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ABSTRACT 

Polyacrylamide gel electrophoresis has been used to study protein 
polymorphisms in populations of British and Australasian Hydrobiid 
snails. Zymograms obtained from parthenogenetic populations were 
interpreted genetically by a technique based on the biochemical and 
pb, ysical properties of the allozyme bands., 

Phylogenetic relationships between Hydrobiid species have been 
computed from the electrophoretic data using an_index of genetic 
distancee The British species Potamopyrgus jenkinsi was found to 
consist of at least three genetically distinct strains (At B and C) 
which correspond to. the morphological strains recognised by previous 
authors,, P. jenkinsi has been shown to be more closely related to the 
New Zealand species Pe antipodarum than to the native-British Hydrobiids 
(Rydrobia ulvae, H. neglecta and H. ventrosa) or, to, the Australian 
species P. nigrae It is thus suggested thatfe jenkinsi was introduced 
into Europe from New Zealand. 

Differences in the distribution and levels of electrophoretio, 
variation have been shown to be related to the reproductive strategies 
of Hydrobiid populations* Variation in the sexually reproducing species 
is distributed evenly between and within populations whereeA variation in 
wholly or partly asexual species is distributed between weakly poly- 
morphic or monomorphio populations. A large scale electrophoretic 
survey of British populations of P, jenkinsi (strain A) revealed a 
virtual absence of variation both within and between populationso In 
the course of this survey a diet-induced esterase was discovered* 

Levels of heterozygosity were greater in asexual Hvdrobiid popula- 
tions than in sexual populations with the highest level occurring in 
P. jenkinsi. 

An attempt has been made to relate levels of genetic variation to 
physiological ecology by means of experiments designed to investigate 
the behaviour and survival of Hydrobiids in eighteen different combinar- 
tions of temperature and salinity. It is suggested that P. jenkinsi A 
is a 'generalist' relative to other fresh water animals, but a 
Ispecialistt relative to other British Hydrobiidso Evidence is 
presented suggesting that the distribution of British Hydrobiids, is 
determined by the availability and stability of physical environmental- 
resources. Differences in the physiological tolerances of P. jenkinsi 
strains A and B were sufficient to account for the differences in their 
geographic distributions* 

Relationships between genetic variation and ecological strategy 
in P. jenkinsi are, discussed in the light of evidence from other 
colonising species* 

iii 



INTR-ODUCTI. ON 

113)arwints survival of the fittest is really a special 

case of aýmore general-law of survival of the stable" 

- Richard Dawkins - in- 'The Selfish Gene'. - 

Recent evolutionary theory tends to regard the organism as'a 

vehicle for-enhancing the stability and thus the'survival of the genomep 

bufferingýthe delicate strands"of genetic-information against thi 

vagai-ies-of the physical-and biotic environment, ' 'The diversity of life 

may be viewed as a spectrum of different strategies that have evolved-to 

ensure the survival and reproduction of countless different-units of" 

genetic information both in the'past and in the presentO' 

Individuals possess certain heritable characteristics'which' 
determine the homeostatic response of their population to environmental 

changeo Such $adaptive strategiest of populations appear to be related 
to the manner in which the component individuals experience their 

environmentO A Population may evolve a strategy lying somewhere between 

two extremes represented-bys 

A*- Genetic 'tracking' of environmental fluctuations by short-term 
rapid evolution such that the mean fitness per individual remains 
reasonably conStante This strategy mustp however, involve an 
element of lag-between the onset of the fluctuation and the 

evolutionary response by the population. We might expect 
tracking to be pursued by populations of small relatively 
immobile organisms whichp in a physiological sensel are minimally 

against the environments Such organisms (eogo Colonising 
--2 .Iý- 

plants and small invertebrates) are said by Levins to-experience 

their environment as 'coarse-grained'; the individual is faced 

with a high degree of temporal and/or spatial environmental 

uncertainty* 

Be Response to environmental change by means of physiological 

, plasticity' of individuals within the populations Plasticity is 

common in, for example, large perennialplants andp perhaps taken 

to its extreme, in large homeothermic., animalso Such organisms 

quickly respond to potentially de-stabilising-fluctuations by means 

of, homeostatic mechanisms controlling growth, and metabolism. 

They may be thought of_as experiencing their, environment. as 'fine- 

grained'; the tolerance of the individual is unlikely to be 

1 



exceeded by environmental conditions; to the individaa. 4 the 

environment is predictable* 

The adaptive strategy pursued by a population (or, species) may, well 

be dependent on the level of variation present., - 

Fisher3 in 1930 formulated his Fundamental Theorem of Natural 

Selection as "the ability of a population to adapt genetically to its 

surroundings is a, function of the, level of variation present in the 

population! '. The theorem, has-been supported experimentally by-Ayala4 

using pure and hybrid lines of Drosophilae - We might therefore expect 

that populations exhibiting strategy A above will be more variable than 

those exhibiting strategy B. Selander and Kaufman5. have. provided strong 

support for this hypothesis by comparing levels of variation in 

invertebrates (coarse-grained strategists) with-those of vertebrates 
(fine-grained strategists)* 

Crucial to the genetic response of a population to environmental 
change is its reproductiveýstrategy since this may affect, amongst otherý 
things, factors such as population size and the level of genetic 
variation and consequently evolutionary rate*- , 

Williams 6 
gives, an excellent review of reproductive strategies 

and their genetic implications; a resude- of the most common forms is 

given below* 

Perhaps the. mostýwidespread strategy in eukaz7otes is sexual 

reproduction where recombination and segregation generate a plethora of 
different genotypes within a population (determining phenotypes with 
different fitnesses) with each round of mating* 

Two main theories have been advanced for the selective advantage 

of sexe 

The first is concerned with the potential evolutionary rate of 

sexual populations. The traditional view is that these populations can, 

evolve faster than asexual Populations and will in the long ran be the 

evolutionary Isurvivorsle This, the Ilone--term explanation' of 

Maynard Smith7j has been severely criticised by Williams8 on the grounds 

that it invokes group selection and since group selection appears to be 

2 



confined to a few specific situations (i. e* kin selection) in'higher 

animals, the theory is probably not generally applicable* Moreover, ' 

Maynard Smith has shown theoretically that sex will'accelerate evolution 

only if populations are larger than 1/10 )1 (where )a - rate of favourable 

mutation per locus per generaiion)'and that'in an infinite populationg 

sex 'Will accelerate evolution by a factor'equal. to the number of different 

loci at which favourable mutations can occur* 

Williams 
6 

has offered a second explanation for the selective 

advantage of sex, namely that since sexually reproducing individuals 

produce highly variable progenyl there is a greater immediate chance that 

some will'have high'fitness in future environmental conditions* 
Maynard Smith7 has criticised this, the Ishort-term! explanation'on the 
grounds that environmental fluctations must be large enough to threaten 

extinction for sexual reproduction to have an immediate advantage over 
asexual reproduction* 

Some aspects of sexual reproduction appear to'be disadvantageous' 
relative to asexual (apomictic)'reproductiong- 'sexual reproduction results 
in substantial genetic load, the disruption of highly fit'genotypes and the 
presence in the Population of reproductively wasteful males* 
Maynard Smith7 has pointed out that this latter factor is less important 
in situations where both parents care for the progeny. 

Eshel and Feldman9 consider that these seemingly disadvantageous 
factors far outweigh the apparent advantages of sex and thatasexual and 

6 sexual populations evolve at much'the same rate, Williams suggests that 
this may be of primary importance in 'the understanding of the evolutionary 
role of sex; the advantages of sexual reproduction may lie in its*retarda- 

tion of adaptation and in the limitation of the attainable precision of 
adaptation imposed by recombinational load* 

other reproductive strategies include distinct and genetically very 
different forms of parthenogenesise 

The least common and perhaps the least understood form of partheno- 

genesis is automixisy a form of degenerate sexual reproduction. ý 

3)iploidy is usually restored by fasion of haploid muclei after meiosis, 

although factors such as premeiotic doubling of chromosomes and suppression 

of recombination (e. g. in some Lepidoptera) m. V complicate the genetic 

3 



consequences of this strategy. Suomalainen 
10 

provides a clear review 

of the complexities involved in such oogenesis, In all cases no exchange 

of gametes takes place between individuals; all are female. 

Many types of automixis may be regarded as an extreme form of 

inbreeding-, deleterious recessives may be rapidly exposed to selection 

leading to fixation at most loci. Heterozygosity may be reduced to a 

level maintained by mutation rate alone and we might expect complete 

individual homozygosity although overall levels of polymorphism within and 

between populations may remain high. 

The common and closely related form of degenerate sexuality, self- 
fertilisation, is essentially a form of automixis with similar theoretical 

genetic consequencese 

Since all individuals in an automictiO population are female, the 

intrinsic rate of increase is potentially double that of sexual females 

producing the same number of offspring (assuming a 5OS50 sex ratio in the 
latter). This phenomenon is common to all parthenogens and a further, 

related characteristic of such organisms is the ability to found a colony 
from a single individual at any stage of development. 

Perhaps the most widespread type of Parthenogenesis is apomixis, 
reproduction without males and without a meiotic division during 

oogenesiso 

Apomixis is the most efficient way by which a highly fit genotype 

may be preserved and reproduced sincel in the absence of segregation and 

recombination, there is no genetic load and copying fidelity of the 

parental genome is only affected by mutation rate. New (mostly 

recessive) mutations are unlikely to be rapidly expressed (although 

mitotic recombination may occur), particularly if the organism is poly- 

ploid; parthenogenetic populations incorporate advantageous mutations 

more slowly than comparable sexual populations. 
10 

For these reasonsl we might expect variation to be restricted or 

absent in apomictic populations and consequently their genetic response 

to environmental change to be minimal* 

These theoretical restrictions to the evolutionary response of 
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parthenogenetic-organisms to major and unpredictable environmental 

fluctuation led geneticists such as Fisher3t Darlington 11 
and White 12 

to regard such species as evolutionary 'dead-ends' doomed to extinction; 

their study was considered to be largely irrelevant to our understanding 

of long-term evolutionary processes* 

But many parthenogenetic organisms such as aphids13, weevils 
10 

water-fleasl4t dandelions15 and some fish 16,17 
are successful and 

apparently persistent species, often dominant in successionally immature 

ecosystems and widely distributed geographically* Many are highly- 

successful colonisers and indeed we mightg apart from the genetic 

considerations outlined above, expect this to be so for fecundity reasons. 

We are thus faced with an apparent paradox'Posed by the the I oretical 
evolutionary 'dead-end' view of apomixis presented by conventional 
evolutionary dogma and the contrasting widespread success of apomictic 
species in the real world* 

It was this paradox that prompted Suomalainen t-o begin his-early 
18 

studies on the extent and nature of variation in natural populations of 
parthenogenetic weevils. Using morpholog ical markers he demonstrated 
that such populations were indeed monomorphic or weakly polymorphic but 
that there appeared to be considerable variation between apomictic weevil 
populations of the same morphospecies from different geographic areas. 
He concluded that the amount of variation present within a morphospecies 
of apomictic weevil was sufficient to provide considerable evolutionary 
potential. Morphological markers in these species were however too few 
to enable large-scale estimates of variation to be made. 

In the mid-1960's a powerful new method for estimating, levels of 

genetic variation was provided with the development ofýgel electrophoresis/ 
19 20 histological staining techniques by Harris I Lewontin and Hubby 

These techniques allowed large-scale estimates of variation to be made for 

species with few morphological markers (eog. molluscs and annelids) and 
for large numbers of similar loci to be surveyed in different species. 
Reviews of such surveys have been compiled for various purposes by, for 

5 21 22 , 23 
exampleg Selander and Kaufman j Johnson 9 Selander I Ward and 
Koehn and Eanes 240 

Absolute levels of variation derived from these surveys must be 

5 



treated with caution-since electrophoresis, detects markers that are an 

extremely small and biased subset of the array of proteins constituting 
the whole organism. Only soluble proteins are detectable and of these 

only a small proportion contribute, to overall estimates, of variation. 
We know ver7 little of the levels of variation associated with, for 

example, the insoluble structural proteins; these, may-prove to have very 
different levels of variation relative1o the small globular enzymes 

usually detected by electrophoresis. Certainly enzyme molecular structure 
has an effect on levels of variation of the soluble enzymes; 

25 
non- 

regulatory enzymes are far less variable than regulatory or variable- 

substrate enzymes-, - monomers are more variable than polymers. 
26 

The detection of alleles by electrophoresis relies on the 

principle that a, mutation at a particular locus results in an alteration 
in the net charge of the gene product, It is generally assumed that the 

charge on the protein molecule is altered by the substitution of a 
different amino-acid due to a base-pair substitution (or other mutational 
rearrangement of the DNA such as inversiony deletion or insertion). Gene 
products fromIdifferent loci may have very different molecular sizes and 
are thus separated on gels. The alteration of the overall charge of a. 
mutant gene product results in an altered mobility relative to that of 
the unaltered allele. 

Salient points here are that'noi all mutations result in an 
altered gene product due to the redundancy of the genetic code and that 
not all amino-acid substitutions result in changed charge states since 
several amino-acids have similar or no 'charge. In the most recent 
estimates of the proportion of mutations that are detectable by electro- 

27 : phoresis, Maruyama and Kimura calculate that 25% should be detectable. ' 

A further difficulty associated with electrophoretic surveys is 
that, in organisms for which breeding data is unobtainable (such as 

apomictic parthenogens and. those-organisms which cannot be easily reared 
in the laboratory), null alleles (gene products which do not stain on 

gels) may be, wholly undetectable; this inev#ably. repults in under- 

estimation of levels of variation in such organisms. 

, Variation which is non-genetic in origin (epi-genetic variation) 

may also result in misleading interpretations_of, zymgrams. Few. electro- 

phoretic studies have been specifically designed to investigate the 

6 



,! ) A 
possible presence of epi-genetic factors but OxforCw and more recently 
Gill 29 have reported such effects on-molluscan isozymes., - !ý 

Despite the above shortcomings of electrophoretio techniques, 

estimates of absolute levels of variation are remarkably consistent 
(see. below); electrophoresis, is probably most reliable for comparative 

work where surveys of variation are performed by assaying similar loci 

using the-same-electrophoretic method for'each-populatione 

Perhaps the most controversial ý subject In. current -population 
genetics is'the adaptive significance of electrophoretio variation* -. If 

such variation is maintained largely by stochastic processes, and not by 

natural selection, then, the regulation, of levels - of variation by. reproduo- 
tive strategy cannot be- considered an adaptive, strategy and we, must look 

el6ewhere for the'adaptive roles of different modes -of., reproduction. An 

outline of the existing evidence for and against the maintenance of this 

and other variation by natural selection is given below. 

-FirstlylIet us consider the selective maintenance of visible, 
variation. The most powerful evidence for this has come from the classic 
studies, of stable and, transient Polymorphisms, mainly those of animals, - 
Cain and Sheppard's 

30 
work On colour polymorphisms'in*Cepaea, 'Kettlewell's 31 

studies of melanism in the-Lepidoptera and-Allison, 032 discovez7 of the 
link between haemoglobin-polymorphisms and malaria in man demonstrate 

convincingly that selection is responsible for maintaining visible 
variation in these populations* Perhaps the most convincing feature of 
these and'other studies, is that the functional significance of, the markers 
in the wild canýbe identified andp by, careful observation and experimenta- 
tiong, the selective co-efficients of at least some can be estimated. 

The problem with electrophoretic markers is that, -in, the vast- 

majority ofýcasesq their functions are unknown although recently Beranek 

and Oppernoorth33, have provided evidence linking the RAE (resistance 

associated esterase), locus in the aphid Myzus persicae with organo- 
phosphorus insecticide detoxificationo 

ý However, -since our'most, convenient access-to genetic variation in 

natural populations, is by using gel electrophoresis recent attempts to 

resolve the mechanisms by which variation is maintained have 

concentrated on this technique. 
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Two main and opposing hypotheses have been advanced to explain 

levels of both visible and electrophoretic variation in natural, sexually 

reproducing populations; the Is6lectivet hypothesis founded on the early 

theoretical work of Muller 
34 

and Dobzhansky 35 
and the 'neutraV hypothesis 

put forward more recently by Crow and Kimura 
36 in an attempt to explain 

the high levels of variation revealed by electrophoresiso 

The selectionists have two rather different theoretical bases for 

their views. The earlier theory was put forward by Muller 
34 

who 

considered that, for most locip selection tends to favour fixation of the 

most fit allele and that the majority of heterozygosity can be explained 

as being merely the transient state of selection for anotherl more fit, 

allele. Muller reached this conclusion after examination of the 

theoretical implications of genetic load on highly heterozygous individuals 

and predicted that only a few loci might qualify for maintenance of their 

variability by some form of balancing selection. 

This view was challenged byt for examplet Dobzhansky 35 
and 

Wallace 
37 

who considered it unlikely that there was a single most fit 

allele at most loci in a population and that because most loci would be 

in selective equilibriumt balancing selection would maintain the majority 

in the heterozygous statee This 'balance hypothesis' predicts that only 

a few loci would be at fixation-, in Particular those associated witht for 

examplel central metabolic functions might be found in a highly conserved 
homozygous state* 

Both the above hypotheses invoke natural selection as the major 
force determining the maintaining levels of genetic variation in natural 

populationso 

Evidence for selectionist interpretations has been provided by 

correlations between gene frequencies and'environmental variables. 

For example, Johnson 381 39 in a study of the Crested Blenny Anoplarchus 

has found associations between allele frequencies and temperature 

gradients. McKechnie et. al. 
40 in a large-scale study of Euphydryas 

butterfly populations obtained highly significant associations between 

several environmental parameters and electrophoretic allele frequencies. 

Other studies such as those of Schopf and aooch4l and Johnson eto al. 
42 

have revealed similar correlations* 
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It must be remembered however that until our understanding of the 

metabolic functions of isozymes improvesqýwe cannot determine whether 

such correlations are causally linked and such evidence is largely 

circumstantial. 

Crow and Kimura 36 
argued from a rather different standpointq 

namely that those mutations most likely to survive in a population are 

probably selectively neutral and thatj as suchl they could be maintained 
in an array of polymorphic statesýby a process akin to Wright's genetic 
driftt ultimately reaching fixationo - Thus most variation might be 

explained as having little evolutionary significance but merely as the 

product of random effects on*neutral alleleso 

There is an increasing body of evidence that tends to refute this 
'neutral' hypothesise Predictions from the hypothesis with respect to 
the variability of enzyme type and the general levels of variation in 

populations do not fit with the evidence from natural and experimental 
populations*43,44 The neutral hypothesis also predicts that loci in 

geographically-separated populations of a species should lose their . 
identity and divergee Ayala et., al. 

45 
and-Prakash et. al. 

, 
46 have shown 

that the identity of such loci is generally conserved and Slatkin47 has 

recently shown that this is unlikely to be due to gene flowo This is 

supported by McKechnie et* al*40 who also eliminated gene flow as a 
factor in maintaining allele, frequency similarities in isolated popula- 
tions of Euplxvdryas butterflieso 

, 
Ohta 48 has recently proposed an extension of the neutral hypothesis 

which overcomes some of these difficulties* His model acknowledges 
selective effects on electrophoretio alleles but does not invoke balancing 

selection as the major force maintaining such variation* Thisp the 

mutation-equilibrium theory, proposes that variation may be maintained by 

a balance between the mutation rate to slightly deleterious alleles (which 

appear as low frequency electromorphs; at different integer positions on 
gels according to Ohta and Kimura'S49 'step' model), and selection against 
these alleles. Biochemical heterogeneity between alleles (in terms of 
their bydrolysis rates using natural substrates) has indeed been, 

demonstrated by Danford and Beardmore, 50 
supporting the contention that 

differential selection between alleles is at least possible. 

Excellent reviews of the state of the selectionist/neutralist debate 
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up until 1974 are given by Lewontin5l and Johnson52 i both agree that 

on balance most evidence supports selective models. 

One implication of the selective hypothesis is that the overall 

level of electrophoretic variation in a population Bhould be adaptive. 

Consequently many recent contributions to the debate have taken 

the form of attempts to test the suggestion of Dobzhansky53 and more 

recently Van Valen54 that the overall level of polymorphism in a 

population represents an adaptive strategy maximising population fitness 

in an heterogeneous environment. Those populations exploiting a wide 

resource spectrum (or 'niche') should show greater genetic variability 
55 than those which are habitat specialists. Babbel and Selander in an 

electrophoretic study of four species of flowering plant and Nevo, 56 have 

recently produced evidence in support of this concept but an electro- 

phoretic survey of the brachiopod Frieleia halli undertaken by Ayala and 
Valentine57 appears to refute the theorye 

major problem with such studies-is that estimates of environ- 

mental parameters are frequently made by subjective, rather intuitive 

methods and as such are somewhat crude. Moreover. the differences in 

levels of variation between populations may be so small that the technique', 

becomes insensitive, We need to look at populations having very different 
levels of variation and heterozygosities, preferably from the same specieso 

Since these levels may theoretically be affected by the 

reproductive strategy of a population it is of interest to compare levels 

of eleotrophoretic variation in natural Populations havinig very different 

reproductive strategies* 

In absolute terms electrophoretic surveys of loci in sexually' 

reproducing populations have revealed levels of genetic variation an order 

of magnitude greater than those previously considered likely (for reviews 

see Selander 23 
and powel, 58 ); most species are polymorphic at about 34o 

of their loci and have a mean heterozygosity of around 1CVo. In view of 

the sampling bias inherent in the technique, such levels are remarkable 

for their consistency. Variation in the vast majority of sexual 

populations is distributed evenly both within and between populations 

with genotype frequency distributions usually conforming to Hardy-Weinberg 

expectations. 
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In contrast, electrophoretio surveys of apomictio populations 
(mainly insects) by, for example, Suomalainen, 59 Saura 

6o 
and Lokki 

61 

have revealed rather different patterns of polymorphism to those in 

sexual populations* Levels of variation within apomictic species 

are usually similar to those found in closely related sexual species 
61 

but variation is distributed in a different way. Individual populations 

are either monomorphic or weakly polymorphic with the bulk of variation 

represented by differences between populations* 

Due to the lack of recombination and segregation inherent in 

apomixis, recessive mutations are rarely exposed to selection. 
Consequently such mutations may accumulate as heterozygoteso Given 

sufficient time populations might be expected to become highly hetero- 

zygous and indeed this is generally the case. Lokki 62 
has modelled 

this accumulation and has shown that -there is a maximi3m value of 
functioning heterozygosity which is attained after approximately Irl 
generations (u= mutation rate)* Populations may also originate with 
high heterozygosity due to hybridisation; parthenogenesis is often an 
evolutionary response to the Imeiotic barrier' caused by hybridisation. 

Patterns of polymorphism similar to those outlined above have been 

recognised in apomictio populations of grasshoppersq 
63 

cockroaches, 
64 

aphids 
13 

and water-fleas. 
14 

The origin of this variation in apomictic species has been shown 
to be due to two prooessess 

the polyphyletic origin of populations giving multiple clones 
in a particular geographic area. This can be due either to 

multiple introductions of divergent clones into the area such 

as those found in populations of the colonising cockroach 
1ý5rcnoscelus surinamensis 

64 
or sympatric multiple origin of 

parthenogenesis such as that suggested for the bagworm moth 
Solenobia triquetrell by Lokkie 59 

divergence due to the accumulation of mutations and chromo- 

somal re-arrangements such as that suggested, by Suomalainen 

and Saura 
65 

for apomictic populations of the weevil 
Otiorrhvnchus scabero 

Both these processes may be simultaneously or singly responsible 
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for producing genetically divergent clones each adapted to a particular 

geographic and/or biotic environment* 

Since most of the apomictio organisms that have been studied have 

persisted in the study areas for a very long time (in the case of some, 

weevil species probably since the last Ice Age 
65), 

we are looking at the 

genetic structure of such populations after the above evolutionary , 
processes have occurredo Little is known of the transient processes 
involved during clonal divergence. Direct evidence might be provided 
by the study of species that have recently invaded new ranges* 

One such species is the aquatic operculate prosobranch snail, 
PotamopyrRus ienkinsi (Smith) i thought to be the only European molluso 
to reproduce parthenogenetically. 

66 
No cytological evidence of meiosis 

has been found in this species 
67,68 

and only a single male has been 

found in over one hundred years of collecting by enthusiastic mala- 
cologistse 

69 
It is therefore reasonable to assume that reproduction 

is apomictic; further evidence supporting this contention is presented 
in the present worke 

P. jenkinsi is an extremely prolific and common species and, since 
its first appearance in Britain in the mid-nineteenth century, hasý 

successfully colonised a wide range of habitat types throughout Britain 

and Europe, 
70t 71 Indeed, it is frequently the dominant organism in 

immature freshwater ecosystems72 and has been recorded from virtually 

every freshwater habitat type except those in montane regions, In 

brackish water Pe jenkinsi is sometimes found co-existing with one or more 

of the obligate sexually reproducing Rydrobia species. In Britain and 
Europe this latter genus is represented by three. species; He ventrosa, 
Montagu, He ulvae Pennant and He neglecta Xuusj all of which are confined 

to brackish or sea water* 

The taxonomic status of P. jenkinsi is currently uncertain. Few 

population studies have been carried out on this species but Warwick73 

has recognised three morphologically distinct strains (his'Al B and C) 

which seem to be ecologically separated by salinity. 
74 Winterbourn75 

and more recently Simpson76 have compared shell form and body pigmentation 

of -these strains and question their distinctnesst suggesting that they in 

fact form part of continuous variation within the speciese The electro- 

phoretic evidence presented here fully supports Warwick's division of 
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P. jenkinsi and the strains are accordingly referred'to as P"enkinsi A, 

Po jenkinsi B and Po jenkinsi C, in the texto 

The species was original, 
7 

placed in the genus ltvdrobia 
(w Paludestrina) but is now recognised-as having much closer affinities , 
(e. g. in the anatonV of the reproductive system) to the Australasian genus 
Potamopyrgus and is thought by Winterbourn7a to be conspecific with either 
Pe antipodarum. (Gray) from New Zealand or the Australian species Po nigra 
(Quoy and Gaimard). rI 

Both these latter species are interesting since populations areý'- 
often found containing a proportion of parthenogenetioýfemales789 

79 

in P. antipodarum the proportions of parthenogenetic females in various 
populations appear to be constant (for up to 8 years, i. e. about 30 

80 generations) irrespective of fluctuations in population sizet suggesting 
that sex ratio in this species may be adaptive. 

Ecologically, Po antiPodarum and P. nigra are found in a wide range 
of aquatic habitats78 and are often highly successful colonisers of both 

freshwater and brackish habitats. 

In the Hydrobiidae, thereforej we have a number of species whose 
modes of reproduction range from wholly asexual (P. jenkinsi) through 

mixed asexLial/sexual: (P. antipodarum, and Ps nigra) to obligate sexual 
(the Hydrobial species* 

The work described-in this thesis was designed to investigate the, 

nature and extent of genetic variation in populations of these species 
having different reproductive strategies and to attempt to answer the 
following questional 

In what way are the levels and patterns of variation in such 
populations adaptive? 

ii) Is the nature of such variation related, to colonising ability? 
iii) What are the general taxonomic relationships between the 

British and Australasian Hydrobiidae? 
iv) In particular, is P. 5enkinsi closely related to the 

Australasian species of Potamopyrgus and if so which one? 

Since morphological markers are few in these species, estimates of 
their relative levels of genetic variation were prepared from large-scale 
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electrophoretic surveys of similar loci in each population* As is 

frequently the case in such surveys, the interpretation of the genetic 

'significance 
of the zymograms was hampered_by a paucity of breeding datar 

particularly for the wholly apomictic populations of Potamomyrgualwhere 

crosses could not be set up. Many workers attempt to solve this problem 

either by reference to loci in closely related sexually reproducing 

species or by guesswork based on the recognition of ttypicall electr'o- 

phoretic patterns. For various reasons (see Chapter III) these 

approaches were, found to be inappropriate to the present work. 
Consequently bands were assigned to loci on the basis of homologies in 

their physical and biochemical properties; the method is similar to that 

used by Oxford 
81 

in an attempt to classify the eaterases of the land 

snails Cepaea nemoralis and C. hortensis. 

The use of electrophoretic markers in surveys of variation within 

closely related species allows the calculation of estimates of the 

genetic distance between them to be made* The application of such 
techniques to the taxonomic problems associated with P. Jenkins'i is 

presented in Chapter VI9 together with a full discussion of the validity 

of such estimates* 

A further advantage of using electrophoretic methods is that 

survey results may be compared with the bulk of data upon which current 
debates on the origing nature and maintenance of genetic variation in 

natural populations are focussed. The results of. the H. Ydrobiid surveys, 

undertaken in the present work are discussed relative to other data and 
. in the'light of the effects of reproductive -strategy on overall levels and 
distribution of genetic variation* 

The relationship between variation and ecological strategy (in 

particular that of colonising ability) is discussed and investigated 

experimentally by estimating the relative re'source utiliSatioý curves for 

temperature and salinity tolerance of British species*of'Hydrobia and 
Potamopyrgus having different reproductive strategies (see Chapter VII)e 
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Plate I: Shells of species used in the study; 

A- Hydrobia ulvae - from popln. 56 

B- Hydrobia neglecta from popln. 62 

C- Hydrobia ventrosa from popln. 50 

D-P. jenkinsi strain A- from popln. 11 

E-P. jenkinsi strain B from popln. I 

F-P. jenkinsi strain C- keeled specimen from poln. 35 

G-P. antipodarum - smooth-shelled specimen from popln. 45 

H-P. antipodarum - strongly keeled specimen from popln. 45 

J-P. nigra - smooth-shelled specimen from popln. 40 

K-P. nigra - Keeled specimen from popln. 42 
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CHAPTER I: MATERIALS AND METHODS 

The methods described in this chapter only refer to general 

techniques used in this study* The more specialised techniques 

associated with, for examplet molecular weight determination are 
described in the appropriate chapterso - 

Snail Collection and Recording 

Samples of population of snails were obtained both by 

myself and by persons to whom requests were sent. Wherever possible, 

details such as the site grid reference, date of'sampling and the general 

physical and biotic nature of the site were recorded. Samples of water 

were obtained from several sites and the chloride concentration estimated 

by titration against N/35-5 'LN03 solution using lead chromate indicator. 

Chloride concentration in mg11 was calculated-using the formula 

Cl m 1000 
x. 

'Where xa volume (ml) of sample titrated and y- volume (ml) 

N/35-5 AgN03 needed to just change the indicator from yellow to red. 

A list of the sampling locations together with the details 

of each site can be found in the Appendix and a selection of shells is 

illustrated in Plate 1. Snails for electroPhoresis were taken randomly 

from the samples. The remaining snails were then placed in a'stook 
tank reserved for that population* Stock tanks were 30 cm x 3o cm x 10 

cm clear plastic boxes (fitted"with lid*s)- containing aerated (10 days) 

tap water or an appropriate dilution of sea-water obtained from 

Scarborough, North Yorkshire. * Snails were maintained on a diet of 
boiled, dried lettuce. During the winter monthsp lettuce was-often 

covered with a residue (Possibly an insecticide) toxic to the snails 

and leaves weret therefore, thoroughly washed (30 minutes)'in hot tap 

water before boiling.. No significant mortality occurred in laboratory 

stocks fed on lettuce treated in this way, Pieces of chalk were added 
to the tanks and appeared to help the snails lay down a strong shell, 

making them more resistant to handling. 

Larger stock tanks from which large numbers of snails could 

be obtained (for e. g. molecular weight studies 0 see section II - 3) 

were started from single population samples placed in plastic bins 

(60 cm Oc 30 cm x 30 cm). These cultures were maintained in a similar 

way to the smaller stocks mentioned above* 
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Fig. 11 : Sampling sites of Potamopyrgus jenkinsi in Britain 
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I-1-1P. jenkinsi (Smith) 

Populations of Po jenkinsi were sampled at 38 locations 

throughout England, Scotland and Wales. One Irish population was 

sampled and snails from a population in Brittany were collected by 

M. Je Winterbourn, Specific locations are given in the Appendix and 
illustrated in Fig. 1. All were lowland sites which differed widely 
in climate and general ecology. P*-Jenkinsi was usually found in 

flowing water although some coastal populations were collected from 

still water. Snails were collected with a pond-net or by picking out 

stones from the water-course and removing the attached animals* 
Samples of more than 30 individuals were collected, from 33 of the sites. 
Snails were maintained in the laboratory as described in section I- 1* 

Having first established that specimens were P. jenkinBi 
(using Macan'), samples were examined for -the presence of males by 

looking for the presence of a penis on the head. All samples of 
P. jenkinsi contained only females, usually with young in the brood 

pouch. 

