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Abstract

The study of Statistical Mechanics goes back to the 1800s and the
work of Boltzmann. Since that time the field has been divided
into equilibrium theory and non-equilibrium theory, with the for-
mers progression far outpacing the latter. That is until relatively
recently. New insights such as the thermodynamic length [1], fluctu-
ation theorems [2, 3] and spectral methods such as the Observable
Representation [4, 5] have given us new tools to deal with large and
complex non-equilibrium systems. In this work we will look at two
specific tools in depth. The Observable Representation (OR) and
its irreversible extension the Non-Detailed balance Observable Rep-
resentation (NOR) and the information length. The NOR allows
one to take the complex and often messy calculations of a systems
evolution operator and represent it with a much simpler geometric
version. In this version distances correspond to relationships in the
original system. We will show how these distances can be used to
elucidate the underlying structure of a given system and even to con-
trol chaotic systems by forming periodic orbits from said distances.

The second method to be analysed in detail is the thermodynamic
length and its non-equilibrium extension the information length.
This gives us a measure of distance between probability distribution
the system takes in its evolution. Each distribution is represented
as a point in statistical space and as the system evolves each point
generates a path we can measure the distances of. This abstract
space then allows us to often calculate fundamental quantities of
systems under study such as the maximum available work or the
dissipation as the system evolves.

Both methods may seem abstract and un-necessarily far removed
from the actual systems they represent. What we gain from this ab-
stractness far outweighs its added mathematical machinery, for from
abstraction we gain generality. These methods allow us to analyse
huge classes of system under one umbrella, such as irreversible or
chaotic systems which before were out of reach of equilibrium sta-
tistical mechanics.
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Chapter 1

Introduction

1.1 Introduction

The world is filled with large complicated systems that have many degrees of

freedom. For example take one centimetre cubed of gas at 0o c on the surface of

the earth. This system has on average 1019 molecules of gas [6], or particles as

we shall refer to them. The simple rules of classical mechanics that govern these

particles has been known since the time of Newton 1. To evolve this system

forward we simply evolve the initial conditions forwards using a simple set of

rules (Newton’s laws), yet using this steady repetition of rules one is already

lost and unable to calculate how the system will evolve. The system is simply to

large, to complex and the precision one needs is not attainable. Still all around

us we see a staggering amount of repeatable order and structure that comes

from this or any system. Meaning there should be an underlying rule which

governs the formation of this structure. Examples range all length scales, at

the enormous scales of galaxies there is the formation of spiral galaxies such as

ours [7]. The orbit of our sun and the eleven year sunspot cycle [8] are also

examples of the formation of structure and order from a set of simple rules.

1Here we are assuming that for the length scales being considered there are no Quantum
mechanical effects. This is of course in general an incorrect but necessary assumption.
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As we go down in scale to those of the earth we see the repetition of weather

cycles such as El Nino [9] or trade winds as repeating large scale evolutions of

large complex systems. Human beings themselves are a prime example steady

and repeatable formation of structure which forms from an apparent random

interaction of constituents. Rosenfeld et.al in [10] showed that the creation of

proteins in individual cells is not steady as was previously thought, and instead

undergoes large fluctuations. This means that the basic operation of our bodies,

making proteins, has a strong random element to it. The question is then, how

does this set of random processes turn into the order and structure that is the

human body?

Equilibrium Statistical Mechanics aims to analyse the small scale behaviour

of say, atoms or molecules of a system in thermal equilibrium and extract the

large scale or macroscopic consequences. The statistical flavour of this approach

would make one naively assume that it is a good starting point to understand

non-equilibrium systems. Despite efforts going back to the 1800’s there has yet

to be a unified theory of non-equilibrium statistical mechanics. To understand

how we might start to construct such a theory we shall start by looking at

systems in equilibrium. This will begin the first of three main sections in this

thesis. Major concepts that will be needed later will be reviewed. These include

concepts from equilibrium statistical mechanics we will need such extensive and

intensive variables, relative entropy and Fisher information, along with a brief

introduction to dynamical system and chaos theory. Next we will introduce two

approaches to dealing with non-equilibrium systems. Chapter two will present

the Observable Representation (OR) which is a geometric interpretation of the

operator that describes the evolution of certain systems. The OR can be thought

of as creating a picture which allows one to interpret the information about a

system encapsulated in its evolution operator. Chapter three will deal with

the thermodynamic length and its non-equilibrium extension the Information

length. This is a generalization of equilibrium statistical mechanics in terms of

distances over a surface of states. As a system evolves it traces out a path over
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this surface, the distance of this path tells us valuable information about the

available work and dissipation of the system as it evolves. The key application

of this work will be into analysing classical music using the information length.

Before we go any farther though, we need to define several concepts that

will be used throughout this work,

• system: Any large grouping of smaller components or constituents one

wishes to study. This could be the stock market, a musical score, or as we

will see later on, more abstract objects such as dynamical systems which

will be used as mathematical experiments to test our ideas.

• state: A state is a set of variables that together give a complete descrip-

tion of the system. These are traditionally the position q and momentum

p of all particles that make up the system.

• phase space/state space: The phase space is an N dimensional surface

in which every points is a state of the system. As the system evolves in

time it will trace out a path over the phase space.

1.2 Equilibrium Statistical Mechanics

The aim of statistical mechanics is to derive all the equilibrium properties of a

macroscopic molecular system from the laws of molecular dynamics” [11]. In

other words we derive the macroscopic values we see in our everyday world from

the microscopic dynamics that make up the system. For a classical system in

equilibrium the probability of finding the system in a certain state x is simply

given by the Boltzmann distribution,

p(x) =
e−λ

rXr(x)

Z
. (1.1)

The sum extends over all observables of the system (Xr(x), such as pres-

sure, energy etc), where λr are a set of Lagrange multipliers and we will use
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throughout this work that repeated upper and lower indices are assumed to be

summed over. Z is the zustandsumme or sum over states as named by Max

Planck [12]. Today it is more commonly referred to as the partition function,

Z =
∑

x exp [−λrXr(x)]. As we shall show later if we simply have a system

whose only observable is energy such as a heat bath, E(x) = X1(x) and Eq.

(1.1) becomes,

p(x) =
e−βE(x)

Z
. (1.2)

β in the above equations is the inverse temperature of the system in contact with

a reservoir, β = 1/T . Having found Eq. (1.1), as Richard Feynman puts it [13],

“That is the end of classical statistical mechanics”, for now we can calculate all

the quantities we desire about the system. As we shall see though, everything

in this elegant theory depends on the system being in equilibrium, meaning“

that a system has settled down to the point where its macroscopic properties

are constant in time” [12].

1.2.1 Equiprobability Assumption

Imagine a set of N particles, each of which can assume specific values of energy

pressure etc, Ei, Pi, i = 1, 2, . . .
√
M . Together the collective value of ever

particle gives a state or configuration of the system. Each state as mentioned

above is a complete description of the system and is represented as one point in

phase space. A macrostates of the system, is an average over the probability of

being in each state of the system. For example if we only consider energy the

macrostate for a discrete set of states is given by,

〈E〉 =
∑
i

p(i)Ei. (1.3)

There are an infinite number of points on any given phase space. To help

deal with this, above we have coarse grained each variable of interest into a

finite number of values,
√
M . Every value a particle can take, Ei, Pj will be
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given by a coarse grained microstate Gk, k = 1, 2, . . . ,M . The union of all Gk

covers the phase space Ω. The question then is how do we decide which set of

microstates will be occupied?

Boltzmann’s genius is that he proposed every configuration has an equal

probability of happening. Given a large number of identical systems, the most

probable set of states will simply be the set of states which has the most equiv-

alent configurations. Or to give it a more precise definition, to calculate the

configuration which has the largest multiplicity. As an example, take the the set

of microstates Gk, k = 1, 2, . . . ,M , each microstate corresponds to a different

set of values, Ei and Pi, i = 1, 2, . . .
√
M . We should note, the number of coarse

grains is typically very large, meaning we can to a good approximation (as is of-

ten done in the literature) take integrals over quantities instead of summations.

The number of particles that occupy Gk are called the occupation number, nk,

k = 1, 2, 3, . . . ,M . As an example consider a system with just two particles as

shown in Fig. (1.1). First consider the case where both particles have the same

value of Ei, Pj as shown in Fig. (1.1) (a). Since there is only one way to have

this configuration the multiplicity is one. If instead we have one particle with

values Ei, Pj and the second particle with a different set of values, then there

are two configurations for this situation, since switching the particles with each

other gives the same configuration. Thus this situation has a multiplicity of two

as seen in (1.1) (b). In general given N particles and the variables of interest

having M possible microstates, the total number of arrangements is given by

[14, 15],

C =
N !∏M
k=1 nk!

(1.4)

According to the equal probability hypothesis, we then want to find the set of nk

that maximizes C subject to the constraint that the probability that a particle

is in Gk is, p(k) = nk/N where p(k) is conserved,
∑

k p(k) = 1. To calculate

the distribution we are most likely to observe along with the corresponding

occupation numbers, we will first turn Eq. (1.4) into a more manageable form.
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Figure 1.1: Each figure is a two dimensional coarse grained configuration space.
In (a) both particles have the same values of E and P giving a multiplicity of
one. In (b) both particles have two different sets of values, giving a multiplicity
of two.

Note, see [16] for a nice introduction to this material. First apply Stirling’s

approximation since we are assuming N is large,

C =
NNe1−N∏M
k=1 n

nk
k e

1−nk
, (1.5)

C =
NN∏M
k=1 n

nk
k

. (1.6)

The second line comes from conservation of probability. Since the logarithm is

a monotonic function, it shares a maximum with its argument, meaning we can

take the logarithm without affecting the maximization of nk’s,

log(C) = N log(N)−
∑
k

nk log(nk). (1.7)

Finally using our definition of p(k) we have,

log(C) = −N
M∑
k=1

p(k) log(p(k)). (1.8)
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Thus the set of occupation numbers that are most probable is the set that

corresponds to maximizing the Shannon entropy,

S = −
M∑
k=1

p(k) log(p(k)). (1.9)

1.2.2 Additional constraints

In practice a given system will be more complicated in that we will have more

than one constraint on our system. Equilibrium can be defined by having con-

stant macroscopic values, these could be energy, temperature, pressure, particle

density etc. When we say “constant”, as mentioned above we mean that the

system has a constant average with respect to the variables over its phase space.

For a continuous system this is the integral over all phase space,∫
Ω

p(x)Xi(x) dx = 〈Xi〉. (1.10)

The variables are divided up into two groups, intensive variables and exten-

sive variables [12],

Intensive variables: Quantities that do not change (in equilibrium) as

the system size is scaled. These include temperature or particle density.

Extensive variables: Quantities that change (in equilibrium) as the sys-

tem size is scaled. Examples include, internal energy, volume, or entropy.

So given a set of extensive variables Xi, i = 1, 2, . . . , n which are on aver-

age constant
∫

Ω
p(x)Xi(x)dx = 〈Xi〉 we have n additional constraints. Jaynes

showed [17] that by maximizing the Lagrangian we can recover the Boltzmann

distribution. Using the Lagrange multipliers λi,

L = −
∫

Ω

p(x) log(p(x))dx− λ0

(∫
Ω

p(x)dx− 1

)
− λi

(∫
Ω

p(x)Xi dx− 〈Xi〉
)

(1.11)

7



In the above equation we have dropped the x dependence on our extensive vari-

ables X(x)i = Xi to ease notational clutter, though it is still assumed. Also

as previously noted summation over upper and lower indices is assumed. As

we shall see the Lagrange multipliers which were introduced so that this prob-

lem was not under determined, are nothing more than the system’s intensive

variables. As an example of how to find the most likely distribution, consider

the case where the system is closed and the only additional constraint is the

average energy 〈E〉. The Lagrangian we seek to maximize writing p(E) = p is,

L = −
∫

Ω

p log(p)dE − λ0

(∫
Ω

pdE − 1

)
− λ1

(∫
pE dE − 〈E〉

)
(1.12)

Taking the variational derivative [18],

δL

δp
= −1− log(p)− λ0 − λ1E = 0. (1.13)

We see that we can immediately solve this for p giving,

p(E) = e−(1+λ0+λ1E). (1.14)

Though Eq. (1.14) looks similar to the Boltzmann distribution, we still need to

solve for our Lagrange multipliers. We first use the conservation of probability

constraint and integrate over all energies,∫ ∞
0

p dE = 1 =

∫ ∞
0

e−(1+λ0+λ1E)dE, (1.15)

= e−(1+λ0)

∫ ∞
0

e−λ
1EdE. (1.16)

The second integral has the solution of the form,

1 = e−(1+λ0) 1

λ1

8



λ1 = e−(1+λ0) (1.17)

Next we use the second constraint,

〈E〉 =

∫ ∞
0

Ee−(λ0+1+λ1E)dE = e−(1+λ0)

∫ ∞
0

Ee−λ
1EdE. (1.18)

Taking the derivative under the integral leads to,

〈E〉 = e−(1+λ0)

(
− ∂

∂λ1

)∫ ∞
0

e−λ
1E dE =

1

λ1
. (1.19)

Using Eq. (1.16) and Eq. (1.19) in Eq. (1.14) we finally arrive at,

p =
1

〈E〉
e−E/〈E〉 =

e−βE

Z
. (1.20)

The final term on the right is simply using the more traditional notation

for the inverse temperature and partition function. One should keep in mind,

that out of equilibrium the allowed configurations are not in general known,

meaning we cannot use the equiprobability assumption as we did in this sec-

tion. The proof of this difference in allowed configurations is the plethora of

non-Boltzmann-Gibbs distributions found in nature out of equilibrium. Under

mild requirements such as irreducibility, there is a unique equilibrium distribu-

tion, therefore, if we do not occupy this distribution we are not in equilibrium

and we must have a different set of occupation numbers. Furthermore it has

been argued that simply maximizing Eq. (1.9) out of equilibrium results in a

backwards arrow of time, which is of course completely at odds with our every-

day experience and the second law [19]. The second law states that for a closed

system, entropy must on average increase until it reaches p0. Deciding what

the correct entropy to use and what the correct constraints are so as to find the

non-equilibrium distribution of a given system is the goal of non-equilibrium

statistical mechanics.
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1.3 Dynamical systems

A dynamical system may be defined as a deterministic mathematical prescrip-

tion for evolving the state of a system forward in time [20]. Dynamical systems

can be either continuous or discrete depending on the variables of interest. For

a discrete system whose phase space is given by Ω, initial points xn are evolved

by a map over discrete time steps,

xn+1 = f(xn). (1.21)

A continuous dynamical system evolves the initial condition x ∈ Ω for a time t,

x(t) = f t(x). (1.22)

Together, (Ω, f) form a dynamical system. In this work subscripts will denote

component directions, i.e. xi(t) is the ith component of x(t). We usually assume

f to be a smooth function meaning we can take as many derivatives of it as

we need. The equations of motion that we are usually given are ẋ(t) = df t/dt

where x is a vector of dimension d giving a set of ordinary differential equations

(ODEs). To understand how the neighbourhood of a point in Ω behaves, we

take the evolution of a second test orbit initially some small displacement δx

away giving,

f t(x+ δx) = x(t) + δx(t) = f t(x) +
∂xi(t)

∂xj
δx+ · · · . (1.23)

To linear order we define the variational equation,

δx(t) = J t(x)δx0, (1.24)
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where we have defined the Jacobian at time t as,

J tij(x) =
∂xi(t)

∂xj
|x=x0 . (1.25)

The Jacobian measures the deformation of an infinitesimal neighbourhood around

x [21]. Similarly define the variational equation of motion to linear order as,

δẋ(t) = A(x)δx, (1.26)

where,

Aij(x) =
∂ẋi
∂xj

(1.27)

Then for a linear flow, taking the time derivative of Eq. (1.24) and using, Eq.

(1.26) we have,

δẋ(t) =
d

dt
J(x)δx = A(x)δx(t)

= A(x)J t(x)δx

d

dt
J t(x) = A(x)J t(x), (1.28)

at time zero the Jacobian, J0(x) is given by the identity matrix, J0(x) = I. Eq.

(1.28) then gives us a way to numerically integrate the variational equation of

motion. This link means that we do not need to construct J which can be very

difficult in practice even with the equations of motion. This will be seen later

on when we construct the Lyapunov exponents for the Lorenz system.

Of note are some special kinds of points in phase space. A fixed point of pe-

riod p is a special solution such that, x∗ = fp(x∗), where p is the minimum time

such that, the orbit first returns to x∗. The set of points along the evolution,

f t0(x∗), . . . , f t(x∗), . . . , f p(x∗), t0 < t < p form what is called a periodic orbit.

Fixed points can be classified as either stable or unstable. A stable fixed point is

one such that any point a small distance away will evolve to the fixed point. An
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unstable fixed point is the opposite, any nearby points are evolved away from

the fixed point. The stability is determined by the stability coefficient. Again

take an initial point x together with a second points a small distance away

x′ = x+δx. In one dimension the nearby point is evolved by, f(x+δx). Writing

as a Taylor expansion to first order we see that, |f(x+ δx)−f(x)| = |δx|
∣∣∣df(x)
dx

∣∣∣.
|df(x)/dx| is called the stability coefficient with good reason. It is clear that if

|df(x)/dx| > 1 the points move apart from each other and we have an unstable

point x. If |df(x)/dx| = 0 We have a marginal point and if |df(x)/dx| < 1, x

is a stable point. In higher dimensions our derivative turns into the Jacobian

Eq. (1.25), whose eigenvalues give the stability of the neighbourhood around x

[22]. Given the eigenvalue equation for J ,

Jej = ηjej, (1.29)

when |ηj| < 1 ∀ j the neighbourhood around x is attracting. On the other hand

if |ηj| > 1 for any j then the neighbourhood is expanding and unstable. If ηj

has a non-zero imaginary component, Im ηj 6= 0 then the neighbourhood has

an oscillatory behaviour.

