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ABSTRACT 
 

The creation of nematic polymer and elastomer particles in the micrometre size range with responsive 

properties by heterogeneous polymerisation techniques, specifically dispersion polymerisation and 

RAFT-assisted dispersion polymerisation, is reported. Control of size, size-distribution and 

confinement texture was achieved. A novel monomer design with a systematic approach was adopted 

in order to determine the effect of mesogen structure on the director configuration that would result 

within microscale nematic polymer particles, which revealed a change in the director configuration on 

the increase of just one CH2 group on the side chains of the mesogen. This change in the director 

configuration revealed radial particles within polar solvents without the addition of a further surface 

analyte, and allowed for the controlled creation of nematic polymer particles with specific internal 

confinement textures, including the formation of an escaped twisted radial structure created through 

copolymerisation of two different nematic monomers. Careful investigations and modifications of 

dispersion polymerisation with the addition of a RAFT agent allowed for the synthesis of microscale 

nematic elastomer particles with confirmed network formation, a discovery that is previously 

unreported. These elastomeric particles were reversibly responsive to changes in their external 

environment, by showing confinement textures after swelling which correspond to the polarity of the 

solvent.  The particles were also responsive to changes in temperature and survived multiple heat and 

cool cycles which is further indication of successful network formation. Electro-optical investigations 

of nematic polymer particles showed the reversible shape deformation of free nematic polymer 

particles as a result of the internal mesogenic units aligning with the field. This deformation is only 

observed with polymeric particles with a low glass transition temperature as the flexible polymer 

chains allow for mesogen reorientation, and is a different behaviour to what has been reported 

previously for low molecular weight droplets in an electric field.  
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1 INTRODUCTION 
 

 THESIS OVERVIEW 1.1
 

 

Droplets of a nematic liquid crystal display unique textures that are not observed in the bulk 

because they are highly confined systems within non-planar topologies.
1
 The textures that are 

observed result from a balance between bulk and surface interactions and are therefore dependent 

on parameters including droplet size
2
 and surface anchoring.

3
 Droplets of nematic materials such 

as 4-cyano-4'-pentylbiphenyl (5CB) have also been studied as colloidal systems, as emulsion 

droplets in hosts such as water, and have recently been exploited as sensors.
3-7

 This thesis 

presents the preparation of liquid-crystalline polymer particles which exhibit similar responsive 

capabilities to nematic droplets whilst being more easily manipulated and with significantly 

longer lifetimes.  The addition of a crosslinker to these systems allowed for the synthesis of 

nematic elastomer particles which have possible applications as micro-actuators
8-14

 as well as 

being insoluble, swellable and deformable in response to stretching.
15, 16

  

 

The focus of this thesis is in the previously unreported synthesis, characterisation and 

investigation of novel microscale nematic polymer and elastomer particles with defined 

confinement textures. A series of nematic monomers was synthesised and heterogeneous 

polymerisation methods were utilised. These particles were then analysed for properties such as 

director configuration, phase transitions, particle size and particle size variance. The particles 

were also subjected to the effect of changing temperatures, solvents and the application of an 

electric field to assess their response. The introduction chapter will cover fundamental aspects of 

liquid crystal properties including birefringence and elastic deformations with a focus on the 

nematic phase; confinement of liquid crystals within non planar topologies; polymeric liquid 

crystals; and polymerisation methods to prepare polymer particles and elastomeric systems. The 

synthesis of nematic monomers, polymers and elastomers is detailed in Chapter 2, with their 

characterisation featured in Chapter 3. Chapters 4 and 5 focus on optical investigations of nematic 

polymer and elastomer particles, respectively. These chapters include a previously unreported 

control of the director configuration by altering the mesogenic unit, as well as the reversible and 

responsive nature of microscale nematic elastomer particles with confirmed network formation. 

Chapter 6 details investigations into the effect of an electric field on different particle systems, 
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conclusions are drawn in Chapter 7 and the experimental methods and results are summarised in 

Chapter 8. 