Shell morphology and body pigmentation was found to be of 

three distinct types, corresponding to the strains described by 

Warwick 2 
as A, B and C, All the snails from inlAndl fresh water sites 

had a thin, usually-encrusted, shell which was slenderer and longer than 
that of snails from coastal, brackish site. . Mantle pigmentation in 
freshwater specimens varied from almost colourless to dark . grey, Snails 

always had the same pigmentation within a populationo Brackish-water 
specimens had very dark grey mantles with a black spot near the eye and 
the shells were thicker and more compact than those of fresh-water snails* 
The snails from Burgh Castle, Suffolk (popln. 35) resembled the brackish- 

water snails but shells were smaller with a pronounced keel and the body 

pigmentation was a 'Patchy' grey* All populations (except that from 
Brittany - sed below) were'found to be monomorphio for one of these 
three morphological types* 

Using Warwick's criteriag all the freshwater specimens were 

classified as strain A (referred to as Po jenkinsi A in the text), the 

two samples from brackish-water as strain B (P. jenkinsi B) and the 

snails from Burgh Castle as strain C (P., jenkinsi C)e Shells of snails 
from the latter site were uniform in shape and not the 'slender and stout' 

mixture described by Warwick for strain C. The Brittany population 

contained both strain A and strain Ce 
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Fig. 2 Sampling sites of the Australian species 

pot=opyrgus nigra 
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I-1-2 The Australasian species 

Samples of two populations of the New Zealand species 
Potamopyrgus antipodaruM (Gray) were obtained from inland fresh-water 

sites in North Island. The snails were similar in shell morphology and 
body pigmentation to P. jenkinsi A but were larger and some individuals 

were more tumid (resembling P. jenkinsi B in shell morphology). A high 

frequency of shell ornamentation (48% of individuals in the Waikato River 

population and 73% in the Campus Lake) was presentj consisting of a spiny 
keel on the last three whorls of adult snailse 

A small sample of P. estuarinus Winterbourn was obtained 
from a saline lagoon in South Islandl New Zealand. The snails super- 
ficially resembled P. antipodarum but, like the British Hydrobia ulvae 
(Pennant) had no brood pouch* No pigmentation was evident on the 

tentacles (unlike H. ulvae which has a black spot at the tip) and the body 

was an even grey colour. The sex ratio in this species was approximately 
1S1. 

The Australian species P. nigra (Quoy and Gainard) is 

taxonomically rather loosely defined3 but samples of snails considered by 

Prof. W. Do Williams (University of Adelaide) to be of this species were 

obtained from six sites near Adelaide, A further sample of P. nigra was 

obtained from a'population at Narrabeen near Sydney. 

Snails from these. locations (Pig. 2) were similar to 
P. jenkinsi A in shell morphology and body_pigmentation. Males (up to 
Jo%) were present in some populations (40v 419 43 and 48) and absent in 

others (see Appendix)* Less than'10% of the snails had ornamented keels, 

all populations contained some snails'with ornamented shells*' 

Many snails in the six Adelaide samples arrived in a 
distressed condition probably as a result of low temperature and pressure 
in the aircraft hold. They were immediately frozen and stored at -200 C 

until needed for electrophoresiso 

British species in the genus Hydrobia 

Populations of Hydrobia ulvaeq Ho ventrosa (Montagu) and 
H* neRlecta Muus were sampled from various sites in Britain. Site 

salinities were measured'whenever possible and snails were maintained in 
the laboratory in an appropriate dilution of sea-water. Site details 

are given in the Appendix, 
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I- Methods of Extraction 

I-2-1 Preparation of extracts from single snails 

Individual whole snails were placed in 6 mm. diameter x6 mm. 

deep cylindrical depressions in perspex blocks. 0,2 ml of 40% sucrose 

solution was added at 50C and the snail homogenised using a closely 

fitting rotating glass rod mounted in a Gallenkamp variable speed Btirrero 

The method was similar to that used by Johnson4 for preparing extracts of 

Drosophilao The homogenate was allowed to settle for five minutes and 

the supernatant fluid then withdrawn for electrophoresiso Sufficient 

extract for several electrophoresis runs was producedo Extracts were 

stored by placing the (labelled) perspex blocks covered with plastic 

'cling' film into a deep freeze at -200C. 

I-2-2 Preparation of mass extracts 

Fifty adult snails were placed in a 10 ml glass homogeniser 

tube with 5 ml of 40% sucrose at 50C, Homogenisation was achieved using 

a rapidly rotating glass rod and the sample allowed to settle for ten 

minutes, The supernatant fluid was carefully withdrawn using a bulb 

pipette and placed in a vial for storage at -20 
0 C. No detectable change 

in staining intensity of the enzymes used in the study occurred after up 

to three months' storage. 

Electrophoresis of Snail Extracts. The Continuous 
pH Slab System 

Extracts were run on starch gel and polyacrylamide gel under 

continuous and discontinuous pH conditions using several different gel and 

electrode buffers* Two methods were eventually chosen giving a large 

number of bands with good resolution. 

For the population surveys a continuous pH polyacrylamide 

vertical slab gel system was chosen as the apparatus allowed the separation 

of up to 50 individual extracts on the same gel - an important factor 

enabling large numbers of snails to be electrophoresed quickly and allowing 

cross-reference between extracts on the same gel to be easily madee 

For molecular weight studies the disc electrophoretio method 

was used (see section I- 4)- 
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Plate 2: Apparatus used for vertical slab electrophoresis. 

The 'comb' used to form sample wells is lying on top of the 

watercooled plates which have been separated to reveal the 6mm 

spacer. 

Plate 3: The disc electrophoresis apparatus. The upper 
buffer compartment has been removed and inverted to show 
the 6mm tubes in which gels are formed and run. 



I-3-1 Apparatus 

An electrophoresis tank based on a design described by 

Roberts and JoneS5 was made by the workshop staff of the University of 
York* The design was modified by making the tank twice as long as 
the original. 

The apparatus basically consisted of two vertical water- 

cooled perspex plates separated by a6 mm perspex spacer (see Plate 2). 

Contact with the electrode buffers was made'directly with the gel in 

the top (cathode) compartment and via a dialysis membrane between the 

bottom of the gel and the anode compartment. Electrodes were made 
from platinum wire which spanned the entire'length of each buffer 

compartment. The apparatus was contained within a fan-ventilated case 
fitted with a hinged lid. All cooling connections and drains were 
fitted with copper earthing blocks and the case was equipped with double 

safety switches so that it was not possible to open the lid with the 

power supply switched on. Power was supplied by a ILocartell voltage- 

regulated power pack* 

The plates were cooled by cold tap water; 'no evidence of 
gel warming was found under the electrophoretio conditions usedo 

I-3-2 Preparation of Vertical Slab Gels 

Stock solutions used in the preparation of gelB were based 

on those described by Smithý The following stocks were made up and 

stored at 50C in one litre dark*glass bottles. 

Stock Solution As 45-5 grm tris (hydroxymethyl) 

aminomethane (SIGMA) + 20 grm glycine, per-litre of 
solution. When diluted. for the preparation of gels 
and electrode buffer the solution PH was 9-5- 

Stock Solution Bs 1-4 grm ammonium persulphate per 
litre of solution* 

Stock Solution Cs- For the preparation of 7-5% gels, 

-300 grm acrylamide and 8 grm bis - NjN1 -, methylenebis- 

acrylamide, (SIGMA) were dissolved-in 800 ml distilled 

water and the solution made up to one. 1 
' 
#ret 

., 
For 5% 

gels 200 grm acrylamide-and 5.33 grm bis per litre 

of solution were used* 
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The apparatus needed a 'total of 500 ml of gel solution to 

prepare a single gel. This was made up by thoroughly mixing 125 ml of 

solution A with 125 ml of solution Ce 0-4 ml of TEMED (N#N, N'gNll 

tetramethylethylenediamine) was added to 250 ml of solution B in a 

one litre beaker and the A+C mixed solution added* The solution was 

quickly and thoroughly stirred with a glass rod and poured into the 

assembled apparatus, The sample well former (the tcom'b' in Plate 2) 

was clipped into placep ensuring that no air bubbles were trapped 

beneath the teeth, and the gel left to polymerise for at least 50 minutes. 

Sargenj has reported the inhibition of acrylamide polymerisation by 

axygen. The comb was, thereforej made so as to fit closely between the 

plates and no problems with inhibition by oxygen were encountered* The 

comb was left in the gel until extracts were ready for electrophoresis 

thus preventing drying out of the top surface. 

I-3- Electrophoretic, method 

Extracts were absorbed into 3 mm x6 mm sample wicks out 

from Whatman No. 1 filter paper* The cooling water was turned on, the 

comb carefully removedq and the wicks placed in'the wells making sure 

that no air bubbles were trapped beneath. A space was usually left 

between groups of ten wicks to allow the gel to be cut into sections 
(see section I-3- 4)- 

Electrode buffer was prepared by diluting 250 ml of stock 

solution A to one litre with distilled water. This dilution gave a 
final buffer concentration and PH (9-5) identical to that of the gel. 
500 ml of electrode buffer was added to the anode compartment and 500 ml 

added slowly and carefully (in order to disturb the wicks as little as 

possible) to the cathode compartmente If dehydrogenases were to be 

stained for, then 12-5 mg. NAD were dissolved in the cathode buffer 

(see section I-5- 3). 

When the cathode compartment was filledo the safety case 

was quickly closed and the fan ventilator switched on* A voltage of 

150 to 200V was then applied to give a running current of 200 mA, it 

was found that a run time of four hours under these conditions gave 

adequate resolution of the isozymes studied. The exception to this was 

in the resolution of the most cathodal bands (in e. e. Potamopyrgus - see 

section IV -3- 1) where gels were run for eight hours* 
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Fig. 3 A simple apparatus for slicing polyacrylamide slab gels 
(modified from Henderson 8) 
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Gel slicing 

Starch gels were found to give poor resolution of bands 

relative to acrylamides Howevert one of the advantages of using starch 
is-that gels can be conveniently cut into several'slices which can then 

each be stained for a different enzyme system* 

Acrylamide gel ist unlike starchq elastic at the gel 
concentrations used* This property is convenient when handling gels, 
reducing breakageg but when slicing is attempted the gel simply deforms 

and then splits randomlyo. 
- 

It has been reported by Henderson 8 
that 

compression of the gel reduces its elasticity and allows controlled 

slicing to be performed* An apparatus was devised for slicing (Fig. 3) 

which consisted of a-6 mm plate glass base and top with perspex spacers 

placed between them* Pressure was applied by two"Bulldog' paper clips. 

Slicing was performed by placing the gel section (usually 

eleven sample wells long and wetted with electrode buffer) between the 

plates and attaching the clips making sure that the top and bottom plates 

were parallel* Nylon fishing, line (Bayer) of 1 kg breaking strain was 
then pulled through the gel in the direction shown. The apparatus, was 
then disassembled, the gel slices-carefully separated from each other, and 
each slice placed in an appropriate, staining solution* Up to three- - 
slices could be obtained from a6 mm slab gel using spacers of different 

thicknesseso 

I-4 Electrophoresis of Snail Extractso 
The Discontinuous DH Disc Gel Systemo. 

I-4-1 Apparatus 

The apparatus used was based on the, ldisal system described 
by Davis and illustrated in Plate 39 The electrophor6tic tank consisted 
of two cylindrical. perspex buffer compartmentsq the, anodal. placed below 
the cathodal. Gels were prepared in either 5 mm diameter or (in order 
to electrophorese 0-05 ml extracts) 2-5 mme diameter x 75 mm glass tubes* 

Longer (110 mm) tubes were sometimes used (e. g. to resolve close bands) 
by the simple expedient of placing corks between-the upper buffer com- 
Partment and-the perspex spacer* Each apparatus-, holds-only eight gels 
making the technique unsuitable for large-scale population surveys. 
Howeverl a front is formed during electrophoresis enabling accurate 

measurements-of Rf values to be made* This, together with the fact that 
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several concentrations of gel can be included in each rung-makes the 

technique suitable for the molecular weight determination described 

in section III - 3). 

1- 4- 2 Preparation of disc gels and electrode buffer 

The stock solutions given below were made up according 
to the recipes in Davis. 9 Solutions were stored at 50C in 250 ml dark 

glass bottles and no loss of quality was found after storage for several 

months except in the case of the ammonium persulphate solution which 
deteriorated after six, weeks'storage. This was freshly prepared at six- 
monthly intervals., 

Stock solution As 48 ml MHC1-'+'36.6 grm'tris + 0*23 ml 
TEMED made up to 100 ml with distilled water* 

Stock solution Bs 5-98 grm tris + 0-46 ml TEMED + 
approx- 48 ml MIC1 (PH adjusted to 6-7 by titrating 
with DUM) to 100 ml with distilled water* 

Stock solution Cs 30 grm acrylamide + Oo8 grm bis made 
up to 100 ml with distilled water. , This solution gave 
a final gel concentration of 7,5%o acrylamides For 5%o 
gels 20 grm acrylarnide + 0-533 grm bis/100 ml solution 
were used* 

iv) Stock solution D: 10 grm acrylamide + 2-5 grm bis to 
100 ml with distilled water. ' 

V)- Stock solution Es 4 mg riboflavin, made up to 100 ml 
with distilled water. 

Gels were prepared in two Parts; an up,, pýe, r Ispacert gel and' 
a lower 'separating' gel. This system was found to give resolution as 
good as the more complex system described by Sargent and better than by 

using the separating gel alone*-' Tubes were stoppered lightly at one 
end and placed vertically in a rack. A mark was made with a felt-tip 

pen 1 cm from the unstoppered end. 

24 ml of lower gel solution was prepared by-thoroughly 

mixing 3 ml solution Al 6 ml of*the appropriate solution C, 3 ml 
distilled water and 12 ml ammonium persulphate solution* The mixture 

was Pipetted into the tubes'using a 25 ml disposable plastic syringe and 
was sufficient'to fill 16 tubes to the mark. ' A'layer of distilled water 
was then applied to the top surface by means of a hand-operited spray gun., 
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This layer ensured that polymerisation was uninhibited by oxygen 
(section I-3- 2) and that the top surface of the polymerised gel was 

flat and uniform* The tubes were left for one hour at room temperature 

to allow polymerisation to take place* Tubes were placed out of direct 

sunlight as a high light level seemed to promote the formation of gas 

bubbles which distorted the gel., 

After polymerisations the water layer was flicked off and 
the gel surface dried with tissue paper* Upper gel solution was 

prepared by mixing one part (by volume) of B, two parts of D and one 

part of E with four parts of distilled water. The solution was usually 

prepared in batches of 24 ml and stored at 50C in a 250 ml dark glass 
bottle. 0-15 ml of upper gel solution was pipetted into each tube 

containing lower gel and then covered with a water layer as before* 

Tubes were placed 10 cm from a 40 watt fluorescent light and photo- 

polymerised until the appearance of slight opacity indicated that they 

were ready for use. Tubes prepared in this way were either used 
immediately or stored at 50C for up to three days. It was found that 

the water layer tended to diffuse through the gel during storage giving 

erratic electrophoretic results, Tubes to be stored, therefore, had 

the water layer removed as before and were wrapped in 'cling filmt to 

prevent dx7ing out- Similar samples applied to fresh gels and to those 

stored in this way for five days gave identical electrophoretic patterns* 

Electrode buffer was prepared by dissolving 0-3 grm of tris 

and 1 grm of glycine in 500 Ml of. distilled water for each apparatus* 
The buffer differs from that used by Davis (which contained 1 *44 grm 
glycine and 0.3 grm of tris/500 ml) and was found to give better 

resolution of bands in extracts of Potamopyrgus. The buffer was cooled 
to 50C before use* 

I-4- Electrophoretic method, 

The stoppers were carefully removed from the tubes and a 

mark made on the glass with a felt-tiP waterproof pen 5 cm from the 

upper gel/lower gel junction (8 cm for gels in 11 cm tubes)* Tubes 

were then inserted into the upper buffer compartment grommets (see 

Plate 3) and the space left ýn the tube by the rubber stopper filled with 

electrode buffer* 250 ml of electrode buffer was placed in the lower 

buffer compartment and the apparatus assembled making sure that no air 
bubbles kere trapped beneath the tubes. The upper compartment was 
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filled with 200 ml electrode buff er and a few drops of bromophenol 

blue solution were added to mark the front during eleotrophoresis. 

Extracts in 4D% sucrose (section I-2- 1) were layered 

on to the upper gel surface using 1 m3. plastic syringes* 0.1 m3. of 

extract was used for quantitative studies* Extracts were added carefully 
to avoid disturbance by air bubbles and vibration. The inclusion of a 

gel containing no extract showed that no cross-contamination occurred 

when this method was used* When the extracts had been added to all 

eight gels the lid containing the cathode was carefully placed in 

position and the apparatus placed in a refrigerator at 50 C" Voltage 

was applied (using a Heathkit constant-voltage power pack) and adjusted 
to give a current of 24 ma (3 ma per tube). An initial voltage of 
200 V was required and this dropped to about 180 V during a rung 
indicating that the resistance of gels changed during a run. The rate 

of migration of the front varied with the extract applied indicating 

that differences in extract composition (protein concentration, lipid 

content, etc*) affect ion flow. 

When the front in a particular tube had reached the distance 

mark, the power was briefly switched offt the tube removed and a rubber 
stopper placed in the grommet to prevent buffer loss. The current was 
automatically reduced by the constant voltage facility in the power pack 
as gels were removed. In this way all tubes could be run to the same 
distance, making inter-tube comparisons visually simple. Run time was 
shown to have no effect on 

' 
banding patterns by running the same extract 

on four gels for twice as long as normal (80 minse at 1-5 ma per tube) 

and comparing these with the same extract run under normal conditions 
(4o minutes at 3 ma per tube)e 

Gels were removed from the tubes by inserting a thin 5 cm 
hypodermic needle between the glass and the gel and, whilst squeezing 
distilled water out of the syringet moving the needle around the 

circumference of the gel. This was done with the distal end of the 

tube under the surface of distilled water in a plastic dish. With 

practice, gels could be freed from the tubes quickly and without damage* 

Gels were then placed in appropriate staining solutions. 

After useq tubes were washed thoroughly by brushing the 

inside surface in hot soapy tap water* They were then rinsed 

successively with hot tap water and distilled water containing a few 

drops of detergent. This procedure gave even layering of water on to 
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the gel surface and prevented gels sticking in the tubeso The tubes 

were air-dried over a heater and stored in a dry, closed container* 

I- Staining Procedures, 

Gels were stained for general proteins or for iso-enzymes 

where the following general principle was useds- 

cofactors , 
enzyme + substrate product 

+ soluble 
dye-coupler 

insoluble dye product 

Co-factors may be metal ions such as Mg 2+ 
and Ca, 2+ 

or co- 

enzymes such as NAD-b The insoluble dye products appear as bands at the 

sites of enzyme activity* The intensity of the bands is dependent on 
the rate of the forward reaction which in turn depends on enzyme 

activityt enzyme concentration, substrate concentrationg pH and 
temperature. Substrate concentration was usually in excess and the 

temperature was constant during staining. In most staining procedures 

the substrate and the dye-coupler were both present in the staining 

solution (a simultaneous coupling reaction)- Staining was carried out 
in 10 ml test tubes (for disc gels) or in flat dishes (for slab gels). 

In order to avoid local depletion of substrate and 4ye- 

coupler the tubes were inverted periodically and the dishes placed on 
constant-speed horizontal shaker. 

I-5-1 Esterases 

The general principle behind the detection of esterases 
is that they are able to hydrolyse the ester bond of an (artificial) 

substrate releasing a product able to combine with a diazonium salt to 

give an insoluble dye product. Substrates are commonly a, or 

naphtbyl esters which release o<. - or naphthol respectively. These 

combine with the diazonium salt (Fast Garnet GBC (Gurr) was used in the 

present study) giving an insoluble purple (o<-naphthol) or red 
(ý- naphthol) azo dye* 

The basic staining solutions containeds 
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20 mg naphthyl ester (Sigma) dissolved in 0-5 ml acetone. 
100 mg Fast Garnet GBC 

100 ml 0.2 M sodium phosphate buffer pH6. 

The general esterase stain giving the greatest number of 
bands contained a mixture of o(-naphthyl acetate, ý -naphthyl acetate and 

cK -naphthyl. proprionate (20 mg of each/100 ml of solution)* The 

stain was used for the large-scale surveys described in chapters 4 and 
5- Additional substrates were used to determine the substrate 

specificities of esterases; the use of these is described in 

section III -I-1* 

The phosphate buffer was chosen from a number of standard 
buffers as it gave a higher hydrolysis rate with most substrates* 
A stock solution was prepared by dissolving 27.36 grm Na 2 HPO 4.12H 20 
and 8.8 grm NaH2PO4- 2H2 0 and making up to 2 litres with distilled 

water* 

Gels and staining solutions were kept at room temperature 
(usually 220C) in the appropriate containers and periodically inspected* 

When the gel was optimally stained it was placed in 30% ethanol to stop 
the reaction and fix the bands. 

I-5-2 Acid and Alkaline Phosphatases 

The staining method for acid phosphatase was based on that 

given by Shaw and Prasado 10 
Gels were stained in the following 

solutionss- 

20 mg c<-naphthvl acid Phosphate (Sigma) 

100 mg Gast Garnet GBC (Gurr) 

50 mg Me'2" 2H20* 
100 m3. sodium acetate buffer PH5- 

The acetate buffer was prepared by dissolving 28.1 grm 
CH 3 COONa and 6-87 ml glacial acetic acid in distilled water and making 
the solution up to 2 litrese 1 grm of MgC1 2H 20 was added and the pH 

adjusted to 5 with acetic acid, Magnesium was found to be an essential 
cofactor for the activity of ILvdrobiid phosphataseso 

Alkaline phosphatases were stained for using a PH 8-5 

0*2 PhOsPhate buffer In Place of the acetate buffer used above. 
Staining Procedure was similar to that used for esterases 

34 



(section I-5- 1) and the reaction was stopped using 3Cýo ethanol 

as before* 

When extracts of P, jenkinsi A and Hydrobia ventrosa were 

run on 7-5% disc gels and the gels stained for alkaline phosphatase as 

abovep the zymograms obtained were identical to those seen on gels 

stained for acid phosphatasep although staining was less intense. 

Extracts run on %a gels also gave the same banding patterns when stained 
for acid or alkaline phosphatases and the alkaline phosphatases had the 

same molecular weights (see section III - 3) and were probably the same 
isozymes* In view of the higher hydrolysis rate under acid (PH5) 

conditions9 gels were only stained for acid phosphatase in subsequent 

work* 

I-5- Dehydrogenases 

Detection of dehydrogenases on gels relies on the reduction 

of a tetrazolium salt to formazan; an insoluble blue dyes The reaction 
is driven by a hydrogen ion from the dehydrogenation of the substrate by 

the enzyme* The hydrogen ion is transferred to the tetrazolium salt by 

NAD and phenazonium methosulphate (PMS). 

SUBSTRATE NAM methvl-. dihvdro- FORMAZAN BLUE 
Phenazonium ion (INSOLUBLE) 

PRODUCT NAD+ methylphenazonium TETRAZONIUM SALT 
ion 

The substrate is usually the sodium or potassium salt of an 
organic acid or an alcohol. A more complete account of the theory 
behind dehydrogenase staining is given by Wilkinson* 11 

'Standard' enzyme staining methods (developed for mammalian 

and Drosophila 
13 

studi6s) do not work for extracts of all organisms. 
1405 

Enzyme staining depends on factors such as protein concentrationt 

substrate specificity and PH. Most authors only publish details of 
successful procedures and consequently information on the suitability of 
staining procedures for particular phylads of organisms is sparse. This 
is unfortunate as much time and energy is wasted on unsuccessful 
techniques and much information is lost on the possible metabolic 

significance of staining failures* 

In order to assess the suitability of dehydrogenase stains 
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for the study material various stains were tried on disc. gels prepared 
by running mass extracts of P. 

-Jenkinsi 
A, H. ventrosa, H. ulvae and 

a Drosophila melanogaster extract (prepared from approximately 200 flies 
homogenised in 20 ml 4CO sucrose as described-in section I-2- 2). 
Since-cofactor requirements may differ between enzymest each stain, was, 
tried with NAD and NADP added together. Gels were stained in different 

pH conditions by using-buffer solutions of pH 69 7t 8, and 9. 

The staining solutions were based on the general recipes 

a) 500 mg. of substrate (if a solid) or 1 ml, (if a 
1. iquid)'was dissolved"in-buffer at 50C- If"the acid 
form of the substrate was used then sufficient solid 
HaCO YH20 was added to adjust the pH to that of the 
buffer* 

b) 20 mg NAD +, 20 mg NADP (Sigma) 

C) 20 mg NBT (Gurr) 

d) 5 mg PMS (Sigma) 

made up to 100 ml with cold (500 buffer, and stored in the dark until 
needed* 

Staining solutions were prepared during electrophoresis 
runs'and'never stored for more'than 30 minutes. Incubation was carried 
out at 22 0C for 50 mins- Buffer solutions were prepared as followst 

PH6t 1.368 iim-Na2IiPO'/',, ̀12HýO'+ 0-44 jrý NaH PO"' 2H 0 42 4* 2 
in 100 ml solution. 

PH7s- 1*791 grm NaHPO 4 ., -12H20 + Oe7ý grm, NaH2 P040 2H 20 
in 100 ml solution* 

pH8: . 695, grm Na0PO 12H 0-+'0442 grm'NaH PO 2H ,0 4' 2242 
in 100 ml solution. 

pHqS 0.2 m tris/HC1 

Electrophoresis was performed using the discontinuous pH 
method described in section I- 4)- The results of the experiment are 
813mm, q ised in Table le Only MdH was found to stain satisfactorily in 
the Hydrobiids although Drosophila extracts stained normally (Dickinson 

and Sullivan was referred to for the expected Drosophila patterns) 
except'in the case of glucose-6-phosphate dehydrogenase where no bands 

were detected, 
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TABLE 11 Results of staining for dehydrogenases at different PH - 
values without adding cofactors to, the, electrode buffer. 

Mass extract, 

Isozymel -- Substrate JZ L*jt Hu. H,, v,, Dros. - Dros-. iýp. * 

Lactate Lactic acid 6 
dehydrogenase (+ Na 2 C03 1 band I band 

8 1 band 
1 band 

Alcohol iso-propyl- ý6 
debydrogenase alcohol -7 2 bands up to 9 

8 3 bands bands 

9 3 bands 

Malate malio acid 6 

dehydrogenase (+ Na2 CO 3) 7 + 2 bands UP to 3 
8 +++ 3 bands bands 

9 +7? ? 

ilexose-6-, 
-',. 

glucose-6- 7 -- up to 2 
debydrogenase phosphate 8 -- bands 

Isocitrate Isocitrio acid 7 -- I band up to 3 
dehydrogenase Na2 C03) 8 -- - bands 

Xanthine Sodium 7 -ý 2 bands 2 bands, 
dehydrogenase xanthate 8 -- 

Glutamate Glutamic acid 7 3 bands M multiple 
dehydrogenase (+-Na2 C03) 8 bands 

Fumarase Pwnaric acid 7 3 ban" 
(+ Ka2 C03 8 

Keys + bands of medium intensity 

+/- bands of light intensity 

-, no bands visible 
7 diffuse region of stain. 

., 
Expected number of bands from : Dickinson and Sullivar, 16 

0 
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Subsequent to these attempts at staining for dehydro- 

genasesq oxygen inhibition of dehydrogenases was reported. 
17 The 

experiment was re-run using buffer solutions of pH7 and 8 and staining 

the gels in the dark in a vacuum flask. Single bands appeared on 

gels of P, jenkinsi A stained for Ldh and Adh; no bands appeared on 

the H. ulvae or He ventrosa gels although Drosophila gels stained as 
before, No extra bands appeared on gels stained for Mdhe 

Wilkinson 11 has reported inhibition of dehydrogenases by 

pyruvateq presumably an important negative feed-back control in the 

citric acid cycle* A set of eight disc gels was prepared by electro- 

phoresis, of a, P* jenkinsi A extract and four gels were stained for 

Idhj Xdhj Ldh, and Mdh as before (without vacuum) at PH8. The 

remaining four were stained with staining solutions to which 0*1 grm 
hydrazine sulphate (a pyruvate inactivator) per 100 ml of solution had 

been added* Mdh [stained as before (? 3 bands) and Ldh stained as a 

single band (in the same position as in the vacuum flask experiment) 

on the gel stained with the inclusion of hydrazine sulphate. No bands 

appeared on gels stained for Xdh or Idh. 

To investigate the effect of, including the cofactor in the 

gel or the buffer (Manwell 18 ), an experiment was devised in which 
NAD (25 mg/1) was added to the upper buffer compartment-of one apparatusp 
the lower compartment of another and to the gel solutions, during the 

preparation of a thirdo Extracts of P. 
_Jenkinsi 

A, H. ventrosat 
H. ulvae and Drosophila were run as before on each apparatus and the 

gels stained for Mdh. with NAD included in the staining solution* Mdh 

activity in all gels was increased by the addition of NAD either to the 

gels or to the upper'buffer solution. - Subsequentlyl 25'mg NAD1100 ml 
of buffer was routinely added to the cathodal buffer in both disc and 
slab electrophoresis. when gels were to-be stained for Mdhg, Ldh or Adho 
Addition of NAD to the cathodal buffer was tried before staining for 

Idh, Xdhl'fumarase and G-6-Pdhl with no suocessol 

It was thought that the lack of success experienced in 

staining for dehydrogenases might have been due to Powerful non-43pecific 

proteases (lysozymes) hydrolysing dehydrogenases during the extraction 

procedure. This possibility was investigated by mixing Drosophila 

extracts with equal volumes of the snail, extracts and electrophoresing 

the mixtures after they had stood at room temperature (approx 2200., for 

30 minutes. A control of Drosophila. extract + an equal volume of 
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distilled water, was used, , The gels were - stained for fumarase as 

before (Table 1) and three bands appeared on the experimental gels 

and on the control in the same positions as before. It isp 

thereforej unlikely that proteases are responsible for the lack of 
dehydrogenase activity found in the Hydrobiid extracts. 

Wool 19, has recently reported similar difficulties in-- 

staining dehydrogenases-in extracts of the parthenogenetic aphid 
Xvzus perBicae. These difficulties may indicate either a 
fundamental differenceýin metabolism between Dros 

, 
ophila (and mammals) 

and these organisms - an unlikely explanation - or that the conditions 
for optimal activity of these enzymes lie outside the scope of the 

methods tried. 

Tetrazolium oxidase (TO) 

Gels stained for dehydrogenases have a blue background 

stain due to the light-induced, deposition of formazan. To bands 

appeared-as clear zones against this background as TO oxidises the 

tetrazolium salt (NBT) in these areas, preventing the formation 

of formazan, - Bands were seen more easily (on diso gels) when the gels 

were briefly exposed to daylight. Although TO was visible on slab 

gels, res-olutionwas poor and TO was not routinely scored in the 

population surveys* TO is now thought to be due to superoxide 
dismutase (SOD)*20 

'Arý, I"e (Anýyl) 

A technique for'deteciing anUlase' was' developed based on 
the enzymatic hydrolysis of starch. 

Starch incorporated into the-gel'solutions, tended to 
(rather unpredictably) migrate out of the polymerised gel during' 

electrophoresise , Robson 21 has recently reported that inclusion of 

starch in acrylamide gels on which Asellus extracts were run led to the 

formation of (artifactual) multiple bands probably due to the'formation 

of enzyme-substrate complexes* 

A more satisfactory method was devised in which gels were 

soaked, after electrophoresis, in a 1% starch solution at room 
temperature for two hours. Gels were then washed thoroughly with two 

changes of distilled water and flooded with iodine vapoure Clear 
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amylase bands appeared against a blue background. Bands were too 

diffuse to score on slab gels but resolution was good on disc gels. 

I-5- Peroxidase (Perox)- 

The usual substrates used in peroxidase stains are 
benzidine and o-dianisidine; both are highly dangerous carcinogens. 

Liu and Gibson 22 have developed a method using eugenol (2 - methoxy 

4- allyl-phenol) and hydrogen peroxide which is much safer to use. 

Peroxidase in the presence of hydrogen peroxide catalyses the formation 

of free radicals of eugenol which condense to form a white precipitate. 

The precipitate is intensely fluorescent under UV light. 

Gels were soaked after electrophoresis in a solution pre- 

pared by dissolving 75 mg eugenol in 100 ml 0-05 m phosphate buffer. 

(pH6) to which 10 ml of 30% w/v H202 was added just before use* After 

soaking, gels were placed under short-wave UV light and bluish fluores- 

cent bands were clearly visible. The positions of bands relaýtive'to the 

front were quickly measured using a clear plastic rule as the fluores- 

cence faded after about ten minutes, Peroxidase was only clearly 

resolvable on disc gels. 

General Protein, 

Gels were stained in a Coomassie Blue/trichloro-acetic 

acid (TCA) staining solution based on that described by Sedmark and 
Grossberg 

23 for staining mammalian proteins. 

A stock staining solution was prepared by first dissolving 

1.1 grm of Coomassie Blue G 250 (Gurr) in 330 ml methanol and stirring 
for 30 minutes. The solution was poured into 670 ml distilled waterý 

and mixed well* 130 grm TCA were added and dissolved by stirring for 

a-further 30 minutes. The solution was filtered (Whatman Noe 1) and 

stored in a dark glass bottle at room temperature. 