In this Thesis we will not seek to discover anything new about the dynamical

systems we study (though we will). Instead a dynamical system will be a

substitute for running an experiment in the real world. They will give us a

way to test and elucidate theoretical concepts that otherwise would remain

abstractions. The two systems we will use are the logistic map and the Lorenz

system.

1.3.1 Chaos

There are many different although similar definitions for chaos. Here we shall

define it as follows:

1. The system demonstrates sensitive dependence on initial conditions: given

two initially close points, the points will be iterated far apart.
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2. The system is Topologically Transitive. Given any two intervals P, Q,

there is a positive integer n, such that, fn (P) ∩Q 6= ∅.

The rate that two initial conditions are either iterated apart, or together is

called the Lyapunov exponent (L), dx ≈ eLndxo. The finite, but long time

Lyapunov exponent is defined as,

L =
1

N

N∑
i

li. (1.30)

li is defined as the instantaneous Lyapunov exponent,

li = log |f ′(xi)| . (1.31)

The traditional definition of the largest Lyapunov exponent is,

λmax = lim
t→∞

1

t
log
‖ δx(t) ‖2

‖ δx0 ‖2

. (1.32)

‖ δx(t) ‖2 is the L2 norm of the vector δx. For higher dimensional systems we

generalize Eq. (1.30) from the average divergence in between two points, to the

divergence of a volume of space in n-dimensions. This means that the rate of

growth of a volume element is given by the determinant of the Jacobian, Eq.

(1.25), ∣∣det J tij(x)
∣∣ = exp

(
t

n∑
i=1

λi

)
. (1.33)

Here λi are the lyapunov exponents, [23].

There is a generalization of the Lyapunov exponents [24], which defines the

Lyapunov exponent of order p, p ≤ n, n is the dimension of the system. This

method is often of use when running long simulations of dynamical systems

which have large stretching in one or more directions. Given a parallelepiped

whose edges are given by the vectors up, p = 1, 2, . . . n, the p Lyapunov exponent
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is then defined as,

λp = lim
t→∞

log
(
V ol

(
J t(x)δx

))
, (1.34)

“where V ol (J t(x)δx) is the p dimensional volume in the tangent space” [24].

From [25] we know that p linearly independent vectors, up are guaranteed to

exist meaning, there are a set of scalars a1, a2, . . . ap not all zero, such that [26],

a1u1 + a2u2 + · · ·+ apup 6= 0. (1.35)

The volume of our parallelpiped is then, V olp =‖ v1 ‖‖ v2 ‖ · · · ‖ vp ‖, where

vi are the orthogonal vectors generated using Gram-Schmidt orthogonalization

[27]. The orthonormal vectors wi which also come out of Gram-Schmidt are

then evolved forward in time. This is due to the matrix whose eigenvalues

generate the lyapunov exponents can often become ill conditioned which leads

to numerical errors [24] . To recap to find the Lyapunov exponents, we must

simply integrate Eq. (1.28) along the flow and find the vectors vp through

Gram-Schmidt Orthogonalization [27], thus leading to our final definition for

λi,

λi ≈
1

T

∫ T

0

dt log ‖ vi(t) ‖2, (1.36)

with, λp being given by,

λp =

p∑
i=1

λi, (1.37)

In conclusion, if a system is Topologically Transitive, and satisfies either L > 0

or λi > 0, it is defined as being chaotic, L ≤ 0, the system is not chaotic. To

see why this mixing is needed, imagine a one dimensional system bound to the

real numbers with two initial conditions separated by some small amount ε, x0

and x0 + ε. The rule for evolving this system is xn+1 = xpn, where p > 1, p ∈ Z.

This system has sensitive dependence of initial conditions but it is obviously

not chaotic for we can easily predict all solutions go to infinity.
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1.3.2 Logistic map

The logistic map is a one-dimensional discrete map which is one of the simplest

system that can demonstrate chaos. The system is governed by,

xn+1 = axn(1− xn), (1.38)

where xn is the position of the system at the nth time step. a is the control

parameter 0 ≤ a ≤ 4 for xn ∈ [0, 1]. The generalized logistic map is defined as,

xn+1 = 1− ax2
n. (1.39)

Here x ∈ [−1, 1] when a ∈ [0, 2]. If chaos is defined by sensitive dependence to

initial conditions and the approach and departure of many stable and unstable

fixed points, then we should be able to see this for the logistic map. Fig. (1.2)

shows the overall evolution of Eq. (1.38) as we vary a. From 0 ≤ a ≤ 1 there is
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Bifurcation diagram for Logistic map

(a)
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Figure 1.2: Fig. (a), Bifurcation diagram for logistic map Eq. 1.38. Fig. (b),
A zoomed in view of the Bifurcation diagram. Note the sudden loss of defined
bifurcations around a = ac =. This is the initial onset of chaos. Also visible are
the periodic windows, explained below.

one stable fixed point for the logistic map at x∗ = 0. There is also an unstable
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fixed point at x∗ = 1 − 1/a for 0 ≤ a ≤ 1. This fixed points becomes stable

from 1 < a < 3 while x∗ = 0 becomes unstable for 1 < a ≤ 4. The transition

at a = 3 is the first period doubling bifurcation. Here two stable period n = 2

fixed points and one unstable fixed point are created. The process that creates

this is seen in fig. (1.3) where we have plotted f 2(x), f 4(x), f 6(x) and f 8(x) for

a = 2.9 in black over the entire domain [0, 1]. Where the line f(x) = x in red

first crosses fn(x) a fixed point of length n is created. Each stable fixed points

is plotted with a red circle, while all unstable fixed points are shown with black

circles. One can convince themselves from the evolution at each time step that

for this value of a no other stable orbits above n = 2 are created. This is how

each period double bifurcation proceeds at ever shorter increments of a until at

ac = 3.569946 . . . [28] . At ac there are an infinite number of stable and unstable

fixed points and the system is chaotic.

The logistic map has another interesting feature that can be seen in Fig.

(1.2), where for certain values of a the system becomes periodic. The most

obvious example of this is the period-3 window between 3.828 . a . 3.8568

as seen in Fig. (1.4). The evolution to chaos is governed by successive period

doubling bifurcations while the generation of period windows is through tangent

bifurcations. Here an unstable and stable fixed point are created as the curve

fn(x) initially intersects f(x) = x. To help illustrate this, Fig. (1.5) shows

a typical tangent bifurcation. Here f 3(x) is plotted for both a = 3.8 and

a = 3.9. As a grows the function passes through the f(x) = x line generating

the unstable and stable fixed point. A view of the period-3 window as a function

of a is shown in fig. (1.6) (a). To generate this figure, we calculate f 3(x) as

a function of a and see how the interpolated surface intersects the f(x) = x

plane. Initially where f 3(x) intersects the plane we have a tangent bifurcation.

fig. (1.6) (b) shows the f 6(x) surface as a function of a. In this figure we see the

initial creation of the tangent bifurcations as the f(x) = x plane first intersects

f 6(x). We also see the period doubling bifurcations around a = 3.825.

The logistic map may be the simplest dynamical system which can exhibit
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Figure 1.3: f 2(x), f 4(x), f 6(x) and f 8(x) are plotted, (a-d) in black for the
logistic map when a = 2.9. We see that one stable fixed point is created for
f 2(x) and for all higher powers of f no more stable fixed points are created.
The one unstable fixed point is plotted at x(0) with the black circle.

chaos. But as we have just seen it has a very rich and interesting evolution to

chaos. This is probably best summed up in Fig (1.7) were we have plotted the

bifurcation diagram in blue with the Lyapunov exponent, Eq. (1.30) overlaid

in black. We see that as the system undergoes period doubling bifurcations the

Lyapunov exponent grows greater than zero. Then as the tangent bifurcations

bring the system temporarily out of chaos the Lyapunov exponents fall back

down below zero, signalling the system is no longer chaotic.
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Figure 1.4: The period window for 3.828 . a . 3.8568.
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a = 3.8

a = 3.9

Figure 1.5: f 3(x) for a = 3.8 and a = 3.9 plotted with f(x) = x. The intersec-
tions that arise are the tangent bifurcations.

Lorenz System

Edward Lorenz in 1963 [29] showed that by truncating Salzman’s set of first

order differential equations which described Rayleigh Benard Convection (see

[30] and references within) to just three variables, he could generate non-periodic

flows, [20] i.e. chaotic trajectories. The equations for this set xi, i = 1, 2, 3 have

three parameters, σ, ρ and β. Together they give the approximation of Rayleigh
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(a) (b)

Figure 1.6: (a) shows f 3(x) as a function of a. As f 3(x) crosses the f(x) = x
plane a tangent bifurcation is formed. (b) shows f 6(x) as a function of a. Here
we see the initial tangent bifurcation as the plane and function intersect, but
also the period doubling bifurcation as the system evolves back to chaos.

Figure 1.7: Plotting the Bifurcation diagram and L over top of each other, we
see that the system changes from being chaotic to non chaotic as it undergoes
both period doubling and tangent bifurcations.

Benard Convection [31],

ẋ1 = σ(x2 − x1),

ẋ2 = −x1x3 + ρx1 − x2

ẋ3 = x1x2 − βx3.

(1.40)
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For 0 ≤ ρ < 1 we have one equilibrium solution,

(x∗1, x
∗
2, x
∗
3) = (0, 0, 0),

which is stable for ρ < 1 and unstable for ρ > 1. ρ ≥ 1 we also have two more

equilibrium solutions

(x∗1, x
∗
2, x
∗
3) =

(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
.

The logistic map in the previous section had a relatively simple progression to

chaos since there is only one control parameter to vary. The Lorenz system on

the other hand is extremely complex with the adjustment of each parameter

leading to substantially different behaviour. To give a flavour of the myriad of

different behaviours the fixed points can exhibit we will vary ρ from 1 < ρ < 28.

With ρ = 28 the value which we will use later on in our analysis. The other

two parameters will be held fixed at, σ = 10 and β = 8/3, which with ρ = 28

are the three parameter values originally used by Lorenz. For ρ = 1 the fixed

point at the origin goes from stable to unstable as previously mentioned. At the

same time the other two fixed points come into being and are stable. This is

then an example of a pitchfork bifurcation [28]. The two fixed points not at the

origin have varied behaviour as ρ increases past one. For 1 ≤ ρ . 1.3457 all the

eigenvalues have zero imaginary parts as seen in Fig. (1.8), plotted with black

lines and circles. This means both fixed points have linear behaviour in their

respective neighbourhoods. For 1.3457 < ρ . 24.737 the eigenvalues η2 and

η3 have non-zero imaginary parts and trajectories have oscillating behaviour

around the fixed points, shown with the black lines in Fig. (1.8). Finally for

24.737 < ρ ≤ 28, |η2| and |η3| are greater than one meaning nearby orbits are

repelled. In this parameter window the system is chaotic, shown in Fig. (1.8)

with red lines.

The Lorenz system exhibits a plethora of different behaviours as you vary the

control parameters. We have just given a taste of these in the above discussion.
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Figure 1.8: Each of the above figures depicts the real and imaginary parts
of ηj, j = 1, 2, 3 for the Jacobian of the Lorenz system the fixed point(√

β(ρ− 1),
√
β(ρ− 1), ρ− 1

)
for 1 ≤ ρ ≤ 28. We see three distinct phases

for η2 and η3, first line with circles showing the purely linear and thus real
stability of the neighbourhood. Then the development of non-zero imaginary
components shown with solid black lines. Finally the loss of stability as |η| > 1
shown in red.

The values we will use in the coming work of σ = 10, β = 8/3 and ρ = 28

have been selected due to their celebrated history and the fact that the largest

Lyapunov exponents Eq. (1.36) is greater than zero. Using these three control

parameters we generate the famous butterfly attractor Fig. (1.10).

1.4 Information and disorder

The Shannon entropy was shown in section 1.2 to arise from the assumption

that every configuration is equally likely. There is another side to this subject,

namely that the entropy is given as the missing information in the system S =

−I. This intuitively makes sense, if we have p(x, t) = 1 while p(y 6= x, t) = 0,

then we have zero missing information in that finding the system in state x

gives us no new information since we knew exactly what state the system was

in already.

This is the view Shannon famously proposed in 1967 [32]. One may ask are

there other measures which can be used to represent Information? Khinchin [33]

formulated four axioms which can be shown to uniquely produce the Shannon
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Figure 1.10: The Lorenz attractor for σ = 10, β = 8/3 and ρ = 28.

entropy [22]. The axioms are [34],
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1. Information only depends on the probability of an event,

I(p(1), p(2), . . . , p(N))

.

2. Information takes on a minimum for the uniform distribution,

I(1/N, 1/N, . . . , 1/N) ≤ I(p(1), p(2), . . . , p(N)).

3. Including an event of probability p(x, t) = 0 does not change the informa-

tion.

4. Given two subsystems, I and II, the combined information is given by

[35],

I(p(x, y)I,II) = I(p(x)I) + I(p(y|x)II). (1.41)

p(x, y) is the joint distribution of both subsystems, p(x) is the marginal

distribution of subsystem I and p(y|x)II is the conditional distribution of

system II given system I. It follows from the joint entropy, which we can

then relate to the information through S = −I,

S(x, y)I,II = −
∑
x,y

p(x, y)I,II log(p(x, y)I,II), (1.42)

= −
∑
x,y

p(x, y)I,II log(p(x)I)− p(x, y)I,II log(p(y|x)II),

= −
∑
x

p(x)I log(p(x)I)−
∑
x,y

p(x, y)I,II log(p(y|x)II).

This axiom says how the order of collecting information influences the

outcome. If both subsystems are independent, then the order of collection

doesn’t matter and we arrive at the more often quoted relation showing
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the independence of information for independent systems,

I(p(x, y)I,II) = I(p(x)I) + I(p(y)I). (1.43)

If one changes the fourth axiom then we have the generalized entropies

such as the Renyi [36] and Tsallis [37] entropies. See [34, 38] and [39] for nice

introductions.

1.4.1 Relative Entropy

A related measure of information is the Relative entropy or Kullback-Liebler

distance [40],

DS[p(x)|q(x)] =
∑
x

p(x) log

(
p(x)

q(x)

)
. (1.44)

DS is defined as the information in x available to discriminate between two sys-

tems p(x)I and q(x)II , per observation of system I. The quantity is non-negative

and zero only when p(x) = q(x). Though called a distance, this is technically in-

correct since in general DS[p(x)|q(x)] 6= DS[q(x)|p(x)] and DS[p(x)|q(x)] does

not satisfy the triangle inequality [41]. Procaccia has given another physical

meaning to DS which is more applicable to our goals here, namely that for a

distribution evolving to equilibrium p0(x) the relative entropy gives the amount

of available work for the system. To see this add and subtract S(p0) to Eq.

(1.44),

DS[p(x, t)|p0(x)] =
∑
x

p(x) log

(
p(x)

p0(x)

)
+ S(p0(x))− S(p0(x)), (1.45)

= S(p0(x))− S(p(x, t)) +
∑
x

log(p0(x)) (p0(x)− p(x, t)) .

Using Eq. (1.1) we arrive at,

DS[p(x, t)|p0(x)] = ∆S − λi∆〈Xi〉. (1.46)
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Procaccia identifies, ∆S as the change in entropy and ∆〈Xi〉 as the average

change in the extensive variables,

∆〈Xi〉 =
∑
x

Xi(x)(p0(x)− p(x, t)). (1.47)

The first law of thermodynamics says that work W is equal to the change

in dissipation minus the change in energy, W = T∆S − ∆E. To see how

DS[p(x, t)|p0] is a measure of work, imagine a heat bath, where the inverse

temperature is given by, λ1 = 1/T = β. Then the only extensive variable is

energy, meaning Eq. (1.46) is,

DS[p(x, t), p0(x)] = ∆S − β∆〈E〉, (1.48)

TDS[p(x, t), p0(x)] = T∆S −∆〈E〉.

We see that DS is the measure of available work as the system evolves from

p(x, t) to p0(x).

1.4.2 Fisher Information

The Shannon entropy and the Relative entropy are both global measures of the

system, in that they include averages over the entire phase space. If you then

change the order that you sum over the states you will not change the value of

S or DS. The next information measure is different. The Fisher information

is a local measure over a distribution p(x, t), in that changing the order of

summation matters. The Fisher information [42] is a measure of information

about the variance of a set of measurements. This is shown in the celebrated

Cramer Rao inequality,

〈(x− 〈x〉)2〉IF ≥ 1, (1.49)

Here x = 〈x〉+ε, where 〈x〉 is the true value of a parameter of the system and x is

the value of 〈x〉 shifted by some noise term. It is assumed that the average of x is
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better than any individual measurement, meaning, |〈〈x〉+ε〉−〈x〉| < |x−〈x〉|. A

variable whose average converges to a true value is called a smart measurement.

Here we have used the average notation to follow from our definition of To

derive the Fisher information (IF ) and Eq. (1.49) we first take the derivative

with respect to 〈x〉 of, ∫
dx(x− 〈x〉)p(x|〈x〉) = 0, (1.50)

giving, ∫
dx(x− 〈x〉) ∂p

∂〈x〉
−
∫
p = 0. (1.51)

The probability distribution is the conditional distribution of x given the true

value of 〈x〉, p(x|〈x〉) = p. Using the identity ∂p
∂〈x〉 = p∂ log(p)

∂〈x〉 and squaring each

side gives, ∫
dx
(
(x− 〈x〉)2p

)
p

(
∂ log(p)

∂〈x〉

)2

= 1. (1.52)

Applying the Cauchy-Schwarz inequality leads to,∫
dx(x− 〈x〉)2p

∫
p

(
∂ log(p)

∂〈x〉

)2

dx = 〈(x− 〈x〉)2〉IF ≥ 1. (1.53)

The Fisher information (IF ) is then a lower bound on the variance from the

repeated measurement of x. This also represents a kind of uncertainty rela-

tionship reminiscent of the Heisenberg uncertainty relation [42], in that as IF

increases, the variance which is the average squared error in the measurement

decreases. In the previous subsection we saw how the Shannon entropy is re-

lated to the relative entropy. The Fisher information is also related to both

these measures as we will see later on.
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Chapter 2

Geometry of Perron-Frobenius

Operators

2.1 Introduction

The Observable Representation (OR) is a way of visualizing and understanding

the information inherent in a matrix of transition probabilities. The matrix

of transition probabilities is also called a Perron-Frobenius (PF) operator due

to the original work by Perron in 1907 [26] regarding positive matrices and

the extension of these results to irreducible matrices by Frobenius. All of the

information inherent to the dynamics of a reversible system is encapsulated

in the PF operator. Or as we will see for irreversible systems the complete

information is given by the combination of the forward time evolution operator

and the time reversed evolution operator. Before we look at this geometric

representation in detail, we will introduce some theory which will prove useful.