 

 LIQUID CRYSTALS 1.2
 

 

The liquid crystal phases are states of matter present between the isotropic liquid and the 

crystalline solid, and thus have a degree of anisotropy whilst remaining fluid.
17, 18

 The anisotropic 

properties of liquid crystals include birefringence,
19

 and it is this interaction with light which 

gives liquid crystals the display applications for which they are most widely known. Shown in 

Figure 1.1 is a schematic representation depicting a typical crystalline solid with three-

dimensional long-range order, an isotropic liquid with a completely random internal configuration 

and an idealised liquid-crystalline phase, which can display long range organisation in up to three 

dimensions. Liquid crystal phases are often referred to as mesophases and the molecules which 

comprise a liquid crystal phase as mesogens.
20

 The liquid crystal phase illustrated in Figure 1.1 is 

the nematic phase, which is the least ordered and most fluid of the liquid crystal phases, and 

displays long-range orientational order in one dimension with no positional order. The liquid 

crystal units within a nematic phase are on average orientated parallel to one another in a 

preferred direction known as the director, given the symbol n. Other phases such as the smectic 

phases or blue phases have much higher degrees of order, but as the nematic phase is the only 

phase under investigation in this thesis, it will be the focus within this introduction. Although 

some of the concepts covered in the following discussion may apply to a variety of liquid-

crystalline phases, they will be discussed with respect to the nematic phase. 
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Figure 1.1: Schematic representation of (a) a crystalline solid, (b) a nematic liquid crystal and (c) 

an isotropic liquid. 

 

A large variety of different materials can display liquid crystal phases. Lyotropic liquid crystal 

compounds, such as surfactants, display liquid crystal phases within a concentration range when 

dissolved in a solvent, often water.
21

 Lyotropic liquid crystals have applications as detergents for 

cleaning products, as drug coatings which prevent premature release of the drug in the stomach
22

 

and are present in nature, for example DNA.
23

 As these liquid crystal phases are displayed when 

the material is dissolved, the phase structure is highly dependent on concentration as well as on 

temperature.
24

 

 

Compounds which exhibit liquid crystal phases within temperature ranges without being 

dissolved are referred to as thermotropic liquid crystals.  The structure of the mesogens and the 

morphology of the liquid-crystal phases they form can vary greatly. Thermotropic liquid crystals, 

in particular the nematic phase, are best known for their application in displays.
17, 25

 A 

thermotropic liquid crystal phase is not always observed upon heating as super-cooling of the 

liquid crystal can allow for a mesophase to be observed on cooling only, referred to as a 

monotropic phase transition. Transitions that occur on heating and cooling are known as 

enantiotropic phase transitions. Within this thesis the results are exclusively related to 

thermotropic liquid crystals, in particular thermotropic nematic materials, and so will be further 

discussed in the following.  

 

 MESOGEN SHAPE 1.2.1

 

The illustration in Figure 1.1(b) is representative of a nematic liquid crystal phase formed by rod-

like molecules
20

 in which the mesogenic units are rigid and approximately linear with one 

(a) (b) (c) 
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significantly longer molecular axis. Although a typical rod-like mesogen has three different 

molecular axes, due to fast rotation (~10
11

 s
-1

) about the longest axis
26

 the mesogen is of 

degenerate symmetry about the long axis and its shape can therefore be approximated to that of a 

rod. The rotation about the shorter axes is much slower (~10
6
 s

-1
) due to a lack of rotational 

freedom when the mesogens are in a liquid crystal phase. These rotation speeds are illustrated in 

Figure 1.2.  

 

 

 

Figure 1.2: Rotations of a rod-like molecule in the nematic phase. 

 

Liquid-crystalline phases can also be displayed by molecules that are disk-shaped
27

 as well as by 

board-shaped mesogens,
28

 and mesogens which contain a bent-core moiety.
29, 30

 Schematic 

illustrations of a rod-like and a disk-like mesogen are shown in Figure 1.3. 

 

 

Figure 1.3: Illustration of a (a) rod like and (b) disk like mesogens. 

