the specification and proof of functional properties, defining architectures for 

redundancy and fault tolerance, or suitability of design methodologies and programming 
languages. There is surprisingly little work describing analysis techniques for defining the safety 

requirements or assessing the actual safety related behaviour of a completed system. This thesis 

23 



takes the view that, whether they are considered to be aspects of systems engineering or parts of 

the computer system development process, these analysis techniques are essential to the 

production and assurance of computer systems in critical applications. They are also one of the 

areas in which safety critical computing can benefit directly from other engineering disciplines, 

by studying and developing the ideas which underpin successful techniques. 

1.5 Thesis Proposition 

This thesis investigates the following proposition: 
It is possible to establish a set of principles for defining effective computer system safety 

analysis techniques. These principles enable sound techniques to be developed to satisfy 

novel analysis requirements. 
This proposition is supported: 
1. by demonstrating that the principles are based on concepts and methods underlying existing 

successful system safety analysis techniques; 

2. by explaining observed weaknesses in existing computer system safety analysis processes 

and techniques; and 
3. through the development and successful industrial application of two new computer system 

safety analysis techniques, addressing identified deficiencies in the range of existing 

analyses. 

1.6 Thesis Structure 

Chapter 2 introduces basic safety engineering terminology and processes to set the context for a 

review of selected system safety analysis techniques from a range of industries. The criteria used 
in selecting a small set of techniques for review from over 100 identified in the published 
literature are explained, and then the chosen techniques are described, with emphasis on the 

principles on which they are based and their intended role in the safety process. 

Chapter 3 explores some of the concepts identified in the review of terminology and safety 

analysis techniques in Chapter 2. The concepts of hazards and failures are discussed in some 
depth, as these are fundamental to all of the analysis techniques studied, and differences in 

interpretation explain some of the inconsistencies in approaches to safety engineering between 

different industries and nationalities. The chapter concludes by proposing a new model for 

classifying the role of techniques in the safety process, and using it to explore the relationship 

between the different techniques required to build a complete and coherent safety process. 

24 



Chapter 4 reviews the published literature on safety analysis for computer systems, including 

modified versions of HAZOP and fault trees, the use of Petri nets, and Failure Propagation and 
Transformation Notation (FPTN). 

Chapter 5 proposes nine basic principles for the selection or design of analysis techniques for 

computer systems. These address issues highlighted by observation of, and participation in, 

industrial projects, as well as some of the specific problems discussed in Chapter 4. 

Chapter 6 considers the analysis requirements of computer systems developers, and identifies 

areas in which existing techniques do not meet these needs. Two of these areas are discussed in 

some detail, providing the motivation and background for the development of SHARD and LISA 

described in Chapters 7 and 8. 

Chapter 7 describes Software Hazard Analysis and Resolution in Design (SHARD), a new safety 

analysis techniques which was developed to fulfil one of the unsatisfied analysis requirements 
identified in Chapter 6. SHARD is a predictive, requirements setting analysis, based on the 

chemical industries' HAZOP technique. The chapter describes the initial proposal for SHARD 

and the way in which it was developed and refined through a series of case studies and industrial 

trials. As well as describing the technical development of the method, the chapter also discusses 

its practical integration into current industrial working practices, comparing the traditional team 
based approach of HAZOP with alternative ways working. It then presents a complete method 
description, incorporating all of the additional rules and guidance derived from the case studies. 

Chapter 8 discusses the development of Low-level Interaction Safety Analysis (LISA), the 

second of the two new safety analysis techniques based on the principles discussed in Chapter 5. 

LISA is intended to produce evidence of achievement to contribute to the safety argument for a 

completed computer system design. It explores the interactions of critical software with the 

underlying hardware by modelling the system as a set of resources (physical devices and timed 

events), and examining how the system resources are used and managed. The chapter also 
describes the large case study that was used to develop and evaluate LISA, and presents a 

complete method description. 

Chapter 9 evaluates the contribution of the work described in this thesis. The theoretical aspects 
of the work are discussed in terms of their contribution to the development of SHARD and LISA, 

25 
UNIVERSITY 

OFYORK 
LIBRAR 

dl 



and their value in describing and evaluating other analysis techniques. In assessing the 

effectiveness of SHARD and LISA, the impracticality of conducting comparative experiments is 

noted, and alternative ways of assessing their value and maturity are proposed, based around case 

studies, technology transfer and industrial acceptance. 

Chapter 10 concludes by examining how the work described supports the thesis proposition and 
identifying possible directions for future work, both to strengthen SHARD and LISA, and to 

extend the theoretical aspects of the thesis. 

26 



Chapter 2, 

Survey of system safety and hazard analysis techniques 

This chapter presents a review of a number of hazard and safety analysis techniques. There is a 
huge range of techniques in use in industrial practise and proposed in research literature, and it 

would be impossible to review (or even merely describe) all of them in this thesis. Section 2.3 

explains the selection of techniques for inclusion in more detail, and the techniques themselves 

are examined in sections 2.5 to 2.14. However, before reviewing the techniques, it is necessary to 

define some terminology and to briefly examine the safety lifecycle to provide context for the 

descriptions of the techniques. 

A significant, and frustrating, problem encountered by any system safety researcher or 

practitioner is the variation in the definition and understanding of key terminology between 

different industries, different standards within industries and, particularly, between Europe, the 

USA and other nationalities. Chapter 3 reviews the definitions of some key concepts and the 

implications of some of the different interpretations. 

2.1 Definitions 

The primary definitions in this section are taken from Defence Standard 00-56 [78]. 

Safety: The expectation that a system does not, under defined conditions, lead to a state in which 
human life or the environment is endangered. 

Accident: An unintended event or sequence of events that causes death, injury, envirorunental or 

material damage. 

Risk: The combination of the frequency, or probability, and the consequence of an accident. 

Note that, by these definitions, avoidance of accidents is sufficient to ensure safety, but the 

concept of an accident also includes material (financial) loss. The majority of safety analysis 

activities are inherently capable of investigating all risks associated with accidents. Some 

authorities insist on a "pure" safety process (i. e. limited only to human death or injury), but this 
does not fundamentally affect the way in which safety engineering activities are carried out. 

27 



System: A bounded physical entity that achieves in its domain a defined objective through the 
interaction of its parts. 

Domain: The part of the external world, including users and personnel, that affects, and is 

affected by the system and may be harmed by an accident caused by it. 

Component: A discrete structure, such as an assembly, within the total system considered at a 

particular level of analysis. 

Some additional terms related to the definition of systems are also used in this thesis. A platform 
is the largest engineered artefact (e. g. a complete aircraft, train or chemical process plant), and 
this term is used for emphasis when discussing properties of the entire system. The term 

subsystem is used to define a group of components within the system which are related by 
functional objectives. For example, an aircraft fuel subsystem consists of physical components 

such as tanks, pumps and pipes which are widely distributed, and cannot be considered to be a 
discrete structure. This thesis also follows common practice in using the term environment 

rather than domain for the external world. The term operator is used as a generic term for 

anyone who interacts with a system in a controlling capacity, thus car drivers and aircraft pilots 
are operators. 

The behaviour of a system, subsystem or component is described in terms of events, states and 
actions, where an action implies a deliberate intent by a control system or operator to alter the 

state of the system. 

Hazard: A physical situation, often following from some initiating event, that can lead to an 
accident. 

Fault: An imperfection or deficiency in the system 

Failure: The inability of a system or component to fulfil its operational requirements. 

The term flaw is similar to fault, but implies a deficiency in the original state of the system (i. e 

arising from specification, design or manufacturing errors) rather than an imperfection arising as 
the result of a component failure. 

28 



2.2 System and safety lifecycles 

Many models have been proposed for system lifecycles, and for the engineering, safety and 

software development processes by which they are created. For the purposes of examining the 

roles of the analysis techniques surveyed here, a simple "V" model (adapted from McDermid and 
Rook [59]) is sufficient. The inner "V" in Figure 2 shows the major activities in an idealised 

system development process; the round-comered boxes around the outside of the "V' show the 

safety tasks which are associated with these development activities. Sections 2.2.1 to 2.2.6 briefly 

describe the purpose and conduct of each of the safety tasks. 

Haz" N 
Identification lic 10 Requirements 

analysis and 
specification 

Risk 
Assessment 

PSSA 
(Predictive 
analyses to 

refine 
requirements 

and guide 
design) 

( Delivery of Delivery and \ safety case 
commissioning 

L 

ý; N, I 

I Testing, V&V Architectural 
design 

Detailed 
design 

I 

SSA 
(Analyses 
confirming 

Integration achieved 
safety 

OF properties) 

I Implementation I 

Common cause / commor 
mode and zonal analyses 

Figure 2-V lifecycle model showing safety activities 

2.2.1 Hazard Identification 

Hazard identification is the first step in the safety process, and sets the context for all subsequent 

activities. Its role is to identify the potential hazards in the proposed system so that they can be 

managed and controlled. The techniques required in this phase are generally exploratory, asking 
"what if" type questions. 

2.2.2 Risk Assessment 

Risk assessment (often called hazard analysis) examines each of the identified hazards to 
determine how much of a threat they pose, i. e. the severity and likelihood of potential accidents. 

29 



This provides the basic information required to decide on the acceptability of design proposals 

and the steps that are necessary to reduce risks to acceptable levels. 

There are numerous approaches to risk assessment. Detailed quantitative analyses may be used 

where accurate data is available. More often, qualitative assessments are used, categorising 

severity and probability into broad bands ("catastrophic"... "negligible" and "frequent"... 

"incredible"). A hazard risk index uses these classifications to determine the acceptability of the 

risk. 

Reduction of risk to acceptable levels is based on two main principles. The first of these is that 

risks should be reduced as low as reasonably practicable (ALARP) [5]. This principle identifies 

risks in three categories. Low levels of risk are classified as broadly acceptable, and generally 

need no additional reduction. Extremely high risks are intolerable, and must be eliminated. In 

between these extremes is the ALARP region, which defines risks that are tolerable provided that 

they can be shown to have been reduced so far as is practicable, i. e. to the point where the costs 

of further reductions would be disproportionate to the improvement gained. 

The second important principle is that of precedence ordering of risk reduction measures: 

" eliminate the hazard- the best option, where possible, completely eliminating the risks 

" reduce the probability of the hazard arising, or mitigate the effects of the hazard 

" provide alerts and warnings - allowing operator intervention, evacuation etc. 

0 establish procedures - the least preferable option. 

The risk assessment activity is the source of many of the initial safety requirements. 

2.2.3 Preliminary System Safety Assessment 

Preliminary system safety assessment is the term used in ARP 4761 [71] for the safety activities 

which accompany the design activities in the development process. Safety analysis in this phase 

of the project has two main roles; firstly to ensure that a proposed design can reasonably be 

expected to meet its safety requirements, and secondly to refine the safety requirements and help 

guide the design process. The balance of these two roles will change from an initial emphasis on 

confirming the acceptability of overall proposals during architectural design to the identification 

of specific safety requirements to guide detailed design. 

30 



These roles mean that PSSA is necessarily very closely linked with the design activities, and 

requires analysis techniques that can work predictively from incomplete information. It also 

requires analysis techniques which are relatively quick and inexpensive to apply. The majority of 

techniques used during this phase are deductive (investigating the possible causes of a specific 

condition), starting from the platform level hazards and requirements identified during PHI, and 

carrying information about acceptable failure modes and rates down from risk assessment into 

the design. 

PSSA is generally recognised as one of the weaker phases of many existing safety processes. The 

author has collaborated on a paper [21] which investigates some of the issues in effective 
integration of the safety and design processes. 

2.2.4 System Safety Analysis 

System safety analysis is the main confirmatory safety activity, producing the evidence that 

demonstrates that safety requirements have been met. Techniques used in this phase are a mixture 

of inductive (working forward from known or hypothesised condition to possible outcomes) and 
deductive methods, which can investigate the detail of a completed design. Quantitative analysis 
is common, combining figures for actual component failure rates to calculate overall probabilities 

of platform level hazards. 

The methods used also include a range of Particular Risk Assessments - specialised techniques 

dedicated to the investigation of unusually severe or complex hazards. Many of these techniques 

use modelling or simulation. Examples include the investigation of fan bursts on aircraft engines, 

nuclear and radiation safety analyses, and the atmospheric or water-borne dispersal of chemical 

releases. 

2.2.5 Common Cause / Common Mode Analysis 

Many safety analysis techniques assume independence between component failures. Common 

cause and common mode analyses are a range of techniques for identifying non-independence of 
failures. They are applied throughout the development process in support of both PSSA and SSA. 

Sources of non-independence investigated include common design flaws, manufacturing, 
installation and maintenance problems, and common external threats such as fire. They also 

consider a range of generic failure mechanisms; for mechanical and electrical components these 

typically factors such include stress, heat, corrosion and vibration. Zonal Hazard Analyses are 
techniques that consider common failure mechanisms related to physical proximity. 

31 



2.2.6 Delivery of safety case 

The final safety activity in a development process is the delivery of a safety case -a 
comprehensive and defensible argument that the system is acceptably safe to use in a given 

context, supported by the necessary evidence. Kelly [43] has presented a notation for representing 

the structure of safety arguments, and has also proposed the concept of safety case patterns - 
common argument structures for supporting particular claims. The analyses carried out in the 
PSSA will contribute to the safety case argument, justifying the design approach; the evidence 

presented in the safety case will consist largely of results from the system safety analysis 

activities. 

2.3 Selection of analysis techniques 

The main focus of this work is the identification of concepts and principles from system level 

safety analysis techniques which can help to inform the development of new and improved 

computer system safety analyses. The primary interest of this survey, therefore, is qualitative 

analysis techniques, with an emphasis on hazard identification and the relationship between 

system design and safety properties. 

As noted in the introduction to this chapter, the analysis techniques included in this survey were 

selected in accordance with a set of criteria intended to ensure that the techniques reviewed were 

as representative of current best practice as possible, and that the most important concepts were 

captured. These criteria were: 
1. The techniques of interest are those which examine the technical, functional and behavioural 

aspects of a system. 
Management tools, risk assessment and management techniques and human factors 

assessments are all acknowledged to be vital to the engineering of safe systems; however, 

they are outside the scope of this survey. In practice, the emphasis on qualitative analysis did 

not restrict the selection, since the main techniques used quantitatively in the safety process 

are extensions or variants of techniques that have been included. However, the method 
descriptions in sections 2.5 to 2.14 concentrate on qualitative aspects. 

2. There should be at least one technique representative of each phase of a typical safety critical 

system lifecycle. 

The overview of the safety lifecycle in section 2.2 shows the diversity of analysis approaches 

required by the various phases. This criterion was intended to ensure that the concepts most 
important to each phase would be included in the review. 

32 



3. Where possible, techniques selected should be "generic", i. e. they should be applicable to a 

range of types of system and used in several industries, rather than being technology or 
industry-sector specific. 
This criterion was intended principally to exclude from consideration the large number of 

particular risk assessments, that is, the highly specialised techniques which have evolved to 

analyse high-risk hazards in particular industries (for example, a large number of techniques 
for assessing hazards associated with handling of nuclear materials, and techniques such as 
fan burst and tyre shred modelling in the aerospace industry). It also seems reasonable to 

expect that an analysis technique that is already generic is more likely to be readily adapted 
to a new domain than one whose application is limited. 

4. Both inductive and deductive techniques should be included. 

These are the two traditional classes of safety analysis; inductive analysis working forward 

from a known cause to discover its potential effects, and deductive analysis searching for the 

causes of a specific (known or expected) unwanted event. 
5. Where there was a choice of techniques that satisfied the first three criteria (i. e. several 

candidate generic techniques applicable to a given lifecycle phase), the technique selected 

should be that in most common industrial use. 
In judging techniques against this criterion, the industries principally considered were the 

European aerospace, transport and military sectors. These industries all have relatively 

mature safety cultures and strive to implement best current practice. From a practical 

viewpoint, these were also the industries whose requirements were most fully understood. 
British Aerospace supported much of the practical and case study work reported in this 

thesis, and companies from the other sectors have been involved in system safety courses, 

providing opportunities to discuss ideas and study examples with practising engineers. 
6. Where it was clear that a technique embodies unique concepts, it was included in the set even 

if it did not meet criteria 1-5. 

Naked Man (section 2.6) was included because it was substantially distinct from the rest of 
the set. Sneak Circuit Analysis (section 2.11) was included because of its predominance in 

American system safety processes, although there are very few instances of its application in 

European industry. 

The most comprehensive listing of safety analysis techniques in the literature is to be found in the 
System Safety Analysis Handbook [73]. The handbook is intended to be a starting point for 

safety professionals, and aims to provide an overview of a wide range of techniques, together 

with references to allow readers interested in a particular technique to obtain more detailed 

33 



information. It therefore provides an excellent basis for comparing and selecting techniques. In 

addition to the 101 techniques contained in the 2nd edition of the Handbook, a further nine 
techniques have been identified in literature surveys. 

Table I summarises the techniques identified. Of the groups of techniques listed here, the first 

four (accident investigation, management tools, human factors and particular risk assessments) 

are outside the scope of this survey. The majority of the risk assessment techniques are 

quantitative methods for comparing risks, evaluating trade-offs and assessing the effectiveness of 

risk reduction measures and are, again, outside the scope of this survey. It should be noted that 

the computer specific techniques identified in group 2 are simply restatements of general safety 
lifecycle processes with more explicit links to software development activities, and add nothing 

of value to the principles outlined in section 2.2. 

Technique group Systems Computer 
specif Ic 

Total 

I Accident and incident investigation methods 5 0 5 
21 Management tools and plans and others 22 3 25 
3 Human factors analyses 9 0 9 
4 Particular risk assessments 15 0 15 
5 Hazard identification 20 1 21 
6 Risk assessment I1 0 11 
7 Inductive 9 2 11 
8 Event based analyses Deductive 1 1 2 
9 Integrated 5 0 5 
10 State based analyses 2 0 2 
11 Common cause analyses 4 0 4 

Totals 103 7 

Table 1- Summary of safety analysis techniques identified 

From the remaining groups, the following techniques have been selected for more detailed 

examination: 

0 Hazard identification 

- Preliminary Hazard Identification (section 2.5) 

- Naked Man (section 2.6) 

* Inductive event based analysis 

- Functional Failure Analysis (section 2.7) 

- Evcnt Trces (scction 2.12) 

34 



- Failure Modes and Effects Analysis (section 2.9) 

- Sneak Analysis (section 2.11) 

Deductive event based analysis 

- Fault Trees (section 2.10) 

0 Integrated event based analysis (combining inductive and deductive approaches) 

- HAZOP (section 2.8) 

- Cause-consequence analysis (section 2.13) 

Common cause analysis 

- Zonal Hazard Analysis (section 2.14) 

Petri net analysis, the most widely applied state based technique, is discussed with other 

computer system analyses in Chapter 4 because, although theoretically of general applicability, 

most of the documented case studies and industrial applications of this technique have been to 

computer systems. 

2.4 Example system 

To illustrate the application of the analysis techniques described in sections 2.5 to 2.14, the 

vehicle speed sensor subsystem of a theoretical automotive powertrain (i. e. engine and gearbox) 

control application is used as an example. The main components of the system are illustrated in 

Figure 3. 

The vehicle speed is measured by a variable reluctance sensor that detects the rotation of a 

toothed wheel on the output shaft of the gearbox (i. e. the rotation of the toothed wheel is directly 

coupled to the rotation of the vehicle's driven road wheels). Each tooth edge passing the sensor 

generates a signal with either a positive or negative initial peak, resulting in an output waveform 

of the shape shown in Figure 4a. The sensor output is taken via the vehicle wiring loom to the 

powertrain management system module, where it is converted by signal processing electronics 
into a logic level square wave (Figure 4 b), which is fed to an input pin of the control unit. Within 

the control unit, the rising and falling edges of the signal are counted, and used to calculate the 

vehicle's speed, acceleration and distance travelled. These values are provided to the engine 

management functions, and to the electronic dashboard for display to the driver. The vehicle is 

also fitted with an electronically controlled automatic gearbox, and the vehicle speed is one of the 

primary inputs for gear selection. 

35 



Variable 

Toothed reluctance 

wheel A sensor F -- -------- 
, 'Y Powertrain management system 

c 

Raw Sensor 
Signal processing electroni 

ý 

output 

Vehicle speed functions 

C Contr unit ontrol 

Gearbox Engine Gearb x 
controll r management 

system 

Gear selection 

D 
13 13 
00 

(t 1: 1 
. 

Electronic dashboard 

Figure 3- Main components of vehicle speed sensor subsystem 

The vehicle can be considered stopped if the time AT between edges exceeds a predetermined 

limit T ,,, and the minimum time Tmin expected between edges is determined by the maximurn 

speed that the vehicle is capable of. The vehicle also has known maximurn acceleration and 
deceleration capabilities; these determine the maximum relative change in the period of the 

signal. These parameters can be used by the system to test for input faults. For additional fault 

detection, the speed sensor subsystem can also use values provided by other functions of the 

powertram management system. For example, there may be a fault if the indicated vehicle speed 
is zero, but engine load and speed are high - the energy must be being dissipated somewhere. 

Threshold 

a) Raw signal from sensor 

I- 

b) Square wave output from signal processing electonics 

Figure 4- Vehicle speed sensor waveforms 

36 



2.5 Preliminary Hazard Identification (PHI) 

Despite its importance in the safety process, preliminary hazard analysis is normally a relatively 

simple task. It is very rare for an organisation to develop a safety critical system in a domain in 

which it has no experience. For most projects, therefore, PHI consists of consulting a checklist of 
known hazards of the application domain, and deciding which are of concern. For example, 
British Aerospace maintains comprehensive hazard lists documenting the hazards which have 

been identified (or encountered) with a range of aircraft types. New projects may introduce a 

small number of novel hazards (such as the additional hazards associated with controlling an 

aerodynamically unstable aircraft which had to be addressed in the Eurofighter development 

programme), but there is rarely a need to conduct a hazard identification starting from a blank 

sheet of paper. 

Probably as a result of this, there are few techniques which can truly be described as methodical 

or systematic processes for identifying hazards. Most texts describe PHI as a process of 
brainstorming to suggest potential hazards, followed by critical review to identify genuine 
hazards from the suggestions. Numerous checklists are available to guide the process, although it 

is worth noting that many checklists actually numerate possible causes of hazards, and need to be 

interpreted in the system context to find the specific hazards. 

The most systematic PHI techniques available are those based on the identification of energy 

sources, and the potential means for an unwanted or uncontrolled release of that energy to 

"targets" (usually people) that might suffer harm. Energy Trace and Barrier Analysis (ETBA) is 

the most systematic of such techniques listed in the System Safety Analysis Handbook [73]. This 

procedure combines checklists of energy sources with general prompts to investigate the intended 

work of the energy in the system, the way it is controlled, and possible changes in the energy 
(e. g. transformation into another type of energy). 

2.6 Naked Man 

Naked Man is a technique worth examining because of its unique emphasis on the intrinsic safety 

of a system, and systematic study of the value of additional safety and protection systems. 

The examination starts by considering the most basic possible system - the minimum that is 

needed to operate, with all additional control and safety functions removed. The hazards 

associated with this "primordial" system are identified and assessed, and removed or reduced as 

37 



far as possible by revisions of the basic concept. The system is then reassessed with each of the 

proposed safety related control and protection functions added, to determine which provide the 

most significant (or most cost-effective) improvements. 

There is no specific analysis method associated with this process - Naked Man uses event trees 
(section 2.12) and other analyses as required to assess each variant of the system. However it is, 

in concept, the only technique to explicitly impose the hierarchy of risk reduction measures 
introduced in section 2.2.2. The analyst / designer is forced to think about the safety of the system 

concept, and search for ways to make fundamental improvements, rather than simply "patching 

over" problems with additional safety features. 

One of the exercises used for teaching on the Department's MSc in Safety Critical Systems 

Engineering provides a good example of the purpose of this technique. The process plant 
illustrated in Figure 5 is intended to make a product "Z" by mixing reagents "N', a toxic, viscous 
liquid which must be heated before it can be pumped around the system, and "Y", which is non- 
toxic and flows easily at the plant's normal operating temperatures. The reaction is mildly 
exothermic provided the correct proportion of "X" and "Y' is maintained, but can become 

explosive if the two are brought together in the wrong proportions. An analysis such as HAZOP 
(section 2.8) applied to this proposed design rapidly uncovers many flaws; there is insufficient 
instrumentation, no redundancy of control system or valves, and there are many ways in which 
dangerous situations can arise. 

The Naked Man approach shows that the concept of this proposal is badly flawed -a great many 
(relatively complex) safety mechanisms must be added before the overall behaviour of the plant 
is acceptable. A complete redesign along the lines of Figure 6 is preferable. The critical quantities 
can be measured before the reaction begins, and using gravity to feed the reagents means that 
there is less reliance on complex components such as pumps and flow meters. Although this 

revised sketch is far from complete, fewer additional measures are required to make its overall 
safety acceptable. 

38 



TANK PROCESS 
MATERIAL- ------------------------- V03, . \r 

. X. --. 
a 

--------------------------------- ii 111017ý I 

To atmosphere -------------------------------------------------- 

P1 

FILTER 

MIXER 
MOTOR 

h. 
V02j, 

Filter 
& Drain 

Water 
Supply 

------------ 
------------ ----------------------------- 

CONTROL VAT 
-------------------------------------------------------------------------- SYSTEM 

TANK 
> MAIERIAL P2 

Y* ýPRODUCT V05 

'VO6, 'Vog' 

Air VOE; Filter& Drain 

Supply 

Figure 5- Unsafe process plant concept 

SUPPLY")(* SUPPLY'r 

MEASURED MEASURED 
QUANTITY QUANTITY 

MI ER 
MR 

VAT 

PRODUCT 
. Z. 

Figure 6- Safer mixer concept 

39 



2.7 Functionat Faiture Anatysis (FFA) 

Functional Failure Analysis (FFA) is a predictive safety analysis technique that is very widely 

applied in the Aerospace industry. Closely related techniques are also common in both the 

automotive and rail industries but FFA is rarely identified as a distinct technique in the safety 
literature. The best description identified is that given Appendix A of ARP 4761 [7 1] (where it is 

called System Functional Hazard Assessment). The reason for this apparent neglect is that most 

authors have considered FFA to be a member (or variant) of the Failure Modes and Effects 

Analysis (FMEA) family of techniques (c. f section 2.9). Indeed, in the automotive industry, it is 

usually known as predictive FMEA, but the important "predictive" label is frequently dropped, 

and the technique loses its unique identity. 

It is considered separately here because, although a tabular, inductive event analysis like FMEA, 

FFA's method, and its role in the process are quite distinct. FFA is a predictive technique, which 

should be applied early in the development of a design to help identify and refine safety related 

requirements. In terms of the "V" safety lifecycle model discussed in section 2.2, this technique 

is a candidate for use in the hazard identification and preliminary system safety analysis phases. 

FFA is structured around the functions, or active components, of a system. For each function 

(identified from a suitable design representation), the analyst considers the effects of three broad 

hypothetical failures types: 

" Function not provided; 

" Function provided when not required; 

" Function provided incorrectly. 

Each of these failure types is intended to act as a prompt, and it may be necessary to consider 

more than one interpretation of each. For example, the first prompt (function not provided) is 

easy to interpret for responsive functions (such as brake operation on a vehicle in response to the 

driver's pedal input). However, in the context of a continuous or periodic function (such as 

evaluation of a control law in an iterated control loop) there are numerous different cases to 

consider, such as single transient loss, repeated (possibly periodic) transient losses, or complete 
(permanent) loss. These different cases may have quite different effects. 

Similarly, "function provided when not required" could prompt consideration of spurious events 
(e. g. uncommanded application of brakes), unwanted repetition of an intended event, excessively 

rapid iteration etc. Interestingly, there are functions to which this failure type does not apply; 

40 



these are continuous functions which must always be available; for example, maintaining 

minimum separation of aircraft in an air traffic control system. The third failure type (incorrect 

provision) is an awkward "catch all", which covers a wide range of possible erroneous behaviour, 

and must be interpreted very carefully in each new context. Possible interpretations include 

incorrect timing (either start time or duration) of the function, incompleteness, asymmetry or 

unwanted side effects. 

The basic procedure for FFA is: 

0 Identify functions. 

For each function identified, suggest failure modes, using the three failure types as prompts. 
For each failure mode, consider the effects (at different levels, e. g. function / subsystem 

system, if necessary). 
Identify and record any actions necessary to improve the design. 

Table 2 shows a fragment of a basic FFA for the vehicle speed sensor example. 

Function Failure mode Effects Comments and 
a) not provided Recommendations 
b) provided when not required 
C) provided incorrectly 

Vehicle a) No vehicle speed data Vehicle speed used in No significant safety effect. 
speed provided to engine alternative load calculations and 
sensor management system crank speed check routines. 

Effect minimal, and restricted to 
loss of some error detection 
capability. 

a) No vehicle speed data Vehicle speed is primary input Potentially hazardous. 
provided to gearbox to gear selection, including Driver warning essential; loss 
controller kick-down. Effect is significant of speed display on dashboard 

reduction in accuracy and is not sufficient. Design must 
timeliness of gear shifts. May incorporate detection (via 
impair driveability of vehicle, comparison with engine speed 
especially in start-stop traffic. / load data? ) and illumination 

of transmission warning light. 
b) No meaningful N/A Both controllers sample VS 

interpretation data when needed, therefore 
data cannot be provided when 
not required. 

C) Inaccurate vehicle speed Effect minimal, and restricted to No significant safety effect. 
data provided to engine loss of some error detection 
management system capability. 

C) Inaccurate vehicle speed Effect is unpredictable. May Potentially hazardous. 
data provided to result in unwanted gear shifts or Depending on degree of 
elcaronically-controlled selection of inappropriate gear. inaccuracy, failure mode may 
automatic gearbox May impair driveability of be hard / impossible to detect. 
management system vehicle, especially in start-stop Investigate acceptability of 

traffic. failure rates of specified 
components. 

Table 2- Fragment of FFA output for the vehicle speed sensor example 

41 



FFA can be applied at any level of design development; ideally, it should initially be applied at 

the highest possible level, and the results propagated down as part of the requirements / rationale 
for more detailed design. 

There are a number of more developed variants of this technique. For example, the ARP 4761 

method description requires the analyst to consider, in addition to the above, the flight phase in 

which the failure occurs, environmental factors (such as severe weather), loss of warnings to the 

flight crew, and abnormal or emergency conditions (e. g. loss of hydraulic power) which might 

contribute to the effects of the failure. The failure effects are also classified (qualitatively) by 

severity and a target probability, selected by severity of effects from a predetermined table, is 

assigned. These additional steps make the technique more complex, introducing issues of 

coincident and common cause / common mode failures, but also serve to emphasise the role of 

the technique as an aid to design development and identifying safety requirements. 

Another innovation of the process suggested in the ARP, more evident from the contiguous 

example in Appendix L than from the method description in Appendix A, is the application of 
FFA to function hierarchy trees, such as the example shown in Figure 7. One of the potential 

advantages of this approach is that this sort of hierarchy could potentially be devised very early in 

the development process, allowing safety analysis to be started much earlier. 

Figure 7- Partial function hierarchy tree for a car 

42 



2.8 HAZard and Operability Studies (HAZOP) 

Hazard and Operability Studies (HAZOP) is a predictive safety analysis technique which was 
developed within ICI in the mid 1960s specifically to help assess and refine the design of new 

process plant. It is now widely used in the chemical (especially petrochemical) industry, and has 

also been widely applied to nuclear and food-processing applications. The Chemical Industries' 

Association guidelines [17] describe the fundamentals of the technique, and Kletz [44] provides a 

short tutorial introduction. There are many publications (mostly in process industry journals such 

as Hydrocarbon Processing and Chemical Engineering) describing experiences applying the 

technique and suggesting improvements; practical examples can also be found in a number of 

accident reports from the Health and Safety Executive (e. g. [34]). 

HAZOP is described as a technique of imaginative anticipation of hazards and operating 

problems. It is unique among the techniques reviewed here in that it is strictly a team analysis 

activity, and guidelines on its application typically devote as much space to describing the 

composition of the study team, and to appropriate working practices, as they do to describing the 

steps of the method. 

The HAZOP team normally consists of about six people, representing a number of interest 

groups. For a standard HAZOP of a new plant design, these include: 

The plant design engineers whose primary role in the meetings is to explain their design. 

Where changes are considered necessary, the designers' role may also include advising the 

meeting about cost / benefit trade-offs of various options; they will also eventually be 

responsible for producing revised designs to satisfy the meeting's recommendations. 

0 Commissioning or installation engineers are expected to help resolve practical issues relating 
to the siting, structure and construction of the plant. With experience of the problems of 

startup and initial operation of new plant, they also have a key role in suggesting possible 

problems in the proposed control and safety systems. 
Operators and maintenance engineers may have either a questioning or explanatory role in 

the meetings, exploring whether the proposed design meets operating requirements, and what 

provision has been made for the safe management of unusual circumstances such as 

shutdown and maintenance. 
One or more independent experts, who have broad knowledge of process chemistry and 

engineering but who have not previously been closely involved with the project. Their main 
role in the HAZOP meetings is to suggest and explore possible deviations from the intended 

43 



behaviour of the plant, and to 
-apply 

their experience to identify and suggest alternatives to 

any undesirable features of the design. 

The study meetings are chaired by the HAZOP leader, who has overall responsibility for the 

conduct of the analysis. This responsibility normally extends to the selection of team members 

and practical administration of organising the study meetings; it also includes ensuring that the 

necessary follow-up work, such as answering queries or ensuring that recommendations are 
implemented after the meeting. The discussion and conclusions of the meeting are documented 

by the recorder or secretary. The person selected for this role must have sufficient understanding 

of process chemistry that they can follow and accurately minute the discussion, but different texts 

disagree about whether the recorder should be expected to take an active part in the debate. 

Whilst HAZOP can be applied to an existing system, either for retrospective hazard identification 

or when modifications necessitate new safety assessments, it is really intended for use during 

design of a new plant. As such, the most important output of the analysis is really the set of 

recommendations made for amendments and improvements to the design. If the team finds that 

they do not have sufficient information to reach a decision in the initial meeting, it is acceptable 

to note queries for resolution and adjourn the meeting. 

HAZOP is normally applied as soon as the process line diagram (also known as the piping and 
instrumentation, or P&I diagram) has been produced. For large, complex plants, where HAZOP 

of the complete line diagram is expected to be lengthy, HAZOP of the flow sheet (the order of 

processes and reactions, the first step in designing a plant to manufacture a particular product) is 

advocated. This can help to identify the most critical reactions, dangerous intermediate products 

etc. For example, the methyl isocyanate (MIC) which escaped in large quantities from the Union 

Carbide plant at Bhopal in India in an accident on P December 1984, killing over 1750 people, 

was an intermediate product in the production of pesticides and polyurethane. These products can 
be manufactured from the same raw materials without the intermediate MIC production if the 

order of reactions is altered. Even where dangerous reagents or intermediate products are 

unavoidable, plants can be designed to minimise the inventory if the dangers are properly 

understood at a sufficiently early stage. 

Unlike the majority of safety analysis techniques which concentrate on component failure modes, 
HAZOP analysis usually starts by considering the behaviour of theflows between components, 

studying physical properties such as the pressure, temperature and flow rates of materials in the 

pipelines within the plant. A set of guide words is used to prompt consideration of deviations 

44 



from the intended behaviour of these flows. These guide words provide the structure of the 

analysis and can help to ensure complete coverage of the possible failure modes. The set of guide 

words used in the process industry is now fairly stable, generally accepted and well understood, 

though there are still some minor variations. The standard guide words for process plant analysis 
(with example interpretations) are shown in Table 3. 

Guide Word Deviation --T Example Interpretation 

NO No part of the intention is achieved No forward flow when there should be. 

or NONE 

MORE Quantitative increase in a physical Higher pressure, flow rate, temperature 
property (rate or total quantity) Quantity of material is too large. 

LESS Quantitative decrease in a physical Lower pressure, flow rate, temperature ... 
property (rate or total quantity) Quantity of material is too small. 

MORETHAN All intentions achieved, but with Impurities in flow (air, water, oil... 

or AS WELL AS additional effects (qualitative Chemicals present in more than one 
increase) phase (vapour, solid) 

PART OF Only some of the intention is One or more components of mixture 
achieved (qualitative decrease) missing, or ratio of components is 

incorrect 

OTHERTHAN A result other than the intention is Any state other than normal operation, 
achieved e. g. startup, shutdown, maintenance... 

REVERSE The exact opposite of the intention Reverse flow. 
is achieved 

Table 3- Process HAZOP guide words 

Compared to Functional Failure Analysis (section 2.7), it can be seen that HAZOP has more 

guide words than FFA has hypothetical failure types, but there is a strong correspondence 
between the two. "None" is analogous to FFA's "function not provided", whilst "function 

provided when not required" is related to interpretations of "More" and "As well ae'. The larger 

number of guide words in HAZOP provide more guidance than FFA but, like FFA, HAZOP 

provides a "catch-all" ("Other than") which requires careful interpretation to identify situations 

not prompted by the rest of the guide words. 

For each deviation suggested, the team search for possible causes, such as inappropriate design, 

or component failures, and consider what the consequences for the plant would be if the deviation 

were to occur. The method may therefore be considered to have both inductive and deductive 

characteristics. The scope of the analysis explicitly extends to system operation, maintenance and 

testing, and includes "unusual" operating circumstances such as startup and shutdown. Although 

45 



analysis starts with single deviations, the team is expected to consider additional causal factors 

when investigating their potential effects. 

The essential steps of a HAZOP analysis are: 
I. Select a flow in a pipeline. 
2. Identify important physical attributes of the flow, such as pressure, temperature, flow rate, 

chemical composition etc. 
3. Consider the deviations prompted by applying each guide word to each property for this line 

section. 
4. Determine the possible causes of each of these deviations. 

5. Investigate the expected outcome (effect on the plant) of each deviation, taking into 

consideration operating conditions and other causal factors where necessary, and examining 
the contribution of protection mechanisms and other mitigation already included in the 
design. 

6. Decide which deviations are safety problems (i. e. those with both plausible causes and 
hazardous effects). 

7. For deviations which are not safety problems, record a justification (i. e. explain why the 
design is acceptable as proposed. ) 

8. Consider changes to the plant that will remove, or reduce the probability or severity of, 
hazardous deviations. 

9. Determine whether the cost of the proposed changes is justified. 

10. Agree actions and responsibilities. 
11. Repeat steps I to 10 for all other lines in the plant. 
12. Follow up to ensure necessary actions have been taken. 

The results of the HAZOP study are presented in tabular form. Figure 8 shows a small segment of 

a process line diagram, adapted from Kletz [44], and a fragment of analysis output for this 

example, also from Kletz, is given in Table 4. Two styles of recording HAZOP are identified in 

the literature. Recording by exception lists only hazardous deviations. This style of recording is 

no longer considered appropriate for the majority of studies, and has largely been supplanted by 

complete recording, which includes every deviation discussed, with a justification of 

acceptability as described in step 7 above for deviations that are not considered to be safety 

problems. This provides a complete, traceable record of the team's conclusions. 

46 



Valve (normally closed during 
operation of the plant) 

x Manually operated valve Pump _i2 

Valve (normally open during 
operation of the plant) 

Non-return valve 
Automation (level 
controller) 

Hydrocarbon 
from storage 

Drain (PG 

Settling tank 

Ik Transfer pumps 
Drain (one working, one spare) Drain 

To reactor 

Figure 8- Fragment of Piping and Instrumentation (P&I) diagram, adapted from Kletz 

Guide Word Deviation __T Possible Causes _ Consequences Action Required 

NONE No flow No hydrocarbon Loss of feed to reactor. 1) Ensure good 
available from storage Polymer formed in heat communication with storage 

exchanger area 
2) Install low level alarm on 
settling tank 

Transfer pump fails As above Covered by 2) 
(motor fault, loss of 
power, impeller 
corroded etc. ) 

MORE More flow Level control valve Settling tank overfills 3) Install high level alarm 
fails to open, or LCV 4) Check size of overflow bypassed in error 

5) Establish locking-off 
procedure for LCV bypass 
when not in use 

More Isolation valve or LCV Line subjected to full 6) Install kickback on 
pressure closed when pump pump pressure pumps 

running 
More High intermediate Higher pressure in 7) Install warning of high 
temperature storage temperature transfer line and settling temperature at intermediate 

I I tank I storage 

Table 4- Fragment of HAZOP output 

47 



Like FFA, HAZOP does alone does not provide detailed evidence of the safety properties of a 

system; rather, it provides input to the design process, and a structure which can subsequently be 

used as the framework of a safety argument. 

Although HAZOP has historically been used almost exclusively in the chemical processing and 

related industries, its concepts are very general, and it can readily be adapted for other 

applications. In response to the wider application of HAZOP, a number of new standards have 

been published or are under discussion, such as the IIEC Guide for Hazard and Operability 

Studies [37]. Proposals for the application of HAZOP to computer systems are discussed in 

section 4.2, and Chapter 7 describes further work modifying and extending this technique. 

There are also a number of tools such as HAZOPEX and STARS [45] which use expert systems 
to produce automated HAZOPs directly from a machine-readable design representation. 

2.9 Failure Modes and Effects Analysis 

Failure Modes and Effects Analysis (FMEA) is the most widely used name for a whole family of 

related inductive safety analyses. Villemeur [80] cites papers dealing with FMEA applications in 

the aerospace, nuclear, chemical and automobile industries, and Dhillon's comprehensive 
bibliography [22] lists around 50 different procedures or standards for applying FMEA. Apart 
from the inductive working, the major common feature of these techniques is that they start from 

known failure modes of individual components (unlike FFA or predictive FMEA discussed in 

section 2.7, for which the starting point is a set of hypothetical failure modes, often at a relatively 
high level). 

Unfortunately, the huge range of analyses with quite different procedures and intent which are all 
known as FMEA mean that there is little common understanding between different industries and 

nationalities. Leveson has claimed that FMEA is essentially a reliability analysis that is 

inappropriate for a use in a safety process -a reasonable assertion for some variants of FMEA, 

such as the purely quantitative technique described in the introduction to the U. S. Nuclear 

Regulatory Commission Fault Tree Handbook [69]. 

There are, however, a number of variants of the technique that are appropriate for use in a safety 

process; Villemeur's examples are clearly safety rather than reliability analyses. Again, the 
Appendices to ARP 4761 provide some of the best published descriptions and examples. 

48 



The most important feature of an FMEA carried out as part of a safety process is that it is a 

confirmatory analysis, providing evidence that a system meets requirements that were set at an 

earlier stage in the process. The related failure modes, effects and criticality analysis (FMECA) 

is an extension of FMEA which makes provision for a formal categorisation of the severity, 

probability and resultant risk classification of each failure based on its contribution to system 
level hazards. 

The results of the analysis are simply presented in tabular form; there is no special notation or 

standard format for FMEA in general use. This is largely due to the diversity of systems in many 
different industries to which it is applied, and can be seen as a strength of the technique, because 

it can be tailored to suit individual needs. There are, however, common concepts that will be 

expressed in some way in every (safety) FMEA. These include identification of- 

" the component or subsystem under consideration 

" the known failure modes of this component or subsystem 

" the effects of each failure mode. 