2.2 Perron-Frobenius operators

Consider a set of random variables, {Xn; n = 1, 2, . . . }. These define the

possible states of a system all of which belong to the state space, x ∈ Ω.
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The probability of Xn being in state x is given by, p(x) = Pr{Xn = x} with

conservation of probability,
∫

Ω
p(x)dx = 1. In general the probability that the

system finds itself at Xn+1 under the condition that it was previously in states

x0, x1, . . . , xn is given by,

Pr{Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0}. (2.1)

If, on the other hand, the probability of being in state xn+1 only depends on

being at state xn, on the previous time step we have,

Pr{Xn+1 = xn+1|Xn = xn, . . . , X0 = x0} = Pr{Xn+1 = xn+1|Xn = xn}, (2.2)

and the system is Markovian [43]. Though this definition seems limiting one

should remember that every deterministic ODE can be thought of as a Marko-

vian system given a large enough time step. While nature follows continuous

equations of motion, we will be forced by computational limitations to use

discrete approximations. These discrete approximations are commonly called

coarse graining of the system in the literature. How one goes about coarse grain-

ing the system is an open topic which will not be covered here. Instead we will

most often take the naive approach of uniformly dividing Ω into disjoint sets Ii

such that
⋃
i Ii = Ω. The continuous state of the system will be given by x ∈ Ω

though we will use x = x(t) interchangeably. The discrete approximations of

the states will be given by indices i or j.

A Perron-Frobenius operator simply describes how a density, p(x, t) evolves

to some new density p(x, t′), t′ = t + ∆t. Here we will always assume our den-

sities are probabilities. Again for some function x(t) = f t(y, t0) which evolves

an orbit from state y at time t0 to x(t), t > t0, the Perron-Frobenius operator

is formally defined as [21, 22],

p(x, t) =

∫
Ω

δ(x− f t(y, t0))p(y, t0)dy, (2.3)
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where δ(x) is the normal dirac-delta function. Eq. (2.3) can be written in

operator notation as,

p(x, t) = Lp(y, t0). (2.4)

A more useful form is found by using the dirac-delta function’s composition

identity (here in 1-D),

δ(f(x)) =
∑
k

δ(x− y∗k)∣∣∣df(y∗k)

dy

∣∣∣ . (2.5)

y∗k are the roots of the equation, f(x) and the summation is over each pre-image

of x(t). Relating this to Eq. (2.3) means y∗k solves, x − f t(y, t0) = 0. As an

example that can be solved analytically take the generalized logistic map (1.39).

f(yn) = 1− ay2
n,

this gives, y∗n = ±
√

1−xn+1

a
and df(y)/dy = 2ayn. Using this in Eq. (2.3) and

Eq. (2.5) leads to,

p(xn+1) =

δ

(
xn+1 ∓

√
1−xn+1

a

)
∣∣∣∣2a√1−xn+1

a

∣∣∣∣ p

(√
1− xn+1

a

)
. (2.6)

So now the density at any point xn+1 can be known, given knowledge of f(yn)

and y∗n. Of course this is very nice in the idealized world of mathematics but

in practice there are in infinite set of points in Ω so we are forced to consider

subsets of these in Ω. This fundamental change from single points along orbits

to densities of points along orbits will allow us to define an approximation of

the operator L which we can use experimentally.

Given our space Ω, as mentioned above we partition it into N sub-intervals

Ii where
⋃
i Ii = Ω and Ii ∩ Ij = ∅. This change means that we now follow sets

of points that evolve from one sub interval to another, as is shown in Fig. (2.1).
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Following from, [44] we start at Eq. (2.3),

p(x, t) =

∫
Ω

δ(x− f t(y, t0))p(y, t0)dy.

Ij

Ii

Ω

x

y

Figure 2.1: Evolutions of states in Ij to Ii

Only now, we define the initial distribution to be constant over each interval

Ij, p =
∑N

i=1 piχj. Here, χj is the characteristic function of Ij, and allows us to

keep track of which sets we are tracking the orbits to and from. Its property is

that,

χj =

 1 if x ∈ Ij
0, else.

We also now use the pulse function in place of the delta function,

δn(x) =

n if x ∈ Ii,

0 else,

∫
Ω

δn(x)dx = n

∫
Ω

dx = 1,

where n is the normalization constant. Combining these definitions into, Eq.

30



(2.3) we have,

p(x, t) =
N∑
j=1

pj

∫
Ω

δn(x− f t(y, t0))χjdy. (2.7)

Now, since we are only considering orbits that start in Ij and are mapped to Ii,

the integral only receives a contribution from said trajectory giving,

p(x, t) =
∑
j

n

∫
f(y)∈Ii|y∈Ij

pjχj dy =
N∑
j=1

pj
m(f t(y, t0) ∈ Ii|y ∈ Ij)

m(y ∈ Ij)
. (2.8)

m(f t(y, t0) ∈ Ii|y ∈ Ij) is read as the measure of all orbits that originate in Ij

and are mapped to Ii. From Eq. (2.8) we can identify the matrix of transition

probabilities that approximates the true PF operator L,

Rij =
m(f t(y, t0) ∈ Ii|y ∈ Ij)

m(y ∈ Ij)
. (2.9)

This is the PF operator that we will use in our experimental results to follow.

R → L in the limit of Ii → 0, meaning for a fine enough partition of states

R will be a good approximation to L. Notice that we are again making the

assumption that the system is Markovian. This is often a good approximation

if the system has separation of time scales, meaning our time step is long enough

that the shorter time scales of the system have averaged themselves to zero.

Pulse functions and divergence of orbits

Now we apply the composition rule to our pulse functions. This will show how

the divergence of orbits is related to the PF operator. Again let y∗ ∈ Ij be

all points in Ij such that, y∗ = {f(y) ∈ Ii | y ∈ Ij} and the inverse of f ,

f−1(y∗) = y. Here we have used the short hand notation, f t(y, t0) = f(y). We

will also assume that f(y) is invertible, so that there is only one preimage of

y∗. y∗ from the more general case shown in the logistic map when f(y) is not

invertible, meaning y∗ could have more than one solution.
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Using the composition rule for pulse functions where again x are all points

x ∈ Ii, ∫
Ω

δn(x− f(y))dy = n

∫
u(Ω)

δn(u(y∗))

|f ′(y∗)|
du = 1. (2.10)

u is defined as, u(y) = x− f(y) and y∗ are again the set of all points such that

{u(y∗) = 0|z ∈ Ij}. Again taking the piecewise constant function gives,

∑
j

npj

∫
Ω

δn(x− f(y))χjdy =
∑
j

npj

∫
Ω

1

|f ′(y∗)|
χjdu. (2.11)

The normalization constant n is given by,

1

n
=

∫
Ij

δn(u(y))

|f ′(y)|
du. (2.12)

For higher dimensions the denominator, |f ′(y, t0)| → |detJ t(y, t0)|, where |detJ t(y, t0)|
is the determinant of the Jacobian at time t having originated from y at t0 < t.

The physical interpretation of |detJ t(y, t0)| is of the change in volume, occupied

by the flow in evolving from y → x which by re-writing Rij using Eq. (2.12)

gives,

Rij = n

∫
Ij

δ(u(y∗) ∈ Ii)
|detJ t(y∗)|

du. (2.13)

Thus we can view Rij as the total change in volume of Ij as it evolves to Ii.

If we assume J is diagonalizable then ∃ a similarity transform P such that,

J t(y, t0) = PDP−1, where D is the N ×N matrix,

Dij =

ηi if i = j

0 if i 6= j.

ηi(t) = ηi is the ith eigenvalue of J t(y, t0) at time t, which gives the average

expansion of orbits in the direction of the ith eigenvector [22]. The determinant
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of the Jacobian in Eq. (2.13) is then,

detJ t(y∗) = det(P )det(D)det(P−1) =
N∏
i=1

ηi (2.14)

This then gives a connection between the PF operator and the Lyapunov num-

bers, using the definition from (1.33) we now define our new Lyapunov exponent

λα as,

λα = lim
t→∞

1

t
log(ηα(z, t)). (2.15)

Then when detJ t(z) is well approximated by a single value such as in the limit

of the volume, Ij → 0 while keeping Ω fixed, then combining Eq. (2.14) and

Eq. (2.15) and dropping the limit gives,

exp

(
t
N∑
α=1

λα

)
= detJ t(z). (2.16)

This shows the connection between the divergence of orbits and the change of

volume of space as the orbit evolves from z at t0.

2.3 Observable Representation

Phase space reconstruction

The easiest way to get an understanding of the Observable Representation (OR)

[4, 5] is to introduce it through an example. This example will be the approx-

imate reconstruction of a system’s phase space, represented through a space

made up of a PF operator’s left eigenvectors.

The system under study will be represented by an N×N matrix of transition

probabilities Rij which is defined in Eq. 2.9. The states (coarse grained states)

of the system belong to the state space Ω, i, j ∈ Ω, where Ω is of cardinality

Ω < ∞, the system transitions through states according to Eq. (2.2). We
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assume the system is irreducible which means if the system starts in any initial

state j, then inN−1 steps the system can get to any other state, mathematically

this is given by,

(I +R)N−1
ij > 0 ∀ i, j, (2.17)

where I is the identity matrix. This requirement allows most of the results for

positive matrices, i.e. Rij > 0 ∀ i,j to carry over for non-negative matrices,

Rij ≥ 0 ∀ i,j such as our PF operators. We also require the matrix be diago-

nalizable to avoid the added complication of requiring a Jordan form, though

most results do carry over for non-diagonalizable matrices, see [45].

Through the Perron-Frobenius theorem there exists a unique positive vector

p0(i) such that
∑

i p0(i) = 1 and
∑

j Rijp0(j) = λ0p0(i), where λ0 corresponds

to the spectral radius of R. Here R is normalized to unity
∑

iRij = 1 which

results in λ0 = 1. p0 can be seen as a unique stationary distribution for R.

The next requirement which we will relax later is that the system satisfies

detailed balance (DB). This is a strict condition that states the probability of

transitioning from state j → i times the probability of staying at j is the same

as the back transition ∀ i,j. More formally it is defined as,

Jstij = 0 = Rijp0(j)−Rjip0(i). (2.18)

The superscript st is to differentiate the stationary current from the more gen-

eral case to be defined later for any probability distribution p(i, t) 6= p0(i). In

this work a system is in equilibrium if it is time independent and reversible. For

a reversible system, “The microscopic equations of motion describe reversible

processes, i.e. don’t change their form if time is reversed and if all quantities

are appropriately transformed” [46]. Therefore any detailed balance system is

in equilibrium. The reverse is not true though, a stationary (time indepen-

dent) system is not necessarily reversible, meaning Jij 6= 0 implies the system

is irreversible [47].

If we relax the irreducibility requirement then we are no longer guaranteed
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p0 and thus λ0 are unique. In this case given our normalization requirement

each λ = 1 will correspond to a separate stationary distribution. Going back

to the irreducible case, the remaining eigenvalues are re-arranged in decreasing

value, 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN . The left and right eigenvectors of R are

defined as, ∑
i

Aα(i)†Rij = λαAα(j),
∑
j

RijPα(j) = λαPα(i). (2.19)

The subscript of vectors, (i.e. A or P ) in Eq. (2.19) denotes the columns,

while the argument denotes the row. p0 is given by the zeroth right eigenvector,

A0(i) = 1, ∀i is the corresponding left eigenvector and represents conservation

of probability. The eigenvectors are normalized to form an orthonormal basis,

〈Aα|Pβ〉 = δαβ. The OR is then defined as the set of m-tuples made up from

the left eigenvectors of R,

A ≡
{A1(1), A2(1), . . . Am(1)}

...
...

...
...

{A1(N), A2(N), . . . Am(N)}
(2.20)

Each m-tuple will thus represent a coarse grained state of the system. Using

the notation from above, the state Ii will be the set of all states, y, such that

m(y ∈ Ii). This is no trivial assumption, since how one defines the size of

Ii can affect the outcome of any subsequent analysis. The problem is aptly

stated in [48] “There is no law of Nature that defines the coarse grains”. In

this work we will typically take Ii as small as possible and leave defining a

more physically correct set of states to future work. Nevertheless as we will

see shortly, even the most naive coarse graining can often correctly capture the

underlying structure of a system. The first and simplest example comes from

[48]. Imagine a Brownian particle ξ confined to a circle as illustrated in Fig.

(2.2). In one unit time step, the particle starting in Ij will either transition

to a new state Ij+1 with probability 1/2 or transition to state Ij−1 with equal
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probability.

Ij+1

Ij−1

Ij

ξ(t+ δt)ξ(t)

Figure 2.2: Illustration of Brownian motion on a ring. The particle, represented
by the grey circle will either jump to state Ij+1 or Ij−1 on each time step.

To generate the OR for this example we use R of the form,

R =



0, 1/2, 0, 0, . . . , 1/2

1/2, 0, 1/2, 0, . . . , 0

0, 1/2, 0, 1/2, . . . , 0
...

...
...

1/2, 0, 0, 0, . . . 1/2


. (2.21)

Plotting the first and second left eigenvectors of Eq. (2.21) we see in Fig. (2.3)

that we indeed correctly recreate the state space of the system.

The reconstruction of state space can be extended to many other examples

as is shown in [49]. For the particle on a ring it is fairly obvious that two

dimensions gives a correct representation of the system. But what if we have a

more complicated example, or we do not know the dimensions of the underlying

space? Usually one looks for a spectral gap, meaning there is a eigenvalue λm,

where λm � λm+1. As an example of such a system, imagine a sets of n states

that the system can readily transitions between. These states are represented
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Figure 2.3: OR for Brownian motion on a ring using N = 75 states.

by the random matrix r1 ∈ Rn×n. If for example, we have three such sets of

states, r1, r2 and r3 we can generate a system with three “clusters” as we shall

refer to them. Define the matrix W ,

W =

 r1 + r†1, ε, ε

ε, r2 + r†2, ε

ε, ε, r3 + r†3

 (2.22)

The † denotes transpose and ε is an n × n matrix of some small positive con-

stant ε << 1, which ensures R is irreducible. Adding each sub-matrix with its

transpose guarantees detailed balance. R is then given by Rij = Wij/
∑

iWij.

Using, n = 30 and plotting the first ten eigenvalues of this system in Fig. (2.4)

(a) we indeed see a defined spectral gap for m = 2. Plotting the first two left

eigenvectors in Fig. (2.4) (b) also shows the correct grouping of states into

three clusters, while Fig. (2.4) (c) shows the first three left eigenvectors. Using

the extra dimension has distorted one of the clusters to the size of the space,

which may lead one to incorrectly believe these states do not belong to the same

cluster. Later, when dealing with chaotic systems such as the logistic map, or

the Lorenz system, we will not have a clearly defined spectral gap and our job

will be much harder.
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Figure 2.4: (a) shows the eigenvalues for our three cluster system. λ2 � λ3

meaning we have a spectral gap. This separation means that in (b) when
plotting the first two left eigenvectors we have the correct separation of the
system into three clusters. Including a third left eigenvector distorts this picture
possibly confusing the distribution of states into each cluster.

Distances in OR

One of the most interesting aspects of the OR is that we can directly relate

distances in the OR to distances in R. This allows us to understand the often

complex relationships inherent in our systems with a simple Euclidean distance.

There are no unique choices of which metric to choose, see [48, 49, 50] for

some examples. In this work we have focused on the metric from [49]. For

completeness we will show how one derives the metric which will also illustrate

why so far we have required detailed balance.
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The crux of everything to follow is the symmetric matrix S. For a detailed

balance system, S is defined as,

Sij =
1√
p0(i)

Rij

√
p0(j). (2.23)

Plugging Eq. (2.23) into Eq. (2.18)

Rijp0(j) = Rjip0(i).

and using detailed balance, we arrive at, Sij = Sji. Being symmetric, S allows

us to make a connection to the eigenvectors of R,

∑
j RijPα(j) = λαPα(i),∑
j Sij

Pα(j)√
p0(j)

= λα
Pα(i)√
P0(i)

. (2.24)

Defining ψα as the eigenvector of S we see that, ψα(x) = Pα(x)√
p0(x)

. Likewise it

is easily shown that, ψα(x) =
√
p0(x)Aα(x). Since S ∈ RN×N is guaranteed to

have N linearly orthogonal eigenvectors [26], then through the above argument

R is also guaranteed to have N linearly orthogonal eigenvectors.