 

Rod-like liquid crystals have widespread applications in displays.
26

 As such, rod-like molecules 

have more widely understood phases and properties. The following discussions focus on the 

properties of the nematic phase of rod-like liquid crystals as they are the main focus of this thesis.   

(a) (b) 

Short axis rotation ~10
6
 s

-1
 

Long axis rotation ~10
11

 s
-1
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 STRUCTURE-PROPERTY RELATIONSHIPS IN THE NEMATIC PHASE 1.2.2

 

A large number of nematic liquid-crystalline materials have been prepared,
17, 20

 each with their 

own specific combination of structural moieties which determine the phase stability, phase 

transition temperatures, and physical properties of the material.  A nematic rod-like liquid crystal 

will generally comprise of rings, linking groups and terminal substituents as indicated in Figure 

1.4. As a certain degree of rigidity provides an anisotropic molecular structure, the core of a 

mesogen often comprises of linearly linked aromatic systems. A degree of flexibility is usually 

incorporated via terminal substituents in order to produce reasonably low melting points and 

stabilise the molecular alignment. Often a liquid crystal can comprise of two to four ring units 

within its core which will result in different length-to-breadth ratios.  

 

 

Figure 1.4: A general structural template for a liquid crystal, where A and B are core units, R 

and R’ are terminal substituents and X, Y and Z are linker groups. 

 

Generally, increasing the length-to-breadth ratio of a mesogen leads to the increased thermal 

stability of the mesophase. This trend is illustrated by the comparison of 4'-pentyl-4-

cyanobiphenyl, and 4''-pentyl-4-cyanoterphenyl, shown in Figure 1.5.  

 

 

 

Figure 1.5: Structures and phase transitions of (a) 4'-pentyl-4-cyanobiphenyl, and (b) 4''-pentyl-

4-cyanoterphenyl. 

 

The thermal stability of a mesophase can also be increased by altering the terminal moieties of the 

mesogen in order to enhance the molecular conjugation. For example, replacing a terminal H with 

CH3 group will typically improve the thermal stability, which can be increased further if a CN 

group is incorporated. Selecting appropriate terminal substituents is important as increasing the 

length of an alkyl or alkoxy terminal substituent extends the molecular length and increases 

interactions which result in the stabilisation of the nematic phase, whilst also increasing the 

flexibility of the system resulting in lower melting points and disrupting the molecular packing 

(a) (b) 
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required for nematic phase generation. An example of the effect a small change in terminal 

substituent can have on the resulting phase transitions of the material is illustrated in Figure 1.6 

with the comparison of 4'-butyl-4-cyanobiphenyl and 4'-butyloxy-4-cyanobiphenyl. 

 

 

 

Figure 1.6: Structures and phase transitions of (a) 4'-butyl-4-cyanobiphenyl, and (b) 4'-

butyloxy-4-cyanobiphenyl. 

 

As can be seen in Figure 1.6 the addition of an ether linker results in a higher melting point, this 

is as a result of the ether extending the conjugation and therefore extending the rigid core. The 

length-to-breadth ratio is also affected by increasing the length of the terminal group and by the 

wider bond angle of an ether linker compared to a CH2 linker, which reduces the breadth of the 

molecule by producing a more linear chain.   

 

 ORDER PARAMETER 1.2.3

 

The liquid crystal director, which is shown in Figure 1.1(b) labelled as n, is the direction in which 

the mesogenic units within a liquid crystal phase statistically point. The order parameter, S, 

denotes the average temporal and spatial distribution of the mesogenic units about the director. S 

is defined by equation 1, where θ is the angle at which each molecule is orientated with respect to 

the director. 

 

 S = 1/2 <3cos
2
θ -1> (1) 

 

In a completely random, isotropic orientation S=0, and when a material is perfectly aligned S=1. 

Within typical liquid crystal phases the order parameter can range from 0.3 to 0.9 and for a 

typical nematic phase has a value of approximately 0.4 to 0.7,
17

 which indicates that the nematic 

phase is considerably disordered. The order parameter decreases as the temperature is raised 

towards the isotropic phase transition as a result of increasing disorder. A schematic 

representation of the correlation of order parameter of a typical nematic liquid crystal against 

temperature is shown in Figure 1.7. The order parameter decreases slightly within the nematic 

phase but abruptly becomes zero when the isotropic phase is reached. 