Additional columns that may be presented in the table as required include: 

" contributing factors, such as system state, which may alter the effects of the failure 

" means of detecting and mitigating the failure 

" comments and / or recommendations 
If a FMECA is being carried out, there must also be columns for the criticality information, i. e. \ 

severity, probability and risk class. There will normally also be a column containing a 
justification of the risk category assigned. 

The precise method for carrying out an FMEA or FMECA varies from one application to another. 
Generally, there are five major steps 
1. Definition of the system, its components and operating states 
2. Identifying the component failure modes 
3. Identifying the possible effects of each component failure 

4. Investigating other factors, such as detection and protection 
5. Forming conclusions and making recommendations 
Table 5 contains a fragment of an FMEA for the vehicle speed sensor example. 

49 



Component Failure Mode Subsystem Effects Vehicle Effects Comments 

Variable No signal Vehicle speed will 1) No speed indication Effect 3) requires 
Reluctance always be calculated 2) Mileometer not simultaneous 
Sensor as zero incremented failure of engine 

3) Electronic gearbox load calculation 
control may select too and mechanical 
low gear, possibly interlocks on 
resulting in wheel gearbox 
lockup or transmission 
damage 

Variable Noisy (too Calculated vehicle 4) Indicated speed greater Effect 6) is hard to 
Reluctance many edges) speed will be too than actual detect via engine 
Sensor high. If edges arrive 5) Mileometer over-reads load calculation, 

at higher rate than 6) Electronic gearbox unless noise is 
spec., they will be control may select too extreme. 
lost. high gear, possible 

resulting in stall 
Variable Intermittent Calculated vehicle 7) Speed indicated lower See above 
Reluctance speed will be too low than actual 
Sensor 8) Mileometer under- 

reads 
19) as 3) 1 

Table 5- Fragment of FMEA for the vehicle speed sensor example 

2.10 Fault Trees 

Fault Tree Analysis was developed jointly by Bell Laboratories and the United States Air Force 

in the early 1960s to investigate the conditions that might lead to inadvertent launch of a 
Minuteman missile. It has become by far the most commonly used deductive safety analysis 

technique, and has been applied in many diverse fields. 

A fault tree represents graphically the combinations of events and conditions that contribute to 

the occurrence of a single undesirable event, called the top event. Despite the diversity of 

application, the symbols representing events, conditions and logical operators have remained 

remarkably standard, and most of the safety critical systems community still regards the U. S. 

Nuclear Regulatory Commission Fault Tree Handbook [69] as the definition of standard fault 

trees. The few significant deviations from the conventions defined in the handbook have 

remained thankfully obscure and largely unadopted. The standard fault tree event and gate 

symbols are shown in Figure 9. This is not an exhaustive list; Villerneur's book [80] defines 

50 



additional logic gates (e. g. an m out of n combination gate) and a family of numerical gates, 

consisting of quantification, summation and comparison gates. I 

Standard Event Symbols 

Basic Event 
An initiating fault requiring no further development 

Undeveloped Event 
An event which is not developed further, either because it is considered 
unnecessary, or because insufficient information is available 
Intermediate Event 
An event arising from the combination of other, more basic events 

Normal Event 
An event which is expected to occur as part of the normal operation of 
the system 
Conditioning Event 
Specific conditions or restrictions that apply to some types of logic gate 
(e. g. PRIORITY AND and INHIBIT gates) 

Standard Gate Symbols 

AND 
All input events must occur for the output to occur 

OR 
The occurrence of one or more input events will cause the output to occur 

EXCLUSIVE OR 
The output will occur if exactly one of the inputs occurs 

PRIORITY AND 
The output occurs if the input events occur in a specific sequence, described 
in a CONDITIONING EVENT attached to the gate 
INHIBIT 
This gate produces an output if the single input event occurs in the presence 
of the enabling condition described in the attached CONDITIONING EVENT 

Figure 9- Standard Fault Tree notation 

The method for constructing a fault tree is generally expressed not as a rigid algorithm, but rather 

as a set of rules that the analyst should follow. The analysis begins by selecting the undesirable 

event that will form the top event of the tree. The following rules are then applied: 

51 



Identiflcation of immediate cause: 

The immediate, necessary and sufficient causes of the top event are found. It is important 

to ensure that the true immediate events are identified. For example, in the vehicle speed 

sensor system, the immediate cause of "no input data to vehicle speed functions" would be 

"no output from signal processing electronics"; the temptation to jump directly to the 

obvious cause (i. e. sensor failure) must be avoided. 

Classification of events: 
Each contributing event identified should be classified as either a basic event, in which case 

no further decomposition is necessary, a system defect or a component defect. A system 
defect is a failure involving more than one component, or a component failure together with 

a normally occurring event. In this case, the immediate causes of this event must be sought. 

Analysis of component defects: 

Component defects are divided into primary, secondary and command failures. Primary 

failures are basic events; secondary and command failures will generally require further 

decomposition. Figure 10 shows a decomposition of component failure causes suggested by 

Villemeur. 

These three rules are applied iteratively until the tree consists entirely of basic events, or until the 
desired level of detail has been reached. 

ý, x 

,& 
(P 0- ; -z- 0-, > 

C ponent o-- M C-) a) 

242 --p ailure 0 !, b -Z 
Z6 0, Command 

Incorrect control 0 71 signals 

Environment 

Figure 10 - Villemeur's decomposition of component failure causes 

52 



Further guidelines for the construction of correct fault trees include: 

0 To ensure a methodical analysis, all the inputs to a gate should be defined before any one of 

them is examined in detail. 

0 The output of one logic gate should never directly form an input to another gate. There must 

always be an identified intermediate event between logic gates. 

0 The statements entered in the event boxes should always be a complete description of what 

the fault is and when it occurs 
Miracles are not permitted. If a component failure is sufficient to cause the top event if all 

other components in the system behave normally, but other coincident failures could mask 

the critical failure, then these coincident failures must be assumed not to arise. 

* Causes always chronologically precede consequences. This sounds obvious, but can be 

difficult to apply in the analysis of closed loop control systems 

Figure II shows a fault tree for the failure event "No vehicle speed data supplied to gearbox 

controller" in the vehicle speed sensor example, constructed following the rules given above. 

Note that, as there is no redundancy in this system, the tree consists entirely of "OW' gates. 

One of the most important features of the method is its suitability for use in calculating 

probabilities. The first step is always the reduction of the fault tree to minimal cut-setform. 
Minimal cut-sets are the smallest sets of events which are sufficient to cause the top event. The 

speed sensor example tree is already minimal - no event appears more than once in the tree. 

Figure 12 shows the reduction of a small example tree to its minimal form. 

The derivation of minimal cut sets is followed by annotating each basic event with its probability. 
Calculation of intermediate event probabilities then progresses up the tree until the probability of 

the top event can be calculated. 

Fault trees can also be used in a predictive role in the PSSA activity. In this role, the tree is 

constructed as normal, working down - from the top event. However, probabilistic safety 

requirements are propagated down the tree, starting with the target figure for the top event and 
deciding how to allocate this between the events at each successive level of the tree. This can also 
help to determine architectural requirements; for example, an allocated failure rate of 10-7 per 
hour for an electronic system would imply a need to use redundant components. 

53 



No vehicle speed 
data supplied to 

gearbox controller 

No input to "intemd' 
vehicle speed in vehicle s>pee functions 

functions 

No input to signal 

wirin lure in s 
r 

Dr! 
akgln processing lnterna, ý, 

wiring electronics 

I 

, 

ýfaip 

gnal 
processing 

Break In No output from 
wiring 

)I 
sensor 

Sensor Sensor N 

I t "failure 
mounted 

t too far from 
wheel j 

Figure 11 - Fault tree for "No vehicle speed data supplied to gearbox controller" 

reduces to 

EO 

B E4 

AC 

Figure 12 - Simple example of minimal cut-sets 

54 



2.11 SneakAnalysis 

Sneak analysis originated with an accident involving a Mercury Redstone rocket in 1961. The 

rocket was connected to the control centre by an umbilical cable attached by tail plugs. When the 

rocket was launched, the tail plugs disconnected in an order that briefly established a circuit 

through the abort coil, with the result that the rocket crashed back onto the launch pad. 

Rankin [66] and other Boeing engineers developed sneak circuit analysis to systematise the 

search for similar design flaws in other electrical and electronic systems. Their method was very 

successful within the Boeing Company, which trained large numbers of people in the use of the 

technique, and applied it not only to its own products but also used it on external contracts for 

NASA and some nuclear and military systems projects. Variants, usually known as sneak path 

analysis, were also developed for use on hydraulic and pneumatic systems. 

The original principle of sneak circuit analysis was the identification of unintended circuits, but 

the technique was rapidly expanded to identify a much wider range of unintended situations. 
O'Connor [63] identifies five types of sneak conditions for electrical circuits: 
1. Sneakpaths - current flows along an unexpected route 
2. Sneak opens - current does not flow along an intended route 
3. Sneak timing - Current flows at an incorrect time, or does not flow at the correct time 

4. Sneak indications - False or ambiguous indications 

5. Sneak labels - False, ambiguous or incomplete labels on controls or indicators. 

The identification of sneak paths is based around a systematic redrawing of the circuit diagram to 

make current flow patterns obvious. The principal objectives of the redrawing are to divide the 

circuit into partitions, where all components that are joined by a possible current path are grouped 
into the same partition, and to re-express the circuit within each partition such that its structure 

matches one of a set of standard patterns, or topograms. Note that partitions can always be 

established at a power supply or earth point. Any circuit can be represented by combinations of 
the patterns, which are shown in Figure 13. The Li and Si in the patterns represent loads and 

generalised switches, where a generalised switch is any component such as a contact, plug, relay 

etc. which can control the flow of current. 

55 



sl 

Ll 

S2 S3 

L2 L3 

sl S2 

y 

Ll L2 

S3 

i 

Series Double Ground Double Power 

Power 

sl S2 

I L2 L 

4S, 

3S4 

U 

Ground 

x 

Figure 13 - Sneak circuit patterns 

H 

A series of sneak "cluesP is then used to identify potential problems in these circuits. For 

example, clues for the double ground circuit include: 

9 Design problems, e. g. U desired but not LI 

Switching Istate problems, e. g. SI open and L2 desired 

Load incompatabilities, e. g. current flows in L2 bypassing U, or current flows in L2 and U 

overload LI 

0 Unwantedflows, e. g. reverse flow through L3 to L2 (possible only if the output of L3 passes 
to another part of the circuit rather than to ground) 

* Interface problems, e. g. label on S2 does not reflect the function of L2, or indication on L2 

does not reflect the function of L2 

The relationship between these clues and the general sneak conditions identified above is 

obvious. There are complete, systematic lists of clues for each of the circuit patterns, and 

guidance on identifying additional interactions (e. g. where the coil of a relay is load in one 

partition of the circuit and the contacts are a switch in a different partition). 

Sneak path analysis (described by Taylor in [76]) generalises the principles of sneak circuit 

analysis to produce a technique that in many respects can be considered a generalisation of 
HAZOP. The power supply and earth of the electrical analysis are replaced by a general "source" 

sl E2 

Ll L2 

S3 
U 

S4 $5 

LS L4 

j 

56 



and "targef'. Potential paths from source to target are identified with the aid of sneak clues, such 

as: 
" Unintended path from source to target 

" Reverse flow along path 

" Excess flow along path 

" Intended path created at the wrong time 

" Intended path can be cut off at the wrong time 

" Intended flow can be diverted 

" Two paths merge, or allow unintended interaction 

" Person or object can move into flow path. 
This effectively combines the investigation of unintended behaviour in expected paths (analogous 

to the identification of flow deviations in HAZOP) with a systematic search for completely 

unintended flows which could have similarly hazardous outcomes. The examples given in 

Taylor's book include conditions where sumps or drains form unexpected routes for chemical 

reagents to combine. 

Taylor generalises the identification of sources and targets even further, such that they include: 

Sources Targets 

9 Energy 9 Humans 

0 Poisons 0 Fuels 

0 Corrosives Other chemical reagents 

" Sharp edges 

" Chemical reagents 

" Ignition sources 

" Moving objects 

This generalisation appears to cast sneak analysis in very much the same role as preliminary 
hazard identification methods based on analysis of energy containment. References have also 
been found to software and human factors sneak analyses. 

Frustratingly, this technique is subject to commercial restrictions, and there are very few 

publications that provide more than incidental detail. Those that do exist imply (as the 

observations above demonstrate) that sneak analysis has grown from its original focused method 

and objective to encompass a range of related analyses and has become, in effect, a safety process 
in itself. 

57 



2.12 Event Trees 

Event trees are simply branching trees, drawn across the page from an initiating event on the left 

to the possible outcomes on the right. The centre of the page is divided into columns, with each 

column representing a possible subsequent event or action, such as the functioning of a protection 

mechanism. Each of these events can either occur or fail to occur, these cases are represented by 

a branching of the tree in the appropriate column. They can be used as a basis for calculating the 

probabilities of the possible outcomes if the probabilities of the intermediate events are known. 

The construction of event trees is, essentially, an inductive proccss, proceeding from an assumed 

initiating event to a set of possible outcomes. The essential chart construction steps arc: 

1. Select an initiating event 

2. Identify protection mechanisms which may have an effect after this initiating cvcnt 

3. Determine the order in which the protection mechanisms should function 

4. Construct the tree, and describe the interpretation of each of the possible outcomcs. 

Figure 14 shows an example of an event tree which might be constructed for the vehicle speed 

sensor subsystem. Note that the fault detection and handling mechanisms in the control software 

are represented as the first two columns of alternative circumstances. 

Responses 

Senses Senses Gearbox 

Initiating I impossibly I engine load, Gearbox mechanica Warning Possill)IO 
Event 11 

rapid incompatiblei recognises I interlocks lamp 
change to : with zero failure flag I functon oultv"es 

zero P!! d correctly 
------------------- -- 

YA Handled by SW. Warning. No dsk. 
YN 4- 

B Handled by SW. No warning. No dsk. 
YY 

- I:: 
C kftrbcks work. Warning. No risk. 

N N! N-Cý D Wedocks work. No waming. No risk. 
Y 

01 I 
NIYE InUKbCkS lad. Warnivig. Accident risk. 

NI I IF Interlocks fal. No wm'g. Acckkwd rislL 
Sensor 
Fails 

V 

N 

iN 

yIyA 
Handled by SW. Wan-wig. No risk. +X 

Na Handled by SW. No warning. No risk. 
yyC Interlocks work. Warning. No risk. 

NI 
yIND 

InUWIocks work. No warviing. No risk. 
NE Interlocks lad. Waming. Accident risk. y 

NIF Interlocks lad. No wm'g. Accident risk. 
D Intedocks wodL No waming. No dsk. 
F knedocks W. No wm*g. Accident risk. 

Figure 14 - Sample event tree for the vehicle speed sensor example 

58 



2.13 Cause-Consequence Analysis 

Cause consequence diagrams were developed by researchers at the Danish national research 
laboratory (RISO) in the early 1970s. Despite the apparent advantages of the method, it does not 

seem to have found widespread favour, and the only documented examples of its application are 
in the nuclear industry in Scandinavia [6 1] and the USA [II]. 

The method is perhaps the most comprehensive of the diagrammatic techniques surveyed, 

combining fault tree style causal analysis with a consequence analysis whose method, although 

not notation, is similar to that of event trees. The notations used in the literature for this method 

vary somewhat; all versions use standard fault tree notation for the causal parts of the analysis, 

and Figure 15 shows the notation most commonly used for representing the consequence parts. 

Decision Box tt 
The output of this box is YES if the 

YES I NO condition is met, NO otherwise. The 
Condition condition is usually of the form 

1. protective action X is taken? ". The 
arrow entering NO is the output of a 
fault tree which shows what could 
prevent this action being taken 

Consequence Event Descriptor 
The terminal symbols of the diagram 
Unlike fault tree top events, there 
may be many, each describing a 
possible outcome 

Descriptor Tag 
Used to label 
internal flows to 
show what 
event or state 
they represent 

t Delay 
Delay Introduces 

delay into an 
internal flow 

Figure 15 - Symbols used for the consequence part of a Cause Consequence Diagram 

The essential steps of a cause-consequence analysis are: 
1. Identify one critical event, known as the initiating event 
2. Identify the effects of this event on the system and its environment. 
3. Determine whether protective actions should be triggered by the changes in the system or 

environment. These form the decision boxes of the consequence chart. 
4. Consider the effects of these actions; note that an action which should be triggered may fail, 

or an action may be triggered which is actually undesirable in the context of the event which 
has actually occurred. 

5. Display the results of steps 2 to 4 using the consequence notation. 
6. Identify potential causes of the initiating event, and record the results in fault-tree notation. 
7. Identify the potential causes of failure of the protective mechanisms; these are displayed as 

fault-trees whose top event is the "NO"' branch of a decision box. 

I The output of this box is YES if the 
YES NO -- condition is met, NO otherwise. The 

ition condition is usually of the form 

Econdifl( T 

1. protective action X is taken? ". The 
arrow entering NO is the output of a 
fault tree which shows what could 
prevent this action being taken 

59 



Strict application of this procedure will result in a cause-consequence diagram which has only 

one initiating event; however, Burdick -and Fussell [11] comment that one of the advantages of 

the method is that it can be worked either forward from events or backward from consequences, 

thus giving a good way of tracing and depicting combinations of events, causes and 

consequences. Probability calculations using a cause-conscquence diagram are also possible; 

Nielsen et. al. [61] present a detailed worked example. 

Probably the greatest strengths of this method are its ability, to represent multiple failure 

conditions and many possible outcomes, and the 
-direct 

representation of fault detection 

60 

Figure 16 - Cause Consequence Diagram for the vI ehicle speed sensor example 



mechanisms and error handlers as decision boxes. This makes it much easier to comprehend a 

complex set of related failures and error handlers. The notation also naturally represents 

sequential and time-related events so, for example, multiple detection mechanisms can be 

represented in the order in which they are actually applied. Figure 16 shows an example cause- 

consequence chart for the speed sensor subsystem, which has been constructed to illustrate the 

interactions between different protection mechanisms that can be represented in the notation. 

2.14 Zonal Hazard Analysis (ZHA) 

Zonal Hazard Analysis is a technique that explores the ways in which physical proximity of 

components can result in common failure. Its primary purpose is to identify cases of non- 
independence between systems or technologies that had been assumed to be independent. For 

example, consider an aircraft that has hydraulically actuated control surfaces on the wings, and 

electrical sensors that report the position of the control surfaces to the flight control system. A 

hydraulic leak that occurs in close proximity to the sensor, or to its wiring, may cause a 

simultaneous loss of both control over the surface and information about the current position of 

the surface. This is potentially much more hazardous than simple loss of control over the surface, 

since without positional information the flight control system will be unable to take automatic 

action to trim the aircraft with compensatory movements of surfaces on the other wing. 

There are many detailed procedures for carrying our ZHA on different types of system, but the 

essential steps are: 

0 Determine the zones. 
Zones reflect physical containment, for example the space between bulkheads in aircraft, or 

the interior of an equipment bay. The exterior of the platform is usually also treated as a 

zone. 
Identify the equipment in each zone, including services (cables and pipes) that pass through 

it. 

* Consider causal factors. Typical examples of causal factors include: 

- clearance from moving parts 
thermal heating & cooling, vibration, ionising & non-ionising radiation 

existence of sharp edges and comers 

- stresses on pipes and cables 

e Produce design recommendations to eliminate any problems found 

61 



2.15 Conclusions 

This chapter has defined, basic system safety terminology, outlined the safety activities in a 

typical development process, and briefly described the most important features of a range of 

analysis techniques. This. review prompts a number of general observations about analysis 

techniques: 

" It appears that the safety analysis techniques which are most successful (i. e. those which are 

widely applied across a range of industries) are those which have very well-defined methods, 

e. g. HAZOP and fault trees. 

" Considering the list of techniques presented in the System Safety Analysis Handbook, it is 

obvious that many of them are extremely similar. "Familier of closely related technique, 

sharing very similar methods and notations can be identif led. This appears to be due to subtle 

customisations of a small number of successful analysis techniques to fit specific 

requirements in different industries'or organisations. This leads to the conclusion that an 

essential property of analysis techniques is that they must fit the way that people and 

organisations work, down to a very fine grain of detail. 

Even amongst the techniques surveyed here, which were deliberately selected to be as 
diverse as possible, a number of common concepts emerge. For example, almost every 

method includes somewhere a set of "prompts" to guide and structure analysts thinking. 

These common themes provide strong clues to the basic elements of a successful analysis 

technique. 

62 



Chapter 3 

A framework of concepts 

This chapter explores the system safety definitions, processes and analysis techniques described 

in Chapter 2. It identifies a number of core concepts which underlie traditional system safety 

analysis, and which form a "vocabulary" for the design of new techniques to address novel 

analysis requirements. It also proposes a new model for classifying safety analysis techniques. 

3.1 Hazards 

Since hazard identification is the first technical activity in a system safety programme, and is the 

driver for all subsequent activities, it is essential that it be done well. Unfortunately, experience 

of participating in and reviewing hazard identification activities in industrial projects, and of 

teaching hazard identification as part of courses in system safety analysis, shows that many 

practising safety engineers struggle to understand or explain what a hazard is. This section 

explores the concept of a hazard in some detail, both to examine why it is problematic, and to 

show how it is key to identifying and understanding many of the properties of safety analysis 

techniques. 

As Chapter I observed, even where accidents have occurred, it is common for the circumstances 

to be so complex that investigators cannot identify causes and event sequences with any 

certainty, The complexity and uniqueness of every accident means that it is impossible for the 

developers of a new system to envisage all the potential accidents it may cause or become 

involved in during its life. For example, it is easy to suggest potential failures of a car's brake 

system but, depending on the speed the car is travelling when the failure occurs, the location, 

traffic conditions etc., the same failure could result in any outcome from delayed travel to a 

written-off vehicle, or even death. Instead, most safety analysis is based around the identification 

and management of hazards - conditions that can be summarised crudely as "accidents waiting to 

happen". 

One of the most common problems observed in hazard identification is the difficulty engineers 

experience in trying to separate the hazard from the potential accident. For example, in an 

exercise involving a level crossing, the majority of the participants initially identified "collision 

of train and road vehicle" as a hazard. This is an accident - the harm has been done. The hazards 

63 



are those situations that could lead to a train or a road vehicle entering, or remaining in, the 

crossing when they should not. 

The British Standard [ 10] definition of a haýaid is-' 

"A situation that could occur during the lifetime of a product, system or plant that has 

the potential for human injury, damage to property, damage to the environment or 

economic loss". 

There are many situations that can readily be identified as hazardous by this definition. For 

example oil spilled on a staircase, or loose cables trailing across a floor are obvious "slip" and 

"trip" hazards. 

Unfortunately, in complex technical systems the concept of a hazard can often seem somewhat 

artificial, and this is the problem that the engineers involved in the level crossing exercise 

experienced. The fundamental problem is that there is effectively a chain of causality from root 

causes to accidents, and it is often not clear how far along the chain of events a situation arises 

that should properly be described as a hazard. 

The classification of conditions as hazards is very often as much a decision about effective 

management as it is about technical safety aspects. Hazards are selected because they are 

situations which can be described clearly and concisely, where responsibility can be allocated, 

and which, taken together, break the safety engineering activities in a project into a reasonable 

number of manageable size tasks. 

Even in existing systems or situations, the identification of hazards can be difficult, involving 

complex decisions based on many (often subtle and subjective) factors. For the safety engineer 

working on a new design the problem is worse, 'because' tlýierequirement is to anticipate (and 

hence avoid or mitigate) hazards. This distinction between concrete (real, certain) and projected 
(suggested or expected) situations is encountered at all levels of safety engineering, and is 

responsible for many instances of confusionor poor practice when the status of information is 

misunderstood. The distinction between concrete and projected conditions is explored further in 

section 3.4, which discusses the classification of safety analysis techniques. 

It is impossible to summarise in a concise definition all of the knowledge and decision criteria 

required in determining whether a (concrete or projected) situation should be treated as a hazard. 

64 



However, examining some of the shortcomings of a number of definitions highlights some of the 
key concepts. 

3.1.1 Endogenous and exogenous hazards 

Leveson [50] makes a distinction between hazards arising from causes within a system 
(endogenous), and those arising from external threats (exogenous). Most of the discussion in 

sections 3.1.2 to 3.1.5 concentrates on characteristics of the hazards themselves, and on the way 
they are transformed into accidents, and these are unaffected by the source of the hazard. 

However, the distinction between endogenous and exogenous hazards becomes very important 

when examining the relationship between hazards and failures (section 3.2), and in the 

application of the hierarchy of risk reduction described in section 2.2.2. 

3.1.2 Hazards as risk thresholds 

The main problem with the British Standard definition given above is that, taken literally, it is too 

general. "A situation that could occur... that has the potential for (harm)" can be interpreted such 
that it includes almost any activity. For example, travelling in a car is clearly a situation that has 

the potential for harm, but most people in the developed world would not consider it to be a 

particularly hazardous activity - that is, the risk is considered acceptable (although there are 

many factors influencing perception and acceptance of risk which will not be explored here; for 

discussions of these factors see, for example [41,62]). What is implicit in the definition is that 
hazards are unintended or unwanted situations in which the potential for harm exceeds some sort 

of threshold of acceptability. This may occur as a result of external influences (such as severe 

weather), technical failures, or operator errors. Thus most people would consider that skidding a 

car is hazardous; it is (usually) unwanted, and the potential for harm is much greater than normal 
driving. 

In terms of the ALARP principle described in section 2.2.2, it is clear that the "broadly 

acceptable' region extends down to contain activities from which the risk is so low that they do 

not need to be considered as hazards at all. The hazard is the event or circumstance that causes 
the level of risk to cross the threshold from always acceptable to potentially unacceptable. The 

concept of thresholds of risk is important but problematical, as it relies on (predominantly 

subjective) assessments of acceptable risk, and it can be hard to determine precisely what caused 
the notional threshold to be exceeded. 

65 



3.1.3 Hazards as decision points in event sequences 

Comparing the British Standard definition with that given by Leveson [50] 

"A hazard is a state or set of conditions of a system (or an object) that, together with 

other conditions in the environment of the system (or object), will lead inevitably to an 

accident (loss event) 
highlights another key issue. The British Standard definition considers situations that have the 

potential to cause an accident; Leveson defines a hazard as a situation that will inevitably lead to 

an accident. The difference is that Leveson's definition is taken in the context of specific 

contributing factors in the system environment, and this prompts consideration of how a hazard is 

identified in terms of its development into an accident. 

Figure 17 shows a hazard, arising from a set of root causes, which may develop into one of two 

possible accidents depending upon the subsequent sequence of events, where the sequence of 

events actually followed is determined by one or more contributing factors (the environmental 

conditions in Leveson's definition). Alternatively, a safe state may result if another sequence of 

events follows the emergence of the hazard. It is important to note that a hazard on its own is not 

sufficient to make an accident inevitable. 

Root Accident 
cause 

R0 ot "lo 
c us ause 8 

Hazard 

Root 

0 

cause 

Root 
c cause ause 

Contributing 
factors 

Figure 17 - Relationship of hazard to causes and possible outcomes 

In the most general interpretation of Figure 17, the contributing factors, and hence the sequences 

of events following the hazard may be either normal (expected or intentional) or abnormal 

66 



(unexpected or unintentional) events or actions. The selection of any particular sequence may be 

either deliberate (i. e. due to explicit action on the part of the system or an operator), or simply a 

matter of luck. In these event sequence terms, a hazard is often identified as the last system state 
from which it is possible to make transitions to either a safe state or an unsafe state. In other 

words, a characteristic of a hazard is that it is the last decision point before an accident. 

This model can be developed further by considering what types of events or conditions combine 

with the hazard to result in an accident. Taking the simple example hazard of oil spilled on a 

staircase used in section 3.1, it is clear that this situation can develop into an accident without 
further abnormal events taking place. All that is required is for someone to use the staircase 

without looking where they are placing their feet. This is a further important characteristic of 
hazards in any sort of system; they are usually conditions that can develop into an accident 

through a sequence of normal events and actions. A situation may properly, be described as a 
hazard if, once it has arisen, an accident can take place with no further failures or abnormal 

conditions as contributing factors. This characteristic is reflected in the rule of the excluded 

miracle in fault tree analysis, which states that, once a failure has occurred, the analyst must 

assume normal behaviour from every other part of the system if that would lead to the top event 

of the fault tree. 

There are circumstances in which it is necessary to treat a condition as a hazard even when 
further failures or abnormal events are required before an accident can happen. These are cases in 

which the sequence of events is completely outside the control of the system, or is completely 

unpredictable. Such cases include natural phenomena (e. g. weather), boundaries of influence (e. g. 
interfaces to other systems whose properties are not fully known), or cases where the eventual 

use of a system cannot be predicted. A good example of the last of these cases is found in the 

automotive industry, where huge numbers of vehicles are sold into a wide range of markets, and 

to drivers of widely differing experience and competence. It is therefore common to assume for 

safety analysis that vehicles will be used in ways which exceed their intended capabilities, and 

also that the driver will react to abnormal circumstances in the worst possible way. 

Further important properties can be identified by considering the sequences of events that lead 

from the hazard to a safe state. These are paths where the accident potential posed by the hazard 

is mitigated by the contributing factors. Extending the oil spill example further, the hazard can be 

removed entirely if someone cleans up the spill. Alternatively, the risk of the hazard developing 

into an accident could be reduced by placing warning signs or barriers around the spill (c. f. the 

67 



discussion of the precedence of risk reduction actions in section 2.2.2). Note that the mitigation 
here may be either a normal or abnormal action, depending on who finds the oil. If there is a 
janitor working in the area, cleaning up oil spills might be considered a normal part of his job. 

For other staff, cleaning up is obviously a sensible and desirable action, but which may not be a 

normal part of their duties. 

Putting all of the event sequence concepts together, the definition of a hazard could be expanded 
to "a condition that, unless mitigated, may develop into an accident through a sequence of normal 
(or uncontrollable external) events and actions". As with the definition in terms of risk 
thresholds, this is still inadequate, but captures some important concepts. 

3.1.4 Hazards as failures of energy containment 

An alternative definition of an accident is "an unplanned or uncontrolled release of energy". It 

can readily be seen that this definition actually describes the physical process of an accident, 

unlike the more standard definitions, which describe the accident outcome (harm). Provided that 

the understanding of "energy" is sufficiently broad, for example by including toxic reactions as a 

release of chemical energy, there are very few situations and types of system that cannot be 

regarded as sources of energy that must be controlled and contained. There are a number of 
hazard identification techniques (see section 2.5) which, in a related way, look for hazards in 

terms of failures of containment of energy. 

Returning to the simple oil spill example that has been used throughout this section, it is fairly 

easy to express the probable accident scenario in terms of energies. The energy that will be 

released in an accident will be the potential energy possessed by a person standing upright on the 

staircase, which will be converted to kinetic energy in a fall. However, it is difficult to see the oil 

spill itself in terms of the definition that a hazard is a failure of energy containment, since there is 

no mechanism for containment as such. If a hazard is defined more broadly as "the creation of an 

unintended path for the release of energy or toxic materials", this now encompasses the oil spill. 
Note the similarities between this definition, and the explicit modelling of unintended paths in 

sneak analysis (section 2.11). 

There are many situations in which it is relatively simple to identify potentially hazardous 

energies, and the mechanisms that are used to control them. These include many of the most 

common application areas of safety critical control systems, such as process and manufacturing 

plants, nuclear power, military and transport systems. In these cases, the energy release model 

68 



can rapidly and systematically identify many hazards. This model is particularly good at 
identifying hazards associated with systems or mechanisms with explicit safety roles. 

3.1.5 Summary of hazard characteristics 

Whilst the above discussion'has not attempted to identify a single "best" or universally correct 

and acceptable definition of a hazard, it has introduced a number of important concepts. Key 

characteristics of hazards include: 

0 they encode historical knowledge by identifying situations which have been significant 

causal or contributory factors in past accidents 

0 they represent decisions about the threshold between acceptable and potentially unacceptable 
levels of risk 

they may be the result of internal (endogenous) or external (exogenous) causes 

there is no fixed rule for determining whether a particular condition should be treated as a 
hazard, but pointers for good selection include: 

- conditions which can be mitigated, but from which an accident can arise through a 

sequence of normal events or actions 

- conditions representing a path for the unintended release of energy or toxic materials 
for any particular development project, the identification of an appropriate set of hazards is 

essential for effective management. 

3.2 Faults and failures 

Understanding the concepts of faults and failures, and their relationship to hazards, is important 

to effective safety analysis for the very practical reason that, whilst many safety analysts have 

problems with the somewhat abstract concepts of hazard definition, faults and failures are 

generally seen as very concrete conditions, which can be identified readily, and with certainty. A 

great many analysis techniques are structured around the identification of failures, their causes 

and effects, and section 3.3 builds up a "dictionary" of related concepts. 

The terms fault and failure have, historically, been used somewhat interchangeably. However, the 

supporting notes to the definition in BS-4778 emphasise that a failure is an event, whereas a fault 

is a state. Thus a component which is faulty may cause a failure when it is used (the incorrect 

state results in an incorrect action or event); similarly, a failure may result in a fault (the incorrect 

action or event leaves the component or system in an incorrect state). This convention will be 

adhered to in this thesis. 

69 



Far more important than the distinction between event and state, however, is the understanding of 

what represents the "correct" behaviour that faults and failures are deviations from. Failures can 
be defined as inability to perform original, designed, specified or intended behaviour, and the 

scope of each of these is quite different. The distinction is vitally important in defining many of 

the technical and managerial aspects of system safety and, particularly, of software safety 

engineering. Unfortunately, all of these definitions have been used, and the debate as to which is 

the most appropriate still continues. 

If a system is considered to have failed only when it is unable to perform as original, then the 

only failures included in the definition are those which have arisen since the system was 

commissioned. This is the reliability engineering view of failure, where the focus of interest is 

normally the rate of occurrence of new failures. This is a relatively narrow definition of failure, 

which is not appropriate for safety engineering. A system may be reliable (i. e. experience no or 
few failures which impair its original behaviour) and yet unsafe because it was specified or 
designed incorrectly, and is therefore reliably performing unsafe actions. 

Defining failure with respect to designed behaviour includes faults introduced into the system 

through incorrect manufacturing or commissioning, and definition with respect to specified 
behaviour broadens the scope still further to include errors in the design process. However, for 

safety engineering, the most appropriate definition of failure is with respect to- intended 

behaviour; the broadest possible scope. It is important to note that this is not a universally 

accepted view. In particular, many American researchers and practitioners contend that failure is 

always defined with respect to specification. 

The authors of the U. S. Nuclear Regulatory Commission Fault Tree Handbook [69] contend that 
it is possible to have a fault without a failure. One of the examples they cite in support of this 

view is the unexpected opening of a lifting bridge. The bridge itself works perfectly (there is no 

mechanical failure); the fault (unintentional opening of the bridge) is the result of an incorrect 

action by the bridge operator. However, taking a broader view, it can be argued that the operator 
is as much a component of the bridge system as the mechanical parts; the system ends up in a 
faulty state as a result of a failure by the operator. Referring back to the primary - secondary - 
command models of faults and failures described in section 2.10 it seems that, in this example, a 

vital command "component" is being excluded by not considering the operator to be part of the 

system. 

70 



A second example cited in the same book is the case of General Beauregard's messengers in an 

early battle in the American civil war. The General sent a rider with a message to one of his 

officers. Some time later, the state of the battle having changed, he sent a second rider with an 

amended message. Later still, a third rider was sent with yet another revision to the message. 
Unfortunately, the riders arrived in the wrong order, and the officer took actions that were 
inappropriate. There was clearly a fault in this command system, but the authors of the Handbook 

(in a view supported by Leveson [50]) contend that there was no failure, as each component (i. e. 

each rider) did what he was intended to. 

This argument is also inconsistent with the broadest view of failure described above. In this case, 
the General himself is both a component of the system (he issued the commands), and its 

designer (he devised the way they were to be communicated). The General's intent with his 

second and third message was to amend earlier instructions in a particular way. The failure in the 

system was the General's failure either to realise that the ordering of his messages was important, 

or to anticipate the possibility that one or more of his messengers might be delayed. Had he done 

so, and made the whole status clear in the second and third messages, the system could have 

worked and correct actions been taken despite the delayed messages. 

Unfortunately, although it may seem somewhat abstract and trivial, the understanding of fault 

and failure is vitally important, because it fundamentally affects the perception of the relationship 
between failures, hazards and safety and, consequently, the definition of what safety engineering 
involves. 

If failure is defined with respect to intent, and it is considered that the intent of safety critical 

systems engineering is always to produce accident-free systems, then accidents resulting from 

endogenous hazards (i. e. those hazards which arise from causes within the system itself) must 

always be the result of a failure. Accidents may still arise from exogenous hazards (causes 

external to the system) without there having been a failure. Although this appears to be a logical 

conclusion from the definitions, and is adopted in this thesis, it remains contentious. Leveson, for 

example, maintains that this is essentially a reliability approach, and safety involves broader 

concepts. 

71 



3.2.1 Systematic Failure 

Considering the discussion above, it can be seen that it is actually the treatment of systematic 
failures (those arising from mistakes in the specification, design or implementation of a system) 

which are contentious. 

Very few of the safety analysis techniques described in sections 2.5 to 2.14 actually make any 

structured attempt to identify systematic failures, although many are capable of incorporating 

such failures when required. For example, in the fault tree handbook, chapter VIII develops an 

example fault tree for rupture of a pressure tank. In the completed tree, there is one 
(undeveloped) event ("timer does not time out due to improper installation or setting") which is 

clearly a description of a systematic failure. However, there are many other places in this tree 

where there are fairly obvious systematic failure contributions that could potentially have been 

included. For example, one event is "excess pressure not sensed by pressure actuated switclf'. A 

methodical search for systematic causes should have identified as a contribution to this the event 
"pressure switch does not open due to improper installation or calibration" - an analogous failure 

to that included for the timer. 

Whilst this is an issue of style and completeness for safety analysis at the level of multi- 
technology systems, it becomes vitally important for computer systems and software, where 

safety is dominated by consideration of systematic failure. 

3.3 A dictionary of concepts in analysis techniques 

This section briefly summarises, in alphabetical order, other properties and behaviours of systems 

that are identified and investigated by the analysis techniques reviewed in Chapter 2. These 

concepts form a basic "vocabulary" for the review of existing proposals for computer system 

safety analysis, and for the design of new analysis techniques. Note that probability, severity and 

risk have already been defined and briefly discussed in Chapter 2. 

Cause 
A condition that precedes, and contributes to the occurrence of, the (failure) condition which is 

being investigated. Models of causality are closely related to the definition of failure, and vary 

considerably, not only between techniques, but also in different authors' application of the 

techniques. This is most noticeable in the identification of root causes (fundamental causes of a 
failure). If failures are defined with respect to original behaviour, then the identification of root 

72 



causes extends only as far as the earliest component failure. If failure is defined with respect to 

specification, manufacturing and installation defects are included, and in the broadest case, where 
failure defined with respect to intent, identification of root causes may investigate problems in 

the specification and design activities. 

Of the techniques surveyed, fault trees, Cause-Consequence Analysis has the most elaborate 

model of causality, explicitly representing the combinations of conditions that will result in a 

particular outcome. The concepts of immediate, necessary and sujFicient causes are used to 

structure the investigation, ensuring that the analysis is complete and logically consistent. 

Classification (of faults and failures) 

Several analysis techniques implicitly classify failures, most commonly to provide a set of 

prompts, or "mini checklists" to suggest possibilities for investigation. Examples include the 

three failure categories used in Functional Failure Analysis, the HAZOP guide words, and the 

primary - secondary - command rule in fault trees. The numerous variants of sneak circuit 

analysis also incorporate implicit classifications in the patterns which are used to identify 

potential design problems in circuits or plant, and also in the "sneak clues" - another instance of 
implicit classifications used as prompts. It is interesting to consider the relationships between 

sneak clues and other sets of prompts - particularly the HAZOP guide words. The 

correspondence is not exact, but it can be seen that each sneak clue could be suggested by 

appropriate interpretation of the HAZOP guide words. For example: 

Sneak Clue 

" Unintended current path from source to target 

" Reverse current flow along path 

" Excess current flow along path 

" Intended current path created at the wrong time 

Related HAZOP guide words 

" More 

" Reverse 

" More 

" Early or Late, or More 

Intended current path can be cut off at the wrong * Early or Late, or Less 

time 

Intended current flow can be diverted 0 Less (or More for erroneous destination) 

0 Two Paths allow unintended interaction 0 As well as 

0 Person or object can move into flow path a Other than 

The use of prompts based on classifications of failures has largely superseded checklist-based 

analyses, and it is clear that the development of an appropriate classification / prompt structure is 

essential to the success of an analysis technique. 

73 



Common causes 
Single causes that contribute to the occurrence of more than one failure. Common cause failures 

are indicative of systematic problems in the system development, installation or maintenance 

processes. Zonal Hazard Analysis (section 2.14) is a method explicitly intended for common 

cause identification, but standard fault trees and Cause Consequence Analysis can also fulfil this 

role to some extent through the identification of cut-sets. The potentially serious impact of 

undetected common causes on system safety makes this an essential aspect of any deductive 

analysis technique. 

Common mode failures 

Instances where several components fail in the same way - for example, stress-related failure of 

structural components. As with common causes, common mode failures are indicative of 

systematic errors in system development, installation or maintenance. 

Contributing factors 

Any additional conditions (events or states) which modify the effects of a deviation, fault, failure 

or hazard. There is an almost unlimited range of potential contributing factors ranging from 

internal state (e. g. system mode), through environmental and location-dependent factors, to the 

presence of humans as potential victims of an accident. Identification of contributing factors is an 
important step in evaluating the risk presented by a hazard but, in general, there are so many that 

the analysis must focus on identifying and evaluating the most important conditions. Depending 

on the purpose of the analysis, these may include: 

" factors over which the system designers or operators have control 

" the conditions most likely to be encountered 

" the conditions which will lead to the most serious potential outcome. 

Detection 

The detection of a deviation or failure is vitally important to the design of protection 

mechanisms. Detection and mitigation of failures is considered explicitly in almost all inductive 

safety analysis techniques, either explicitly, as in HAZOP, or implicitly through the investigation 

of decision points in sequences, as in event trees and Cause-Consequence Analysis. In deductive 

analyses, failure of detection and protection mechanisms must be included as a necessary event if 

failures are to propagate. 

74 



Certain failures are inherently undetectable, at least within the system boundary. This most often 

occurs when the failed component is a part of a simplex system. Other important cases are those 

where a component has failed but continues to produce believable information. For example, if 

the button to call a lift to a particular floor of a building fails, this is inherently undetectable to the 
lift controller - it cannot predict the arrival of someone wishing to use the lift, so the lack of 

signal is a normal condition. More complex cases involve sensor "drift", and occur in control 

systems based on an internal model that gradually becomes inconsistent with external reality. 
Another important problem in detectability is dormant (unrevealed) failures, i. e. failure of a 

component that is not in use at the time, so that the problem only becomes evident when demands 

are made upon it. 

Deviation 

Any unintended or unexpected behaviour. The concept is more general than faults or failures, as 
it includes the possibility of behaviour that is both safe and correct with respect to intent, but 

which has not previously been recognised as a possibility. The suggestion and investigation of 
deviations is the basis of HAZOP. 