Gels were first fixed in 20% TCA W/VACýo V/V isopropanol 

solution for 15 minutes, and then transferred to the stain for 2 hours 

at 40OCe Destaining was carried out in an 8s3sl mixture of waters 

ethanoliglacial acetic acid* The destaining mixture was freshly made 

up as ethyl acetate formed on storage making the solution less efficient* 

Destaining usually took between 10 and 15 hours at room temperature (22 0 C) 

and was judged to be complete when blue bands were clearly visible 
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against a light blue background. Destaining was stopped by 

transferring gels to Mlo glycerol solution* 

5- 8 Stains (other than dehydrop,, enases) tried without success 

The following stains were tried on diso gels prepared by 

running extracts of P. jenkinsi A, H. ulvae and H. ventrosa. No bands 
(or faint uninterpretable bands) resulted from these methods:. 

ENZYME BUFFER RESULT REFERENCE 

Catalase 0-05 m No zones Brewer 24 

phosphate 
PH7 

Leucine amino 0-5 m tris/ Diffuse zone Shaw & Prasad 10 

peptidase maleic acid in, P, Jenkinsi 
pH6 

Hexokinase tris/HC1 No zones 
10 Shaw & Prasad 

pH8 

o(-glucuronidase 0.2 m No zones Coles 
25 

phosphate 
pH6.9 

O<-glucopyranos- 0.2 m No zones Coles 25 
idase phosphate 

pH6.9 

sulphatase 0.2 m Vague zone Shaw & Prasad 10 

phosphate in P, jenkinsi 
pH6 

Peroxidase 00 m No zones Coles 25 
citric acid 
PH5 

PhosphoglucO- 0.1 m tris/ No zones Spencer et. al 
?6 

mutase HC1 PH7-1 

Hexokinase 0*1 m tris/ No zones Shaw & Prasad 10 
HC1 pH7 
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Storage of Gels 

I-6-1 Disc Gels 

Disc gels were normally stored at room temperature in 3(Y/. 

ethanol in stoppered 10 ml glass test-tubese Providing the ethanol 

covered the entire gel and the tubes were placed in the dark, no 
deterioration in band intensity or resolution occurs for several 

years, 
27 Gels stored in this way shrink due to loss of buffer into 

the ethanol but a comparison of gels run with the same (deep-frozen 

at -20 
0 C) extract before and after storage for 30 days (by which time 

imilm shrinkage had occurred) showed that shrinkage was uniform over 
the whole gel and that no change in Rf values (of esterases) (Rf - see 

sectionjI -1- 1) had occurrede Gels stained for general protein 

were stored in 30% glycerol in the same way as those stored in ethanol. 

I-6- Slab Rels 

Slab gels were removed after 3 hours from the 30% ethanol 

used to stop the staining reaction (section I-5- 1) and placed in 

500 ml 7Cýo ethanol in a plastic dish fitted with a lid,, The dish was 
placed on a horizontal sh. *er for 2 hours and the 70% ethanol then 
discarded. 500 ml of absolute ethanol was then added and the dish 

shaken for a further 12 hours. The dehydrated gels were removed and 

air-dried* 

The technique produced hard omque tgels' which were easily 
labelled and handlede The gels shrank to about a quarter of their 

original size during dehydration with no change in the RM (see section 
ii -1- 1) values of bands. Faint bands were intensified during the 

process and were more easily scored on debydrated gels, No noticable 
loss in intensity of bands was apparent after 2 years' storage in the 

dark. 

I- Photography of gels 

Gels were photographed using 35 mm Kodak Plus-X pan- 

chromatic film in a camera mounted above a horizontal copy table. 

Disc gels were usually removed from their storage tubes for Photography 

and placed on a Kodak "Cold-light" light box to provide back- 

illumination. 
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Dehydrated slab gels were placed on the copy table 

and illuminated from above using four "Photoflood" bulbs arranged 

around the gel. Shutter speeds and aperture settings were 
determined by using the built-in light meter, on the camera* 
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CHAPTER II i ISOZYME AND PROTEIN PATTERNS OF SOME BRITISH 
AND AUSTRALIAN HYDROBIIDAE 

II -1 General Banding Patterns I 

Electrophoresis of snail extracts on 7-5% slab and, diso 

gels stained as described in, section I-5 gave the banding patterns 
depicted in Pigs- 4- 12. 

No estimate of variation between individuals is included; 

each figure has been built up by pooling data from all individuals 

sampled from a species in order to develop a system of nomenclature for 

the bands* Not all of the bands depicted in Pigs- 4- 12 were 

necessarily found in any one snail. Bands have been included which 

were specific to the specialised substrates used in section III -1- 70 

Eleotrophoresis of mass extracts (section I-2- 2) was used to compile 

some of the banding patterns (see section VI - 2) and, due to the 
'dilution effect' described in section III -1- 3)9 rare bands may be 

absent from these figures* 

II -1-1 RecordinR of Banding Patterns 

Two methods of recording the positions of bands were useds- 

i) Rf values applicable only to gels run with dis- 

continuous buffer systems, the Rf Orelative to the 
front') value is the distance moved by a band relative 
to the distance moved by the front (a region of 
changing pH and negatively charged small molecules 
rendered visible by the inclusion of bromophenol blue 
in the cathodal buffer)* 

ii) Rm values the distance moved by a band relative to 
the distance moved by some othert arbitrarily choseng 
reference band. Bands running in front of the 

reference band have an Rm value greater than one. 
Continuous pH gels do not develop a front during 

electrophoresis and so only Rm values can be calculated 
for bands separated by this system. 

The band used as a reference for the calculation of Rm was 

Est* 9 in P. jenkinsi A* The band appeared with a high frequency in 

Populations of the Potamopyrgus species (Chapter IV) and was clearly 
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Fig- 4S Composite banding patterns found in populations of 
P. jenkinsi A. 
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Fig- 58 Composite banding patterns found in populations of 
P. jenkinsi B* 
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Fig. 6 Composite banding patterns found in Populations of 
P. jenkinsi C. 
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Fig- 73 Composite banding patterns found in populations of 
P. antipodarum. 
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Fig. 8s Composite banding patterns. found in populations of 
P. nigra. 
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Fig. 93 Composite banding patterns found in populations of 
P. estuarinus. 
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Fig. 11s Composite banding patterns found in populations of 
H. ulvae. 
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Fig! 12& Composite banding patterns found in populations of 
H. neglecta. 
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visible on slab gels stained for general esterase (section 1 5- 

Samples lacking Est* 9 (eog* some Rydrobi populations) were run-on the 

same gel as samples of PotamopyrA-us containing the band. Errors caused 
by differences between gels were avoided by using this method, 

. Relative mobilities of bands resulting from stains other 
than esterase were estimated by slicing the slab gel (section I-3- 4) 

and staining one slice for esterase and the other slices for the desired 

isozymee The position, of Est* 9 was measured and used as a reference 
for bands appearing'on-the other slices. These measurements were made 
by placing-gel slices on the Kodak illuminator before they were 
dehydrated in order to avoid errors due to the unequal shrinkage of 

slices (stained*in different ways) during dehydration* 

The positions of bands on dehydrated slab gels were measured 
by placing a graduated, rule against the gel and reading off the relevant 

measurements to the nearest 0-5 mm- Diso gels were removed from their 

storage tubesq placed on the illuminator, and the positions of bands and 
the front measured in the same way. 

Rm and Rf values were then calculated froms- 

R- Distance of stu&v band (mm) from the oriRin m Distance of reference band (mm) from the origin 

and R f, = Distance of the study band ýmm) from origin 
Distance of the front (mm) from origin 

Where the origin was the junction between upper*and lower 

gels for disc gels and the bottom of the sample well for slab gelso 

2 Statistics calculated for R and R, f, values 

Whenever possiblet mean Rm and Rf values were calculated 
from at least ten measurements taken from gels run at different times in 

order to include variation caused by minor differences in running 

conditions. Fewer measurements were available for'rare bandsý, 

Mean Rm and Rf values for the bands shown in Pigs- 4- 12 

are given in Tables 2- 10.95% confidence limits were estimated by 

multiplying the standard error of the mean by the appropriate t (p - 0-05) 

value* For sets of data where n>30, t. 1.96 wasused; for smaller seti 

the value of t4(n - 1) was used. 
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Continuous ýPH Discontinuous nH 
Band Rm n 95% CL C* Band Rf nq CL C* 

Est. 1 0.0412 30 0.0012 0*08421 Est* 1 0.0321 30 0*0020 0-1762 

la 04571 2 2 0*0482 30 Oo'0026 001550 
2 0.0729 30 0.0018 0.0679 3 0-1107 12 0-0035 0-0512 
2a 0'1430 2 - 4 0*1482 26 0.0016 0*0279 
3 0: 2253 12 o. oo62 0-0437 5 0-1857 18 o. ool6 0-0170 
4 0-2746 14 0.0086 0-0550 5a 0,2410 8 0-0054 OoO277 
5 O-353T 18 0.0048 OeO271 5f 0.3857 3 0.0215 0'0304 
50 0.6711' 20 000081 o. o346 6 0-419'6 30 0-0097 0: 0652 
6* 0-7562 30 0-0140 0-0518 7 0-4536 24 0.0080 0*0422 
7 0.8431 30 000090 0*0299 9 0-4804 30 0.0032 0-0185 
8 0. '9110 30 0-0055 0-0170 10 0-5089 30 0.0027 0-0151 
9 '000 10 30 11 0-5321 30 0-0078 0-0408 

10 1.0640 30 0-0056 0-0147 14 0.8220 5 
11 1-1074 30 0.0123 0-0310 AP 1 0-5554 30 0-0071 000355 
14 103793 21 o. oo6g O. Oll Mdh 1 0-1339 30 0-0015 0.0320 

Ar. idpH 1 0-4968 30 0-0040 0*0225 2 0*2375 12 0-0059 0-0397 
2 0.8274 30 0-0150 0.0506 3 0.3429 30 0-0033 0,0271 

Mdh 1 0-1705 30 0-0019 0-0305 TO 1 002393 1 0 0*0045 o. o264 
2 0.5432 30 0-0057 0-0291 2 -6000 00 , 6 0-0317 0-0529 
3 0-6054 30 0.0134 0.0619 3 006768 8 0*0280 0-05'10 

TABLE 2s 

Potamopyrgui3 Jenkinsi As 

Relative positions of bands 

on 7*5/'fa gels& 

see test for details of 

statistics* 

4 0*7286 
ý8 

0.0341 000575 
5 0-7518 8 0*0259 0.0423 

Perox 1 0-3411 4 0.0193 0; 0407 
Anql 1 Oe'2357 4 

2 0.3464 5 
3 6-i893 5 

GP 1 ýI 0-4875 3 
2 0. -5893 4- 
3 0-6446 4- 
4 0*6929 4- 
5 0-7821 4- 
6 0.8429 4 
7 0.8964 4 
8 0.9589 4 

Adh 1 0.6357 4 
Ldh 1 0*2893 4 
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-Continuous PH Discontinuous ;H 
'. Band Rm n Uj CL C* -Band Rf n CL C* 

Est. 1 0-0274 30 
. 
0.0012 P*1230 Est, * '1 

0-0214 30 0-0014 0*1820 

5b 0-5432 30 0.0092 0,0471 2 0-0433 30 0-0018 0.1132 

50 0.6711 30 0-0078 0-0323 5 0-1786 18 0-0038 0-0425 

6* 0-7521 30 0.0092 0,0342 5b 0-3393 22 0-0077 0-0513 

7 0-8430 30 0.0096 0.0318 5f 0-3879 19 0-0134 0*0715 

9 0.9988 30 -6 0*4089 29 0.0069 0-0444 

11 1-1179 15 0.0207 0-0336 7 0-4321 18 0-0133 0.0617 

12 1-1953 15 0*0278 OeO422 8 0.4464 30 0-0058 0-0351 

13 102500 5-9 0-4875 30 0-0047 0*0260 

14 1.3667 18 090247 0.0364 11 0-5711 `9 

A. P. 1 0.5032 30 0.0116 o. o618 12 0.6003 9 

2 0.8295 30 0-0130 0-0423 13 0.6334 7 

Mh 1 0-1684 30 090028 0*0448 14 0-8149 9 

2 0-5368 30 0-0073 0.0326 A. P. 1 0.5678 18 0-0174 0.0615 

3 o. 6o63 30 0,0116 0-0515 Adh 1 0,6304 7 0-0194 0.0333 

Ldh 1 0*2875 8 0*0195 0-081, 

Mdh 1 0-1339 21 0-0047 0-0775 

2 0*2357 14 0.0060 0-0438 

TABLE 3S 3 0.3429 14 0*0092 0*04661 
TAO 1 0*2429 15 0-0139 0-1035 

Potamopyrgus Jenkinsi Bs 2 095929 15 0.0183 0-0560 

Relative positions of bands 3 o-6714 15 0,0234 0.0632 

on 7-5% gels$ 4 0*7268 15 0.0167 090415 

see text for details of 5 0-7536 15 0.0167 0-0400 

statistics- Perox 1 0.3339 4-- 
Awl 1 0.2357 5 

2 093411 5 

3 0-3804 5 
G. P_ 10 '45'7 4 

2 0.5929 4 

3 M4ý 4 

4 0-7018 4 

5 0-7821 4 
60 8429 4 

7 0-8964 4' 

8 o. 9643 4 
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ContinuoUs PH, -Discontinuous H 
Band Rm a 25% CL C* Band Rf ii L' C* 

t0t 
* 

A, P* 

Mdh 

TABLE 4s 

1 0*0379 
4 092653 
50 0.6700 
6* 0-7610 
7 0.8431 
9 0-9977 

14 1.3559 
1 0-4989 
2 0,8232 
1 0-1705 
2 0@5347 
3 0.5979 

SO 6-0059 Oo4221ý 

28 o. oo68 o, o666 

4 
30 0-0108 0.0382 
22 0.0164 0-0441 
30 -- 
13 0,0206 0.0253 
15 0.0132 0,0482 
24 OoOI17 OoO331 
30 OoOO43 0.0665 
30 0-0142 0, -071, 
30 o. ol64 0-073' 

Est. i 6-0515 
4 0-1536 
5 0.182§ 
5b 0.2768 
5o 0.3000 
5e 0.3518 
5f 0-3851 
6, 0-4286 
9 0-4875 

14 0.8113 
AoP. 1 0.5604 
Adh 1 0.6315 
Ldh 1 0*2878 
Y, d. h 1 0.1339 

2 0*2393 
3 0.3446 

TAO 1 0-2393 
2 0-6036 
3 0-6750 
4 0-7321 
5 0-7536 

Perox 1 0-3393 
Aawl 1 0,2375 

2 0-3446 
3 0-3893 

G, P, 1 0.4964 
2 0-5892 
3 0.646ý 
4 0.6964 
5 P, -7804 
6 0-8393 
7 0 8911 
8 0: 9571 

5 
21 0*0069 0.0993 
23 0-0071 0.0898 
14 0.0098 0.0612 
28 0-0037 0-0320 
8 0*0192 0.0654 
2ýI 

30 0-0076 00 0472 
30 0-0091 0-0499 

5-- 
18 0*0607 0*2177 
5 
5 
8 
8 
8 
4 
4 
4 
4 
4 
4 
5 
5 
5 
4 
4 
4 
4 
4 
4 
4 
4 

potamopyrgg-jenkinsi Ct. 

Relative positions of bands 

on 7-55' gelst see 

text for details of 

statistics* 
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Continuous PH Discontinuous PH 
Band Rm n 9579 CL C* 

I 
Band Rf n 95% CL 

Est. I OoO211 21 OoOO21 0,21621 Este 1 0*0229 30 0-0008 0-1587 

2 o. o632 21 0-0053 0-1855 2 0*0421 22 0,0038 0.2o6i 

2a 0-1789 13 0-0056 0-0520 3 0*1286 9 0,0112 0-1132 

4a 0*2884 14 oxo6q 0-0416 4 091821 14 0-0034 0-0319 

5 0.3721 8 0-0187 0,0602 5b 0-3379 16 0-0043 0*0240 

5b 0-5474 12 0*0272 0-0783 5f 0-3571 21 0-0054 0-0322 

50 0.6737 12 0-0137 0-0320 6 0-4018 28 0,0189 0.1211 

6* 0-7579 28 0.0275 0-0936 7 0-4500 14 0-0079 0-0303 

7 0-8463 26 0.0035 0-0103 9 0-4839 30 o=66 0-0365 

8 0-9094 13 0-0347 0.0631 10 0-5244 3 0-0578 0-0444 

9 0-9948 5 - - 14 0*8256 24 0,0218 0.0626 

10 1-0526 7 0,0082 0-0084 A. P. 1 0-5643 8 OoOO74 0-0157 

14 1-4130 16 0-0075 0.0100 Adh 1 0.6357 4 - 

A. P- 1' 0.4973 14 0-0054 0-0187 Ldh 1 0*2875 4 - 

2 0.8337 17 0-0271 0.0632 Mdh 1 0-1357 10 0-0031 0-0323 

Mdh 1 0-1685 30 0-0017 0,0276 2 0*2321 14 0-0039 0*0290 

2 0,5474 21 0-0467 0-1873 3 0-3393 14 0-0091 0-0463 

3 o. 6o63 8 0-0764 0-1546 TAO 1 092446 2 - - 
2 0-5911 2 - 
3 0-6732 2 - 
4 0-7286 2 

TABLES -5 
5 0-7536 2 - 

Perox 1 '0463393 2 - 

Potamopyrp, us antipo daram Aqrl 1 0*2464 2 

Relative Positions of bands 2 0-3482 2 

on 7-5% gels$ 3 0-3804 2 

see text for details of statistics- 
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Continuous PH Discontinuous -DH 
Band Rm n9 5% CL C* Band Rf n 95% CL C* 

Est * la 0-0463 11 0-0094 0*3025 Est. 1 0*0215 15 0-0015 Oel231 
3 0*2353 22 0*1260 Oe1212 5,0.1839' 16 090029 0*0294 
4- 0.3030 6 0-3150 0-0991 6 0.3946 16 0-0073 0.0349 
5 0.3847 22 090489 Oo2865 7 0-4485'---'19 0-0083 0-0382 
5d 0.6968 24 0-0093 0-0316 9 0-4839 20 0-0072 0-0319 
6* 0-7726 30 0.0237 0*0821 10 "0- 5199 4 0*0225ý 0-0312 
7 0-8484 26 o. oo6l 0-0179 12 0.6091 5 0-0427 0-0565 
8 0*9263 9 0*0158 0.0222 14 0.8122 11 0-0485 0-0888 

-9 1.0061 30 --A. P. 1 0-5714 11 0,0259 0.0677 
10 1.0631 13 0-0185 0*0288 Adh 1 0.6286 5-- 

_12"tl-1705. ,50.089 
1.0.0613 Ldh 

.ý 'I 
Oo2893 5 

14 1.3621 28 0.0311 0-0588 Mdh t 

A. P. la 0-4042 8- TAO 1 0*2446 1 
1 0-4989 920.6036 2 
2 0*8253 11 3 0.6750 2 

Mdh 1 0-0956 34 0-7268 2 
2 0.1618 45 0-7554 2 
3 0*22 

, 
18 

.6- 
Perox 1 0.3411 1 

4 0.2758 6- Awl 1 0*2411 'l 

5 0-3453 2-2 0*3536 1 
6 0*4042 2-3 0*3929 1 
7 0-4632 4 
8 0-5789 2 
9 0.6905 3 

10 0*7708 5 
-6- "ll -- 0-8947 

-12ý 
0.9726 8 

13 1-0800 3 
14 1*2611 7 
15 1-3474 9 

TABLE 

POtaMOPYAKus niRra 3 
Reiative Positions of bands 

on 7-5% gels: see text for 
details of statistics, 
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Continuous PH 
Band Rm n9 5% CL C* 

Est. 1 o. o611 
2 0-0703 

50 o. 6216 

6* 6 0-7091 16a 
0-7537 

7 0.8648 
9 0-9985 

11 1.1080 
14 1.3780 
15 1-4321 

14 0-0078 0-2141 
14 0-0084 0.2068 
10 0.0397 0-0893 
1 
9 0.0649 Ooll2l 

13 0*0249 0-0477 
7 

11 0.0164 0*0221 
13 0-0530 0.0637 
4 0-0456 0,0200 

PotamorvrA-us estuarinus 3 

Relative positions of bands 

on 7-5% gels$ seetext for 

details of statistics* 

Continuous PH , Discontinuouo 
Band Rm a 95% CL C* Band Rf n 95% UL C* 

Est. 

AePo 

Mdh 

1 0-0432 
2 0.9280 

30 9948 
4 1.0830 
5 1-1875 
1 0.6293 
2 0.6875 
3 0-7500 
4 1,0208 

51i 1042 
1 0.1711 

30 0-0010 
5 0.0168 

30 0*0042 
30 0.0082 

-0096 21 --010 
4,0-0513 
-6 '0,0291 

7 0.0372 
9 0-0527 

21 0-0176 
30 0,0021 

0.0626 Est. 
0-0146 

0.0112 
0*0204 
0-0117 
0-0512 
0.0403 
0'0537 
0.0671 
0.0350 jA. P. 
01 03341 

Ark 
, vl 

TABLE 83 

H, ventrosa s 

Relative positions of bands 

on 7-5% gelst 

see text for details of 

statistics* 

TABLEs 

1 o, o625 16 0-0013 0 0376 
2 001351 16 0*0026 0: 0355 
3 0,2000 8 0-0055 0.0329 
4 092554 9 0*0044 0,0224 
5 0.3982, -*20 '0-0052 0,0277 
6 0-4375 26 0-0047 0*0264 
7 0-5180 3-- 
8 0.6430 .2- 
9 0*8480 2- 
1- 0.3040 4 
2ý''0*4820 -3' - 
1 Oe2770 2- 
2 094050 2' - 
3 0-4455 2- 
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Continuous PH Disconýinuous' rH 

.a2% CL C* 
I-Band 

RM 

I 

Band Rf n 95116 CL C* 

Est. 1 0-0732 12 0-0034 0-0739 TAO 1 0.3036 4 
5 0-5000 12 0.0352 0,1107 2 0,4821 '4 
5a 0.5597 12 - - 3 0-6071' 4 
5b 0.6231 30 0-0147 0-00633 4 0.6696 4 
50 0-7115 30 0-0148 0-0557 5 0-7589 4 
6 0-7692 30 0-0075 0-0532 Anyl 1- 0*1340 - 2 
6a 0.8077 10 0-0254 0.0446 2 0-1950 2 
7 0.8654 30 0*0129 0-0399 3 0.2700 2 
8 0.9038 12 0.0225 0.0391 
8a 0.9615 1 - - 
9 0.9986 17 0.0235 0-0457 TABLE 9s 

10 1-0769 9 0-0332 0-0401 
14 1.3462 22 0*0270 0-0453 H. ulvae i 

A. P. 1 0-4865 1 - - Relative positions of bands 
2 0-5946 40 0-0171 0-0901 on 7-5% gels; 

YTdh 1 00354 30 0.0036 0*0722 see text for details 

2 Oo2713 12 0-0078 0-0458 of statisticso 

Continuous PH 
Band Rm n 95/la CL C* 

Est. 1 0-0556 30 0-0046 0,2236 
3 0.6672 22 0.0090 0-0303 
4 0-7667 30 0.0089 0-0311 
6 0.9278 26 o. oo96 0*0256 

A. P- 1t- 
2t--- 

m1 0-1458 8 0-0047 0-0388 
2t 

3 

TABLE 10i 

H. negleota s 

Relative positions of bands 

on 7-5% gels; see text for 
details of statistics*- 

bands -too diffuse to 

measure accurately, 
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Cc efficients of variation' (C* = standard deviation) 
mean 

were calculated for each set of RM and Rf values. C* represents the 

proportion of variation about each meany a quantity which might be 

expected to be similar for each band. There was, howevert an increase 

in C* for bands at the cathodal end of gels perhaps representing a 

decrease in the accuracy of measuring the distance run by slower bands., 

It is an empirical fact that, when using the same measurement techniquet 

small measurements are likely to be less accurate than larger 

measurements* 
2 There may, howeverg be some other explanation of this 

trend related to e. g. the rate at which molecules of different size 

enter the gel. 

I- 
Resolution of bands having similar mobility 

Bands were sometimes difficult to distinguish for two reasonss 

their similar mobilities on the same gel (e*g. Est. 1 

and Est. 2 in Po jenkinsi A on 7-5% gels - Fig- 4)o 

ii) their similar mobilities on different gels (eag,, 

between individuals of H. ventrosa possessing only Est* 2 

and those having only Est- 3),, This was particularly a 

Problem with rare bands where fewer measurements of 

mobility made estimates of RM or Rf less reliable. 

In the first casel the presence of two or more close bands 

on 7-5% gel was usually revealed by electrophoresis of the extract on a 
lower concentration (usually 5%) gel or by using a longer run times 

The second problem was easily resolved by mixing extracts 

from the two individuals and running the mixture on 7-5% or 5% gels. 

If the bands in question really were different isozymes then, on 

stainingg they appeared as separate entities* 

In some cases, notably the more cathodal zones staining for 

general protein and the Est. 6* region of PotamopyrRus speciesq bands 

were too numerous to be resolved by the above methods (see section 

III -3- 7) for techniques used to resolve the Est. 6* region)* 

II -I- Direction of migration 

The possibility of bands migrating cathodally under the 
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electrophoretic conditions used in the study was investigated by 

running extracts of all species on disc and slab gels with the 

polarity of the apparatus reversed* Staining for general esterase, 

acid phosphatase and Mdh showed that no bands had migrated cathodally. 

II -1- Nomenclature, 

Bands were numbered from the cathode to the anode according 
to the syst em adopt ed by Hunt er et * al. 

3 
and many subsequent authors* 

Bands which migrated to approximately similar positions on 795% gels 

were assigned the same number. This does not necessarily imply that they 

are similar in properties other than their mobility under the eleotro- 

phoretic conditions used. Bands discovered subsequent to the development 

of a numerical system for a particular banding pattern were assigned a 

number with a letter suffix (eege Est- 5a in P. jenkinsi A). 

A particular problem was the naming of the Est. 6 region 

on PotamoPYr911B, gels* This region, later shown (section III -3- 7) 

to be composed of several overlapping bandst often appeared as a diffuse 

wide band and is referred to in the text as Est. 6** The Rm of Est. 6* 

was measured from the estimated midpoint of the diffuse zone. 
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CHAPTER III SOME BIOCHEMICAL AND PHYSICAL PROPERTIES OF 
THE ESTERASES OF BRITISH AND AUSTRALASIAN 
SPECIES OF POTAMOPYRGUS 

Segregation and recombination do not occur in organisms 

such as Pe jenkinsi because of the absence of a meiotic division 

during egg-maturation (apomixis),, It is, thereforet not possible to 

determine the formal genetics of*markers by the usual methods of 

setting up crosses in sexually reproducing organisms or by isolating 

virgin females in automictically reproducing organisms and scoring 

progeny for se gregation ratios*, 

Estimates of genetic variation in asexual. and sexual, 
1g293 

populations are often made by assigning bands to-particular loci 

on the basis-of their reaction to one substrate at, one pH and their 

mobility at one gel concentration* The hazards of this approach 
have been exposed by e. ge Johnsong who revealed the presence of 
multiple alleles at the o(-glycerophosphate dehydrogenase locus of 
Colias butterflies (where previously only two had been detected) by 

the simple expedient of running extracts on, gelEs of different acrylamide 

concentration. As Colias is sexually reproducing he was able to 

confirm the true allelic nature of bands at this locus by scoring the 

progeny from crosses and obtaining segregation ratios*. Similar cases 
of multiple over-lapping bands have been reported for Drosophila 

5,6 isozymese A further confounding factor in the analysis of banding 

patterns may be the presence of null alleles; a heterozygote for a 
visible allele and a null allele may be wrongly scored as a'homozygote 
for the visible allele. Null alleles have been shown to be 

relatively common in eogo insect populations7-but their possible 

presence has been frequently ignoredin-estimating variation in a 
population* 

8 
Errors in interpretation-due to unsuspected multiple'- 

alleles and null alleles inevitably'lead, -to under-estimation of the 

true amount of variation within-a population* 

A-more serious'error of such"armchairt genetics is the 

assignment of alleles to the, wrong, loci resulting in an incorrect 

estimate of heterozygosity. -- Mectrophoretic loci in parthenogenetic 

organisms havet in the pastl been identified-by reference to presumed 

homologous loci in closely related sexually-reproducing populations, 

a method which gives-n6'information on alleles found only in'the 

parthenogenetic populati 
I 
on-. - In several large: electrophoretic surveys 

from which estimates of variaiion'have been, madel'no information on how 
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alleles were identified is given - presumably guesswork was used. 

Guesswork based on the easily recognised banding patterns produced 

by multimeric isozymes is probably fairly reliable but many enzymes 

are monomers (e. g, about a third of isozymesýin. man are monomeric9)o - 
Esterases are-a particularly-monomeric class of isozyme, often used in 

electrophoretic surveysg and indeed none of the esterases in the present 

study was found to be multimeric, 

Oxford 10 has shown I that for eaterases in the land snails 

Cepaea nemoralis and C. hortensis, the molecular weights of allelic 

products from the same locus are essentially the same and that allelio 

products from different loci often have different molecular weights. 

Similarlyp the five alleles that Johnson4 found at theo(-glycerophosphate 

debydrogenase locus in Colias, -had closely similar molecular weights. 

This is to be expected if-it is assumed that different allelic products 
(proteins) from. the same locus differ-by-only a few amino-'acids -a 
difference-in molecular weight that is undetectable by electrophoretic 

methods. Mutational events resulting in more drastic modification of 

molecular structure will probably result in a non-functional gene 

product' ýhilc'h_may be selected out of the gene pool or remain as a'nai 

allele. " The argument also applies to chromosomal structural re- 

arrangements such as inversions there is no direct evidence that base- 

pair substitution constitutes the major source I of nat ural genetic 

variation. 

Oxford has also investigated the biochemical properties 
11 

and the formal genetics 
12 

of the esterases of Cepaea nemoralis and it,. 

is evident from his data that (visible) alleles shown by breeding 

experiments to be-at the same locus had similar biochemical properties* 
Conveisely, 'the biochemical properties of alleles at different'100i were 

usually dissimilar* Alleles at the same locus are'-USually'7of similar' 

and characteristic staining intensity and colour when exposed"to different 

artificial substrates simultaneously. Esterase loci may produce enzymes 
'asesq sulphat I asesl, lipases, .1 et c 15 

such as carbonic anhydrases, prote 

When these enzymes hydrolys - ej say, a mixture of c4-n-acetate and' 

_n, - acetate they give rise' -to bands having colours and-densities 
a characteristic of the enzyme type (e, g, caiboni' anhydiases'will stain 

red and liPases purple in the above example) 

Biochemical similarity between alleles at the same locus 

also occurs in many enzyme systems in DrosophilaI3 and in the mosquito 

Anopheles punctipennis 
14 

and often forms the basis of guesswork genetic 
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analysis of electrophoretic banding patterns. When allelic iso- 

zymes are visible on gels stained using artificial substrates they 

rarely appear with significantly lower activity then others at the 

same locus, This is not always the case, however; Wright 16 has shown 

that alleles at the Es-6 locus in Drosophila differ in their activity 

and more recently, Danford and Beardmore17 have demonstrated that 

alleles at this locus differ in their reactions to several naturally 

occurring substrates*- However, many artificial substrates 
(particularly acetates and methyl-substituted esters) are hydrolyzed 

equally by the two alleles at this locus* 

The impression. gained from large-scale surveys of the 

esterases of mammalst 
18 birds, ' 19 

- 
frogs, 20. 

and insects 21 is that the 

reactions of alleles at a particular locus to artificial substrates 
(usually v(- and -naphthyl acetates) are remarkably similar* Lowered 

activity of an allele is usually expressed as invisibility (a null 

allele) when these substrates are used. 

These empirical observations on the physical and biochemical 

characteristics of allelic products present a method by which loci may 
be at least tentatively distinguished and bands assigned to them with 

more confidence than if genetic interpretation is done by guesswork. 
Such 'finger-printing' of bands by means of their properties also 

presents a method, by. which homologous bands separated by different 

electrophoretic systems may be recognised. Regions in which bands are 
thought to overlap (e. g. the Est. 6* region in P otamopvrgus) may also 
be resolved if bands have different reactions to Particular Bubstrateso 

In summary, for species where breeding data is unobtainable, 
the determination of the physical and biochemical properties of iso- 

zymes, although time-consuming and laborious, may be a useful aid in the 

genetic analysis of-electrophoretic banding patternse In this chapter 
the substrate specificities, inhibition characteristics and relative 

molecular weights of the esterases of the Potamopyrgus species are 
determined and these properties used in order to identify homologies 

between bands both within and between species. Homologous bands 

within species are assumed to be alleles and loci. are accordingly 
distinguished* Homologous loci between, species are identified in the 

same way. 
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III -I The Reactions of Esterase Bands to Various Substrates 

III -1-1 Substrates used 

As many esterase substrates as were readily available from 

Sigma Limited were used in the'study. A list of thesev together with 

abbreviations used in the text, is given below. 