To show how R relates to A (2.20), first use the spectral expansion of R,

Rij =
∑
α

λαPα(i)Aα(j) (2.25)

We are interested in measuring the difference between any two distributions,

Rui and Ruj. With this in mind we divide their difference by
√
p0 and sum over
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u, ∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣ =

∣∣∣∣∣∑
α

λαψα(u) (Aα(i)− Aα(j))

∣∣∣∣∣ ,
∑
u

∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣
2

=
∑
u

|
∑
α

∑
β

λαλβ∆Aα∆Aβψα(u)ψβ(u)|. (2.26)

From Eq. (2.26) we use the orthogonality of ψ’s to get the desired result,√√√√∑
u

∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣
2

=

√∑
α

|λα|2 |Aα(i)− Aα(j)|2. (2.27)

In [49], they only take the L2 norm of the right side, giving the L1 ≥ L2

inequality. Since the eigenvalues are monotonic we can divide through by the

mth eigenvalue giving the original version of the result,

1

|λm|
∑
u

∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣ ≥
√√√√ m∑

α=1

|Aα(i)− Aα(j)|2. (2.28)

If one wishes to use Eq. (2.28) instead of (2.27) then we can improve upon

the L1, L2 inequality by bounding the L1 norm of R, ‖R‖1 from above. We

start with, ∑
u

∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣ , (2.29)

taking the Cauchy Schwarz inequality using 12 which gives,

∑
i

12
∑
u

∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣
2

≥

(∑
u

∣∣∣∣∣Rui −Ruj√
p0(u)

∣∣∣∣∣
)2

. (2.30)

Labelling the right hand side of Eq. (2.27) as DOR and Eq. (2.29) as D1 we
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have, √
NDOR ≥ D1 ≥ DOR. (2.31)

With the beauty of hindsight we might have guessed in the beginning that we

have merely re-derived the famous L1, L2 inequality. Given a vectors x ∈ RN ,

the L1 norm, ‖ · ‖1 and the L2 norm ‖ · ‖2 follow,
√
N‖x‖2 ≥ ‖x‖1 ≥ ‖x‖2,

meaning we could have written from the start that the L2 norm of A provides

an upper and lower bound to relationships in R. A question for future work

is how does the function
√
NDOR change as

√
N grows for a system of fixed

volume, i.e. will DOR go to zero for neighbouring states faster then
√
N?

2.4 B matrix and Irreversible systems

All of the previous section hinged on Jstij = 0 i.e. the system being in equi-

librium. Since in general non-equilibrium systems are irreversible, ideally we

would like to be able to extend the distance relationships in the OR to account

for these systems, in essence forming a non-detailed balance Observable Rep-

resentation (NOR). In this section we will first deal with systems in or near a

stationary state p0. Though as we will see later on, this assumption will still give

us enough information to form periodic orbits in fully chaotic non-equilibrium

systems. Later we will relax the condition of being near p0 and show that we

can define both the operator and its accompanying NOR for any arbitrary PDF

pt(i) 6= p0(i).

To extend the previous results for R, a new matrix was defined in [51, 52],

Bst
ij = Rij −

Jstij

2
√
p0(j)

. (2.32)

The superscript st is to differentiate it from the generalized matrix defined in

a later section. Bst has some very useful properties:

1.
∑

iB
st
ij = 1.
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2. If R is irreducible, Bst is irreducible.

3. Bst and R share the same stationary distribution.

(1) follows from Kirchoff’s loop rule that the sum of current into a state is equal

to the sum of current out of a state, meaning
∑

i J
st
ij =

∑
j J

st
ij = 0. (2) follows

by re-writing Bst as,

Bst
ij =

Rij

2
+
Rjip0(i)

2p0(j)
. (2.33)

Since R is a non-negative matrix and p0 is strictly positive, the number of zeros

in Bst cannot exceed the number in R. Thus if R is irreducible, Bst must

be irreducible. (3) follows from putting the definition of Bst into Rp0 = p0.

These properties mean that just like R, Bst has a spectral radius λ0 = 1, has

a corresponding left eigenvector Γ0(i) = 1, ∀i and all of the previous distance

relations can be re-cast using the eigenvectors and eigenvalues of Bst in place of

those from R. The left and right eigenvectors and eigenvalues of Bst are defined

respectively as,∑
i

Γ†α(i)Bst
ij = ναΓα(j),

∑
j

Bst
ijφα(j) = ναφα(i). (2.34)

Using Eq. (2.27) we can define the same relationship between the eigenvec-

tors of the NOR and Bst,√√√√∑
u

(
Bst
ui −Bst

uj√
p0(u)

)2

=

√∑
α

ν2
α(Γα(i)− Γα(j))2. (2.35)

Bst is a slightly more complicated object than R and as a result has a slightly

different meaning. Taking, Eq. (2.33), the second term can be identified as the

probability of transitioning, from state j → i in backwards time t′ − ∆t → t

through the time reversal matrix R̂ij of R [53],

R̂ij =
1

p0(j)
Rjip0(i). (2.36)
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This definition lets us re-write Bst
ij as,

2Bst
ij = Rij + R̂ij (2.37)

The NOR can then be thought of as a measure of how related forward and

reverse transitions are, if two states i and j are close in the NOR then the

forward and backwards evolutions are similar. This is clearly seen by taking

Eq. (2.37) into account when writing Eq. (2.35) for one time step,∑
u

∣∣∣∣∣Rui −Ruj

2
√
p0(u)

+
R̂ui − R̂uj

2
√
p0(u)

∣∣∣∣∣
2
1/2

=

√√√√ m∑
α=1

λ2
α (Γα(i)− Γα(j))2. (2.38)

Since the publication of [52] and [51] we have found several other examples

of the Bst being used in different contexts. Eq. (2.33) is written in [54] where

they site it originally coming from, [55]. Neither of these papers apply it to

distances in an eigenvector space, and neither of these papers apply these ideas

to controlling chaos.

Coordinate Representation

Now that we have defined a matrix which allows the creation of the NOR for

irreversible systems, we can analyze a huge class of new systems. To illustrate

this we will use the NOR to re-create the state space for the base of the Sierpinski

gasket, which requires a non-detailed balance matrix of transition probabilities.

The Sierpinski gasket is an equilateral triangle that is sub divided into ever

smaller copies of itself. Fig. (2.5) shows an approximation of the full fractal.

This fractal was generated from Pascal’s triangle where every odd number is

plotted and every even number is not. We will use the NOR to generate the

base of the Sierpsinki fractal, namely an equilateral triangle with a smaller one,

rotated 180◦. The left image in Fig. (2.6) is an illustration of the base of the

Sierpinski gasket while the right hand image is generated from the NOR. To
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Figure 2.5: The Sierpinski gasket generated from Pascal’s Triangle.

generate this states space, each node of the fractal is thought of as a state, while

the edges denote possible transitions between states. The transition probability

is given by one over the total number of connecting edges.

We can extend this to the base of the 3-D Sierpinski gasket as seen in Fig.

(2.7). This image was generated in the same way as the two dimensional version

only now including the third left eigenvector. We have overlaid the convex hull

to help emphasise the three dimensional nature of the shape.

One should be able to extend this approach to generate more refined versions

of fractals but this is left for future work. The next example will be how

information embedded in the NOR can be used to form periodic orbits in chaotic

systems.

There is more information encoded in the NOR than simply the coordinate

representations. It also seems to hold information on return times for orbits.

This will be illustrated first with the Logistic map Eq. (1.38). The eigenvector

equation for B can be taken for multiple time steps, where the τ time step is

given by ∑
i

Γα(i)†(Bst
ij )

τ = νταΓα(j). (2.39)

This shows another advantage to working in the eigenspace of B instead of
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Figure 2.6: (a) is an illustration of the base of the Sierpinski gasket while (b)
was made from the first two dimensions of the NOR.

Figure 2.7: The base of the three dimensional Serpinski gasket.

with B directly. The left hand side of the above equation is extremely messy to

calculate analytically, since B = 1
2
(R + R̂), while the right hand side is simply
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ν raised to a power. The generalization of Eq. (2.35) to higher time steps is,√√√√∑
u

(
(Bst

ui)
τ − (Bst

uj)
τ√

p0(u)

)2

=

√∑
α

ν2τ
α (Γα(i)− Γα(j))2. (2.40)

To look at the distances for the logistic map using discrete time steps n we

plot the value of the right hand side of Eq. (2.40) such that the distance is

normalized and given by the color of the plot, Fig. (2.8). For n = 1 in (2.8) (a)

we have the f(x) = x line, which is zero as we would expect. But there is also

a parabola with a copy of itself shifted 90o. For n = 3 in (b) we start to see a

higher frequency, low distance, function being added to the surface. (c) n = 12

shows a lot of finer detail forming. For (d) almost all initial distributions would

have come to p0, and the surface has essentially become constant, meaning no

new details form as we further increase n.

So what do these minimum and maximum distances mean? Firstly, since

the distance is symmetric, every relationship is repeated. The vertical line at

x = 0.75 in Fig. (2.8) (c) is giving the identical information to the horizontal

line at x = 0.75. These lines correspond to a fixed point in the system. Thus

the red is showing that starting at x = 0.75 the system never occupies any other

state other than x = 0.75. If we plot x1 as a function of x2 over the n = 12

surface in Fig. (2.9) we see that the parabola in Fig. (2.8) (a-c) exactly line

up. Continuing this, we have also plotted x1 against x3 and again this function

matches up to a minimum line in (2.8) (c). So small distances in the forward

and reverse evolutions correspond to the second and third step evolutions. Un-

fortunately you also have all of the extraneous information and the repetitions

of information which at this point we do not know how to separate out.

2.4.1 Chaos control in the logistic map

As an application of the NOR that is closer to something applicable to the real

world we will continue to use distances in the NOR to form non-chaotic periodic
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(a) (b)

(c) (d)

Figure 2.8: The surface of Eq. (2.40) as n is increased from n = 1 to n = 30.
The y = x line in (a) has distance zero and the non-blue coloring is due to the
limitations of the plotting routine.

orbits in the logistic map (1.38). The control parameter a = 4 will be used so

that the system is fully chaotic. The domain, X = [0, 1] will be divided up

into N states Gk = [k, k + 1]/N , k = 1, 2, . . . , N − 1 where Gk ∩ Gj = ∅ and
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Figure 2.9: Plotting x2 and x3 in black as a function of x for the logistic map,
we see that these functions exactly overlap the blue minimum lines seen in Fig.
(2.8). Note the white markings are artefacts of the surface algorithm and should
be ignored.

∪kGk = X. The position of any orbit xn will then belong to a bin Gk meaning

Rjk is,

Rjk = Pr[xn+1 ∈ Gj | xn ∈ Gk]. (2.41)

Thus, R is found from following a large ensemble of orbits as they evolve through

the state space X. From R we build Bst and Jst using Eq. (2.32) and Eq. (2.18)

respectively.

Probably the greatest asset of this approach is that we do not require any

knowledge of the equations of motion. This is especially advantageous for large

complex real world systems where we do not know the equations of motion and

are often forced to use a set of solvable candidate equations which are gross

approximations of the fundamental equations, such as approximations of the

Naiver Stokes equations. By working with solvable approximate equations, we

throw away much of the physics of the system. Here we hope to keep much of

this inherent physical information but at a cost. As previously mentioned how
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we coarse grain our system is rather arbitrary and can possibly influence the

results. Also we usually end up with very large sparse matrices which quickly

reach a size that creates computational challenges. For the logistic map our

domain is divided uniformly into grains and though not pictured, adjusting the

size of grains by small amounts does not seem to greatly change the resulting

NOR.

The original idea in [52] was that given two grains Gk, and Gk+1 which are

adjacent to each other in X, if these two have a small distance in the NOR,

then orbits originating from them will be mapped to similar areas, meaning the

union of Gk ∪ Gk+1 will have a small divergence of trajectories. To implement

this approach, we first evolve an initial condition for n iterations. Then we

define the set G of all grains within some distance ε to the orbit. This distance

G = {‖xn −Gk‖2 < ε} is a free parameter of the system. This set of grains

corresponds to a set of points in the NOR. The grain we perturb the position

of the orbit to is the one in G which has the smallest off diagonal. Though

since the original publication it has become clear that this picture of direct

correspondence between forward Lyapunov exponents and distances between

off diagonal states in the NOR is not quite correct, though it can lead to similar

results.

For the results that follow, we used, m = 3 in Eq. (2.38), the right hand of

Eq. (2.38) side will now be designated DNOR. Plotting DNOR as a function of x,

we see that there is an apparent connection between the Lyapunov exponent and

distance between nearest neighbours, DNOR(k, k + 1). Choosing the distance

between neirest neighbors can also be thought of as a kind of gradient at state

k in the NOR. Fig (2.10) shows DNOR for m = 1500 in black with the minimum

distance denoted with the red square. The minimum value is very close to

x = 0.5, which is also the minimum finite time Lyapunov exponent given by

li = log(|a(1 − 2x)|) (shown in red). Though the curve of DNOR(k, k + 1)

becomes more like the curve of li as we increase m, the two are never equal.

Using only m = 2 dimensions is enough to already find the minimum around
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x = 0.5. Two of the other local minima we see in Fig. (2.10), f(0.1452) and

f(0.856) are both points that map in one time step to the unstable fixed point,

f(0.1452) ≈ f(0.856) ≈ 0.5. The local minimum at x = 1 maps to the local

minimum and unstable fixed point at x = 0.
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Figure 2.10: DNOR(k, k+1) using m = 1500 is shown in black with the minimum
value shown with the red square at x = 0.513. The finite time Lyapunov
exponent is shown in red. We can see both functions have similar behaviour.

In Fig. (2.11) (a) an ensemble of 100 initial conditions are evolved freely

under the logistic map for the first n = 15 iterations. Control is then imple-

mented as explained above on each time step using ε = 0.1. We see that before

control the orbits fill out the entire state space, after control they very quickly

form one periodic orbit, though each orbit may be out of phase with each other.

Fig. (2.11) (b) shows the Lyapunov exponents for the same evolution and as

expected upon implementing control they all steadily fall until for Eq. (1.30)

L < 0, and the system is not chaotic.

It is fairly obvious that the size of ε determines how quickly we can bring

the logistic map out of chaos, if at all. Due to the chaotic nature of the system,

the cut off where ε becomes too small to control chaos is very sensitive to both

the initial conditions of the system and how R and in turn Bst are built. To

show the sensitivity of ε, two initial conditions were randomly chosen within

the contracting region, 3
8
< x < 5

8
and two from the expanding region, x ∈
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Figure 2.11: (a) shows the evolution of 100 orbits with respect to time. After
evolving freely for n = 15 iterations, we implement control and all trajectories
fall into the same periodic orbit. (b) shows the lyapunov exponent as a function
of time for all 100 orbits. After control L continually falls until L < 0 and the
system is no longer chaotic.

[0, 3
8
] ∪ [5

8
, 1]. The initial conditions x = [0.1576, 0.4854, 0.6324, 0.9134] were

evolved using ε = 0.9 and ε = 0.8. In Fig. (2.12) we can see that, for ε = 0.9

the system is brought out of chaos, while ε = 0.8 the system is not, since, L > 0.

Requiring L < 0 is actually an unnecessarily strict condition for the system

to formally not be considered chaotic. Since requirement (2) for chaos that the

system is mixing is immediately violated as soon as the orbits become periodic

through state space. In the next section, we will again form periodic orbits

though this time from a continuous 3-dimensional system. For the Lorenz sys-

tem we will always have one positive Lyapunov exponent despite the formation

of periodic orbits.

Periodic orbits in the Lorenz system

Since we have shown we can stop chaotic behaviour in the logistic map, we

now tackle a more realistic continuous system. The Lorenz system introduced
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Figure 2.12: Using ε = 0.9 the initial conditions x =
[0.1576, 0.4854, 0.6324, 0.9134] are brought out of chaos. ε = 0.8 for the
same initial conditions is still chaotic as seen with the upper line being greater
than zero.

in chapter (1) has three control parameters which will take the values σ = 10,

β = 8/3 and ρ = 28 in the work that follows. See Section (1.3.2) for more details.

In what follows we will not make all three Lyapunov exponents negative, but

we will negate the second requirement for chaos of topological transitivity, i.e.

we will form periodic orbits.

To generate R in, Eq.(2.9) and thus Bst, Eq. (2.32) we first must divide the

Lorenz attractor Ω into N coarse grains. Each grain will be a disjoint subset of

the original space labelled, G(i, j, k) ⊂ Ω, while the individual grain dimensions

are, xi = 1, 2, . . . , N . To keep notation to a minimum the position along an

orbit of the system is given by the coordinates x = [x1, x2, x3] without subscript,

while coarse grains are given with subscripts [x1,i, x2,j, x3,k], meaning every orbit

belongs to a specific coarse grain, [x1,i, x2,j, x3,k] ∈ G(i, j, k). Along with our

coordinates in the attractor’s space, we also have a corresponding set of linear

coordinates in the NOR space. These will simply be given by indices, Ql. For

example if we divide our attractor up into r1×N
i , s1×M

j , t1×Pk grains (note order

matters here). Then our linear coordinates Q1×NMP
l are found through the
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transform,

l = (k − 1)NM+ (jN −N + i). (2.42)

Likewise the back transform from linear coordinates to the indices of the at-

tractor are defined through,

i = l − floor

(
l − 1

N

)
N ,

j = 1 + floor

(
l − 1

N

)
− floor

(
l − 1

NM

)
M,

k = 1 + floor

(
l − 1

NM

)
. (2.43)

Floor in the above equations rounds the argument down to the nearest integer.

Using n = 40 divisions gives a matrix R with 406 elements, which can be stored

as a sparse matrix but is too large to be stored as a full matrix. Thankfully we

can eliminate much of our matrix as we only want the transitions that gener-

ate our irreducible operator which will represent only the connected attractor.

Thus taking our large matrix we eliminate any rows or columns consisting of

zero values or absorbing states until R is irreducible. This means we are left

with a greatly reduced matrix RN×N , N = 3171, that still gives us a faithful rep-

resentation of the underlying attractor. The set of irreducible states is found by

simply evolving orbits from randomly chosen initial conditions and then using

this to form the irreducible set. To construct R we can either directly calculate

the transition probabilities by calculating Eq. (2.9), or we can evolve a large

ensemble of orbits Nens which is uniformly distributed over each state G and

calculate Eq. (2.13) by assuming each orbit occupies an equal initial volume

∆vj = V ol(Ij)/Nens . The convex hull is used to approximate the initial total

volume of the ensemble and Eq. (2.13) is approximated as,

Rij =
Nens∑
k=1

δ(u(y∗k) ∈ Ii)
|detJ t(y∗k)|

∆vj, (2.44)
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where we sum over each test orbit out of the total number Nens. For the

transition matrix used to control the Lorenz system later on we used, Nens =

5000 orbits. So far we also seem to generator at least subjectively the same

NOR for simulations using different initial conditions but the same Nens.