Effect 

The conditions resulting from a deviation or failure. 

Equivalence 

Among the techniques not discussed in detail in Chapter 2 are two (Failure Mode Effect 

Summaries [71] and Gathered Fault Combination [80)) whose purpose is explicitly to identify 

and collect together groups of failures whose effects are equivalent. This is important both to help 

manage the safety process, by reducing the number of individual conditions which must be 

considered, and in the design of detection and protection mechanisms. Failures are equivalent if 

they have the same effects in combination with any otherfailure orfailures. 

Intrinsic Safety 

The intrinsic safety (sometimes known as conceptual safety) of a system is the degree of safety 

achieved if all active control is ceased and all protection mechanisms removed. For example, an 
aerodynamically stable aircraft has a limited degree of intrinsic safety in that, if the pilot makes 
no control inputs, the aircraft will tend to continue in straight, level flight. 

75 



Mitigation 

The mitigation of a hazard or failure is the action that is taken to limit its effects once it has 

occurred. A huge range of mitigation strategies is possible, including using redundancy to mask 

the fault, building in containment or applying active control or protection mechanisms to limit its 

effects. Mitigation is considered explicitly by most safety analysis techniques. In inductive 

analyses, the effectiveness (or otherwise) of mitigation strategies form decision conditions; in 

deductive analyses, the failure of mitigation mechanisms will appear as contributors to the 

undesired outcomes being investigated. 

Normal Behaviour 

Many analysis techniques require the investigation of whether the normal behaviour of the 

system is safe. Unfortunately, like failure, there are many alternative ways of defining normal 
behaviour. For a system that has been in use for some time, normal behaviour may simply be that 

which is usually observed. For safety analysis of a design, normal behaviour is usually 
interpreted as the way in which the designer, having interpreted the specification, intends the 

system to work. This means that the investigation is considering the correctness of both the 

specification and design with respect to the original intent (i. e. what is really required for safety). 

Paths 

The explicit identification of unintentional paths, or routes between a source and a target, is 

unique to Sneak Path Analysis. This is a potentially very powerful concept, but difficult to 

systematise. 

Propagation 

The sequence of effects resulting from an initial deviation or failure. This is explicitly modelled 
by the successive states in inductive analyses; in deductive analyses, each intermediate event 

represents a step in the propagation of a basic failure up to its eventual system level effects. 

Time 

Few safety analysis techniques incorporate an explicit model of time. A simple model of time is 

implicit in the majority of techniques (causes always precede effects); if more explicit 

measurement is required, this must be incorporated through the description of events (e. g. "valve 

remains open for more than 5 minutes"). 

76 



Transformation 

The way in which the effects of a failure are modified by propagation around a system, and the 
intervention of protection and mitigation mechanisms. In traditional hydro-mechanical systems, 

the transformation of a failure is normally limited, and there is no explicit modelling of this 

concept in any of the techniques surveyed. 

3.4 Classifying Hazard and Safety Analysis Techniques 

So far as can be ascertained from published literature, there has been relatively little work on 
developing a structured classification of safety analysis techniques. The broad groupings of 

techniques normally identified have traditionally been related mostly by their role in the systems 
lifecycle, rather than by the underlying method or concepts. These traditional groupings are 
hazard identification, risk assessment, preliminary (requirements-setting) safety analyses, 
detailed (confirmatory) safety analyses, and particular risk assessments, including zonal hazard 

analyses. Of course, many techniques have multiple roles, and can be included in more than one 

of these classifications. The only conceptual grouping traditionally identified has been the 

distinction between deductive (searching for possible causes of specific events) and inductive 

(identifying the effects of known causes) analyses. 

In 1992, Fenelon [28] suggested that the traditional classification of safety analysis techniques 

into inductive and deductive could be generalised. He suggested two new categories - 
exploratory and documentary - to complete the matrix shown in Figure 18. Techniques such as 
HAZOP, which provide a structure for analysis of completely new systems, were classified as 

exploratory. The documentary class was reserved for notations that are used primarily for 

recording known properties of completed systems, and which do not necessarily have a 

significant analytical role. Fenelon suggested that an important step in improving safety analysis 

should be the development of a single analysis method which could function in all four of the 

roles identified in his classification structure, and this was the basis for the development of his 

Failure Propagation and Transformation Notation (FPTN), which is discussed in section 4.6. 

Cause 
Unknown Known 

Unknown Exploratory Inductive 

Known Deductive Documentary 

Figure 18 - Fenelon's analysis technique classification matrix 

77 



For the purposes of reviewing, comparing and identifying key properties of existing safety 

analysis techniques, Fenelon's classification structure is an interesting starting point. However, it 

soon becomes clear that there are two key problems with Fenelon's matrix. The first is simply 

that there are insufficient classifications to adequately distinguish between techniques with quite 
different and important roles. For example, Functional Failure Analysis (FFA, section 2.7) is a 

commonly used preliminary / requirements-setting inductive analysis. Failure Modes and Effects 

Analysis (FMEA, section 2.9) is an inductive technique principally used (in Europe) for detailed 

(confirmatory) safety analysis. Under Fenelon's classification, both of these techniques, although 

obviously and significantly different in nature, can only be described as "inductive". 

The second problem is that the structure (implicitly) assumes that safety analysis will only ever 

work towards more concrete information, which is not strictly the case. It would be preferable to 

express the role of an analysis technique in a more dynamic way, by defining the starting and 
finishing conditions, e. g. one role of Fault Tree Analysis is to move from a state where effects are 
known and causes unknown, to a state where both effects and causes are known, as shown in 

Figure 19. 

Cause 
Unknown Known 

Unknown 
Fault-Tr ee Analysis 

Known 

Figure 19 - Representing fault tree analysis as a change of state 

The expressive power of this scheme can be greatly improved by including the distinction noted 
in section 3.1 between concrete (known, certain) conditions, and those which are projected 
(suggested or expected). Using the expanded matrix shown in Figure 20, the distinct roles of FFA 

and FMEA, which were problematic in Fenelon's matrix, can now be represented. 

Cause 

Unknown Projected Known 

Unknown 

Projected FFA FMEA I 

Known v I F 

Figure 20 - Expanded classification matrix 

78 



Note that in this example FFA is shown as identifying projected effects, with a dotted arrow 

representing the possibility of continuing to the identification of certain effects. This reflects the 
fact that safety analyses working from projected preconditions can never be certain about the 

outcomes. This is also true to a certain extent even when working with the most concrete data 

available, as in the case of FMEA. The "known" effects identified by FMEA are also only 

predictions; truly concrete data can only ever be produced by testing, or through accident 

analysis. For the purposes of this simple classification, however, a prediction based on known 

starting points will be considered to produce known outcomes. 

In the same way that it has been observed that identification of hazards is, in part, a decision 

about management, projected failure information can also be seen as a management tool. Since 

these projected properties are abstractions, they can be used to control complexity, and to divorce 

the specification of important system properties from the low-level detail of the system. 

The main purpose of mapping the roles of different techniques is to help understand what 

combinations of techniques will produce a satisfactory system safety process. In crude terms, the 

minimum requirement for a "joined up" safety process that can deliver evidence that the hazards 

in the system have been identified and their causes investigated could be represented by drawing 

a "time line" diagonally through the matrix, starting at project inception with a completely 

unknown state, and ending fully documented behaviour (Figure 21). Any combination of 
techniques that will effectively traverse this leading diagonal should, theoretically, suffice. 

Cause 

Unknown Projected Known 

Unknown 

Projected 

Known 

Fully documented 

SafetV DroDerties 

Figure 21 - Minimal set of techniques represented as a time line 

In reality, there are many reasons why, even as a minimum, this is unrealistic for a real project. 
Very few (if any) projects actually proceed strictly top-down as this implies. One of the few 

documented examples of a major project which really started with a "clean sheet of paper" and 
defined every component from scratch was the development of the main engines for the space 

shuttle -a project specifically criticised by Feynman in his appendix to the Rogers Commission 

report on the Challenger accident [301 for taking an approach which placed very severe demands 

on untried components. 

79 



The vast majority of projects use existing components and subsystems, which means that 

significant amounts of low-level, concrete information is known very early in the project. A more 

realistic model of the analysis processes in a real project would therefore be "outside in" (Figure 

22). Hazards are identified and projective analyses applied to define requirements for safety 

related behaviour. Subsystems and components are then designed and selected to meet these 

requirements. Finally, confirmatory analyses are used to demonstrate that these components and 

subsystems meet (are "no worse than") their projected behaviour (requirements). 

Cause 
Unknown I Projected I Known 

Unknown 

Projected -kL-P 

Known 

Requirements 

Figure 22 - "Outside in" model of analysis In a project 

This model demonstrates two important features. The first is that activities other than analysis (in 

this case, the design step) can move the state of knowledge about the safety properties of a 

system. The second is the "closure" obtained by using the confirmatory analyses to demonstrate 

that the product of the design step meets the projected (required) properties. It is also important to 

observe that any of the activities represented in this process model may be flawed, resulting in an 
imperfect understanding of the system properties. 

One of the biggest problems of safety critical systems developments is that they are, by nature, 

open loop. Development times are typically long, and data from testing of systems may only be 

available some considerable time after the design and implementation work has been completed. 
In some cases, of course, there is no acceptable way of testing some of the most critical functions 

in realistic conditions; the nuclear power industry is a good example of this. Even after systems 
deployment, so long as everything works as intended and accidents are avoided, engineers get 

relatively little feedback. It can be impossible to decide which features of a design are most 

effective in maintaining safety. It is only when accidents occur that hard data about failures 

becomes available - and accidents in current safety critical systems are so rare that the data 

obtained can only be regarded as point observations, from which it is impossible to draw 

80 



statistically significant conclusions. All of this means that closure within the design and 

assessment process - validating results and designs by multiple means - is vitally important. 

This leads to the concept of complementary analysis techniques. Ideally, where safety is critical, 

each analysis carried out should be tested by comparing its results with those obtained using an 

alternative technique; preferably one with a substantively different approach. The classic pairing 

of complementary analyses is Fault Trees and FMEA. Fault trees work down from top events 
(effects, which may be either known or projected) to find the (initially unknown) causes; event 

trees work the opposite way, to determine the (initially unknown) effects of known causes. When 

these two techniques are applied to the same system, a comparison of their results should show 
identical chains of causality. Similar pairings can be identified for every analysis process. 

This model provides a framework for understanding the roles of different analysis techniques, 

and how combinations of techniques can be selected to ensure closure within a project. 

3.5 Conclusions 

This chapter has discussed some of the concepts upon which traditional system safety analysis 
techniques are based. The notions of hazard, fault and failure, which are essential to safety 

analysis, have been explored at some length, and a range of other concepts has been briefly 

introduced. Section 3.4 has described a new classification of safety analysis techniques, which 

allows explicit distinctions to be made between projective analyses used early in the safety 
lifecycle to set requirements, and the more concrete analyses used in a later, confirmatory role. 

These concepts and classification schemes are used in the development of safety analysis 

principles and new analysis techniques in later chapters. 

81 



/ 
I 



Chapter 4 

A survey of computer system safety analysis techniques 

Considering the high profile of safety critical computing both as an industry and as a research 

area, there is surprisingly little published literature specifically discussing safety analysis 
techniques for safety critical computer systems. The most plausible reason for the apparent lack 

of activity in this area is that, until relatively recently, the prevailing view was that safety was 

essentially a systems engineering discipline. Computer system safety was equated with 

correctness; safety requirements were derived by analyses at the system level and, since correct 
implementation of these requirements would give the necessary system level behaviour, there 

was no need to extend the safety analysis into the computer system itself Safety critical 

computing research was concentrated into activities which could help to guarantee the 

satisfaction of requirements. 

This view is no longer widely held, as increasing levels of system complexity and integration 

mean it is no longer credible to stop the safety process at the boundary of the computer system. It 

is clear, however, that this change in perspective has not been matched by any significant 

advances in the range or capability of the safety analysis methods available. 

This chapter reviews proposals that have been made for analysis techniques specifically for 

computer systems, the most significant of which are modifications of HAZOP and Fault Trees. 

Petri Net analysis is also included here because, although not fundamentally computer specific, it 

has been applied almost exclusively to the analysis of computer systems. The chapter also 

reviews one completely new analysis technique, Failure Propagation and Transformation 

Notation. This technique includes an explicit model of failure classes, and relevant classification 

research is also reviewed. 

4.1 Inductive Methods 

Functional Failure Analysis is widely applied to software systems (especially in the automotive 

and aerospace sectors), and is mandated in many standards. The technique requires no 

modification to work with software; functions are identified and failure modes suggested using 
the broad categorisations of failure in exactly the same manner as for system level FFA. This 

technique is undoubtedly the most widely applied projective analysis of software. 

83 



Two significant problems have been observed with this technique in practice. The first is that, 

since there is no investigation of the potential causes of a projected failure, every failure 

suggested must be assumed to be possible. This is a conservative assumption, requiring 
investigation of means of mitigating every failure that is suggested, and has the disadvantage of 

potentially leading to over-engineering and excessive complexity. The second, more significant 

problem is that there is no good published guidance on the interpretation of "function provided 
incorrectly" for software systems. The most common approach seems to be to assume that this 

equates to "function delivers wrong value" - implicitly excluding other potentially serious 

problems such as incorrect timing of a function. 

Despite the widespread use of FMEA across many engineering disciplines, few proposals for the 

application of FMEA techniques to computer systems or software have been published. Raheja 

[65] presents a method called Software System FMEA (SSFMEA), but on inspection, this 

method is actually found to be a software Functional Failure Analysis. DhilloWs bibliography of 
FMEA concepts and applications [22] cites only one paper which is specifically targeted at 

software - Reifer's short paper of 1979 [68]. The approach described in this chiefly concerned 

with the production of quantitative data for the failure of mission or safety critical software 
functions. The brief method description contained in the paper implies that the method of 

working is actually deductive - the critical functions are identified, then analytic methods applied 

to determine what software conditions can cause failures of these functions. Finally, (unspecified) 

software reliability functions are used to supply failure rates for these software conditions. In 

summary, the method does not appear to be the type of inductive analysis based on known failure 

modes that FMEA implies. 

4.2 HAZOP 

ICI, with its extensive use of HAZOP for process plant assessment, has been using a technique 

known as Computer Hazard and Operability Studies (CHAZOP) for several years to examine the 

control capabilities of programmable systems. CHAZOP is actually a checklist, derived from an 

extensive database of incidents and accidents maintained by the company's Computer Aided 

Production group. The checklist is divided into sections, and proposed systems are examined by 

answering the questions in all relevant sections. This procedure has been applied to all new 

Programmable Logic Controllers (PLCs) and computerised controls installed on company sites 

since 1988. The questions are at a relatively high level, concerning aspects such as power supply, 

84 



control of code etc., and are not a suitable basis for analytical study of general computer safety 
issues. 

Outside ICI, the use or adaptation of HAZOP for computer systems was first suggested in a paper 
by J. V. Earthy in 1992 [25]. This paper recommended a first assessment at the level of the 
interfaces between the processor, storage devices and peripherals, followed by more detailed 

analysis of data flow diagrams. The paper did not propose guide words, but noted that the 

analysis is only valid if the design representation studied accurately reflects the system as it is 

actually built. This short paper was quickly followed by a more extensive proposal from Bums 

and Pitblado [12]. This suggested three related HAZOP studies for programmable systems that 

control or monitor plant or machinery: 
1. An initial "conventional" HAZOP studying the plant to be controlled, using the standard 

guide words and method. 
2. A more detailed Programmable Electronic System (PES) HAZOP study of the computer or 

PLC systems controlling the plant, considering deviations in signals and actions, using the 

guide words No, More, Less and Wrong. The paper is not clear at what level this is to be 

applied, i. e. whether the signals and actions to be considered are internal or external to the 

control system. The suggested list of source documentation for the study includes ladder 

diagrams (PLC programs), which implies a detailed internal study, but this conflicts with 
their stated intention (and the normal role of HAZOP) of aiding initial analysis. 

3. A human factors HAZOP, using new guide words for deviations in information and actions. 
Again, the suggested source documentation, which includes some detailed information that 

would only be known at a relatively late stage in design, appears to conflict with the assertion 

that the techniques are for preliminary hazard analysis. 

Cambridge Consultants' modification of HAZOP described by Chudleigh [15] is more specific 
than either Earthy or Bums and Pitblado's work Data flow diagrams are identified as a basis for 

the analysis, a table of guide words and the parameters to which they apply is presented, and a 
brief description is given of the manner in which they are applied, which includes analysis of 

processes as well asflows. 

Fencott and Hebbron [27] develop a version of HAZOP for use on Ward & Mellor [8 1] essential 

models. Their approach is based on the analysis of individual "response threads" (lists of required 

responses to events) extracted from the model, rather than all communications over a given data 

85 



flow. They emphasise the importance of identifying appropriate property words to capture the 

intent of the responses, and develop and classify guide words for use with each property word. 

Since the publication of these early papers, the evolution of software and computer system 
HAZOP has been shaped primarily by the MoD sponsored work which culminated in the 

publication of Defence Standard 00-58 (79]. This work was contemporaneous with, and 
influenced by, the development of SHARD, and is described in Chapter 7. 

4.3 Fault Trees 

There are two distinct approaches to adapting fault trees for computer systems analysis. The first 

is work such as that by Dugan, Bavuso and Boyd [23,24], which is exclusively aimed at 
improving the modelling of failures of complex hardware, providing new gates to deal with 

sequence dependencies and cold spare redundancy. This is simply an extension of system level 

fault tree analysis, and does not attempt to investigate either the logic implemented in the 

software or the effects of hardware failure on the software. This work is interesting because of 

the way in which it demonstrates that even highly successful analysis techniques need to be 

updated to meet the demands of innovative technology. 

The second approach involves using fault trees in a way that is substantially different to the 

standard system level method. Software Fault Tree Analysis (SFTA) was first described in detail 

by Leveson and Harvey in two papers in 1983 [51,52]. The aim of the technique is to show that 

the logic contained in the program cannot produce output conditions that have been determined to 

be hazardous. 

The starting point for the method is system level analyses that identify output conditions of the 

software which cause, or contribute to, hazards. A separate software fault tree must be 

constructed to investigate each potentially hazardous output condition. The software analysis 

starts by identifying the code responsible for producing the output; from here the analysis 

proceeds backwards, using inspection of the code to deduce what steps would have been 

necessary for the program to reach this point. Impossible conditions (contradictory conditions 

under an AND gate) are identified and eliminated. If the code cannot produce the undesired 

output, then this pruning should eventually eliminate the entire tree. If the potentially hazardous 

output condition can be produced as a result of a combination of input conditions, then the tree 

remaining after pruning will define the necessary conditions. Of course, if the output condition 

can be produced regardless of input conditions, the analysis has discovered an error in the code. 

86 



Leveson and Harvey describes the application of the technique to an assembly language program 

of some 1250 lines -a study which resulted in the discovery of previously unconsidered failure 

modes. 

------ --------- 
Loop causes 

failure 

Assignment Procedure 
causes call causes 
failure failure 

a ; 

Loop condition Ath it ratio 
Loo condib n 

j 

o as 
to evaluadon us s failur 

causes failure causes failure 

Exception Operand Procedure 
rarT Pa a m causes evaluation body causes 

R 

ca u se ! failure causes failure 

Body causes Condition true 
failure on Akh past 41 

iteration iterations 

Assignment Template Procedure Call Template Loop Template 

Case causes If-Then-Else 
failure uses failure 

hers clause 
Condition kh clause Els part Ah Then part 

uses failure evaluation uses failure use failure uses failure 
uses failure 

se Others bod No condition 
I Ah cla y 

kh condition Else body kh ition uý 
,u true before I body ca uses uses failure true before 

uses failure tru fore If 
r re La Case 

_ýailure 
Case 

Case Template If-Then-Else Template 

Figure 23 - Leveson's fault tree templates for Ada statements 

SFTA was elaborated by Leveson and her collaborators, and a later paper [53] presented a 
thorough update of the technique. This paper concentrates on the analysis of Ada programs, since 
this is now the language of choice for many safety-critical applications, and presents a set of 
templates that encapsulate the failure semantics of various language constructs. The basic 

templates for simple code statements are shown in Figure 23; the paper also includes a set of 
templates for Ada tasking. 

87 



As previously, analysis starts with the code responsible for the actual output condition; however, 

once this is identified, the appropriate template is instantiated (i. e. the event boxes are completed 

with specific details). Each branch of the template tree is then examined to identify the 
immediately preceding statement and the appropriate templates are added to the tree and 

completed. Again, this process is repeated until either contradictory conditions can be identified, 

at which point sections of the tree can be eliminated, or until input conditions are reached. Note 

also that there are situations in which some of the event boxes can be eliminated immediately. 

The simplest cases are conditionals with no "else"; parts of the assignment template can also be 

removed for simple assignments where there is no evaluation of the new value and/or no actions 

such as type casts which could potentially cause an exception. An example of a segment of a 

software fault tree, demonstrating the pruning of impossible conditions, is shown in Figure 24. 

Although software fault tree analysis using Leveson's method and templates can be made to 

work, there are many problems with it. The graphical notation of fault tress is an exceedingly 

cumbersome way to represent what is, in effect, a static data-dependency analysis of code. The 

tree fragment shown in Figure 24 is an analysis ofjust 12 lines of code. In addition to its size, the 

method and notation are fundamentally unsuited to the analysis of code containing loops, 

especially if there are data dependencies between iterations of the loop. As the loop template in 

Figure 23 shows, an entire sub-tree must be constructed for each iteration of the loop. Whilst this 

can be avoided by careful rearrangement in simple cases, there is no easy way to simplify loops 

which manipulate two or more mutually-dependent variables. In addition to these fundamental 

issues, there are some less serious issues, such as errors in the published templates (notably the 

sequential composition rule), which make it difficult to start using the technique. 

Despite these problems, there have been some sizeable applications of the method, such as the 
Ontario Hydro nuclear protection system study [9]. Researchers in the Dependable Computing 

Systems Centre (DCSC) at York have als 
'o 

carried out some unpublished trials, which suggest 
that, provided some pragmatic simplifications are made, the technique has value in some specific 

circumstances, such as retrospective analysis of legacy code, where the hazard directed 

inspection can be very helpful. It should be noted that Leveson herself has noted that the 

technique is really only likely to be tractable where the proportion of critical code in a system is 

very small. 

88 



IN ý pe" nka c4 
WL.. I . BASIC 41 

O-W-S-CF*W 
Im 192 CO CABS A 

OuWa Send_PwIM 
body ý NWL-v* 
lob. BASIC 

I. 
*noy I-I w ft inpA Pý 

ýrv- 

Figure 24 - Fragment of template based SFTA analysis 

Leveson [48] also notes that the construction of software fault trees by this method is equivalent 
to the derivation of weakest preconditions, and this idea is developed by Clarke and McDermid 

[18]. The equivalence is shown, although it is not as obvious, and requires more work, than 
Leveson appears to imply. 

4.4 Petri Net Analysis 

Basic Petri nets consist of a set ofplaces and transitions, and input and output functions defining 

the mappings from places to transitions and vice versa. The current state of the system is denoted 

by marking places with tokens. A transition is enabled only when each of its input places contains 
at least as many tokens as there are arcs from the place to the transition. Once enabled, a 

89 



transition may fire, at which point the enabling tokens are removed from its input places, and a 
token deposited at each of its outputs. They have been used to analyse for many kinds of system 

properties, including deadlock and reachability. The use of Petri Nets for safety analysis was first 

proposed by Leveson and Stolzy [54] in 1987. The example they used to illustrate their paper, a 
simplistic level crossing, is shown in Figure 25. 

APPROACHING 

BEFORE 
CROSSING 

t7 

IN 
CROSSING 

PAST 

Figure 25 - Simple Petri Net representation of a level crossing 

The first step in safety analysis of a Petri net is to determine the hazardous states. In the example 

system, any state in which places P3 and P 11 (representing train within crossing and gates up 

respectively) are occupied simultaneously is hazardous. Forward or backward reachability 

analysis can then be used to determine whether the dangerous states can be reached from the 
initial system state. However, these techniques are extremely expensive, and only practical for 

very small systems. The reachability graph for the example system contains only 13 states, of 

which two are hazardous, and is shown in Figure 26. 

90 

TRAIN COMPUTER GATES 



Pl P6 PI 1 

Hazardous tl 
States (---P2 P5 P6 Pl 1 

tl 

P3 5 P6 Pll P2 P7 P9 Pl 1 

t3 

P3 P5 

t4 
ýýtý2ýýt 

t 

P P5 6p8pll 5P6P8Pll P3 P7 P9 Pl 1 P2 P7 P12 

P4P7P8P9PIl )( P3 P7 P12 

17 t3 !: 
L 

12: 
ýý 

P6 P9) P 10 
ýpl 

1 P4 P7 P8 Pl 2 

t 

P4 P6 PIO P12 
ýt6 

P4 P6 Pl I 

Figure 26 - Reachability graph for the level crossing example 

Leveson and Stolzy propose instead the identification of ei-itical states. A critical state is defined 

as being a state frorn which there are paths that lead to both hazardous and safe states. Critical 

states are identified by working backwards through the predecessors of identified hazardous 

states until a state is found froin which there is a path to a safe state. Various design measures, 

such as imposing timing constraints or precedence of certain transitions, can then be taken to 

ensure that the transition to the safe state is always taken. This is a conservative approach, in that 

the analysis does not check whether the critical state could actually ever have been reached. An 

example critical state frorn the level crossing example is shown in Figure 27. 

CRITICAL STATE 

5 P2 

t2ý t7 

P3 Pll *I 

HAZARDOUS 
SAFE STATE STATE 

Figure 27 - Example of a critical state 

91 



Leveson herself has stated [50] that she now believes that Petri nets are not particularly well 

suited for computer systems safety analysis; nevertheless, there is a considerable body of research 

work based on these proposals, and tools (e. g. [14]) have been developed to implement them. 

4.5 Classification of computer system failures 

A number of researchers (e. g. [19,47,75]) have proposed various classifications of failure type. 

The most developed classifications, upon which the fault classification system of FPTN (section 

4.6) is based, are those due to Ezhilchelvan and Shrivastava [26] and Bondavalli and Simoncini 

[7]. 

Both of these classifications of failure type are based on the notion of the system as the provider 

of a service (sometimes termed a response), or a sequence of services. Each service consists of a 

particular value, delivered at a particular time or, more generally, within a defined interval. 

Ezhilchelvan and Shrivastava propose a hierarchy of failure, as shown in Figure 28. The 

definitions of the failure types identified in the hierarchy are: 

" Omission -no service is delivered 

" Value -a service is delivered within the correct interval, but with an incorrect value 

" Timing -the correct value is delivered, but outside the correct interval 

" Emission -a response which is expected, but has either (or both) incorrect time or value 

" Byzantine- a very general class of failure, which includes every failure mode of a 

component. 

Omission 

Value PI 15 Timing 

Emission 

Byzantine 

Figure 28 - Ezhilchelvan and Shrivastava's fault / failure ordering hierarchy 

92 



There are some points about Ezhilchelvan and Shrivastava's hierarchy which are worth noting: 

The hierarchy does not include normal behaviour as one of the classes. This is reasonable, as 

it is explicitly a classification of failures, but safety analyses must also consider the normal 

behaviour of a system. 

The hierarchy itself is interesting; Ezhilchelvan and Shrivastava argue that each failure in the 

hierarchy is a special case, or proper subset, of the level below. Thus, omission can be 

regarded as either a timing failure, where the delivery time is infinitely late, or a value failure 

where the value delivered is null. Similar relationships apply to timing and value, which are 

by definition subsets of emission, which is in tum a subset of byzantine. 

By placing the failure classes in this hierarchy, Ezhilchelvan and Shrivastava have done more 

than simply identify failure types; they have also produced an ordering implicitly based on 

another failure property, which they identify as tolerability. 

Bondavalli and Simoncini's classification of failure type considers the time and value domains 

separately: 
Value is subdivided into 

Correctly valued 
Subtle Incorrect (undetectable by the service recipient) 

Coarse Incorrect (can be detected by the service recipient) 

Omission 

Time is subdivided into 

Correctly timed 

Early 

Late 

Inrinitely Late 

Again, there are some interesting points about this classification. The inclusion of both infinitely 

late and omission seems redundant; it is clearly an attempt to provide symmetry by allowing an 

omission to be considered to be either a time-domain or value-domain failure. The paper 

emphasises the importance of detectability as a property of failure but, in this scheme, it is only 

considered with respect to value domain failures. 

93 



4.6 FPTN 

Fenelon's Failure Propagation and Trans forniat ion Notation (FPTN) [28,29] Is a method of' 

studying and expressing the failure behaviour of complex systems. It is rather different to the 

other methods surveyed here, in that its main purpose is not the expression of the causes or 

external consequences of faults, but rather the study of how faults are propagated around a 

system, and how that system can transform the fault, for example through the effects of 

protection mechanisms. 

FPTN uses a diagrammatic notation that was designed to resernble data-flow design and 

specification methods such as CORE [74] and Mascot [39]. It is modular and hierarchical; each 

module is represented by a box, with arrows indicating incoming failure modes on the left, and 

outgoing failure modes on the right. The notation also explicitly represents the tJPe of each 

failure mode by appending a type letter to the fault name (e. g. v for value, t for timing, etc. ). The 

notation is shown in Figure 29 and Figure 30. Fenelon states that an FPTN module can be 

considered as containing a "forest" of fault trees linking input failures to output failures, a more 

appropriate model might be to consider each module as containing a cause-con sequence chart, 

since multiple effects of a single event can be represented. 

Exception Handler Flag 

MODULE NAME 

Al 
> D: o = A: t & B: t 

BA E: c = B: t I C: v 
Input 

C: vU HANDLED failures 
X: Vd by [mechanism] 

X: Vd 
INTERNAL 
GENERATED by processor failure F: o 

Shadow indicates clecomposabil 

Figure 29 -A single FPTN module 

Criticality 

D: o 

E: C ý Output 
failures F: o 

94 



Figure 30 - FPTN module showing hierarchical decomposition 

Fenelon proposes the use of FPTN notation as an architectural modelling tool in the early stages 

of a safety analysis process, to structure the analysis of the code. The system is decomposed into 

a set of FPTN modules, representing the operational structure of the system. The analysis begins 

by tentatively connecting the modules, using hypothetical failure modes that are believed to exist 

in the system. Then, starting at the bottom of the module hierarchy, a modified version of 

software fault tree analysis is used, taking the output failure modes the module is expected to 

exhibit as top events. This analysis will determine the faults that can be generated within each 

module, or result frorn a failure mode input frorn a module lower down the hierarchy. The input 

and output failures shown in the model are then modified, if necessary, to reflect the results of 

this analysis. 

Unfortunately, no detailed rnethod has ever been published for the application of the technique in 

this way, and the majority of the case studies which have used the notation have simply used it as 

a means of summarising, and representing in a very compact form, failure information which has 

been derived using more traditional methods. 

4.7 Conclusions 

This chapter has surveyed the few safety analysis techniques that have been proposed for 

computer system safety analysis. Apart from the widely applied Functional Failure Analysis, and 

more recently some HAZOP variants, none of these techniques has achieved any significant 

industrial acceptance, and most have not progressed beyond tile status of academic toys. A 

number of reasons can be suggested for this: 

95 



" In the case of software FMEA, there is no good model of basic failures in computer systems 
in general, but particularly in software, that the technique can build upon. 

" The problem with both software fault trees is essentially that the notation is too cumbersome, 

and equally useful information about the code can be obtained more easily by other means. 

" Petri Net analysis is appealing, and has found some industrial acceptance, but the practical 
limitations of constructing and analysing reachability graphs means that the maximum size of 

model is quite severely restricted. 

" FPTN suffers from two problems; a lack of defined method for using it as an analysis 

technique, and a notation which, although extremely powerful, is not particularly easy either 

to produce or to read. 

More fundamental than all of these issues, however, is that none of these techniques seem to 

address the genuine needs of industry. Computer system safety analyses must either offer 
information that can be obtained no other way, or else must be the simplest, cheapest way of 

obtaining information, if they are to find a place in industrial development processes. 

I 

96 



Chapter 5 

Principles for computer system safety analysis 

This chapter proposes a number of principles derived from the concepts in Chapter 3 and from 

the discussion in Chapter 4. The first five of these principles are general, and apply equally to 
both projective and confirmatory hazard and safety analyses of any type of system. The 

remaining principles are specific to computer system analyses, and attempt to define approaches 
to solving (or at least managing) some of the problems discussed in previous chapters. 

5.1 Principle 1: Safety analysis must have value as part of the 

engineering process 

This is a very basic and seemingly obvious principle that is, unfortunately, forgotten in a 

surprising number of industrial situations. There is no point in carrying out any sort of analysis 

unless it is clear that it is a necessary, value-adding step in the delivery of a safe system (or its 

supporting safety case). 

This means that: 

The right analysis must be used. In defining a safety process, it is essential to understand 

what information is available, and what is required, at each point in the project, and to select 

analyses to match. This is a problem for computer systems, where the range of proven 
techniques is very limited and there may be no existing methods suitable for use with new 

specification and design notations, or novel system architectures. 
The analysis should be timely. This is most important for projective and requirement setting 

analyses. As well as starting the analysis sufficiently early, and integrating it closely with the 
design process, this also implies a requirement to select analysis techniques that can deliver 

results sufficiently quickly to satisfy project timescales. 

The results of the analysis must be used. Not only is an unused safety analysis a waste of 
time and money, it is also extremely demotivating for the analysts whose work has been 
ignored. This is a particular problem for the later, confirmatory, analyses that contribute to 
the safety case rather than to shaping the system; the safety case must be seen as an important 

deliverable in its own right, and must be seen to be used and maintained after delivery. 

97 



* The analysts should understand what they are doing, and why. Analysts must be aware 

of their role in the overall process; they must understand who the 4'customers" are for their 

work, what sort of skills and expectations their customers have, and must tailor their products 

accordingly. Lack of such understanding is a common problem, observed on many industrial 

projects. 
A typical example was the analyst who delivered to the design team a complex 20 page 

preliminary system fault tree, unsupported by any sort of commentary, but with the 

conclusion "no derived requirements identified". In fact, the tree contained many 

assumptions to do with redundancy, fault detection and management strategies and the ability 
to match historically observed component failure rates, all of which were effectively safety 

requirements. However, to the analyst, they were obvious from the fault tree and did not 

require further, clarification or comment; to the design team, "no derived requirements" 

meant carte blanche to develop or modify the design as they chose. 

In recent years there has been a significant improvement in the understanding of the need for, and 

role of, safety engineering in general. However, experience with real projects across a range of 
industries has shown that a worrying proportion of analyses are still carried out too late, or 
because they are required by standards, with no expectation that they will contribute anything 

significant to the project. This is really an issue in the specification and management of safety 

processes, but for those charged with selecting or developing safety analyses, it prompts 

consideration of how to maximise the value of any given technique. This is the motivation for the 

remainder of these principles. 

5.2 , Principle 2: Method is more important than notation 

Safety analysis is a creative process, and the single most important attribute of a safety analysis 
technique is its ability to structure and direct the analysts' thinking. Effectively, the method for a 
technique encodes past experience of an effective approach. This means that a well-defined 

method, supported where necessary by additional rules or guidance, is vital. Good quality final 

representation of the analysis results is, important for effective communication, but can never 

compensate for poor content. 

98 



A method should: 

0 Clearly identify the role and capability of the technique 

Provide, if possible, a means for estimating the resources required 
Identify the source information required, and any other prerequisites such as skills or 
knowledge of analysts 

* Clearly describe the analysis procedure 

" Note any options or alternatives 

" Provide guidance, noting especially any known pitfalls 

" Identify what should be recorded, with format and notation if necessary 

A good test of how well a method is defined is how easy it is to teach engineers to use it. 

Experience on case studies and teaching various safety courses consistently shows that HAZOP 

is the easiest technique to teach; it combines a well-defined method with relatively simple 

concepts. Fault trees are also notable for a well-defined method, but some of the important 

concepts, such as the immediate cause rule, are quite difficult. The problem is that it is not 

immediately obvious why such rules are necessary, nor that they will necessarily lead to complete 

and correct trees. 

Comparing these established techniques, where detailed, structured method descriptions are 

available, with newer techniques, especially for computer system safety analyses, it is clear that 

many of the proposals consist of powerful, well-defined notations, often embodying important 

concepts, but sadly unsupported by a well-defined and workable method. Fenelon's FPTN [28, 

29], discussed in section 4.6, is a notable example of this problem. The published papers describe 

an extremely powerful and flexible notation, and suggest a number of alternate roles within the 

safety lifecycle for which it might be appropriate, but do not give methods for any of these roles. 

In effect, in its current form, FPTN is only suitable for representing information that has been 

collected using other methods, such as fault trees and event trees. 

Leveson's software fault trees [52,53] also suffer from this problem to some degree. The 

published papers and the "Verification of Safety" chapter of Leveson's book [50] present the 

basic principles, the template structures, and examples of their application, but the method 
descriptions are not sufficient for practical application of the technique. The deficiency becomes 

particularly obvious when attempting to teach the use of SFTA. Some of the templates (notably 

that for assignment) are not self explanatory, and rules for combination of templates (for example 

99 



the combination of assignment and procedure call templates required to model a function call) are 
lacking. 

Summary 

The main value of a safety analysis technique is the way in which it structures and directs the 

creative process of analysis. Notations that are so complex that they hinder this process, through 

either the need to complete excessive detail, or simply the time taken to draw complex diagrams, 

should be avoided. 

5.3 Principle 3: Techniques should be as simple as possible 

One of the notable features of several recent proposals for new safety analysis techniques 
(especially for computer systems) has been an attempt to provide means for capturing and 

recording every conceivable aspect of both the normal and faulty behaviours of a system in a 

single method and notation. This trend is typified by Fenelon's FPTN [28,29], discussed in 

section 4.6, although there are a number of newer (as yet unpublished) approaches which allow, 

or require, the analyst to*represent even more of the possible behaviour of a complex system in a 

single table or diagram. 

The rationale for this trend is that, as systems become more complex, understanding their safety 

properties requires methods and notations which can model complexity. Fenelon's intention with 
FPTN was that it should be a single notation which was capable of supporting every phase of the 

system safety lifecycle from concept to documented product; further, the structure of the analysis 

should reflect the structure of the system itself, hence the "modular" approach. 

There are some sound arguments in favour of this sort of integrated approach. The advantages of 

using the same notation throughout the lifecycle should include: 

0 only one notation for project staff to deal with, potentially reducing confusion, and 

minimising training requirements; 

only one tool is required to support safety analysis throughout a project; 

0 comparisons, whether between alternative design proposals or between requirements and 

achievement, are easier to make. 

Unfortunately, practical experience and anecdotal evidence show that these highly capable 

notations simply do not fit the way that engineers on real projects need to work. The preference 
for simple techniques is well illustrated by cause consequence analysis (section 2.13). This 

100 



technique was first proposed in 1970, only a few years after fault trees were developed. It is 

undoubtedly significantly more powerful then either fault trees or event trees, whose 

characteristics it combines and yet, despite a number of relatively high-profile case studies in the 

nuclear industry in both Europe and Canada, it has not achieved any significant level of usage in 

any industry. 

The practical problems hampering the adoption of techniques such as cause-consequence analysis 

and FPTN include: 

0 Speed and cost (especially of reworking) 
This is undoubtedly the biggest single issue. Particularly in the early stages of a project, ideas 

and designs typically change relatively rapidly. There is simply no need for a complete, 
detailed and fully accurate assessment; what is required is a good indication of the most 

significant issues as quickly, and at as low a cost as possible. Effort expended on the 

production of extremely detailed or attractively represented analyses is generally wasted, 

since it will soon be altered or superseded. 

0 Low perceived cost-benefit 
Related to the straightforward issue of speed and cost noted above is the problem of the 

engineers' perception of the value of safety analysis. An effect that was observed in all of the 
SHARD and LISA case studies reported in Chapter 7 and Chapter 8 was that engineers were 

almost always aware of the most significant problems and issues with a system or design 

before any formal safety analysis had been carried out. Although most of the project staff 

who participated in the case studies were convinced of the value of a rigorous safety process, 
there was significant resentment about being required to spend a lot of time on techniques 

which merely confirmed something which was already known. Clearly, the more difficult or 
time-consuming a method, the more unwelcome it will be. 

9 Over complexity 
There is a limit to how much information any one engineer can effectively manage. In the 

main LISA case study, described in section 8.4, participants jokingly referred to "one 
headful" as a measure of system complexity; in fact this is a serious issue. When anything 
becomes too large for a single person to fully understand, the potential for inconsistency, 

miscommunication and misunderstanding increases enormously. When studying systems that 

are already extremely complex, simple analysis methods have the significant advantage of 

not diverting concentration away from the subject system. 

101 



There is, perhaps, a case to be made for using one of these powerful notations as the basis of a 
(computer supported) integrated safety analysis toolkit. Such a toolkit would maintain the 

complete notation as its internal representation; the user would be presented with simple, familiar 

analyses such as FMEA or fault trees, with the computer performing a mapping between the 

(partially populated) underlying model and the user's view(s). As the project developed, options 

were confirmed and information was collected, the model would become more complete; the 

final phase would be to present the user with the integrated view for final checking and 

completion. 

Attractive as this idea is, there are practical problems. It is difficult to map simple techniques 

such as FMEA or fault trees onto a complex model unless their use has been tightly constrained; 

this also limits the scope for allowing users to customise techniques to their specific needs. It is 

interesting to note that the ASAM project at York [3 1 ], which developed just such an integrated 

toolkit, started out with a number of relatively complex, tightly defined models, which were 

gradually abandoned or relaxed as the project progressed. The underlying model used for the 

majority of the safety analyses in the eventual production release of the toolkit represented 

everything as a set of conditions (which could be characterised as hazards, failures, events etc) 

and simple relationships. 

Successful safety analysis techniques manage the problem of complexity by (implicit) 

abstraction, focusing analysts' attention to specific aspects of system behaviour. For example, the 

majority of safety analysis techniques either do not model time at all (e. g. FMEA) or, like fault 

trees, abstract away many details of timing behaviour. Apart from certain gates such as the 

priority-AND, or the sequence dependency gates suggested by Dugan [23,24], in which ordering 

of events is significant, there is no explicit representation of time in a fault tree. 

Summary 

There are significant advantages to selecting (or developing) techniques which are as simple as 

possible for a given analysis requirement. They should focus on the most significant issues, 

should be quick and easy to use, and should not require disproportionate amounts of time to be 

spent on writing up or drawing out complex notations. 

102 



5.4 Principle 4: Techniques should guide without unnecessarily 

constraining 

Principle 2 emphasised that the key role of any analysis technique is to guide a creative process. 

A successful technique will help the analysts to derive the necessary results as quickly and 

efficiently as possible, highlighting key issues, and providing a structure that will help to ensure 

completeness of the analysis. However, it is important that the technique is not excessively rigid, 

and does not prevent analysts from exploring novel ideas where this is appropriate. This is 

particularly important for the analysis of computer software, where designers can build anything 

that the design notation or programming language will permit; effectively, there are few of the 

physical laws that constrain the possible behaviours of traditional technologies such as 

hydraulics, electrical and mechanical systems. 