1, C><-naphthyl acetate 
2* ý -naphthvl acetate 
3- naphthyl -AS- acetate 
4- eZ-naphthyl proprionate 
5- ý-carboxy choline iodide 

6. t4-naPhthyl butyrate 

7. ý -naphthyl butyrat e 
8. t4 -naphthyl laurate 

94, 5-bromo-indoxyl acetate 
10, indoxyl acetate 

III -1-2 Preparation of Staining Solutions 

0(-n-a 

ri-AS-a 
o4 -n-p 
ý -c-c-I 
o4 -n-b 

-n-b 

cýe -n-1 
5-br-ind-a 

ind-a 

1073 14 solutions of these substances were prepared by 

dissolving the appropriate weight (of solids) or volume (of liquids) 

in 100 ml, of the 0*2 X pH 6 phosphate buffer describ; i'in 
section 

15- I- Substrates usually dissolved easily if a few drops of 

acetone were added to the substance before addition of the buffer solu- 
tion, o( -n-laurate was rendered soluble only by the prior addition 

of 5 ml propylene glycol and 5 drops of acetone* The addition of 5 ml 

propylene glycol and 5 drops of acetone to the general esterase 

staining solution described in section I-5-1 resulted in no 

inhibition (compared to'a control with no propylene glycol) of esterase 
bands on slab gels prepared by electrophoresis of an'extract of 
P. jenkinsi A* 

III -1- Extracts used 

As homogenisation of single snails gave an insufficient 

volume of extract for comparative studiesl mass 'extracts were prepared 

as in section I-2- 29 Homogenates of 200 adult snails in 20 ml 

57/a sucrose were made for each Potamopyrgus species. The snails came 

from the following populationss- 
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P, jenkinsi A 

P. jenkinsi B 

P, jenkinsi C 

P. antipodarum 
P, nigra 

Popln. 11 

Popln. 28 

Popln. 35 (lab clone) 
Popln- 45 

42 (100)+ 40 (100) 
(100 from popln- 40 + 100 from 
popln. 42). 

These extracts were also used for the inhibitor study 
(section III - 2) and for molecular weight determinations and were 

stored at -20 
0 CO 

In preparing mass extracts, rare bands (such as Est*3 

and 4 in P, nigra and Est- 5b in P. antipodarum) are inevitably 

diluted by those snails in the population sample which do not possess 

them. For this reasong some esterases were difficult to detect on 
the gelso This "dilution effect" was an insignificant problem in 

extracts of P. jenkinsi as variation in this species was virtually 

absent; only Est. la (see section IV -3- 1) was, undetectable in 

mass extracts of P. jenkinsi A. 

111- 1 -4 Electrophoresis 

Samples absorbed into wicks were arranged on 60-slot 

slab gels (section I- 3) in ten groups of fiv6 wicks (one extract of 

each species per group)* After electrophoresisp the gel was cut into 

sections each containing a group of five species. Each section was 
then sliced (section I-3- 4) into two, The method gave two 

replicates for each staining solution from the same electrophoresis 

run. One replicate was placed in staining solution containing the 

test substrate and the other in a staining solution containing 

oý-n-acetate (to provide a scoring reference gel - see section 
III -1- 6)9 

III -1- Staining and Storage of Gels 

Gels were incubated in the appropriate staining solution 

for 30 mins- at 25 0C enabling a comparison of the hydrolysis rates of 

different substrates to be made for a particular esterase band. Gels 

were placed in staining solutions in, plastic dishes on a fixed-speed 

horizontal shaker- After 30 minutes they were re 
, 
moved and immediately 

placed in 30% ethanol to stop the reaction. 
. 
Bands were scored 

visually (section III -1 and dehydrated for storage 'as described 
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Plates 4 and 5: Gel slices stained using various substrates 

as described in section 111-1-5. The order of the extracts on 

the slices is P. jenkinsi A, P-jenkinsi B, P-jenkinsi C, P. 
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(eg. gel 2). The position of the P. jenkinsi A extract is 
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Table 10a . 
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in section I-6- 

III -1- -Scoring of Band Intensity 

Estimates of hydrolysis rate were visually scored on 
22 

a subjective scale similar to that used by Stephen and Chaldelin 

and oxford The reference used was Est. 9 of P. Jenkinsi B 

stained witho(-n-ae This heavily staining band was represented by 

++; bands of medium intensity by, +;, those of. low intensity by 

and no detectable activity by_-* Bands which were just visible on 

some gels but not on replicates, were, scored as ?+ or ? +/-. 

Visual estimates of"hydrolysis rates were not entirely 

reliable due to the fact that different substrates produced different 

coloured dyes. oý-naphtbyl substrates on hydrolysis release C<-naphth, ol 

which when coupled with Fast Garnet produces a purple dye* -naphthyl 
substrates produce a red dye from -naphthol and substrates containing 
the indoxyl, group gave a blue-black dye. An effort has been made to 

correct for this difference in colour by visually estimating the 

intensity of the bands only and by scoring bands from monochrome photo- 

graphs of gels prepared by using panchromatic film (see section 
III -1-7 for details). Experience showed that the latter method was 

more consistent and it was adopted for routine use. 

Bands were identified by measuring the mobility of the 

band in question relative to that of Est., 9 (Po jenkinsi A). Est* 

was clearly visible on all ofýthe gel slices except those stained 

using n-AS-a where the positions of bands were measured relative to 

Est- 5c in Po jenkinsi Bo 

III -1- Substrate specificities of esterases run on slab lZels 

Plates 4 and 5 show a set of dehydrated slab gels stained 

with various substrates. Panchromatic film has been used to reduce 
the effect of different dye colours on staining intensity. Bands on 

gels 2 and 7 were red; other bands were purple or blue/black (in the 

case of indoxyl-substrates). The film was however slightly less 

sensitive to red so that bands on gels 2 and 7 appear slightly less 

intense on the plates than on the actual gels. The contrast between 

the bands and the gel background was slightly enhanced by photography 

in the case of red-stained gels. Visual estimates of staining 

intensities relative to that of Est* 9 of P* jenkinsi A(stained with 

71 



TABLE 10al 

M to Symbols used in TABLES 11 - 20 

Substrates 

1 n- acetate 
2 n- acetate 
3 naphthol - AS - acetate 
4 f4k -n- proprionate 
5 - carboxy choline iodide 
6 -n- butyrate 
7 -n- butyrate 
8 -n- laurate 
9 5- bromo-indoxyl acetate 

10 indoxyl acetate 

Reactivity 

++ heavily-staining band 

+ medium-staining band 
lightly staining band 
band not visible 

? reaction unknown 
7+ AND ? +/- reaction not repeatable 
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Fig. 14 Esterase phenotypes of five mass extracts of 

Potamopyrgus species; continuous pH slab gel stained 
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d-n-a) are presented in Tables 11 to 15- 

The maximum staining intensity for most bands was given 

with o(-n-a and c4-n-p substrates* No bands were visible on gels 

stained using ý -c-c-I or 04-n-1 and staining was faint on gels 

stained using ý-n-b. ý -c-c-I is a substrate for vertebrate 

cholinesterases and therefore none of the esterases in Potamopyrgus 

extradts were homologous with-these-enzymeso - Oiford found that the 

esterases of Cepaea nemoralis and Cepaea hortensis were also unable to 

hydrolyse -ý -o-o-I and C4 -n-l. 

Esterases 1 and 2 were specific for Cý-n-aq o(-n-p 

and ind-a only and no other bands showed a similar pattern of 

specificity* Esterases 2a and 3 of P., 
-jenkinsi 

A each had the same 
"fingerprint", * ,, Esterases 2a and 4a of P. antipodarum had different 

substrate'specificities-to-Esto 2a and'3 of , 
P. Jenkinsi A but both were 

specific for oý-n-a and ý-h-b only* Esterases 4 and 5 of 
P. Jenkinsi A were found to be specific for c<-n-b (they appeared on 

one set of gels stained with O<-n-a but the result was not repeatable)t 

although they were usually just visible on gels stained with the general 
esterase iiixed substrates. Est- 4 of P. nigra was also found to be 

specific for a-n-b but was not homologous with the proprionate-specific 
Est- 5 of P. nigra. Est- 5 in was biochemically similar to 

Est- 5 in P. antipodarum. Est- 5b in P* antipbdarum was rare in the 

Waikato River population (section IV -6- 1) used to prepare the mass 

'extract 
and wasp therefore, diluted by snails not having 5b (see 

section 111 1- 3). The band was'fiintly visible on some gels 
stained using U-n-ap oe-n-p and 5-br'ind-a but the results were not 
always repeatable. Est- 5b may be homologous to Est- 5b in P. Jenkihsi 
B but the evidence is not conclusive* 

Gels stained with o4-n-b and 5-br-ind-a revealed clearly 
defined bands in the Est. 6* region. Diagrammatic representations of 

some of the gels shown in Plate 4 (gel 6s c< -n-b) and Plate 5 (gel 9S 

5-br-ind-a) are given in Figse 13 and 14- c/, - and ý -n-b revealed 
three bands (Est- 50,6 and 7) with Est. 6 absent in P* nigra and Est-50 

just visible in P. jenkinsi B and Po antipodarum* The gel stained 

with 5-br-ind-a revealed the probable presence of a fourth band 

-(Est. 6a) between bands 6 and 7 (Rm = 0-79)- The band was most easily 

seen in the P. lenkinsi B, extract staining with the same intensity as 

Est. 6, Est. 6a is presumably specific for substrates other than 

butyrate esters and may well be responsible for the merging of Est. 6 
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and Est-7 seen on gels-stained with general. esterase substrates 

(Fig*115)-ý It is also possible that at leaýt, qne other band was, 

staining up with Est. 6a'and overlapping with Est- 50 on'gpls 

stained using 5-br-ind-a, - 

Est* 6 did not appear in P. nigra extracts stained with 

c>( -n-b although the band was clearly visible in the other four 

extracts* Est- 7 however stained heavily-in Po nigr extracts 

suggesting that if Este'6 and 7 were possibly allelial P. nigr 

populations were largely homozyýous for Est- 7 and populations of 

the other species were largely heterozygous at this locus. 

The simplest interpretation of the above data is that 

four bands are in, thefEst. 6* regiont two specific for o(-n-butyrate 
(Est, 6 and Est- 7) and two not specific for this substrate (Est* 5d 

and 6a in P. nigra and Est- 502and 6a in the other species). 
.-' 

Confirmation of-the structure of this region-was obtained during 

molecular, weight studies (section 111 -.: 3) and during a, survey of 

the Gaywood River, population-of P* jenkinei A where one individual 

which1acked Est- 5c and 6 showed a faint band at Rm, 0-79- 

Est, 9t the band used as the reference in measuring Rm 

values, had similar substrate affinity in all extracts except 

P. jenkinsi A where some activity was. detected with n-AS-ao 

Esterase 10 in, P. jenkinsi A had the same substrate specificity as 

Est. 9 in this extract. Esterases 11t 12# and 13 in P. jenkinsi B 

and 10 and 12 in Pe ni hydrolysed c<-n-a and 5-br-ind-a only; 
the rare Est* 10 in P, antipodaram may have had similar properties 
but the protein concentration was too low to enable-repeatable resultsý 
to be obtained* 

Esterase, 14 was specific for 0ý-n-p and 5-br-ind-a in- 

all extracts and was most active in extracts. 0f, Po jenkinsi B and Co,, 

8 Substrate specificity of Esterases on gels 

In view of the clear resolution of the Est. 6* region 

obtained by staining slab gels with a-n-b (section III -1- 7) and 

in order to be able to recognise bands on both slab and disc gelaq 

sets of disc gels (11 cm) were prepared by running the same mass 

extracts as before* One set was stained using & -n-b and the other 

with oC-n-pe The results are illustrated in Fig. 16. 

83 



The three bands, on butyrate-stained P*, Jenkinsi C, gels 

and the two fast bands on butyrate-stainedýIP*, nigra gels are assumed 
to be bands Est. 6v 7 and 9 (Pe jenkinsi C) and 7 and 9 (P. '-niRra) 

seen on butyrate-stained slab gels. The-possibility of these bands 

being in different relative positions on the two electrophoretic 

systems is considered to be unlikely sinces 

i) On butyrate-stained P. niRr gels the, presumed 
Est. 6 band in P. jenkinsi C was, absent on disc 

and, slab gels. 

ii) Est* 9 was characteristically heavily staining 

relative to Est- 7- 

Five bands, appeared in the Est*, 6*region-on, ýbutyrate- 
stained P. jenkinsi, A disc gels compared with six bands on slab gels* 
Esto, 6P 7 and 9 were in similar positions to those onT. jenkinsi C 

and the two faster bands were assumed to be Est, 10 and Este-11 seen 
on slab gels. Este, 8 was not seen on disc gels but a faint-band was 
detected in this region (overlapped, by Est. 9) during. molecular weiGht 
determinations (section 111 -3)* Esterases 6.7 and 9 were present 
on butyrate-stained P, jenkinsi'B disc gels together with two slower 
bandsq the slower staining more heavily,, than the faster. These were 
thought to be Est- 5b and 50 on slab gels as the slower band appeared 
on proprionate-stained P. antipodarum. disc gels (Est- 5b showed faintly 

on, P. antipodarum disc gels stained using o(-n-p). Butyrate-stained 
P* antipodarum disc gels showed four bands (Est- 5ct 6,7 and 9) in the 
Est. 6* region. 

Po-jenkinsi A gels stained using C<-n-b showed two bands 
in the Est- 4 region and those stained with o(-n-p showed two different 
slow bands., Disc gels stained for general esterase show three bands 
in this region (the, centre band staining heavily),, probably as a result 
of both these overlapping systems staining up* This banding pattern 
is typical of a dimeric heterozygote and would"Certainly have been 

scored as such if the substrate specificity-study had not been under- 
taken. 

Bands 3 and 4 also appeared-as heavily staining, bands on 

proprionate-stained Pe antipodarum disc gels* A single band (? 4 on 

slab gels) appeared on proprionate-stained P. jenkinsi C diso, gels and 

a single band 05 on slab, gels) in this region on both, butyrate and 

proprionate-stained P. nigra disc gels* Bands in, this region present 
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a problem because although Est. 3 and Est- 4 on Pe antipodarum diec 

gels appear to be equivalent to Est* 2a and 4a on slab gelB (they 

have the same biochemical properties)f their relative positions were 
different in the two electrophoretic systems. 

On slab gels, bands 2a and 3 in Po jenkinsi A were 

slower than 2a and 4a in P. antipodarum and had different substrate 

specificities whereas on disc gels Est. 3 and 4 (the probable equiva- 
lents of 2a and 3 on slab gels) in both species had the same mobility 

and substrate specificity. If these bands represent alleles at the 

Es-2 locus they would be scored as homologous between species on the 

disc system but not so on slab gels. 

In the Est* 1 region bands seemed to be equivalent to 

those on slab gels apart from in P. jenkinsi B where two bands 
(Est. 1 and Est. 2) -ppeared on disc gels and only one on slab gels. 
The faster of the two bands was faintly staining and may represent an 

artifact or possiblyg post-translational modification of Est* 1 

similar to that reported for the Es-1 locus of Cepaea nemoralis and 
C. hortensis by Oxford, (see section IV -3- 1). However, if the 

latter was the casep then Est. 2 should have appeared on slab gels 
(although the slab system is a little less sensitive than the disc 

system)* 

Bands which ran faster than the Est. 6* region consisted 
of the faintly-staining Est. 11,12 and 13 in Pejenkinsi B9 Est. 12 in 
P. nigra and the proprionate-specific Est-. 14 in all extracts. Est. 11 
in, P. jenkinsi B ran faster than Est. 11 in P. jenkinsi A suggesting 
that these bands might not be homologous although they have the same 

mobility on slab gelse 

III -2 Inhibition Properties of the Esterases 

Augustinsson 
23 

and Pearse 24 
demonstrated in the early 

1960's that many classes of chemical compound, inbibit vertebrate 

esterases and that such inhibition characteristics could be used to 

classify these enzymes into acetyl-, aryl-, carboxyl- and cholin- 

esterasese Subsequent work by eogo Bulmer and Fisher 
25 

and Ecobichon 26 

has confirmed this classification for vertebrates but recent studies 

by Oxford 
11 

and Stephen and Cheldelin 
22 have shown that the vertebrate 

esterase classification cannot be used for invertebrate esterases, 

The data presented in this section were not used to attempt to classify 
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the esterases in this way but were obtained in order to provide 

additional information on which to distinguish loci in general and 
the Est. 6* region in particular, 

III -2-1 Inhibitors used 

Many of the compounds used are highly toxic to living 

organisms due to their ability to inhibit esterases and other 

enzymes concerned with vital aspects of metabolism, The organo- 

phosphorus compound (E600) is particularly dangerous (it is a potent 

cholinesterase inhibitor) and was handled with due respect. 

The inhibitors employed were chosen by reference to 

the work of Oxford 11 
and Ecobichon 26 

and weres 

INHIBITOR 

E600 (diethyl-p-nitrophenyl phosphate) 
pCMB (parachloromercuribenzoate) 

urea 
silver nitrate 
acetazolamide 
copper sulphate 

quinine sulphate 

sodium fluoride 

sodium sulphate 
EDTA (disodium ethylenediamine 

tetra-acetic acid) 

WORKING CONCENTRATION 

jr3 X 

10-4 M 
1m 

lcrl m 
10-3 M 
jr2 J4 
1073 M 
lo72 M 

2*5 x lo73 m 

16-3 M 

All the solutions were made up in Oe2 M phosphate buffer 
(pH6 - section I-5- 1) with the exception of CuSO 4 and AgNO 3 which 
reacted with the buffer and were dissolved in distilled water instead* 
Solutions were stored for up to one month in a refrigerator and then 

unused solutions discarded* B600 solutions were made up fresh within 

one hour of use as Bulmer and Fisher 25 
and Oxford 11 

report loss of 

potency of solutions of related compounds after Prolonged storage* 

2 Extracts used 

The extracts were the same mass extracts used in 

section III - 3; they had been stored at -20 
0C for two weeks. 
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III -2- Electrophoresis 

Replicate slab gels were prepared as described in 

section III -1- 4- Each five-extract section was sliced in two; 

one slice was placed into an appropriate inhibitOr/staining solution 

and the control slice into distilled water/staining solution. 

III - 2-4 StaininR using inhibitors 

Experimental gel slices were pre-incubated by soaking 
in 100 ml. of the appropriate inhibitor solution for 30 minutes at 25 0C 

prior to the addition of substrates ( 20 mg each of ck-n-aj a-n-p and 

-n-a dissolved in 5 drops of acetone) and 100 mg of solid Past 
Garnet. Control gels were pre-incubated in distilled water* Gels 

pre-incubated in CuSO 4 and AgNO 3 were removed from the inhibitor solu- 
tion andl after quickly washing with distilled watert placed in the 

usual general esterase staining solution (section I-5- 1),, This 

was an attempt to ensure that reactions between the inhibitor and 
staining solution were minimisede 

Incubation with the stain was continued for a further 
30 minutes and gels were then fixed in 30% ethanol in the usual way. 

III -2-5 Scoring band intensity 

Bands were visually scored for intensity by reference 
to the same band on control gels. Scoring was based on the 

subjective scale described in section III -1-6. A+ in Tables 16 
to 20 indicates activity and not inhibition, 

III -2- Results of inhibitor studies 

Tables 16 to 20 summarise the results obtained using"' 
the above methods. Acetazolamide, copper suiphatel"quinine sulphatet 

sodium fluoride and sodium sulphate had little or no effect on 
P. jenkinsi A gels apart from slightly lowering the overall staining 
intensity so as to render faint bands. (Esto 2at 3P 4v-5 and 11). 

undetectable* - 
Silver nitrate produced a grey background against 

which no bands were visible, Eserine produced an orange stain on the 
26 

background similar to that reported by Ecobichon and Oxford 

Only Est. 6* was visible on these gels; other bands were possibly 

represented by diffuse esterase stains on other parts of the gel. 
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For these reasonsp the above inhibitors were left out of later runs. 

E600 lowered the overall staining intensity even at the 

lowest concentration used (1074 M)j where only Est. 6* was just visible* 

EDTA and pCMB had similar effects, inhibiting Est. 2a, 3 (EDTA only), 

4,5,81 11 and 14 completely and Est- 7v 9 and 10 partially in 

P. jenkinsi A; Est- 5a, 9 (partially)l 12 and 14 in P* jenkinsi BI 

Est- 4 and 9 (partially) and 14 in P. Jenkinsi C; Est, 2# 2at 4as 5b 

7 (partially), 10 and 14 in P. antipodarum and 9 (Partially), 109 12 and 
14 in P, nigrae 

Only Est. ly 2 and 50 were completely uninhibited by 

urea in P* jenkinsi A and only Est-, 50 (5d in Z, nipra) was uninhibited 
in the other extracts. Est. 6* wes partially inhibited by urea in 

all extracts. 

No inhibitor provided sufficient differential inhibition 

of the bands making up Est. 6* to add to the information obtained from 

substrate specificity studies* The inhibition results were generally 
less informative than substrate specificity since many of the 

inhibitors caused an overall lowering in staining intensity and did not 
seem to be specific for any particular band* Some bands did, howeverg 

appear to have homologous inhibition properties, in particular Est. 2a 

and 3 in P. jenkinsi A which were slightly activated by PCMB. The 

inhibition data generally supported the homologies between bands 

described in section III -1-7 (particularly homologies between bands 
in different species). 

III - The Relative Molecular Weights of the Esterases 

An electrophoretic method for estimating the molecular 

weights of proteins was first described by Smithies 27 
using starch gel 

and later developed by Zwaan 28 
and Parish and Marchalonis 29 

for use 

on the acr7lamide gels* 

The method relies on the principle that molecules are 

exponentially retarded as pore size decreases, allowing separation of 

molecular charge from molecular size; both of which affect electro- 

phoretic mobility- The slope of the straight line obtained by Plotting 

log Rm of a band at various gel concentrations is thus directly 

proportional to the molecular size of the protein (or other charged 

molecule) making up the band. Molecular size of globular proteins, 
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(eago isozymes) is generally linearly related to molecular weight. 
28 

LOG Rfy 
.., i 

7/. molecular size NO 

GEL CONCENTRATION 

A "Ferguson! 131 plot of -this type (usually the Rf is 

multiplied by 100 to avoid*negative logarithms) may be used to estimate 

the absolute molecular weight of the band by comparing the slope with 

that obtained by running a number of "standard" proteins (having 

molecular weights estimated by other methods e*g. ultra-centrifugation) 

on a range of gel concentrations. Howeverv Oxford 
10 has pointed out 

that estimates of absolute molecular weight obtained in this way have 

very wide confidence limits unless the standard plot is constructed 

using a large number of proteins* Relative molecular weights obtained 
by comparing slopes (without reference to a standard slope) are, on 
the other handl estimated mach more accurately. 

The method has an advantage over other methods of esti- 

mating molecular weight in that estimates of the slopes of mixed 

proteins may be obtained simultaneously. Hedrick and Smith32 developed 

the method for use on crude enzyme preparations such as the extracts 
described in the present work. In order to do this it is ideally 

necessary to be able to recognise bands in all gel concentrations. 
In practiceg this is relatively easy for mixtures containing few proteins 

and has been used by eog* Kingsbury and Masters, 33 Oxford 10 
and, more 

34 ' 
recently, Johnson, to investigate the molecular sizes of allelic 

products. More complex mixtures of proteins leadto problems of poor 

resolution and the overlapping of bands such as, those described in 

section III -3- 5- 

The technique is also limited to proteins larger than 

10,000 daltonse Jeffrey 
35 has shown that' Ferguson plots are linear 

down to this molecular sizel but investigation of slopes below this 

by Gonenne and Lebowitz 
36 have shown that the plot is non-linear. 

None of the Potamopyrgas esterases was estimated to have a molecular 



size of less than 1OjOOO daltons (see section III -3- 

III -3-1 Preparation of gels 

Sets of gelsý were prepared, each set consisting of 

eight gels having final acrylamide concentrations of 4p 51 61 71 Ot 9, 

10 and 11 per cent. Discontinuous pH gels were used as the formation 

of a front during electrophoresis allows accurate measurements of 

relative mobilities of bands to be made. Several sets were usually 

produced at the same time using acr7lamide solutions prepared by 

diluting a 12% final concentration solution C (prepared by dissolving 

48 grams acrylamide and 1928 grm bis in warm distilled water and making 
up to 100 ml with distilled water)* Dilution was carried out 

according to Table 20a to give a final volume of 4 ml, solution C for 

each gel concentration. Mist when made up as described in 

section I-4- 29 gave a final volume of 16 mi of lower gel solution 

per gel concentration - enough for ten sets of gels. 

TABLE 20a s Dilutions of leo acjZlamide solution 

Final gel concentration ml leo soln. C ml distilled water 

4 1-34 2.66 
5 1.66 2-34 
6 2,00 2900 
7 2-34 1.66 
8 2.66 1-34 
9 3-00 1000 

10 3.34 o. 66 
11 3.66 0-34 

Gellation times were found to be similar for all gel 
concentrations used, 

III -3- Extracts used 

The extracts described in sectionIII -1-3 were used 
0 for the molecular weight determinations, These were stored at -20 C 

between electrophoresis runse 'A mass extract prepared in the same way 

using snails from the Campas Lake population of P. antipodarum 
(popln- 46) was used to estimate the slopes of Est. 6 and 6a. This 

population lacked Est. 7 which normally obxoures these two bands. 
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III -3- Electrophoresis 

Electrophoresis was performed as described in 

section I-4-3 using eight different concentrations of gel in each 
r'LMe 0.1 ml of extract was applied to the upper gel surface and gels 

were removed when the front had reached a mark (5-5 cm for 'short, 

gels and 8 cm for 'long' gels - see section I-4- 1) made on the 
tube with a waterproof pen. Lower concentration gels ran faster 
than those of high concentration. 

III -3- Stainin 

After electrophoresisq gels were removed from the tubes 

and the front marked by cutting the gel with a razor blade. 

Sets of gels were originally stained using the general 
esterase stain (section I-5- 1) but as the resultant banding 

patterns were too complex to interpret (individual bands could not be 
followed between gels)t other sets were stained using o<-n-b substrate. 
This necessarily gave less information as fewer bands are butyrate 

specific. Some sets of gels were also stained using c<-n-p (e, go 
P. jenkinsi A and C and P. antipodarum) in order to obtain data on 
e. g. Est- 3 and 4 in P. jenkinsi A and Est- 5 in P. jenkinsi C- bands 

which are proprionate-specific. After stainingg gels were fixed in 
30% ethanol and bands scored before being photographed. 

III -3- lif measurements 

It was not possible to measure Rf values at all gel 
concentrations for all bands visible on 7-5% gels stained for general, 
esterase becauses 

Only gels stained with 0<-n-b (orp in some casesp 
C<-n-p) were used in the measurement of Rf values 
(see section III -3- 4)- 

Faint bands (e. g. Est. 7) became too diffuse to 

measure in lower gel concentrations* 

Bands move with different relative speeds in 

different concentrations of acrylamide and over- 
lapping frequently occurred. 

bands were of similar widths, 

Where overlapping 

the Rf was assumed 
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4 11 4 ii 

origin 

Plate 6: Electrophoresis of a mass extract of the Campus Lake 

population (46) of P. antipodarum on sets of 4 to 11% disc gels. 
The left-hand set was stained using 0(- n-b and the set on the 

right using oý- n-p. Esterases 6 and 9 stain heavily with 

c< -n-b and Esterases 6,6a and 9 with cK -n-p. 

go 

4 11 4 11 

origin 

Plate 7: Replicate sets of 4 to 11% disc gels on which an extract 

of P. jenkinsi C has been run, stained for esterase usingc<- n-b. 

The difference in the slopes of bands 6 and 9 can be clearly seen. 



to be the same for each; where one band was 

narrower only the Rf of the wider band was 

recorded* 

iv) Rare bands occurring in P. antipodarum (eoge Est-5b) 

and P. nigra (e. g. Est. 3 and Est- 4) were sometimes 

difficult to detect due to the dilution effedt 
described in section III -I-2, Est- 5b was, 
however, highly active towards o(-n-p and an 

estimate was obtained for this band* The dilution 

effect did not affect extracts prepared from mono- 

morphic populationst (e. g. P. jenkinsi A) as bands 

in these populations occur in all individuals 

Consequently the number of Rf measurements used to 

estimate the slopes of the log Rf vs gel concentration plot varied 

for different bands. No slope, was estimated from fewer than five 

points (gel concentrations); usually each point was estimated from at 
least two replicate Rf measurements* Plates 6 and 7 show sets of gels 

stained for butyrate-specific and proprionate-specific-esterases. 

III -3- Estimation of slopes 

Slopes and regression statistics were obtained by 

plotting loglo 100 Rr values against gel concentration (% acrylamide) 

using the University or Michigan regression procedure on the DEC-10 

computer at York. The procedure produces a visual plot or the data 

together with the statistics associated with each regression line* 

Slopes and 95fo confidence limits are presented in Table 21. 

Confidence limits are those generated for the mean slope and are 

considered to be legitimate as only the relative slopes are to be 

compared* Oxford 10 has pointed out that if absolute , molecular weights 

are to be calculated, confidence limits need to be set using methods of 

'inverse predict 
. ion' described by Sokal and Rohl e 

37 

Slopes were compared by first looking for charge/size 

isomers (described by Hedrick and Smith 32 ) e, g, those bands which 

remained equidistant in all gel concentrations in a particular extract 

( e. g. Est. 9 and Est. 10 an Plate 8)e These isomers differ in charge 

onlyg unlike other bands which differ in both size and charge since they 

have obviously different slopes (see Est. 6 and Est* 9 on Plate 7). 

Molecular size (and therefore weight) relationships between bands 
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within an extract were visually deduced in this way. 

Suspected homologies between bands in different extracts 

were confirmed by comparing slopes using the statistical routine 
described by Quenouille 

38 for the simultaneous comparison of regression 

coefficients (using a variance ratio test). Data were initially 

tested for homogeneity using Bartlett's test* A specimen calculation 
for the Est* 9 bands in the five extracts is given in Appendix II. 

Similar comparisons of other slopes (all data sets were homogeneous) 

gave the following F values. 

BANDS P value df 

Est. 1 (&2 in P. 
--jenkinsi 

A) 1.62 6j83 

5f WO on slab gels) 0-97 5034 
6 0-53 5066 
6a 2-55 4948 
7 1.67 5014 
9 2.40 5056 

F values are consistent with the hypothesis thatt within 
a data set, the slopes of. the bands did not significantly differ 
(P 0-95)- It is, thereforej legitimate to estimate the mean slope of 
bands within a particular locus by combining data from each extract* 
These values are given in Table 21. 

In terms of absolute molecular weight, the estimates for 
the Est. 1 bands were extremely high and were eqaiv, -lent to approximately 
6x 105 

a 
10). daltons (using the standard calibration curve given by Oxford 

This suggests that these bands are probably polymeric and might explain 
why the Est. 1 band in p. jenkinsi B appeared as two bands on disc gels 
and one on slab gels (section III -1- 8). The molecule could have 
been disrupted by the change in PH at the front during disc electro- 
phoresis resulting in the production of two distinct entities* 

III -3- Homologies between esterases and their Assignment to loci 

It has been shown in section 111 8 that most 

esterases on disc gels could be recognised on slab gelse Bands on slab 

gels were, thereforej assigned relative molecular weights on this basis* 

The most likely relationships between bands based on their substrate 

specificitiest inhibition properties and molecular weights are depicted 

in Fig* 17 and Table 22. Molecular weight estimates were not 
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LOCUS P. J. A P. j%B P. j. c P. anti P. niara 

Es- I 
r-L r 

L 
rI 

L2 2 

2a 2a 
r 
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Fig. 17 - Homologies between Potamopyrgua esterases based on their 

biochemical and physical properties. 
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available-for some bands (section III -3- 5) and homologies 

between these and other-bands were treated cautiously as they are 

based on their mobility on 7-5% gel and biochemical properties only. 