To get a better feel for what the NOR looks like for the Lorenz system,

we plot the NOR for 2 ≤ α ≤ 9 in Fig. (2.13) in sets of three. Each image
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Figure 2.13: Different slices of the NOR, made using the α-th left eigenvectors.

can be thought of as a three dimensional slice of a higher dimensional shape.

The distance between each point represents the relationship between two course

grained approximations of the phase space. This relationship is measured using

Eq. (2.40).
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To implement control, we choose an orbit which has freely evolved from

time t0. The first parameter we use is the perturbation time τ = t∆t where

τ is the time span between perturbations of the system; τ is a free parameter

determined by the system under study. From the orbit at τ , x(τ) we find all

G(i, j, k) within a distance ε from x as shown in Fig. (2.14) (a). Again, ε is a

free parameter of the system. Fig. (2.14) (b) shows in red the corresponding

grains within ε of x(τ) in the NOR. Out of all red NOR states, we select one of

the two points which are closest to each other.

(a)
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Figure 2.14: (a) A typical orbit is evolved in black up to time τ . Then all orbits
within a distance ε of Gi,j,k are found. These are surrounded by the sphere. The
corresponding states are then shown in (b) where Γ1, Γ2 and Γ3 are plotted in
the NOR with the red dots.

As one might expect the range of values for τ , ε and m where the NOR is

effective appears to be limited. If we make τ too large, the system continues to

be chaotic. If we make ε too small, again the system remains chaotic. Probably

the most interesting fact is that adjusting the number of dimensions used has

a drastic effect on the NOR. The key to the NOR being effective is for small

distances in the NOR to correlate with orbits remaining nearby to each other.

To try and get a hold on these free parameters of the system we first look at

τ . Fig. (2.15) again shows DNOR on the x-axis. On the y-axis we show the

distance between a fixed grain Gf and an initial state, ‖x(t0)−Gf‖2. The z-
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axis shows the distance between the evolution of the reference grain Gf and the

state after time τ , ‖f τ (x(t0))− f τ (Gf )‖2. Ideally we hope for small distances

in DNOR to correspond to small distances between orbits after evolving for time

τ . For short times of τ = .1 and m = 3, shown in top left of Fig. (2.15) we see

just this. As we move left and increase τ from τ = 0.3 to τ = 0.4, we see that

small distances in the NOR sometimes lead to large final distances. Increasing

m remedies this slightly, as seen using the same time increments for the bottom

three images but now m = 119. m = 119 was chosen since each α for α > m

contributes less than 1× 10−4 to the over all distance. Using more dimensions

does seem to give us better results with small distances in the NOR leading to

small distances between evolved states. The picture possibly isn’t totally clear

though, for anecdotal evidence suggests that using m = 3 dimensions gives the

best chance of forming a periodic orbit, leaving us with a kind of paradox. The

following are some examples of control using the NOR. For the first example

Fig. (2.16) we used τ = 0.2, m = 3 and ε = 4. Starting in (a) we have both

the controlled orbit in red and a second orbit which has the identical initial

condition but is allowed to evolve freely in blue. The second figure (b) shows

just the controlled trajectory in black which forms its periodic orbit. The third

figure (c) shows a time series of x1 and x2 and more clearly shows the apparent

periodic orbit. To check that this is truly a periodic orbit the bottom right

figure (d) is the frequency power spectrum of the trajectory. The single large

peak corresponds to the orbit with one period proving the system’s orbit is

indeed periodic. If the system was chaotic instead, there would be a continuous

distribution of peaks. The second example of control is using τ = 0.3 and

increasing m = 119, we also find that we have formed a periodic orbit, though

this time having a longer period. The resulting power spectrum plot Fig. (2.17)

(d) does not show as defined a peak due to the longer period not being made up

of as many cycles. Another possible contribution to the spread of the peak is

seen in Fig. (2.17) (c) where on the fourth to last orbit, the system appears to

escape the periodic cycle only to return one cycle later. Given the finite length
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of our simulation one can never know if this is part of a longer periodic orbit or

a deviation from the current one.

The final example is using m = 7, ε = 4 and τ = 0.3, though here we have

evolved the system for total time T = 40 instead of the previous examples where

the system was evolved for either, T = 10 or T = 12. In this example we see

again we have generated a periodic orbit and it appears stable for the entire

evolution once it has formed. What is more interesting is that the Lyapunov

exponents for the controlled orbit are still greater than zero, indicating sensitive

dependence on initial conditions as shown in Fig (2.19). To understand how the

control works, recall that when a trajectory is perturbed it is randomly placed

in the selected state. As it then freely evolves, the system is still unstable and

thus orbits still diverge. The distance they diverge is small enough to have the

control select the same state to perturb the system back into after time τ . The

regular perturbations then generate the periodic orbit seen in Fig. (2.18).

The above examples of control over the system are very appealing yet limited.

Though we do in fact generate periodic orbits for most randomly chosen initial

conditions, we do not yet know how ε, τ or m affects the chances of forming an

orbit or which orbit is chosen. In the end, this approach holds much promise,

but in its current form is probably only applicable in the worst case scenario,

i.e. when one does not know the equations of motion of the system. The next

section we will nonetheless continue to push forward and show that we can in

fact define a matrix B for any arbitrary PDF.

B and NOR for arbitrary PDFs

For all of the previous work on the OR, p0 has been used to relate the NOR

space to transitions in state space. In this sense we are assuming our system

is near or well represented by p0. Though we have just seen this assumption is

still useful for some non-equilibrium systems, we would like to define the NOR

for any arbitrary PDF. The main assumption is that there exists a matrix Rij

which is fixed for the evolution of the system. If we start with an ensemble of
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orbits in a subset of phase space then the evolution of these orbits only feels

the dynamics of this subset of phase space. That is some matrix of transition

probabilities rij ⊆ Rij. Similar to Sect. (2.4.1) where the system was evolved

by a mapping f t(x) which was unknown, the probability distributions p(i, t)

will be evolved by the complete operator p(i, t′) =
∑

j Rijp(j, t) for which we

only know part of at any time t. Since we assume Rij is still irreducible rij will

eventually grow to equal Rij.

The goal of this finite time evolution view point of the system is to shed

light on the relationships inherent in the system between one non-equilibrium

distribution and its evolution to another non-equilibrium distribution. This is

in contrast to what is done historically where the system either begins or ends

in equilibrium, see [56, 57, 1, 58] for several examples.

For any arbitrary distribution p(i, t),
∑

i p(i, t) = 1, p(i, t)n̄ 6= 0 ∀ i is the

subset of states with non-zero probabilities, This is defined with its zero counter

part as,

n̄ ≡ {p(i, t) 6= 0}

n̄z ≡ {p(i, t) = 0} . (2.45)

B is then defined using this non-zero set as,

Bij = rij −
Jij

2p(j, t)n̄
. (2.46)

rij is a sub-matrix of Rij which results from using only the values of Rij which

correspond to non-zero values of p(i, t) as shown in Fig. (2.20). Because rij does

not always use all of the transition probabilities, the matrix B to be defined

shortly will have some different properties from Bst.

Jij will then be defined as the current of probability between states j and i

defined with no summation as,

Jij = rijp(j, t)n̄ − rjip(i, t)n̄. (2.47)
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When p(i, t) = p0(i), Jij → Jstij . Jst follows a conservation of current rule,∑
i J

st
ij =

∑
j J

st
ij = 0. This is no longer the case out of equilibrium, Jij is instead∑

j

Jij = p(i, t′)n̄ − p(i, t)n̄, t′ = t+ ∆t. (2.48)

This follows from
∑

j rijp(j, t)n̄ = p(i, t′)n̄ where p(i, t′)n̄ ⊆ p(i, t′), p(i, t′) is the

full distribution evolved by p(i, t′) =
∑

j Rijp(j, t).

Given our construction of B we are guaranteed that it is a non-negative

square matrix. So to be able to define the NOR we also need B to be irreducible

and similar to a symmetric matrix. Given that we are assuming Rij is irreducible

then as long as p(i, 0)n̄ corresponds to only non-zero transition probabilities

in R, rij will also be irreducible. The relation between B and its symmetric

transform will be demonstrated using a slightly different but equivalent way

to definitions from Sect (2.4). Again using similarity transforms we define the

matrix Uij which is similar to rij (Uij ∼ rij) through Uij = 1√
p(i,t)

rij
√
p(j, t).

We can re-write Uij as,

U =
1

2

(
U + U †

)
+

1

2

(
U − U †

)
= S + Uas, (2.49)

where S and Uas are the symmetric and anti-symmetric parts. Looking only at

the symmetric part we have,

S =
1

2
√
p(i, t)

rij
√
p(j, t) +

1√
p(j, t)

rji
√
p(i, t),

=
1

2
√
p(i, t)

rij
√
p(j, t) +

1

2
√
p(i, t)

(
1

p(j, t)
rjip(i, t)

)√
p(j, t),

=

(
1√
p(i, t)

(
rij + r̂ij

2

)√
p(j, t)

)
. (2.50)

Thus we see that Sij ∼ Bij are similar and likewise it is easy to show that

Uas ∼ Jij
2p(j,t)

. Since S is guaranteed to have a set of N orthogonal eigenvectors
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(see Thm 2.5.6 [26]), meaning B is also guaranteed this set through the relation,

ψ = φα(i)/
√
p(i, t), ψ = Γα(i)

√
p(i, t) again where ψα are the eigenvectors of

S. Therefore we can construct the NOR for any arbitrary PDF. The trivial case

which we are ignoring is r being a matrix of all zeros. Though we have a set of

eigenvectors for B, it is no longer a stochastic matrix, instead,

∑
i

Bij =
∑
i

rij
2

+
p(j, t′)n̄
2p(j, t)n̄

,

=
1

2

(
1−

∑
k∈n̄z

Rkj

)
+
p(j, t′)n̄
2p(j, t)n̄

. (2.51)

This means that although we still have a single spectral radius, it is not

guaranteed to be equal to one, λ0 6= 1. Next we will look at a basic example for

B. We will see that it is relatively easy to generate the NOR at each time step

for a Markovian toy problem.

B for two state system

Imagine two clusters of states as was previously defined in Sect. (2.3). The

system can transition from any state in a cluster to any other state in that

same cluster in one time step. Each cluster is represented by a matrix r1,

r2 ∈ Rn×n. Each matrix r1 or r2 is a sub-matrix of the larger matrix of transition

probabilities R. In this example r1 is made up of 20 states while r2 is made

up of 15 states. In the figures to follow we have labelled states belonging to

r1, i = 1, 2, . . . 20 and states belonging to r2, are i = 31, 32, . . . 40. Though it

needs to be noted that the order of labelling is completely arbitrary with only

the distance between states being of consequence. There is a small probability

of transitioning along a set of states from r1 to r2 and vice versa. These strings

of states we will label as corridors as illustrated in Fig. (2.21) and consist of

10 states each. These states are labelled i = 21, 22, . . . 30 and i = 46, 47, . . . 55.

Together this creates the irreducible system. To give a feel for the NOR based
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on an arbitrary distribution, we initially start with a delta function in one state

of r1, though one can pick any non-zero value of R to start in. Each initial

condition gives a different set of probability distributions as the system evolves

to p0. Unlike using Bst the NOR now only gives us information about the state

space explored by the system up to time t.

By the second time step the delta function has spread out over r1. The

surface of DNOR Eq. (2.40) is given in Fig. (2.22) (a). The variation in distance

is due solely to the different random values in r1. For n = 3 to n = 8 (b) the

system has expanded its occupied state space to now cover most of the corridor

from r1 and r2 but not occupying r2 itself. These transitions are on each side

of the diagonal where there is a small distance. States further out from the

diagonal for which the system cannot reach have larger distances. We also

see that the detail in r1 shown in (a) has been smeared over as more of the

state space is explored. In essence every state in r1 has become equivalent.

On n = 14 (c), the system spreads over r2 and we again see variation in the

details of r2. Especially the large distances for states 43 and 44. n = 15 (d) the

system has found the beginning of the other corridor back to r1 and interestingly

the variation in r2 has mostly disappeared, now the metric is treating almost

all of the previously explored states space as one distance and thus one state.

This smearing of all states into the same distance is even more pronounced

for n = 19 (e). One can just make out the different color blue between the

allowed transitions in the irreducible operator and the excluded regions between

35 and 45. The reason the previously excluded regions look similar to the

allowed transitions is that the maximum distance has doubled from (d) leaving

all smaller distances lumped into the same color. n = 24 (f), the system finally

connects back to r1 and we start to see a change in the NOR. Now there is a

definite differentiation between distances in r1, r2 and inaccessible areas of state

space. Between n = 25 and n = 59 this differentiation increases along with two

more paths of small distance which form between r2 and r1. These represent

the time reversal probability of travelling back down the corridors.
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From n = 60 onwards the NOR surface does not appreciably change, but

curiously the stationary distribution of B is not equal to the stationary distri-

bution of Bst as one would expect. Both are plotted in Fig. (2.23) when n = 60

and we see a very large difference, especially in the r2 area. The distance be-

tween any two probability distributions can be defined using Wooter’s distance

[59],

d(p0(i), p(i, t)) = cos−1

[∑
i

√
p0(i)

√
p(i, t)

]
. (2.52)

See the next chapter for more details. Fig. (2.24) shows that the distance

between p(i, t) and p0 of Bst starts decreasing very rapidly at first, then becomes

extremely slow for longer times. The linear nature of the logarithm means the

distance decays like, d(p0, p(i, t)) ∝ eγn with γ = −3.83 × 10−4. Finally, as

remarked earlier, the summation over Bij,
∑

iBij 6= 1, much of the time. When

the summation is one, this signifies conservation of probability. By plotting

〈
∑

iBij〉 (averaged over all states j) as a function of time, we can see how

the total probability of the system changes. Fig (2.25) shows this average

probability and right away, on the second time step, the average total probability

greatly exceeds one meaning our analogy of Bij as a stochastic operator no

longer holds. From n = 3 to n = 13 the system is evolving across the first

corridor to r2 and 〈
∑

iBij〉 ≈ 1. Then the system reaches r2 and again there is

a large increase in total probability before approaching unity and the stationary

marginal distribution p0(i).

We are clearly at the beginning of studying the distance DNOR for an arbi-

trary probability distributions. But in the quest to understand non-equilibrium

systems generality is the holy grail, this method then shows tantalizing promise

at increasing our understanding of non-equilibrium systems and their evolu-

tions. Future work will be to look into defining connections between distances

in the NOR and traditional physical measures such as work and dissipation of

the system.
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Figure 2.15: (a-c) m = 3 is fixed, while τ increases from (a-c) by, τ = .1, τ = 0.3
and τ = 0.4. (d-f) same τ increments but now m = 119.
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Figure 2.16: The above example of control uses τ = 0.2, m = 3 and ε = 4. (a)
is the controlled orbit in red and the un-controlled orbit in blue. Both start
from identical initial conditions. (b) shows just the controlled orbit and (c) is
the time series of x1 and x2. (d) gives the power spectrum whose single peak
proves this is a periodic orbit.
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Figure 2.17: The above example of control uses τ = 0.3, m = 119 and ε = 4.
(a) is the controlled orbit in red and the un-controlled orbit in blue. Both start
from identical initial conditions. (b) shows just the controlled orbit and (c) is
the time series of x1 and x2. (d) gives the power spectrum whose single peak
proves this is a periodic orbit though the longer period means this peak is less
precise.
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Figure 2.18: The above example of control uses τ = 0.3, m = 7 and ε = 4 but
the system has been evolved for twice as long as the previous examples. (a) is
the controlled orbit in red and the un-controlled orbit in blue. Both start from
identical initial conditions. (b) shows just the controlled orbit and (c) is the
time series of x1 and x2. We see that this orbit seem extremely stable with vary
little variation over the systems evolution. (d) gives the power spectrum whose
single peak proves this is a periodic orbit.
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Figure 2.19: The lyapunov exponents for the Lorenz system with control. The
final values are λp = [0.0111, 0.0310,−13.6959].

Figure 2.20: An example of how we form rij. For the jth column of rij and
all non-zero values of p(i, t) we select the corresponding values from Rij. This
guarantees us an n× n matrix rij were n are the number of non-zero values in
p(i, t).
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Figure 2.21: An illustration of our two cluster system. States in r1 and r2

can transition between each other freely while there is a small probability of
transitioning along the corridors of states either to or from r1 and r2. The
number of states above are just for illustration purposes with exact numbers
differing from the actual calculations.
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Figure 2.22: The NOR surface from B as the system evolves from a delta
function at p(2, 0) = 1.
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Figure 2.22: Continued : The NOR surface from B as the system evolves from
a delta function at p(2, 0) = 1.
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Figure 2.23: p0(i) for Bst in black with p(i, 60) in red. Though the NOR doesn’t
change drastically on each time step, both distributions are still very far apart.
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Chapter 3

Statistical Mechanics Through

Distances

3.1 Introduction

The field of statistical mechanics has used abstract spaces as mainstays in the

theory since its inception with the use of phase spaces. The phase space allows

the immense and often infinite amount of information in a system to be orga-

nized in a meaningful way. The beauty of equilibrium mechanics is that the

infinite number of configurations of the particles say in a room of gas, take on

the simple Boltzmann Gibbs distribution Eq. (1.1). Once we leave equilibrium

this is not longer guaranteed, and it is still an open question in general what

distributions the system will take in time. We still do not even know if there is

an equivalently simple solution, as there is in equilibrium with the Boltzmann

distribution. The thermodynamic length, and in particular its non-equilibrium

generalization, the information length, aims to provide an answer for this. In-

stead of focusing on the individual probability density functions of a system,

they seek to instead take a step back and look at the distances between PDFs.