There are various ways in which a technique can become too restrictive. The simplest is in the 

projective techniques such as functional failure analysis and HAZOP that use guide words to 

structure the analysis. These are intended to prompt the analysts to think about particular types or 

classes of behaviour. This clearly carries with it a risk of complacency C'we've done all the guide 

words so we must have thought of everything"), to which the obvious solution is to attempt to 

define guide words covering all possible situations that can be conceived in advance. As section 

7.3 explains, this was a mistake that was made with the early work on the SHARD analysis 

method. Initially, a relatively large set of tightly defined guide words was proposed in an attempt 

to provide concrete guidance on the interpretation of system properties and resultant potential 

erroneous behaviour. Analysts working on the early case studies found that this was too 

restrictive; they were able to suggest important deviations which did not fit into the pre-defined 

structure, and it was eventually found necessary to revert to a smaller set of much more general 

guide words. 

Balancing structure and guidance with flexibility is equally important in the more detailed, lower- 

level confirmatory analyses; fault tree analysis provides a good example. This technique has 

many rules (section 2.10), but these are really guidance to ensure that the analysis is correct and 

complete (e. g. immediate cause, primary - secondary - command, completion of gates), that 

correct tree syntax is observed (e. g. named intermediate events), and that sufficient information is 

recorded to ensure future comprehensibility. The method does not place arbitrary restrictions 
(e. g. there is no limit on the number of events that can be connected to a single gate), or force the 

analyst to work within predefined structures (e. g., there is no restriction on the structure of the 

103 



tree created during initial analysis; reduction to sum-of-products form for numerical analysis is a 

separate process). It provides a place marker (the undeveloped event) for use where there is 

insufficient information to complete part of the tree, which is also very useful for ensuring that 

analysis proceeds with a flow, following the most significant causal links, and leaving awkward 

or insignificant conditions for later completion. 

Excessive constraint becomes particularly noticeable when computer based tools are used to 

support or record a safety analysis. There are few tools that permit the user to significantly 

customise standard forms, for example, and in a number of industrial studies, engineers have 

admitted that details are invented or defaults accepted because the tool will not move on until 

something has been entered in every field. 

A related issue is the development of fully automated hazard identification and safety analysis 
tools. These generally combine a system modelling tool with an expert system based on a 
database of hazard and failure information. The creative process of analysis is reduced entirely to 

the programming of the expert system, and there is no opportunity for original thinking with each 

new system analysed. One of the biggest limitations of current tools is that they are unable to 

make judgements about the relative importance of issues identified, and the user is potentially left 

with the task of sifting through large volumes of undifferentiated output. There is undoubtedly 

value in such tools, particularly in the potential speed of analysis and guaranteed completeness, 
but their limitations must be realised. For the immediate future, such automated analyses, even of 

well-understood technologies such as chemical process plant will continue to need to be 

supported by creative manual analyses. 

Summary 

Techniques should not force analysts to work in structures that limit creative thinking. It is 

important to distinguish rules (essential steps of the method) from guidance (options, open-ended 

prompts and suggested approaches). 

5.5 Principle 5: The role of the technique should be clear 

Study of current practice in a number of industries shows that there is confusion about the role 

and capability of safety analysis techniques. In some cases, such as with the introduction of ARP 

4754 [70] / 4761 [71] in the civil aerospace sector, this is due to changes in working practices 

required by standards; in others, there seem to be genuine misconceptions about what information 

a particular technique is capable of providing. 

104 



Perhaps the most notable instance of this problem is in the misuse of projective techniques, 

particularly functional failure analysis (section 2.7) and related methods. These techniques very 

explicitly investigate projected failures to assess the acceptability of design proposals and to set 

requirements for further design development. Whilst they may provide a basis for a safety 

argument, they do not provide any sort of evidence of achievement; this must come from other 

sources. 

Unfortunately, in the software industry in particular, it has become common for functional failure 

analysis to be used as a form of evidence; because the design deals acceptably with all of the 

projected failures in the FFA, it is considered to have acceptable safety behaviour. This is, 

obviously, a flawed argument; evidence is required both that the real failure modes of the system 

are as predicted, and that the implementation behaves as required by the design in the presence of 

these failures. The primary cause of this problem seems to be the lack of suitable methods for 

obtaining data about real system failure modes, a problem examined in detail in the discussion of 

principle 7 (section 5.7). The difficulty of obtaining concrete data makes it very tempting to treat 

any available information as fact. 

As well as producing weak safety arguments, using techniques in inappropriate roles leads to 

practical problems in conducting the actual analyses. One of the most interesting of these 

concerns the "stopping problem"; analysts ask what criteria should be applied to decide when 
"enough" analysis has been done. If the role of the analysis is clearly defined, this question 

should be unnecessary; it will be clear when the required product has been delivered. The role of 

projective analysis is essentially to answer questions such as "which is the better (best) 

alternative? ", "can this design produce a safe solution? " or "what must be done to ensure this 

system meets safety targets? ". In some cases, answering these questions may actually require 

very little analysis - in general negative answers (e. g. rejection of designs with serious flaws) 

require less work than positive ones. Unfortunately, this is not allowed for in many safety 

processes, which require analysis of every function in a design, without recognising that this may 

add no useful information. 

For confirmatory analyses, the stopping criterion will be the delivery of sufficient evidence to 

complete every part of the safety argument. In many cases, there is no practical alternative to 

analysis of every component; for example, a subsystem supplier may not know which failure 

105 



modes of his system are important in the complete platform safety argument, and must therefore 

supply data about every known failure mode. 

Summary 

Appropriate and efficient use of safety analysis is an issue for the specification of safety 

processes, requiring understanding of the capabilities of each technique. Documentation of 

analysis methods should include a clear statement of the role(s) for which it is suitable, required 

source material and expected products. 

5.6 Principle 6: Safety analysis starts at the system level 

Safety is a property of a complete system (platform) in a given context. This means that analysis 

of deviations and failures in subsystems and components must always be considered in terms of 
their contribution to system level effects. Information about component or subsystem failure 

modes that does not relate to system level hazards is a specific form of component data, not 
safety analysis. 

This principle presents serious problems for critical computer systems, and two distinct cases can 
be identified. The first of these cases applies to completely bespoke development, where every 

aspect of the computer system hardware and software is custom designed for a- specific 

application. Here, the problem is that, very often, the computer is the most complex part of a 

system, and needs a longer development time than mechanical, electrical and other components. 
There is therefore pressure to start the development of the computer system as early as possible, 

with, the, attendant risk that high-level analyses will be skimped, or carried out in parallel with the 
design activities which they should be guiding. The computer system design then has to be 

modified when the analyses are eventually delivered and identify requirements that it does not 

satisfy. Since by this stage considerable effort has been expended, there is reluctance to make 

significant changes, so "fixes" are implemented, often leading to a system which is more 

complex and less robust than could have been achieved if the complete requirements had been 

identified in time. Worse still, there may even be pressure to carry out "safety analyses" on the 
design before the system level information is available to provide the necessary context. 

This is essentially a management problem. Analysis and design must be seen as an integrated 

process, and managers must be prepared to resist pressure to start design work until preliminary 

analyses are complete. There are, however, technical challenges, particularly the need for 

efficient projective analyses to establish requirements as quickly as possible. 

106 



The second case is where pre-existing components such as hardware, operating systems or other 

software are incorporated into a design. Here, the problem is very much like that for component 

suppliers in other engineering disciplines; sufficient data must be available about failure modes 

that the system integrator can select appropriate components and complete a system level safety 

argument. However, although similar in principle, the complexity of computer system makes 

complete and accurate description of failure behaviour practically impossible. It is therefore 

probable that some degree of re-analysis will be required once the complete system context is 

known, and this implies requirements for the availability of design information. If this cannot be 

obtained, reverse engineering is (usually) possible, but costly. 

The main technical challenge of this case is to develop improved means for specifying complex 

safety requirements, and describing the properties of completed components, so that systems 
designers can select appropriate components, and work around their known limitations if 

necessary. To some extent this is being addressed by work such as that of Jones [40] with his 

concepts of "relies" and "guaranteee', properties which software components can be guaranteed 

upon to provide, so long as they can rely on specified characteristics of other components. 

An alternative approach where detailed information about the failure behaviour of a particular 

component or subsystem is not available is to assume that it will behave in the worst conceivable 

way in all circumstances, and design to contain this. This conservative abstraction makes 

complete analysis at system level possible, and has the added benefit that modifications to the 

component or subsystem do not affect the system level safety argument. Unfortunately, this 

approach is normally only viable for relatively small and extremely independent system 

components. Containing the worst conceivable behaviour of large or tightly coupled components 
is either infeasible, or requires prohibitively complex or costly mechanisms. 

Summary 

Safety is a system property, and all analysis must ultimately demonstrate how component level 

functions and failures contribute to the system level behaviour. As the "outside in" model of 

safety analysis discussed in section 3.4 shows, it is not necessary for analysis always to proceed 

strictly top down, but some initial high-level analysis is always required in order to identify high- 

level safety requirements. 

107 



5.7 Principle 7: Projective analyses are key to software safety 

This thesis has made a strong distinction between the projective analyses used early in the 

development lifecycle to set requirements, select between alternatives or determine the overall 

acceptability of a proposal, and the confirmatory analyses used later in the process to assess 

achievement and contribute evidence to the safety case. 

Software is an expression of logic and mathematics which does not degrade after it has been 

implemented. It may be affected by failures of the hardware on which it is executed or which 

supplies its inputs, but the software itself can only contain flaws as a result of incorrect 

specification or implementation. 

The available evidence shows that by far the most significant cause of software failing to 

function as intended is errors in the elicitation or specification of requirements. The most 

common safety related problem in current software development processes is that of complete 

omission of safety requirements from specifications which focus primarily on the intended 

functionality. It is therefore vital that the development process includes activities to review both 

the completeness and appropriateness of safety related specifications. This is precisely the area 

that projective, analysis addresses, hence its importance for software. Techniques such as 
functional failure analysis and HAZOP provide the structure for a systematic, hazard-directed 

review of a design with respect to intent, providing feedback on the specification as well as 
design activities, at a stage in the process when correcting errors is relatively inexpensive. 

HAZOP has the additional advantage that, being structured around the flows within a system, it 

requires analysts to think about a system in quite a different way than the normal functional view. 

As the process in Figure 31 shows, projective analyses establish the conditions which are tested 

by later confirmatory analyses, which for software are invariably deductive. Inductive techniques 

such as FMEA are theoretically capable of following the propagation of low-level failures 

through to system level effects that can be compared against intent. Unfortunately, as the 

discussion in Chapter 4 shows, there are currently no workable techniques that fulfil this role for 

software - hence the reliance on deductive methods. 

108 



Used in this confirmatory role, deductive analysis can address two questions: 
1. are the identified hazards managed acceptably, i. e. are the potential hazard causes sufficiently 

improbable and / or is there appropriate detection and mitigation? This is the primary safety 

assessment, corresponding to the demonstration that achieved behaviour is "no worse than" 

requirements shown in the simple "V' safety lifecycle model in section 2.2. 

2. does the behaviour revealed by the analysis agree with the way the designers claim the 

hazards are managed? This is effectively a design and implementation review step. If the 

analysis demonstrates that the system behaviour is not what the designers claim, there is a 
fault in the process; even if the system behaviour appears acceptable, this should be a cause 
for concem. 

The important point to note is that both of these questions start from the identified hazards and 

requirements resulting from the projective analyses; deductive analysis cannot compare 

achievement against the original intent. 

Unknown 
Cause 

Projected Known Analysis start's from J 
r identified hazards. 

Unknown Projective Deductive confirmatory Tests of results: 
Projected 

ý-analysas 
afia ysQs 1. does a. chieved 

b h i i f 
Z 

e av our sat s y e 
n Known r? \L)2-sisai. ir 7 et r requir ments? 

l 2. does analysis 
I support designers' 

Safety requirements 
J 

claims for hazard 
based on manageme-. nt management? 

s of identified hazards 

Figure 31 - Process with deductive conflrmatory analysis 

It is also important to note that, for software, confirmatory analysis using techniques such as 

software fault trees is effectively another form of static analysis. Because the software does not 
degrade, there is nothing that software fault trees can reveal which cannot potentially be 

identified using methods such as weakest preconditions, path coverage or data dependency 

analyses. The one advantage software fault trees has over such techniques is that it is explicitly 
hazard-directed. This focuses attention on safety issues and, if the proportion of safety critical 
functionality in a program is very small, it may be a cost-effective way of limiting the amount of 

analysis required. However, there is no fundamental reason why other methods should not be 

adapted for use in a hazard-directed manner, and a number of research proposals (such as Clarke 

and McDermid's weakest preconditions for failure [18]) have been made in this area. These 

109 



approaches may ultimately prove far more tractable then fault trees, which are limited by their 
inability to represent program constructs such as loops (c. f. the discussion in section 4.3). 

Summary 

Two factors make projective analyses especially important for the achievement of software 

safety. The first is that they provide a systematic process for reviewing safety related 

requirements, and the available evidence shows that the specification process is the source of the 

majority of flaws in software. The second is that there are currently no analysis techniques which 

are capable of comparing the safety related behaviour of finished software with the original 
intent; the deductive techniques which are available for examining completed code are simply 
hazard-directed static analyses. 

5.8 Principle 8: Safety analyses must consider hardware and 

software 

As the discussion of principle 7 in section 5.7 above has observed, for software on its own there 
is little that a confirmatory safety analysis can deliver which cannot be obtained from other types 

of static analysis. However, as safety is a system property, it is not acceptable to assume perfect 

execution of the software; potential unintended behaviour of the underlying hardware must also 
be taken into account. This is something that conventional static analyses of software do not 

allow for. 

In current industrial practice, the usual method of including computer hardware failures in safety 

analyses is simply to assume that any failure within the computer system will be sufficient to 

cause any failure mode of concern at the computer's outputs. Thus, in system level fault trees, it 

is common to see a basic (or undeveloped) event called simply "computer hardware failure" (see, 

for example, the fault trees for inadvertent aircraft braking developed in figure 5.1-2 of ARP 

4761 Appendix L [71]). If the fault trees are quantified, a conservative rate for this event can be 

derived by summing the individual failure probabilities of the computer system components. 
Whilst this is clearly sufficient to ensure safe treatment at the system level, it is of no use to 

software designers, who need to know what the symptoms of various hardware failures will be in 

order to develop detection and protection strategies. 

110 



Assignment 
causes 

unsafe value 
to be stored 

Unsafe new Hardware Exception 
value 

II 
failure causes causes 

I 

assigned 

I 

unsafe value 

I 

failure 
to be stored 

Operand Char fti sfi ng stored 
value , 

fevrlua]I 

New value 2 v u val a is value is unsafe 
auses fallu re auses failure tail t corrupt d to t0 

7 

h and a and hardware 
unsafe value by f uft C, ý fault causes 

I hardware failure f fa Ilure t Ilur t failure to store 
n new I ewvalue 

. 

tuck at. tuck at* 
ult(s) i 

tuc 
t(s) S>Sor 

( 
Uault(s)aitn" 

au 

Ultk 

s )' 
l 

Hardware fault 
causes failure to 
store new value u s emory on b ts memory on bus 

Incorrect 
timing causes 
nstable data to 

be latched 
Corruption 

Addressing due to EM I or Addressi Write 
fault causes ne radiatio enable lue to subseque It fault causes new 

t k hi 
I --A. - 

A 

uc g v lue to be stored in s 

Figure 32 - Fault tree for assignment showing some hardware failure contributions 

The major obstacle to a detailed combined safety analysis of hardware and software is yet 

another instance of intractable complexity. To illustrate this, consider Figure 32, which shows 
Leveson's software fault tree template for the assignment statement [52] expanded to include just 

a few of the hardware failures which could conceivably cause an unsafe value to be assigned. 
This is clearly a completely unmanageable approach. This fault tree exhibits side effects 
("addressing fault causes new value to be stored in incorrect location" - what will be corrupted at 

the location where the new value is actually stored? ), there are additional software events to study 
("existing stored value is unsafe"), and to study every statement in even a small section of code at 
this level of detail would be impossible. 

It is obvious that all of the hardware events represented in Figure 32 are common cause failures 

that could potentially affect any step of software execution. Some, such as faults in particular 

memory devices, will have a limited scope (they can only affect data stored in that specific 

III 



device); others, such as bus or processor faults, can potentially affect any operation. This means 
that detailed inductive analyses are as intractable as deductive approaches; it is easy to identify 

individual hardware failures to study, but impossible to consider every condition of the system in 

which they might arise. 

In fact, since the state space of even simple programs is very large, there can be no tractable 

approach (at least for manual analysis) based on evaluating the effect of individual hardware 

failures in every possible system state. This rules out methods based on conventional event or 

state models. The challenge for safety analysis is to find meaningful ways of identifying the 

critical parts of the system and modelling the potential impact of hardware failures at a more 

abstract level. 

Unfortunately, classical common cause / common mode analysis techniques are little help. Zonal 

analyses are more plausible, since it is possible to apply them at a higher level of abstraction, but 

it is not clear what would constitute a zone within a computer system - or, indeed, if they can be 

considered to exist at all in single processor systems. 

Summary 

At the system level, computer hardware failures are generally managed by a conservative 

assumption that any internal hardware failure will be sufficient to cause any failure mode at the 

computer's outputs. This is not sufficient for the needs of software designers, who need more 

precise modelling of the effects of hardware failure. 

The development, of tractable, effective methods to integrate detailed hardware and software 

analyses is still an open research issue, but existing analysis techniques can provide useful 
information to computer systems designers provided that care is taken in their application. At the 

very least, hardware failure modes should be included when considering possible causes of 
deviations in HAZOP type projective analyses of computer systems; at this level of abstraction, 
they do not make analysis intractable. 

112 



5.9 Principle 9: Techniques should use familiar concepts and 

models 

Computer system safety analysis needs to be an integral part of both the overall system safety 

process and the computer hardware and software development process. This means that the safety 

concepts on which it is based should, so far as possible, be the same as traditional system level 

safety analyses; similarly, the models of computer systems the analyses are based on should be 

standard models that software and hardware engineers will be comfortable working with. 

Section 3.3 has identified a range of concepts which underlie a number of the most important 

system level safety analyses. The majority of these can readily be applied to computer systems, 

and many of the more concrete concepts, such as fault (error) propagation, detection and 

mitigation are already familiar to software engineers. The discussion of principle 7 in section 5.7 

has emphasised the importance of projective analysis to computer system safety, and the 
fundamental principles of projective analyses such as the use of failure classifications as prompts 

are also readily applicable to computer systems. 

One of the hardest concepts to explain, as was experienced on some of the SHARD case studies, 
is the idea of failure with respect to intent; the problem is making it clear that intent means what 
is really neededfor safety, and not what the designer believes is right. 

The need to base safety analyses around familiar models of computer systems is primarily a 

practical issue; analysis proceeds faster and more accurately when the participants can easily 
interpret the system representation they are working from. In practical terms, this means that, 

unless analysis techniques are very general and can readily be interpreted for a range of 

specification and design notations, it will be necessary to produce guidelines which "tailor" the 

method for new representations. Leveson's software fault trees [52,53] are an extreme example 

of this, requiring new templates for each new language. 

The principle of working in terms of familiar concepts also applies to the final presentation of 
computer system safety analyses - particularly the results of confirmatory analyses that will be 
incorporated into the system safety case. This does not necessarily mean sticking to traditional 

notations; indeed, Fenelon [29] reports that systems safety engineers were generally averse to 

software fault trees, since the template based approach gave them an unfamiliar structure. 
However, the results of any analysis that is not based around the investigation of hazards using 

113 



combinations of events and conditions to model causes and effects will require careful 

explanation. 

Summary 

One of the principal aims of safety analysis is to help engineers to take a fresh look at the systems 

they are working on. However, this does not imply a need to force people to work with new and 

unfamiliar concepts. To ensure that safety analysis can be effectively integrated with both the 

systems safety and computer system development processes, techniques should be based around 

standard safety engineering concepts and, wherever possible, should work directly from system 

models which are produced by the specification and design activities. 

5.10 Conclusions 

This chapter has proposed, discussed and attempted to justify some basic principles for selecting, 

and more especially designing, computer system safety analysis techniques. Many of these 

principles are unashamedly based on frustration with attempts to define safety processes or 
techniques that do not recognise the pragmatic needs of industry. Perhaps surprisingly, it is not 

only academic proposals that, display this lack 
-of 

understanding. A number of industry-led 

standards have also been criticised for impractical requirements. A current example is EEC 61508 

[38], a supposedly cross-industry standard, which has been heavily criticised because its 

criticality assignment rules are based on a model of control and protection functions familiar to 

the process and nuclear industries, but which is inappropriate for other application domains such 

as aerospace systems. 

The principles defined here do not claim to define all the requirements for a successful computer 

system safety analysis technique; however, they provide some general "ground rules", and 
identify a number of key issues which new proposals must address. 

114 



Chapter 6 

Putting principles into practice: background to the 
development of new analysis techniques 

From the discussion of the principles in Chapter 5, and the review of computer system safety 

analysis literature in Chapter 4, three significant deficiencies in the range of available techniques 

are readily apparent. These are: 
1. Although a small number of projective computer system safety analyses have been proposed, 

the only technique that is widely applied is a variant of Functional Failure Analysis. There is 

a need for alternative techniques that can fulfil this role. 
2. There are no inductive analyses capable of comparing the safety related behaviour of finished 

code with the original intent. 

3. There are no practical analysis techniques that allow the detailed investigation of the 

interactions between software and the underlying hardware. 

Two of these deficiencies, those in projective analysis and hardware / software interactions are 

addressed by new analysis techniques which are developed in Chapter 7 and Chapter 8. This 

chapter discusses the background to the development of these new techniques, and explains why 
these particular subjects were chosen. 

6.1 Projective analysis for software safety 

The research work described in this thesis began with an informal survey of the current practices 

and perceived future needs of companies developing safety critical software, primarily avionics 

and railway signalling systems. The conclusion of this survey was that the most immediate 

technical problem that the companies were facing was in the identification of software safety 

requirements sufficiently early in the development process. In many cases, projects carried out 
thorough hazard identification, risk assessment and preliminary system safety activities, but were 

unable to clearly identify software safety requirements from the system level information. One of 
the most common symptoms of this problem was that, as top level software designs were 

proposed, the software teams struggled to decide what integrity level should be assigned to the 
functions they had defined. 

115 



The original motivation for investigating projective analyses for software was therefore to 

provide software developers with a means to assess their design proposals against system level 

requirements and intent. However, a number of (then recently published) papers on software 

safety had argued persuasively for the development of techniques which could satisfy the safety 

analysis requirements of every stage of a software project with a single method (or, at least, a 

single notation). 

The starting point for the work was therefore the proposal of a set of objectives for an ideal 

computer system safety analysis technique: 

1. The method should be capable of being applied at all stages of the system design and 
development lifecycle from initial design through to validated implementation. 

2. The method should not involve an excessive increase in the work required at early stages of 
the design. Ideally, it should allow the system designers to identify quickly which areas of the 
design are most critical, and concentrate further analysis work on those areas. 

3. The analysis should help drive design development through the comparison of alternatives 

and the refinement of specifications. 
4. It should be possible to have a high degree of confidence that thorough application of the 

method will lead to consideration of all credible failure modes. 
5. The analysis should be in a form which allows the design to be checked and approved 

incrementally, permitting closer integration of design / implementation and verification / 

validation activities. 
6. The results of the analysis should be in a fonn that is suitable for inclusion in a safety case. 

The development of a completely new analysis technique that could satisfy these principles, with 
the attendant problems of technology transfer - particularly the difficulty of convincing potential 

users of its value - was considered undesirable. Instead, it was concluded that the best approach 

was to identify an existing technique, possibly from completely outside the field of computer 

systems safety, which satisfied as many of the requirements as possible, and to modify it as 

required for the new role. There was no existing technique that could be used throughout the 

system development lifecycle, as required by the first objective, so the criterion was changed to 
finding a technique which could operate in all four of the roles (exploratory, inductive, deductive 

and documentary) identified by Fenelon [28], but with an emphasis on the needs of the early 

phases of development. 

116 



Objective 6 was also problematic, and it soon became obvious that no technique could be 

expected both to operate effectively in an exploratory role and, at the end of the lifecycle, to 
deliver concrete data for inclusion in a safety case. A more reasonable requirement was that the 

technique should provide a structure that could form the basis of a detailed safety argument. 

Even with these concessions, no existing safety analysis technique was able to satisfy all of the 

objectives, but the role in which HAZOP was used in the chemical process and nuclear industries 

was closest to the type of role envisaged for the new computer system analysis. The then recent 

publications by Bums and Pitblado [12], Earthy [25] and Chudleigh [15] showed that other 

researchers had also recognised the potential of this technique. As section 4.2 explains, although 

the use of variants of HAZOP for the analysis of software specifications and designs represented 

an exciting new suggestion, the problem with all of these early publications was that they 

concentrated on describing and explaining traditional HAZOP to an audience of computer 

scientists. None of these papers presented detailed technical proposals for the type of software 

analysis that seemed to be required, and the most thoroughly developed work (that of Bums and 
Pitblado) was flawed. 

One of the important features of HAZOP is that it is structured around flows. This means that, in 

the context of a chemical plant, the first focus of analysis is the properties and behaviour of the 

flows in the pipelines connecting the major components (storage tanks, reactor vessels, pumps 

etc. ) of the plant. These active components are brought into the analysis as causes or targets of 

unintended behaviour in the flows connecting them. There appeared to be a number of potential 
benefits to using a similar approach for computer systems, the most significant of which was to 

force engineers to take an alternative view to the normal process model used in most design 

methods. Other suggested benefits of considering information flows between components 
included: 

* Earlier analysis 
In many design methods, the interfaces between parts of the system are defined before the 

component implementation is finalised. A suitable analysis of these interfaces could provide 

a useful input to the later stages of design elaboration. 
Simpler specifications 
The intended behaviour of an interface is likely to be simpler to both specify and understand 
than that of an active component. 
More restricted failure behaviour 

117 



In general, the failure modes conceivable for interfaces are more restricted than those of 

active components. This may help to contain complexity and limit the size of the results. 

The papers by Bums and Pitblado, Earthy and Chudleigh had largely concentrated on the process 

of HAZOP, detailing aspects such as the role of the technique, membership of the HAZOP team, 

and the conduct of HAZOP meetings. It was therefore decided to start by investigating three 

specific technical issues: 

" the selection of an appropriate set of guide words for use with computer systems 

" the identification of specification and design notations with which HAZOP would integrate 

well, and 

9 whether an analysis structured around the flows between components could perform as well 

as one structured around the active components of the system. 

Chapter 7 describes, the resultant development of SHARD (Software Hazard Analysis and 
Resolution in Design), and explains how these original intentions were modified as case studies 

and other practical work shaped the principles defined in Chapter 5. 

6.2 Analysis of hardware / software interactions 

Unlike the rather uncertain beginnings of SHARD, the second new safety analysis technique was 
developed in response to a very specific requirement. British Aerospace Military Aircraft and 
Aerostructures (BAe MA&A) had begun work on a cockpit display system, which was one of the 

first military applications to employ software segregation of functions of different integrity levels 

on the same processor. The production of safety evidence for this system would require not only 

an evaluation of the interactions between the application code and the segregation system 

software, but also a detailed investigation of the possible effects of hardware failures. 

This project was therefore directly relevant to one of the specific deficiencies identified by the 

safety analysis principles, and also extended the research to address some of the safety issues of 

using operating systems in safety critical applications. 

6.2.1 Use of operating systems in safety critical applications 

Traditionally, safety critical computer systems have tended to be bespoke, with custom-written 

software running on a single, often also custom-designed, hardware platform. In mass-market 

products such as domestic appliances and automotive applications, the most significant design 

118 



driver is normally unit cost, which is reflected as a requirement for minimal hardware and 

compact, efficient code. These have typically been easiest to achieve with a fully bespoke 

system. In the aerospace and military sectors, factors such as size, weight, power consumption 

and heat dissipation have been dominant. There has also been a requirement to use "hardened" 

components, capable of operating outside the temperature ranges and E. M. I. levels acceptable to 

normal parts. Again, these factors have tended to predicate bespoke development. 

Although it has not been the primary driver, safety engineering has benefited from the bespoke 

approach. Every part of the system is specified, designed and implemented for the application, 

and this allows a very high degree of visibility of, and control over, both process and product. 
From the point of view of safety engineering, specific advantages of this approach include: 

0 the ability to examine and provide input to every part of the software (and potentially 
hardware) design 

0 the ability to include safety-specific features at all levels in the software and hardware 

access to designers and engineers at all levels 

a design that is tightly focused on the particular requirements of the application. This can 

permit relatively simple designs which are easy to analyse 

0 no, or very few, design variants to assess. 
In some markets (e. g. automotive), hand-crafted assembly code has been common, allowing very 
direct assessment of the code that will actually run, without the need for complex assessment and 

certification of compilers etc. 

It is becoming generally accepted that completely bespoke development is no longer viable 

except for the most critical of applications. There are many reasons for this change, of which cost 
is probably the most significant. As hardware costs have fallen, development (particularly 

software development) is now the dominant cost, even in mass markets. Other significant factors 

in the move away from bespoke systems have been: 

* Reduced need for bespoke hardware 

Computer system components have become generally smaller, faster and more highly 

integrated. Chips with extremely low power consumption and heat dissipation have been 

developed to meet the needs of the portable computing market. This means than there is no 
longer so much need for bespoke hardware to achieve the required functionality within the 

physical constraints imposed. This has even begun to alter the perceived need for hardened 

components, with suggestions that it would be cheaper and more effective simply to rely on 

replication where adverse environments are expected to impact hardware reliability. 

119 



o Requirements for maintenance and upgrade 
There are many factors that make the maintenance and upgrading of safety-critical systems 

problematic. These include: 

0 Hardware obsolescence 
As the pace of general computing hardware development has accelerated, components 

used in bespoke safety critical systems (which typically have a long in-service life 

compared to, say, desk-top computers) become obsolete and difficult or impossible to 

replace during the service life of the system. For example, the Eurofighter aircraft, which 
is not even in service yet, uses components that are no longer generally available. 

* Performance limits 

Many bespoke systems are designed such that the hardware is just sufficient to run the 

application software. New requirements for additional functionality can be impossible to 

meet without costly migration to new hardware. 

Inadequate design and safety information 

Many system upgrade projects have been complicated by inadequate knowledge of the 

original design rationale, assumptions and essential safety related information. This has 

occurred where systems were developed to outdated working practises with less 

documentation than is currently considered necessary, or where a small development 

team has not adequately recorded knowledge which everyone in the team shares, but 

which may not be obvious to an outsider. To ensure that changes do not cause 

unexpected problems can require a serious reverse engineering task (c. f. for example 
SHARD case study I in Chapter 7). 

Related to the problems of hardware obsolescence and performance limits is a desire to find ways 
to allow safety critical systems to follow the general computing "power curve". Because of the 

need to use components with a good track record of reliable operation, safety critical systems 

projects are usually restricted to using hardware that is no longer state of the art even when 
design begins. By the end of a lengthy development, the product may be a couple of generations 
behind leading technology, giving rise to a perception of poor performance when compared to 

contemporary non safety critical systems. 

120 



There are many possible approaches to reducing development costs and addressing some of these 
issues. These include: 

" moving to program generators 

" increased use of standard components and hardware 

" increased reuse of software components 

" use of commercial-off-the-shelf (COTS) software. 
All of these offer significant benefits in one or more of the problem areas identified, but all also 

pose new challenges for achieving and assessing safety. 

Essential to many of these changes will be the use of system architectures more similar to those 
found in general computing systems. The most important requirement on the safety process will 
be the ability to produce satisfactory safety arguments for operating systems which can provide 
flexible scheduling, guarantee independence of separate processes on the same processor, and 

provide cross-platform commonality to allow applications to be migrated to new or upgraded 
hardware. Whilst significant progress has been made in some areas (notably in the guaranteeing 

of timing properties of different scheduling schemes on a range of architectures - see, for 

example [2,42,46]), the design and analysis of operating systems presents many new challenges 
for safety engineers. 

6.2.2 Monolithic Software vs. Operating Systems 

A notable feature of current-generation safety critical systems (i. e. those in active service) is that 

the great majority are monolithic software systems, with the application software interfacing 

directly with the hardware and providing its own scheduling, device drivers and support 
functions, with no discernible operating system layer (Figure 33). These systems almost 
invariably have static address maps (i. e. data is stored at fixed locations in the memory map, with 

no paging, address translation or other dynamic memory management). They also typically have 

relatively primitive scheduling, either running simply as one large program, or using a simple 

static cyclic schedule. 

121 



Figure 33 - Monolithic system structure 

A typical example of this type of system is the engine management systems found on Ford cars 
built in the early 1990s (although it should be noted that these management systems were not 

considered to be safety critical at the time they were developed). These systems were based 

around custom-designed processors, with 1/0 features that are more typical of microcontrollers 
than standard microprocessors. The software was custom-written in assembly language, both to 

maximise the performance of the system, and to minimise code size (necessary because of the 
limited addressing capacity of the processor). The code was organised largely as a single program 

calling subroutines, with minimal interrupts for critical timing events. 1/0 and device 

management was all performed directly within the application code. RAM was extremely limited, 

and all variables were statically assigned to fixed locations. Changes to the memory map or 

execution order of the functions could necessitate rewriting several code modules because of the 

optimisations that relied on such structural features. 

This type of architecture has both advantages and disadvantages for safety engineering. The 

principal advantages are: 

* Obvious relationship of hardware and software functions 

This is perhaps the biggest single advantage of monolithic systems. Since every function is 

part of the application code, it is easy to trace which hardware components and lines of the 

software are involved in any given function. Also, the static memory management and simple 

scheduling mechanisms mean that system behaviour is limited and predictable. This greatly 
facilitates and simplifies the analysis of critical functions. 

122 



Team knowledge of both hardware and application software 
In a monolithic development, it is common for the same team of developers and analysts to 

work on all parts of the software, and to have detailed knowledge of the underlying hardware. 

This can assist in providing a "seamless" approach to safety. 

The disadvantages include: 

0 Lack of partitioning 
Many system-level safety arguments rely on demonstration of independence between diverse 

or redundant components. With a monolithic system, this is very hard to demonstrate (i. e., 
the application cannot easily be "partitioned", and claimed to consist of independent software 

processes resident on the same hardware). The typical response is to physically partition the 

application to separate processors where independence is required. This is also the most 

common approach for managing functions of different integrity levels; if it is not acceptable 
to develop all of the software to the same integrity level so that it can be co-located, the 
different integrity levels are allocated to separate hardware. Whilst this is simple and usually 

satisfactory from the safety viewpoint, it can be inelegant and extremely inefficient, requiring 
high levels of inter-processor communication, or resulting in very poor load balancing. 

Small changes can necessitate huge amounts of re-analysis 
The tight coupling of the hardware and software, and lack of ability to demonstrate 

independence between functions, can mean that relatively small design changes can result in 

a requirement for a disproportionately large re-analysis of the safety properties of the system. 
For example, if a safety argument relied on a proof that a critical variable could never be 

overwritten, the entire proof may have to be repeated if the variable is moved to a different 

location in memory. Perhaps the most extreme cases of this type of re-analysis are those 

related to timing behaviour, where reorganising a fixed cyclic schedule can require complete 

reworking of potentially extensive calculations and proof of timing properties such as ability 
to meet deadlines. 

0 Problems of ensuring safety after maintenance or upgrade 
Modification of monolithic software systems is also problematic, again largely as a result of 
the tight coupling of hardware, software, timing characteristics etc. Side effects of apparently 
minor changes can be extensive and potentially dangerous. 

123 



The primary functions of an operating system (Figure 34) are to manage the interface between 

software tasks and the underlying hardware, and also, in some cases, to manage interactions 

between a set of tasks. It provides facilities for allocating resources such as memory, access to 
hardware devices and 1/0 to tasks and ensuring that they do not interfere with each others' use of 
these resources. It also provides a scheduling regime which determines which tasks will be 

executed and in what order, and may allow different priorities of task, so that critical tasks can 

pre-empt lower priority activities. 

Application functions 

IAIA 
vvI 

Scheduling 
Interface and 
functions support 

functions 

Hardware 

A 
vI 

Controlled system 

Figure 34 - System structure with operating system 

In this respect, operating systems, almost by definition, address to some degree all of the 
disadvantages of bespoke systems noted above. Partitioning is supported by the allocation of 

resources to tasks and, if strong enough, this should enable the re-analysis required after 

modification to be limited to effects within the single task or group of tasks affected by the 

change. Portability may be greatly enhanced, provided that the same operating system application 

program interface is available on different hardware platforms, as the uniform interface it 

provides removes (or at least substantially reduces) the dependency of the application software 

on the hardware. 

Unfortunately, there are disadvantages to the use of operating system in critical systems. The 

overall size of a system consisting of application code and an operating system will usually be 

substantially larger than an equivalent monolithic solution. Since operating systems add a level of 
indirection between application code and hardware, the analysis of software / hardware 

124 



interactions becomes more complex as well as larger. Operating system facilities such as memory 

management, scheduling and partitioning become as critical as the most critical task they are 

managing, and so must be designed, developed and assessed to equivalent levels of integrity. Few 

currently available operating systems fully meet the integrity requirements for systems with 

serious safety implications. Also, there will still be a substantial analysis task when an operating 

system is migrated to a new hardware platform. 

6.2.3 The safety challenges of operating systems 

Computer hardware and operating systems are inherently single systems. It is simply not feasible 

to have a "standby operating system" that is fired up in the event of failure of the primary system, 
in the way that a standby generator might be used in an electrical supply. This means that the 

basic model of software safety management must always be rather different to physical 

components. Even if independence of failure behaviour of functions in the application software 

can be shown, there will always be a need to implement replication at the level of complete 
hardware units to provide for hardware or operating system failure. Even this does not avoid 

systematic failures in the design or implementation of the hardware and operating system unless 
diverse units are used. 

This observation implies that there might be little point in demonstrating independence of 

software components within a single system since replication at the "box" level is required 

anyway. However, there are significant benefits to be obtained in the areas of performance and 
flexibility, and potentially some safety benefits. 

The inability to partition critical and non-critical functions on the same processor can lead to very 

poor utilisation of resources. For example, if only 10% of the code in a system is critical, but it 

must be partitioned out to a separate processor (or replicated processors), this may result in one 

or more processors sitting idle whilst others are heavily loaded. In the worst case, a system which 
it would have been possible to run on a single processor if independence could have been shown 
between functions may require two or more processors when partitioned in this way. 

Assuming that issues of replication (and perhaps diversity) to cope with hardware and operating 

system failure can be dealt with at a platform or system level, the use of operating systems 
introduces new challenges for safety analysis within a single processing unit. 

125 



Perhaps the most significant change is that the use of operating systems makes it more realistic to 

regard a large software system as a set of components, with definable boundaries. Whilst this is 

clearly desirable, it challenges existing principles of development for safe software. 

The first practical problem, as noted in the discussion of principle 6 in section 5.6, is that there is 

currently no accepted way of specifying or describing the complete safety-related behaviour of an 
individual software component, rather than the overall behaviour of a complete system. In 

practise, many of the common defensive programming techniques implicitly take the view that 

each software function is a (relatively) independent component, which is responsible, so far as 

possible, for defending itself against potential failures of other system components. Thus it is 

common to implement input and output checks, comparison of results from calculations on real 
data with predictions from models, feedback checks and other similar features even where data 

sources and system behaviour should be trustworthy. The problem is that very often these 

techniques, which can be extremely expensive in terms of computation time, are implemented 

simply because they are possible, rather than with any analytical understanding of the potential 
failure modes to which the component is really likely to be subjected. 

The second practical problem is that, if software is to be regarded as a set of components, it is 

vitally important to be able to construct robust arguments for the independence of the behaviour 

and failure modes of these components. (As noted above, demonstrating independence from the 

underlying operating system and hardware is not possible. ) 

This presents ftirther problems. Safety engineering always starts by identifying hazards at the 

platform level, and propagating safety requirements down to system and component level. Once 

components and systems have been developed, their actual behaviour and failure modes are 

assessed to demonstrate that the achieved platform level properties are acceptable. How, then, is 

a project attempting to develop generic computing hardware, or a generic operating system for 

safety critical systems, to determine its requirements and describe its achievements, when its 

eventual application context is not known? 

Although superficially similar to designing any other engineered artefact (such as, say, a pump or 

valve), the main problem is one of complexity. The designer of a pump may not know what 

systems his component will eventually be used in, but its capabilities and failure modes can be 

expressed relatively simply in familiar engineering terms, and the platform designer can select a 

pump that meets his requirements. 

126 



It is perhaps better to compare an operating system with, say, the electrical power supply to a 

complete plant, rather than with a single component. The selection of electrical power supply 

characteristics will determine some of the requirements for components - suitable operating 

voltage, for example. A complete electrical system failure could disable all of the controlled 

components in a plant, or perhaps cause common damage to all of them through excessive 

voltage or current. In a similar way, selection of an operating system will set requirements for the 

development of other software components, in terms of interfaces, scheduling model etc., and 

operating system failures have the potential to disable or interfere with the behaviour of every 

other software function in a system. 

This analogy is over-simplistic, but helps to identify further characteristics of computer hardware 

and operating systems that make them particularly problematic: 
Complexity 

Interfaces to, and behaviour of, even the simplest operating systems are complex and difficult 

to specify completely (although it must be acknowledged that this problem is no worse than 

that of fully describing the behaviour and interfaces of hardware). 

* Unknown behaviour in case of hardware failure 

The sheer complexity of computer hardware makes it impossible to predict all its potential 
failure behaviours. This problem affects both monolithic systems and those with operating 

systems - even if they can be shown to be perfectly correct with regard to their specification, 

they cannot guarantee continued correct, or even predictable, behaviour if the underlying 
hardware fails. However, operating systems compound the problem due to the level of 
indirection between application code and hardware. 

Lack of independent action in components (all tasks rely on the operating system) 
The designer of the plant in the example above could attempt to ensure that individual 

components were designed to behave in the safest way possible in the event of anticipated 

problems with the power supply - for example, fitting springs to make valves self-closing 

when un-powered. This sort of independent protection within components is not possible 

with software, as it is not possible to guarantee any behaviour of software in the event of 
hardware or operating system failure. 

127 



* Un-needed functionality 

The more general a computer, the fewer of its capabilities will be required by any particular 

application. This means that complete analysis of an operating system in any given context 

must include demonstration that the functions that are not wanted cannot in any way interfere 

with the required behaviour. 

It is clearly not possible to construct a complete safety argument for any operating system 

supplied as a "stand-alone" component (i. e. without knowledge of its eventual application 

context). However, it should be possible to develop "sub-arguments" - effectively, a description 

of a set of properties that the operating system is claimed to guarantee, together with the evidence 

to support the claims. Even this will require a combination of several different techniques, 

covering different aspects of correct behaviour and appropriate management of a range of failure 

behaviour, perhaps using the type of evidence structure discussed in section 2.2.6. 

6.2.4 First steps 

The cockpit display system project proposed by BAe MA&A did not require full analysis of a 

complete operating system. The primary objective was to develop a tractable technique for 

investigating the effects of hardware failures on the integrity level segregation system. The 

technique that was developed - LISA (Low-level Interaction Safety Analysis) - and the results of 

the case study are described in Chapter 8-- 

6.3 Conclusions 

This chapter has described the background to the development of two new computer system 

safety analysis techniques. The first, SHARD, was motivated by general observations about 
deficiencies in existing safety processes. Its development, described in Chapter 7 was 

evolutionary, and resulted in the principles for safety analysis proposed in Chapter 5. 