 

(a) (b) 
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Figure 1.7: A representative plot of the ordinary (no) and extraordinary (ne) refractive index 

against temperature (T) for a typical nematic liquid crystal with positive birefringence (ne > no). 

 

 ELASTIC DEFORMATIONS 1.2.4

 

The lowest energy state of a liquid crystal would be a uniform director profile in which no defects 

are observed, though this is rarely observed naturally without an external influence such as an 

alignment layer or electric field. The Frank elastic constants K1, K2 and K3 describe the energetic 

cost for the liquid crystal to undergo splay, twist and bend deformations from a uniform director 

profile, respectively.
18, 31

 These elastic constants are different for each liquid crystal and vary in 

magnitude based on the order parameter of the phase, though are typically in the region of 

approximately 10
-11

 - 10
-12

 N.
32

 The elastic constants relate to each other as stated in the Frank 

free energy density equation
31

  as shown in equation 2. F is the contribution to the free energy 

density due to distortions in the phase, K1, K2 and K3 are the elastic constants, and n is the 

normalised director. 

 

 F = 0.5 [K1 (∇ . n)2 + K2(n . ∇×n)2 + K3(n ×∇×n)2] (2) 

 

Shown in Figure 1.8 are illustrations of these three bulk elastic distortions in a nematic liquid 

crystal: the splay, twist and bend deformations. The splay deformation results in a wedge shaped 

director profile, the twist deformation is as a result of the director turning about a perpendicular 

axis and the bend deformation is a turning of the director profile in the plane of the director. The 

relative magnitudes of the elastic constants of a specific liquid crystal determine the energy cost 
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of different deformations occurring. The deformation which is the most energetically favourable 

will be the most likely to be observed.  

 

 

Figure 1.8: The splay (K1), twist (K2) and bend (K3) deformations as they occur in the nematic 

phase, shown as (a), (b) and (c) respectively.  

 

These deformations will occur naturally throughout the nematic liquid crystal without an external 

influence, but can also be imposed topologically by confining a liquid crystal. The director profile 

that is displayed is, as a result, a balance between the most favourable interactions of the liquid 

crystal with the surface and the most energetically favourable configuration of the liquid crystal 

within the confinement geometry, and may not be uniform throughout the entirety of the sample 

depending on the penetration depth of the interactions at the surface. Topological defects are 

therefore different from bulk defects, as bulk defects occur naturally whereas topological defects 

are imposed by the boundary conditions.  

 

 DIELECTRIC ANISOTROPY 1.2.5

 

A dielectric material is a material that can be polarized by an applied electric field.
33

 Liquid 

crystals display anisotropy in their dielectric properties, such that they possess a dielectric 

permittivity parallel to the director εpara, and a dielectric permittivity perpendicular to the director 

εperp. The dielectric anisotropy is the difference between these two permittivities as described in 

equation 3. 

 

 Δε  = εpara – εperp (3) 

 

The dielectric anisotropy is related to the dipole moments within the molecules, as shown by an 

example in Figure 1.9. If the dielectric anisotropy of a liquid crystal is positive then director will 

(a) (b) (c) 
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align parallel to an applied field of sufficient magnitude, whereas if the dielectric anisotropy of a 

liquid crystal is negative then the director will orientate perpendicular to the field. 

 

 

 

 

 

Figure 1.9: Diagram showing the dipole moment (red) and dielectric permittivities (blue) of a 

material with positive dielectric anisotropy, 5CB (4-cyano-4'-pentylbiphenyl). 