Relationships between such bands are marked (? ) on Fig. 17* 

It is possible to identify pairs of bands within a 

species which had unique biochemical and physical properties* . -Bands 

were also found which could not be paired with any-other band within 

a species (e. g. Est. 11 in 
' 
P. lenkinsi. Al. Homologies between pairs 

of -bands and single bands between species are represented by double 

lines on Figo 17-, 

For the reasons given at the beginning of this chaptert 
it was assumed that a group-of homologous bands represented alleles at 

a particular locus-- the locus is characterised by the biochemical and 

physical properties of its gene-products. Bands which could not be 

paired within a species presented a problem as they may represent either 

a locus heterozygous for the visible allele or the visible/null hetero- 

zygote. In the absence of breeding datay the problem could be 

partially resolved, by reference to differences in staining intensity of 
the single band in population surveys. It is reasonable to assume# 
for example, that the following banding patterns at a locus in five 

individuals: 

1 
E= rAzz 

4 
= 
5 

theoretically represents genotypes 

null/null null/A A/A null/null null/A 
2345 

Similarly, if two visible alleles (A and B) have 

different mobilities and are segregating with a null allelep the 

following theoretical banding patterns may results 

phenotype A ZZO 
B 

individual 123456 

genotype A/B A/A B/B B/null A/null null/null 

Patterns such as these were found in populations of 

P. antip0darum (e. g. Est. 14 in F* . 19) and P. nigm (eg. Est, I in 

Fig* 20), possibly as a result of occasional rounds of semial 

reproduction in these largely parthenogenetic populations. Allele 
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frequencies (including those of the null) axe determined in this way 

in chapter IV, but due to possible errors caused by e. g. differences 

in staining time and temperature they should be treated with caution* 

The presence of null alleles inf. jenkinsi populations 

is impossible to detect due to the complete absence of segregation. 

When calculating heterozygosity and genetic distances in chapter VI9 

itis assumed that single bands in P. jenkinsi represent loci which 

are homozygous for a visible allele. As some null alleles may have 

been present at these loci, this assumption almost certainly resulted 

in an under-estimate of the proportion of heterozygotes per locus. 

In summaryq the approach used in this chapter to the 

problem of the genetic interpretation of esterase banding patterns in 

Potamopyrgus species has provided a basis on which to assign bands, 

to loci which is better than the simple guesswork often used* 
Howeverl due to the practical andtheoretical problems associated 
with the method, and in order to confirm the interpretation ofj 

particularly, P. jenkinsi esterases, it would be desirable to set up 

crosses between sexually-reproducing individuals from species (such 

as P. entipodar ) having loci homologous with those off. jenkinBi. 

T-. 
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CHAPTER IV i ELECTROPHORETIC VARIATION IN BRITISH 
AND AUSTRALASIAN SPECIES OF POTA)IOPYRGUS. 

IV -1 Electroph6resis 

Where sufficient numbers of adult snails were availablep 

at least thirty from each population were individually electrophoresedg 
(see Table 23). Snails were normally electrophoresed. within one week 

of arrival in the laboratory; one sample of P, jenkinBi C (Popln. 35) 

had been maintained by Mr. T. Warwick (University of Edinbargh) in a 

large laboratOX7 tank for an unknown period* 

Electrophoresis was performed on continuous pH slab gels 

as described in section I-3. Whenever possible, all snails from a 

population were electrophoresed on the same gel. Gels were sliced 
(section I-3- 4) and slices stained for general esterase (section 

I-5- 1)9 acid phosphatase (section I-5- 2) and Mdh (section 

I-5- 3), Relative mobilities of bands were measured using Eat* 

as a reference band (see section II -1- 1)e 

IV -2 Statistical treatment of genotype frequencies 

In this and the following chapterg observed genotype 
frequencies are tested, where appropriateg for their goodness-of-fit 
to Hardy-Weinberg expectations by using Chi-squared (X 2) tests. 

1 
William has pointed out that Pearson's approximation 

to 

-x 2. ý (o_E) 2/E 

is less robust than the maximum likelihood estimator 

x2 2ý0 ln 0, 

particularly where low expected numbers, (less than 5) are encountered* 

The maximum likelihood estimator was used for calculating all X2 valu; es 

in this thesis. In some 'cases, where several expected classes were 
2 

less than 5t )( values are probably inflated. Where this results in 

a significant deviation from the null hypothesis, the statistio is 

somewhat unreliable. Insignificant deviations from the null areg 

nevertheless, made more robust by low expected values* 

IV -3 Variation in P. jenkinsi A 
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TABLE 231 

Population-No. 
Isee Appendix 

for locality) 

Comparison of electrophoretio and morphological 
phenotypes of Potamopyrm jenkinsi populations, 

Number Electrophoretic Morphological 
Electrophoresed Phenotype(s) Strain 

1 52 G B 
2 30 A A 
3 30 A A 
4 30 A A 
5 30 A A 
6 30 A A 
7 30 A A 
8 34 A A 
9 30 A A 

10 30 A A 
11 30 A A 
12 1 A A 
13 15 A A 
14 30 A A 
15 11 A A 
16 30 A A 
17 30 A A 
18 31 A, By D A 
19 30 A A 
20 30 A, E A 
21 25 A A 
22 30 A A 
23 30 A A 
24 30 A A 
25 28 A A 
26 30 At P A 
27 30 A A 
28 30 G B 

29 30 A A 

30 30 At H 2 7A 3C 

31 30 A A 

32 30 A A 

33 12 A A 

34 30 A A 

35 30 H c 

36 14 A A 

38 2 A A 
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Gorad, Bangor (10) Ratby (18) Polybotts La. (19) 

origin 

. is 

origin 

all 
ES-WASK 

Crose Mere (20) Edinburgh (5) 

Plate 9: Esterase phenotypes of individuals from five populations 

of P. jenkinsi A. Banding patterns are identical except at the Es -I 
locus in populations 19 and 20. Staining intensity varies between gels 
due to slight differences in the size of snails from different 

populations. 

origin 

114 

Esterases 9 and 10 

Plate 8: Replicate sets of disc gels (4 to 11%) used for relative 

molecular weight determinations; P. jenkinsi A stained for esterase 

using o<- n- butyrate. Esterases 9 and 10 remain equidistant in 

all gel concentrations showing that they differ in charge only and 

not in molecular size. The 6% gel is missing from the set on the 

left. 
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Fig. 18 Esterase phenotypes of Potamopyrgus jenkinsi populations; 
7.57 acrylamide pH 9.5 continuous buffer stained a-n-a, a-n-p, a-n-a. 
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AIG-P. jenkinsi B 
BH-P. jenkinsi C 
c P. jenkinci A 
D 
E 
F 

Est. 5a was sometimes present in snails clectrophoresed straight 

from the wild but was absent from laboratory stocks (see section 

V-2-2 for details) 
t 

Esterases 11,12 and 13 were not normally visible in the Hull 

population of P. jenkinsi B (see section V-3-2) 
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Es -1 [0 origin 

Plate 10 : Variation at the Es I locus 

in the Leicester (Polybotts) population 
(popln. 20) of 

Es-1 'L 

toff06 

origin 

Platell : Variation at the Es I locus 

in the Crose Mere population (popln. 18) 

of P-jenkinsi A. 
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IV -3-1 Esterases 0 

P. jenkinsi A populations were remarkably mono- 

morphic; only three populations (189 20 and 26) were found to exhibit 

variation at esterase loci* With the exception of thesep all 
individuals had phenotype A (Fig. 18, Plate 9 and Table 23)- 

In two popLaations (18 and 20) variation was suspected 

at the Es-1 locus although the small differences in Rm values of these 

bands (Est* 19 la and 2) on 7-5%, gel run for four hours made resolution 

difficult* The extracts wereg thereforet re-run on 7-5%- gels for 

eight hours. The results of these runs are shown in Plates 10 and 11* 

Variation was found to be due to the presence of bands Este 1 and la in 

poplne 20 and Est. 19 la and 2 in popln. 18. The distribution of 

genotypes in these populations is shown in Table 24, The possibility 

that variation at the Es-1 locus in these populations was due to 

segregation is unlikely as no males were present in the samples and no 

segregation had occurred at other loci thought to be heterozygouse 

It isy thereforet pointless to compare the distribution with that 

expected from Hardy-Weinberg assumptions as one of the major 

assumptions (random mating) is clearly inapplicable. 

It is likely that these genotypes (which represent 

genetically distinct clones) have arisen by mutation at the Es-1 locus 

giving rise to viable heterozygotese This does notp however, 

adequately explain the evolution of the la/la clone in popln. 20 as 
two similar mutational events would be needed to give this genotype. 
It is possible that the la/la assumed homozygote is, in facti a la/null 
heterozygotee 

In the sample taken from the Gaywood River, Norf olk 
population (popin. 26), one individual was found in which Est* 5o and 
Est. 6 were undetectable (phenotype F on Fig. 18 and Plate 12). 

Est. 8 was heavily staining in this individual and two slower bands 

(Est- 7 and 76a) were visible* 

This was the only individual having phenotype P found 

in the entire survey and clearly lacked two highly active esterase 

bands. Est- 14 was faintly staining in this individual# although 

the snail was the same size as others in the sample and the protein 

concentration in the extraqt was therefore similar. If it is assumed 

that the Es-12 locus is normally homozygous for Est. 141 then pheno- 

log 



P. jenkinsi B P. jenkinsi A 

c)rigin 

phenotype 

Plate12 : Esterase phenotypes of individuals from 

two populations of P. jenkinsi. Phenotype F is missing 
bands 5c and 6 seen in phenotype A. 

origin 

410 
12 "1 

-All 13 

F1 ( ------ F2 progeny -------- ) 

Plate16 Esterase phenotypes of individuals from the 

Hull population of P. jenkinsi B showing the vmutant' (FI) 

found in laboratory stocks and eight of its progeny. 

Bands 11,12 and 13 are not normally detectable in snails 

from this population. 
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type F may represent the Est. 14/null heterozygote. Phenotype F 

differed from phenotype A at possibly four loci (Es-5, Es-61 Es-8 

and Es-12) and may represent a new clone of, P. : Lenkinsi. There 

were no obvious morphological differences between snails in this 

population and the individual showing phenotype F had the usual 

P. jenkinsi Mdh and Ac,, Ph. phenotypes. A larger survey of the 

Gaywood River population might establish whether two viable strains 
(A and P) co-exist or whether F was a unique mutant. 

Variation in the staining intensity Of Est- 5a on diso 

gels was frequently found between snails from a single population. 
A band thought to correspond to Est- 5a was also seen on some slab 

gels. Est- 5a was present in some snails but absent or faint in 

others when Population samples were eleotrophoresed immediately after 

collection from the wild. The band was virtually undetectable in 

snails which had been kept for over a month on the laboratory diet of 
boiled and dried lettuce* 

In view of the phenotypic modification of some esterases 
by diet in Cepaea nemoralis and C. hortensis reported by Oxford 

29 
an 

experiment was set up to investigate possible dietary effects on the 

esterases of Pe jenkinsi A. 

A clone of 200 adult snails was reared from a single 

specimen of P. jenkinsi A taken from the Bielby Beek population 
(popln. 11) and fed solely on boiled and dried lettuce as described in 

section I-1. 

Fifty individuals were placed in each of four plastic 
boxes (14 cm x8 cm x5 cm deep), fitted with lids to prevent evapora- 
tion and each containing 400 ml of pre-aerated (10 days) tap watere 
The boxes were aerated using a capillary tube aerator and kept in the 
dark (to prevent algal growth) at room temperature (approxo 220C)* 

The following treatments were chosen in an attempt to 

represent different aspects of the natural diet, 

Box 1 Benthic detritus from the Bielby Beck 

(probably the natural diet). 

Box 2 boiled and dried lettuce, representing a 

nutritious component of the dieto 

Box 3 dried and ground autumn maple leavesp representing 

a non-nutritious component of the diet. 
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DAY 

20 

Est 5a 

:T 

Plate 13 : The induction of Est. 5a in P. jenkinsi A. 

Individuals sampled from a clone fed solely on ground, 

dried maple leaf for 20 days; disc gels stained for 

general esterase. 

day 0 day 6 day 12 day 14 

LSD 

day 20 

Plate14 : Sets of disc gels prepared from snails (P. jenkinsi A 

maintained on four different feeding regimes for 20 days. 

L- Boiled, dried lettuce leaf 

S- Starved 

D- Detritus from the habitat 

M- Ground, dried maple leaf 

12 14 



Box 4 snails in this box were starved. Starvation 

probably occurs in the wild during periods of 
inactivity caused, for example, by extremes of 
temperature. 

In the first three treatments, sufficient material was 

added to form a laver approximately 2 mm thick on the bottom of the 

box. 

Four individuals were removed from each box at the 

start of the experiment and subsequently at the periods shown on 
Plate 13, The snails were electrophoresed on disc gels which were 

stained for general esterase (section I-5- 1)16 

The banding patterns obtained are shown in Plates 13 

and 14- All four individuals sampled from each treatment at each 
time gave the same banding patterns* At the start of the experiment 

snails from all boxes showed similar banding patterns with Est- 5a 

staining very faintly at Rf 0*24- Samples taken on day 14t howeverl 

showed that Est- 5a was relatively strongly staining in those snails 
kept on maple leaves* The band was faintly staining in snails taken 

from the other boxes* By day 20 Est- 5a was even more strongly 

staining in the snails kept on maple leaves but remained faint in the 

other treatments (see Plates 13 and We Electrolphoresis on day 46 

revealed continued high activity of Est- 5a in maple leaf-fed BnailSe 
The experiment was discontinued shortly afterwards due to heavy 

mortality of snails in this treatmento 

Murray and Solomon 3 
report that prey esterases can be 

detected in extracts of predatory mites and bugs for up to 31 hours 

after prey ingestion. As the maple leaf layer in the box would have 

had an associated 'floral of bacteria and fungi, assimilation of 

esterases produced by these organisms mikht explain the high activity 

of Est- 5a in snails from this treatment. Electrophoresis of a 

sample taken from the detritus in the box on day 30 revealed no 

esterase activity- It is therefore unlikely that Est. 5a was being 

produced in this waye 

Hebert4 bas reported the modification of Ldh molecules 

in the water-flea Daphnia magn by a period of starvation resulting 

in! newILdh bands on gels* Oxford5 has found a similar effect on some 

esterases of Cepaea nemoralis and Co hortensis fed on a diet of nettle, 

ill 
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Thurso (22) 

origin 

/ 
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origin 

Muriau Farm (2) Leicester(Ratby)(19) 

Plate 15 : Mdh phenotypes of ten individuals from each of 

four populations of P-jenkinsi A. The shift in mobility 

of the bands of individual 6 in popln. 21 is an artifact 

due to the presence of an air-bubble beneath the sample 

wick. 

origin 

Plate17 : Mdh phenotypes of fifteen individuals from the 

Waikato River population (45) of P. antipodarum. 

J. 
i 

Grand Union Canal (21) 



Urtica'dioica. Both these phenomena seem to, result from post- 
translational modification of the enzyme (by proteolysis in Daphni 

and, possibly, alterationýof the'gut flora in Cepaea) causing the 

"disappearance" of a pre-existing band simultaneous with the 

appearance of the modified isozyme at ii different mobility* In the 

present study, the intensification of Est- 5a, did not coincide with 
the disappearance of another band suggesting that Est- 5a is not a 
product of post-synthetic modification of another isozyme. 

. 

A more likely explanation is that'Est- 5a represents 
the induction of an esterase required by the snail to deal with some 

aspect of a maple leaf diet, Similar mechanisms have been proposed' 
for the appearance of temperature-induced isozymes in the sear-urchin 
Arbacia puntulata by Xarcus 

61 
for a food-induced esterase zone in the 

5 helicid snail, Monacha cantiana by Oxfordv and. for non-genetic 
variation of isozymes in Cepaea nemoralis by Gil, 07 

IV -3-2 Malate delxvdrogenase (Mdh) 

No Mdh variants were found in any population. Gels of 
ten individuals from each of four populations are illustrated on 
Plate 15- The faster zone consists of two bands (Mdh 2 and 3) which 
are frequently difficult to distinguish due to their close proximity on 
7-Va gel- Extracts run on 5% gel gave Mdh banding patterns in which 
Mdh 1 and Mdh 2 were relatively further apart than on 7-Vo gel but 
Mdh 2 and Mdh 3 remained equidistantj indicating that Mdh 2 and 3 have 
the same molecular weight (see section III -3- 6). It is assumed 
that Mdh 2 and Mdh3 were at the Mdh-2 locus and that the single slow 
band, Mdh-19 represented the homozygous state of the Mdh-1 locus. 

IV -3-3 Acid phosphatase (Ac. Ph. ) 

All individuals showed the same phenotype viz. bands 
Ac. Ph. 1 and the faster zone Ac*Ph*2. The latter zone was found to 

consist of two close bands Ac. Ph*2a and Ac. Ph. 2b forming a diffuse zone 

on all but the most lightly stained gels* The allelic nature of 
Ac, Ph*2a and 2b was suggested by running extracts on 5% gel in the same 

way as in section IV -32. In the same way Ac. Ph. 1 and Ac*Ph, 2 

were shown to have different molecular weights and are probably 

non-allelic. 

The banding pattern was assumed to be produced by two 
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loci Ac. Ph-PA (genotype 11/11) and Ac. Ph. -2, (genotype 21/2 2). 

IV -4 Variation in P* jenkinsi B 

IV -41 Esterases 

Individuals within each p. opulation of P. jenkinsi B 

had the same esterase phen; types although there were clear differences 

between the two populations (popln. I and poplne 28). Individuals 

from Snettisham (popln* 28) had an extra three bands (119 12 and 13) 

which were absent from the Stone Creek (Hull) population. In the 

course of a cloning experiment described belowl a 'mutant' which also 

possessed Est* 11,12 and 13 appeared in laboratory-stocks of, Po 

jenkinsi B from Stone Creek* 

The cloning experiment was set up by rearing ten 

2-week old (3-whorled) individuals from Stone Creek in isolationo 

After eight weeks, each isolated snail produced a number of progeny 
(labelled F1 for convenience) parthenogenetically, Each parent and 

eight of her progeny were electrophoresed (slab method) and'five of 
the remaining offspring were reared in isolationo After a further 

eight weeks 24 of these F1 individuals produced progeny (IF 
2 1). 

When these progeny had grown to the 4, -whorled stage, both P1 and P2 

individuals were electrophoresed and stained for general esterase. 
Gels from 23 of these familiesýshowed that most P, parents and 

progeny had identical phenotypes to the original parents (ioe. Est. 11, 

12 and 13 absent)* In one easel however, the F1 and its F2 progeny 

clearly possessed Est. 11,12 and 13; bands previously only known 

from the Snettisham, population. The original parent of-this line 

displayed the usual Hull phenotype (Eat. jig 12 and 13 absents see 
Plate 16)e 

Est. 11 a. nd 12 are prob 
. 
ably allelic (on -the grounds 

-that, they have the same biochemical properties - see Table 22) and 
Est* 13 (a faint band) may be a shadow' band associated with these 

alleles. The simplest explanation for their sudden appearance in 

laboratory stocks is that a mutation or chromosomal re-arrangement had 

occurred affecting the expression of the locus (Es-11) coding for these 

enzymese This implies that the Es-11 locus in the Hull population 

is normally 'silent'. The two populations of P. jenkinsi B mayq 

therefore# possess the same structural esterase loci but normally 

differ in their regulatory loci* Alternativelyt it is possible that 
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the Es-11 locus in the Hull population is normally fixed for the null 

allele and the 'mutant' produced an active esterase. This bypothesis 

requires that Est. 11,12 and 13 arej in factf produced by one allele 
(? Est. 11) and the three bands result from the addition of one alLd 

two charged molecules to Est. 11 giving Est. 12 and Este13 respectively. 

The addition of carbohydrate molecules such as sialic acid is known 
8 

to give rise to multiple an7lase bands in man* Incubation of the 

extracts with neuraminidase (which removes sialiC'-acid) did not 

alter the electrophoretic patterns butg although sialio acid addition 
is not involvedl other charged units (e. g. naturally occurring esters) 

may be responsible for the production of Est. 119 12 and 13* In 

preparing estimates of heterozygosity and genetic distance it was 

assumed that both populations were identical at the structural Es-11 

locuso 

IV -4-2 Malate dehydrogenase and acid osphatase 

Banding patterns at these loci were the same as those 

for P. jenkinsi A* No variants were found in either the Snettisham 

or the Hull populations. The genetics of the bands was assumed to 

be the same as that of P. jenkinsi A (sections IV -3-2 and 
IV -3 

IV -5 Variation in Pe jenkinsi C 

IV -5-1 Esterases 

All 30 individuals from the Burgh Castle population 

and three from the Brittanypopulation were found to possess phenotype 
Ho (Fig. 18). 

IV -5-2 Malate dehydrogenase-(Mdh) and acid phosphatase (Ac*Ph. 1 

All P, Jenkinsi C individuals had the same Mdh and 
Ac. Ph. phenotypes as those of P. jenkinsi A and B, * 

iv 6 Variation in P. antipodaru 

iv -6-1 Esterases 

Nine electrophoretic phenotypes were identified in 43 

individuals from the Waikato River population (popln- 45) and three 
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phenotypes in 36 individuals from the Campus Lake populationg 
(popln- 46)o The number of snails showing each phenotype and 
diagrammatic representations of each are given in Fig. 19. The 

most common phenotype differed in each population (C and K in Fig. 19) 

and several bands (Est- 5bi 5cs 7 and 10) found in the Waikato River 

population were unrepresented in the Campus Lake population. The 

overall staining intensity was similar in both populations so that 

"between gel effects" cannot account for these differences. The 

significance of this variation is discussed in relation to the 

breeding systems in these populations in secti! on IV - 9* Bands were 

assigned to loci according to the homologies between them described 

in section III -3- 

IV -6-2 Malate dehydrogenase (Mdh 

. All individuals from both populations had the phenotype 
illustrated in Plate 17- The faster zone consisted of two bands 
(Mdh 2 and 3), The phenotype was identical to that found in all 
P. jenkinsi individuals* Mixtures of Pe jenkinsi A and Pe antipodarum 
extracts gave the same banding pattern. It was therefore assumed that 
the loci Mdh-1 and Mdh-2 were represented by genotypes Mdh I and 
Mdh 2 1/22 in all individualBo 

iv, -- 
6-3 Acid phosphatase (Ac. Pho) 

All individuals of P. antipodarum had the same phenotype 
as P, jenkinsi individuals* Bands were assumed to be homologous to 
those of Pe jenkinsi and to represent the Ac. Ph 11/11 homozygote at the 
Ac. Ph. -1 locus and Ac. Ph. 21/2 2 heterozygote at the Ac. Ph. -2 locus. 

IV -7- Variation in P. nigra 

IV -7-1 Esterases 

Eleven electrophoretic phenotypes were recognised in 

150 individuals from six populations of P. nigra (Fig* 20). Three 

populations (391 42 and 48) were each monomorphic for a different 

phenotype* Populations 40t 41 and 43 were polymorphic although few 

phenotypes were included in each. Similar instances of a restricted 
distribution of phenotypes have been reported for parthenogenetic 

populations of weevils and moths by Suomalainen and Saura9j Lokki 

et, al. 
10 

and Saura et. al. 
11 
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Wallace 12 has recently reported a very low (less than 5%) incidence 

of males in many populations of P, nigra from New South Wales and 
Victoria and this was the case in the populations used for the present 

study (Poplns. 399 41 and 42 were all-female and less than 5% males 

occurred in'populations 401 43 and 48 - see Appendix I). Hardy- 

Weinberg assumptions of random mating clearly do not apply to 

populations of Pe nigra which probably consist of a number of 
different clones. Gene flow between these clones may occur due to 

occasional sexual matings but appears to be insufficient to generate a 
large number of clones per population. The distribution of pheno- 
types in populations of P. nigra (and P. antipodarum) is more fully 

discussed in section IV - 9. 

IV -7-2 Malate dehydroRenase (Mdh) 

In contrast to the other. Potamopyrgus speciesp P. nigra 

populations contained individuals having different Mdh phenotypes 
(Fig* 21); up to 11 bands were present in an individual snail* 
Four populations (39t 41P 42-and 48) were each monomorphic for a 
different phenotype. Significantlyt these were the same populations 

which were monomorphic for esterase phenotypes (except popln. 41 

see IV -7- 1)- 
-I- -11 1 

Six loci were-thought to be responsible for the banding 

patterns and these are shown on Fig. 21. It was not possible to 

confirm that the assignment of bands to these loci was correct as no 
crosses could be set up (the snails were receivedin poor'condition - 
see I-1- 2)* However, by running the'extracts on 5%o gels (see 

III -3- 2) bands 7a and 8 and 11 and 13 were shown to have the same 

molecular weight suggesting that they are alleles at the Mdb, -3 and 
Mdh-5 loci respectivelye 

Bands at the presumed Mdh-1 locus were-rather confusing 

and seemed to represent a multimeric system* For heterozygosity - 
estimates it was assumed that phenotypes C and G were homozygous for 

Bands 3 and 5-whilst the other phenotypes represented heterozygotes. 

Phenotype B was assumed homozygous for a null-allele at Mdh-1 i, e, 
band 7 was the Mdh 22 /2 2 homozygote. 

IV -7-3 Acid phosphatase (A Ph. ) 

Three regions of acid phosphatase activity were detected 
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in P* niRra extracts but the zones were too diffuse to interpret 

with, certainty. The faster zone (Fig* 8) migrated to approximately, 
- 

the. same position as the Ac. Ph. -2, locus in Po jenkinsi-but-no clear 
bands were visible in this region. Several individuals-in 

populations 40 and 41 appeared to lack the slow zone but the genetic 
interpretation of'this was not clear, -As a result of this uncertainty, 
data for acid phosphatase loci of, P* nigra were not included in esti-- 

, mates of heterozygosity or genetic distance. 

IV 8 Variation in the Esterases of P. estuarinus 

The esterase phenotypes of fourteen individuals are 
shown diagrammatically in Fig. 22. The snails were all the same 

-size resulting in approximately the same protein 'concentration in 

individual extractsý.. -Ten 
distinct phenotypes were recorded and 

simple variation involving two alleles was assumed for the ES-1 and 
loci. The relative mobility of the Est- 5c band was significantly 

different to Est- 50 in P. 
-Jenkinsi when mixed extracts of each were run 

on the same gel. 

A genetic interpretation of-the region from Est- 50 to 

Est. 7 was attempted bi assuming that Est- 5c and Est. 6 were alleles 

at a different locus (Es-5) to Est. 6aand-Est- 7 (at the Es-6, locus). ý 
At'least one null allele was present at the Es-12 locus (coding for 

Est. 14 and 15)- -- Neither of these alleles at this locus was found in 

any other PotamopvrA-w population* 

As P. estuarinus, is: an obligate sexually-reproducing 

species genotype frequencies were compared to those expected from Hardy- 
Weinberg assumptions, (Table 25)- Significant deviation occurred only 
at the Es-12 locuz probably as a result of the presence of an unknown 
number of null allelese An estimate of heterozygosity (H 

e) was'made 
for the four loci which could be scored with some cert . ainty (see. also 
section IV -9 and Table 26). 

IV -9 Polymorphism in Potamopyrgus populations 

Estimates of the proportion of heterozygous loci per 
individual areusually made by compating_t he mean expected hetero- 

zygosity (H 
e 

from-estimates of genotype frequencies-given by the - 
Hardy-Weinberg expansion. 
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TABLE "ýiýýism, in PotamopyrRw speoiess 
-26s 

Electrophoretic polymo 
Summary of Data 

SPECIES 
LN 

LP P LOCI (D) rOTAL NosHetero Ho Of 
LOCI z Motes, 

7120 Est 8 
Pejenkinsi-A 89o . 002 0.93 1780 Kdh 2 10680 OBS, 7983 0-747 2*52 0 
(all poplns) (34) 1780 AcPh 2 EXP 3164 o. 296 

' -574 Est-(7) 
P. Jenkinsi B 82 

1 

#045 0 1-OC+ 164 Xdh (2) 902 OBS 492 09545 2*00 0 
(popns I& 28d (2) 164 AcPh(2) EXP- 246 0.273 

198 Est ý6 ý 
P. Jenkinsi C. 33 0-00 1-00 ý 66 14dh 2 330 OBS 132 0.400 2900 0 
(Popns 35 & 30) (2) 66 Aoft(2) EXP 66 0.200 

790 Est(10) 
P. antipodarum 7 0-31 0-37 158 Ildh (2) 1106 OBS 353 0-319 1.64 o. % 
(both poixe) (2ý 158 AcPh(2) UP 215 0-194 

Popln. 47 430 Est(io) - 
Nantipodarilin 43 

1 

0-54 0-44 86 14dh ý2j 602 OBS 173 0*287 1-38 0.30 
(Waikato) 0) 

1 
" 86 AcPh 2 

1 
EXP 125 0-2081 

Popln- 46 360 Est(10) 
P. antiPodarum 36 0.08 0.81 72 Ildh ý2 504 OBS 180 0.357 1-99 '0 
(Campus Lake) (1) 

j 
72 AcPh 2 EXP -- 90 0-179 ,I 

P. nigra 150 0.16 0.18. 1350 Est (9) 2208 OBS 740 0-335 1-77 0.03 (all poplnse) (6) 
1 

858 Ydh (6) EXP 418 
1 
0.189 

P. nigra 24 0-00 1.00 207 Est (9) 351 OBS 94 Oe268 2,00 0 (popins. 39) (1) 144 Tldh (6) EXP 47 0.134 
, 

P. nigra 28 0-40 0-50 342 Est (9) 468 OBS 179 0.382 1.62 0 01 (popin- 40) (1) 126 xdh (6) EXP 110 0.235 * 

P. nigra 26 0#27 0*92 
1 

216 Est'(9) 372 OBS- 150 0-403 1.85 0-05 (PoPln- 41) (1) 156 Yldh (6) EXP 81 00218 
- 

P. nigra 22 0.00- 
11.00 

198 Est 9 ý ý -330 OBS- 110 Oý333 2.00 0 (popln- 42) (1) 
- 

6 132 Mdh JEXP, 
., 

55 0.167 

P. nigra 28 0927 0-56 144 Est 9 ý 312 OBS - 87 0*279 1.36 0 10 (PoPln,, 43) (1) 
.. 

168 Xdh 6 EXP 64 0.205 
1, 

1 

Pe nigra 27 0-00 1000 1 243 Est (9 1 375 OBS, 120 0.320 2*00 0.03' (Popin- 48) (1) 
. - 

132 Xdh (6 
, 

EXP, -, 
6o o. 16o 

P. estuarinus 14 1-00 0-14 1 56 Est (4) 56 OBS 23 0-41 0-932 0-47 (popin- 49) 
1- 

(1) 
I'll " I 

EXP 
, 

25 
10-44 1 F 

N vo-rirmim mimber of indivi duals (not all zels were scored for all loci) 
NI Number of populations 
LP Proportion of loci polymorphio per population, 
P Proportion of individuals having the most common e0terase phenotvpe 
D Number of different loci 
11 Mean proportion of loci heterozygons per individual 

t See section IV -4- I- 
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R Estimated number of heterozygous loci 
e al number of loci in the sample 

For sexually-reproducing small populationspff has been 
13 e 

shown by Nei and Roychoudhury to have inherently better statistical 

properties than the mean observed heterozygosity (H 
0 

), In populations 

where there is a significant degree of apomixis, however, Hardy- 

Weinberg assumptions are clearly inapplicable and it is inappropriate 

to use R 
e* 

A better estimate of the heterozygosity in these' 

populations is simply H0; large differences between Re and R0 have 

been used by Wright14 Suomalainen15 and Selander 16 to demonstrate the 

genetic consequences of different breeding systems. As Re equals R0 

only if Hardy-Weinberg assumptions of random mating and selective 

equilibrium applyl differences between these estimates may also result 
from selection. 

Table 26 presents e and R0 estimates for Potamopyrgus 

populations together with estimates of the proportion of polymorphic 
loci per population. The proportion of individuals having the most 

common electrophoretic phenotype (P) is included as this parameter'gives 

an indication of the distribution of variation within populations* 

Estimates of heterozygosity, -are-subject to several 

sources of potential error: - 

The sample of snails may not be ýrepresentative of 
the total population. Clearly, the larger the 

sample the more representative it should be. 

The loci assayed may, not be representative of all 
loci in the genome. Electrophoresis only reveals 

soluble proteins and only separates those which 

are charged. -- The-isozymes used-in this study are 
a sub-set of thissub-set and it is known that, 

e. g. esterases in Drosophila are significantly more 
variable than those metabolising 'glucose (Mdh, Idhj 

etc. ). 17 Powell 18 has shown that 'regulatory' 

enzymes are less variable than-non-regulatory and 
variable-substrate enzymes (categories put forward 
by Johnson19) and Koehn 20 has postulated that large 

enzyme molecules may be less variable than small 

enzymes. The data presented in this thesis were 
not formally analysed in order to investigate the 

above theories as it was felt that the number 'of 
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loci examined was too small to allow statistical 

comparison. 

iii) Alleles may have been assigned to the wrong loci; 

a particular problem With rare bands which were 

not included in the study of biochemical and 

Physical Properties (chapter III), 

iv) Null alleles may not have been detected (see 

section III -3- 7)- 

Comparisons between species were considered justified 

on the grounds that similar loci were assayed in each and most alleles 

were assigned to loci (at least in Potamopyrgus on the basis of their 

biochemical and/or physical properties. 

Variation in Pe antipodarum and P. nigra is similar to 

that found in populations of apomictically reproducing weevils by 

Suomalainen9j Saura 11 
and Lokki, 110 

colonising apomictic cockroaches 
by Parker et. al. 