The motivation for the second technique was a project requirement that combined a hardware / 

software interaction analysis problem with investigation of some of the issues in assessing the 

safety of operating systems. This chapter has discussed some background to this problem, and the 

development of LISA is described in Chapter 8. 

128 



Chapter 7 

Software Hazard Analysis and Resolution in Design 

(SHARD) 

This chapter describes Software Hazard Analysis and Resolution in Design (SHARD), a 

projective computer system safety analysis technique based on HAZOP. 

At the time that work on the SHARD technique began, it seemed that the major problems in 

using HAZOP for computer systems analysis would be with technical details, such as the 

selection of an appropriate set of guide words, and the identification of specification and design 

notations which were well suited to this type of analysis. The initial proposals for SHARD, 

published in a paper at the COMPASS conference in 1994 [58], concentrated almost exclusively 

on these technical aspects. 

The initial attempt to define a variant of HAZOP for computer systems was targeted exclusively 

at software designs (hence "Software" in SHARD). The scope of study was further restricted by 

considering only the application code; it was assumed that correct behaviour of both the 

computer hardware and operating system could be demonstrated by other means, and could be 

relied upon. Initial studies were targeted at dataflow and process network type design notations, 

where all dataflows are explicit in the design diagrams. Since the analysis was intended 

specifically for use in developing and refining a design, the method steps were written to include 

the identification of strategies for managing any safety related problems identified as an integral 

part of the technique. 

Note that the acronym SHARD was not actually applied to the work described here until the 

publication of the second paper in 1995; however, for clarity, the name SHARD will be used 

consistently to identify all of the work described in this thesis. 

The development of SHARD was shaped by four major case studies, which are described in more 
detail in sections 7.2 to 7.6. As these case studies progressed, it became clear that the original 
technical concerns, although valid, were relatively minor compared to some more fundamental 
issues concerning the role and meaning of analysis early in the design and development lifecycle. 
There were also some significant problems of working practices that had to be addressed if the 

129 



technique was to be successfully adopted in industry. A second paper [57], published at the 

COMPASS conference in 1995 reported the work on the early case studies, and described some 

of these newly identified issues. This chapter expands on the content of both of these papers. 

At about the same time that the first SHARD case siudies were being conducted with various 
British Aerospace operating companies, the MoD published a draft of Def Stan 00-56 [78] which, 
for the first time, identified HAZOP as a technique that could be mandated on defence 

development programmes. The lack of suitable guidance and documentation for the use of 
HAZOP as suggested in that standard was identified as a serious problem. The MoD responded 
by forming the Hazard Identification and Analysis Interest Group (HAIG), a panel drawn from a 

range of military and associated industries, which was charged with investigating, and later with 

producing, guidelines for safety critical systems HAZOP suitable for use in the context of Def 

Stan 00-56. The work of this group eventually led, via a contract with Cambridge Consultants 

Ltd., to the publication of Def Stan 00-58 [79]. 

Most of the work on SHARD was conducted between 1994 and 1996, concurrent with the major 

period of activity of HAIG. Many of the ideas and issues which the work on SHARD raised were 
discussed at the group's meetings and, subsequently, addressed directly to the authors of Def Stan 

00-58 by way 
'of 

commentaries on early drafts of the standard. Since the publication of the 

standard significantly predates the submission of this thesis, a number of the issues, ideas and 
developments that are described here as part of the SHARD development process are reflected in 

the standard. The primary authors of the standard have also now published their own book [67], 

which amplifies on many of the issues addressed, briefly in the standard. It also tackles a number 

of the criticisms of the standard that were not addressed by modifications in the final issued draft. 

The current status of the standard, Redmill et al. 's book, and their relationship to the SHARD 

work are described further in section 9.4. 

7.1 - Initial Technical Approach 

The guide words used in process industry HAZOP studies have evolved over approximately 

thirty years, and there is now a high degree of confidence that, when used in a systematic way by 

an experienced team, they will ensure an acceptably complete identification and investigation of 

the potential hazards in new chemical plants. One of the primary areas of concern about early 

proposals for software HAZOP was the uncertainty over how (or, indeed, whether) the same set 

of guide words could be interpreted in the new context. In view of this, it was decided to use 

130 



existing research into the classification of computer system failures to structure a new set of 
guide words. 

The set of failure classes proposed by Bondavalli and Simoncini [7] (discussed in section 4.5) 

was selected as the most appropriate, specifically because of their consideration of the 
detectability of failures, a critical point when considering strategies for handling failures. 

However, the set was augmented by the term commission, to describe those situations where a 
faulty system produces an output when a correctly functioning system would have produced no 

output at all. 

Following the model used by both Bondavalli and Simoncini and Ezhilchelvan and Shrivastava 

[26], every information flow in a software design was considered in terms of services; each 
transmission of information was regarded as a separate service, and for each service, failures 

were defined in the three groups shown in Table 6. 

Group Failure classes 
Service provision Omission, Commission 

Service timing Early, Late 

Service value Coarse (detectably) incorrect 

Subtle (undetectably) incorrect 

Table 6- Failure classifications used to structure SHARD guide words 

As each failure corresponds to a single information transmission, multiple failures in a sequence 

of information transmissions must be considered as a sequence of individual failure events. 

The initial attempt to define the SHARD guide words, applied in the first and second case 
studies, assumed that these failure classifications would need to be refined, in much the same 
way that physical properties (flow rate, temperature, pressure etc. ) are used to refine the 
interpretation of the guide words in a process plant context. It was suggested that a customised 
table of guide words should be constructed specifically for each project, using the combinations 
of communications protocols and data types available in the design notation to produce guide 
words with relatively precise meanings. 

For example, two of the most important communications protocols supported by the MASCOT 
family of design notations [39] are the pool and channel. A pool is a single writer, multiple 

131 



reader protocol. The write operation is destructive, overwriting any data already in the pool. 
Readers may access the pool at any time, and will read the most recent data written. Thus, if the 

writing process is late or stops running, the reader processes will not be held up; they will simply 
keep reading old data. A channel protocol is a single writer, single reader protocol with 

synchronisation; the reader cannot proceed until the writer has delivered the data. Physical device 

input and output have similar properties to the pool protocol; a process may read from or write to 

a device at any time without being held up. MASCOT supports a standard range of data types, 

including Boolean, enumerated types, various integer and real number representations, and 

complex data types such as records and arrays. 

Table 7 shows an early attempt to interpret the failure classes from Table 6 for some 

combinations of communications protocol and data type for MASCOT 3. The intention was that 

for each flow analysed, the protocol and data type would be used to select the appropriate row of 

the table; the entries in that row (e. g. "No write, Unwanted write" etc. ) would then be used as the 

guide words for that flow. 

Failure Categorisation 

Flow Service Provision Timing Value 

Protocol Data Type Omission Commission Early I Late Subtle Coarse 

Unwanted Stuck at 0 
Boolean No read Early Late N/A 

Device read Stuck at I 

Input Unwanted Incorrect in 
Value No read Early Late Out of range 

read range 

Device Unwanted 
Value No write Early Late Incorrect N/A 

output write 

Unwanted 
Enumerated No update N/A Old data Incorrect N/A 

update 

Unwanted Incorrect in 
Pool Value No update N/A Old data Out of range 

update range 

Unwanted 
Complex No update N/A Old data Incorrect Inconsistent 

update 

Stuck at 0 
Boolean No data Extra data Early Late NIA 

Channel I Stuck at I 

Complex No data I Extra data Early Late Incorrect Inconsistent 

132 



Table 7- Example guide words for MASCOT 3 

The main source documentation for safety analysis was a single design drawing, but it was 

acknowledged that it would generally be necessary to refer to additional material, such as data 

dictionaries or timing diagrams, to establish all the information necessary for a complete analysis. 
The main steps of the analysis process suggested were: 

1. Identify and consistently label the flows in the diagram. For each flow, identify its source 
(where the flow originates) and sink (destination). Assemble any additional material from 

data dictionaries, timing diagrams etc. required to completely describe the operation of the 

flow. 

2. Review the design to ensure that the intended operation is clear. 
3. Construct a table of guide words, interpreting the six major failure classifications for the 

combinations of communications protocol and data type used in the design. 

4. Work through the flows in a systematic order, using the combination of protocol and data 

type to select a set of guide words from the table constructed in step 3, and considering the 

deviations from intended behaviour suggested by each guide word. 
5. Determine and record the potential causes of the suggested deviations. Note that identifying 

the causes of a deviation will require study of the active component (process) or data store 

that is the source of the flow. 

6. Determine and record the expected effects of the suggested deviations. Except at the top 

(context) level of a design, the extent of identification of effects should be limited to the 

active component (process) or data store which is the flow sink. Effects that propagate 
beyond the immediate destination of the flow will be considered as part of the analysis of 
further data paths that originate from this component. 

7. Reduce the set of suggested deviations to a set of meaningful failure modes by discarding 

those for which the potential causes are acceptably improbable, and those for which no 
hazardous effects have been identified. Note that whenever a deviation is discarded, a 
justification must be recorded 

8. For each meaningful failure mode identified, suggest alternative management strategies. 
These may take the form of design modifications to remove its causes or limit its effects, or a 

set of requirements that must be satisfied by lower-level design elaboration to achieve 

acceptable system-level safety properties. 

133 



9. Select of one of these strategies to pursue, and record a justification for the selection. In the 

worst case, if no acceptable management strategy can be suggested, the only acceptable 

course of action may be a redesign. 

7.2 Case Study 1 

The first case study attempted was a project with British Aerospace Systems and Equipment 

(BASE) in Plymouth. This was a current development project to integrate an existing gun control 

system into the command and control system on a new class of frigate. Unfortunately, the case 

study was never completed, since project pressures meant that BASE staff were unable to release 

sufficient time for significant trials. However, participation in planning, design and review 

meetings, and discussions about effective means of working, provided valuable insights which 

contributed significantly to the development of SHARD. 

It was obvious from this case study that the process issues, which had initially been assumed to 
be less of a problem than technical concerns, were in fact more significant. It was clear that, for a 

new technique to be adopted. successfully, it was vital that as well as providing the benefits 

implicit in satisfying principles 2,3 and 4 in section 6.1, it should be flexible enough to fit into 

existing working practices. In the environment of this case study, this meant that the analysis 

could be produced sufficiently quickly to be included in the regular design review meetings. 
Also, as the membership of the design review meetings frequently included staff who understood 
the design requirements and operating environment, but were not necessarily fluent in the design 

notations used on the project, the analysis must be presented in a highly accessible form. 

The project involved modification of a successful existing system, which had been in service for 

over ten years. This meant that the proportion of completely new design was relatively small. 
However, the safety processes in place within the company when the system was originally 
developed meant that there had been relatively little safety-related design rationale captured, and 

a major reverse-engineering effort was required to understand the principles of its operation and 

the implications of the modifications. This balance of activity meant that the case study also 
highlighted the importance of principle S. Not only must incremental development be supported, 

there must also be provision for development of subsystems, for reverse engineering where 

changes are required to existing systems, and for some form of compatibility checking, where a 

partial analysis could be compared with safety requirements and information about a larger 

system. All of these requirements suggested a much more flexible working approach than was 

134 



implied by any of the classic texts on HAZOP, all of which assumed a "clean sheet" top-down 

system development, albeit with the incorporation of standard components. 

Relatively little actual analysis was produced on this case study. Since the primary focus of this 

case study was the technical issues of guide words etc., no attempt was made to convene a full 

HAZOP-style team meeting, but a small number of information flows were analysed by the 

author working with two engineering staff from BASE. The initial technical approach outlined in 

section 7.1 was used exactly as proposed. Progress was good, and some useful results were 

produced relatively quickly. Since there was little new design, there were few recommendations 
for design changes; most of the actions recorded in the analysis took the form of questions to be 

resolved by the team working on the reverse engineering of the legacy system. This quick and 

effective work contrasts with the difficulties encountered in team working in the second case 

study, and foreshadows the eventual conclusions about working practices in section 7.4. The 

eventual documentary output was about fifteen pages of tables containing some seventy 
individual entries in total. 

The system design had been created using the Yourdon [82] notation in the Teamwork tool. The 

analysis conducted in the case study was on selected flows from the top (context) level diagram, 

which was then supported by further analysis of the same part of the system on lower (more 

detailed) level design drawings. The technical approach was found to be a good match to this 

design notation; the identification of flows and their intended properties was straightforward and, 

at the level of the drawings used in the study, there was little detail contained in the process 

"bubbles", so all the staff involved found it easy and natural to concentrate on the flow 

properties. This meant that the expected properties of the active processes were captured as 

relatively high-level descriptions of their contributions to the causes, propagation or mitigation of 

particular failure modes. It would have been relatively easy to take these general assertions / 

assumptions and convert them into requirements, and one of the BASE project staff spent some 

time considering how requirements derived in this way could be incorporated into the 

requirements management and tracking tool used on the project. Unfortunately, project time 

pressures meant that effort had to be diverted away from the case study before this could be tried 

out in practice. 

The flows selected for analysis were chosen by the BASE project staff purely on the basis of their 

knowledge of and / or interest in specific aspects (mostly the new parts) of the system design. 

However, since these were almost exclusively interface functions to the new command and 

135 



control system, the analysis inevitably required detailed understanding of many original parts of 

the system. There was no attempt to work through the design in any logical order, or to ensure in 

any systematic way that the propagation and chaining of events was checked for completeness 

and consistency. Although this -is inconsistent with the systematic working envisaged in the 

SHARD method, it was surprisingly successful; this was probably as much to do with the interest 

of the staff involved as with any technical merit of the approach or the analysis produced. 

In retrospect, it is clear that the relatively informal, small group approach used from necessity in 

this case study was actually very successful, and anticipated later conclusions about working 

practices. Also, since this was a live project, the relatively limited information that was available 

was much more representative of the type of role envisaged for HAZOP, i. e. as a means of 

reviewing and refining design proposals. This is the only reverse-engineering case study on 

which the HAZOP / SHARD principles have been tried. Although the ideas were immature at the 

time of this study, the results were promising. The engineers involved did not appear to have any 

problem in interpreting the guide words to prompt questions about the (undocumented) operation 

of an existing system. Later case studies, which were carried out on recently completed systems, 

with the intention that the results obtained from SHARD could . be compared with what was 

already known about the system, were actually hampered by participants' preconceptions and 

over-detailed knowledge. 

7.3 Case Study 2 

The second case study was the largest team study carried out during the development and 

evaluation of HAZOP / SHARD. At the time of the study, the first draft of Def Stan 00-58 [79] 

had just been released for comments by Cambridge Consultants Ltd. As part of the process of 
developing and refining the guidelines, early drafts were released to selected groups who were 

able to offer trials on real systems. BAe MA&A, working with the DCSC offered a system for 

study. However, in order to integrate with the work on SHARD, the case study was conducted 

using the procedural aspects (i. e. team working and management) of the Def Stan 00-58 

guidelines, but applying the guide words and other technical details outlined in section 7.1. This 

case study was of considerable importance in the development of SHARD, not least because of 

the opportunities it presented for discussion with experts and practitioners involved on a daily 

basis in the development and approval of safety critical systems. 

The system studied was a recently implemented avionics subsystem (in test at the time of the case 

study), which provided a range of utility functions such as test and configuration management 

136 



and maintenance data collection. It was not directly involved in the control or navigation of the 

aircraft, but could contribute indirectly to hazards through selection of test modes at inappropriate 

times, or incorrect maintenance or configuration data reporting. Detailed specification and design 

information were available, expressed in COntrolled Requirements Expression (CORE) notation 
[74]. Since the design of the system was effectively complete, the results from the study were not 

able to influence the development of the design. However, a complete hazard analysis for the 

system had already been performed using other techniques, so there was an opportunity to 

compare the results achieved, and the effort expended, with the previous analysis. 

The team recruited for the study consisted of. 

0 The study leader (the author). 

9A recorder, drawn from the team which had specified the system, who both participated in 

discussions and recorded conclusions using a simple toot built from the Microsoft Excel 

spreadsheet package. 

*A member of the design / implementation team. 
A representative from the Independent Verification and Validation team. 
A second member of the group which had specified the system, whose role was intended to 

be to act as the user / customer, and ask questions from that perspective. 
This team composition is exactly as recommended in the Def Stan 00-58 guidelines. The team 

met for five sessions, each consisting of a short (3 hour) morning or afternoon, with a tea break in 

the middle. Again, this is close to the 00-58 recommendations. 

The first day began with a short presentation explaining the purpose of the study and basic 

HAZOP concepts. The team then spent approximately half a day studying an example system 
defined in the CORE notation. The hope was that this would enable people to become familiar 

with the concepts, and iron out a number of problems with procedure and interpretation before 

the study proper commenced. Study of the avionics system itself began mid-afternoon on the first 

day, and continued through both sessions on the second day. At this point it was decided that no 
further useful progress could be made by continuing analysis, and the team spent the morning 

session of the third day discussing their conclusions from the study. 

The actual progress made by the case study in terms of number of flows examined was relatively 

small. After two days' study, the team had recorded and agreed upon the analysis of just seven 
flows, three of which were so closely related that they could reasonably have been grouped 
together without any significant loss of information. However, amongst these, the existence of a 

137 



suspected hazard not described in the previous hazard analysis was confirmed. Several factors 

influencing the rate of progress can be identified: - 
Problems with the design representation. , 
Only the design and IV&V team members were completely familiar with the CORE 

drawings produced by the tool used on the project. This meant that significant periods of time 

were spent explaining the notation to the rest of the team. Whilst it is normal for a HAZOP 

procedure to include time spent discussing the intended operation of the system, there were 

occasions where explanations had to be repeated or clarified as the designer had incorrectly 

assumed that some aspects were clear from the notation. In addition, the particular tool used 

on the project had a number of limitations, and this had led in some instances to 

representations that were not a clear recording of the actual intent (for example, drawing 

single processes as several boxes to circumvent limitations on the number of flows that could 
be attached to a single process). Predictably, these were the parts of the design that caused 

most confusion, and where progress was slowest. 
Another problem was that the CORE diagrams were backed up by textual descriptions of the 

processes, data types etc. These had to be referenced frequently, and this was a slow process 
involving manual searching of extremely large printouts. It would have been preferable to 
have had access to the design database on-line, perhaps with projection facilities so that the 

whole team could view the information. 

* Time spent discussing issues that should have been resolved off-line. 
Despite the expertise gathered in the study team, it was found that there were many questions 

which no-one present was able to answer. The correct procedure would have been to mark 
these as actions for resolution outside the meeting, and reconvene later. Unfortunately, there 

were so many unresolved issues that, in order to make progress, the team resorted to making 

assumptions, which later work occasionally proved to be inappropriate. 

9 The complexity of the system studied. 
The study system was, perhaps, a poor choice in that, as a test and data collection facility, it 

had a large number of complex interfaces with other aircraft systems. This inevitably led to 

the problem of incomplete knowledge described above. In many cases, data flows were 
discovered to be so interrelated that it was almost impossible to undertake an analysis of any 

one in isolation. Understanding was also hampered by lack of information about the 

criticality, or even usage, of a lot of the data that the system handled. For novice analysts, a 

more independent, less data-oriented system would have been a better choice. 

0 Discussion of procedural issues 

138 



The study was not conducted strictly as a "proper" HAZOP. As an experimental trial, it was 

considered important to discuss issues related to the method as they arose. A further 

complicating factor was that some members of the team found it difficult to take a fresh look 

at a system with which they were extremely familiar. They were reluctant to spend time on 

areas of the design they felt were already fully documented, or broke into discussions with 
"pet" ideas. The members of the team who were attempting to work strictly according to the 

HAZOP procedures found this extremely frustrating. 

0 "Context free" analysis 
The team was attempting to study the system at a relatively low level of detail without having 

results of higher-level analyses on which to draw. This last point meant that the scope of 

consideration for every deviation inevitably grew wider and wider as people attempted to 

understand the implications of failures - in some cases to the extent that discussions 

encompassed ground crew training and maintenance procedures. 

From the point of view of development and refinement of the analysis method, the most 
important outputs of the study were the conclusions reached by the team in discussions both 

during and after the study meetings, and these are considered in the following sections. 

7.3.1 Working as a team 

The study highlighted the benefit that a team conclusion may carry more weight than individuals' 

conclusions, but also raised concerns about the effectiveness of carrying out the analysis as a 

team, including: 

When the number of questions that must be resolved off-line becomes excessive, the study 

may have to be reconvened many times as the answers to queries suggest new deviations or 
interactions that must be explored. In the worst scenario, the team approach may be less 

effective, and introduce significantly greater delays, than a study carried out by one or two 

people who can contact others with the necessary expertise as soon as the need arises. 
When studying design at a low (very detailed) level, a lot of the analysis is either repetitive, 

or relatively straightforward and obvious, merely confirming or elaborating upon earlier 

analyses at a higher level. In such cases, the expensive team analysis approach is simply not 

necessary; worse, the lack of interesting progress means team members become bored and 
demotivatcd. At the level of design detail at which the analysis was conducted, this case 

study presented no compelling evidence that the team study actually provided a more 
thorough analysis than would have been possible with other techniques, or with one or two 

analysts working individually. 

139 



Conclusions about the size and composition of the team included: 

0 The size of the team is critical; too small, and it may be prone to bias, too large, and 
discussions of relatively simple points may become unnecessarily protracted. 
The composition of the team in terms of designers / users / experts was good, but the 

complexity of the system was such that it would never have been possible to assemble a team 

with the expertise necessary to analyse all parts of it without referring a significant number of 

questions to external experts. III 
The leader's role is crucial to the success of a HAZOP team. Implicitly, it is necessary that 

the team leader has a strong personality and is able to be assertive in controlling discussions, 

especially when issues become contentious, or the study becomes "adversarial'", with the 

designer(s) pushed into a defensive role. This was actually a significant problem in the case 

study, partly because the leader was the youngest member of the team, and an "outsider". but 

also because of the personalities of some of the other team members, with a relatively 

reserved designer confronted by a rather bullish user representative. 
To help the recorder, who has a very difficult task, it is important that the leader summarises 

the discussion frequently, and helps to ensure that the records made reflect the important 

points. 
To make good progress, the leader must also be assertive in enforcing time keeping, and 
deciding quickly when an issue is not going to be resolved in the meeting. 

The overall conclusion of the discussions with the team, and also when this case study was later 

compared with the other trials, was that the team approach is really only appropriate for analysis 

at a relatively high level. This is, of course, the role that traditional HAZOP takes in the process 
industries, where the HAZOP team reviews the entire plant proposal at the level of the piping and 
instrumentation diagrams. 

As the design progresses and more detail is introduced, the analysis will inevitably become more 

routine, and should only be expectqd to confirm or elaborate earlier analyses. It should only be 

necessary to reconvene the team to consider areas where low-level analysis contradicts or casts 
doubt on the original work. At low levels of design detail, relatively small changes can result in 

the need for substantial re-analysis. This also contra-indicates a team approach, as the costs of re- 

convening the team to agree the impact of such changes will be infeasiblY high. 

140 



7.3.2 Recording the results 

The recording of results was one of the areas of this case study that was least successful, 
highlighting a number of practical problems: 

0 It was difficult for the recorder to participate in the discussion and also record what has been 

said. There were two aspects to this. The first was the difficulty the recorder had in producing 

an accurate and unbiased record of a debate in which he was participating. The second was 

simply the time taken to type (possibly large) amounts of text. A more effective summing up 

of each item by the study leader might have helped, especially if the computer used for 

recording had been linked to a projector so that the entire team could have viewed and agreed 

what was written. The problem with this is that it would inevitably have slowed proceedings 

still further, and there is a danger that, where the item was contentious, it would have proved 
difficult to find a form of words acceptable to all participants. 
In many instances, team members gave examples of specific types of problem; the recorder, 

recognising that there was a more general case, attempted to determine and record this "on 

the fly", occasionally falling behind the current discussion as he struggled to complete his 

explanation of previous items. Again, if this had to be done during the meeting, it would have 

been preferable for it to be discussed and incorporated into the leader's summing up. 
Otherwise, the more practical approach would have been to record the example as given, and 

note the need to improve the written record by providing a more complete description or 

explanation at a later time. 

Even for the relatively small portion of the system analysed in the meeting, team members 
began to have problems tracking and navigating what had been written, and resorted to 

sketching additional diagrams on a whiteboard to represent the failure modes that had been 

identified, and how they related and propagated around the system. 
It was clear that, for large systems, the output of the process might be a huge volume of 

paperwork. It was suggested that the tabular records should, wherever possible, be supported 
by a diagrammatic representation such as fault trees, or cause-consequence diagrams. 

7.3.3 Comparison of SHARD results with previous analyses 

One of the stated intentions of this study was to compare the results from SHARD, and the effort 
it required, with those from previously completed Functional Failure Analyses. Unfortunately, 

the study was so dominated by discussion of procedural issues, and the problems with the design 

representation described above, that no meaningful comparison could be made about effort. The 

141 



consensus opinion of the team members was that, even if the process issues had been resolved 

satisfactorily, the SHARD approach would still have been substantially more expensive than 
FFA. However, this was tempered by noting that the team approach had significant potential 
benefits, particularly if applied early in the development process. It was also agreed that the 
SHARD approach provided more structure to the analysis; several team members observed that it 

would therefore be an easier technique for novice analysts to apply. 

Comparing the results of the SHARD and FFA studies produced some interesting observations, 

although the small number of items actually analysed using SHARD meant that the significance 

of these was rather limited. Also, the two approaches were not strictly independent; some of the 

staff involved in the SHARD study had also been involved in preparing the FFA, and therefore 
inevitably brought their knowledge of previous conclusions into the meetings. 

It was observed that, for the small number of flows examined, the SHARD study had identified 

(as causes or effects of deviations) all of the safety related failure modes contained in the related 
FFAs. However, the SHARD analysis was more explicit about the relationship between these 
failure modes, making it much more obvious how they were propagated around the system. 

The SHARD analysis appeared to be much more sensitive to the areas where the design had been 

constrained by tool limitations, most notably 
. 

producing. analysis that was extremely 

uninformative for the functions which had been split due to constraints on the number of flows 

into a component. By contrast, the authors of the FFA had managed to present reasonable 
descriptions of these "virtual sub-functions". It was not clear whether this should be regarded as a 

weakness of the method. It was pointed out that, as a design aid, the identification of parts of the 
design that could not be analysed meaningfully could be an, indication that there were problems 
to be resolved. However, this is not an effect that has beenencountered on any subsequent case 

study. 

7.3.4 Technical conclusions 

Although the study concluded that CORE was a generally suitable design representation on 

which to base a HAZOP-type analysis, the example presented for this study was found to have a 

number of drawbacks. It became clear that the effectiveness of the study was being impaired 

because the majority of the drawings represented only a single process on each page, 

necessitating constant searching through the specification to follow data flows. The specification 

could not be pulled apart into individual sheets and laid out on the table, as the flows which 

142 



crossed page boundaries were not always grouped according to destination page, and frequently 

appeared in a different order on different pages. This contributed to team members' difficulties in 

navigating and understanding the propagation of failure modes around the system. A number of 
instances were found where structures had been introduced into the design to work around 
limitations of the notation (or the tool), and the analysis results for these parts of the design were, 

at best, uninformative. 

Some of the team members complained that the study was too data-oriented, to the exclusion of 

consideration of the processes and data stores in the design. Of course, all the data in the flows 

studied originated or was consumed in processes, so a better investigation of causes of deviations 

would have rectified this problem. The rather limited consideration given to causes was possibly 

a result of either the cumbersome representation of detailed design information in the CORE 

print-outs, or the large number of unresolved questions that were raised about the design intent. 

This case study also identified a number of significant flaws in the technical approach outlined in 

section 7.1. Perhaps the most important of these was that the table of "refined" guide words was 

much more of a hindrance than a help. Initially, there were significant problems in constructing a 

table of guide words for use with CORE; most of the suggestions were contentious, and it took a 
long time to agree on words that everyone found acceptable. As the analysis progressed, the 

agreed table was repeatedly called into question, and much time was spent revising it as 

situations arose where the pre-defined words were not appropriate. This then necessitated re- 

visiting previously completed pages of the analysis to see whether the revised words prompted 
further deviations for consideration. 

One of the areas where this was most significant was in the definition of detectable and 

undetectable failure. Although academically attractive, the team members found the distinction 

difficult to grasp. For example, it was not always clear whether the team was discussing whether 

a failure was intrinsically detectable (i. e. given unlimited resource, a detection mechanism could 
be devised), or whether it was actually detected in the proposed design. This had not been 

considered in the introductory briefing, and the practical solution adopted was to consider 
intrinsic detectability, and then note in the justification or actions whether the detection 

mechanisms actually in place were considered sufficient. 

In discussion after the study, the team members agreed that they felt constrained by the relatively 

tight definitions of the guide words, and would much have preferred to work just with the six 

143 



basic failure classes. The expectation was that each of these guide words would have prompted 

several deviations, but these would have been specific to the flow under study, and would 

therefore have been more meaningful. 

Asked to consider whether it would have been better to use the traditional HAZOP guide words, 

the team members concluded that they were not as relevant as the software failure classes and 

that, given that their main desire was to work with a smaller set of moregeneral prompts, the 

larger number of traditional guide words would probably have been more onerous. 

The primary technical conclusion of this study was that, whatever guide words are used, their 

most important function is as discussion starters, and it is important not to unnecessarily restrict 

the freedom of the team to interpret them in novel ways. However, suggesting how the words 

should be interpreted in particular contexts is seen as important for ensuring uniformity across 

multiple studies conducted independently on component parts of a large system. 

Another area of significant difficulty was in the recording of actions. The primary intention of 
SHARD was that the actions should - be recommendations or requirements for design 

development; given that the study was conducted on a completed design, this was meaningless in 

this case. Whilst they accepted the argument for closer integration of analysis and design, the 

team were concerned that there should be seen to be some degree of independence between the 

two activities. The, suggested approach was to use the SHARD analysis strictly as an analysis, 

and to record recommendations and requirements separately, citing the analysis as the source of 

new requirements. 

7.4 Postscript to Case Study 2- Revised working practices and 
technical approach 

Following Case Study 2, the suggested technical approach of SHARD was revised to incorporate 

all of the significant recommendations. The complex table of pre-assigned guide words was 
dropped, retaining just the six main failure classes (omission, commission, early, late, detectable 

value and undetectable value) as guide words. The analysis steps were also modified to remove 
design revision as an integral activity; instead, a much freer recording ofjustifications, comments 

and recommendations was substituted as the final step, meaning that the method description was 

applicable unaltered even where it was used purely for retrospective analysis. 

144 



Process issues were also added to the description of the technique. Being aware from Case Study 

I of the need for flexibility of approach, three distinct ways of working were outlined. The first 

was the traditional team approach, in line with process industry practice. The second was a 

simple design - review - redesign structure, following the practice of many organisations, where 

a design is circulated for peer review and comment. In this case, the safety analyst(s) would 

simply be added as additional peer reviewers each time a design was circulated. 

The third, and most complex, suggested process model attempted to retain the concept of analysis 

as an integral part of the design activity. This process model is outlined in Figure 1. The intention 

of this process outline is that the designers should actually produce their own analysis, which can 
be used in support of their proposal. The analysis would form part of the package for peer review, 

and be discussed as part of the normal review meetings. If necessary, a HAZOP team could be 

convened to tackle difficult or contentious issues. 

jPropose deýLgj Justify Review 

Conduct analysisl acceptance analysis and 
design 

Design YES 
cceptable. YES 

cceptable. >- 

Recordconcerns 
NO 

NO 
< ACCepta t 

Propose alternative p Record 
medial actions 

Lre 
concerns and 

Select preferred action 
Justify selection 
Revise design 

or conduct new 
analysis 

DESIGN TEAM REVIEWERS 

ernsl,, Zn Accept 
fiedý/ 'I design 

YES 

irther analysis, -ý, 
necessarýý 

s yl= YES 

NO 
Proceed I las 

HAZO 

Propose alternative 
remedial actions 

REVIEW MEETING 

Figure 35 - Outline of SHARD analysis as an Integral design activity 

145 



7.5 Case Study 3 

The third case study undertaken was the most extensive in terms of effort and size of analysis 

produced, but was carried out without significant industrial participation. 

The case study system was a comp 
' 
uter-assisted braking (CAB) system. The system manufacturer 

had provided outline requirements and a number of alternative design proposals, one of which 

was analysed in the case study. It was later decided to create. a new design proposal to the same 

requirements, so that both the new design and accompanying reworked analysis could be 

published. The system description, along with partial analysis results, was included as an exercise 
in the "ISafety and Hazard Analysie'lmodule, of the MSc in Safety Critical Systems Engineering 

at York in 1996 and subsequent years. The same, system has also been used as an example in 

doctoral theses by a number of other researchers at York, e. g. [64]. 

The analysis and consequent redesign were conducted by the author working with one other 

researcher. The work was carried out over an elapsed period of approximately two months, and 

consumed some 300 man-hours effort. The six basic failure classes were used directly as guide 

words, and the results of the analysis were recorded in a worksheet in the Microsoft Excel 

spreadsheet package. In all, 73 deviations on 9 main data flows in the context level diagram were 

analysed; an example page from, the. spreadsheet is, shown in Table 8. Although this may not 

appear to be a substantial volume of output, a large proportion of the analysis was repeated at 
least twice, as modifications introduced into the design in response to analysis findings 

invalidated other parts of the analysis which had previously been completed. 

7.5.1 Analysis and Design Revision 

This case study was the first significant attempt to use SHARD in the way it was conceived, i. e. 

as an integral part of the process of developing a design for a safety critical system. Initially, an 

attempt was made to analyse the complete original design exactly as proposed. However, it soon 
became obvious that there were substantial flaws in the design. There followed a protracted 
debate about whether it would be more productive to complete the analysis in order to identify as 

many significant problems as possible at once, or whether it was preferable to revise the design 

immediately, scrap the partially completed analysis and start again. 

146 



The course actually followed was an attempt to continue the analysis assuming that the changes 

suggested had actually been incorporated into the design. This was a mistake, as the result was an 

analysis of uncertain status that did not correspond completely to any version of the design. This 

led to confusion, and several drafts of the analysis which were internally inconsistent (or even 

contradictory), as well as inconsistent with the most recent design drawings. 

It became clear that it is essential to the success of the method that the analysis produced is linked 

with one identifiable, frozen version of the design. If it becomes clear that the design is 

sufficiently flawed as to necessitate a substantial reworking which will invalidate parts of the 

analysis and make it not worthwhile continuing, this should be recorded as an analysis 

conclusion. A new version of the analysis should be produced with the design update, ensuring 

that any material that is copied over from the abandoned version is thoroughly checked to ensure 
its correctness and consistency with regard to the new design. 

7.5.2 Order of analysis 

The repeated analysis of similar variants of a design gave the opportunity to test and compare a 

number of variants of the analysis method. The most significant product of this experimentation 

was the identification of a preferred order of working through a design in order to minimise the 

analysis effort. 

The first part of a new system to be analysed should always be the inputs and outputs, which can 

generally be expected to be relatively static features of a system. Even if the internal design is 

completely reworked, it is likely that the majority of the system's interfaces will be unaffected 

(although, of course, the causes of output deviations and the immediate effects of input deviations 

will change). The analysis of inputs and outputs effectively determines two critical pieces of 

safety information; which output deviations are hazardous and must be avoided, and the quality 

of the input data. If possible, it would be preferable to carry out a quick input/output analysis 
before the first proposal for internal design of a system is produced. 

For the analysis of the complete design, it became clear that by far the most effective way of 

working is backwards through the system, starting with the outputs, then considering the flows 

that immediately precede the outputs and so on back to the inputs. This makes the analysis a 

rather more deductive process, similar to fault tree analysis; there is still an inductive phase as 

each flow is considered, checking that the expected effects of deviations have been included in 

the analysis of downstream flows, but this becomes essentially a confirmatory activity. 

147 



There are two main reasons why this approach is effective. Firstly, the deductive approach 

actually limits the size of the analysis. Since the computer system can only cause or contribute to 

a hazard via its outputs, if analysis reveals that a particular output has no hazardous failure 

modes, then any internal flows and processes which contribute only to that output cannot have 

hazardous effects. For the purposes of SHARD, this means that relatively little analysis of these 

components is needed - in many cases, no. more than recording the absence of hazard 

contributions as a justification for considering these parts of the design acceptable. In contrast, 

when analysis is started from the inputs of a system and worked forwards to its outputs (as 

recommended in Def Stan 00-58), it can be extremely difficult to determine which identified 

input deviations will eventually contribute to potentially, hazardous output failures, and it is 

necessary to record and trace the propagation of every identified deviation right through the 

system. Considerable effort may be expended in investigating and recording deviations that will 

eventually be found to have no safety effect. 

Secondly, analysts always seem to find it harder to identify and express the expected effects of a 
deviation than to suggest its possible causes. The exception to this is in studying the outputs, 

where deviations affect the "outside world". These effects are typically relatively obvious, and 

can be determined with some certainty (e. g. incorrect data values correspond directly to incorrect 

actuator movements; omitted data means parts of a display will be missing). Once these effects 
have been established, the effects of deviations in internal flows can be described in terms of 
their contribution to external consequences that have already been recorded. 

Working back from outputs in this way also tends to counteract a phenomenon observed in every 

case study, which is that analysts seem to be much more comfortable with the "immediate cause" 

rule than with SHARD's equivalent "immediate effects" rule. The intention in SHARD is that the 

effects of a deviation should only be described in terms of the process or data store that is the 

sink of the information flow; effects that propagate further should be included in the analysis of 
downstream data flows. Case study experience showed that analysts are unsatisfied leaving 

effects "hanging" for future investigation; once a deviation has been suggested, the natural 
inclination is to immediately, trace it, right through to., its eventual output effects. In several 
instances in case studies, the effects recorded for internal deviations were developed in this way, 
but without any recording of how the conclusion had been reached. This does not occur when 

working back from outputs, as the completion of the propagation sequence is already known. 

148 



7.5.3 Revisions to the guide words 

This case study also resulted in a further simplification to the guide words. As the example output 
in Table 8 shows, it became obvious that the need to consider detectability of a deviation is not 
limited to value domain failures; it is possible to have detectable or undetectable omission, 

commission and timing failures. Detectability is a completely separate characteristic, and in this 

case study this was managed by adding a column for detection and protection to the table used to 

record the analysis. 

Since the study was still using the six original guide words, this resulted in detectability 

effectively being considered twice for value failures and, partly as a result of the confusion this 

caused, detection and protection were not particularly systematically investigated or recorded. 
Reviews after the completion of the case study again concluded that the best approach would be 

to first record the intrinsic detectability of the deviation, and then to consider what detection and 

protection measures, if any, had actually been incorporated into the design. 

7.5.4 Integrating application, operating system and hardware analyses 

Another significant outcome of the CAB case study was the appreciation that the original 

assumption that application software could be analysed in isolation, leaving the safety of the 

underlying hardware and operating system to be demonstrated independently, was not acceptable. 

The CAB system was a multi-channel design, with triple redundant processors communicating 

with each other and with bespoke output hardware via a replicated communications bus. On each 

processor, the application was structured as a sequence of tasks running in a scheduling 

environment that permitted pre-emption. A number of the safety features of the design, such as 

the selection of which channel was master in any given cycle, were controlled by altering the 

timing behaviour of the system. Some critical information was determined via a voting system, 
involving a number of rounds of inter-processor communication. The hardware and operating 

system characteristics were so significant as potential causes of critical deviations in these areas 

that it was not acceptable to omit them entirely from the analysis. 

The practical resolution reached in the case study was to record hardware and scheduling 

contributions to hazards, but not to attempt to develop them further. In effect, they became a set 

of implicit requirements which, in a complete safety process, would need to be identified and 

extracted from the SHARD records, and satisfied by other analyses. Although they were not 

149 



developed, efforts were made to describe the failure modes of concern as fully as possible, so that 

the engineers working on these aspects of the system had the maximum possible information. 

This solution is represented in fault tree terms in Figure 36. The SHARD analysis completes the 
investigation of causes for deviations in the application software and its inputs, but hardware 

faults and deviations in operating system software are left as undeveloped events. 

Hazardous output 
deviation 

I 
Gate 

Internal deviation Internal deviation Ideviat 

n: a: lication s 
rnterpn 

-4 

I 
in aplication ardware in aplication s1w 01S S/W 

failure mode failure mode 
Gate 1 Gate 

Input Input Internal deviation 
failure ardware failure in aplication s&v 01S S/W 
mode 1 failure mod mode 2, I 

Zfaillure 

mmod> 

2 Gate 2 

In ut Input 
fai ure f ilure ardware O/S SM 
mo eo e4 failure mod failure mode> 

33 

Figure 36 - Fault tree representation of Inclusion of hardware and operating system failure 

modes In SHARD , 

150 



-0 -r, 
cr U) 

0g 

0 CL 
- 0 
c 

u00 

00 J i; ý 0 

E r-. O 
0 0- 0Zw 10 

JE 3: :a9 
A zo LA. c 

c as -M S2 
a C. ) *6 
r 

Q) = U) :3 :3 
L ? 

-, CD (D 
0 

E 
2 (D 

_ 12 L) 
a) 'D (D 

a) . . L) (D (D 

> 0> 4) 
'0 

t= 
2 E 

0) 
m v; 

ID 
4) =- 

0 
L) 
(D 

In 
as 

0) F0 s 
(D 0 73 L) . - 

M :3 

a 8 
a) (a. 

>16 U) 
0 

Q<- 0 CO T 
- 

- rc 
2 ca 
CL > 

E . 6 a) I 
0) 0 (D cc 0000) 

Ca 
- 
> Q. 0 ., 

CL C" 'E : t-- 
0 0 . -0 (D 

a) > 
E 
0 ra =3 a) 

r 
cn cn 0) r_ 

- a) L) 2 
0 

.0 Z- 8 (D Cy: g 
() (1) 

Q 
0) ru 3: 

cn (1) E ' 
c 
as 

(D 
-0 CLU ,E 2.0 r, 

73 :3 
(D. G z cc 

c 
2@ ý CL (D U) a> 

a) (D Z 0-6 
a 

Icn: Cý 1 '9 0 
Cl) 0) -0- 

28 2 c Z0 :3- E 
- -6 0o 

as 
-5 E 0 -Z5 -= 0 73 (1) 

0c 
0) 2 . Q) 2 E C a) 

r Mi ý; 
CL (D 

z 
0 -0 C r- -- 0 

00c -= 
L) - 0) 

75 0 > 
r- Z5 

M 
V) C: 8 

0 
ýD CD M 

EE 
'r- <. (D -0 gu. g 

- 
'i E- 
, 4) (D 

0 Ca (D 
U= =3 ( ,) 3: -- 

(D a (1) " 
CI) cz 

m- ca . ca 2:, 
C13 (2 1 .2z 15 

C2. 
-=0 

in 10 
CD 

CM C 
G0 W 

=3 U- 
C Ca - 4) (1) 

Ca = .0 0- 
CD > 

ca 
a) 

0-0 E :3C (5 -2 
0 8 UD 

'@ -. 
co Q 

!2 1. 
05 :3 

. r- g 
ca 0 

CD 
C) c = (2 R; -2 ) ' (1) cm ý 

0 
.0 02 C ý-' z 

(D :3u 
in C) > 

CC l(i. - t 
= ca. >, 1ý -0 :: a 

Z0E 
a. D ý. 