This shift from measuring specific quantities to relations between quantities

is very similar to the the previous Chapter on the Observable Representation
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where the dynamics of the system were the focus. Here we will measure the

marginal distributions of a system p(x, t′) instead of the conditional distribu-

tions R(x, t′|y, t) as we did with the matrix of transitional probabilities.

p(x, t′) =

∫
Ω

R(x, t′|y, t)p(y, t)dy, t′ = t+ dt (3.1)

This approach however, will be shown to not only be able to reproduce fun-

damental relations in equilibrium statistical mechanics such as work but also

provide a mathematical foundation which will allow us to move arbitrarily far

away from equilibrium. Upon moving away from equilibrium we will find at

least one group of systems, namely music and sound, that follow an elegant

behaviour. Thus at least in a sense giving us comfort that simple relations may

still be found arbitrarily far from equilibrium.

We will start by introducing the thermodynamic length in chronological

order which in turn will mean beginning with equilibrium statistical mechanics.

Next we will show how the Fisher information can be used as the metric over a

set of generalized coordinates. In this interpretation the thermodynamic length

is the distance between discernible states of our system.

3.2 Thermodynamic length

Since the time of Gibbs and his now coined Gibbs spaces [60], abstract spaces

and geometric measures in them have been of interest. Uniqueness of these

measures has always provided an issue though. For instance taking one norm

between a quantity may give similar results to taking another norm of the same

quantity. So which is the “correct” measure? Or is there a correct measure? In

1970 Weinhold showed how equilibrium statistical mechanics can be represented

over a space of equilibrium states, complete with an inner product structure

[1]. A vector space with an inner product is defined [27]: Given three vectors

x, y, z ∈ R,
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1. 〈x|y〉 = 〈y|x〉.

2. 〈αx+ βx|z〉 = α〈x|y〉+ β〈x|y〉, where α and β are scalars.

3. 〈x|x〉 ≥ 0 and equality only if x = 0.

Applying these definitions to the vectors Xi we can identify the vectors,

dVi ↔ |Vi〉,

〈Vi|Vj〉 =
∂Vi
∂Xj

=
∂2U

∂Xj∂Xi

.

dVi is the differential of the conjugate variables of the system Xi and U(Xi) is

the internal energy of the system which depends only on the extensive variables

of the system. The last equation in the second line is simply re-writing the inner

product, as the more traditional form of Weinhold’s metric. To calculate the

distances between states we define the thermodynamic length Using Weinhold’s

metric as,

Luth =

∫ τ

0

dt

√
dX i

dt
gij
dXj

dt
=

∫ τ

0

dLth. (3.2)

dXj/dt is the change in the i-th extensive variable. The u superscript is to des-

ignate this length using Weinhold’s metric. We shall define the thermodynamic

length using multiple metrics and show how they are related to each other. Each

gij gives the manifold of states its meaning of distance. Among other choices

is Rupeiner’s metric, who showed that we can define the same structure for an

equilibrium system using, gij = ∂2S/∂Xi∂Xj [61]. Both metrics were shown

by P. Salamon et al. [62] to be equivalent for infinitesimal changes in Xi up

to a factor of the temperature T . Using Rupeiner’s metric, we can relate the

dissipation a system undergoes for a N -step quasistatic process [56], meaning

the system evolves through finite time steps which are long enough that the

system equilibrates after each time step. The distance the system travels under
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one time step is related through,

∆Ls =
1√
2

√
∆X i

∂2S

∂Xi∂Xj

∆Xj, (3.3)

where ∆Xi is the change inXi. The dissipation is identified as, ∆St = (∆Ls)2/2 =

∆J /2, meaning that through the Cauchy Schwarz inequality, the dissipation

and distance a system travels is given by,

∆S =
1

2

N∑
t=1

∆J s
th ≥

1

2N

N∑
t=1

(∆Lsth)
2 =

1

2N
(Lsth)

2 . (3.4)

Lsth is the discrete version of Eq. (3.2) and the inequality between Jth and Lth
will play a fundamental role in the following work. The minimum dissipation

in Eq. (3.4) is given when each contribution to Lsth is constant. If the system

is in equilibrium then Eq. (3.4) holds for the continuous case as well.

We should note that when we talk about dissipation and lengths over equi-

librium states, we are assuming two conditions from Sect. (1.2) hold:

1. The PDF of the system is that which maximizes S = −
∫

Ω
p(x) log p(x)dx.

2. Subject to the constraints,
∫

Ω
p(x)Xi(x) dx = 〈Xi〉.

These two conditions lead to p0(x) = e−λ
iXi

Z , through maximizing the corre-

sponding lagrangian. Both conditions are known in equilibrium but must be

assumed if the above equilibrium results hold when p(x, t) 6= p0(x). If both con-

ditions hold for a general system then in the following section, we will see that

there is a connection between the microscopic dynamics, i.e. the probability

density functions to the macroscopic dissipation of the system.
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3.3 Information length

A third choice of metrics gives us L. This is a distance over a space of probability

distributions or a statistical space as we will refer to it. Each “state” is now a

probability distribution and as the system evolves it traces out a path γ through

space. So that L measures the distance between probability distributions over

the path γ. To visualize this, see Fig. (3.1) where we have plotted a typical

trajectory over a sample, three dimensional statistical space meaning the PDF

only has three outcomes p = {p1, p2, p3}. This distribution is only constrained

by conservation of probability. L is formed from a metric based on the Fisher

information [63, 64, 65],

gij =

∫
Ω

p(x, t)
∂ log p(x, t)

∂λi
∂ log p(x, t)

∂λj
dx. (3.5)

If we plug, Eq. (3.5) into Eq. (3.2) using the intensive variables λi instead of

the extensive ones, X i and sum over i and j we have,

L =

∫ τ

0

dt

√∫
Ω

1

p(x, t)

(
dp

dt

)2

dx. (3.6)

The advantage of Eq. (3.6) is that we are no longer confined to a manifold of

equilibrium states. The statistical space can be defined for any system including

outside of statistical mechanics. Indeed Wooter defined L over Hilbert space in

quantum mechanics [59]. This distance we have already used in an equivalent

form in Sect (2.4.1) where we measured the distance between two probability

distributions as d(p(x, t1), p(x, t2)) in Eq. (2.52). Therefore to differentiate

between both situations, we shall refer to the distance over general states the

information length, thus dropping the th subscript in Eq. (3.6).

Next we will demonstrate how the Fisher information and thus the informa-

tion length is related to the relative entropy from Sect. (1.2), as was originally

shown in [66, 67].
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Figure 3.1: The three dimensional statistical space with conservation of prob-
ability. As the system evolves it traces out a trajectory γ through the space.
Conservation of probability limits the space from a plane in R3 to a triangle in
R3.

Define two distributions, p1 = p(x, t) and p2 = p(x, t + ε). The relative

entropy is defined as,

DS[p1|p2] =

∫
Ω

p1 log

(
p1

p2

)
dx

The Taylor series to second order in ε for DS[p1|p2] is given by,

DS[p1|p2] = DS[p1|p1] +
dDS[p1|p2]

dε
ε+

d2DS[p1|p2]

dε

ε2

2
+ · · · . (3.7)

Next we work out the first and second derivatives. The first derivative is,

dDS[p1|p2]

dε
= −

∫
Ω

p1

p2

dp2

dε
dx. (3.8)

But by expanding p2 = p(x, t+ ε) in powers of ε,

p(x, t+ ε) = p(x, t) +
∂p1

∂t
ε+

∂2p1

∂t2
ε2

2!
+ · · · , (3.9)
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we have,

dDS[p1|p2]

dε
= −

∫
Ω

p1

p2

(
∂p1

∂t
+
∂2p1

∂t2
ε+

∂3p1

∂t3
ε2

2
+ . . .

)
dx.

= −
∫

Ω

p1

p2

∂p(x, t+ ε)

∂t
dx. (3.10)

The second derivative is,

d2DS[p1|p2]

dε2
= −

∫
Ω

[
d2p2

dε2
p1

p2

− p1

p2
2

(
dp2

dε

)2
]
dx,

=

∫
Ω

[
p1

p2
2

(
∂p

∂t

)2

− ∂2p

∂t2
p1

p2

]
dx. (3.11)

Evaluating at the point ε = 0 we see that,

dDS[p1|p2]

dε
|ε=0 = 0,

d2DS[p1|p2]

dε2
|ε=0 =

∫
Ω

1

p1

(
∂p1

∂t

)2

dx = IF . (3.12)

The Fisher information IF is then equal to d2DS[p1,p2]
dε2

. Thus we can write,

L ≈
N∑
i=1

√
IF (ti)∆t =

N∑
i=1

√
2DS[p(x, ti)|p(x, ti + ε]. (3.13)

if we take the limit as ∆t→ 0, we have,

L = lim
∆t→0

N∑
i=1

√
IF (ti)∆t =

∫ T

0

√
IF (t) dt =

N∑
i=1

√
2DS[p1|p2. (3.14)

What is more interesting, is that this seems to imply DS[p1|p2] must some-

times be symmetric. This is due to IF being a metric. But to be a metric,

a quantity has to be symmetric, meaning in this case, DS[p1|p2] = DS[p2|p1].

The trouble with this is it is well cited that DS isn’t symmetric [41], and thus

does not constitute a true metric. Where have we gone wrong then? It turns
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out, to second order DS[p1|p2] = DS[p2|p1], meaning that the terms must only

differ at higher orders.

To show this, following as before,

DS[p2|p1] =

∫
Ω

p2 log

(
p2

p1

)
dx. (3.15)

The first derivative with respect to ε is,

dDS[p2|p1]

dε
=

∫
Ω

[
dp2

dε
+
dp2

dε
log(p2)− dp2

dε
log(p1)

]
dx,

=

∫
Ω

[
∂p1

∂t
+
∂p1

∂t
log(p2)− ∂p1

∂t
log(p1)

]
dx. (3.16)

The second derivative works out to be,

d2DS[p2|p1]

dε2
=

∫
Ω

[
∂2p1

∂t2
+

1

p2

(
∂p1

∂t

)2

+ log(p2)
∂2p1

∂t2
− log(p1)

∂2p1

∂t2

]
dx.

(3.17)

If we evaluate our derivatives at ε = 0, we see that,

dDS[p2|p1]

dε
|ε=0 = 0,

d2DS[p2|p1]

dε2
|ε=0 =

∫
Ω

1

p1

(
∂p1

∂t

)2

dx. (3.18)

Meaning that up to second order, DS[p2|p1] = DS[p1|p2]. These relations can

be used to illustrate how L is related to Lsth. Each version of the thermodynamic

length is equivalent for a system evolving to equilibrium, given also the path

through probability space is one of constant velocity. The minimum value of L
can be seen using the substitution introduced by Wooter [59], p(x, t) = q(x, t)2.

Using this in Eq. (3.6) gives,

L = 2

∫ T

0

dt

√√√√∑
x

(
dq

dt

)2

. (3.19)
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This equation is the distance of a curve on the unit sphere and is well defined

for any arbitrary distribution. The minimum is achieved when,√√√√∑
x

(
dq

dt

)2

= const. (3.20)

Taking the Cauchy Schwarz inequality of Eq. (3.14) we can also see how the

thermodynamic divergence enters into the picture,

J ≥ L
2

T
= 2

(
N∑
i=1

√
DS[p1|p2]

)2

(3.21)

Using the minimum condition in Eq. (3.20) implies DS[p1|p2] is constant and

the integral only depends on the beginning and end points. [58] addresses

the special case, when our system evolves to equilibrium, i.e. from p(x, 0) to

p(x, t′) = p0(x), then DS is the maximum available work DS = ∆S−∆λi〈Xi〉.
Since the available work is the dissipation minus the change in extensive vari-

ables. Assuming the constant velocity assumption along with evolving to equi-

librium we find,

min Jth = ∆S − λi〈Xi〉 =
L2

T
= const.

Using the same conditions from Eq. (3.4) the minimum of J s
th is,

min J s
th = ∆S =

(Lsth)
2

T
= const.

Thus we conclude that the lengths are related by, (Lsth)
2 = (L)2 +Tλi〈Xi〉. This

explicitly shows a connection between the work a system does as it evolves to

equilibrium and the distance it travels. For the systems examined later, even

though conditions (1) and (2) are not guaranteed we see that they often hold.
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3.3.1 Fisher information and intensive variables

There is still another connection in equilibrium for the thermodynamic length,

namely through the free energy and the set of intensive variables λq [57]. These

could be the pressure or temperature of a system. They are defined through

the extensive variables, λq = ∂S/∂Xq. The free energy Ψ is defined as,

Ψ = S − λi〈Xi〉. (3.22)

Taking the first partial with respect to λi gives,

∂Ψ

∂λi
= −

∫
Ω

∂p(x, t)

∂λi
(1 + log p(x, t) + λqXq) dx− λq

∫
Ω

p(x, t)
∂Xq

∂λi
dx− 〈Xi〉.

(3.23)

We notice that since we have maximized the Lagrangian which resulted from

conditions (1) and (2), we have 1 + log p(x, t) +λqXq = 0. We also see that due

to independence ∂Xq
∂λi

= 0 giving,

∂Ψ

∂λi
= −〈Xi〉. (3.24)

Noting that p(x, t) = e−λ
qXq/Z, the second partial derivative with respect to

λj is,
∂2Ψ

∂λj∂λi
=

∫
Ω

dx Xi

[
Z−1Xje

−λqXq + Z−2e−λ
qXq

∂Z
∂λj

]
. (3.25)

Calculating the partial of Z and putting it all together we find,

∂2Ψ

∂λj∂λi
= 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉. (3.26)

The free energy can be related to the covariance of the extensive variables of

the system. This is a perfectly good metric, since the covariance is greater than

or equal to zero, is symmetric and satisfies the triangle inequality. To show

how this is related to the Fisher information, we simply plug the Boltzmann

distribution p(x, t) = eλ
qXq/Z into Eq. (3.5). The partial derivative with
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respect to λi gives,

∂ log p(x)

∂λi
=

∂

∂λi
(−λqXq − logZ) ,

=

(
−Xi +

1

Z

∫
Ω

Xie
−λqXqdx

)
. (3.27)

We see that we recover the covariance of the extensive variables,

gij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉. (3.28)

Thus in equilibrium the thermodynamic length based on the free energy

and intensive variables is equivalent to using the Fisher information L. In

fact we have shown that essentially all of the different metrics are equivalent

in equilibrium. The fact that it is the Fisher information that ties them all

together to form a deep connection to the structure of statistical mechanics

has led some to argue that it is the fundamental quantity when measuring the

thermodynamic length or divergence [57]. Indeed it is the Fisher information

we will use for the remainder of this work.

3.3.2 L for discrete systems

Since Weinhold proposed the thermodynamic length in 1974 [1] it has been

extensively studied theoretically, work that continues to this day. But appli-

cations of the thermodynamic length have been scarce. This is due in part to

being forced to work in discrete measures, which introduces a new set of prob-

lems not shared by their continuous counterparts. One such problem is that

as a system evolves out of equilibrium it may not occupy all of is phase space

meaning p(x, t) = 0 while, p(x, t′) 6= 0, t′ = t+ ∆t, which possibly leaves L and
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J undefined for much of its evolution,

L =
N∑
i=1

∆t

√√√√∑
x

1

p(x, t)

(
∆p

∆t

)2

, (3.29)

J =
N∑
i=1

∆t
∑
x

1

p(x, t)

(
∆p

∆t

)2

. (3.30)

The reason this is not an issue for a continuous system is due to the substitution

from Eq. (3.19),

L = 2

∫ τ

0

√∫
Ω

(
dq

dt

)2

dx.

If we have discrete time steps though, the information length based on q and

p are not equivalent. This means we do not recover the equilibrium results for

discrete systems. To recover the equilibrium results and rid our equations of

un-physical infinite lengths we proposed in [68] a set theoretic approach. For

two consecutive PDFs define the sets,

Qp = {x : p(x, t) 6= 0 | p(x, t′) = 0},

Qw = {x : p(x, t) 6= 0 | p(x, t′) 6= 0}.
(3.31)

The third possibility which is not included in the above equation is the case

where p(x, t) = 0 and p(x, t′) 6= 0, which if we wish to not have infinite lengths

must be excluded from L. The subscript p in Qp designates the unused proba-

bility of evolving over one time step, while Qw is the set that gives a measure of

the available work in evolving over one time step, as shown later. Using these

sets we can re-write our definition for thermodynamic length as,

LQp =
∑
x∈Qp

p(x, t)

(∆t)2
,
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LQw =
∑
x∈Qw

1

p(x, t)

(
∆p(x, t)

∆t

)2

,

and express Eq. (3.29) as:

L =
τ∑
t=1

∆t
√
LQp + LQw . (3.32)

An immediate consequence of our sets is that if Qw = ∅ then ∆L = 1. To help

illustrate our interpretation of Qp and Qw as the sets which deal with probability

and work in the systems evolution, we will now show how LQw is related to the

discrete relative entropy and thus the available work of the system.

3.3.3 Work for discrete non-equilibrium systems

In the previous section we showed the link between L and the relative entropy.

This is of course already well known for many circumstances [69]. The links

between the Fisher Information and the relative entropy are also known and

was shown earlier, in [70, 66]. Here for completeness we briefly show how for

the discrete case, LQw is related to the relative entropy,

DS[p(x, t)|p(x, t′)] =
∑
x

DS[p(x, t)|p(x, t′)].