21 the aphid Myzus persicae by Bakerv 22 Daphnia marna 
by Hebert 23 

and Aphis fabae by Baranek and Berry, 24 Variation in 

these largely apomictic species is distributed between populations such 
that individual populations are either monoclonal or weakly polyolonal 
(i. e. few phenotypes per population). P. nigra populations were 

monoclonal in three cases and weakly polyclonal, in populations 409 41 

and 43. Similarlyp the Campus Lake population (popln- 46) of 
P. antipodarum, was weakly polyclonal with over 80o of individuals having 

the same phenotype. In contrastp the Waikato River population was 

moderately polymorphic with nine esterase phenotypes represented in 
4 

the population sample, although one clone made up 44% of the population. 

Parthenogenesis is widespread in populations of 
P. a'ntipodarum and P9 nigra. 

25t26 The proportion of males in each 

population was determined by sexing approximately 10 0 randomly chosen 

adults (see Appendix I). The majority (over 9%) of snails in 

P. antipodarum and P. nigra, populations were female; exceptions were 
the Waikato River population of P. antipodarum (29% males) and popula- 

tion 43 of P. nigra, Ocý, Males), The proportion of males in the small 

sample of P. estuarinus was 0-47- 

These last three populations had a lower proportion of 

excess heterozygotes in Table 26) and were generally more (RO/H 
e 

variable than populations with a higher proportion of Parthenogenetic 
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Ho 

iie 

2 

Proportion of males 

Fig 23: The excess of heterozygotes in Potamopyrgus 
species plotted against the proportion of 
males in these populations. 

(regression b= -2.24, a=2.00, t (10) = 4.64, 
p=0.001, r= -0.83) 

0 Australasian species 
0 Potamopyrgus jenkinsi 
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females. Fig. 23 shows the excess of heterozygotes plotted against 

the proportion of males in each Potamopyrgus 
, 
population. Although 

the relationship may not be fully linearl the regression 
(y - 2,24x + 2) is highly significant (r = 0.839 p- 0-001)e 

An excess of heterozygotes might be expected in 

parthenogenetic populations for two reasons: 

Parthenogenetic clones may originate from 

hybridisation between sexual individuals (often 

from different species) which are fixed for 

different alleles at many loci* 

Parker and Selander 27 
consider that the high 

heterozygosity found in parthenogenetic lizards 

may be due to their hybrid origin. For examplep 

mean heterozygosity (H 
e) 

in. diploid hybrids of 

Cnemidophorus tigris and C. septemvitlatus was 

0-56 and in triploids from C, tessalatus and 
C. sexlineatus crosses was 0-714- 

Similarlyl parthenogenetic fish in the genus- 
Poeciliopsis are frequently of hybrid origin 

28 

and have high (up to 0.43) heterozygosityo 

Suomalainen15 has suggested that the high hetero- 

zygosity found in some apomictic weevils may be 

partly due to their hybrid origin (but see below)* 

It is possible that parthenogenetic populations of 
Potamopyrgus result from bybridisation between 

individuals from different populations giving some 

highly heterozygous progeny. If these progeny 

exhibit heterosis and are facultative parthenogens 
then they may become locally dominant over the 

sexual individualse 

Theoretically, apomixis allows the accumulation of 

mutations and chromosomal structural re-arrangements; 

the absence of segregation and recombination means 
that recessives are not exposed to selection (except 

in the rare event of a doubleimutation). Poly- 

ploidy (P. jenkinsi may be tetraploid - see section 

VI - 3) allows an even greater accumulation of 

mutationse 
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Suomalainen 29 
suggests that mutations may 

accumulate to the point where homologous chromo- 

somes are so dissimilar that they can no longer 

be regarded as diploid in the genetic sense* At 

this point, barriers to-the expression of 

accumulated recessives may be removed and this 

should lead to clonal diversity. 

Howeverv electrophoretic clonal diversity should 
be detectable in 

, 
the early stages of this process 

as dominance is not usually a feature of electro- 
phoretic alleles. Thus an accumulation of 
mutations in apomictic. organisms should result in 

an increase in the heterozygosity of eleotro- 
phoretic loci and an increase in the clonal 
diversity of a population. 

One or both of the above processes may be operating to 
produce the high levels of heterozygosity shown in Fig* 23. 
Accumulation of heterozygosity in P. jenkinsi A has clearly not Occurred 
to any great. extent since its (probable) introduction into Britain as 
populations are virtually genetically uniform. It is likely, there- 
fore, that P. jenkinsi A (and possible B and C) represent highly 
heterozygous propagules from an ancestral population (probably 

P. anti0odarum - see chapter VI). 

Although the highest'levels of excess heterozygosity 
occur in Populations where males are absent (or rare), there is a 
substantial excess in Populations where males are present together With 
parthenogenetic females, In Po estuarinus, where asexual females are 
absent, the level of heterozygosity is approximately in accord6zce with 
Hardy-Weinberg expectations. (n 

orHe 12 0-93). 

The presence of males in populations of P. nigra and 
P. antipodarum is not a transient phenomenom; Wallace has recently 
reported that sex ratios in many populations were constant over five 

years* This suggests that some sexual mating takes place within these 
populations, and that the proportion of sexual mating ist perhaps, 
constant from year to year* Small proportions of males occur in 
largely parthenogenetic populations of other molluscs, notably species 
in the genera Melanoides39 and Campelo . 

31 
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P. jenkinsi, P. antipodarum, and P. nigra, females 

are probably facultative parthenogens since the reproductive system 
in all three species has an apparently functional bursa copulatrix 

and receptaculum-seminis. All three species also possess a sperm 

groove leading to these organs. Winterbourn 
32 

argues that the 

capacity to store sperm has been lost in parthenogenetic females 

of P, antipodarum although there is no structural difference between 

these and females from sexual populations of this species. 

It is perhaps more likely that Potamopyrgus females 

are capable of mating but 'choose' whether to produce sexual or 

asexual progeny in response to some 6nvironmental stimulus such'as 
'harshness' (eog* low food 'Supply and/or adverse physical conditions). 
If the local environment is temporally. and spatially stable 

, 
and benign 

toa female, then it may be an advantage (to the genome) to produce 

parthenogenetic progeny on the assumption that environmental conditions 

are. going to remain stable for at least. 
lone 

more generation. 

Converselyl if the environment is 'harsht it may be 

advantageous to mate in the hope that at least some of the 

genetically dissimilar progeny will survive.. If the habitat 

occupied by a population is sufficiently heterogeneous to always 
include some proportion that is 'harsh' (e-go in this contextt 

seasonal drying out of river and lake margins)g snails in this part 

will breed sexually. The proportion of males in a population mayl 
therefore, be a reflection of the proportion of tharshness' in the 
habitat. 
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CHAPTER Vs ELECTROPHORETIC VARIATION IN 
BRITISH POPULATIONS OF IrfDROBIA 

In contrast to the largely asexual Potamopyrgus species 
described in chapter IV, the three British species in the genus 
Hydrobia (H, ventrosal H. ulvae and H. neglectsý) are all obligate 

sexual outcrosserse 

As such, they provide a convenient opportunity to 

compare the level and distribution of genetic variation between 

species having different breeding strategies* In the absence of 

sufficient numbers of sexually reproducing Potamopyrgus speciesp we 

can at least compare species within the family Hydrobiidae by electro- 

phoretically surveying similar loci in both genera* 

Alsog although genetic distances between species (and 

more closely related taxa) are well documented (for a review see 
Neil)v few electrophoretic studies have investigated the phylogenetic 
relationships between genera within a family. For this reason, and 
in view of the possibility that H. ventrosa is closely related to 

P. jenkinsi (see Introduction P13 )l an electrophoretio survey of 
populations of Rydrobia species is needed for the phylogenetic 
analysis described in chapter VI* 

Besides being considered taxonomically and reproductively 
distinct from, P* jenkinsi Al the Rydrobi species have a different 

geographic distribution (in Britain) from that of P, 
-jenkinsi 

A. 
All three Hydrobi species are restricted to coastal (brackish or 
marine) habitats and are never found in freshwater. 2 In view of 
the current interest in the relationship between levels of genetic 
variation and ecological strategyp comparative studies of genetic 
variation in closely related species confined to-different habitats 

are of some intereste 

In this chapter# an attempt is made to survey loci 

coding for classes of isozyme that are similar to those used in the 

electrophoretic surveys of Potamopyrizu populations described in 

chapter Wo 
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Materials and Methods .- 

Electrophoresis 

Extracts of individual snails sampled from various 

populations of H. ventrosal H. ulvae and He neglecta were electro- 

phoresed, on 7-5% slab gels stained for general esterase (section 

5 1)9 acid phosphatase (section. I -5- 2) and Xdh (section 

5 

Breedingexperimentp 

In chapters III and IV it has been shown that electro- 

phoretic banding patterns are frequently complex and can be mis- 

interpreted due to the possible presence of over-lapping bandsp n1ill 

alleles, incorrect assignment of bands to loci and epigenetic 

effects, As the British species of Hydrobia are sexually 

reproducing, crosses were set up in order to investigate the formal 

genetics of bands. 

One of the disadvantages of using'electrophoretic -' 
genetic markers in small invertebrates is that the animals must be 

killed (or at least severely injured) in order to score the markerse 
Crosses must, -therefore, be set up between parents of unknown 

electrophoretic phenotype and markers scored after the production of 

progeny. Where the recplired marker is rareg either large numbers 

of crosses must be set up'(in the hope that some crosses containing 
the marker are fortuitously included) or crosses may be set up using 

progeny from parents known to carry the rare marker. Where 

significant mortality occurs during the maintenance of laboratory 

stocks (e. g, in some cultures of H. 'ulvae and H. neglecta) it-is. 

perhaps best to adopt the former method as only one generation has 

to be reared. 

Immature (3-whorled) individuals of H, ventrosa. 

H. ulvae and H. neglecta were sexed (the penis was just visible) and 

pairs set up in water of the appropriate salinity. Several 3- 

whorled females of each species were isolated and as these did not 

produce young after maturation, it was assumed that 3-whorled 

individuals were virgin (and that these species were obligate out- 

crossers). Pairs of snails were maintained on the standard diet 

(section I- 1) in 10 cm x5 cm x3 cm plastic boxes fitted with lids, 
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TABLE 27t Esterase phenotype ratios obtained from 
H. ventrosa breeding experiments. 

Pair 

Parental 
Esterase Phenotype 

Male Female 

Number of 
Progeny 
Scored 

Progeny 
Esterase 
Phenotype 

Expected 
Phenotype 

Ratio 
2 X df P 

3+7 3/4 3/4 7 3/3 182SI o. 996 2 o. 6 

13 3/4 

4 4/4 

12 4/4 3/4 7 3/4 131 0-334 1 0.. 6 

5 4/4 - 

13 3/3 4/4 18 3/4 All 3/4 - 

14 3/3 3/4 6 3/4 131 lo02O 1 0.35 

3 3/3 

16 2/3 2/3 5 2/2 1s2sI OoO92 2 0,, 9ý1 

7 2/3 

3 3/3 

18 3/3 4/4 12 3/4 All 3/4 - 

10 5/5 5/5 6 5/5 All 5/5 - 
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When the snails had matured, mating was seen to 

occur in all three species* Only, H. ventrosa females subsequently 

produced viable progeny. Ho ulvae and H. neglecta females rarely 

produced eggs (which, in these species were laid in a gelatinous mass 

, on the floor of the box) and subsequent dissection of some of the 

barren individuals revealed a high level of Trematode parasitism of 
the ovary and digestive gland, Parasitism was thought to be 

responsible for infertility in H. ulvae by Rothschild, 3 
who reported 

Infection of both male and female reproductive organs. 

Eggs of H. ulvae and H. neglecta hatched into active 
veliger larvae after about 20 days; a similar development time for 

the eggs of H. ulvae was found by Fish and Fish. 4 The larvaep 

howeverp never survived-for more than ten days and usually died 

during or shortly before metamorphosisp possibly as a result of 
having insufficient food reserves to survive the proces se Veliger 
larvae are known to feed on planktonic diatomr. 5 

and the lack of a 

suitable food organism in laboratory cultures may have been 

responsible for the failure of these progeny* 

Pairs of H. ventrosa (from Population 50) produced 

eggs about eight weeks after reaching maturity (5 whorls). Eggs 

were deposited singly on the floor of the box and hatched into 

veliger larvae within three days of laying. The larvae settled 

and underwent torsion within eight days from hatching. After the 

progeny had grown to the 3-whorled stage, parents were electro- 

phoresed. Progeny grew to the 5-whorled stage within three months 

and were then electrophoresedo 

Results of laboratory crosses of H. ventrosa 

The segregation ratios obtained for Est. 2P 3P 4 and 
5 are given in Table 27- The ratios did not differ significantly 
from those expected assuming the bands to be Mendelian alleles at the 

Es-2 locus* Conclusive evidence for allelism of Est. 5 was not 

obtained as no parents were 2/5,3/5,4/5r heterozygotes. Allelism 

of Est- 5 was, howeverl suggested by running heterozygotes on 5% 

and 7-5% gel; Est- 5 had the same relative molecular weight as 
Est,, 

All parents and their progeny possessed Est. 1 

suggesting that parents and progeny were fixed for Est. 1 at the 
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, 
TABLE 289 Aoicl phoephataqo (AP) Phenotype ratios obtained 

from H. ventrosa breeaing experiments 

Parental AP Number of Progeny Ac. Ph. -1 

Pair(s), Phenotypes Progeny AP Phenotype Expected 2 Phenotype df 2 Male Female Scored . Ratio 

12+14+18 3/3 3/3 41 3/3,5/5 All 3/3 
+ 10 

5/5 5/5 

13 2/3 3/3 7 2/3 515 0*25 1 0-60 

5/5 5/5 9 3/3 5/5 

16 2/3 2/2 10 2/3 5/5 0-53 1 0-40 

5/5 5/5 7 2/2 5/5 
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Plate 18 : Variation at the Es 2 locus in the Little Humber 

Farm- population (popln. S()) of Hydrobia ventrosa. 
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Plate19 : Variation at the Es 2 locus in the Little Humber 

Farm population of Hydrobia ventrosa showing the rare 22 /2 3 

heterozygote. 



ES-1 locus* 

Several of the crosses were scored for acid phospha- 

tase. The results are shown in Table 28 and indicate that two loci 

are involved; Ac. Ph. -1 coding for bands Ac*Ph*2 and 3 and Ac. Ph. -2 

coding for Ac. Ph-5- Unfortunately, the results of the crosses only 

provide conclusive evidence for allelism of Ac. Ph*2 and, 3. Extracts 

run on 5% and 7-5% gels showed that Ac. Ph- 5 had a different molecular 

weightto bands 2 and 3t suggesting that the interpretation of the 

number of loci is correct. The crosses show that the Ac. Ph-5 band 

in the parents represents the fixed allele at the Ac. Ph. -2 locus and 

not the Ac. Ph-5/null heterozygote. During subsequent population 

surveys, one other band (Ac. Ph-4) was scored in this region but was 

shown to be a rare allele at the Ac. Ph. -2 locus (see section V-2- 2). 

v-1-4 Interpretation of other banding patterns 

Banding patterns for which no breeding data were 

available were interpreted by a combination of recognising typical 

hetero- and homozygote patterns (see section III -3- 7) and running 

extracts on both 5%o and 7-5%o gels in order to obtain information on 
the relative molecular weights of bands thought to be allelice The 

latter technique is fully described in section III -3-6, 

Variation in H. ventrosa populations 

H. ventrosa was found in sufficient numbers at Hull 
(popln- 50) and at two sites in the Wash area (PoPlns- 57 and 59) to 

enable variation at electrophoretic loci to be quantified, 
Individuals were electrophoresed on slab gels which were sliced and 
stained, one slice for esterase, the others for acid phosphatase and/ 

or Mdh. 

Esterases 

Table 29 shows the results of the survey of the Es-1 

and Es-2 loci in these populations together with the expected geno- 

type ratios calculated from Hardy-Weinberg assumptions., Plates 18 

and 19 show esterase variation in the Hull population. 

All individuals were fixed for the Esel 1 
allele. The 

most common allele at the ES-2 locus was Es. 23 in all three popula- 

tionse The Es*25 allele was found only in the Hull Population and 
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ES022 wasrare in all three populations* 

The 'lumped' X2 values given in Table 29 (genotype 

classes were combined due to very low expected values) show that 

genotype frequencies in these populations conform to Hardy-Weinberg 

expectations. This is, perhapal not surprising since H, ventrosa 

is sexually reproducing and populations are large. 

2-2 Acid phosphatase (Ac. Ph. ) 

Approximately 40 individuals from each of the 

populations scored for esterase loci were scored for acid phos- 
phatese. Two alleles (Ac. Ph. 12 and 13) were found at the Ac. Ph. -1 
locus in all three populations. Several individuals possessed the 

Ac. Ph-4 band (see Plate 20) which was shown to have a different 

molecular weight to bands at the Ac. Ph. -1 locus and to AC. Ph-5 by 

the usual method of running extracts on 5%o and 7-5% gel. For this 

reason, it is likely that Ac*Ph-4 represents a visible allele at a 
third9 normally silent locus. All individuals in the three 

populations were fixed for Ac. Ph-5 at the Ac. Ph. -2 locus. 

Table 30 shows the results of scoring for acid phos, - 
phatase in these populations. Deviations from Hardy-Weinberg 

expectations are not significant even though the expected numbers of 
12/12 genotypes were small (in some cases less than one) due to the 
low allele frequency of Ac. Ph. 2. 

Malate dehvdrogenase (Md ) 

The individuals scored for esterase in section 
V-2-1 were also scored for Mdh. All showed only one band in the 

sa me position as the Mdhol band in P. Jenkinsi, Extracts ran on 5% 

gel still only showed one band and it isp thereforep'likely that all 
individuals were fixed for the Mdh 11 allele. 

Variation in H. neglectae 

Esterases, 

The esterases of 153 individuals from three PoPulations 

(PoPlns- 57P 58 and 62) of H. neglecta were scored from slab gels 

stained for general esterase. 
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In the absence of breeding data (see section 
V _1 - 2) the assignment of-bands to-loci was based on assessment- 

of their relative molecular weights (by running extracts on, 5% and 
7-Vl- gels) and by visual estimates of the relative staining inten- 

sities of supposed homozygotes and heterozygotes (see section 

III -3- 7). 

All -the strongly staining bands (Est. 29 3 and 4) 

appeared to be alleles segregating at the Es-2 
, 
locus* A slower- 

running faintly staining banding system was detected (? Es-1) but 

could not be scored with certainty. 

Table 31 gives the distribution of esterase genotypes 
at the Es-2 locus* In all-three populations there is an , excess of 
heterozygotes; 

_, 
significantly in populations 57 and 58 (p(O. 001 and 

0.05>p)0.01 respectively) and not significantly in population 62 
(P - 0-3). Est. 2 was absent from populations 58 and 62* 

Mdh and Ac. Pho 

Mdh and acid phosphatase bands in this species were 
too diffuse to score with certainty* This was probably due to the 

presence of overlapping multiple bands as several distinct bands at 
different Rm positions were sometimes seen on lightly stained gelse 

At,, least three, Mdh phenotypes were visible on gals 
ran using individuals from the Wash populations (poplns- 57 and 58) 

and at least five in the Guernsey population (popin. 62). 

Variation in H. ulvae 

471 Esterases 

About 30 individuals from each Of POPulations 52p 
531 549 56,60 and 61 were electrophoresed on slab gels and stained 
for general'esterase. 

The number of phenotypes found in each population 

ranged from four in poplnse 16 and 25 to 27 in popln. 60 (see 

Plate 21 and Fig* 24)- Table 32 shows the distribution of pheno- 
types within each populations % 
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The assignment of bands to loci presented a problem 

that was difficult to solve without breeding data. Banding patterns 

were complex; at least three loci were involved with several 

alleles at each locus* The possible presence of overlapping bands 

and null alleles makes the situation even more complicated* 

Clearly the Snettisham population (poplno 60) is 

considerably more variable than the other five populations (all 

adults from long-established populations). The Snettisham, popula- 

tion consisted entirely of young snails (: t four-whorled) which had 

been swept into the lake during a severe storm* No adults were 

found when the snails were collected (11 days after the storm); 

adults were either not present or were in deeper water. It is 

possible that snails were sorted according to size by wave action 
during the storm. 

Population 54 was collected from a site only 38 km 

from Snettisham and in the same Wash system of mudflatse it is 

interesting to contrast variation in populations 54 and 60 as this 

may represent variation before (popln. 60) and after (popln- 54) 

selection has operated via juvenile mortality, Later samples from 

Snettisham may confirm this hypothesis. 

V-4-2 Acid phosphatase--(Ac. Ph. 

Samples of approximately 20 snails from each of the 

Six populations (section V-4- 1) were scored for acid phosphatase 

on slab gels. Variation was virtually absent, most individuals 

possessing only one band (Ac. P&2). 

One individual from the Spurn Point population 

'Ph. 1) in (popln- 56j n= 21) was found to have a, slower band (AcS 

addition to Ac. Pho2. Ac. Ph. 1 remained equidistant from Ac*Ph*2 in 

5% gel and it is likely that this individual was heterozygous for 

the rare Ac. Ph. 1 allele and that all other individuals were fixed 

for Ac. Ph*2 at the Ac-Ph. -1 locus., 

Malate dehydrogenase (Mdh) 

Two bands, -Mdhe 1-and Mdho 29 were found in H. ulvae* 

Both remained equidistant on 5% and 7-5% slab gels$ suggesting that 

they were alleles at the Mdh-1 locus. H-eterozygote patterns 
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TABLE 34S. Electrophoretio polymorphism in Hydrobi speoies; 
Summary of Data. 

SPECIES (NO) P LOCI (D) 
TOTAL 
LOCI 

NUMMM 
OF 

HETMOZYGOTES 9 
Ho /He 

H. ventrosa. 174 0-517 348 Est (2) 
,- 

0 79 0*102 0-779 
(3) 254 Ac. Ph (2) 776 E- 101-3 0-131 

174 Mh (1) 

H. neglecta 153 0.63 153 Est (1) 153 0 117 0-764 1-379 
(3) E 84-7 0-554 

H. ulvae 134 0.39 134 Rdh (1) 268 0 52 0-194 1-054 
(6) 134 Ac-Ph (1) E 49-41 0*184 

Abbreviations as Table 26, 
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suggested that lwldh was climeric. 

Xdh. 2 was the most'common band in all six 

populations and genotype frequencies conformed to Hardy-Weinberg 

expectations (Table 33) except in the case of PoPln- 54 where the 

deviation was probably. due to the small number of snails 

electrophoresedo 

Polymorphism in Hydrobi populationst 
A Discussion 

Table 34 summarises the electrophoreticýdata obtained 
for the Hýdrobia species* 

I 
The levels of heterozygosity in populations of H ven- 

trosa and H. ulvaet, although based on few loci, are comparable with 
those given by e. g* I Selander and Kaufman 

6 
and powe, 17 in their 

reviews of electrophoretic variation in invertebrate species. The 

estimate of lie for H. neglecta (11 
eý 

0*55) is extremelybigh due to 

the significant excess (see Table 31) of heterozygotes found at the 

Es-2 locus in populations 57 and 58e i- 

In contrast to the Potamopyrgus populations (with the 

exception of P. estuarinus)t variation in Hydrobi species is 

distributed evenly not only between (as in Potamopyrgus) but also 

within populations. This pattern of polymorphism is typical of 
that found in other obligate sexually-reproducing populations of 
invertebratesy 

6,718' 
notably in populations of Drosophila, 

Due to the difficulties experienced in the resolution 

and inte: rpretation Of variation at the esterase loci of H. ulvae 
(section V-4- 1) and the Mdh and acid phosphatase loci of 

2)9 only the H. ventrosa data is H neglecta (section V-3 

included in the estimates of genetic distance described in chapter VI. 

149 



CHAPTER V REFERENCES 

1. Neil X. 1972. Genetic Distance between Populations. 
4er* Nat* 106t 283 - 292* 

2. Fenchely To 1975- Factors determining the distribution of 
Mud Snails. Oecologia. 20t I- 17e 

3. Rothschild, A. and Rothschild, M, 1939- Some observations on the 
growth of Peringia ulvae (Pennant) 1777 in the 
laboratory* Novitates Zoologicae 41s 240 - 247. 

49 Fish, J, D. and Fish, Be 1974. The breeding cycle and growth of 
H. ulvae in the Dovey Estuary, 

I 
J. Mar* Biol* Assn. U. K., 54S 685 - 6979 

5* Fishl J. D. and Fisht S. 1977. The veliger larva of H. ulvae with 
observations of the veliger of L. littorea. 

Je Zool. Londe 182S 495 - 503- 
6. Selander, RoKe and Kaufmanj D. W. 1973. 

-- Genic variability and strategies of adaptation 
in animals* ý, P,. N. A. S- 70(6)s 1875 - 77* 

7e Powellj J. R* 1975- Protein variation in natural populations of 
imals. Evolutionary Biology 83 79 - 118- 

8. Lewontinj R. C. and Hubby, J. L. ý1966. 
A molecular approach to, the study, of genic 
heterozygosity in natural populations* II i 
Amount of variation and degree of heterozygosity 
in natural populations, of Drosophila pseudo7 
obscura..., Genetics 54S 595 - 609. 

150 



CHAPTER VI i PHYLOGENETIC RELATIONSHIPS IN THE 
BRITISH AND AUSTRALASIAN HYDROBIIDAE 

vi -1 Estimation Of Evolutionary Relationships 

vi -1-1 Taxonomic techniques 

Since P. Jenkinsi first appeared in Britain its taxo- 

nomic status has been the subject of much debate. The species is 

thought to be either a parthenogenetic form of H. ventrosa 
1 

or an 
introduced clone or clones of Australasian 2 

or North American 3 

species of Potamopyrgus. 

Perhaps the most useful taxonomic feature of the 

Hydrobiidae is the morphology of the penis4 andq'since only one male 

of P. jenkinsi has been found95 (but see Discussion and Conclusions 

for recent work)q it is hardly surprising that there is confusion 

over the taxonomy of this Bpeciese Shell character and mantle pig- 

mentation have been used by Winterbourn 
6 

in an attempt to deduce the 

morphological relationships between P. jenkinsi and the New Zealand 

species P, antipodarum, His studies demonstrate that P. antipodarum 
is highly variable for these characters and that this variation 
includes that of P. jenkinsi. 

In his description of P. estuarinus, Winterbourn7 

reported clear differences in female reproductive anatomy and shell 
shape between P. estuarinus and P, jenkinsie He has also recently 

7a 

compared the morphology of the AustralULn species P. nipTa with 
P. jenkinsi and considers P. nigr to be an equal contender (with 

P. antipodarum). for the ancestral population of P. jenkinsi. The 

snails used in these morphological studies came from fresh-water and 
were, thereforej probably P. 

_jenkinsi 
A. 

The problem with taxonomic studies of molluscs based on 

morphology is that phenotypic variation MaYt to an unknown extent, be 

environmentally induced* For examplej keeling in P* jenkinsi is 

thought by Warwi to be environmentally induced; the presence or 

absence of a keel, therefore, is an unreliable taxonomic feature. 

Electrophoretic markers are generally unaffected by 

environmental factors and are useful taxonomic tools. Most are also 

simply inherited and do not usually exhibit dominance - unlike 

morphological markers. Davis9 has produced a full review of the use 
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of electrophoretic markers in molluscan taxononVo 

One of the attractions of using such markers in 

taxonomy is that the genetic distance between populations ma be y, 

estimated by computing'an index of identity base 
,d, 

on the probability 

of. choosing,. identical alleles when randomly, samPling., the gene pools. 

10 
Several indices have been proposed by Malacot 

(co -efficient of kinship), Lewontin 11 
, Hedrick 12 

1 Caval'li-Sforza 

and Edwards131 Balakrishnan and Sanghril4l Rogers15 and Nei 16. 

Not all of these indices are easy to interpret biologically but Neits 

is clearly related to evolutionary distance since. it estimates the 

accumulated number of-gene_substitutions per locus. 
, 

It is also 
independent of the breeding systems, and ploidy levels of the popula- 
tions being compared. Nei's index is also theýmost widely used and 
its use in the present study enables comparison with other studies to 

be easily made, 

Nei defined the normalised identity of alleles (at a 
single locus) between two populations X, and Y as& 

Ij j-v/ --ý; Iý IA31 
jy 

2 
where jx X. (x is the frequency of the ith allele in population X), 4 

2 jy --g yi and jxy 4xi Yi* Ij is unity when the two populations have 

identical alleles at the same frequency and is zero when they have no 
co=on alleles at the locus* 

The mean normalised identity, T,, (io eo the proportion 

of alleles shared by the two populations) over, a loci is then the 

geometric mean: 

V/J- 
x iy ý- ý; x iy 

4 

where J- j/n 

The genetic distance 3) is defined as 

D log 
e 

I' 

When calculating T over several' , diffe're"nt 'loci'in 

POPulatiOnst it is assumed, that the rate of gene substitution is 

similar for each locuse This may not be, strict,, ly true but is 

probably a reasonable assumption in the case ofla comparison where 

similar classes of enzyme are used for each species (this is largely 
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the case in the present study)* 

A serious shortcoming of estimates of genetic distance 

based on electrophoretic data. is that the absolute value obtained is 

probably biased towards the subset of enzymes that are detectable by 

electrophoresis* Electrophoresis only detects those proteins which 

are soluble, have different charges and are enzymatically active. 

There is reason to believe that these enzymes are more variable thang 

say, structural proteins and electrophoretic estimates of genetic 

distance may be too high as a result 'of-this bias. 

Againg the absolute values may lead to confusion due to 

the relationship between regulatory and structural" loci in the genome. 
This' aspect of genetic distance is more fully discussed'laier in 

this chapter, (P-159)o 

When calculating genetic distance- froM electrophoretio 
data in this chaptert -two other assumptions have been mades 

where no bandB'oocur at a 'locus' in two species 
(the locus is represented in a third, closely 

related species) then Ij is not included in the 

overall mean I value. This"is probably'reasonable 
if it is assumed that no (or different) null 

alleles are present at the locus*, It is possible 
that the same null alleles are present at such 
loci but this is unlikely'. 

ii) In cases where no bands occur, at-a locus in one 

species but at least one band in anotherIj is 

assumed to be zero, 'Oýe_ again,, the assumption 
may be' erroneous due to the, presence of the same 
null alleles'in each species" but! thie is 'probably 

unlikely. 

Other sources of error may be due to the-incorrect 

assignment of alleles to loci, particularlyin the case-of bands for 

which no data is ava - ilable other than their mobility on 7-5%, 'gel 
(e. g. some Mdh bands in P. -nigra),. 

Howevert having pointed out the multifarious pitfalls 

in estimating genetic distance, it-is fair to say that estimates for 

invertebrates at least show remarkable consistency. Examples of such 
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estimates are given later in this chapter (p. 157)o Estimates of 

distance based on electrophoretic data also generally agree with 

morphological divergence estimated by class ical -taxonomic methods* 
In this-chapter, estimates of genetic distance between the Potamo- 

pyrgus species and H. ventrosa are calculated using Neits index from 

the electrophoretic data presented, in chapters IV and Vo In this 

wa, vv the phylogenetic relationships between the species are deter- 

mined and compared with the morphological taxonoffq of the Rvdrobiidae. 

Two further sections are included describing mass extract electro- 

phoresis and chromosomal techniques used in an attempt to add to the 

information obtained from the genetio-distance estimatese 

VI -1-2 Estimates of Genetic distance - results and 
Discussion. 

Table 35 shows Ij values for pairwise comparisons of 
the Potamopyrgua species and H. ventrosa. The data for H. ulvae 

and H. neglecta are not included as an insufficient number of loci 

could be scored in these species (see sections V2 and V-4- 

Estimates of the mean normalised identity (Y) and the mean genetic 
distance (15) between pairs of species are also presented in Table 35* 

There is clearly a close relationship between the 

three strains of P. jenkinsi with strain A less closely related-to 

B and C than B and C are to each other. All'three, strains are more 

closely related to P. antipodarum than to P. nigra-with strain A more 
closely related to P. antipodarum than B and C. 