L 2 L) 
E- ) 

.2: .--< g 
U) - LU 0) 6 I a) M- 

;.: cz (1) 
< C)) (D 

< CO 0 CC L) 9 Cc: 00z :3 'a 
o 

ZE7 
z 
>, 2- 2 0 -, cc 5 cr CL 0 -. 3 0 :3 M ý; 

M- 

U z C-) 0 

(D 
w < (D 0) 

c 

.0 a 
CD 

c 
0 

CD C) 

C 
0 

Z 
n E (D 

0 (D 
0 
0 c 

S. cn U) 50 
:3 .0 r- 

'§ CL 
(D 

0 (1) CLo 

a 
0 

! -3 = cr C It 4) 
< U) 

<< L 0 V) > co z 

z 

W 
4) 
U) 

Q)0 8 C6 z IM (A :3 G 
.0 

'S E U) 

z :3 8.8 < 
to o 

=3 
_, e Cl) Z 'D 0-< - 

a) 0 ý a) c 0 
_8 < F- U) 

=) (D M 

- 
z 
< 

0) 0 ja = 0) 
m 
o 

cm Qo 
4) 
z 8 2 _8 0 'i 

2-0 6 

Eý 0 S 
c 

0) U) 
s a) 

0 

(a a .; A- 
(n 

0 CL Z 

Cl) 
0 a) 2 0 0) 0 'S ca - Z 

E , uc0 CD 
0) 

0 =, 
2 9 co in 

a 13: cn 
-2 -2 ca la; 2 14 'a :3 

U- 0 V. 0 U) E 'a 0 ca 2> 
LT ... CL 0 L) In U) 

r- (D 
E 

E0 
a) (D 2 CA t5 M 

c . CA ry) n 
to 

=a 
:3- 

t co (D 5 0) CD 

V 
CD 
U) 

cli 
'D 

CL 0 
5 Ic 

.2 0 L) =3 . CL cr c :3 -M 
In 
0 

ý:: M 0) 

a) E 16 CD 

0 FL 
- 
00 

(2 
In =3 

2" (2 
- 
0 .0E . r_ ca 4) 

13 ta .5 CL m u) 78 0. C 
C: 

t. q). - (1) 
0 r- a 
Ec : Cl 

75 S 72 
u C w 

-2 E 
00 -Z 0 (1) (V -4. l 

: E5 0 ý: :2 
co C < 

0. . * a) s 1) R- -0 all w co c 
(1) (1) E0 'a a Z ir: 

.0 cý :3 i ON D2 IS s 0 00ýý? 
I 

V 
0 

.0 
S? 
-0 

a 
E 
0 

>1 
ýa a) a) a) 8 :3 - - 

a) Z 2-0 
10 LU 

6 
-1 

5 a 6 
>, 0 

MC 
> :3 

I C4 

5 

W 

V2 

92. 

cl 
E-4 



7.5.5 Process issues 

This case study confirmed the appropriateness of a small team approach to this type of safety 

analysis. For contrast with the majority of the work, which was undertaken with two analysts 

working together, some parts of the analysis were attempted by one researcher working alone. 
This proved to be extremely frustrating, and significantly less progress was made per hour of 

effort than in the joint work. Subjectively, the main problems were eithcr running out of ideas, or 
becoming bogged down in detail and being unable to find an acceptable generalisation. Also, 

there was a tendency for the individuals to doubt the correctness and completeness of their own 

work, and almost as much time was spent discussing and reviewing each contribution as would 
have been spent carrying out the workjointly. 

Working together, the researchers found that the flow of ideas improved; suggestions made by 

one person would be developed by the other, or would prompt related ideas. Also, the ability to 
discuss and agree on the important issues and the wording of the record was extremely valuable. 
Most of the work was conducted on a large white board, so that both participants could read and 

amend the record easily; each session was then transcribed into the worksheets. 

Another helpful factor was the complementary personalities and expertise of the researchers 
involved. In terms of Belbin's classification of team members [4], one of the participants was 

clearly a "shaper". and the other a "completer". The resultant combination of creativity and 

adherence to the procedures of the analysis method was extremely effective. Both researchers had 

a good background in computer systems, but one had expertise in the automotive application 
domain and was able to explain the background to some of the requirements, whilst the other had 

more expertise in architectural design and operating systems for multi-processor systems. 

7.6 Case Study 4 

The fourth SHARD case study was the first to be carried out largely by engineers in an industrial 

context, with relatively little input from the author or other researchers. 

The system studied was part of the weapons control system on a frigate. The study concentrated 

on the functions which were intended to provide a secure interlock to prevent simultaneous firing 

of two missiles from launchers at opposite ends of the ship - potentially hazardous if the 

missiles' trajectories intersect above the vessel. This functionality was to be implemented in a 

152 



combination of hardware and software components. The controllers of the two missile launchers 

communicated via a direct primary data link; if this failed, there was an indirect communication 

path via other systems that could be used as a fallback. The two controllers used a sequence of 

messages to interlock their operations. 

The main work on the study was carried out by Matt Tucknott of BAe Dynamics, with assistance 
from a number of engineers working on aspects of the system. The case study was initiated with a 
day's meeting at which the principles of SHARD were first presented briefly, and then the rest of 
the day was used to actually study a small part of the system in a HAZOP team format. The 

intended operation of the system was explained, and then two flows were examined in some 
detail. This was a particularly interesting exercise, as the author had no prior knowledge of the 

system, but was able to guide the meeting using the SHARD process. 

The meeting rapidly identified certain features of the design as being of particular concern. Chief 

among these were the implementation of the secondary data link, and the interaction between 

hardware failures and the software protocols in the two launchers which detected failures of the 

primary link and switched to using the secondary link for synchronisation. The BAe staff were 

encouraged by this, as their own analyses had already highlighted these as areas of potential 

concern; the fact that they had been identified so rapidly suggested a promising technique. 

After the initial meeting, the BAe staff took over the running of the case study, which was largely 

carried out by Matt Tucknott working together with one of the design engineers. A second 

meeting was called when it became clear that technical difficulties were being encountered with 

the method; this meeting was extremely helpful and productive for both the author and the BAe 

engineers, and a number of important guidance principles emerged. Most of these principles 

encoded ideas that the author had already implicitly applied (particularly in the CAB case study) 
but which were not explicit in the method documentation. In particular, the SHARD concept of 

chaining of deviations was made much more explicit, and the fault tree-like primary - secondary 

- command rule for identifying causes of deviations was added to the method guidance. 

The discussions also emphasised the need for further clarification of the role of SHARD. In 

particular, there was confusion about the status of the deviations suggested by the guide words. 
The Venn diagram shown in Figure 37 was drawn to clarify the relationship between suggested, 

expected, possible and actual deviations, defined as: 

153 



possible deviations - the ways in which the system can actually deviate from its intended 

behaviour. This set could only be determined by a notional "perfect observer", with complete 
knowledge of the system. I.. 

0 actual deviations - the subset of the possible deviations which will actually be experienced 

when the system is tested or in service. 

suggested deviations - all of the deviations prompted by the guide words and considered in 

the SHARD analysis. These will include some deviations that are not actually possible, and 

will almost certainly exclude some which are possible. 

expected deviations - The subset of the suggested deviations for which credible causes are 
identified in the analysis. Again, since the analysis is projective and working from 

incomplete or uncertain information, the set of expected deviations will not perfectly match 

the set of possible deviations. 

P- Possible deviations 

A -Actual deviations 

E -Expected deviations 

S- Suggested deviations 

Figure 37 - Relationship between possible, actual, suggested and expectd deviations 

This emphasised two rules of the analysis method. The first is the importance of interpreting the 
guide words imaginatively to, create the set of suggested deviationsl for analysis. The second, 
which is where the case study experienced difficulties, is in understanding that the fact that a 
deviation can be suggested does not mean it necessarily exists. Only the expected deviations need 
to be considered as potential hazards, ý and there'is no need to consider the detection and 
mitigation of deviations for which no plausible cause can be found. 

Because of the complex exchange of messages used to synchronise the activities of the two 

controllers in case study 4, it was essential that the analysis considered many alternative 

sequences of deviations. There, was some debate as to. whether it was better to consider a 

corrupted exchange to be a result of omission and commission deviations, (relative) timing 

deviations, or a combination of the two. Although any of these options was valid, any corrupt 

sequence can be represented using only omission and commission deviations, whereas timing 

deviations alone are not always sufficient. For simplicity and consistency, an approach based on 

omission and commission deviations was therefore considered preferable. 

154 



After the second meeting, the case study progressed well, concluding with the issuing of internal 

company memo describing the findings of the study, and recommending that SHARD should be 

adopted as part of BAe Dynamics' safety process. 

7.7 Other case studies 

In addition to the four major case studies described in sections 7.2 to 7.6, a number of smaller 

case studies were conducted during the development of SHARD. The author, working with other 

researchers, has applied the technique to a range of small teaching examples. These exercises, 

which have included examples from rail, manufacturing and aerospace industries, have been 

conducted in a very similar manner to the CAB case study described in section 7.5, and the 

results have been consistent with the findings of that study. 

There have also been a number of industrial trials, of which the most significant is one which was 

conducted by Chris Harper, formerly of British Aerospace Airbus, the conclusions of which were 

reported to an internal BAe / DCSC workshop held in York in April 1996. This trial, which was a 

retrospective analysis of a partially completed design, was supportive of the SHARD approach. 
The most significant contribution of this study was that an attempt was made to quantify the costs 

and potential benefits of the technique. The figures produced are distorted by the fact that the 

analysis revealed a problem that the live project development team had not discovered until rig 

testing; it was calculated that the cost of the analysis had been less than 1/25th of the cost of the 

subsequent redevelopment. More realistically, the conclusion of this study was that the cost of the 

analysis was broadly compatible with other approaches such as Functional Failure Analysis, and 

that SHARD should be considered as a candidate technique for inclusion in future safety 

programme plans. 

7.8 The SHARD method 

This section presents a step-by-step description of the SHARD method, complete with guidance 

notes. This method description, augmented by practical examples of each of the steps, forms the 

basis of a handbook that will be used for the next round of industrial case studies and trial 

applications of the technique. 

155 



7.8.1 Introductory notes 

Software Hazard Analysis and Resolution in Design (SHARD) is a technique for investigating 

the expected safety-related behaviour of safety critical or safety-related computer systems. 

Despite its name, SHARD should be viewed as a safety investigation of the complete computer 

system, and not just the software application. 

SHARD is intended to help assess the suitability of proposed computer system designs, and to 

derive safety-related requirements for detailed development of a design. SHARD analysis should 

primarily be viewed as a part of the design process, rather than as a safety assessment or audit 

technique. The analysis should be "owned" and managed by the design team, even if other 

groups are involved in its production. 

SHARD analysis of a design is structured around the infonnationflows between the components 

of the system. At the top level, the technique considers inputs to the computer system from 

sensors and other data sources, and outputs to actuators, displays and other systems. Within the 

software, the analysis focuses on data flows between software functions. This provides an 

alternative to the largely function-based view of systems typically taken during design, and can 
help designers and safety analysts gain new insights into the requirements for, and potential 

problems with, a system design. 

SHARD uses a small set of guide words to prompt consideration of possible deviations from the 

intended behaviour of each information flow. For each deviation considered, the analyst(s) must 
determine whether it has plausible causes, and whether it can cause or contributes to a hazardous 

effect. If so, the analyst must assess the protection and mitigation (if any) that is already built in 

to the design. 

For any plausible and potentially hazardous deviation that does not already have adequate 

protection or mitigation, the analyst(s) should recommend appropriate actions to improve the 

design. If no reasonable remedial actions can be identified, this is an indication that the overall 
design concept may be unsatisfactory. 

The analyst(s) may also make recommendations about further safety activities that should be 

carried out to provide the necessary evidence that the expected behaviour of the system is 

realised in practise. 

156 



Note also that SHARD is predictive and requirement setting. It does not provide evidence about 

actual safety characteristics achieved; rather, it should provide confidence that, provided that the 

system is built as described and any recommendations are met, it can achieve the required level 

of safety. Since SHARD is carried out on the software design, the quality of the analysis, and the 

strength of the conclusions that can be made, are very dependent on the strength of the mapping 
from design to implementation. If the eventual implementation varies significantly from the 
design (or from the analysts' understanding of the design), this will significantly reduce the value 

of the analysis. 

The principles of SHARD analysis are extremely simple. It is important to understand, however, 

that the analysis process requires both creative thinking in the interpretation of the guide words, 

and careful, methodical investigation of the potential causes and effects of deviations if it is to 

provide constructive input to the design process. 

7.8.2 Recording the Analysis 

SHARD analysis should be recorded in a tabular format. A new page should be started for each 
information flow considered, and the details of the flow should be recorded at the top of the page. 
The columns used in the table should include at least: 

" Guide word 

" Deviation 

" Possible causes 

" Effects 

" Detection and protection 

" Justification or design recommendations. 
It is helpful to add an index column so that every deviation can be given a unique ID for 

reference. Other columns, such as identification of additional factors contributing to effects, or an 

assessment of the severity of the effects, may be added if required. 

If the SHARD analysis is conducted by a team, it is important to ensure that the team members 

are able to review and approve the record that has been made. This can either be done by using a 

whiteboard or OHP (or a computer with projection facilities if available) to record the analysis, or 
by circulating copies of the record quickly at the end of the meeting. 

157 



7.8.3 SHARD Steps 

Figure 38 shows a simple flow chart for the steps of a SHARD analysis. Each of these steps is 

now described in more detail. In these descriptions, the term "analyst(sy' is used to encompass 

everyone involved in the study, regardless of the actual working practice adopted (see section 
7.4). 

Start Stop 

Summarise Vie analysis 
Understand the design + 

rwyi, 

No 

Select an information flow 4 Yes More flows % < 
to cons ir? 

Describe the flow and its Intended 

7 
behaviour 

No 
Is the intended 
o 

t Record problems 
N 

ý 
pe ration safe? O and recommend 

ý I 

improvements 

Use a guide word to suggest a I 
deviation 

I 

Investigate and record the causes of 
this deviation 

Investigate and record the effects of 
this deviation 

Investigate any detection and I 
mitigation of effects 

I 

to consider? 

Record as Record problems and non-hazardous, 
and supply recommend 
justification Improvements 

No Does the Yes 
deviation have plausible causes 

and unsatisfactorily mifigaied 
effects? 

Figure 38 - SHARD flowchart 

The descriptions of each step in this section are extensive, and may appear somewhat daunting. It 

is important to note that the intention of this section is to provide as much guidance as possible. 
In practice, most of these steps are simple, if occasionally time-consuming. Experience shows 

158 



that the first parts of any design analysed always take a disproportionate amount of time and 

effort, as analysts work to understand the system requirements and design proposals. As this 

understanding is gained, the analysis rapidly speeds up, and people develop the ability to rapidly 
focus on points of genuine concern. 

Step 1: Understand the design. 

When a design drawing is presented for analysis, the first step is for the analyst(s) to make sure 

they understand clearly what the design intent is. In a team SHARD study, the best way to 

achieve this is for the designer to quickly "talk through" the design, outlining the function of each 

component and information flow. Analysts working individually or in small teams should 

similarly talk through the drawing with the designer(s) before starting work. 

Clearly, this step also requires that analysts are able to read the notation used to represent the 

design, and are able to understand the meaning of special symbols, shapes and annotations. 
Whilst it is possible to conduct a study with a team where some members are not familiar with 

the design notation, case study experiencehas shown that this 

This step should also include a brief review of relevant safety requirements, or the results of 

earlier hazard and safety analyses applicable to the part of the systems under study. 

It is important to ensure that the analyst(s) understand the way the system should work not only 
in normal operation, but also in unusual circumstances, such as 

0 system start-up / power-up 

system shut down / power down 

any special modes for maintenance or testing 

* error recovery modes (e. g. restarting after unintentional power interruption). 

It is quite likely that, in the early stages of design, the appropriate behaviour for all of these 

circumstances will not be defined; the SHARD analysis itself should contribute to understanding 
how to manage exceptional circumstances safely. However, where system level hazard and safety 

analyses have identified the required behaviour, the analysts should be aware of this. 

159 



Step 2: Select an information flow. 

SHARD analysis, like all hazard analyses, should start at the system level. This means that it 

should start from the context level design, and work down to more detailed drawings. 

SHARD analysis always proceeds backwards, starting with the outputs of a system or function, 

and working back through its internal information flows and components to its inputs. This is 

important, as working this way allows the effects of deviations in the behaviour of internal and 
input flows to be expressed in terms of their contribution to output deviations that have already 
been studied. 

Compared to starting with inputs and working forwards, working back from the outputs cuts 
down considerably on the work involved in recording the effects of a deviation, and makes it 

easier to understand which deviations can cause or contribute to a hazard. 

All of the outputs should be analysed before internal flows are investigated, working back from 

the flows closest to the outputs, and the inputs should be studied last. in the system shown in 

Figure 39, for example, the flows would be studied in the order Out 1, Out 2, Out 3,11,15,16,14, 

12,13, In 1, In 2, In 3. 

In 1 11 out I 
-POCF1 

13 

12 
F3 15 

F4 10 

In 2 16 Out 
-2 

F2 ) 14 
-iý F5 

In 3 Out 3 

Figure 39 - Example to illustrate order of analYsing flows In SHARD 

Note that some design notations allow complex or compound flow types, i. e. one line on the 
diagram may represent the flow of many pieces of information, transmitted either separately or in 

a data structure such as a record or array. In studying a design that uses these flow types, the 

analyst(s) must decide whether it is necessary to separate the data items and analyse each one 
individually. This is an important but potentially difficult decision. 

160 



The following rules should be applied: 

0 In the case of a compound data flow (i. e. one line represents multiple data items transmitted 

separately), it is almost always necessary to analyse each individually. At the very least, there 

are likely to be timing characteristic, and possibly issues of sequencing, to be considered. 
In the case of a complex data type such as an array or record, the primary factor in the 
decision is how the data is used. If it is always used as a unit, then it may be possible to 

analyse it as a single flow. If the data items are separated at the destination and used for 

different purposes, then separate analysis will be necessary. 
For example, in the lift controller design, it would have been possible to draw a single output 
flow to the motor power management unit. This single flow would actually consist of a 

record containing three elements - require(Lspeed, direction and start/stop. Although they 

have a common source and destination, the effects of deviations in these three elements are 

clearly quite different, so separate investigation would be required. 
If in doubt, always analyse each data item separately. 
Communications systems are a special case. In these systems it is common to find that the 

unit of information is a packet consisting of a block of data which is being moved, wrapped 
in the control data required for routing, error detection / correction etc. In such systems it is 

often impossible to determine the effects of deviations in the message data. The most 
tractable approach is to separate the control fields for individual analysis, but to treat the 

message content as a single data item. It is usually necessary to assume that every packet 

contains the highest criticality data the system will handle, and analyse deviations in the 

control structures of such a packet. 
For example, in a digital telephone exchange, it is impossible to study the precise effects of 

corruption of the digitised audio data being moved. However, in considering protocol-level 
deviations that might result in errors such as the loss or mis-routing of packets, it should be 

assumed that the conversation being damaged is a call to the emergency services. 

Step 3: Describe the flow and define Its Intended behaviour. 

Ensure that the intended behaviour of the selected flow is clearly understood. This should include 

defining what the data represents, how it is transmitted, and also how it is generated and used. It 

should also include details of how this flow should behave when the system is in states other than 

normal operation, as discussed in step 1. 

161 



For analyses at the top (context) level of a system, it is possible that these details will not have 

been decided; again, conclusions from the SHARD analysis may help to determine the most 

appropriate implementation. 

Where the communication mechanism used for an information flow is defined, it has a significant 

effect on what deviations from its intended behaviour are possible, and whether or not they can 
be detected. In describing a flow, the analyst should consider: 

* Data type and coding 
How is the data represented? For example, what format is used for real numbers and 
integers? Is there internal redundancy or error checking within the data, such as parity 
bits? How are enumerated types mapped onto binary representations? 

e Timing 

Is this a periodic (regular) or sporadic (possibly interrupt-driven) communication? How 

frequently does it occur? What is the acceptable delay and jitter? 

0 Protocol 

Some design notations permit a range of different communication protocols. These will 

not only alter the possible behaviour of the system, they may also affect the way that the 

analysis is conducted. 
For example, the MASCOT family of notations provides (amongst others) signal and 

pool type protocols. The essential properties of these are summarised in Table 9. It can 
be seen that the pool type protocol is equivalent to a construct such as that shown in 

Figure 40. 

write read 

Store 

Figure 40 - Write to / read from store as equivalent of Mascot pool protocol 

There are two possible approaches to analysing such a communication. Either it can be 

considered as two separate flows, the writer part and the reader part, which are analysed 

separately, or it can be analysed as a single flow, but with multiple interpretations of 

each of the guide words to consider the different effects of deviations in reader and writer 
behaviour. 

162 



Protocol Signal Pool 

Symbol :10, 
L 10 

Data Read Destructive Non-destructive 

properties Write Destructive Destructive 

Cannot be held 
Reader Can be held up 

Dynamic up 
Effects Cannot be held Cannot be held 

Writer 
up up 

Table 9- Properties of MASCOT Pool and Signal communication protocols 

It is sensible to ensure consistency of analysis approach across an entire project. This requires the 

project safety team to study the chosen design notation to identify the preferred approach in 

situations such as that described above. Step I of the SHARD analysis will then include a review 

of the project-specific analysis approach. 

A brief description of the intended behaviour of the flow, together with its data type, 

communication protocol and timing information should be recorded. 

Step 4: Ensure Intended operation Is safe 

Compare the description of the generation, transmission and use of the data from step 3 with the 

overall functional description and safety requirements reviewed in step 1. Note any 
inconsistencies or inadequacies, and make recommendations as to how they should be rectified 
(see step 8). 

It is important to remember that system safety must always be considered with respect to the 

system intent, and not the specification, which may itself be faulty. 

If it is not clear how a part of a design is intended to work, or if information is missing, it is 

acceptable for the recommendation recorded to be a requirement for further investigation to 

clarify the design or supply the missing information. This will, of course, mean that the analysis 

will have to be revisited once the additional information is made available to ensure that it is 

acceptable. 

163 



Step 5: Use a guide word to suggest a deviation. 

Having investigated the information flow in normal operation, the next step is to study what 

unintentional behaviour is possible, and what its potential effect on safety would be. This is the 

main body of the analysis and SHARD uses a set of guide words to prompt consideration of 

possible deviant behaviour. SHARD uses only a small set of guide words, but each may 

potentially be interpreted in several different ways to suggest a range of deviations. 

The guide words are based on the concept of a service. A service is the communication of a piece 

of information, with a specific value, at a particular, time. The guide words suggest ways that this 

might go wrong. They are: 

Omission: 
The service is never delivered, i. e. there is no communication. 

Commission: 

A service is delivered when not required, i. e. there is an unexpected communication. 
Early: 

The service (communication) occurs earlier than intended. This may be absolute (i. e. 

early compared to a real-time deadline) or relative (early with respect to other events or 

communications in the system). 

Late: 
The service (communication) occurs later than intended. As with early, this may be 

absolute or relative. 
Value: 

The information (data) delivered has the wrong value. 

A single guide word may have many interpretations, each suggesting different deviations. 

Each deviation that is considered should be recorded with as clear a description as possible. It is 

not satisfactory to simply note the guide word, as other people reading or updating the analysis in 

future may not interpret the guide words in exactly the same way. 

164 



There are several important points to note. 

1. There are situations in which there are no meaningful interpretations for a guide word at all. 
A simple example is in the case of an interrupt; this is simply a stimulus, indicating that an 

event has occurred, and carries no data at all. There is therefore no meaningful interpretation 

of the guide word "value". This must be recorded (i. e. enter N/A as the deviation) - do not 

simply omit the guide word. 

2. The fact that a deviation can be suggested does not necessarily imply that it is likely to occur, 

or even that it is possible. The role of step 6 (investigation of causes) is to determine which of 

the suggested deviations have plausible causes. 

3. Some plausible deviations could be suggested by more than one of the guide words. For 

example, consider the case of passing of a data record containing several elements. The guide 

word "omission" could suggest that, although the communication has taken place, one or 

more of the elements in the record is missing (partial omission). Alternatively, the same 
deviation could have been suggested by the guide word "value" - since the record has been 

passed, it could be considered that there has been no omission, but the missing data 

constitutes an incorrect record value. It does not matter for the purposes of SHARD which 

view is taken in such situations; however, it is important that similar instances are treated 

consistently throughout the analysis. 

4. Timing and value deviations can occur together. For example, an output could be both late 

and have the wrong value. 

Case studies have identified the following "variants" of guide words as generally helpful 

prompts. Note, however, that these are intended for guidance, and are not necessarily exhaustive, 

or applicable in all circumstances. 

Omission: 

0 Total - there is no communication at all. 
Partial - part of a communication is missing; may suggest either an incomplete data 

structure, or one of a series of related communications is missing (e. g. a packet missing from 

a sequence that carries a long text). 

165 



The following cases of omission are applicable to iterated communications: 

0 Single -a single iteration is omitted 
Repeated - several (or possibly all) consecutive iterations are omitted 
Periodic - every n th iteration is omitted. 

For example, consider an output that is supposed to occur at regular intervals over a period of 

time from t, to t2. The guide word "omissioif 'could suggest the following different deviations: 

" just one of the intended output events is missed (single omission); 

" the output never occurs in this period (repeated omission); 

" the output occurs as intended for the first few repetitions, then ceases (a different case of 

repeated omission); 

" the output occurs throughout the period, but every 3`1 iteration is omitted (periodic omission). 
These cases are shown graphically in Figure 4 1. Each of these cases might have different effects 

and need to be considered separately. 

ttttt tý ttttt Correct operation 

Single omission tttttItttt 

---*. 
Periodic omission ttTtttt 

---- 
Repeated omission ttttt, t 

Time during which periodic function required 

Figure 41 - Illustration of different cases of omission failure 

Commission: 

Repetition - an expected communication is repeated when it should not have been. 

Spurious - there is a completely unintended communication. 

Early and Late: 

As noted above, the timing guide words may be interpreted with regard to absolute (real) 

time, or relative to some other system event. There are two important cases of relative timing: 

1. Events (communications) in sequences. 

All possible incorrect orderings of a set of events can be represented as some 

combination of omission and commission. For example, if the intended sequence of 

events ABCD was to actually occur as ABD, that it clearly an omission. The incorrect 

166 



sequence ABDC could be considered to be an omission (of Q followed by a commission 
(of D). However, it is much more natural to think of this second example as a timing 

problem - either C is late with respect to D, or D early with respect to C. Particularly in 

multi-processor systems, there are many practical interpretations of this form of lateness. 

2. Events (communications) in a system with a cyclic structure. 
The great majority of embedded computer systems have some form of cyclic schedule. 
Even those that use a dynamic schedule often work by breaking time down into a set of 

short periods or "frames". In such systems, it is often convenient for analysis purposes to 

study the timing of events and actions with respect to the beginning or end of a cycle or 
frame. 

In practice, the beginning and end of a cycle also almost always define the boundaries 

between timing failures and omission or commission. If an event occurs at the wrong 

time, but within the correct cycle, it is simply a timing failure. If, however, an event is so 

early or late that it falls in the wrong cycle, it must be considered to have been omitted in 

the cycle where it was required, but will turn up as a commission failure in the cycle into 

which it has fallen. 

Value: 

Value deviations are so application specific that no additional generic prompts have been 

identified. In practice, the most important properties of value deviations are related to the 

detectability of the deviation, which is discussed in step 8. 

Step 6: Investigate causes 

Having suggested a deviation, the next steps are to consider whether it has plausible causes (step 

6) and/or potentially hazardous effects (step 7). 

Propagation and Transformation 

For the investigation of both causes and effects of a deviation, the concepts of propagation and 

transformation of deviations are extremely important. These are the way in which unintended 
behaviour of one component can cause other components to also behave incorrectly. 

167 



Consider the sequence of functions, data flows and data stores in Figure 42. If function A fails to 

produce the raw-data output, function B will be unable to produce the filteredjdata output which 

should have been placed in the store. The failure of A has propagated to B. 

Input 
A raw-data B fill 

output 

Store 

Figure 42 - Illustration of failure propagation and transformation 

As the data in the store has not been updated, function C will also be forced into unintended 
behaviour. Exactly what it does will depend upon implementation details. If C can detect the lack 

of new data, it may take action such as extrapolating from preceding values, or perhaps simply 
flagging the fault. If C cannot detect the lack, o, f new data, it will simply collect the out-of-date 
data in the store and pKoduce an output which, although it may be mathematically correct given 
the input, is faulty in that it no longer represents the state of the real world. In any of these cases, 
the deviation has been transformed from the original omission into some sort of value error. 

In carrying out a SHARD, analysis, the individual information flows in the system are considered 
individually. CIlearly, however, these, sequences, or chains, of propagated deviations will be 

important, as the effect of a deviation in oneflow will usually be to cause a deviation in one or 

more of the other parts of the system. 

The primary - secondary - command rule 

In searching for potential causes of a deviation in an information flow, the primary - secondary - 
command rule should be used. This provides prompts for groups of potential causes to consider. 
It is similar to the primary - secondary - command rule used in fault tree construction. The 

simple arrangement of processes and communications shown in Figure 43 illustrates some 
important cases to consider. 

168 



Store 

jjjý,,, 
1111-1ý F2 

jjý,, 
''ll''. - I F6 Out 

! ýýlll A ipt ýI.............. 014 P2A 1 
IV 

F4 F5 P2 
Ctrl 

Pi 

Figure 43 - Simple system illustrating generic causes In SHARD 

Primary causes of a deviation are those which are failures of the information flow itself. 

Consideration should include: 

1. Failure of transport medium 
This prompts investigation of hardware causes directly affecting the flow of the data. This is 

of particular interest for flows between hardware units (e. g. F6 in Figure 43), although 
hardware failures within a single unit should be considered. 

2. Failure of flow source 
This represents cases where there is a fault within the process in which the flow originates. 
Note that cases where the source of the flow fails due to external problems are considered 

separately; therefore, for software, causes in this group are always design or coding faults. 

Typical examples considered are infinite looping, excessive execution times meaning 

processes are swapped out before producing output, exceptions etc. 
3. Failure of flow initiator 

The flow initiator is the active process that initiates the data transfer, and is not necessarily 

the same as the flow source. For example, in Figure 43, the data source for F3 is the passive 

store; the initiator is process PlB. Note again that this group of causes does not include 

failures due to external causes. 

Secondary causes of a deviation are those cases where the incorrect behaviour is caused by 

deviations in components that are not part of the flow itself, but have influence over it. There are 

two major categories of secondary cause: 
1. Hardware failure affecting flow source or initiator 

2. Incorrect inputs to flow source 

169 



This group of causes includes deviations in all of the data inputs to the source of a flow. In 

Figure 43, the causes of deviations in flow F6 would therefore include deviations on flows F2 

and F3. 

Command deviations occur when a flow is capable of operating correctly (i. e. there are no 

primary causes of deviation) but it is "told to do theyrong thing". Specific cases include: 

1. Incorrect control of flow source or initiator 

This group of causes includes deviations in the control inputs to the source of a flow. In 

Figure 43, this group of causes for F6 would include deviations in flow F5. 

2. Incorrect scheduling of flow source or initiator 

Includes cases where there are problems with the underlying operating system which prevent 

processes that could otherwise run correctly from being scheduled on time (or ever). 

As with the deviations suggested by the guide words, the fact that a potential cause is suggested 
by the primary - secondary - command rule does not necessarily mean that it is possible. 
Equally, the rule, is only guidance, and may not suggest some of the causes that are actually 

possible. It should therefore be applied carefully, and each suggested cause should be reviewed to 

decide whether it is plausible. Record the plausible causes of the deviations identified with as 

much detail as possible. Where the causes arise from deviations in other flows, it is sufficient to 

note this; when these flows are analysed. - the appropriate cause / effect pairs should be cross- 

referenced. .. II- 'i, ýII 

If no plausible causes can be found for a deviation, this should be recorded; this will be sufficient 
justification for accepting that this deviation cannot represent a contribution to a hazard. 

However, it is good practice to examine (briefly) the potential effects of the deviation anyway, in 

case later analysis suggests a cause that has been overlooked. 

Step 7: Investigate effects 

Evaluate the potential effects of each deviation identified. At the system outputs, the effects of 
deviations should be investigated with reference to system hazard identification and risk 

assessments, to decide which deviations must be treated as potential haza d causes. For each 

deviation, record the system level hazards that it can cause or contribute to. If an output deviation 

cannot cause or contribute to a system level hazard, this should also be recorded. 

170 



Within a system, the majority of the effects will normally be causes (or contributions to causes) 

of deviations in other flows which have already been studied. In this case, all that is necessary is 

to record an appropriate cross-reference. Any deviation that can cause or contribute to a deviation 

that has already been identified as a potential hazard cause must also be considered as a potential 
hazard cause unless there are mechanisms included in the design that are sufficient to detect and 

mitigate the deviation. 

When examining the effects of any deviation, but especially deviations on the system outputs, 

note any contributing factors that may alter the effects of the deviation. For example, if the 

system has alternative modes of operation, consider whether the effects of a deviation will be 

different in each mode. 

Step 8: Examine detection, protection and mitigation 

For each deviation that has been identified as a potential hazard cause, determine whether the 

system already incorporates mechanisms to detect and protect against, or mitigate, the effects of 

the deviation. 

It is helpful to start this investigation by considering the intrinsic detectability of the deviation, 

i. e. whether would ever be possible to detect. If a deviation is intrinsically undetectable, this 

should be noted. If not, consider whether the mechanisms in place are suitable, likely to be 

effective, and whether they mitigate the deviation sufficiently that it no longer needs to be 

considered as a potential hazard cause. 

Note that it is very rare for a deviation to "disappear" completely, i. e. for a process to be able to 

completely mitigate the effects of faults on its inputs. Detecting the fault and flagging it may be 

the specified behaviour for a function, but it is still a deviation from the intended fault-free 

behaviour of the system. In general, the only components that can ever completely stop the 

propagation of a deviation are voters, which may be able to completely ignore, or mask the 

effects of, a fault on one of their input channels. 

Step 9: Decide on acceptability and make recommendations 

The last part of the analysis of each deviation is to decide whether the management of that 

specific deviation within the design is acceptable, to justify that decision, and to make 

171 



recommendations where necessary. If no plausible causes have been found for a suggested 
deviation, or if it has been shown that it is not a potential hazard cause, this will normally be 

sufficient justification for acceptance (the only exceptions being cases where the analysis has 

revealed serious non-safety-related flaws in the design, which may necessitate redesign and 

repeat analysis). 1ý 

There are three main types of recommendations that can be made in SHARD: 

a. Accept the design as proposed. This is implicit if no other recommendations are made, and 
does not need to be recorded. 

b. Further investigation required. This conclusion should be recorded (with details) if the 

analysis could not be completed because there were questions that could not be answered 
from the information supplied. 

c. Design modifications required. In deciding on recommended changes to the design, it is 

important to make a realistic assessment of how much rework is justified by the problems 

that have been identified. In making recommendations, think abolut the hierarchy of risk 

reduction actions. In decreasing order of preference, these are: 
1. Eliminate the hazard. Ideal, but often impossible, and prone to involving extensive 

redesign. 
2. Reduce the probability of the hazard arising. A good option if it can be achieved with 

simple changes. If additional detection and protection mechanisms are required to 

achieve the reduction, the implications of the additional complexity should be carefully 

considered. 
3. Mitigate the effects ofthe hazard. As with 2, beware of excessive complexity. 

4. Provide alerts and warnings. A "last resort", which should only be considered if there 

are no other viable options. 
It is not necessary to specify complete detail of design changes, but it is helpful to indicate 

the preferred strategy. 

In the worst case, where very serious safety problems have been identified, complete redesign 

may be the only acceptable option. 

Repeat steps 5 to 9 for each guide word, then repeat from step 2 until all of the flows in the 

system have been examined. Note that if the analysis concludes that the design is badly flawed 

and completely unacceptable, it is preferable to stop the analysis at that point, and develop a new 
design. I 

172 



Whilst conducting the analysis, it is important always to consider the design exactly as it is 

presented. DO NOT assume any changes to the design (even corrections to "obvious" mistakes, 

or the implementation of analysis recommendations). This results in an analysis that is not 

consistent with any issued design level. It is also very easy to overlook the assumed changes. 
Anything that needs to be altered, no matter how trivial, should be recorded in the analysis 

recommendations, where it can be tracked. 

Step 10: Surnmarlse the analysis 

The final step in the SHARD process is to produce a report summarising the analysis findings 

and highlighting key recommendations. 

7.9 Conclusions 

This chapter has described the development of the SHARD analysis method, highlighting the 

case study results which led to refinements of the method, and also to the principles for effective 

safety analysis proposed in Chapter 5. It has also presented a complete SHARD method 
description, containing all of the guidance notes and additional rules derived from the practical 

work undertaken. 

173 





Chapter 8 

Low-level Interaction Safety Analysis (LISA) 

This chapter discusses the development of the second of the two new safety analysis techniques 

based on the principles discussed in Chapter 5. Low-level Interaction Safety Analysis (LISA) was 
developed in response to a request from BAe MA&A. The requirement was to provide evidence 

about the safety of a new cockpit display system, which was one of the first military avionics 

systems to employ a segregated operating system (i. e. one in which software functions of 
different integrity levels are run on the same processor). The LISA technique was developed 

specifically to help provide an argument of correct and robust partitioning of this segregation 

system. 

Since the case study was integral to the development and evaluation of the technique, the chapter 

starts by presenting the case study requirements in more detail, and discussing the principles that 

were used to structure and define the scope of the work. The LISA concepts and method are 

presented, and the chapter concludes by examining results from its practical application to the 

case study system. 

8.1 Background 

8.1.1 Case Study Analysis Requirements 

The cockpit display system case study that motivated the development of this analysis approach, 

and which was used to test and refine the method, was a large, multi-processor system. Hazard 

analysis had shown that there was only one critical hazard associated with the system, which was 

the continued display of incorrect primary flight information to the pilot. The system also 

contributed to a number of less critical hazards. The design work was largely completed at the 

time the case study started, but development was in progress and, as well as providing evidence 
for inclusion in a safety case, there were opportunities to influence some design decisions. 

In order to achieve the redundancy and diversity required for a critical hazard, the aircraft was 
fitted with a pair of identical systems (live and hot stand-by). Within each system, displays were 

generated as a series of symbols, which were output to screen driver hardware. Further hardware 

read back the final output to the screens, and converted it back into a list of symbols. For the 

175 



critical flight information, a monitor function within the display system pertornied a computation 

to determine the input data that should have resulted in the actual output. This was compared 

with the original input data, and any discrepancy was taken as an indication of internal failure, in 

which case the display was blanked, control switched to tile hot stand-by an i the f, i cd syst ein 

re-initiallsed as the new stand-by. The arrangement of one system is slioý%n schematically in 

Figure 44 

--------------------I 

Cockpit Displays & Controls System I 

Input data Display Symbolýgy output Screen Drive to 1-ockpit 
g--erat. on ' 

go driver 
P display 

tu rictions hardware screens 

Display kanking 

command Re ader Store Z 
hardware 

t---------- 

Comparator 44 Monitor - 
Regenerated 

-J 
Regenerated symbology 

input data 

----------- --- -------------- 

System 
failure flag 

Figure 44 - Cockpit display system schematic 

The system was developed in accordance with project specific standards, which prCLkite, but are 

very similar in approach to UK Defence Standard 00-56 [78], and parts of 00-55 (771. The hazard 

analysis of the system proposal determined that the monitor and comparator functions were tile 

most critical parts of the system and, in accordance with the standards, these were developed to 

the highest integrity level (Risk Class 1). The remaining functions \A,, ere all developed to Class 2 

standard. 

The relative proportions of Class I and Class 2 software, together with the relati%ely high Icvels 

of data sharing between the two classes of software, meant that the conventional approach of 

partitioning out the Class I software to separate processors would have resulted in very 

inefficient use of resources in a heavily loaded system. The design team therefore took tile 

decision to Implement a segregated software system, with a core of Risk Class I software 

176 



operating on all processors to implement initialisation, communication and scheduling 

synchronisation tasks, in addition to the critical monitor function. 

Although this was a completely bespoke development, the Class 1 software effectively provided 

some of the functions of a rudimentary operating system. These included: 

* memory and VO protection 
(the static memory map meant that dynamic memory management was not required) 

" synchronisation of activity across all processors 

" scheduling 
The Class I software did not provide the uniform interface to hardware that would be expected of 

a full conventional operating system (i. e. application functions were able to access hardware 

directly). 

Evidence was required that the segregation system genuinely provided an acceptable level of 
independence between the Class I functions and the rest of the system. No existing analysis 

technique could be identified which could provide this evidence so, with the agreement of the 

certifying authority, it was decided to develop a new approach. It was decided that the Class 1 

software which implemented the segregated software environment should be analysed 
independently of the rest of the system - in effect, it was to be treated as an operating system to 

be analysed in isolation, without detailed application knowledge. The primary reason for this 

decision was that it was hoped to make the Class I analysis completely independent of the Class 

2 software, so that changes could be made to non-critical parts of the system without the need to 

repeat the complete safety analysis of the Class 1 parts - realising one of the benefits of operating 

systems identified above. 

8.1.2 Case Study Safety Principles 

The first challenge for a "context free" analysis of an operating system (i. e. not based on detailed 

knowledge of the application safety implications) is to determine what properties are required of 

the operating system in order to ensure safe operation of the application. 

177 



In discussion with BAe MA&A, the primary requirements identified for acceptability of the 

segregation scheme were: 

1. Data flow corruption must be prevented , ý, I.. 

-Modification of Risk Class I data by Risk Class 2 software shall not occur 
2. Control flow corruption must be prevented 

- No action of the Class 2 software shall prevent the Class I software from executing 

when it should 

- Modification of Risk Class I code by Risk Class 2 software shall be prevented 
3. Corruption of the execution environment shall not occur 

i. e. corruption of processor registers, device registers and memory access privileges shall 

not occur. 

From these a further, secondary, requirement was identified:, 

4., If any of the primary requirements I to 3 is violated, this shall be detected, and the system 

, caused to blank the screens and shut down promptly; setting a failure flag so that the stand-by 

,, - unit can assume control of the displays., _', ý :1-,. I. I- 

Note that requirement 2 must be interpreted carefully, in that requirement 4 means that Class 2 

software errors may cause a shutdown, thus preventing,, further Class I execution. This is 

acceptable, as it is the defined safe state of the system., However, the self-shutdown procedures, 

which are executed if any hardware failures or internal inconsistencies are detected, are a part of 
the Class I software, and this gives a further derived requirement: 

5. The ability of the Risk Class I self-shutdown'pr cedures to run to completion (i. e. safe 

shutdown) must be guaranteed regardless of the actions of the Class 2 software. 

It was further agreed that requirement 4 applied only tol cases of single failure, i. e. the analysis 
did not need to consider cases of multiple simultaneous or near-simultaneous failures. This 

limitation was justified by two arguments: 
1. Self-shutdown procedures were very quick and simple. It was considered that, provided that 

the first failure did not prevent the shutdown procedures from being initiated, the probability 

of a second, independent failure occurring that could prevent their completion was negligible. 