 

 BIREFRINGENCE IN THE NEMATIC PHASE 1.2.6

 

The anisotropy of liquid crystals allows for an interaction with light known as birefringence.
19

 

Optical birefringence is a phenomenon that results when the speed of light passing through an 

object is dependent on its direction of travel through that object. Thus, an incident light beam 

entering a birefringent material will be split into two rays, an ordinary ray and an extraordinary 

ray, which will be deflected at different angles and travel at different velocities. The speeds and 

velocities of these rays are dependent on the relative refractive indices. The extraordinary ray, 

which is often the light which is travelling in the direction of the optic axis, experiences a 

refractive index denoted as ne. The ordinary ray, which is polarised perpendicular to the 

extraordinary ray, experiences a refractive index of no. The birefringence of a nematic liquid 

crystal can be defined as seen in equation 4. 

 

 Δn = ne – no  (4) 

 

A uniaxial liquid crystal is said to be positively birefringent when the extraordinary refractive 

index is greater than that of the ordinary component, such that Δn is greater than zero. In other 

words, the faster light direction is perpendicular to the director when the birefringence is positive. 

  

Birefringence is observed for many different anisotropic crystals as well as liquid crystals. Within 

liquid crystals, the birefringence depends on the temperature of the system. When a liquid crystal 

is heated the birefringence steadily decreases as ne and no approach each other, following the 

temperature dependence of the order parameter of the phase. When the isotropic phase is reached, 

only one refractive index is present and the material is no longer birefringent. This is illustrated in 

Figure 1.10. 

εperp 

εpara 
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Figure 1.10: A representative plot of the ordinary and extraordinary ray against temperature T 

for a typical positively birefringent nematic liquid crystal. 

 

 TEXTURES AND DEFECTS IN THE NEMATIC PHASE 1.2.7

 

Linearly polarised light is light filtered to give vibration in a single plane, and is illustrated in 

Figure 1.11. Linear polarised light is utilised in polarised optical microscopy for the 

determination of liquid crystal phases.  

 

 

 

 

Figure 1.11: Schematic representation of the polarisation of light 

 

Liquid crystal textures and defects can be studied using polarised optical microscopy and with 

experience allow for the assignment of the liquid crystal phase. Polarised optical microscopy 
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involves investigating a magnified view of a thin sample of a suspected liquid-crystalline material 

in between two polarisers, usually orientated at 90° to each other. The microscope slide on which 

the liquid crystal sample is contained is placed within a hot stage which can be accurately 

controlled to typically within ~0.1 °C.   

 

Linear polarised light splits when it enters the anisotropic and birefringent nematic phase into 

ordinary and extraordinary rays with perpendicular polarisation with respect to each other. The 

rays travel through the birefringent liquid crystal at different speeds and a phase difference is 

developed which results in the formation of elliptically polarised light. The elliptically polarised 

light produces interference colours as it passes through the second polariser which gives a texture 

characteristic to a specific liquid crystal phase. 

 

An example texture that is observed when a nematic phase is viewed using polarised optical 

microscopy is shown in Figure 1.12. 

 

 

Figure 1.12: An example polarised optical micrograph depicting the schlieren texture of the 

nematic phase. Image taken at 55 °C on cooling at 5°C min
-1

 at 100 X magnification through 

crossed polarisers. Details can be found in Chapter 3. 

 

The schlieren texture, as shown in Figure 1.12, is a texture characteristic of the nematic phase. 

Other textures which are observed and are typical of nematic phases are the thread-like texture 

and the marble texture.
34

 

 

Defects are optically extinct singularities and can be seen within a nematic texture.
34

 The black 

lines that emanate from these defects are referred to as schlieren brushes. Within the uniaxial 

nematic phase both 2- and 4- brush defects can exist. The director profile is defined within 
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schlieren brushes but not at the defect from which they emanate. These brushes appear black as 

they are regions where the nematic director field is orientated with either a polariser or the 

analyser, resulting in brushes being optically extinct. The possible mesogenic director 

configurations around defects which result in schlieren brushes in a nematic phase are shown in 

Figure 1.13. 

 

 

 

            

Figure 1.13: Schematic representation of 2- and 4-brush defects present in a nematic Schlieren 

texture.  