P. nigr and P. antipodarum share. 41% of common 

alleles, a similar proportion to that shared by P. jenkinsi 
(aggregate) and P. nigr (39.6%). Winterbourn7a and Ponder17 

consider Po antipodarum and Po nigra to be good, morphological species, 

and if this is so then the electrophoretic evidence suggests that 

P. jenkinsi and P. nigr are different species*.. 

The three strains of P. jenkinsi share an I average of 
69% of their allelesy nearly double that of aleles shared'by 
P. antipodarum and P. nigra. This suggests that P. 'Jenýinsi A, 

B and C are more closely related than species wiýhin"the`jenus 
Potamopyrgus and may be sibling species or races. Although this 

may be so in an electrophoretic sense, since they are obligate 

parthenogens they are (by definition) genetically isolated entities 
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the lagamospecies' of Whitee 18 

The genetic distance between P. 
- 

jenkinsi (aggregate) 

and P. antipodarum, D 0-529p is higher than that between strains 

within P. 
-jenkinsi 

(D 0-374)- 

6 If we assume thatp as Winterbourn suggestso 
P. jenkinsi strains are parthenogenetic propagules from the array of 
genotypes making up the species P. antipodarum, * then the difference 
between these values must be accounted for* 

The genetic distance between parthenogenetic propagules 
and the ancestral population mav be related tos 

sampling effects. The genetic distance. between 

pro 
, 
pagules and the ancestral population must 

initially reflect variation within the lattere 
If successful propagules represent selection for a 
particular class of genotype (sayl those which are 
heterozygous at many loci) t then the genetic 
distance between propagules may well be-less than 
that between the propagules and the ancestral 
population* 

the divergence of propagules from the ancestral 

population since isolation. Theoretically diver- 

gence can occur in apomictic, propag-ules by the 

accumulation of mutations (including chromosomal 
re-arrangements) within clones. Lokki 19 

gives a 
full account with models of this phenomenon in his 

review. Since populations of Po jenkinsi are 
often large (the number of individuals in the 
Snettisham population was estimated to be 2x 10 6 

one might well expect populations to consist of 
mixed clones. In factv the only electrophoretic 

evidence for this in PýJenkinsi A was the individual 

variant in the Gaywood River and the small amount 
of variation at the Es-1 locus described in 

section IV -2-1. Populations were remarkably 
uniform, suggesting that divergence, due to 

accumulation of mutations-has contributed little to 
the genetic distance, between P. jenkinsi and 
P. antipodarum. 
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It is likely$ therefore, that the genetic distance 

between strains in P. jenkinsi and between these strains and 
P. antipodarum ' 

is largely composed of sampling effects. The fact 

that the genetic distance between P. jenkinsi strains is less than that 

between Po jenkinsi and P. antipodarum may be evidence for biased 

sampling from P. antipodarum populations, although the population 

samples of P. antipodarum used in the present study may not be wholly 

representative of the ancestral population of P. jenkinsio Equally, 

P. jenkinsi may be more closely related to some other species of 
Potamopyrgus not used in this study, 

Hydrobia ventrosa, is clearly not closely related to the 

Potamopyrgus species, sharing an average of only 2eo of common alleles 

with them. The mean genetic distance between the Potamopyrgus species 

and H. ventrosa is 1-474- These estimates can only be regarded as a 

first approximation of the true genetic distance between these genera 

as, apart from the usual shortcomings of genetic distance estimates, 

no information from H. ulvae and H. neRlecta is included. Neverthe- 

less, it is of interest that the genetic identity between genera is 

about half of that between species within the genus Potamopvrgus 

(B = 0,921v 1- 0-400). 

The question of how genetically distinct populations 
have to be in order to be regarded as sub-speciesq species or genera 
in a morphological sense is particularly relevant to the taxonon7 of 
populations where each individual is a genetically isolated agamo- 
species. Ayala et* al. 

20 have quantified electrophoretic variation 

of populations in the Brosophila willistoni group and report the 

following genetic distances between morphological taxa: 

Non-sibling species 0-35 1.06, 
Sibling species 0-52 

-0-75 
Subspecies 0.80 0.23 

Semispecies 0.80 0*23 

Geographic populations 0.97 0.03 

Comparable estimates have been made for species in the 

D. obscura and D. repleta complexes by Ayala and Dobzhansky 21' 
and 

Zouros 22 
respectively. The only real exception is that of the non- 

sibling species D. mulleri and D,,, aldrichi (in the D. repleta group) 
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TABLE 
--36s 

Estimates of genetic identity and distance (calculated 
using Neils index of normalised identity) between five 
Potamopyrms 'species' and Hy#obia ventrosa. 

A B c AN N v 

A 0-488 0-323 09442' o. 847 1-514 

B o. 614 - 0.321 -0.632 1-058 1-414 

c 0,724 0,726 0-524 0.887 1*219 

AN o. 643 0-532 0-592 - 0*904 1-734 

N 0-429 0.347 0-412 0-405 - ''. 1-566 

v 04,220 0,243 0,296 0-177 0*209 

Values above the diagonal (I =1qV, - 0) are estimates of genetic, 
distance and those below are estimates of genetic identity, 

TABLE: 37s Neils indices of genetic identity and distance 
calculated for different taxonomic levels within 
the Hydrobiidae. 

Strains within the species Potamop-vrgus jenkinsi 0.688 0.374 

Species within the genus Potamopyrgus 0-398 0.921 

Genera (Potarnopyrgus and Hydrobia) within the 0.229 1-474 
family 
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where 15 - 0.124. 

The electrophoretic distances between different 

morphological taxa in the Rydrobiidae are given in Tables 36 and 37 

and have been calculated by computing, means within taxa. 

The genetic distance between the non-sibling species 

P. antipodarum, and P. nigra (15 - 0-904) is remarkably similar to that 

generally found between Drosophila, non-sibling species. If the 

Drosophila estimates are comparable with those for the Hvdrobiidae, 

then the strains of Pe jenkinsi are sufficiently distinct to be 

regarded as subspecies (within P. antipodarum? . 

The genetic distance between the genera Hydrobia, and 
Potaynopyrgus (15 - 1-474) is similar to those found by Hedgecock and 

Ayala 
23) between salamanders in the genera Taricha and Notopthalmus 

(15 - 1.2) and (reported by Avise 24) between genera of kangaroo rats 

(15 - 

There are, however, some notable exceptions to these 

general relationships. For example, the genetic distance between 

minnow genera 
25 has been estimated to be D= 0-53 and King and 

Wilson 
26 

consider chimpanzees and men to be (electrophoretically) 

sibling speciesl 

Clearly, an understanding of the relative roles of 
structural and regulatory loci in determining the phenotype is 

urgently needed in order to assess the significance of electrophoretic 

estimates of genetic divergence compared with morphological and 

behavioural divergence, 

VI -2 Comparisons of Mass Extracts 

Electrophoresis of a mass extract prepared by homo- 

genising a large number of snails from-a population should produce a 

banding pattern which is related to the frequencies of bands in the 

population. Bands which are common in the population should be easily 

detectable on the gel while rare bands will be diluted (see section 

III -1- 2) to suchan extent that they may be undetectable, 

The staining intensity of a band, in a mass extract 

Zymogram is a function of its hydrolysis rate (or absorption rate of 

Coomassie Blue if a general protein) and its frequency in the population 
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Plate 22 TO and Ldh in mass extracts of Lýtamopyrgus ssp. 

disc gels stained in vacuo. 

I&2-P. jenkinsi A The dark region at the front is 

3-P. jenkinsi B due to the bromophenol blue marker 

4-P. jenkinsi C and the faint band below Ldh is Adh. 

5&6-P. antipodarum Adh often appeared on dehydrogenase- 

778-P. nigra stained gels stored in 307 ethanol. 
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Plate 23 : To and Ldh in mass extracts of four Potamopyrgus ssp. 

The left-hand set of gels was stained using no substrate in order 

to test for the possible presence of 'nothing dehydrogenases'. 

The set on the right were stained using lactic acid substrate. 

I-P. jenkinsi A 

2-P. jenkinsi B 

3-P. antýpodarum 

4-f. nigra 
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(X 
i and yi in section VI -1- 1). Assuming the hydrolysis (or 

absorption) rates of homologous bands in two populations to be 

similar, then the banding pattern is determined by the relative 
frequencies of bands within the populationso 

A visual comparison of banding patterns derived from 

mass extracts is approximately similarv therefore, to a probablistic 
index of identity prepared from a survey of individuals from 

different populations. It is reasonable'to suppose that, if 

mass extracts of two populations give similar banding patterns, 
then they are essentially identical at the loci producing the bands. 

VI - 2- 1 Electrophoresis and staininR 

Mass extracts (prepared as described in section 
I-2- 2) of P. jenkinsi A, 11, 

. 
21 P. antipodarum and P. nigra were 

run on disc gels and stained for alcohol dehydrogenase (Adh - section 
I-5- 3), lactate dehydrogenase (Ldh - section I-5- 3), tetra- 

zolium oxidase (TO - section I-5- 4), peroxidase (section I-5- 6), 

avlase (section I-5- 5) q and general protein (section I-5- 7) - 

In view of the large number of bands found on gels 
stained for general proteing extracts were run on gels of different 

concentrations (as described in section III) in order to identify 

possible homologies between bands in different extracts. 

VI -2-2 Adh, Ldh, TO, peroxidase and ajRylase 

Sets of gels stained for these enzymes revealed the 

same banding patterns in all five extractse The patterns are shown 
diagrammatically in Figs. 4 to 12; Plates 22 and 23 show sets of gels 
stained for TO and Ldh,, 

VI -2-3 General protein 

Extracts of P. jenkinsi A, B, C and P. antipodarum gave 
the same banding patterns. Plate 24 shows mass extracts of 
P. jenkinsi A and P. antipodaru run on different gel concentrations 

and clearly demonstrates that the similarities between bands are true 

homologies with respect to molecular size and charge; homologous 

bands migrate to similar positions in different gel concentrations 
(see section III -3- 2). 
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Plate 24 : Mass extracts of P. jenkinsi A (popln. 11) and P-antipodarum 

electrophoresed on 5 to 10% disc gels stained for general protein using 

Coomassie Blue/TCA. 
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Plate 25 :A mass extract of P. nigra (populations 42 + 40) 

electrophoresed on 4 to 9% disc gels stained for general 

protein using Coomassie Blue/TCA. 
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A set of gels prepared using an extract of P. nigra 
is shown on Plate 25- Although there are similarities between these 

patterns and those in Plate 24, the P. nigra, gels show at least one 

extra band (marked with a single dot) for which'there was no equiva- 
lent in the P. Ienkinsi- and P. antipodarum extracts* Bands marked 

with an open circle and those marked with two dote are thought to be 

homologous in all the Potamopyrgus extracts. 

VI -'2 -4 PhVlogenetic significance of mass extract studies 

The results of the mass extract comparisons are 

consistent with the hypothesis that P. jenkinsi strains are closely 
related to each other and to P, antipodarum and that P. nigra is less 

closely related to these species. 

However, since the only difference between these 

species was apparent on the general protein gels, it may be that the 

estimates of genetic distance computed in section VI 
ý- 

1-2 are 
too high, The lack of detectable difference between mass extracts 

of these species stained for the isozymes other than general protein 

mayq however, be due to the lower sensitivity of mass extract 

comparisons relative to genetic distance calculaýions based on surveys 

of individuals within populations* 

VI -3 Chromosomal relationships between the Potamopyrgus 
species 

A commonly used taxonomic technique is comparison of 
chromosome numbers and chromosomal structure. 

The earliest attempt to count-the chromosomes of 
P. -jenkinsi was made by Rhein 27, 

usingýEuropean materialf, who 
considered that P. jenkinsi was diploid with a chromosome number of 
20 - 22. Sanderson, 20 in a later study using British P. 

-Jenkinsig 
reported that this race was tetraploid (4n'm 36ý44). Su6alainen 29 

and Patterson 30 
consider that this count needs re-investigation and 

certainly the evidence for tetraploidy in Pe jenkinsi offered by 

Sanderson is far from convincing, 

Winterbourn7-has shown that both P. antipodarum and 
P. estuarinus have a diploid chromosome number of 2n w 24- He used 
testis tissue to obtain the counts since he found the interpretation 
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of squashes prepared from ovarian material 'difficult'. 

In view of the dubious nature, of the previous work on 

P. jenkinsi, about 100 squashes were madeby myself in the laboratory 

of (and with the advice of) Dr. 0. Hewitt'of, the University of East 

Anglia - where squashes of insect material are routinely made. 

Despite using various techniques (including that used by Sanderson") 

and tissues (ovary, digestive gland and foot muscle) none of the 

squashes resulted in a countable metaphase plate. Difficulty was 

experienced with: 

the presence of silica paiticles'(insoluble in 

nitric and hydrochloric acid) which prevented 

coverslips from pressing on nuclei. This was a 

particular problem with ovarian and digestive 

gland'materiale, ý 

the absence of*meiosis; no, evidence, of meiosis 
(ege smaller nuclei) was found during examination 

of ovarian squashes. ' Metapliase in mitotically- 
dividing, cells (spindle formation was stopped with 

colchicine) was characterised, by ill-defined 

condensed chromatin strands often: appearing to be 

linked together forming a complex web. 
Separation of these stiuctures'proved to be 

impossible even when the sqdashes were annealed 

with. 10%. HCI for 10 minutes, at-800C treatment 

considered by Dr. Hewitt to'be'6ptimal, 

Preparations of apomictic individuals"of PO antipodarum 

and P. nigra, were-similarly unsuccessfulj,,,! a; though control squashes 

prepared from grasshopper ovaries resulted in easily-countable 

metaphase plates. 

Separation of nuclei by ultracentrifugation is clearly 

needed in order to overcome, _. the jioblem*6fsilica_particles but even 

then separation of the-chromosome's may prove to be'difficult, It is 

--in'some'way unusual possible that cell division in Pý jenkinsi, ist 

and that the connections between tlie*chromatin,, strands are 

functionally important in cell. division, in-this species. 
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a) Between- phenotype exploiter 

Z) 

Z) 
0 
ui 

cý 

b) Within -phenotype exploiters; 
low biochemical flexibility 

c) Within- phenotype exploiter; 
high biochemical flexibility 

Fig. 25 : Theoretical exploitation of' environmental resources by 

populations whose component individuals differ in 

their phenotypic plasticity. 
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CHAPTER VII : FACTORS AFFECTING THE BEHAVIOUR AND 
SURVIVAL OF SOME HYDROBIID SNAILS 

In the previous chapters it 
' 
has been shown that there are 

differences in levels of heterozygosity and in the distribution of 

variation between and within populations (and species) of Hydrobia and 
Potamopyrgus. In view of this, it is tempting to speculate on how 

these differences might affect or determine the ecological strategy 

pursued by a particular population or species. 

2 For examplep Van Valen. and, more recently, Roughgarden 

have suggested that polymorphic and monomorphic populations may differ 

in their ability to exploit available resources. Van Valen divides 

populations into two extreme categoriess 

Ibetween-P henotypel exploiters are (polymorphio) 

populations made up of an array of different pheno- 
types each of which has the capacity to exploit a 
unique part of the resource continuum. The 

resource spectrum (the proportion of the resource 
continuum exploited) of such a population is the 

sum of the resource spectra of the individual 

'specialist' phenotypes (Fige, 25, a)e, 

ii) 'within-phenotype' exploiters are-. (monomorphic) 

populations. in which all individuals have a similar 

phenotype and all, thereforet. have the capacity to 

exploit the whole resource spectrum of the population 
(Fig, 25b and c), Pianka3 argues# largely on 
intuitive grounds, that such individuals would be 
'generalists' in the sense of their being able to 

exploit more of the available resources than 
individuals in a 'between-plienotipe2'population. 

The resource utilisation capability-ofýan individual is 

limited by the biochemical, flexibility of its gene products, 

If biochemical flexibility is lowt due for examplel to 

gene fixation or some aspect of gene regulation, then one might expect 

monomorphic populations (where the'--resource utilisation capability of 
the individual equals that of the population) to be more specialised 

than polymorphic populations (Fig. 25b). 
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Howeverl individuals within a monomorphic population 

might be selected for (or accumulate) high levels of heterozygosity 

and become heterotio due to increased biochemical flexibility. The 

population (see Fig, 250) would then be near that envisaged by Pianka 

as a Itpopulation composed of pure generalists with each member 

exploiting the entire range of resources"o 

Providing that differences in electrophoretic variation 
between populations determine differences in phenotypic variationt 

populations of the Rydrobiidae present an opportunity to investigate 

-the above hypotheses. In fact, Winterbourn4 presents evidence that 

morphological variation in P. jenkinsi populations (which are electro- 

phoretically monomorphic) is very much less than morphological 

variation in partly sexual populations of P. antipodarum (which are 

electrophoretically polymorphic)t suggesting thatt at least in these 

species, levels of electrophoretic variation are positively correlated 

with levels of morphological variation* 

The experiments described in this chapter were initially 

designed to compare the resource utilisation spectra of populations of 
P. antipodarum and P. nigra since both monomorphic and polymorphio 

populations occur within these species. Unfortunatelyr insufficient 

numbers of individuals were available for such experiments and so 

populations of the British Hydrobiidae were used instead; P. jenkinsi 
(A and P) populations to represent monomorphic populations and 
Hydrobia populations to represent polymorphio populations* Although 

the species used are from different general the snails are all 

approximately the same size and, at least in some habitats (see below) 

co-exist. 

Two resource dimensionsg temperature and salinity, were 
used; resource utilisation was estimated by*assessing the mortality 

and activity of snails exposed to various temperatures and salinity 

levels. The results of these experiments are discussed in relation to 

the differences in electrophoretic variation between the populations 

and also in the context of the distribution of the British Hydrobiidae. 

VII -1 Materials and Methods 

VII -1-1 The main experiments 

A range of six salinities (from 0 to lOeo sea-viater (SW)) 
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TABLE 388 Salinities of the dilutions of sea-water used in 
the mortality and activity experiments. 

Nominal % S, W, nu-, -/l NaCl by titration 

0 52 

20 
00%4 

782.1 

40 13802, 

60 21725 

80 28905 

100 '37602 
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, was prepared by diluting sea-water with aerated . 
(10 days) tapwater* 

The chloride concentration of each dilution was estimated by titration 

against -'staýdardised silver nitrate soluiion (see Table 38). 

----Adult snails were obtained-from populations 11 
(P. jenkinsi A) 1 (P. jenkinsi B); - 50 (H. ventrosa); 56 (H. ulvae 

and 57 (H. neglect2). Snails were kept in, the, Iaboratory in habitat 
ch, expe i, water at room temperature for two days before ea r ment was 

started. 
_ 

For each species, a fixed number of snails (see Tables 

40 - 49 for numbers used) was placed ýin 200 ml of water of each 

salinity in polystyrene boxes (10 cm x 10 cm x 10 cm) fitted with lids 

to prevent evaporation. Food in the form of boiled and dried lettuce 

was provided; - the boxes were then randomly arranged in trays and 

placed in constant temperature rooms having a 16 hour light/8 hour dark 

cycle. Three temperature regimes were chosen as approximations of 

wý: Aer (40), -Summer (320 - typical of habitats that were di7ing out) 

and mean- (19o) conditions in the native habitats. 

After 72 hours'exposur e to 'the experimental conditions, 
the number of snails which were extended and crawling in the undisturbed 
boxes were scored and classed as 'active'. 

To score mortalityp all snails in each box were then 

removed and placed, aperture, uppermost, in a test-box containing water 

of the salinity in which they were found in the field. Test-boxes 

were kept at room temperature (about. 22oC). 
. 
`", Those snails which had 

not turned over and started crawling within 30 minutes were classed as 
'effectively dead' (see the following section VII -1 -1,2 for an 

evaluation of this method). Both the above behavioural criteria had 

to be met before a snail was'classedlýas alive: * occasionally a snail 

would be able to'turn over but would-remain stationarylTseemingly unable 
to-crawl, and. 

-was 
therefore- classed as. e. ffeotlively dead: * 

VII -'l -2 Scoring of effective deaths rationale and evaluation 

One of the problems encountered in scoring mortality in 

operculate pronobranch snails is knowing when mortality has occurred, 

A recently-dead snail with the operculum closed looks much the same as 

a dormant snail. There are no reliable external indicators of death 

such as the visible cessation of respiratory function in Pulmonate 

animals. 
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TABLE 39 : THE NUMBERS'OF SNAILS DEAD AFTER HAVING BEEN 
KEPT IN THE WATER IN WHICH THEY WERE FOUND 
FOR 30 DAYS AT ROOM TEMPERATURE 

Source of Snails No. Used, No. Dead 
t 30 d 

2 (-2 df 
a ays 

P. ienkinsi A 

Scored 

'Dead' 30 29 v., - 
'Alive' 30 5, 1972 

From wild 50-, 4 4- 

H, ventrosa 

Scored 

'Dead' 3o 27, 
'Alive' 30 1 

1-41 
From wild 

H. ulvae (from treatments other than, 4OCe')-' 

Scored 

'Dead' 30 30 

'Alive' 30 - -3 0-40 
From wild 50 

BACKGROUND MORTALITr 
FOR ALL 'WILD' SNAILS 

1ý/150 0.09 3 
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Fraenke, 
5 has suggested, a, way of surmounting this problem 

based on the premise that normal physiological functioning of the 

organism may be characterised by the ability to complete certain 
behavioural. patterns. Experimentally-induced, stress may irreversibly 

damage the, organism such that this ability is lost; the organism is 

then 'effectively dead' in the sense that it would have a much lower 

life expectancy in the field than an organism which had not been 

stressed. 

In the presýnt study, the ability, both to turn over and 
start crawling were used as criteria for normal 'physiological 

functioning. , Snails-which, when Placed, aperture uppermostj in water 
of the habitat salinity at room temperature (approx 220C), failed to 

meet both criteria within 30,, minutes were classified as 'effectively 

dead'. 

The predictive power of the technique (in terms of 
lif e- was evaluated in the fol'"", lowered expec lowing ways 

At the end of the 72-hour experimental period (see 

section VII -1- 1)9 30 snails. scored as 'alive' and-30 'effectively 
dead' snails of each species weWtaken randoml' y from all treatments. 

Each group was maintained, separately* in the watýr in which the 

yLjpL4. &Uj,. jLUjL rjU. ý jLuq---%A JLV. L cS, &L" W"%-.. L JV %LOJO ttf* JVVVUI IOUL"purarUre ýaVOU-f, 
0 22 C),, Food in the form of boiled and dried lettuce, was provided at 

regular, intervals . As a 'controlp '50 adult snail .s of each'species' 

were collected from the wild and treated in a similar way. 

At the'end'of this period the'numbers still alive were 
rescored by using the behavioural critera;,,, most dead individuals had 
decomposed by this time.. The results are_pFgsent. ed in Table 39- 

26 Comparisons (using a 'corrected' test ), 1, of the 

mortalities of snails scored as 'alive* in the main experiment'with 
those of the live snails collected from the wild showed no'significant 
differences (probabilities for each comparison are given in Taýle 39). 
The 'background' mortalities in`thesý classes were low (8 
during the 30 day evaluation period*, 

In- contrast the 11 mortality'of'-those snails classified as 
'effectively dead' in the main experiments was high (90 100%) during 
the 30 day evaluation period. The method of scoring effective death 
is clearly a reliable way of assessing irreversible damage caused by 
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TANX 401 The numbers of P-Jenkinsi A effeotively 
dead after 72 hours. NM 10 

0 20 40 60 80 100 

T0c Rl R2 Rl R2 Rl R2 RI R2 Rl R2 Rl R2 

e 10 10 00 10 3 10 10 10 10 10 10 

mean 10 0 6-5 10 10 10 
19 0 6 10 00 01 10 10 10 10 10 10 
mean 8 0 0-5 10 10 10 
32 0 10 10 0 (. 0 0.1 10 10 

ý 
10 10 10 10 

mean 1 10 10 1 0-5 1 10 1 10 1 10 

TABLE 418. The numbers of Hg ventrosa effectively 
dead after 72 hourso N= 12 

% Seawater 
0 20 40 6o 1 80 100 

T0c RI R2 Rl R2 Rl R2 Rl R2 Rl R2 Rl R2 

40 00 10 00 00 32 32 

mean 0 0*5 0 0 2-5 2-5 

19 0 88 00 00 00 ý10 0 01 
mean 8 0 0 0 0 095 
320 12 6 00 00 00 00 78 

] 1 mean 9 L- 
-0 - 

L 0 7-5 
. . - - 

TABLE 423 The numbers of He ulvae effeotively 
dead after 72 hours. N= 20, 

Seawater 
0 20 40 60 80 100 

1 

T0c RI R2 RI R2 RI R2 Rl R2 Rl R2 Rl R2 

40 00 02 23 00 00 00 
mean 0 1 2-5 0 0 0 

-19 
0 00 o3 73 00 00 00 

mean 0 1-5 5 0 0 0 

32 0 17 17 17 16 33 01 00 00 
mean 17 j 16o5 3 0-5 0 0 
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TABLE 43t The numbers of Po jenkinsi B, effectivelV 
dead after 72 hours. N= 10 (1 replicate) 

s water 
0 20 40 65 80 100 

0 4 0 0 3 ;., 7 9 10 
19 0 0 0 12 5 9 
32 0 2 0 1 10, 10 10 

TABLE 448 The numbers of H, neglecta effectively 
dead after 72 hours. N. 20, 

% Sea-waterýý-, -, ---ý- 
0 20 40 60 80 100 

T0C Rl R2 Rl R2 Rl R2 Rl R2 Rl R2 Rl R2 

40 , -, 
0 0 

,3,2, :,, 
30 0 0,., 01 10 

mean 0 2-5 1-5, 0 0-5 0-5 
0 19 03 33 0 0- 

ý ý 'I 10 
31 5 07 

mean 1-5 3 0 0-5 2 295 
320 3 10"'- 8" 5 7 "-6 12' .1 
mean 

_6-5 
6-5 2 4 "'3-5" 6-5 

TABLE 45s The numbers of Pý- jeiikinsi A active after 
72 hours* N" 11 2 

%'Seao. ýwat'r e 
0 20 40ý -60-, 80 100 

0ý TC Rl R2 Rl R2 Rl R2 Rl R2 - RI R2 Rl R2 

40 00 00 
mean 0 3-5 1-5 0 0 0 
i9 0 00 A2 12 

-12 ; 12-, 00 00 
mean 0 12 12 

32 03 12 12 12 00 00 0 

, pean 5 
. 

12 12 0 0' 0 
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TABLE 46t The numbers of H. ventrosa active after 
72 hours. N= 12* 

% sea-water. 
0 20 40 60 80 100 

1 

T0C Rl R2 RI R2 Rl R2 Rl R2 Rl R2 Rl R2 
0 00 30 32 10 00 00 

mean 0 lo5 2-5 0-5 0 0 

19 0 00 12 12 12 12 12 12 12 12 12 12 

mean 0 12 12 12 12 12 

32 0 00 12 12 12 12 12 12 12 12 11 10 

I mean j0 1 12 12 12 12 10*5 

TABLE 479 The numbers of He ulvae, active after 
72 hours. N= 204o 

% Sea-water 
0 20 40 1 60 80 100 

1 

Toc Rl R2 Rl R2 Rl R2 Rl R2 Rl R2 Rl R2 

40 00 00 00 55 8 10 20 14 

mewi 0 0 0 5 9 17 

19 0 00 00 20 19 20 20 20 19 20 20 

mean 0 0 19-5 20 19-5 20 

32 0 00 00 20 17 20 19 20 20 20 18 

mean 0 0 18-5 19-5 20 19 

TABLE 48S The numbers of P*Jenkinsi B active after 
72 hourse N= 109 (1 replicate)e 

% se er 
0 20 40 60 80 100 

40 10 10 7 3 1 0 

19 0 10 10 9 8 5 1 
32 0 8 10 10 0 0 0 
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-I 

ý 1, 

TABLE 49: The numbers of Ho neglecta active after 
72 hours. Nw 20* 

Se water 
0 20 40 60 80 100 

Rl R2 Rl R2 RI R2 Rl R2 Rl R2 RI R2 

40 00 96 16 17 20 18 19 19 14 19 

mean 0 7-5 16-5 19 19 16-5 
19 0 01 13 18 20 19 17 19 20 19 20 19 
mean 0*5 15-5 1995 18 19-5 1995 
320 0 

.0 
4 18 12 20 9 19 11 19 13 19 

mean 1 0 1 11 1 16 1 14 15 16 

4 

k 

" ":. �. t' 
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experimental otress. 

The above method of evaluating the effective death 

criteria relies on the assumption that the 60 snails sampled randomly 
from all treatments for each species is an unbiased sample. It is 

possible that, in some treatments, snails scored as effectively dead 

were, in fact, dormant and that these individuals were not included 

in the sample* 

VII -2 Results of main experiments 

The raw data obtained for the mortality and activity 

scores are presented in Tables 40 to 49- The mean proportions of 
dead or active snails have been used to construct the perspective 

plots shown in Figs. 26 and 27- Broken lines on the plots represent 

parts of the surface which are obscured by the foreground (solid lines). 

The plots for P. Jenkinsi B were made from a single set of data as 
insufficient numbers of snails were available to obtain a replicate 

set. 

All the plots show some part of the surface where 

mortality is insignificant (zero or less than the 'background' mortality 

ýdescribed in section VII -1- 2). These areas are shown in Fig. 28 

and give some indication of the physiological optima of these species. 
The actual optima are probably larger than the shaded areas since the 

mortality between salinity points is unknown. For examplep the 

mortality of P. jenkinsi A between 0% and 20% SW is probably much lower 
than-the plots indicateo If this were not the case then it in 

difficult to understand how this Po Jenkinai A population persists in 

its habitat salinity of 171 mg/1 Cl- (approx 0-57fo SW)e The chloride 

concentration of the experimental 06 SW was 52 mg/1 Cl- andp thereforet 

mortality must increase greatly between these values. 

Snails in this population were active and feeding in 

their native habitat and so, using the above argumentIthe approach to 

maximum activity from 0% SW to 20% SW should be much steeper than that 

shown in Fig* 27- 

The above example is, howeverg an extreme case as no 

other experimental optima are in apparent conflict with snail 
behaviour in the habitat conditions. 
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, III -3 Discussion 

VII -3-I 'Electrophoretic variation and resource utilisation 

Populations of. P. Jenkinsi A and B have been shown in 

chapter IV to be virtually momomorphic whereas Hydrobia, populations 
(chapter V) are highly polymorphic. 

The reults presented in this chapter (Figs. 26 and 27) 

show that in terms of the relative exploiltation of physical resources 

available in these experiments, P. Jenkinsi populations have narrower 

pkysiological ranges thah the Hydrobia populations. 

It is tempting to suggest that these results provide 

support for Van Valen's contention that phenotypes of individuaIs from 

monomorphic populations are capable of exploiting a wider range of 

available resources thah individuals from polymorphic populations* 

However, since it is impossible to distinguish between 

the resource spectra of Individuals in the polymorphio Hydrobi 

populationsp it may be that each individual has a wider tolerance 

than P. Jenkinsi individuals. 

Since Van Valen's contention depends on the relative 

resource exploitation of individuals within populations and these 

experiments were not designed to investigate this specific aspectq 

then the data obtained shed no light on the problem of polymorphism 

and resource utilisation. 
Furthermore, the entire physiologicalrange of tamper4ture 

and salinity tolerance of some species was not determined fully and so 
the physiological optima in Fig. 28 can only be regarded as approx- 
imations of the finite rqnges. This shortcoming should also be 

recognised in the discussion section VII -3-3. 
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VII -3-2 Heterozygosity and resource utilisation 

Although Po jenkinsi populations are considerably more 
heterozygous than Hydrobi populations (see chapters IV and V), 
increased heterozygosity does not appear to confer an ability to 

exploit a greater proportion of the resources available. Whilst this 

may be true where populations are compared, it is nevertheless possible 
that highly heterozygous individuals (e. g. of Pe jenkinsi) in mono- 
morphic populations are capable of greater resource utilisation then 
individuals of 'normal' heterozygosity such as those found in poly- 

morphic outcrosserso Theoretical resource spectra of individuals 
differing in heterozygosity are illustrated in Pigo 29, Since the 

experiments were not designed to investigate individual plasticity, 
this aspect of the effects of heterozygosity is unresolvedo 

The relevance of heterozygosity to colonising ability 
in the Hydrobiidae is discussed in the General Discussion and 
Conclusions (p. 198 ). 

VII -3-3 The determination of species distributions 
A discussion 

If the experimental physiological ranges determined in 
this chapter define the species' responses to temperature and salinity 
in the field (this may not, be so due, for example, t6 behavioural 

avoidance of extreme conditions)g then we may make certain predictions 

with respect to the distribution of the Hydrobiidae. 

Firstly, P. jenkinsi A and B should be confined to fresh 

or brackish-water habitats whereas the Hydrobia species should be 
found in brackish to marine habitats. Since the, activities of the 
Rydrobia species"are low in lolr salinity (i. e. they are incapable of 
feeding) they wil 1 be excluded from habitats with persistent low 

salinity. 
Is 

Ellis 
8 

using sites in Sussexq_ Robson9 using Essex 
locations and Penchel 10 by examining populations in Denmark have 

estimated the habitat salinity ranges (in % SW) of-the three species 
of Hydrobi and of N jenkinsi to be: 
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Ellis 
8 

Robson9 Fenchel 10 

P. jenkinsi up to 1 0- 45 1-5 - 27 

H. ventrosa. *68 18 - 61 9- 74 

H. ulvae 35 - 95 30 - 100 21 - 97 

H. neglecta 30 - 73 32 - 92 

*one population only 

None of these authors provides sufficient detail to allow 

certain identification of the strain or strains of P. jenkinsi, to which 
these ranees apply. All agree that salinity alone is a poor predictor 

of distribution in the field but that P. Jenkinsi generally has a 

narrower physiological range and is found in less saline water than the 

Rydrobia species* Fenchel found P. Jenkinsi to be the dominant species 
in habitats with a salinity of less than 35' SW* 

In the above studies, only one resource dimension, salinity, 

was measured in the field; usually by taking a few spot samples from 

each habitat. TIAs is clearly inadequate for any meaningful 

comparisons af physical resource partitioning to be made for these 

species since aquatic habitats are in physical terms, neither 

unidimensional nor stable* 

The experimental results presented in this chapter are 
largely in agreement with the field observations described above. 