178 



2. In the case of multiple, coincident failures of sufficient severity to prevent orderly detection 

and shutdown, the probability that the system could continue to provide a coherent and 
believable display at all was considered negligible (i. e. severe coincident failures were 

expected to result in a degree of display breakdown that would be obvious to the pilot even 

without blanking of the screens). 
There were also a number of specific safety-related timing requirements, such as the maximum 

allowable time form detection of certain classes of fault to system shutdown. Most of these 

timing requirements were expressed in terms of the maximum number of display refresh cycles 
for which a fault could be permitted to persist, based on assessments of how long it would take 

the pilot to perceive and respond to changes in the display. 

In order to meet the requirement that the analysis produced should be as independent of the 

application software as possible, it was decided that analysis should proceed by assuming that all 

application software (except the critical monitor function itself) would always behave in the 

worst conceivable way. This was interpreted as meaning that any failure of protection, 

synchronisation or scheduling would always result in the lower integrity software causing the 

maximum possible interference to the operation of the critical function. If satisfactory protection 

of the critical function could be demonstrated under this assumption, no future change to the 
lower integrity software could invalidate the safety arguments. 

8.1.3 Case Study Analysis Approach 

It was clear that a concrete analysis was required for the case study, the main purpose being to 

provide evidence of achievement of safe partitioning, not to influence the development of a 
design. However, it was initially difficult to identify a tractable approach to concrete analysis of 

such a large and complex system. Traditional inductive analysis was impossible, as there was no 
data on known (or even expected) failure modes of any software or hardware system 

components. Equally, a functional deductive analysis was impossible, since there was an explicit 

requirement not to base the analysis around application functions (i. e. the Class 2 software) 

which were expected to be subject to change. 

The analysis method developed was based around the identification of arguments ofacceptability 
for the usage of every resource in the system. This method was called LISA (Low-level 
Interaction Safety Analysis) and is described in sections 8.2 and 8.3 below. Section 8.4 describes 

the results of applying the technique to the case study system. 

179 



8.2 LISA Principles 

Instead of analysing the system functionality, the LISA method focuses on the interactions 

between the software and the hardware on which it runs. A set of physical resources and timing 

events is identified, and a set of projected failure modes of these resources is considered. Unlike 

the design-driving role of HAZOP or SHARD, however, the aim of this analysis is to use a 

combination of inductive and deductive steps to produce arguments demonstrating that either no 

plausible cause can be found for a projected failure, or that its consequences would always lead 

to an acceptable system state. 

This section describes the identification and classification of resources, the failures to consider, 

and the type of argument structures that make up LISA analysis. Section 8.3 then presents a step- 
by-step description of the analysis method. 

8.2.1 Identifying and Classifying Resources 

Two classes of resources are identified and used for LISA analysis; physical resources, and time. 

Physical resources consist of the processor registers, memory locations, 1/0 and other special 

registers. This is, effectively, the programmer's model of the hardware; hardware features such as 
buses, arbitration logic etc. are considered in terms of the registers that control them. For any 

specific combination of software and hardware, physical resources can be partitioned into classes 
based upon the criticality of the resource usage. There are five classes of criticality: 

* intrinsically critical ,I 
those resources which contain safety critical data at any point in the execution of the software, 

or the program code for safety critical functions; examples include 1/0 and RAM used by 

safety critical functions, processor registers etc. For a general purpose operating system, 

where it is not known in advance which functions are critical, or where dynamic memory 

management is employed, it may be necessary to regard all memory locations, 1/0 etc. that is 

available to application processes as intrinsically critical. However, in the case study system, 

with its static memory allocation, it was possible to limit this classification only to those 

resources that were directly used by the Class I software (i. e. the monitor function or the 

segregation system itself). 

9 primary control 

180 



these are resources which directly control the use or function of an intrinsically critical 

resource; examples include memory management unit (MMU) registers, 1/0 control registers 

etc. 

secondary control 

resources which either provide a backup to primary controls (e. g. a secondary MMU giving 

redundancy in memory protection), or control access to primary resources (for example, key 

registers which must be set to particular values before MMU registers can be altered). 

non-critical 

resources which are never used by critical software, and do not affect the operation of any part 

of the hardware which is used by critical functions. 

unused 
locations in the memory map which do not correspond to a physical device. The importance 

of these locations is that there should be no attempts by any part of the software to access 

them; such an attempt indicates a failure, and must be trapped and handled safely. 

The model of time used in the analysis is based on the identification of discrete timing events that 

have associated hardware actions. Examples of these include interrupts, the use of system timers 

and counters, and synchronisation actions. Again, this is a model familiar to programmers. 

Timing events can be identified as either critical or non-critical, depending upon whether they 

affect the execution of critical code. Note that there will be a set of primary (and possibly some 

secondary) control resources associated with each timing event. For example, primary resources 

associated with a timer-generated interrupt will include the control registers for the timer, and 
CPU registers that determine the response to the arrival of the interrupt. 

As a basis for analysis, this model has several advantages: 
1. it is possible to ensure that the set of resources analysed is complete (i. e. includes the entire 

memory map, all non-mapped devices such as processor registers, and all interrupts and 

synchronisation events); 
2. the model is familiar to the system's designers and programmers, so it is possible to discuss 

safety analysis in well-understood terms; 
3. although potentially large, the set of resources in any system is of a fixed and predetermined 

size, so the effort required for analysis can be predicted reasonably accurately in advance. 

181 



8.2.2 Resource Dependencies 

From the descriptions of the resource classes, it is clear that there are dependencies between 

resources; that is, the state of one resource affects the behaviour of another. Indeed, this is 

explicit in the definition of primary and secondary control resources. However, there are other, 
less direct dependencies. The most significant of these is that, in most systems, there must be an 
initialisation phase, in which the software configures 

' 
the hardware to the state required for the 

execution of the main body of the application. However, this initialisation code is, itself, run on 
the very hardware it is configuring, so a circular dependency is created - an example is shown in 

Figure 45. 

All resources 

Master. Program Stack Critical Intrinsically 
cycle CIOCK ROM 

II 
RAM 

II 
variables critical resources 

Timer -P,. MMU II Bus arbitration Primary control 
ist nii' ratio 

II 
con i; u' n regis ers -;. t- 

II 
registers control regis resources 

Initialisation Inifialisation routines for 
routines primary control resources use 

system resources, and 
dependencies become cyclic. 

Figure 45 - Illustration of circular resource dependencies 

A complete safety argument for the system must therefore demonstrate that the system powers up 
in a safe state, and respects minimum safety requirements throughout every stage of initialisation. 

To guarantee the correct execution of the application, it must also be shown either that successful 

completion of the initialisation guarantees that the hardware is correctly configured, or that it is 

impossible (or at least extremely improbable) that the main body of the software could fail to 
detect, and safely respond to, any incorrectness in its execution environment. 

182 



8.2.3 Safety Arguments for Resources 

Having identified the timing events and resources in the system, and assigned appropriate 

criticality classes, the acceptability of their implementation and use must now be demonstrated. 

The arguments made must consider both normal (intended) operation and the effects of failures. 

There are many fault tolerance strategies; the aim of this section is not to discuss or compare 
these, but rather to consider some general properties which are relevant whatever the system 

architecture. 

Because the criticality of data and calculations is application dependent, it is not possible to make 

general arguments for the safety of intrinsically critical resource usage based on knowledge of 

the hardware and operating system alone. It is entirely the responsibility of the application 
designer to demonstrate that the intended (normal) operation of the system is safe. However, 

study of the underlying hardware is very important in understanding the behaviour of the system 
in the presence of failures. There are two categories of failure to consider; fail&e of the hardware 

implementing the resource itself, and failures in the configuration and protection of the resource 

arising from faults in primary control resources. 

In both monolithic systems and those with operating systems, the arguments which can be made 
for the tolerability of hardware failure in intrinsically critical resources depend upon two factors; 

the improbability of that failure, and the provision of appropriate protection mechanisms for 

critical data and operations within the application. For example, in a simple, single channel 

system, the integrity of critical data held in RAM may be checked by storing the same value in 

two locations and comparing them before use. For temporary storage (e. g. intermediate results in 

critical calculations) this may not be viable, so the calculation may be repeated, or the results of 

two alternative algorithms compared. The effectiveness of these strategies depends upon the 
improbability of two hardware failures resulting in identical but incorrect results. 

An alternative strategy may be to argue that intermediate values are stored for so little time that 

the effective exposure to random hardware failures is negligible. This argument may prove 
fallacious if a single calculation contains many steps that use previous intermediate results, or if 

the calculation is repeated frequently, in which case the proportion of the time for which values 

are stored in the same temporary location may prove too high. 

Many of the possible resource protection strategies in application software depend upon the 

ability to control, or make use of, features of the hardware. For example, storing two copies of 

183 



data gives greater protection if the two locations are in separate devices (RAM chips), potentially 

avoiding sources of common mode failure such as faulty address decoding or 'stuck at' faults on 
individual devices. This is relatively easy to achieve in monolithic software, where the 

programmer has direct control over the hardware. For an operating system to offer similar 

protection, it may be necessary to implement special features (possibly with complementary 

compiler directives) to provide the application programmer with the necessary control. However, 

the benefit of this will be that it is also possible to provide generic 'argument fragments! or 

patterns (a concept developed in Kelly's bPhil thesis [43]) which can be applied each time the 

feature is used. 

Failures of intrinsically critical resources arising from faults in, or incorrect management of, 

primary control resources are of particular concern because they have the potential to cause 

common mode failures, possibly invalidating any of the above arguments. However, this is an 

area where generip arguments may be made about the interaction of the operating system and the 
hardware. Since there will normally be relatively few primary control resources in a system, it is 

feasible to devote significant time and effort to the analysis of each one. 

So, for intrinsically critical resources, there are three essential strands to a safety argument: 
1. Safety of normal usage - argument is the responsibility of application developer. 

2. Toleration of hardware failure - argument is the responsibility of application developer, but 

with support from hardware and operating system analysis. 
3. Correct management via primary controls - argument is primarily the responsibility of 

hardware and operating system analysis. 

For primary control resources, the safety arguments that can be made depend on so many factors 

that it is impossible to give general guidelines for the safety argument. If there is a secondary 

control resource which duplicates the behaviour of the primary for redundant protection (e. g. an 

external device which duplicates the memory protection functions of the MMU), it may be 

sufficient to argue safety simply from improbability of coincident failure, provided that 

initialisation is not a potential source of common failure. More probably, it will be necessary to 

identify means of detecting and managing the effects of a failure. For example, if the MMU is 

incorrectly configured so that a process is denied access to memory locations it requires, can it be 

shown that the resultant errors are always trapped and lead to the system taking appropriate 

action? 

184 



Similarly, for secondary control resources, the argument will depend entirely on the role of the 

resource, and no general guidance can be given. 
For non-critical resources, there is no need for an argument of safety, merely a justification of 

why the resource is considered to be non-critical. For the final resource class, unused locations, 

only one argument is normally required. As any attempt to access such a location is necessarily 

an error, the argument must show how the system will trap and respond to such an attempt. 

8.2.4 Failure mode identification In LISA 

Most of the arguments outlined in section 8.2.3 require an assessment of the effects of failures, 

and it is now necessary to consider an appropriate model of failure. It is infeasible to consider 

every type and cause of failure of each device in a computer system individually, so it is 

necessary to make an abstraction. 

Experience with HAZOP and SHARD (Chapter 7) has shown that the classification of computer 

system failures proposed by Bondavalli and Simoncini [7], and modified for SHARD, is 

applicable to many aspects of computer systems, and the same structure is used as a basis for 

LISA. Interpretations of the failure categories (those used in the cockpit display case study) are 
introduced below, together with some suggested modifications and extensions. 

As with SHARD, the basic failure categories are: 

" Omission -a particular service is not provided 

" Commission -a service is provided when it is not required (i. e. a perfectly functioning system 

would have done nothing) 
Early - the service is provided before the time (either real time, or relative to some other 

action) at which it is required 
Late -the service is provided after the time at which it is required 
Value -the timing is correct, but the value delivered is incorrect. 

Suggested interpretations of these guide words for both events and physical resources are given 
in the LISA method description in section 8.3 below. 

185 



8.2.5 Failure mode interpretation and arguments of acceptability 

Using the failure mode categories to structure the analysis of timing events is relatively 

straightforward, and is described in the procedures in section 8.3. The procedure for physical 

resources is more involved, and requires more explanation. 

There are two major factors to Consider in developing arguments of acceptability for the physical 

resources in a system - the hardware structure. ' and the software usage of the resource. These 

generally divide physical resources into blocks in various ways, and the LISA analyst can 
develop arguments that apply to complete blocks. For example, any failure causes arising from 

physical hardware malfunctions will normally be the same for an entire device (e. g. a complete 
RAM chip, or all devices'accessed via the same bus), and can be addressed by the same 

argument. Similarly, a single argument can often be developed for all resources that are used in 

the same (or related) way(s) by the software - for example, the entire area of RAM used for the 

processor stack, or storage of a particular class of variable. An important structuring and effort 

management principle is therefore the early identification of these blocks of resources, and the 
development of the generic arguments that apply to these blocks. 

It is important to note that the physical resource failures being considered in LISA are very low 

level; they are failures within a single access of a physical device. Thus, in general, only the 
hardware will determine the potential causes and effects of timing failures in accessing resources, 
because they will be errors in a single processor cycle or single bus transaction, which is 

normally shorter than (or equal to) the execution time of one single processor instruction. The 

exceptions to this are cases where the hardware is designed such that devices other than the 

processor can become bus master, e. g. for direct memory access (DMA) transfers. 

The most important components of an argument of acceptability for a physical resource timing 
failure will therefore be a description of the possible causes (if any), together with the (hardware) 

mechanisms for detection of bus errors and the (software) response when errors are detected. 

The argument of acceptability for omission and commission (access permission) failures will 

need to consider failures in both the memory protection hardware, and in the software which 
initialises the hardware, e. g. incorrect configuration of MMU address maps. Mitigation will be 

difficult to show unless the hardware incorporates independently initialised redundant memory 

protection devices (which is unusual), and the argument may simply have to appeal to the 

reliability of the device(s) used. 

186 



Value failures similarly need to consider both hardware and software causes and mitigation. For 

an operating system analysis, it may not be necessary to consider value failures of data (variable 

storage) or program RAM (i. e. most of the intrinsically critical resources) in detail provided that 

data and program corruption are included in the application safety analysis. Primary and 

secondary control resources will, however, always need to be addressed. 

8.2.6 Selection of analysts 

As with all hazard and safety analyses, there are many factors that will influence the selection of 

appropriate people to conduct a LISA analysis. This is a very low-level technique, requiring 

extremely detailed knowledge of both the software and hardware design; case study experience 
has shown that this is difficult and time-consuming for an outsider to obtain. However, LISA is 

intended to be a demonstration of achieved safety, and it is reasonable to expect that LISA 

analysts will be required to be as independent as possible. 

Case study experience showed that easy access to members of the design team was vital, and it 

seems likely that the most effective way of applying LISA would be to have a member of the 

design team working in an explanatory role, together with an independent analyst whose 

responsibility would be to produce the final report and conclusions. 

8.2.7 Review of LISA principles 

The LISA principle is simple; the physical resources and timing events in a system are identified, 

and arguments of acceptability developed for projected failure modes. 

Clearly, to produce a complete argument of overall safety using this approach requires that: 

a) the set of resources identified for analysis completely and correctly represents the system, 

and 
b) the projected failure modes investigated cover all the possible failure modes of the real 

system. 
Requirement a) is relatively easy to satisfy, as it corresponds to checking for complete coverage 

of the system address map, and all the interrupts and synchronisation events designed into the 

system. It is impossible to guarantee that requirement b) has been satisfied; however, this is no 

worse than determining completeness of any other analysis, and can be resolved for practical 

purposes by a process of review and agreement that the set of possibilities investigated is 

acceptably complete. 

187 



8.3 LISA method 

This section outlines the conduct of a LISA analysis, following the method developed for the 

cockpit system case study. 

Step 1: Agree principles for acceptability, 

Since the purpose of LISA is to produce arguments of acceptability for the safety related 
behaviour of system resources, the first step must be to determine the basis for acceptability. This 

will vary from project to project. If the system to be analysed is being developed specifically for 

one application, and hazard and safety analyses are available, the LISA acceptance arguments 

will be able to relate low-level behaviour to system level effects. For systems that are being 

developed as components without detailed knowledge of the eventual application, the acceptance 

criteria will depend upon the target integrity level of the system, and might typically include 

requirements to demonstrate that: 

0 the intended usage of a resource does not allow low-integrity processes to access / alter high 

integrity data; 

no plausible cause can be found for a suggested failure; 

a suggested failure has been shown to be mitigated by a completely independent mechanism 
(i. e. different hardware and independently coded software); 

0a suggested failure has been shown to produce no effect on the correct operation of the 

critical functions of the system; 

a suggested failure may have an adverse effect on the correct operation of critical functions, 

but the failure can be reliably flagged to application code, which can implement acceptable 
handling or mitigation. 

Step 2: Assemble source material 

The minimum required source materials for LISA are: 

* an overall description (specification or design) of the intended operation of the system, 
including strategies for managing expected failure modes; 

a complete system memory map; 
definitions of the purpose and usage of all special device registers, 1/0 etc. This may take the 
form of programmers' manuals for each hardware device in the system; 

0a specification or design document which describes all the timing events in the system; 

188 



specification or design documents which define the system start-up, initialisation, exception 
handling and normal and emergency shutdown processes. 

Additional sources that may be necessary or useful for some analyses include subsystem 

specification or design documentation, hardware failure data, and program source code. 

Step 3: Analyse timing events 

From the system documentation, identify all the timing events which involve a hardware / 

software interaction. These will include all uses of interrupts, system timers, counters or clocks, 
inter-processor synchronisations and time-dependent interactions with external devices or other 

systems. Care must be taken to ensure that events used in every mode of system operation, 
including initialisation, shut down etc., are included. 

For each event identified, describe its intended operation, including the preconditions necessary 
for the event to be generated (e. g. programming of timers) and the correct response(s) to the 

event. Ensure that the intended behaviour defined does not in itself create potential safety 

problems (e. g. check that context switches initiated by interrupts cannot leave critical data in an 
inconsistent state, that interrupt mask levels in the new context are appropriate etc. ) 

Step 3.1: Suggest deviations from Intended behaviour of events 

Use the guide words omission, commission, early and late to prompt consideration of possible 
deviations from the expected operation of each event. Each guide word may suggest more than 

one deviation. 

Omission - the failure of an event to occur. Possible cases of omission to consider include: 

0 Source (writer) omission 
All events will have a single source, which in this case fails to produce the expected 

event. Depending on the type of source it may be necessary to consider whether it is 

plausible for the source to proceed to its next expected action, or whether it experiences a 
fail-stop condition. A special case of this is precondition omission, in which the event is 

generated when a set of preconditions is satisfied, and the preconditions are never true. 

0 Transmission omission 
The medium through which the event is transmitted los&' the event. 

189 



Destination (reader) omission 
The destination process(es) or object(s) that was (were) expected to recognise and 

respond to the event do(es) not do so. In a multiprocessor system, where events affecting 

more than one processor are possible (e. g. broadcast interrupts or synchronisation 

events), it is necessary to consider symmetric (where no recipient responds to the event) 

and asymmetric (one or some recipients respond) omission. 

Commission - the spurious occurrence of an event. Source, transmission and destination may 

apply as for omission, and it may also be necessary to consider: 

0 Number of commission errors 
A single unintended event may have a different effect to multiple repetitions 
Repetition vs. insertion 

An expected event that is repeated may have a different effect from a completely 

unexpected event. This particularly applies when events are expected in a predetermined 

sequence, which is violated. 
Again, there may be symmetric and asymmetric cases to consider in a multiprocessor system. 

Early and late may be interpreted either with respect to real time, or as prompts to consider 
incorrect ordering (relative timing). They may also prompt consideration of jitter (i. e. where 
supposedly regular periodic events actually occur at irregular intervals). It should also be 

noted that it is important to define the boundary between an event that is late, and one that is 

considered to have failed entirely (omission), and similarly for early / commission. 

Step 3.2: Investigate possible causes of event deviations 

For each of the deviations suggested in step 3.1, identify possible causes, making certain that 
both direct hardware failures and indirect causes in software (e. g. incorrect programming of 
control registers) are considered. If no plausible cause can be found for a deviation, this should be 

noted. 

Step 3.3: Investigate effects of event deviations 

Investigate the effects of each deviation for which plausible causes were found in step 3.2. 

Consider how the deviation will be detected and handled by the system, and ensure that this will 

190 



result in a safe system state. If there are no detection and handling mechanisms for the deviation, 

consider what its ultimate effect on system safety will be. 

Step 3.4: Produce arguments of acceptability 

Decide which of the principles of acceptability agreed in step I is appropriate for each suggested 
deviation, and produce arguments of acceptability showing how the system design meets the 

principles. These arguments do not need to be extensive, but should be sufficient for a reviewer 

reading the analysis to identify all of the components and mechanisms involved. If a suitable 

argument of acceptability cannot be found for a suggested deviation, this is an indication of a 

possible flaw in the system design. 

Record the investigation of the deviation, and repeat for each suggested deviation of every 
identified event. 

Step 4: Analyse physical resources 

Identify physical resources in the system. The primary information source for this is the system 

memory map, although it may be necessary to consult processor, device and subsystem 
documentation to identify the function of all of the registers within the blocks allocated to each 
device. As for events, describe the intended usage of each resource, ensuring that start-up, 
initialisation, shutdown and other modes are considered, and ensure that the intended use does 

not in itself create safety problems. 

Step 4.1: Group resources by common factors 

There is no need (and, indeed, it would be impractical) to analyse every aspect of every resource 

separately. Resources should therefore be grouped by common characteristics so far as possible. 
For example, access permissions are typically assigned to blocks of memory locations; the effects 

of granting inappropriate access (or denying access where it is requires) can be examined for the 

whole block of locations. Similarly, access timing properties will usually apply to all of the 
locations within a single hardware device; again, these can be examined once for all locations 

within the device. If the initial suggested grouping is not correct, this will become apparent as the 

analysis proceeds; either identical results will be obtained for many resources, suggesting they 

191 



should be grouped, or the analysis of a block will show that the effects of deviations vary for 

different locations within the block, showing that it must be split. 

Step 4.2: Classify resources 

Resources are classified as intrinsically critical, primary control, secondary control, not critical 

or unused (the definition and implications of each of these classes is discussed in section 8.2.1 

above). The purpose of this classification is to help determine the argument requirements for each 

resource (discussed in section 8.2.3 above). ,'' 

Step 4.3: Suggest deviations from the Intended use and operation of each resource. 

Use the guide words omission, commission, early, late and value to prompt consideration of 

possible deviations from the expected use and function of each resource. Each guide word may 

suggest more than one deviation. 

9 Omission and commission are interpreted as access permission violations. An omission failure 

occurs if a process that should be able to access a resource is denied permission. Commission 

failure occurs where a process is granted access to a resource that it should not have. 

Early has two interpretations in the case of a physical device such as memory, both leading to 

(unpredictably) corrupt data: 

* the processor reads from a location in the device, and attempts to latch the data from the 

bus before it is stable, or 

the processor writes to a location in the device, and de-asserts data before the device has 

latched it correctly. 
These may seem unlikely failures, and only possible with poor hardware design. However, 

there are systems in which parameters such as the number of wait states inserted on accessing 

a particular device are programmable; the system can dynamically alter its own timing 

characteristics. In such systems, this type of timing failure is plausible and extremely 
important. 

Late refers to delay in accessing the resource, arising either from effects such as contention for 

a shared bus, or from the same type of configuration fault that could lead to early failures. 

Unlike early failures, lateness cannot cause data corruption. Excess wait states in a device 

access will merely extend the cycle and result in reduced performance; the data will be held 

stable until the end of the cycle. Late latching of data being read by the processor (i. e. after it 

192 



has been de-asserted by the device being accessed) is highly unlikely, since the processor 
itself generates the timing control signals that the control the device. In general, therefore, 

lateness is only of interest in our analysis if the delay is great enough to be treated as an 

omission, e. g. by triggering a bus timeout. 

The value of a resource is its data content. For control resources, the correct value can often 
be determined in advance, and the effects of changes predicted. In the case of memory (RAM 

or ROM) the effect of unwanted changes can only be determined with knowledge of the 

application software. 

Step 4.4: Investigate possible causes deviations In resource use or function 

For each of the deviations suggested in step 4.1, identify possible causes, making certain that 

both direct hardware failures and indirect causes in software (e. g. incorrect programming of 

control registers) are considered. If no plausible cause can be found for a deviation, this should be 

noted. 

Step 4.5: Investigate effects of deviations in resource use or function 

Investigate the effects of each deviation for which plausible causes were found in step 4.4. 

Consider how the deviation will be detected and handled by the system, and ensure that this will 

result in a safe system state. If there are no detection and handling mechanisms for the deviation, 

consider what its ultimate effect on system safety will be. 

Step 4.6: Produce arguments of acceptability 

As with the event analysis, decide which of the principles of acceptability agreed in step I is 

appropriate for each suggested deviation, and produce arguments of acceptability showing how 

the system design meets the principles. 

Record the investigation of the deviation, and repeat for each suggested deviation of every 

resource. It is helpful to produce two tables to record the analysis for each block of resources, one 

containing the investigation of properties such as access permissions and timing which apply to 

all resources in the block, and one which records deviations, effects and arguments which are 

specific to a single resource. As generic arguments become apparent (i. e. those that are used 

repeatedly), a separate table of these should be compiled to reduce the volume of the analysis. 

193 



8.4 The Cockpit System Case Study 

The case study system design philosophy and analysis requirements have been outlined in section 
8.1. This section presents further detail of the system, the analysis work carried out, and some 
fragments of the analysis output. I .ý 

8.4.1 System definition 

The basic structure of the case study system hardware is shown in Figure 46. The processors 

were arranged in pairs, each processor having its own private bus, giving access to RAM, ROM 

and timers, and to the arbitration logic for access to the shared local and system buses. In 

addition, a secondary MMU on each private bus provided redundant protection of critical 

memory areas. In order to ensure system consistency and guarantee the critical function access to 

the system bus and 1/0 when required, the system employed synchronised cyclic schedules, 

executing a high integrity code segment on all of the processors at the same time in each cycle. 

The segregation of Class I code from the rest of the system was achieved through the use of the 

processor supervisor and user modes - Class I software in supervisor mode, and the rest of the 

tasks in user mode. 

- 100 I Second MMU 1 
Co 0 

Timers 

Private RAM CL CL 

Private ROM 4-r Priývate RýOM 
Specialist 1/0 hardware 

Arbitration 

Shared RAM 
.0 

Arbitr F-Arbitration 

x 
-AA)-d 

r-a -ti on- F 
F 

System bus 

Figure 46 - Case study system hardware 

194 



The part of the system selected for analysis (the Class I software segregation system) was 

specified in a document approximately 200 pages long. Device manuals and subsystem 

specifications took the total source documentation for the analysis to approximately 1250 pages. 

8.4.2 Analysis 

The LISA analysis of the cockpit system was carried out by one analyst (the author) with 

considerable assistance and support from the project team at BAe MA&A, and also from Dr. Neil 

Audsley, who carried out a timing analysis of the system which was included in the final report. 
The case study extended over an elapsed period of approximately 30 months, during which time 
it received about 10 man months of direct effort. Of this, approximately 4 months was dedicated 

to developing an initial detailed understanding of the design and intended operation of the 

system. The initial analysis took approximately 2 months of effort, and there were then a number 

of updates of the design, which necessitated repeating or updating parts of the analysis. The final 

report took a further two weeks to write. 

The problem of understanding the design was compounded by the extended duration of the case 

study. It was found that, without daily involvement in the project, the extremely detailed 

knowledge required to perform the analysis was rapidly lost, and a significant period of re- 
familiarisation was required before any updates or modifications were made to the analysis. The 

design team at BAe MA&A were extremely accessible and helpful, and this helped to 

compensate for limitations in the analysts' understanding of the system. 

Arguments of compliance with the safety principles were considered complete when either: 

the failure had been shown to be mitigated by two or more independent mechanisms 
the failure had been shown to produce no effect on the correct operation of the segregation 

system or Class I application software 

or 
the failure had been shown to produce no effect on the correct operation of the segregation 

system, but there were potential effects on the Class I application software. In this case, the 

need for subsequent application software analysis was noted. 

When completed, the analysis consisted of 7 tables of event analysis which, together with 

supporting notes, occupied 22 pages, and 18 tables of physical resource analysis, which occupied 

a further 20 pages. The complete final report contained 98 pages of safety analysis, which 

195 



included method descriptions, the LISA tables, and 22 pages of Functional Failure Analysis 

carried out on two custom ASICs. The FFA results were compared with the LISA analysis of the 
device registers contained in the two ASICs. The comparison showed that the LISA analysis 

contained every failure mode considered in the FFA, with a few additions and rather more detail, 

but was rather less readable. This last point may be an issue of style, or may reflect the fact that 

the FFA was added to the report in response to a specific request for the analysis of these 

particular devices to be presented in a format which was more familiar to the reviewers, and 

particular care was therefore taken in the structure and wording of this analysis. 

In conducting this analysis, it was found that the method was extremely good at highlighting 

areas where the design intent was not clearly expressed in the available documentation, and 

several recommendations were made for improvement in the specification and supporting 
documentation. No safety related problems were found in the actual design at any stage, although 

completing the arguments of acceptability for some items required quite extensive investigation, 

including requests for additional information from subsystem suppliers. In a number of cases, the 

analysis also suggested additional tests that could be incorporated into the built in test (BIT) 

routines to improve the detection of certain classes of deviation. Most of these suggestions made 

use of self-test capabilities already present in the hardware, and all of the suggested additional 
tests were incorporated into the system. 

IThe 
LISA analysis was also used to investigate the 

required iteration rate for a number of the continuous built-in test (CBIT) routines in order to 

meet the worst-case detection and shutdown response times agreed in the safety principles. 

In a number of cases where particularly complex mechanisms were involved in the detection and 
handling of faults, the analysis recommendations also 

' 
included bench tests involving fault 

injection to prove that the system response would be as predicted. It was also found that, when 
design changes were required for other reasons (e. g. to improve system performance), the results 

of completed parts of the analysis were valuable in developing modifications and in selecting 
between alternatives. 

The final conclusion of the report was that the system was suitable and sufficiently robust for its 

intended use; however, this was strongly qualified by a number of limitations and exclusions. 
These included: 

The analysis was conducted on the design as presented; there was no attempt to verify that 

the implementation matched the design, and that this was a task that was essential to ensuring 
the accuracy and applicability of the report's conclusions. 

196 



0 Throughout the analysis, it was assumed that previous hazard and risk assessments were 

correct, i. e. that the hazards were as described, and that the identified safe states were 

acceptable. 
Th6 safety principles outlined in section 8.1.2 were assumed to be sufficient to guarantee safe 

operation of the system. 
No attempt was made to ascertain, either quantitatively or in broad qualitative terms, the 

availability or reliability of the system. It was noted that it is explicit in aircraft level safety 

analyses that blanking the pilot's displays is acceptable provided that it occurs infrequently, 

and even then normally only for a few seconds whilst control of the displays is transferred to 

the hot standby system. Extremely low levels of reliability or availability, resulting in 

excessively frequent switch-overs, or simultaneous failure of both master and standby 

systems, forcing the pilot to switch to reversionary instrumentation, could invalidate the 

conclusions about the acceptability of screen blanking as a safe state. 

The report was presented to BAe MA&A and to customer representatives at the Critical Design 

Review. A number of comments were received; these were mostly typographic errors, requests 
for clarification, or comments on the system design. No written comments (either adverse or 

positive) were received about the analysis approach, although two of the customer reviewers 

commented verbally that they found the analysis thorough and credible. The customer 

representatives have formally requested BAe MA&A to ensure that the LISA analysis is 

maintained as the system progresses through the remaining stages of development and 

commissioning to in-service status. 

There was relatively little development of the method over the period of the case study; the initial 

method outlined at the start of the study was found to be practical both in terms of workload and 

quality of output. The biggest problem was in obtaining a sufficiently detailed understanding of 

the study system - as noted above, this took nearly half the total time expended. If the analyst had 

been drawn from the project team, or at least had more of a background in the application 
domain, this should not be such a significant burden. 

The case study identified few aspects of the analysis approach that had not been anticipated. The 

only significant change made to the method during the case study was in the identification of 
blocks of related physical resources that could be analysed together. The initial approach tried 

was to only group resources that were identical in every respect. After a progress review, a 
decision was taken to allow grouping where most attributes (usually timing and protection) were 

197 



the same, and to document differences individually. This reduced the size of the physical 

resource analysis tables by approximately 50 percent. 

The case study highlighted some areas where features of the study system significantly facilitated 

the construction of arguments of acceptability. These included: 

e An easy to achieve safe state in which the system could stop. This meant that proving that 

detected failures were handled correctly was relatively easy. The task would have been far 

harder had there been a requirement for continued operation. 

e Redundant NIMUs, independently initialised, which permitted a simple and sound generic 

argument for memory protection safety. 

Only two classes of software to be segregated, allowing the use of processor modes to 
implement segregation, with supervisor mode used for the Class I application and 

segregation system code, and user mode for all other application code. 

9 Memory allocation was static, and the physical and logical memory maps of the system were 

the same (i. e. the MMUs performed no address translation). It was therefore a simple task to 

identify all the areas of memory that could ever be involved in a critical process. 

* The tight synchronisation between processors meant that many failures could be detected and 

mitigated by related events on other processors. 

8.4.3 Sample analysis output 

This section contains samples of the three types of tables produced by the case study. Due to the 

sensitive nature of the case study, details in the tables have been altered, but the style and 

technical nature of the entries is representative. 

Table 10 contains a sample of the timing event analysis, in this case for the master interrupt 

which prompted Processor I to send the broadcast synchronisation interrupt to all processors at 

the start of each cycle. Note that the "Dis-chgd" column was used as a check column; "YES" was 

entered into this column when all argument requirements had been discharged, i. e. a satisfactorily 

complete argument of compliance with the safety principles had been found. 

Table 11 contains samples of the generic arguments developed for blocks of physical resources, 

which were then used in the analysis tables as shown in Table 12. Note that, as so much 
information was contained in the generic arguments, or the whole device arguments in the top 

part of the table, the entries in the address-specific sections of the table were mostly extremely 
brief, as shown here. The only exception to this was in the analysis of special device registers, 

198 



where complex arguments were frequently required. Again, the "Dis-chgd" column is a check 

column for completion of the argument. 

8.5 Conclusions 

This chapter has presented an overview of some of the safety analysis problems associated with 

the transition from bespoke, monolithic safety critical systems to systems designed around more 

conventional operating systems. It has argued that operating systems present considerable 

challenges for software safety engineering, particularly in the areas demonstrating partitioning 

within software so that separate and independent application components can be identified, and in 

the specification and description of the safety properties of these components. The LISA analysis 

method has been described, along with the major case study that motivated its development. 

The work presented in this chapter is of a rather different nature to that on SHARD in Chapter 7. 

The safety analysis method presented has been extensively exercised on a live system 
development project, where its effectiveness has been demonstrated. However, this has been the 

only trial, and further studies are required to determine how generally applicable the technique is. 

199 



3 ýU 0. g -8 
' I 

*0 0 
g =U E 

"0 
E r == 

ein, *5 Ei u= 50==. 
u u- 

u u * t; ýc i! g 
42 

Q -ý 0mm8Z 5, E 
" 

2 vi 

.E 
LU J. -- >U w r- 0 m0 ri l, ýc Z = «ý3 

l W 
0 Z ý ý li r- ý U 

a 
um * :3 

L 
=E 2 L; >ý 

0Z 
ö tZ-ö m . 9: 6 m0 , . U 

2E 

E. C4 - -u -- -. E -2 2 -, ýg 2d F- jd. 
o u g -- E 

- 5 ý - 2 
15 . ý- c2. =ý 

.-U0EEuu 
ýZ a:: 
- CJ 

u2 -8, = 
!2(: -g 

!2 ci UD 
mý g= .2-, 3 *v m) 

E ' ýC '> w e. to Z0E E -, - E' 

0 k. m -0 -E. 0-: E Co 
ý- .2 

22 
cr =. E 

Z=uE. ý 
> 

2 
8 

- .0 .uSM. 

- ý' = '? t) 
-eE 

-50 
vä e 

'U 91 =, *0 A 
E0 .2 

s 
'VJ = 15 g- 2.2u 0 Z 9 G= 43 

=0E 
2 uE2Z2e. & 0 

8-MI'- am ýa wo 
Li 

m 

l> E 
Eý 

0. lu M, L 
to E Z- ýc G ýx 
»Ei 

öý J2 E ýý 4-- O> Y 
u v5 m 

U 8 2 
9 v 'u SEm20 "3 - L2» m4 E ll r Z 
IU 0 LL, . 

A 8.8 ll, 83Z2 -3 *, 7 0, M. - 
E -v 0 

*g -8 -0 
rm r. u -6 

rm t 
Z 

lö E- r .ýE 

E E EE 
EG IM 

i2 
E A 

E 
E 

EE 1 

tu 
1 > 7i =2m Ci. =2 LD 0 LD : 0 9 6 

X. W 

jz 

U= to 0 
,j 

.-m 
*= 

, CL , 9: 6 

, ll 
-Mr 

44 0 Ci. Z, 
Z U 

.0 cl 
E- 



Applies to Justification 
GI Unused location * Attempted accesses to non-existent hardware indicate program 

(no hardware corruption, and will result in system shutdown via one of the 
present) following mechanisms: 

" These locations are mapped out by MMU, and accesses will 
result in bus error on read or write; this will result in an 
exception in either user or supervisor mode, which will be 
handled to shutdown. 

" CPU bus timer in custom ASIC provides a redundant 
mechanism. If an erroneous access is not refused by the 
memory protection hardware, an access to a non-existent 
device will result in the bus timer generating a transfer error 
(TEA) signal; again, the result will be an unexpected exception 
handled to shutdown. 

G2 Processor MMU e This applies to access permissions to all locations 
functionality * The two MMUs are always run in parallel, and both must give 
duplicated by permission before a location can be accessed. This is 'fail 
second MMU safe', in that both devices have to grant permission for access; 

if either one denies it, a bus error handled to shutdown will 
result. Thus a failure in which Risk Class 2 software is granted 
a permission which would enable it to corrupt a Risk Class 1 

resource requires simultaneous failure of both MMUs. 

* The MMU mapping tables are set up by separate sections of 
initialisation code. 

G3 Read-only device * Writes to these locations are ignored by the device (have no 
register enforced by e ffe c t). 
hardware * An attempt to write to such a location is indicative of software 

error, but it cannot further damage the system state. 
G4 Program code and 9 Given the degree of synchronisation within the supervisor 

static configuration mode cyclic schedule, and the mechanisms which exist to 
data areas detect erroneous user mode behaviour, it is extremely unlikely 

that corrupt program code could execute for any significant 
period of time before causing a detectable failure. This also 
applies to mapping tables etc., as corruption of these "I cause 
similar effects. The only plausible undetectable failure would 
be omission of a section of user mode code, so user mode 
functions include cross-checks on successful completion 
(normal defensive programming techniques are sufficient). 

G5 User mode RAM 9 No corruption of user mode data can lead to violation of 
area segregation system integrity, as the worst case behaviour 

which can be produced is the malicious Risk Class 2 behaviour 

already assumed. 
G6 Unused location * Attempted reads from unused registers return 0, thus no 

(device register detection at this level 
within ASIC) * Attempted write accesses to unused registers will cause a bus 

error, which will result in an unexpected exception handled to 
shutdown. 

Table 11 - Sample generic arguments used in the LISA case study 

201 



-2 -g 
., 7 . ý3 E" Z 
m cu 

4- 
0 

0%- 
0 

> > > " ' 2 r 'X 
0= Cl 

0 0 0 E 
r 

Z 7a E 

w ý 
u 

r 
jz 
m 

0 
ce 

iz 
Co 

_ 
m cu m ce 

u 
Co zi 

(Wi 
_ 42 

cu < Iß < 
A 

< 

JA "i w w 
: > : : > 

ej 

vi 

Co 
(43 > W 4 

> -0 -v 2 -ý , >, r- 
E 
0u t 0 0 In 0 

. 
LD t; ý 

- g> U 
E u 0 (Z 

.Z 
U0 =u th - -a 

j 2 
e 

e ;ýC. ) > 0. 

. 2 As 0 fj o 

Z.: ý ýc . c2 ý_, u t4 r- ce 
(A ,m t; lu 

u Z: e 
Z 2- en m ce 

0 u 0 JD ýA 2 
2 ,u U 

0 
0 
0 

(U 0 
=0 

uw 
E of. 0 

rj 
M- 
A ý, 

0 

0 

0 

0 
0 

0 j:: 2 r- 

rZ r- 
,, 

41 
40 

0 4:: ký ,2 l , 
'm m 

ýu e - ce 0 < 14 l >, (A 

cq UU IJ U cu 0 

-v , ce >, m m Co 

r 2 5 (5 Z Z 2. r- . 0 iz -ri 9: ,, rj P, E 1 Iz 42 = 
10 öJý 0 C: L. r- A 

Co 

u lu 0 C) 

2 '0 < - - . 9 

o r: 0 ' 

- u m 
Z 

0 

0 JA 
i2 e 

2 

r 
ý 
0 

1 

1- 
0 

cs 
'. 

45 ý 
Q c: L.. 

Z .0 
JD 
=0 

ei 
ý 

du 
A 

lu 
W 

iz 
2 

0 

I s 0 0 > Gn Gn 2 (n Go :3 CA Z 
- 

E A, 
51 , 

. G; E 
- 12 

.2 
;; 

ý: , - 0. 
--- - E a 5 t2 0 

x 4A 
Ll Li. Lt. LZ LL. LL 92. fi LL, w LL ; Ä. U. , LL 

"E 1 !E L. . LL Ll. ýW " . f, 
0 m . Li. Li. U. " w- CL 

m 0 a w< 
rm U. u LZ U 

rA N. ICD 0 CD - 1 - " en rn 

r 

r2 I 0 c> c:, 0 ý 

*Z: r- *Z 

00 

.00 

M, -a 

> -0 -v 

ZB 

2 
j:: 0 iz 

r- r- 

Q C) 28ý, 

cq 
UU IJ U 

U 
CU 

-v , ce 0 J- m 

r . r- .20 42 = b, ý 

ýn 0= JD (A 
"0 f= u- 

Co 
u 

> Z cz. "0 (U 
2 ro- .=- 12 
0 

ae c2. 'm JD 

4) 0 C6 >, 
.0C, -EQ 

r- 4- 00%. 
', 0 0 

0 r_ ý 

0. GS 

-= -g 0 E 
"Z 

A In A 

> > " ' 
0- 

0 0 E 
m 

Z 7a E 

.-e 
m 
A 

ce Co 
l 

cu m ce 
r 

< 
Iß 

< 
A 

< 
e " 3 5 

,0 = 
cn 

w 
Gn 
Lu 

cn 
w 

u2 Gn 
LU 

Ln 
Lu 

rA Gn 
w 

: > : : > 

E 

E 

U0 =u th - -a 
mý "0 (A ' . lý C. ) > 0 e 

. 2. s . 