DS[p(x, t)|p(x, t′)] is the microscopic relative entropy, or the local relative en-

tropy, since it only pertains to individual states. Using p(x, t′) = p(x, t) +

∆p(x, t), (∆p(x, t) = p(x, t′)− p(x, t)) in DS as:

DS[p(x, t)|p(x, t′)] = −p(x, t) log

[
1 +

1

p(x, t)
∆p(x, t)

]
= −∆p(x, t),

where log(1 + x) ≈ x was used above. Therefore, to leading order in ∆p, the

substitution of Eq. (3.33) into Eq. (3.32) gives us a new way to express the
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thermodynamic length,

LDS =
τ∑
t

∆t

√√√√∑
x∈Qp

p(x, t)

(∆t)2
+
∑
x∈Qw

1

p(x, t)

(
DS[p(x, t)|p(x, t′)]

∆t

)2

, (3.33)

To get a feel for the thermodynamic length we will next look at the logistic

map as a case study. This will show us that the system follows the path of

minimum dissipation for most of its evolution. Only in the transition from a

PDF covering the entire state space but not yet the stationary distribution to

the stationary distribution is there a larger dissipation.

3.4 The Logistic map and L

The logistic map Eq. (1.39) exhibits much of the interesting properties of the

thermodynamic length and thus makes a prime case to study in detail. It is

also a perfect system to apply our set relations as it is non-differentiable in

time making it particularly difficult to deal with traditionally. The domain

X = [−1, 1] will again be broken up into M bins Gk = 2[k, k + 1]/M − 1,

k = 0, 1, 2, . . . ,M where Gk ∩ Gj = ∅ and ∪kGk = X. In the chaotic regime,

(a = 2) it is well known that almost every orbit evolves to follow the stationary

distribution, p0 = 1/π(1− x2)1/2.

We evolve an ensemble of orbits initially approximating a delta function and

at each time step we will calculate the probability of xt ∈ Gk given by p(k, t).

The PDFs will of course be subject to conservation of probability,
∑

k p(k, t) =

1. The main questions of interest are how does an initial distribution approach

p0 in probability space? Also how does the approximation of Eq. (3.33) compare

with Eq. (3.29) for the logistic map? Finally, what is the most efficient path

to the stationary distribution? That is, is there a set of initial conditions which

have the shortest distance in probability space? This would pertain to a system

where there is an expense associated with the length of time the system evolves.
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Likewise one could ask the opposite, are there a set of initial conditions which

prolong the approach to the stationary distribution?

As a first example we evolve M = 9 × 107 orbits initially centred around

x = −0.553. We see in Fig. (3.2) that for 0 ≤ t ≤ 12, L on each time step

has a constant slope of ∆L = 1 meaning the PDFs do not overlap on each time

step. From 12 < t ≤ 16 the PDFs on each time step overlap with one another

decreasing the slope of L, but each PDF individually does not cover the entire

domain X. The slope of L has decreased from one to ∆L = 0.41453. This

phase can be thought of as extremely rapid non-equilibrium evolution since the

PDF changes by a large amount on each time step. For 16 < t ≤ 19 the PDFs

cover the entire domain and thus change less on each time step, but has still not

reached the stationary distribution. Finally for t > 19 the system has essentially

reached p0 and ∆L ≈ 0.
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t
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Figure 3.2: The evolution of M = 9 × 107 initial points centred around x0 =
−0.533. See text for detailed explanation.

Using the same ensemble we can test the agreement between Eq. (3.33) and

Eq. (3.29). Fig. (3.3) shows ∆L as a function of t with the black dots and

∆LDS shown with open circles. The independent evolution is even more clear in
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this figure for 0 ≤ t ≤ 12. For 12 < t ≤ 16 since the PDFs are undergoing rapid

change, our naive first order approximation to form LDS breaks down. Here

one should attempt to incorporate higher order terms [71]. As the PDFs fill

out the entire state space and slow their evolution we recover a good agreement

between ∆L and ∆LDS . Of course both distributions go to zero as the system

becomes stationary.
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∆
L
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∆L and ∆L(t)DS as a function of t

Figure 3.3: Plot of the discrete version of L equation (3.32) against time in
black which shows a good agreement with equation (3.33) plotted in black with
circles. Both use M = 9 × 107 initial points who all start as a delta function
around, xo = −0.533.

Although the unstable fixed points at x = −1 and x = 0.5 are of measure

zero, the discretization of the domain means their influence can create the ap-

pearance of fixed points. That is, an orbit may land very near a fixed point and

then on the next time step due to their proximity, they again land in the same

bin creating the appearance of a fixed point. This is shown in Fig. (3.4) where

the absolute distance between xt and xt+1 is plotted for the logistic map. The

orbits that land in grains containing fixed points have their velocity through

state space slowed. It is this slowing that allows the PDFs to overlap and the

available work to decrease. The strongest example of this slowing can be seen
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Figure 3.4: The distance between xt and xt+1 for the logistic map. We see
how the minimums around the two fixed points may lead orbits landing near
to them to again land in the same bin on the next time step, thus creating the
appearance of a fixed point.

in Fig. (3.5). Here an ensemble of orbits are initially centred at x0 = 0.7071.

For the first few iterations all orbits only occupy Qp. For 4 ≤ t ≤ 7 the entire

ensemble evolves into the first bin around x = −1. All orbits are then trapped,

giving the appearance of a fixed point. For 7 < t ≤ 16 some of the orbits

escape the first bin and this gives an overlap in PDFs. This is illustrated in Fig.

(3.6) where a typical example of the overlap of two PDFs as one evolves away

from the fixed point. p(k, 13) and p(k, 14) both occupy Qw from approximately

−1 ≤ x < −0.75. The region −0.75 < x is only counted on the next time

step, t = 15. We will see shortly that if ∆L = 0 when p(k, t) 6= p0 then the

operator that would be generated from this evolution is reducible. From t > 16

the system has settled into equilibrium.
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Figure 3.5: The evolution of L starting from xo = 0.7071. The evolution is
divided up into four main phases. 0 < t ≤ 4, all x ∈ Qp, 4 < t ≤ 7 all orbits are
in the bin that holds the x = −1 fixed point, though the operator that would be
made from the orbits is reducible. 7 < t ≤ 16, ∆L(t) < 1 as the PDFs overlap
and the information changes. t > 16 the system settles into p0(x).

3.4.1 Unstable fixed points and distance to reach p0

Here we will look at how the initial conditions for the logistic map influence

the total distance to reach the stationary distribution. Or put another way, are

there initial conditions which either quickly or slowly come to be stationary,

i.e. have the shortest distance to p0? The answer was hinted at in Fig. (3.5)

where we showed that by leaving the vicinity of a fixed point, two consecutive

PDFs occupy Qw. Qw then essentially turns information into wasted heat thus

lowering the available work through Eq. (3.33). By starting each ensemble as a

delta function we are giving the system the most initial information possible. It

then loses this information as it evolves to p0. To see how the fixed points influ-

ence this loss of information, we uniformly spread ensembles of initial conditions

across [−1, 1]. Plotting the initial position as a function of the total distance it

takes to reach p0, we see in Fig. (3.7) that there are a small subset of initial
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Figure 3.6: P (k, 13) plotted in black and p(k, 14) is plotted in red with the
dashed line.

conditions which reach the stationary distribution in less distance. The points

x0 = [−1,−0.96,−0.708,−0.5, 0, 0.5, 0.708, 0.96, 1] are highlighted with circles,

each of these initial points reach a bin containing a fixed point in five iterations

or less. This shows that it is the unstable fixed points which are most efficiently

driving the system to its stationary distribution. An application of this result

is if one has a system with an associated cost to reaching its stationary distri-

bution, then by starting the system in an initial condition which will reach an

unstable fixed point quickly, the cost of reaching the final distribution will be

minimized.

3.4.2 Conditions for ∆L = 0

We saw in Fig. (3.5) that early in the evolution ∆L = 0. Here we will prove that

given the system is evolved by a PF operator such that, p(x, t′) = Rxyp(y, t),

under what conditions can ∆L = 0. It is easy to see that the lower bound on

∆L(t) = 0 occurs when p is stationary (i.e. p(x, t) = p(x, t′)). One may ask,
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Figure 3.7: The evolution of L as a function of time for many ini-
tial conditions spread over the domain. Most initial conditions travel
a distance of between 13 and 16 before reaching p0(x). The points
x0 = [−1,−0.96,−0.708,−0.5, 0, 0.5, 0.708, 0.96, 1] whose initial conditions are
marked with circles, start at or quickly occupy the bin of a fixed point and thus
reach p0(x) in a far shorter distance.
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is being stationary the only condition for ∆L(t) = 0 regardless of whether a

system is in equilibrium or out of equilibrium? To answer this question, we

utilise the current of probability which flows from state y → x in one time step,

which was originally defined for an equilibrium system without summation in

Eq. (2.18) as,

Jstxy = 0 = Rxyp0(y) = Ryxp0(x).

Here, Rxy is defined as the non-negative irreducible matrix of transition proba-

bilities, Sect. (2.3), from states y to x,

Rxy = Pr (state at (t′ > t) is x|state at t is y) . (3.34)

We recall: the distribution p0(x) is guaranteed to be a unique stationary distri-

bution of Rxy due to Rxy being irreducible [26].
∑

y J
st
xy = 0 is guaranteed since

Jstxy follows Kirchoff’s loop rule that the amount of current into a state is equal

to the amount out of a state. We define stationary as the PDF being time in-

dependent. The system can be characterised as being reversible or not through

Jstxy = 0, or Jstxy 6= 0 respectively. In general, we can define a non-equilibrium

current Jxy as,

Jxy = Rxypt(y)−Ryxpt(x). (3.35)

Summing Eq. 3.35 over y gives,∑
y

Jxy = pt′(x)− pt(x)= ∆p(x, t). (3.36)

This allows us to link the operator Rxy to L. Obviously, when
∑

y Jxy = 0,

p(x, t′) = p(x, t), i.e. the distribution is stationary with ∆L(t) = 0. ∆L(t) = 0

is also guaranteed under the stricter condition of detailed balance which defines

true equilibrium, i.e. when Jxy = 0 ∀ x, y in Eqs. (2.18) or (3.35). Therefore, in

view of the uniqueness of p0(x), we can infer that if
∑

y Jxy = 0 ∀ x then Jxy =

Jstxy and ∆L(t) = 0, meaning that the system is stationary. This shows that for

any non-detailed balance system, irreducibility is necessary for stationarity to
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uniquely imply ∆L = 0. If the system does not have an irreducible operator,

then it is possible that ∆L(t) = 0 in general, as we saw in Fig. (3.5). This

is an interesting result because irreducibility is a global quality of the system.

While the intersection of the PDFs is essentially a local quantity, only being

affected by the areas of phase space with non-zero values of the PDFs. What we

have shown is that being connected across the phase space (irreducibility) puts

limitations of the evolution of the system at each time step, in that ∆L 6= 0.

3.5 Music through L

Thermodynamics was originally developed to understand the question “how

can one best use heating processes to exert forces and to do work” [12]. As

a result it developed from empirical observations which were then turned into

mathematical relations. Subsequently statistical mechanics was developed and

so often dealt with many of the same quantities, such as energy, volume, chem-

ical potential etc. Yet since statistical mechanics is the reverse approach of

thermodynamics, in that it is fundamentally a set of mathematical rules which

are justified through observation it is not limited to the canonical set of ther-

modynamic variables and systems. In this section we will use this generality to

our advantage and apply the information length and divergence to the study of

music.

The key idea is to envision music as a flow of information and to compute

its variation from the temporal change in the probability distribution function

constructed from a midi-file of the music as it is played. The rate at which

information varies is then captured by the velocity in a statistical space where

time serves as a parameter. The total distance travelled in this statistical space

represents the total accumulative change of information in time and is quan-

tified by the information length L. Similarly, the action J of the music is

computed from the time integral of the energy of the music by using the square

of the velocity as kinetic energy. The inequality first shown in Eq. (3.4) for
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quasistatic evolutions will be given an interpretation for an arbitrary evolution

as the total energy used in statistical space minus the total distance travelled.

Given the infinite number of evolutions possible for each musical composition,

some comfort will be found in that each piece will follow to a good approxi-

mation a simple power law, thereby reclaiming some of the simplicity found in

equilibrium statistical mechanics for a non-equilibrium system.

Music plays an intricate part of human life. As a result there is a large body

of work devoted to the analysis of music. Going back to the Greeks, “Pythago-

ras was the first to discover the fundamental connection between mathematics

and music” [72]. Since then countless works have been published revealing the

structure of music through mathematical language, e.g. see [73, 74, 75, 76]. Of

particular interest here are the various power laws that have been found in dif-

ferent measures of music, though not from music itself. This was illustrated by

Voss and Clarke [77] who looked at the output voltage of sound recordings and

found that for example, the loudness of music and speech follows a power law

but the voltage, (time signal itself) does not. The continuous signal from music

utilised by Voss and Clarke along with Serrà et.al [78] and digitized music by

[79, 80, 81] also demonstrate power law relations in different aspects of music.

As it is impossible to encompass the complexity and delicacy of music by any

one measure, each approach inevitably has its own advantages and drawbacks

in comprehending music. In particular, analysing music via the amplitudes of a

continuous signal ignores the exact notes being played, mainly being concerned

with the sound created by the performer, which varies from performance to per-

formance. In comparison, digitized music such as midi files has the precision to

exactly reproduce the same piece of music each time, since every note in a piece

of music is assigned a number that a computer uses to make an exact recreation

of the sheet music for a given composition. Consequently, although midi-files

contain detailed information about the composition, they sounds synthetic due

to the lack of complexity and variation that a human performer brings to a

musical performance.

95



3.6 Information variation (L and J )

In this approach to the information length the key physical quantity is the

temporal variation in a PDF of the state x, i.e., p(x, t). Due to the conservation

of probability in time, the integral of dp(x,t)
dt

over all states vanishes, i.e.∫
dx
dp(x, t)

dt
= 0 . (3.37)

We thus quantify the variation of the PDF by using its second moment of dp(x,t)
dt

through the fluctuating energy E = I2
F defined as 1

E(t) = IF (t)2 =

∫
dx

1

p(x, t)

(
dp(x, t)

dt

)2

. (3.40)

IF (t) in Eq. (3.40) physically represents the effective velocity at which the

information varies at time t while E(t) = IF (t)2 is the associated energy given

by the square of this velocity. For the analysis of the evolution of p(x, t) out

of equilibrium where p(x, t) = 0 for some x and t (as the system may have

explored only a small portion of its state space), we use an alternative form of

Eq. (3.40) introduced in Eq. (3.19),

E = I2
F = 4

∫
dx

(
dq(x, t)

dt

)2

, (3.41)

1As seen in the previous section, where control parameters λi’s (i = 1, 2, 3....) of a system
are known as a function of time (e.g. in equilibrium), Eq. (3.40) can be recast by using the
metric gij based on Fisher information (see, e.g. [63, 64, 65])

gij =

∫
dxp(x, t)

∂ log p(x, t)

∂λi
∂ log p(x, t)

∂λj
, (3.38)

as

E(t) = IF (t)2 =
∑
i,j

dλi

dt
gij
dλj

dt
. (3.39)

is the metric tensor that gives the Riemannian metric [82] in the parameter space λ’s. Since
often the control parameters of a system are not known, it is much more convenient to use
Eq. (3.40) directly in terms of PDFs.
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which is mathematically well defined.

Thus E = I2
F , measures the total accumulated distance and energy between

t = 0 and t = T by the information length L and action J , respectively:

L =

∫ T

0

dt
√
E(t) =

∫ T

0

dt IF (t) , (3.42)

J =

∫ T

0

dt E(t) =

∫ T

0

dt IF (t)2 . (3.43)

Eqs. (3.42) and (3.43) quantify the accumulative information variation and

energy and are analogous to the relations for the distance and the action for a

free particle with unit mass in classical mechanics.

To highlight that J has a lower bound related to L, we use u = 1 in the

following Cauchy-Schwartz inequality

∫ T

0

IF
2 dt

∫ T

0

u2dt ≥
(∫ T

0

IF u dt

)2

, (3.44)

which gives J > L2/T 2. In the case of constant IF , the evolution of the system

can be viewed as a ‘free’ motion.

To quantify the difference between J and L2/T , it is useful to consider the

time average of IF and I2
F as follows:

〈IF 〉T =
1

T

∫ T

0

dt IF , 〈I2
F 〉T =

1

T

∫ T

0

dt I2
F . (3.45)

Writing Eq. (3.42) and Eq. (3.43) in terms of Eq. (3.45), we obtain

J − L
2

T
= T

(
〈I2
F 〉T − 〈IF 〉2T

)
. (3.46)

This illustrates that the time averaged variance of the system is related to the

2The minimum value of J − L2/T would be achieved for geodesics in statistical space,
meaning J = L2/T only when IF is constant [56] in Eqs. (3.42) and (3.43)
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distance it travels,

VT = 〈I2
F 〉T − 〈IF 〉2T =

J
T
−
(
L
T

)2

. (3.47)

We show in the following sections that Eq. 3.46 has the approximate power

law J − L2/T ∝ T 1+m. Interestingly, Eq. (3.46) is the same result shown

for a quasistatic process, Eq. (3.4) only now with equality. Both results are

equivalent for VT = 0. Unlike the quasistatic evolution our results (3.46)-(3.47)

are also general and hold for any arbitrary distribution. This generality will

be highlighted next where we calculate L, J and J /T − (J /T )2 for famous

classical music.

3.6.1 Music as a non-equilibrium system

In western music, the musical scale is typically divided into 11 octaves where

each octave has a 2:1 relationship between its frequency and the octave below.

Every octave is then made up of 12 semitones or half notes. Our key step

towards understanding music is to envision a composition (such as Vivaldi’s

Concerto Summer) as a non-equilibrium system where each note represents a

state x of the system. These are used to construct the probability over all

instruments p(x, t) of a note being played in a coarse grained time interval, ∆t.

As a piece of music evolves, each instrument then transitions between states

leading to information variation, while the simultaneous occupation of a set of

states by all instrument creates the sound we hear.