. Secondly, P. jenkinsi A, should be excluded from habitats 

which have 'a salinity of more than 30% SW (2(r/o in low temperature) 

whereas P. jenkinsi B cang at median temperatures, tolerate brackish 

conditions at least for short periods. 

Ecological separation of the strains of P, jenkinsi was 

suggested by Warwick 11 
who described strains B and C as coastal in their 

distribution and strain A as the typical fresh-water form. In the 

present work, no population of P. jenkinsi A, was found in water of 

greater than 10'lfo SW and no P. jenkinsi B populations were found in 

water of less than M/o SW* However, the experimental evidence 

presented here suggests that strain B is not physiologically excluded 
from fresh-water. Factors possibly contributing to this apparent 

exclusion of P. jenkinsi B from freshwater are discussed belowe 

Thirdlyq on physiological: grounds, 'we might expect to 
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find, mixed populations of Hydrobi species in mesohalinous habitats 

where median temperatures prevail since there is considerable over- 
lap between the experimental ranges in this region. H. ventrosa 
is the least tolerant with moderate mortality occurring at extremes 

of temperature and salinity. H. ulvae and H. neglecta have the 

widest ranges; H. ulvae is less tolerant of low salinities and high 

temperatures than H. neglecta. Hylleberg, 
12 

using Danish populations, 
has'recently investigated the faecal egestion rates (roughly equiva- 
lent to the activity scores in the present work) of the Hydrobi 
- species in 35 different combinations of temperature (50 350) and 

salinity OWo lWo SW). The surfaces he obtained for H. ulvae and 
H. ventrosa are similar'to those reported in this study, whereas he 

found that the H. neglecta surface was similar to that of H. ulvae 
in Fig. 27 i. e. with optimum activity at high temperature and high 

salinity* 

r 

In'support of this prediction that the three Hydrobi 

species should co-exist 
' 
in sheltered mesohalinous areasy Penchel 10 

and Hylleberg 12 
report that in Danish fjords where these physical 

conditions prevail, mixed-species populations of H. ulva: e,, 
H. ventrosa, and H. neglecta, are commonly found. Of 50 sites 

examined by Hyllebergo 43 were occupied by mixed-species populations. 

-In contrast to the Danish fjords, mixed-species 

populations of Hydrobia were rarely found in the collections made for 

the present work; occasionally mixed-species populations were 

encountered in man-made dykes (see poplns- 57 and 58 in Appendix I). 

This raises the question of whether the physiological 
tolerances of these species have a role in determining the species 

composition of a particular habitat and, if this is so, can we 

account for the differences in species compositions of British coasts 

and Danish fjords? 

Perhaps the most obvious difference in the physical 

nature of these. habitats lies in their stabilitys Danish fjords have 

little tidal range, are largely mesohalinous and are relatively 

sheltered. The eastern British coast, howeverl is subject to violent 
fluctuations in these physical conditions. For examplep summer 

conditions at the Little Humber Farm site (where the sample of 
H.. ventrosa was collected) were up to 36 0C and 85% SW. In winter the 

ditch was almost fresh-water (less than 5% SW) for periods of several 
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weeks and was frequently frozen over. Similarly, salinity at 
Stone Creek (where P, jenkinsi B was collected) was measured on 

several occasions and varied from 85% SW at high tide to under 
lWo SW at low tide. 

If these fluctuations are sufficiently largep then 

some species may be excluded or extirpated from particular habitatsp 

leading to allopatric (single-species) populations. Evidence for 

extinction was fortuitously provided during the study at Stone Creek 

where the population of P. jenkinsi B went extinct during a period of 
drought (summer 1976), and at Snettisham where the P. Jenkinsi B 

population was totally extirpated by an influx of sea-water during a 

severe storm in January 1978* The population was replaced overnight 
by H. ulvae, carried into the lake by the sea-water* 

Hylleberg12 argues, from experimental evidence and field 

observationst that environmental heterogeneity and unpredictability 

allows co-existence of congeneric species by conferring advantages 
fluctuating in time and space to each* He concludes that when the 

environment is stable and predictable only one species is 'really 

successful' (due to competitive exclusion) and allopatx7 results. 
Howeverp the experimental evidence presented by Hylleberg and in the 

present work, together with the field observations both in Denmark and 
in Britain tend to refute this argument. Moreover, Fenche113 has 

clearly and elegantly demonstrated (by measuring the sizes of ingested 

substrate particles) that where species of Hydrobia co-exist, 

competition for food results in character displacement rather than 

exclusion. Competitive exclusion has been demonstrated in the 

laboratory in the Hydrobiidae 14 
and in several other experimental 

systems using invertebrates1591611708 but in these systems there may 
be insufficient time (number of generations) or insufficient genetic 

variation in experimental populations to allow the evolution of 

character displacement. 19,20 

Where competing populations are monomorphic howeverlittle, 

if any, character displacement can occur; in this case competition may 

well result in exclusion of a species* For example, P. jenkinsi B9 

although physiologically able to exploit both brackish and fresh-water 

habitats was only found in brackish coastal waters (see above). it 

is possible that this strain of P. jenkinsi is competitively excluded 
from fresh-water by P. jenkinsi A. 
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In summary, if we assume, in contrast to Hylleberg, 
12 

that competitive exclusion of Hydrobi species rarely occurs in the 

field then, due to their overlapping ranges, mixed-species 

populations may co-exist in mesohalinous, sheltered (in terms of 
temperature extremes) habitatsi competition results in a divergence 

of resource, partitioning between species rather than competitive 

exclusion of species. Converselys in habitats where these physical 

conditions fluctuate between extremes, exclusion or extinction of 

species'may oocurp leading to allopatry. 

The availability and stability of physical conditions 

such as temperature and salinity may therefore largely determine 

the, Hydrobiid species composition of a particular habitat, 
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DISCUSSION AND CONCLUSIONS 

A short discussion has been provided at the end of each of the 

preceding four chapters (IVq V, VIj VII). In this concluding . section 
I shall discuss the results of the present work in the context of current 

population genetics and ecological theor7 in'order'to develop a model to 

explain the widely different patterns of polymorphism found in Hydrobiid 

populations* I shall also discuss the relationships of this model to the 

adaptive strategies of such populations with particular reference to their 

colonising ability and evolutionary persistence. 

Since much of the following discussion is concerned with levels of 

electrophoretic variation it is useful to point out initially thatp for 

wholly or. partly asexual populations, variation cannot be expressed by 

using an estimate of heterozygosity, the usual practice when considering 

variation in. sexual populations. Heterozygosity is an estimate of 

variation only in populations where fully random segregation occurs# 

allowing the expression of heterozygous, genomes in succeeding generations. 
In wholly or partly apomictio populations heterozygosity is not directly 

related to the amount of variation within a Population, This is clearly 
demonstrated in the present work where the most heterozygous populations 

of Potamopyrgus are also the'least variable-, in terms of the-number of .- 
different electrophoretio phenotypes within a population (see Chapter, IV). 

In contrast, populations of Hydrobia with lower heterozygosities than 

Potamopyr, gus esp. contain many more phenotypes and are thus more variable, 

Hence in the discussion below 'level of variation' is used to describe the 

array of phenotypes detected in a populations- Relationships between 

heterozygosity and other variables such as reproductive strategy are 
discussed as a separate entity later in this chapter* 

Let us first consider the evidence presented in the, foregoing - 
chapters in the lighVof the neutralist/selectionist controversy referred 
to in the Introduction (pp. 8-10 )* 

The following evidence extracted from the preceding chapters is of - 
critical importance: 

Levels of electrophoretic variation are Clearly related to 

reproductive strategye 
In all six Potamopyrgus species examined, except the sexually 

reproducing P. estuarinus, a large proportion of females in the 
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population is correlated with high heterozygosity per individual 

and a small array of phenotypes per population. 

2. The levels and patterns of variation in the obligate sexually 

reproducing populations of Hydrobia ssp,, and P. estuarinus are 
typical of those found in the majority of sexually reproducing 
invertebrates (see Chapters IV and V)* 

Variation within and between populations of P. Jenkinsi appears to 

be ýirtually absent despite the presence of very large populations 

of this species in Britain for at least one hundred, years (see 

Chapter IV)* 

Due to the inherent limitations of electrophoretio techniques and 
sampling errorl this estimate of variation in P. Jenkinsi may be 

erroneous in a finite sense but is certainly valid relative to 

levels of variation estimated in the li-ydrobi and Australasian 
Potamopyrgus populations used in this study. 

Levels of variation within Ilydrobiid populations may be adaptive, 
at least in terms of the physical variables used in the laboratory 

experiments described in Chapter VII. 

Can we explain these differences in patterns of polymorphism between 

asexual and sexual Hydrobiid populations by means of the 'neutral' theory 

of Crow and Kimura? 1 

According to neutral theory the age of a population should be 

related to its variability since one might expect older populations to have 

accumulated more neutral electromorphs than say a recently colonising 

population or one that has been through a recent numerical 'bottle-neck', 

In addition to age-related variation within a Populationt neutral 
theory also predicts that the size of a population should influence its 

variabilityo Using an extension of the neutral theoryl the mutation- 

equilibrium hypothesis, Nei et. al. 
2 have predicted that small sexual 

populations have lower equilibrium heterozygosities than large populations 
but achieve genetic equilibrium faster* They have also predicted-that the 

rate of increase of heterozygosity in asexual populations should be 

proportional to population size* 
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Soule in a review of largely electrophoretic data from invertebrate 

and vertebrate populations has demonstrated thatj although direct relation- 

ships between the sizes or ages of populations and electrophoretic 

variability certainly existq such relationships depart substantially from 

those predicted by neutralist theory* It appears that the rates of 

incorporation of mutations into sexual populations are much too low to lend 

support to neutral theory* 

In some caseal notably in small vertebrate populations that have 

passed through a population size 'bottle-neck' (e. g. the elephant seal4) 

or have experienced long-term inbreeding (eog. the Canadian elk5)q a lack 

of electrophoretic variation has been found but, in oontrastj small 

populations of Drosophila willistoni in Hawaii have similar levels of 

variation to the large populations of De willistoni on the North American 

mainland which are thought to be of similar age 
6 

It is difficult to test for age/variation relationships due to our 

scant knowledge of the age of wild populations. Somero and Soul7els work7 

on marine fish and Ayala's study8 of electrophoretic variation in Hawaiin 

Drosophila populations of apparently different ages fail to demonstrate a 

relationship between variation and population age, Moreover# populations 

of the King Crab, Limulusp a species having an ancient evolutionary 
98 lineage t are as polymorphic as some recently evolved species of Drosophila. 

The overall impression gained from reviews of eleotrophoretio 

variation in vertebrate and invertebrate populations is that such variation 
does not appear to be correlated with the age of a population in the manner 

predicted by neutral theox7. 

A further prediction of neutral theory is that stochastic divergence 

should occur between genetically isolated populations causing a loss of 

genetic identity increasing with time. The problem with testing this 

prediction is that geographically isolated populations may not be geneti- 

cally isolated; gene flow between them may occur sporadically thus 

maintaining their genetic identity. Ayala et. al 
10 have shown that small 

geographically isolated populations of Drosophila appear to maintain their 

genetic identity (suggesting strong stabilising selection); Slatkin 11 has 

produced evidence suggesting that in this particular situationj gene flow 

is unlikely to be sufficient to account for the observed lack of stochastic 

divergenoes 
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In the present work neutral theory predicts that isolated 

populations of P. Jenkinsi A which differ in size and age (in terms of the 

time since their introduction to different areas) should show different 

levels of variation and that stochastic clonal divergence should have 

occurred in the British population, A crude estimate of the extent of 
this divergence might be made by assuming the following parameters:,. 

P. Jenkinsi A pomdations are often made up of greater than 
10 6 individuals, This is a low estimate of the numbers. - 

observed in the field* 

ii) The generation time in the field is twelve months. Three 

generations per annum, were obtained in laboratory cultures 
used in the present work. 

PoJenkinsi A has been widespread for at least one hundred 

years (see Hubendick 12 for confirmation of this estimate)* 

iv) The =tation rate at electrophoretic loci is approximatelv 
II, m jr5* 

V) Roughly 10% of mutant alleles are detectable by eleotro- 
phoresis, Assumptions (iv)-and (v) are supported by Mukae 

and CockerhamIsI3 experimental estimation of the spontaneous 
mutation rate to electrophoretically detectable alleles in 
Drosophila of . 1.8 x 16-6. 

vi) Gene flow between populations is negligible: for apomictic 
aquatic molluscs this is probably a reasonable assumption 
since outcrossing can be discounted and large-scale migration 
is unlikely. 

Using these approximations and ignoring back-matationsl the number 
of electrophoretically detectable alleles per locus per population (N 

M) 
is given bys 

NmD Np" where D 
'proportion 

of mutant, alleles 
detectable by electrophorese 

Np, W No. individuals. 

t No. generations 

mutation rate. 
Henoes 

Nm0.1- x 10 6ý 
x 10 2x 

Ci-5 
2 10 
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This is only a crude estimate of the number of mutations, 

per locu3 that have arisen in the population since its : Lutroduotion. 
I 

An Crow and Kimura have pointed outj, the vast majority of these will 
have been eliminated within a few generations by stochastic events 

such as drift and migration. It is surprising therefore that 

several mutations were detected during the P. Jenkinsi A survey* 
For this reason the results of the survey do not appear to contradict 

neutrali3t theory, 

The patterns of po2, vmorphism shoim by the Australasian Species 

P. antipodarum and P. nigra. provide some evidence against neutralina Of 

electrophoretic alleles since variation appears to be distributed 

'patchily' among theýpopulations studied: one olque tends to dominate 

each particulargeographic area (see chapter IV), Again,, levels of 

variation within populations of these species are similar, to many 

other'apomictio species, i. e. lower than those predicted by neutral 

theory (see below). 

Am a. result of the failure of neutral th*OX7 $0 SMOMt 

satisfactorily for patterns of electrophorstic varia'bility in the m&Jor&ty 

of wild populations, recent attempts have Imen c*Ae to correlate levels of 

variation with physioal and trophio resource 00111tiese , This 

seleationist approach differe from that of. the ftentralLuts'in Vat 

of variation are regarded as a4aptive pbsnow" and nat an *. Ahe result of, 

stochastic drifts 

14 
Using data from literature murveyst Levins conoludes that 

populations in unstable environments have higher'Ce"tic Wiability, than,.., 

Qýi. I. 
" 

those IWIM in stable environment** In contrast$ Val Ing 

that for so" populations the irew roe my be truel such,. papdations, usy 

pursue & Via*-gr&ined' strategy (see introduction) In an unstable., emiro*w , 

ment and may have Imter genetic variability than 'those pursuing a looarse- 

graimwd' strategy4p The crux of these mod*ls Is the $perception ofAhe'. --'-, 

. 
envirocomt bry the organism, a factor apparently related to its also and 

mobilitye Selander and KaufW= 16 have clearly demonstrated that small 

relativ, sly iwwbile species (which perceive their environment as ocares- 

grained) are more variable olectrophoretically than lane and mobile fine. 

grained strategists* Powe%117 has lent experimeatal support to such 

*resource stability* models by demonstrating that Prosogbils, laboratory 

cultures kept in unstable environments retain more eleotrophoretto 

variability than similar cultures maintained In stable conditions*., 
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A major problem with suoh adaptive theories oonoerning genetic 
variation is that when different pIWIade are oompared metabolic. 
regulation probably differs between then both qualitatively and 
qWLnUtitivelyo Since electraphoresis detects only atrwtural gone 
products and tells us little of their relative contribution to the 

overall phenotype upon which selection Actel it is difficult to establish 
confidently a causal relationship between levels of oleotrophoretto 
variation and environ==Ul parametereo 

It to probably reasonable to assume that metabolic rocuUtian or 
structural gone products is more uAiform within a taxonomic family than 
between different phylado The evidence presented in Chapter VII 

Ovogesting that levels of variation in the Hydroblidae-are a4aptive may 
therefore be more robust than some previous studies 16, - 17 

using data from 
wrermt phyla$ 

In summary then, the above evidence (emoept'the apparent 
genetic uniformity of isolated P. Jenkinsi A populations previously 
referred to) provides some grounds for invoking selection'to explain 
patterns of polymorphism in Hydroýiid populations. 

SUbilising selection* for genetic wtiformity has been suggested for 
two invertebrate example* or ammptionally low electrophorttlo' 
variat iono Suonalainan ete §14,18 report 'that a mingle genot"S dominates 
SoandimavUw populations of the apomictic chrysomelid beetle Mom 
obsounsil Selander and Xaufman 19 

report a similar pattera of po 
In populations of the self-Urtillaine land an-41 ILUNIBA IIL* 

. Ij which 
has reomtly oolcmined North America# Since those *Pftles appear to be 
the only reported instanoes of genetic uniformity geographically 
widespread popul at, iona it Boom that this extreme pattern of polysiorphiss 
is unusual In both apooLotio auid sexual Invertebratese 

In the majority of aposictic species 4hat'have been 4Kzaained - 
is elebtropboretically (for reviews me* Suomiainen *! 2 Sjo on an 4m- in MA 

Borry20 on plants)g populations consist of several different clones often 
with one alone dominant in a particular geographical areas This pattern 
of Polyviorphiom is found particularly-in aponiotic species which have long 
boon established in an area (sege weevilop 

18 dandelions# 21 
and Lady's 

mantles 22)-, lower clonal diversity is found In recently coloaLsed areas* 
a 
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This suggests that genetic. -variation doest as neutral theory 

predictsjýaccumulate with time. However, it, is the, rate of accumulation 
of variation which is at-issue here since, as Soul-e 3 

points, outg we would 
expect a very much highe'r rate of accumulation-than that observed in 

these populations if electrophoretic alleles were largely,, selectively 

neutral, 

-Such, patterns of polymorphism most probably result from selective 
'fine-tuning' adaptation to ecologically and climatically different - 
environmental patches. In some cases (eeg, Alchemilla vulgaris aggo 

22) 

such ecotypic adaptation may result in clones which are good morphospeoies, 
giving rise to the possibility that clonal, divergence is an important 
factor in sympatric speoiationo 

This is of particular significance in those species which are 
facultative parthenogens since long-periods of apomixis may result in 

clones so divergent that potential interclonal fertility is lost, 

Although many species are reoognised as being apomictio upon close 
examination most exhibitýa small but significant degree of sexual 

reproduction (eoge weevilaq 
18 the Australasian Potamopyrgus ssp*23 and the 

wall cress Arabidopsis thaliana 24) thus maintaining a degree of genetic 
flexibility greater than that produced solely by mutation rate. 

No direct evidence of sexual reproduction in P. Jenkinsi was 
obtained during the present-works no males were found and no evidence of 
segregation was obtained for heterozygous loci. This suggests that if 

sexual reproduction occurs in this species it is restricted to a very low 
level, perhaps being confined to particular areas. Wallace 25 has recently 
investigated the 6ocurrence of males in various British and Dutch popula- 
tions of P. Jenkinsi A and has found a low frequency (less than 11%) in 

several areasp mainly confined to North Walese This'lends further support 
to the suggestion that P. Jenkinsi is a facultative Parthenogen (Chapter IV). 

If a low frequency of sexual reproduction occurs in P. Jenkinsi A 

populationst the variation released by such matings should intensify clonal 
divergenceg particularly if selective neutrality of eleotromorphs is- 

assumed. No evidenceýof this was obtained during the present study so 
that either. intense stabilising selection is operating on the progeny of 
sexual matings or sexual reproduction does not occur in the populations - 
examined, none of which coincided with those sampled by Wallace* 
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Nothing is, known, of sex-determining mechanisms in Potamopyrgus-, 

the presence of males may not necessarily mean that sexual reproduction 

occurse Electrophoresis of the North Wales populations examined by 

Wallace a-ad of the progeny of laboratory crosses would establish whether 

segregation at heterozygous looi is commonplace in this areas 

Turning now to the distribution of heterozygosity in populations 

of Potamopyrgus and Hydrobial the level of heterozygosity in'a, 

population appears to be related to reproduotive strategy. Specificallyp 

heterozygosity is highest in apomictic populations (see Fig. 23)- 

The simplest explanation of these results is to assume that highly 

heterozygous individuals are more fit than those with lower heterozygositye 

If highly heterozygous individuals exhibit generalised heterosis (i*e. 

a phenotype capable of relatively high fitness in a wide range of environ- 

mental conditions) we can go some way towards a model to explain the 

patterns of polymorphism found in the Hvdrobiidaeo 

Experimental and observational support for heterosis (over- 

dominance) as a mechanism for the maintenance of genetio variation is 

widespread and deeply entrenched in population genetics and bybridisation 

techniques, involving heterosis are widely used in plant breeding. Over- 

dominance of visible traits has been extensively reported by, for example 

Haldanel 
26 Fordl 27 Sheppard, 28 

and many other authors. The heterotio 
29 

maintenance of eleotrophoretic variation has been reported by e. g. Koehn 
30 31 32 Marshall and Allard; Koehn and Mittong Beardmore and Shamil and 

Beardmore and Ward 33 
0 

Heterotic models of the maintenanoe of genetic variability in 

sexual populations contain the intrinsio'problem of segregational. load 

sincet at many loci, homozygous segregants will have lower fitnesses than 

heterozygotes. Many authors34 have argued that a substantial proportion 

of polymorphisms cannot be maintained by heterosis for this reason; the 

genetic load would be unbearable. Such load resulting from segregation 

has been shown theoretically by Kimura and Ohta 35 to be overcome by 

increased fecundity only'if selective co-efficients are low. Tracey and 
Ayala, 36 in a study of the fitnesses of Drosophila homozygous for a 

complete chromo, someq have demonstrated that fitness differentials between' 

these Populations and normal wild flies are more than adequate to overcome 
the effects of segregational load, Previous studies of Drosophila by 
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SvedI37 Sved and Ayala? 38 
and Mourgo et.,, al, 

39 in which the fitness of 
flies homozygpus for 'quasi-normalt, -chromosomes was compared with that of 
wild heterozygotes, also indicate that heterosis is not overcome by load. 

Although for many loci in Drosophila, (up to 1258 according to 

Tracey and-Ayala36 ) load does not seem to, preclude the possibility of 
heterotic maintenance of variation,, there may well-be, many other loci 

where this is not so* Ne, 40 
and Lewontia4l point out that-until - 

seleetion co. ýefficients are better knownt heterosis is stillýa scientifi- 

cally-valid model of genetio variation in sexual populations* 

Recentlyt LevinS42, Dobzhansky43, and Lewontin. 411 have advanced an 

alternative model which avoids the problem of load. The model is based 

on ecological niche selection in which alternative homozygotes achieve 

optimum fitness in different environmental patches although gene flow is 

maintained between patches. 

Direct observational and experimental support for this niche 
selection_model, has-been provided by Christensen44 who demonstrated that 

different amylase homozygotes of an Asellus Population preferred-different 
detritus food types and this determined their distribution within a pond* 
Furthermorev he has shown that for another parameter, temperature, hetero- 

zygotes have lower fitnesses than homozygotes, although, the biochemical 

mechanisms responsible for this fitness differential are unknown. ' 

In the Hydrobiidae, Fenche, 45 has demonstrated a special case of the 

niche selection model in which closely related species of ! Lydrobia undergo 

character displacement of feeding mechanisms where they occur sympatri- 

callys- the environmental patches in this instance are found-in the food 
dimension (for more details see section VII -3- 3)- Otherýsimilar 

cases of character displacement have been reported by Grant46 and piankaI7 

11 TI 

If segregational load is a major obstacle to heterosisq fitness of 
heterozygotes in facultative parthenogens may be substantially increased 

by heterotic individuals reproducing apomictically; segregation is thud 

avoided. Since-these individuals are potentially twice as fit as sexual 
individuals in the population (see Introduction P- 4) we might expect 
these mixed reproductive strategy populations to become dominated by these 

highly fit apomictic clones; this is indeed the case in Australasian 
Potamopyrgus populations (with the exception of the obligate sexually 
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reproducing P. estuarinusl* Dominant clones differ between populations 

of Potamopyrgus; this may reflect selection for the clone having the 

highest fitness in each habitat Patch. 

Wide environmental fluctuations within an environmental patch 
(eego a river estuary) may not allow the evolution of apomixis particul- 

arly if such, fluctuations are stochastic and sporadically outside the 

physiological tolerances of even the most heterozygous individualso 

Sexual reproduction in"the avdrobia'asp. and P. eatuarinus, populations 

may -therefore function in thelimmediatel sense of Williams481 continually 

-to break up previously successful genotypes and so avoid extinction by 

a wideýrange of variation in progeny. 

.4 

A combination of facultative Parthenogenesis aiid'hýifii6tiii`clonal 
dominance is put forward as a model to account for patterns of poly- 

morphism in-Potamopyrgus,,, populations since it also-provides a--basis-for 
the colonising strategy characteristic of the j; enus. 

P. Jenkinsi is a successful coloniser of a wide range of aquatic 
habitats in Britain and Europe49; the species is most commonly found 

in man-made ecologically- lmmatuýe'hýbiiats s-'uch-"a"s"'d"it'c'he's-'a'-nd 'cana'l'is'ed 

streams although it is sometimes encountered living at low population 

ý. -,, -densities-in-matureýfreshwater-ecot3ystemse -Winterbourn5P. reports-that 
the Australasian, PotamoEyr ally Ms Ospe are typically colonisers of ecologic 
immature aquatic habitats. 

Populations of Potamopyrgus containing highly heterozygous (and 

heterotio) facultative parthenogens are inherently good colonisers since 

propagules may start from a single individual in any stage of development 

and may expand rapidly due -to the high intrinsic rate of increase 

charaoteristioýof parthenogenesise , Purthermore, ifbigh heterozygosity 

confers wide pbysiological. plasticity then the probability of extinction 

of a propagule may be low. 

The virtual confinement of Potamopyrgus Populations to ecologically, 
immature ecosystems is interesting since it may be explained in terms of 
the low variability and reproductive strategy of such populations. In 

mature ecosystems it is possible that competition from other fauna may 

exclude apomictic Potamopyrgu_s propagules since the avoidance of such 

competition by the evolution of character displacement is not possible 

198 



Fig. 30 Phylogenetic, tree of six 'species' of Hydrobiid. 

Constructed using Nei's method of unweighted -, A 
pairing ( assumes constant rate of gene 

substitution). 
A: Uenkinsi A N: Rnig[a 
Be. Ejenkinsi B 

.: j 
V: H. ventrosa C 

C: Pienkinsi C 

AN: P antipýdarum B 

AN 

N 

V 

1.5 1.0 0*5 0 

640 
EVOLUTIONARY TIME 

(Millions of years before present) 
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(see section VII -3- 3). pI 

Similarly a new clone of P. jenkinsi arising sympatrically might not 
become established if it is competing with the, parental clone. Since 

neither clone can evolve character displacementg thatýwith lower fitness 
(in the sense of competitive ability) might go extinct. - Such a model 

explains the scarcity of mixed clone populations observed in the present 

collections of P. jenkinsi A. 

Whether such stabilising selection has reduced-the clonal diversity 

of P. Jenkinsi since its introduction must remain-rather speculative since 

we have no direct information on the number of initial propagules in 

Britain* Possible alternatives ares 11 

i) Ajarge number of genetically different clones were introduced and 

only the fittest have persisted. 

Fewer clones were introduced and most have survived. 

iii) A single clone was introduced and has diverged since the mid- 
nineteenth century. 

Alternative (iii) appears to be unlikely if we examine the probable 

phylogeny of P. Jenkinsi A, B and C using the genetic distance data 

obtained in Chapter VI. ' Ne155 I by assuming the raie of gene substitution 
to be constant, has calculated the temporal equivalent to his genetic 
distance parameter, 17. Fig. 30 representsý. a phylogenetic tree constructed 
in this way where the divergence times for the species investigated in 

Chapter VI are indicated by vertical lines. If we accept the assumptions 

and errors on which this figure is basedv then the three dominant British 

clones of P. Jenkinsi diverged over one million years before present i. e. 
before their introduction into the Northern Hemisphere. It must be 

eýmphasisedj however, that this exercise is subject to considerable 
imprecision (for a review of the validity of the assumptions see Berry 20 

Alternatives (i) and (ii) remain equally possible. 

53 It'has long been argued byp for examplet Pisher, 52 Darlington, 

and White, 54 that parthenogenesis is an evolutionaz7 'dead-endt; it is 

therefore worthwhile examining the likely evolutionar7 fate of P. Jenkinsi 

in the light 'of both this view and of the results presented in the present 

study, 
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According to Fishers Fundamental Theorem of Natural Selection 
(see Introduction P. 2 ) P. Jenkinsi should have little or no ability to 

adapt to its surroundings and is therefore evolutionarily unlikely to 

persist. However, P. Jenkinsi appears to be extremely well adapted to 

its surroundings; it is particularly successful in immature man-made 
habitats where competition from other species may be relatively low* 

In the context of evolutionary persistence the important question 

toenswer is not whether P. Jenkinsi is adapted to its present surroundings 
but whether the gene pool of the species contains sufficient variation to 

allow adaptation to a ckange in its surroundings. 

Two lines of evidence have'been presented which suggest that there 

is insufficient variability in P, Jenkinsi populations to allow them to 

persist in the face of environmental changes 

In the present work (section VII -3- 3)t two examples of the 

rapid and complete extinction of large populations of 
P. Jenkinsi B have been given., In one of these (the Stone 

Creek population) a population of the sexually reproducing 
11. ventrosa in a tributary dyke survived the environmental 

extremeso 

Fenche, 45 has shown that P-Jenkinsi populations do not under- 

go character displacement when living sympatrically with 
Hydrobia species. In contrast, sympatric populations of 

sexually reproducing Hydrobia ssp. appear to be able to 

avoid competition for food particle size by evolving 

character displacement* 

In view of this evidencel it would appear that P. Jenkinsi, 

populations rely on having relatively stable resource dimensions for their 

persistencee 

Suomalainen et. al. 
18 

and Lokk155 have demonstrated convincingly 
that apomictic populations accumulate genetic variation; given enough 
time many become as variable as sexual species, although variation is 
distributed differently. It is thought that such variation accumulates 
during periods of habitat diversification when newly arisen mutant clones 
are able to colonise previously unexploited niches* Populations of 
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P. Jenkinsi may be expected to follow this pattern only if there is 

sufficient habitat stability during the period when variation is 

accumulating; rapid and large shifts in resource dimensions might lead 
to extirpation of the species during this period* 

Only if such environmental conditions are fulfilled over 

sufficient time will P. jenkinsi accumulate enough variation to become 

an evolutionarily persistent member of the European fauna. 
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iPPDDIX II 

BARTLETTIS TEST 

If sl 
210221s32-s2 

are k estimates of variance 

with nlg n2l n3' - nk degrees of freedom and 02 is 

the pooled estimate of variance with n degrees of freedom, 

then, if the estimates 61 
218221832Sk2 

are 

homogenous# the value of 
M 

where X C 

n log s2_n1 log 812_ n2 log s22 nk log 5: 
2 

and C= 0-4343 1+ 3 (k ---lT- n1+ ; ý2 ++ ýc 

'I-% 
is distibuted as a Chi-square with k-1 degrees of freedom* 

E. g. Esterase 9 in five, Potamopyrgus species 

ss df df*log MS 
P. Ienkinsi A 0-959221 44 -73-107496 
P. ienkinsi B 0-647297 23 -35.664358 
P. Jenkinsi C 0-427490 15 -23-177478 
P. antipodarum 0-938196 42 -69-340140 
Penigra 0-941329 37 -58-995031 

3-913533 161 -26o. 2845 

M df )( log Ids (df log I-IS) 

259-89536 26o. 2845 

0.389143 

c- 0-4343 1+-1 (ý 1-1) 1 
3(-4-Y dr %< df 

1 

m 0-4343 1+ --L ( 0.1837088 - -' ) 
12 19-1 

= 0-440724 

2w bl/C = 0,88296 ( n. s. - data are homogenous) 
(4) 
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COMPARISON OF REGRESSION COEFFICIENTS 

( 'r ) difference between slopes MS Variance Ratio 
pooled residual MS 

Pooled residualB 7.14713 x 1073 

Pooled total MS 2-4308 x 10 -2 

Difference KS 1.7161 x 1072 

1.7161 x 107 2 
F3 (5,156) an 7-14713 x 10-3 

2.4011 

i. e. the regression coefficients do not differ 

significantly (P - 0-95)- 
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