E lý 2 r- es u t4 
t; ' 

u 
E 

Z: 
Z en 

2 
Co 
e 

ce 
u 

(U 
>ý tz mu 

w . 0 
2 

JD ýA m Co ce 
0 

ýA 0 u 
E of. 0 

-3 -; 
0 

-5 
0 

-v 
0 

-0 

Co Z 4:: 
ce 

f- u u u 

>, 

'Z - - - 

Z Z- Z Z- 

2ý "U 2 . 
lu 

C) 

k. - 4-- M m "0 

Q -3 ' - > Z 

r 
4A lu e. ) 

-0 
r 
: 

Q4 

i uj 0 

M. 2; CZ. 0 j- Q U 0 Z 0 

W. :D :3 Z 

LL. LL. 
U. 

LL. LL. 
ýw LL. 

w < 7 rm Li. u LZ u m " D (D CD - - " en rn 

Z; 
rA CD LLJ 

0 

0 

0 

E 

:s 



Chapter 9 

Evaluation 

This chapter reviews the new work presented in this thesis, and considers the contributions that it 

has made both to safety critical systems theory, and in the development of two new analysis 

techniques. 

9.1 Contribution to safety analysis theory 

This thesis contains two sections that develop theoretical material; the discussion of concepts in 

Chapter 3, and the principles for computer system safety analysis in Chapter 5. 

The primary purpose of the discussion in Chapter 3 is not to advance new ideas, but rather to 

examine the concepts underlying safety analysis, which are not explicitly identified in most texts. 

In doing so, some helpful new ideas emerge about some problematic areas of safety terminology 

and techniques. Standard definitions of hazards have always been unsatisfactory, since most 

capture very few of the defining characteristics discussed in section 3.1. Some of the alternative 

views of hazards suggested here have already been incorporated into teaching material, and have 

proved very useful in helping students to identify hazards in practical examples. 

The discussion of faults and failures in section 3.2 is, in effect, a response to a debate about the 

definition of safety engineering. One view, predominant in American literature, is that analysis of 
failure is reliability engineering, and that safety engineering is much broader, requiring 
demonstration that the correct behaviour of a system is also safe, and that appropriate measures 
have been taken to mitigate hazards which cannot be entirely managed within the system design 

(e. g. exogenous hazards). The predominantly European alternative view, that safety engineering 
is fundamentally about identifying and managing failures, is conceptually very similar once it is 

understood that European literature, in general, defines failure much more broadly. In this second 

view, failure is defined with respect to intent, so includes any failures within the engineering 

process that lead to an unsafe system. The discussion in section 3.2 explains the terminological 
differences in a way that may help to resolve this debate. 

Section 3.3 essentially builds up a "library" of ideas that are incorporated into existing successful 

safety analysis techniques. The significance of these for computer system safety analysis is that, 

203 



as the later chapters on SHARD and LISA show, many of these concepts are directly applicable 

to computer systems. The discussion of the roles and classification of techniques in section 3.4, 

expanding on Fenelon's proposed matrix, is significant in that it is the first classification to 

clearly distinguish between concrete and projective analyses. 

The major technical proposal of the thesis is the set of principles for defining effective computer 

system safety analysis techniques in Chapter 5. As the conclusion to Chapter 5 explains, one of 
the major motivations for developing these principles was the observation that many recent 

proposals for new analysis techniques do ý not appear to have understood the practical 

requirements of industry, nor to have learnt from existing successful approaches in other 
disciplines. The major test of the principles, therefore, must be whether they can be applied to 

produce useful, industrially acceptable analysis techniques. 

Since the development and evaluation of a new analysis technique requires significant effort and 
is extremely time consuming, it would be impossible to state with certainty that the principles are 

correct. However, the success of both the SHARD and LISA techniques (discussed in more detail 

in sections 9.3 to 9.5) provides some evidence of their value. Perhaps more significant, however, 

is the difference between the ways in which SHARD and LISA were developed. Work on 
SHARD started before any of the principles had been proposed. As Chapter 7 shows, the 
SHARD development process was relatively slow, with significant revisions following each of 
the major case studies. Many of the principles in Chapter 5 were derived as generalisations of the 

resolutions to the problems encountered with SHARD. The work on LISA, on the other hand, 

was begun after the principles had been suggested. The general approach and details of the 

method were developed in accordance with the principles and, as Chapter 8 shows, the first major 

application of the technique to a live industrial project was extremely successful, with no 

significant alteration required to the initial method definition. Again, this cannot be considered 

more than a single piece of evidence, but it is very encouraging. 

9.2 Evaluation of new safety analysis techniques 

It is difficult to provide a rigorous evaluation of new safety analysis techniques. All safety critical 

systems development projects are, in effect, open loop experiments, since there is no feedback to 

the safety process after the system has been commissioned, except when there are accidents or 
incidents. The accident rates achieved by current engineering processes are so low that, unless 
there was a serious mistake, it would be impossible to obtain statistically significant results for 

comparative trials assessing the performance of a new technique against existing methods. Given 

204 



the scale of typical safety critical systems projects, the cost of such a comparative trial, which 

would have to duplicate the entire development process from the point of divergence onwards, 

would in any case be prohibitive. 

More feasible experimental schemes could be devised, perhaps by evaluating the effectiveness of 

new and techniques at finding the problems in a deliberately flawed system design. It would not 
be sufficient simply to measure the proportion of errors found; the interesting result would be 

how much more (or less) effective the new technique was than other existing methods. Again, 

there are significant practical problems with such a comparison. The first is that, in general, there 

will be no existing analysis method for which a new technique is a direct equivalent. SHARD is, 

perhaps, unusual in this respect, in that it is very close to the version of HAZOP that has been 

defined in Def Stan 00-58, but there is certainly no existing technique with capabilities similar to 

those of LISA. This means that it would be extremely difficult to compare the results of two 

techniques. 

Also, safety analysis (especially projective analysis) is inherently subjective. This means that, 

unless the same people worked on each of the analyses, it would be impossible to decide with 

certainty whether differences in results were a product of the different skills and abilities of the 

participants, or reflected the capabilities of the technique itself. However, to have the same 

people involved in the application of both techniques is also unacceptable, since they would 
inevitably bring ideas developed during the first analysis into the second. 

In general, it seems that experiments using contrived "toy" examples will not give much 
indication of the (industrial) practicality of techniques, or of their ability to detect the subtle 
hazards and hazardous failure modes which typically cause problems for real project. 

Since the ultimate goal of this research was to produce safety analysis techniques which are 

genuinely practical and useful to industry, it was decided to base the evaluation of SHARD and 
LISA on a range of activities, with an emphasis on industrial scale trials. Table 13 shows the 

activities carried out for each technique, listed in order of the strength of evidence (closely related 

to the maturity of the technique) that they provide. 

205 



Evaluation SHARD LISA 

Comparison between techniques using toy examples 

Academic case studies based on industrial systems 

Peer review through publication V/ 

Industrial case study (by originator) 

Industrial evaluation (by third party) V/ 

Application to live industrial projects 

Industrial acceptance 

Table 13 - SHARD and LISA evaluation activities 

I- 

Z, 
1- 

The development of both techniques began with a number of small scale experiments comparing 

alternative approaches, and progressed to case studies based on real industrial systems but carried 

out by university research staff. At this point, the development of SHARD and LISA diverged. 

Because of the extremely high cost (and potential liability risk) of safety critical systems projects, 

for a company to accept new procedures or techniques voluntarily (i. e. not because they are 

contractually required or mandated by standards), it must be convinced of the value of the new 

activity. SHARD was developed because research had identified an analysis requirement in the 

safety process that was not well satisfied by currently available techniques, and therefore had to 

be "sold". This involved a lot of effort in arranging case studies, and persuading companies to 

perform their own evaluation of the technique. Although SHARD has now been provisionally 

recornmended for inclusion in at least two companies' safety processes, it has not yet been 

applied "in anger" to a live industrial project -hence the qualified *'(V)" in Table 13. 

LISA, on the other hand, was developed specifically to meet the needs of one enthusiastic and 

committed customer, BAe MA&A. This meant that, as soon as BAe MA&A and their customers 

were convinced that the technique was viable and could add to the safety evidence available on 

the project, LISA was applied on a live project. This has provided a rather more direct route to 

industrial acceptance, but only in one specific instance. LISA has not been included In the safety 

process for any other project, and needs to be subjected to further industrial trials before genuine 

industrial acceptance can be clairned - again, rating a qualified "(V)" in Table 13. 

It Is worth noting that the evaluation contribution of peer review through publication has been 

ranked lower in terms of' the maturity it indicates than industrial case studies. This is not to say 
that this is not a valuable activity - both SHARD and LISA have been presented at international 

206 



safety conferences, receiving generally positive feedback, and provoking interesting and useful 
discussions. However, as has been repeatedly emphasised, safety analysis is a very practical, 
"hands-on" discipline, and opinions formed on the basis of a short conference presentation or 

academic paper cannot be considered to have as much substance as those formed by participation 
in a large scale case study. 

The general conclusion that is drawn from the evaluation activities performed is that both 

SHARD and LISA are effective, practical, "industrial strengtW' analysis techniques. SHARD has 

reached a stage of maturity at which it is reasonable to regard it as "finished"; LISA requires 
further industrial trials to validate the approach on a wider range of systems. The following 

sections provide rather more detailed discussion of some aspects of the evaluation of the two 

techniques. 

9.3 Review of SHARD with respect to the analysis principles 

As has been noted above, many of the principles for effective safety analysis presented in 

Chapter 5 were actually prompted by observations made on the early case studies and trials of 
SHARD. Not surprisingly, therefore, SHARD satisfied the principles very well. However, it is 

worth reviewing each principle briefly and commenting on its implications for SHARD. 

Principle 1: Safety analysis must have value as part of the engineering process 
This principle prompted the original attempt to incorporate design revision as an explicit step 

within the SHARD process, which was later shown to be unsatisfactory. Value as part of a 

process does not imply tight coupling; a more flexible approach is often more effective. 

Principle 2: Method Is more Important than notation 
Considerable effort has been expended in making the SHARD method clear, and in providing as 

much guidance as possible. That this has been successful has been demonstrated by two large 

case studies carried out by industrial safety personnel with almost no input from the author or 

other researchers. 

Principle 3: Techniques should be as simple as possible 
This principle was suggested by the simplification of the SHARD guide words necessitated by 

the problems encountered on case study 2. Although the method description is now quite long, 

most of the text is guidance notes, and the basic principles are still very simple. 

207 



Principle 4: Techniques should guide without unnecessarily constraining 
In SHARD, this principle is very closely related to principle 3; the guide words were simplified 
because of the excessive constraint imposed by the original structure. Flexibility is also 
incorporated into the range of suggested working practices. 

Principle 5: The role of the technique should be clear 
SHARD is very explicitly a projective analysis for use as part of the design process. The method 
description makes it clear that the analysis should be owned by the design team. 

Principle 6: Safety analysis starts at the system level 

Again, the SHARD method explicitly follows this principle, stating that the analysis should start 

at the system context level. 

Principle 7: Projective analyses ar e key to software safety 
This principle was another that directly resulted from the SHARD case studies. As most of these 

case studies attempted to use the technique for retrospective analysis of completed systems, the 
frustration of finding problems too late to have a positive impact was obvious. Chris Harper's 

study referred to in section 7.7 made the financial importance of this principle extremely clear. 

Principle 8: Safety analyses must consider hardware and software 
SHARD is sufficiently general that it could be applied to any sort of system. However, the 

guidance notes on identification of cau'ses of flow deviations (the primary - secondary - 
command rule) explicitly identify hardware faults as potential causes of software deviations. 

Principle 9: Techniques should use familiar concepts and models 
SHARD has been built around relatively minor modifications to a familiar safety analysis 

technique. Its effectiveness has been demonstrated on a range of commonly used dataflow and 

process network notations, although there is considerable interest in extending the range of 
design methodologies which the technique can support. 

208 



9.4 Relationship of SHARD to Def Stan 00-58 HAZOP 

One of the most important aspects of SHARD is its close relationship to HAZOP, the primary 
differences between the techniques being the set of guide words selected, and the fact that 

SHARD does not mandate a full team to carry out every stage of the analysis. As was noted in 

Chapter 7, HAZOP is identified in Def Stan 00-56 [78] as a technique which may be mandated 

on safety critical systems procurement projects. Def Stan 00-58 [79] gives guidelines for the 

conduct of HAZOP studies on system containing programmable electronic systems (PESs). Since 

Def Stan 00-58 is guidance rather than a mandatory standard, the author's understanding is that 

SHARD may be used on MoD supply projects in place of HAZOP provided that justification is 

given, and that any project-imposed restrictions (e. g. on the use of an analysis team, or the 

independence of staff conducting the analysis) are respected. 

As Chapter 7 explained, the development of SHARD was largely contemporaneous with the 

development of Def Stan 00-58, and results from SHARD case studies were used in preparing 

responses to the MoD's calls for comments on drafts of the standard. There is substantially less 

distinction between 00-58 HAZOP as now published and SHARD than there was in earlier drafts. 

A recent book by the authors of the standard [67] cites the work on SHARD as an example of 

alternative guide words which are acceptable within the terms of the standard. The primary 
benefits of SHARD over 00-58 HAZOP are seen as the more flexible approach to working 

practices, which is important in making the technique industrially acceptable, and the much more 
detailed guidance on technical issues such as interpretation of guide words and identification of 

the effects of fault propagation given in the SHARD method. 

9.5 Review of LISA with respect to the analysis principles 

Unlike SHARD, the development of LISA was guided from the start by the analysis principles. It 

does not satisfy them all fully, but the areas where it does not can be explained and justified. It 

will be interesting to see whether LISA actually grows to conform more closely to the principles 

as it is tried (and probably modified) on further projects with rather different needs and different 

system architectures. 

Principle 1: Safety analysis must have value as part of the engineering process 

209 



LISA was developed to address a specific need of one particular project, which it satisfied 

successfully. It provides evidence that cannot be obtained with any other current technique, and 

can therefore be expected to be of value on future projects with similar needs. 

Principle 2: Method is more important than notation 
As with SHARD, LISA has no specific notation or recording format. The method is reasonably 

well defined but, as it has never been exposed to independent trials, it is too early to state whether 

there is adequate explanation and guidance. Given the degree to which the SHARD method was 

amplified and clarified once independent trials began, it is reasonable to expect that considerably 

more work is required on LISA. 

Principle 3: Techniques should be as simple as possible 
LISA addresses a problem that is fundamentally very complex. The guidance notes on the 
interpretation of guide words in particular explore some quite difficult ideas about how and why 

particular failures may occur, and cannot be claimed to be easy to read or understand. However, 

efforts were made to identify the simplest possible method which could provide the necessary 
information, and to base the technique on familiar models and concepts to make the results as 

accessible as possible. One or two of the reviewers involved in the case study experienced 
difficulty in following the arguments of acceptance presented, but these were all related to the 

complexity of the design under consideration, rather than to the analysis approach. Given this, 

LISA can probably be justifiably claimed to be as simple as possible for its intended role. 

Principle 4: Techniques should guide without unnecessarily constraining 
LISA'a compliance with this principle is impossible to assess without independent trials. The 

method description includes many quite detailed notes on interpretation, which were ideally 

suited to the main case study. Some care has been taken to express these as guidance rather than 

rules, but it seems likely that they will not all be applicable in new situations, and may need 

relaxing somewhat. 

Principle 5: The role of the technique should be clear 
LISA is explicitly a confirmatory analysis, intended to deliver evidence about the achieved safety 

of a completed design. In the case study, a number of safety requirements were derived by the 

technique, but these were all cases where the analysis had revealed a need for extra information 

or testing to complete safety arguments, and were not significant design changes. 

210 



Principle 6: Safety analysis starts at the system level 

LISA quite explicitly does not comply with this principle, in that one of the aims was to 

investigate the provision of safety information when complete context information was not 

available. However, the method makes clear that the first step is to agree a set of principles to 

which the arguments of acceptability will have to conform. These principles could be regarded as 

providing a "virtual" system level context. Interestingly, the suggestion in the discussion of this 

principle that situations where complete information is unavailable might be managing by 

assuming worst case behaviour proved to be directly applicable in the case study, where it was 

used to avoid the need to analyse all the Class 2 software. 

Principle 7: Projective analyses are key to software safety 
LISA is a confirmatory analysis technique, and this principle does not apply. 

Principle 8: Safety analyses must consider hardware and software 
Since LISA was explicitly developed to investigate hardware and software interactions, it 

necessarily satisfies this principle. 

Principle 9: Techniques should use familiar concepts and models 
The analysis approach used in LISA combines elements of the familiar HAZOP guide word 

structured approach with some novel concepts in the study of resources rather than system states, 

and also in the explicit production of fragments of safety argument. However, it is applied to a 

system model familiar to programmers and, in practice, none of the case study participants or 

reviewers expressed any difficulty with the concepts. 

211 





Chapter 10 

Conclusions 

Chapter 9 has evaluated the contribution that the work described in this thesis has made to safety 

critical systems theory, and the practical value of the two new safety analysis techniques that 

have been developed. This chapter considers how the work described supports the thesis 

proposition, draws some final conclusions, and proposes some directions for future work. 

10.1 Substantiation of the thesis proposition 

In Chapter 1, the proposition of this thesis was stated as: 
It is possible to establish a set of principles for defining effective computer system safety 

analysis techniques. These principles enable sound techniques to be developed to satisfy 

novel analysis requirements. 
This proposition was to be supported: 
4. by demonstrating that the principles are based on concepts and methods underlying existing 

successful system safety analysis techniques; 

5. by explaining observed weaknesses in existing computer system safety analysis processes 

and techniques; and 
6. through the development and successful industrial application of two new computer system 

safety analysis techniques, addressing identified deficiencies in the range of existing 

analyses. 

The principles that are central to this thesis are presented and discussed in Chapter 5, drawing on 

concepts established in Chapter 3 and Chapter 4. Chapter 6 extends the discussion of weaknesses 
in existing processes further as part of the justification for the new analysis techniques, which are 
described in Chapter 7 and Chapter 8. 

The work has provided some evidence that the principles are generally sound, and that they can 
be applied to guide the effective development of new analysis techniques. In retrospect, the 

conclusion drawn in section 9.5 that principle 7 ("projective analyses are key to software safety") 
does not apply to the LISA analysis technique suggests that this is an observation (albeit an 
important one), rather than a general principle. It is also much more related to the definition of a 

good safety analysis process, rather than to the design of individual analysis techniques. If this 

213 



work is to be extended, this suggests two substantial new directions. The first is the identification 

or derivation of principles for complete safety processes, equivalent to those proposed here for 

individual techniques. The second is an investigation of whether the principles could be 

strengthened by a set of related observations, in a similar manner to the guidance notes attached 
to the steps of the safety analysis methods. 

Pragmatically, the two new analysis techniques, SHARD and LISA, developed in Chapter 7 and 
Chapter 8 are likely to be of rather more practical benefit in the short to medium term than the 

theoretical work. Both techniques have now been developed to a state of industrial acceptability, 

and companies aware of the work have already made a number of requests for further practical 
investigations to support particular needs; some of these are discussed below. 

Apart from the (probable) rejection of principle 7, the principles proposed appear to be both 

general, in that they have been shown to apply to two quite different techniques, and significant, 
highlighting issues of genuine importance in the design of effective safety analyses. The overall 

conclusion, then, is that the work presented here does provide substantiation for the thesis 

proposition. 

10.2 Concluding remarks 

In her article "High-Pressure Steam Engines and Computer Software" [49], Leveson uses the 

problems that beset the pioneers of high pressure steam engines to highlight issues in the current 

state of safety critical systems engineering. One of her main observations is that 
"there are two stages in the early years of a new technology: (1) exploration of the space of 
possible approaches and solutions to problems (i. e. invention), and (2) evaluation of what has 

been learned by this trial and error process to formulate hypotheses that can be scientifically 

and empirically tested in order to build the scientific foundation of the technology. Most of 
our emphasis so far has been in the first stage of invention; it is now time to give more time to 

the second. " 

It is hoped that this thesis has, at least in a small way, contributed to the foundations of a 

scientific discipline of safety engineering, as well as unashamedly adding some new approaches 
to specific problems of assessing computer system safety. 

214 



10.3 Future work areas 

During the course of the research reported in this thesis, many possible directions for future work 
have been identified. The first few ideas discussed below are obvious or desirable extensions to 

the main work developed here. The remainder are more extensive subjects which would develop 

some of the concepts and principles in new directions. 

10.3.1 Extension of SHARD to StateCharts 

A number of companies have requested an investigation of the potential for using SHARD with 
StateCharts [33]. This was considered briefly early in the development of the technique, but at 

that time the guide word structure was still based around the identification of the communications 

protocols and data types of flows, which did not map well onto the states and transitions of 
StateCharts. However, it was noted that in the popular StateMate tool, the state charts are 

complemented by other notations, including the process network based activity model, with 

which SHARD is readily compatible. 

Now that SHARD is more mature, this would be an interesting area to revisit. It seems unlikely 

that the concept of flow, which provides the structure of an analysis in SHARD, will be 

appropriate for state transition diagrams, and will probably need to be replaced. However, there 

are fairly obvious interpretations of most of the guide words, and much of the value of the 

SHARD development lies in the extensive guidance notes, many of which may also prove 

applicable. 

10.3.2 Extension of SHARD to Object Oriented Design 

Some time was spent at an early stage in the development of SHARD investigating its suitability 
for use with object oriented design notations. An attempt was made to interpret the guide words 

to produce a customised table similar to that shown for MASCOT in Table 7- Example guide 

words for MASCOT 3, and an analysis of a small example design in HOOD [8] was attempted. 
The study was not a success; the biggest problem was that the relationships between objects 

represented in HOOD are not such a good match for the flow / service concepts of SHARD as the 

communication paths represented in dataflow and process network notations. Another significant 

problem in the example was that HOOD does not insist that all data flows are represented in the 
design drawings, which meant that the supporting documentation had to be searched to ensure 

completeness. 

215 



There is still a lot of interest in from industry in the use of ILAZOP-like methods to analyse 

object oriented designs, and they are identified as suitable source material for ILAZOP studies in 

Def Stan 00-58. Despite the negative results of the trial, re-investigating the application of 

SHARD to object oriented design notations is an obvious extension to this work. 

Object-oriented design methods are increasingly being employed on safety critical systems 

projects, and a number of organisations have requested the investigation of ways to use HAZOP, 

SHARD and similar techniques with OOD. This was briefly investigated early in the 

development of SHARD, but this work was discontinued after unpromising early results. This is 

a subject that should be revisited now that SHARD is more mature. It seems likely that the 

outcome would be a combination of extensions or modifications to SHARD, and rules for 

making object oriented designs more amenable to hazard-directed analysis. 

10.3.3 Integration of technical and human factors analysis In SHARD 

It is apparent that the human / computer interface is a source of many of the problems with 

current safety critical systems. Despite the poor quality data, Mackenzie's study [56] clearly 
demonstrated that HC1 failings were implicated in a huge majority of the accidents investigated. 

HCI-HAZOP was one of the three interlinked analyses described by Bums and Pitblado [ 12], and 

there are several other HAZOP-related human interface analysis techniques such as SUSI [ 16]. 

The integration of SHARD with these types of techniques is an obvious step. At the simplest 
level, it can be seen that human errors represent one source of incorrect input to the computer 

system, and can easily be incorporated within the standard SHARD approach. Similarly, faulty 

system outputs may result in erroneous displays, causing incorrect actions by human operators. 
However, for maximum effect, the analyses need to be much more integrated than this simplistic 
linking of inputs and outputs. Human(s) and computers must be considered as parts of a single 

system, and the analysis must model and study the feedback loops that involve both. This is a 

more complex problem, involving consideration of factors such as mode confusion, and the 

potential for users to misunderstand how the computer system operates. 

10.3.4 Further trials and extensions of the LISA approach 

Although LISA has been successfully demonstrated on a very large case study, more trials are 

needed to prove the wider applicability of the technique. A range of single and multi-processor 

systems, with different hardware and software architectures and scheduling models are needed. 

216 
ýý : ý' i 



Since the case study described in Chapter 8 involved a system with only two classes of software 
to be partitioned, and with a fixed memory map, trials are particularly needed on systems with 
more independent processes, and with dynamic memory management. 

Interest has also been expressed in extending the purely qualitative approach taken in the current 
definition of LISA to include guidelines for quantitative arguments, for example in the case of 
some of the arguments for the safety of intrinsically critical resource usage described in section 
8.2.3. 

Another obvious development of LISA would be the implementation of tool support for the 

method. Ideally, this should link to system specification or design tools so that memory maps and 

other information could be imported or, preferably, linked such that analysis affected by design 

changes could be automatically identified. 

10.3.5 Further validation of the principles 

The next step beyond extension of the analysis techniques is to identify further work that could 
help to validate the principles proposed in Chapter 5. This will almost certainly involve a 

combination of development of more new techniques and wider peer review. Sneak Analysis is a 

very appealing starting point for this work, since it is a very powerful technique, considering 

extensive classes of conditions that are not addressed by HAZOP or Functional Failure Analysis; 

however, it is also significantly more complex than either, having multiple levels of prompt. The 

discussion in section 2.11 has noted that sneak analysis for software has already been proposed, 

and it would be very interesting to try to find ways of extending this into an integrated hardware 

software sneak analysis. 

10.3.6 Design for analysis and safety argument construction 

During the work on LISA, many features of the case study system were identified as being 

beneficial either for the analysis itself, or for their contribution to the arguments of acceptability. 
The analysis also highlighted a number of areas where the system design made the safety analysis 

unnecessarily complex. During the process of design revision, many of the recommendations 
arising from the analysis work were for ways of making the system simpler to analyse, rather 
than significant functional changes. No systematic attempt was made to either record the specific 
features which facilitated or hindered the analysis, or to consider whether they could be extended 
to identify general principles for analysis-fricndly design. This is a potentially extremely 

217 



extensive research area, and can be seen as a complement to already relatively well established 

rules for design for testability. 

10.3.7 Formal specification of safety properties 

To date, the majority of formal methods work has concentrated on the specification or proof of 

correct software behaviour. Provided that expected "inpuf' failures, perhaps including a limited 

range of hardware failures, can be described, there is no reason why proofs cannot be constructed 

to show that specific outputs of a component behave as required even in the presence of these 
failures. It is also theoretically possible (though likely to be rather more difficult) to prove a 

range of general safety-related properties, such as demonstrating that no single input failure can 

cause any output failure. The problem with the use of formal techniques in this was is not lack of 

capability of the formal methods, but rather the inability of safety analysts to determine and 

specify the properties that must be demonstrated, and this will need to be the initial focus of work 
in this area. 

218 



References 

[1] Air Accidents Investigation Branch UK, http: //www. gtnet. gov. uk/aaib/aaibhome. htm, 

1999. 

[2] Audsley N. C., et al., FL-ced Priority Preemptive Scheduling: An Historical Perspective. 
Journal of Real-Time Systems, vol. 8 no. 2,1995, pp. 173-198. 

[3] Ballard R. D., 77ze Discovery ofthe Titanic, 1998. Madison Press Books, Toronto. ISBN 
0-75380-529-4. 

(4] Belbin R. M., Team Roles at Work, 1993. Butterworth-Heinemann. ISBN 0750626755. 

[5] Bell R. and Reinert D., Risk and system integrity conceptsfor safety-related control 

systems. Microprocessors and Microsystems, vol. 17 no. 1,1993, pp. 3-15. 

[6] Boeing Commercial Airplane Group, Statistical Summary of Commercial Jet Airplane 

Accidents: Worldwide Operations 1959-1996,1997. Airplane Safety Engineering, 

Boeing Commercial Airplane Group, P. O. Box 3707, Seattle, WA 98124-2207. 

[7] Bondavalli A. and Simoncini L., Failure Classification With Respect to Detection, in 

First Year Report Task B: Specification and Designfor Dependability. 1990, ESPRIT 

BRA Project 3092: Predictably Dependable Computing Systems. 

[8] Booch G., Object-oriented Development. IEEE Transactions on Software Engineering, 

vol. SE- 12 no. 2,198 6, pp. 211-22 1. 

[9] Bowman W. C., etal., An Application of Fault Tree Analysis to Safety Critical Software 

at Ontario Hydro in Probabilistic Safety Assessment and Management: Proceedings of 
the International Conference on Probabilistic Safety Assessment and Management 

(PSAM), Beverley Hills, CA, 1991. Ed. Apostolakis G., Elsevier Science Publising Co., 

Inc. ISBN 0444015949. 

[10] British Standards Institution, BS 4778: Quality Vocabulary Part 2: Quality Concepts and 
Related Definitions, 199 1. British Standards Institution. ISBN 0-580-19694-1. 

[11] Burdick G. R. and Fussell J. B., On the Adoption of Cause-Consequence Analysis to US. 
Nuclear Power Systems Reliability and Risk Assessment, in A Collection ofMethodsfor 
Reliability and Safety Engineering Report V, ANCR, 12 73.1976, Idaho National 

Engineering Laboratory. 

[12] Bums D. J. and Pitblado R. M., A Modified HAZOP Methodologyfor Safety Critical 

System Assessment in Directions in Safety-critical Systems: Proceedings of the Safety- 

critical Systems Symposium, Bristol, 1993. Ed. Redmill F. and Anderson T., pp. 232-245. 
Springer-Verlag. 

219 



[13] Carpenter R., Kalla-Bishop P., Munson K. and Wyatt R., Powered Vehicles, 1974. 

Jupiter Books, London. ISBN 0-904041-06-9. 

[14] Cha S. S., AeSOP. An Interactive Failure Mode Analysis Tool in COMPASS 94: 

Proceedings ofthe Ninth Annual Conference on Computer Assurance, NIST 

Gaithersburg MD, 1994. pp. 9-16. IEEE, 445 Hoes Lane, P. O. Box 133 1, Piscataway, NJ 

0855-133 1. ISBN 0-7803-1855-2. 

Chudleigh M., Hazard analysis using 1L4ZOP. A Case Study in SAFECOMP 93: 

Proceedings ofthe 12th International Conference on Computer Safety Reliability and 
Security, Poznan-Kickrz, Poland, 1993. Ed. Gorski J., pp. 99-108. Springer-Verlag. ISBN 

3540198385. 

[16] Chudleigh M. and Clare J. N., Yhe benefits of SUSP Safety Analysis of User System 

Interaction in SAFECOMP 93: Proceedings ofthe 12th International Conference on 
Computer Safety Reliability and Security, Poznan-Kiekrz, Poland, 1993. Ed. Gorski J., 

pp. 123-132. Springer-Verlag. ISBN 3540198385. 

[17] CISHEC, A Guide to Hazard and Operability Studies, 1977. The Chemical Industry 

Safety and Health Council of the Chemical Industries Association Ltd. 

[18] Clarke S. J. and McDermid J. A., Software Fault Trees and Weakest Preconditions: A 

Comparison and Analysis. Software Engineering Journal, vol. 8 no. 4,1993, pp. 225-236. 

[19] Cristian F., Questions to ask when designing or attempting to understand afault tolerant 

distributed system. 3rd Brazilian Conference on Fault Tolerant Computing, Rio de 

Janeiro, 1989, 

iijil [20] Cullen, The Hon. Lord, The Public Inquiry into the Piper Alpha Disaster, 1990. HMSO, 

I ýý; London. ISBN 0- 10- 113102. 

[21] Dawkins S., McDermid J. A., Murdoch J. and Purnfrey D. J., Issues in the Conduct of 
PSSA in Proceedings of the 17th International System Safety Conference, Orlando, 

Florida, 1999. pp. 77-86. System Safety Society, P. O. Box 70, Unionville, VA 22567- 

0070. 

[22] Dhillon B. S., Failure Modes and Effects Analysis - Bibliography. Microelectronics and 
Reliability, vol. 32 no. 5,1992, pp. 719-73 1. 

[23] Dugan J. B., Bavuso S. J. and Boyd M. A., Fault Trees and Sequence Dependencies in 

Proceedings of the Annual Reliability and Maintainability Symposium, 1990. pp. 286- 

293. 

[24] Dugan J. B., Bavuso S. J. and Boyd M. A., Dynamic Fault- Tree Modelsfor Fault- Tolerant 

Computer Systems. IEEE Transactions on Reliability, vol. 41 no. 3,1992, pp. 363-376. 

220 



[25] Earthy J. V., Hazard and Operability Studies as an approach to Software Safety 

Assessment in IEE Computing and Control Division Colloquium on Hazard Analysis 

Digest No 19921198,1992. pp. 511 - 5/3. Institution of Electrical Engineers, Savoy Place, 

London WC2R OBL. 

[26] Ezhilchelvan P. D. and Shrivastava S. K., A Classification ofFaults in Systems, 1989. 

University of Newcastle upon Tyne. 

[27] Fencott C. and Hebbron B. D., The Application ofHAZOP Studies to Integrated 

Requirements Modelsfor Control Systems in SAFECOMP 94: Proceedings ofthe 13th 

International Conference on Computer Safety, Reliability and Security, Anaheim, CA, 

1994. Ed. Maggioli V., pp. 83-92. Instrument Society of America. ISBN 1-55617-536-1. 

[28] Fenelon P. and McDermid J. A., Integrated Techniquesfor Software Safety Analysis in 

IEE Computing and Control Division Colloquium on Hazard Analysis Digest No 

19921198,1992. Institution of Electrical Engineers, Savoy Place, London WC2R OBL. 

[29] Fenelon P. and McDermid J. A., An Integrated Toolset For Software Safety Analysis. 

Journal of Systems and Software, 1993, pp. 2/1-2/16. 

[30] Feynman R. P., Appendix F Personal Observations on the Reliability ofthe Shuttle, in 

Report ofthe Presidential Commission on the Space Shuttle Challenger Accident. 1986, 

National Aeronautics and Space Administration. 

[31] Forder J., Higgins C., McDermid J. A. and Storrs G., SAM -A Tool to support the 
Construction Review and Evolution ofSa/ety Arguments in Directions in Safety-critical 

Systems: Proceedings of the Safety-critical Systems Symposium, Bristol, 1993. Ed. 

Redmill F. and Anderson T., pp. 195-216. Springer-Verlag. 

[32] Geake E., Did ambulance chiefs specify safety software? New Scientist, vol. 136 no. 
1846,1992, p. 5. 

[33] Harel D., StateCharts: A Visual Formalismfor Complex Systems. Science of Computer 

Programming, vol. 8 no. 3,1987, pp. 231-276. 

[34] Health and Safety Executive, The Explosion and Fires at the Texaco Refinery, Milford 

Haven, 24 July 1994,1997. HSE Books. ISBN 0-7176-1413- 1. 

[35] Archives ofthe hise-., vq/eqý-_critical mailing list, 

ftp: //ftp. cs. york. ac. uk/hiseý_reports/sc. list/archive99. txt, 1999. 

[36] Horwell V., Secrets of the Dead, Channel 4 Booklets, ed. Snyder P., 1999. Channel 4 

Television, London. 

[37] International Electrotechnical Commission, Guidefor Hazard and Operability Studies 

(HAZOP), 1997. 

221 



[38] International Electrotechnical Commission, IEC 61508: Fundamental Safety ofElectrical 
lElectronic lProgrammable Electronic Safety Related Systems, 1999. 

[39] JIMCOM, The Ojjicial Handbook ofMascot Version 3.1,1987. Joint EECCA and MUF 

Committee on Mascot. 
[40] Jones C. B., Developing Methodsfor Computer Programs including a Notion of 

Interference, (DPhil Thesis), Oxford University, 198 1. 

[41] Jones-Lee M. W., Vauling Safety in Transport ProjectAppraisal in Environment and 
Transport, Tinbergen Institute, Amsterdam, 1994. 

[42] Joseph M., Real-Time Systems: Specification, Verification andAnalysis, 1996. Prentice- 

Hall. 

[43] Kelly T. P., Arguing Safety -A Sytematic Approach to Managing Safety Cases, (DPhil 

Thesis), University of York, 1999. 

[44] Kletz T., Razop and Hazan: Identifying and Assessing Process Industry Hazards, Third 

ed., 1992. Institution of Chemical Engineers. ISBN 0-85295-285-6. 

[45] Koivisto R. and Heino P., Qualitative and Quantitative Safety Assessment Supporting the 
Process Plants'Design in Probabilistic Safety Assessment and Management. 

Proceedings of the International Conference on Probabilistic Safety Assessment and 
Management (PSAM), Beverley Hills, CA, 1991. Ed. Apostolakis G., Elsevier Science 

Publishing Co. Inc. ISBN 0444015949. 

[46] Kopetz H., Real- Time Systems: Design Principlesfor Distfibuted Embedded 

Applications, 1997. Kluwer Academic, Boston. ISBN 0792398947. 

(47] Laprie J. C., Dependability: Basic Concepts and Terminology. Dependable Computing 

and Fault Tolerance, vol. 5 1992,. 

[48] Leveson N. G., Software Safety: "y "at and How. ACM Computing Surveys, vol. 18 

no. 2,1986, pp. 125-163. 

[49] Leveson N. G., High-Pressure Steam Engines and Computer Software. Computer, vol. 27 

no. 10,1994, pp. 65-73. 

[50] Leveson N. G., Safeware: System Safety and Computers, 1995. Addison Wesley, 

Reading, Mass. ISBN 0-201-11972-2. 

[51] Leveson N. G. and Harvey P. R., Analyzing Software Safety. IEEE Transactions on 
Software Engineering, vol. SE-9 no. 5,1983, pp. 569-579. 

[52] Leveson N. G. and Harvey P. R., Software Fault Tree Analysis. Journal of Systems and 
Software, vol. 3 1983, pp. 173-18 1. 

[53] Leveson N. G. and Shimeall T. J., Safety Verification ofAda Programs using Software 

Fault Trees. IEEE Software, vol. 8 no. 4,199 1, pp. 48-59. 

222 



[54] Leveson N. G. and Stolzy J. L., Safety Analysis Using Petri Nets. IEEE Transactions on 
Software Engineering, vol. SE-13 no. 3,1987, pp. 386-397. 

(55] Ariane 5 Flight 501 Failure: Report by the Inquiry Board, 

http: //www. esrin. esa. it/htdocs/tidc/Press/Press96/ariane5rep. html, 1996. 

[56] MacKenzie D., Computer-Related Accidental Death: An Empirical Exploration. Science 

and Public Policy, vol. 21 no. 4,1994, pp. 233-248. 

[57] McDermid J. A., Nicholson M., Purnfrey D. J. and Fenelon P., Experience with the 

Application ofHAZOP to Computer-Based Systems. COMPASS '95: Proceedings of the 

Tenth Annual Conference on Computer Assurance, 1995, pp. 37-48. 

[58] McDermid J. A. and Pumfrey D. J., A Development ofHazard Analysis to aid Software 

Design in COMPASS 94: Proceedings of the Ninth Annual Conference on Computer 

Assurance, NIST Gaithersburg MD, 1994. pp. 17-25. IEEE, 445 Hoes Lane, P. O. Box 

133 1, Piscataway, NJ 0855-133 1. 

[59] McDermid J. A. and Rook P., Software Development Process Models, in Software 

Engineer ý Reference Book, McDermid J. A., Editor. 199 1, Butterworth-Heinemann: 

Oxford. 

[60] Mersey, Rt. Hon. Lord, Report on the loss of the S. S. "Titanic", 1912. Alan Sutton 

Publishing, Stroud, Gloucestershire. ISBN 0-86299-723-2. 

[61] Nielsen D. S., Platz 0. and Runge B., A Cause-Consequence Chart ofa Redundant 

Protection System. IEEE Transactions on Reliability, vol. R-24 no. 1,1975, pp. 8-13. 

[62] Nordland 0., A Discussion ofRisk Tolerance Principles. Safety Systems, vol. 8 no. 3, 

1999, pp. 1-4. 

[63] 0 Connor P. D. T., Practical Reliability Engineering, Third ed., 199 1. John Wiley & Sons. 

ISBN 0471-92902-6. 

[64] Prasad D. K., Dependable Systems Integration using Measurement Theory and Decision 

Analysis, (DPhil Thesis), University of York, 1998. 

[65] Raheja D., Software System Failure Mode and Effects Analysis (SSFMEA) -A Toolfor 

Reliability Growth in Proceedings ofthe International Symposium on Reliability and 
Maintainability, Tokyo, 1990. pp. IX-I - IX-7. 

[66] Rankin J. P., Sneak Circuit Analysis. Nuclear Safety, vol. 14 no. 5,1973,. 

[67] Redmill F., Chudleigh M. and Catmur J., System Safety HAZOP and Software HAZOP, 

1999. John Wiley & Sons Ltd., Chichester. ISBN 0-471-98280-6. 

[68] Reifer D. J., Software Failure Modes and Effects Analysis. IEEE Transactions on 
Reliability, vol. 28 no. 3,1979, pp. 247-249. 

223 



[69] Roberts N. H., Vesely W. E., Haasl D. F. and Goldberg F. F., Fault Tree Handbook, 198 1. 

Systems and Reliability Research Office of U. S. Nuclear Regulatory Commission, 

Washington, DC, 20555. 

[70] SAE, ARP 4754: Certification ConsiderationsforHighly-Integrated or Complex Aircraft 

Systems, 1996. Society of Automotive Engineers, Inc, Warrendale, PA. 

[71] SAE, ARP 4 761: Guidelines and Methodsfor Conducting the Safety Assessment Process 

on Civil Airborne Systems and Equipment, 1996. Society of Automotive Engineers, Inc, 

Warrendale, PA. 

[72] Shrivastava P., Bhopal: Anatomy ofa Crisis, Second ed., Business and the Enviromnent, 

1992. Paul Chapman, London. ISBN 1853961922. 

[73] Stephans R. A. and Talso W. W., System Safety Analysis Handbook; Second ed., 1997. 

System Safety Society, Albuquerque, New Mexico. 

[74] Systems Designers, CORE - The Method, 1985. Systems Designers Scientific. 

[75] Tambidurai P., Interactive Consistency with Multiple Failure Modes in International 

Workshop on Hardware Fault Tolerance in Multiprocessors, Urbana 11,1989. 

[76) Taylor J. R., Risk Analysisfor Process Plant, Pipelines and Transport, 1994. Chapman 

and Hall, London. ISBN 0-419-19090-2. 

[77] UK Ministry of Defence, Defence Standard 00-55: Requirementsfor Safety Related 

Software in Defence Equipment, 1996., 

[78] UK Ministry of Defence, Defence Standard 00-56 Issue 2: Safety Management 

Requirementsfor Defence Systems, 1996. 

[79] UK Ministry of Defence, Defence Standard 00-58: HAZOP Studies on Systems 

Containing Programmable Electronics, 1996. 

[80] Villerneur A., Reliability Availability Maintainability and Safety Assessment, 1992. John 

Wiley and Sons Ltd. ISBN 0-471-93048-2. 

[81] Ward P. T. and Mellor S. J., Structured Developmentfor Real Time Systems, Yourdon 

Press Computing Series, 1985. Prentice-Hall. ISBN 0 13854654 1. 

[82] Yourdon E., Modern Structured Analysis, Yourdon Press Computing Series, 1989. 

Prentice-Hall, Englewood Cliffs. ISBN 013598632X. 

224 