In defining the state x of a note and p(x, t), we utilise music midi files as

they contain detailed information about the composition. Specifically, the midi

file format for storing sheet music represents a piece of sheet of music as a series

of numbers that are used by a computer in recreating a given composition. 3

Each note from octave 0 to octave 10 is given a midi number. Using a midi file

our state space is then characterized by 129 states. States 0 to 127 correspond

3Each midi file used here is freely available at, www.classicalmidiconnection.com.
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to each possible note while the state 128 represents a rest (i.e. no note being

played). These midi numbers and their corresponding notes are shown in Table

3.1.

Octave Notes
Number C C# D D# E F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

Table 3.1: Each midi number corresponds to an octave listed in the left column
and a note, listed on the top row.

In order to construct the PDF of the state x for each note, we now examine

time scales in the system and select a suitable time interval ∆t for constructing

p(x, t). The “tick” is the time unit used by the midi format. One tick is

equivalent to a certain number of milliseconds, specified in the header of each

midi file. This allows one to know how many ticks are in a given piece of

music. From the total number of ticks in the composition, we can divide the

composition into probability distributions where p(x, t) is the probability of any

note x being played between (i − 1)∆t ≤ t ≤ i∆t, i = 1, 2, . . . , N . The choice

of ∆t is a free parameter and is the coarse graining scale of the system, which

is selected to ensure a PDF of the highest quality, as further discussed below.

For our subsequent analysis of music, we use the discrete version of Eqs.
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(3.42) and (3.43):

L = 2
N∑
i=2

∆t

√√√√∑
x

(
∆q

∆t

)2

, (3.48)

J = 4
N∑
i=2

∆t
∑
x

(
∆q

∆t

)2

. (3.49)

Here, T = N∆t and ∆t is now a discrete time step meaning ∆q = q(x, i∆t)−
q(x, (i − 1)∆t). If for example, ∆t is chosen to be equal to the time per tick,

then L and J from Eq. (3.48) and (3.49) would often be 0, since q(x, i∆t) =

q(x, (i − 1)∆t) ∀ x for many time steps. In the opposite limit where ∆t is

chosen to be comparable to the length of the composition, all the structure in

the music is completely lost due to the time average. There is also the issue

that if we let ∆t grow too large, the substitution of using q(x, t) instead of

p(x, t) will give large discrepancies, since for large time steps these quantities

differ. After testing different values of ∆t between these two extreme limits,

we identified ∆t = 0.125 seconds as an optimal time step, giving the best

quality of the PDFs of several famous classical musics studied in this paper.

For instance, we checked that there exists a robust power-law scaling of L and

J with respect to time in Vivaldi’s Summer for the value of ∆t within the

interval 0.01seconds ≤ ∆t < 0.7625 seconds. The range of power law validity

was also checked for each composition analysed in this work, and from this

analysis we selected ∆t = 0.125 seconds well inside the domain of all songs to

ensure the best quality PDFs.

The music analysed below is Vivaldi’s Summer, Beethoven’s Ninth Sym-

phony, 2nd movement, Mozart’s Violin Concerto No. 3, and Tchaikovsky’s

1812 Overture. These PDFs are of particular interest due to being strongly

intermittent as can be seen in a typical example of p(x, t) in Fig. (3.8) which

comes from Tchaikovsky’s 1812 Overture. Such PDFs have no resemblance to

most commonly studied examples such as Gaussian, Poisson etc. This makes
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Figure 3.8: A sample PDF from Tchaikovsky’s 1812 Overture.

the power law relations below all the more interesting; that such order can come

from apparent randomness. L and J are shown in Fig. (3.9) and Fig. (3.10)

for all compositions.

3.6.2 Power-law scalings

Though these figures show the apparent linear nature of the functions, more

detailed feature can be seen in Figs. (3.11) and (3.12) which show results for

different compositions separately in log-log scales. Power-law indices of L and

J are thus determined by linear fitting to these figures shown in dashed lines

and are summarised in Table 3.2. The quality of a linear fit is measured using

the standard R-squared value,

R2 = 1−
∑

i r
2
i

(N − 1)V ar(xi)
, (3.50)

where xi, i = 1, 2, . . . , N are the discrete data points and ri = x − xfit is the

difference between the measurements xi and the linear least squares fit xfit,i.

The denominator, V ar(xi) is the variance of the set xi. A value of R2 = 1
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Figure 3.9: L for each piece of music.

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7
x 10

4

t

J

J as a function of time

Vivaldi’s Summer

1812 Overture

Mozart Violin Concerto No 3

Beethoven’s Ninth, 2nd Mov
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(d) T0 = 6.0, 14.0, 40.5,

Figure 3.11: logL for each piece of music studied.

represents a perfect fitting. One should note the R-squared values in Tables 3.2-

3.3 are all very close to one, meaning power laws are very good approximations.

Note that all the compositions exhibit strong initial transient behaviour and

the scaling is obtained for T > T0 where T0 is chosen to ensure a good scaling.

The values of T0 for different music are shown in Fig. (3.11) and (3.12).

Interestingly, all compositions after an initial transient phase follow power

law relations. Furthermore, L and J become linear in time for each composition

barring Tchaikovsky, meaning that there is approximately a constant rate of

information change, as the system evolves.
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Figure 3.12: logJ for each piece of music studied.
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Mozart Beethoven Vivaldi Tchaikovsky
slope R2 slope R2 slope R2 slope R2

1.106 0.9984 1.697 0.9995 1.062 0.9989 0.9969 0.9792
log(L) 0.9922 0.999 1.303 0.9984 1.888 0.9938

0.9582 0.9997 1.141 0.9930
1.0867 0.9944 1.9859 0.9969 0.9656 0.9960 0.983 0.9817

log(J ) 1.003 0.9987 1.4415 0.9957 1.865 0.9745
0.9387 0.999 1.172 0.9824

Table 3.2: Scalings of linear least squares fittings for log log plots of L and J ,
along with accompanying R2 values. Intial times for each scaling is shown in
Fig. (3.11) and (3.12).

The deviation of L and J in time from an exact linear increase leads to a

further interesting behaviour in J −L2/T . This is shown in Fig. (3.13) by using

the same data used in Fig. (3.9) and Fig. (3.10). Specifically, Fig. (3.13) shows

the log log plots of J − L2/T from the initial time T0 where J 6= L2/T . The

linear least squares fit is shown with the dashed line. Each plot quantitatively

shows that J −L2/T increases linearly in time to leading order, with a (small)

time varying exponent m. The lines of best fit in Fig. (3.13) for Beethoven,

Mozart, Tchaikovsky and Vivaldi are given in Table 3.3. The two different

values of exponent m are shown in Table 3.3 for Beethoven’s ninth symphony,

2nd movement, which has two distinct scaling regimes of different times.

Composer T0, (sec) m R2

Beethoven T0 = 7.25/23.12 0.4927/-0.0135 0.8023/0.9988
Mozart T0 = 5.75 0.0306 0.9991
Tchaikovsky T0 = 1.0 0.0622 0.9931
Vivaldi T0 = 7.35 -0.1422 0.9966

Table 3.3: The initial time T0 when the line of best fit was taken for J −L2/T
for each composition. The exponent m and the R2 values are also included.
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Figure 3.13: log log plots of Eq. (3.46) against T . Each plot follows an approx-
imate power law.
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3.6.3 Oscillations

Power-law scaling determined in the previous subsection are approximately lead-

ing order behaviours, and just analysing these overlooks some of the most inter-

esting details of the evolutions. To calculate the deviation from power law, we

compute VT from Eq. (3.47) and plot the fluctuations for each composition in

Figs. (3.14)-(3.17). For each piece of music in Figs. (3.14)-(3.17), VT initially

undergoes a significant increase associated with the beginning of the music and

then rapid and damped fluctuations (shown with solid red line). This initial

transient is followed by a smoother evolution plotted with the dashed line. To

analyse VT we take the Fourier transform (FT) of VT as F [VT ] =
∫ T
T0
VT e

−i2πftdt

by using the data taken from T0 and show the corresponding power spectra

S(VT ) = |F [VT ]|2 in Figs. (3.14)-(3.17). Note that using the entire piece of

music for ∆t ≤ t ≤ T would have resulted in one large initial peak of S(VT )

corresponding to the length of the piece, obscuring all interesting behaviour

coming from smaller amplitudes. However, taking the FT over only the dashed

regions in Fig. (3.14)-(3.17), i.e. from the minimum of the initial fluctuations

enables us to identify the secondary peaks due to the oscillations in VT , in

addition to the dominant peak corresponding to the inverse of the total time

duration of the music. For Vivaldi’s Summer, the second main peak occurs at

f = 9.4937 × 10−3 Hz. This oscillation in VT is shown in Fig. (3.14) where a

corresponding period of τ ≈ 105.2 seconds is marked.

The fluctuations in Beethoven’s Ninth symphony, 2nd movement has a dis-

tinct oscillation between approximately 200 ≤ T ≤ 400 seconds, which is seen

in the power spectrum in Fig. (3.15). The 1812 Overture has the most compli-

cated power spectrum, showing a series of peaks in Fig. (3.16). Mozart reveals

one large peak in Fig. (3.17) apart from the dominant low frequency peak.

By interpreting music in terms of a flow of information we were able to

compute L and J for famous classical composers (Mozart, Vivaldi, Tchaikovsky

and Beethoven) from midi-files and investigated its temporal variation in PDFs

which are strongly intermittent. The fact that the well known relation J −L2/T

107



0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

T

V
T

VT against T

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f

P
o
w
e
r

Power as a function of f for Vivaldi’s Summer

τ = 105.2 sec

Figure 3.14: Vivaldi’s Summer

0 100 200 300 400 500 600 700
10

12

14

16

18

20

22

24

26

28

30

T

V
T

VT against T

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

f

P
o
w
e
r

Power as a function of f for Beethoven’s Ninth, 2nd Mov

τ = 66.67 sec

Figure 3.15: Beethoven’s Ninth, 2nd Movement.
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Figure 3.16: Tchaikovsky’s 1812 Overture.

follows such a simple relation is quite interesting, especially when one considers

the form of the PDFs used to generate the power law. There appears to be
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Figure 3.17: Mozart’s Violin Concerto No. 3.

a balance between the energy used as the music evolves through statistical

space and the distance it travels. Further work will be to determine if this

relation is solely applicable to music or if other systems have this balance to

their evolutions.

3.6.4 Continuous signals

A nice comparison to L and J made from midi files is to use true recordings.

This consists of the amplitudes of recorded sound as shown in Fig. (3.18) which

are used to instruct a speaker how to vibrate so that we hear a song. To

analyse the signal we again have to use a discrete time step, since the signal

generated is continuous but the amplitudes used to generate this sound are

discrete. Since the time steps between amplitudes are very small, dt = 2.265×
10−5 sec, we will have far smaller errors in computing, Eq. (3.19). Each PDF

will be made up from five time steps from the amplitudes, giving ∆t = 1.133×
10−4 sec. Using ∆t instead of dt avoids having the trivial case where ∆L is

either one or zero since dt is made up of one point. To compare L and J
generated from the continuous signal to L and J generated from midi files,

we analysed recordings of Beethoven’s Moonlight sonata performed by Glenn

Morrison and Tchaikovsky’s 1812 Overture performed by the Herlev Concert

Band. All recordings presented below are freely available on the internet at the
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Figure 3.18: The time series for Tchaikovsky’s 1812 Overture.

time of writing 4. For Tchaikovsky’s 1812 Overture in Fig. (3.19) we see smaller

fluctuations than we did using the midi files. This leads to log(J −L2/T ) to a

very good approximation following the minimum path through statistical space.

The log log plot in (a) has respective slopes for L and J of mL = 1.0763 and

mJ = 1.0978. In (c) we see that J −L2/T appears to have a complicated time

dependent behaviour. Taking the Fourier transform (FFT) in (d) and plotting

the log of the power gives a very good approximation of a power law. The slope

of which is α = 1.9949, which is approximately Brownian motion.

Beethoven’s Moonlight Sonata Fig. (3.20) also has an evolution very close

to the minimum path, with mL = 1.0469 and mJ = 1.0543 as shown in (a).

(b-c) show the log-log plot and simply J −L2/T which are both very linear up

until the end of the piece, where we see a dramatic increase in the slope. This

increase appears to coincide with the performer changing the melody during

the final few seconds of the performance. (d) shows the power which results

from the FFT. Here again, despite the large increase in slope of J −L2/T , the

fluctuations are extremely close to Brownian motion, α = 1.9886.

So far all sound files from both continuous recordings and midi files are close

to the minimum path. It is of interest to then see if other system’s in nature

4Both musical recordings are available at www.soundcloud.com.
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Figure 3.19: (a) Both log(L) and log(J ) show strong power law behaviour as
before. The slopes of best fit are mL = 1.0763 and mJ = 1.0978 respectively.
(b) The log log plot of J −L2/T has a slope close to one, meaning the system
takes the minimum path through statistical space. In (c) we see that there is
a substantial time dependent term m(t). In (d) the log log plot of the power is
shown. This has a slope of α = 1.9949.

also follow this minimum path. Fig. (3.21) shows the results from a recording

of humpback whales. This recording was made by submerging a microphone

into the sea from a kayak. Though the recording has some background noise

the sound from the whales are extremely close to the minimum path. In fact

they are an order of magnitude closer than the music files just analysed having

an overall slopes for L and J of mL = 1.0030 and mJ = 1.0027. For J −L2/T

in (b-c) we see two distinct slopes. These slopes appear to correspond to the
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Figure 3.20: (a) log log plots of L and J both of which follow power law
evolutions. The slopes of best fit are mL = 1.0469 and mJ = 1.0543 respectively.
(b) log log plot of J − L2/T . The slope shows the system is very close to the
minimum path. (c) J −L2/T shows very small fluctuations. (d) Taking log of
the fluctuations show a slope of α = 1.9886.

animals using different vocalizations. The fluctuations also follow a power law

as before, though this time they appear to be slightly farther from Brownian

motion at, α = 1.9580.

The three systems studied have followed J − L2/T ∝ T 1+m(t). The fluctu-

ations though all being small m(t) � 1, each approximately follow the power

law relation 1/f 2. Since each system has had small m(t), it would be nice to

compare these results to a completely different system and see if it might have

a different fluctuations. The system we have chosen is a recording of a seven
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Figure 3.21: (a) log log plots of L and J both of which follow power law
evolutions. The slopes of best fit are, mL = 1.0030 andmJ = 1.0027 respectively
(b) log log plot of J −L2/T . There are two distinct linear slopes, m = −0.1881
and m = 0.1552. (c) Both of the trends in J −L2/T are clearly seen. (d) shows
the log log of the Power as a function of frequency, and here the slope is slightly
farther from Brownian motion, α = 1.9580.

minute walk through the city of Sheffield England. This included the wind blow-

ing into the microphone, buses and cars passing by, birds singing and human

conversation. One can think of this system then as a collection of organized

information that is randomly combined together. Looking at Fig. (3.22) (a) we

see that to a good approximation L and J again follow an approximate power

law, with mL = 1.0839 and mJ = 1.1153. (b-c) show J − L2/T , which has

an exponent that is very small, m(t) = 0.0431. Given the small exponent, we
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might expect (d) to show slope near 2 as the others do. Essentially the power

plotted in log log form confirms this though the slope is slightly farther from

Brownian motions at α = 1.9145.
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Figure 3.22: (a) shows log(L) and log(J ). Both have power law behaviour with
mL = 1.0839 and mJ = 1.1153. (b) shows log(J − L2/T ) and a time varying
exponent of m(t) = 0.0431. (c) shows J − L2/T which has two odd trends.
The log log plot of the power spectrum is given in (d) with α = 1.9145.

The continuous signal from each system is the result of sound being combined

from each instrument or source. When we look at the power spectrum from these

diverse systems they all are approximately Brownian motion, as their frequency

spectrum is very near 1/f 2. Yet if we look directly at the fluctuations we see

marked differences between the music recording, whales and city noise. Both
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musical compositions and whales have a large maximum at the beginning of the

signal with a then more or less steady decrease. The city recording though has

multiple local maxima and minima.
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Figure 3.23: Tchaikovsky’s 1812 Overture (a), Bethoven’s Moonlight Sonata (b)
and Humpback whales (c) all have strong initial fluctuations which then decrease
with time. The walk through Sheffield on the other hand has a large fluctuations
but then has multiple local minimums and maximums in the coarse of the
recording. This arises from the recording being made up of several independent
sources (see text for examples).

It seems music and at least hump back whales often follow a very precise

path through configuration space, namely the minimum path. This minimum

path is arguably the path of minimum dissipation out of equilibrium and is

certainly the path of minimum dissipation in equilibrium. The only way to
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differentiate each system is then through its fluctuations. Yet as diverse as our

system’s are, all of them have time dependent exponents, m(t) which appear to

follow 1/f 2 distribution despite their very different appearances in Fig. (3.23).

The caveat to following a 1/f 2 distribution is that each power spectrum has a

high frequency cut off (1/Tmin) where the power law fails. This cutoff is around

the time step used for the system, Tmin = ∆t.
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Chapter 4

Conclusion

Statistical mechanics has proven an invaluable tool in almost every branch of

physics. Yet until recently, progress in non-equilibrium statistical mechanics has

been slow to catch up. In this work we have shown that with the added com-

plexity inherent in non-equilibrium systems, order and structure can emerge.

Specifically the Observable Representation and its irreversible extension the

NOR, allow us to organize the information of the Perron-Frobenius operator

into a space of distances. Though we do not have the complete story of the

NOR, we have illustrated that for representation and control of complex sys-

tems the NOR can be a valuable tool. The thermodynamic length, while having

a longer history than the NOR, is also still an active field of research. This is

perhaps where we will realize one of the simplest goal of non-equilibrium sta-

tistical mechanics, that of knowing in general how to calculate the average of a

set of observables as the system evolves. For if we can understand the rule of

how a path is formed in statistical space, we may be able to explicitly calculate

the distributions which give this path.
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