 

The formation of schlieren brushes that can be seen in Figure 1.13, (a) and (b) result in the 

formation of 4-brush defects as a result of having four regions around the defect orientated with 

either the polariser or the analyser and therefore are optically extinct. In (c) and (d) there are only 

two regions where the mesogenic units are orientated with the polarisers, hence creating 2-brush 

defects.  

Polariser orientation Director configuration Defect pattern 

4-brush 

4-brush 

2-brush 

2-brush 

(a) 

(b) 

(c) 

(d) 
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1.2.7.1 Alignment layers 
 

In order to promote a specific orientation of the mesogenic units within a thin film of nematic 

liquid crystal, the surface that the liquid crystal comes in contact with can be treated with an 

alignment layer. Alignment layers can promote a uniform, defect free organisation of the liquid 

crystal in a flat, thin film between two surfaces. Alignment layers can effectively orientate a 

liquid crystal sample, providing the strength of the interactions at the surface is sufficient to 

promote surface alignment throughout the whole sample.  

 

Alignment layers can be chosen to promote either homogeneous or homeotropic alignment of the 

mesogens. Homogeneous and homeotropic alignment are illustrated in Figure 1.14. 

 

 
 

Figure 1.14: A schematic representation of (a) a homogeneous and (b) a homeotropic alignment 

of a liquid crystal. 

 

As depicted in Figure 1.14, homogeneously aligned liquid crystals oriented parallel to the glass 

will have a defect-free birefringent appearance. Homeotropic alignment can be imparted by 

silanes such as octadecyltrichlorosilane (ODT) and lecithin. Homeotropically aligned liquid 

crystals are oriented perpendicular to the glass and appear dark when viewed using polarised 

optical microscopy as they are being viewed along the optic axis of the sample.  

 

For display technologies, the main aim is the creation of a defect-free aligned thin film between 

parallel or perpendicular alignment layers. However, if one deviates from this scenario, defects 

can be created at will by choosing the correct confinement geometry. For the purpose of this 

thesis, spherical confinement including the dispersion of liquid crystals into microscale droplets, 

(a) 

(b) 
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is the most relevant and shall therefore be the subject of further discussion within this 

introduction.  

 

 NEMATIC LIQUID CRYSTALS IN SPHERICAL CONFINEMENT 1.3
 

Nematic liquid crystals can be confined within many different topologies, for example in 

mesoporous silica channels,
35-37

 as droplets with handles,
38, 39

 as dumbbells or as hollow droplets 

or shells,
1, 40-42

 each with their own intrinsic director configurations. The confinement most 

relevant to the results discussed herein is within colloidal spherical droplets dispersed in an 

isotropic liquid as the host medium.  The two most commonly observed director configurations 

for liquid crystals dispersed as spherical droplets are named bipolar
43

 and radial
44

 and are shown 

in Figure 1.15. These director configurations result from a preferred parallel and perpendicular 

organisation at the droplet surface, respectively.  

 

 

Figure 1.15: Illustrations depicting the internal mesogenic organisations of (a) bipolar and (b) 

radial liquid crystal droplets. 

 

 BIPOLAR DROPLETS 1.3.1

 

In bipolar droplets the nematic mesogens lie parallel to the surface, coalescing at two surface 

boojums at opposite sides of the droplet. These surface defects result in an extinction pattern in 

polarised optical microscopy that is dependent on the orientation of the droplet between the 

crossed polarisers, changing from a baseball extinction pattern to that of a Maltese cross as it 

rotates.
36

 This characteristic changing texture is illustrated in Figure 1.16. 

 

(a) (b) 
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Figure 1.16: The bipolar extinction pattern changes on rotation. Reproduced from literature.
45

 

 

The bipolar texture is the lowest energy director configuration with parallel surface anchoring as 

a result of the two surface defects being point defects at maximum distance from each other. A 

bipolar texture will be observed when the host medium or a surface analyte within the host 

medium imparts parallel surface anchoring so long as the favourability of this interaction exceeds 

the energetic cost of the bend deformation of the liquid crystal around the surface. The energy 

cost of the bend deformation will depend on liquid crystal itself as well as the relative droplet size 

as this influences the curvature that the liquid crystal is experiencing at the surface. Should the 

deformation energy increase, for example by an increase in surface curvature resulting in a much 

greater deformation, then once the energy cost exceeds that of the surface anchoring the liquid 

crystal is more likely to organise as dictated by the bulk and ignore surface influence. Generally, 

bipolar droplets are observed when liquid crystals are dispersed in polar solvents because polar 

solvents tend to impart a parallel surface anchoring at the liquid crystal droplet surface.
43, 46

 

 

 RADIAL DROPLETS 1.3.2

 

The radial director configuration results from a perpendicular surface anchoring of the mesogenic 

units, with the director profile coalescing into a central hedgehog defect. Radial droplets display a 

Maltese cross extinction pattern when observed by polarised optical microscopy independent of 

the particle’s orientation between the crossed polarisers. This Maltese cross extinction pattern is 

shown in Figure 1.17. The elastic deformation of greatest importance with respect to the radial 

director configuration is the splay deformation, as the mesogens emanate from the central defect 

outwards towards the surface of the droplet. The perpendicular surface anchoring which results in 
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the liquid crystal organising into the radial director configuration is usually imparted by 

hydrophobic dispersing media or surface analytes such as sodium dodecyl sulfate (SDS).
3, 47

 

 

 

Figure 1.17: The radial extinction pattern shows a Maltese cross independent of orientation 

between the polarisers as a result of being symmetrical. Reproduced from literature.
45

 

  

 OTHER DIRECTOR CONFIGURATIONS 1.3.3

 

There a number of additional director configurations that can result when a nematic liquid crystal 

is dispersed on the microscale. Some of them are illustrated in Figure 1.18. These director 

configurations are often not the lowest energy configurations possible for a droplet in a particular 

solvent, and are escaped configurations that exist in the transition between two director 

configurations.
36

  

 

 

Figure 1.18: Director configurations found within liquid crystal droplets (a) bipolar (b) radial (c) 

axial (d) concentric (e) escaped radial and (f) twisted radial.  

 

(a) (b) (c) 

(d) (e) (f) 
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All of the director configurations discussed thus far relate to droplets of nematic liquid crystal, 

which bear the most relevance to the results discussed in this thesis. However, if a smectic liquid 

crystal is confined to a spherical droplet then the director configurations that can be observed may 

be different as a result of the smectic liquid crystal’s layered structure.  Most smectic director 

configurations for droplets contain a defect line as a result of the spherical shape not being 

conducive for the organisation of layers.
42, 48, 49

 

 

 RESPONSIVE PROPERTIES 1.3.4

 

As the director configuration that will be displayed by nematic droplets is as a result of a balance 

between the bulk and surface interactions of the liquid crystal, a change of director configuration 

can be observed on altering parameters such as droplet size (and therefore surface curvature), or 

surface anchoring parameters, e.g. by changing the dispersing solvent or the addition of a surface 

analyte.  

 

Droplets of 5CB dispersed in water were evaluated by Abbott et al. for trends in director 

configuration with droplet size.
2, 3

 5CB droplets of approximately 10 µm in size display a bipolar 

configuration when dispersed in water as a result of a preferred parallel alignment at the droplet 

surface. The surface anchoring dictates the director configuration that is displayed as at this size, 

5CB can accommodate the surface curvature. The bipolar configuration transforms on decreasing 

size into a radial configuration at sizes below approximately 1 µm via the escaped radial 

configuration as a result of the increasing curvature increasing the energy cost of the bend 

deformation. As the bend deformation becomes energetically unfavourable, the preferred surface 

anchoring is ignored in order to accommodate a less costly elastic deformation of the liquid 

crystal. This finding of a transformation to a radial configuration on decreasing the droplet size of 

5CB in water is in direct contrast to computational investigations
50, 51

 which predicted that at sizes 

below 1 µm the liquid crystal would ignore the surface and the confinement completely and 

display a uniform texture. These results are not necessarily transferrable to systems which involve 

other liquid crystal dispersions as the relative energies of the elastic deformations will be 

different. For 5CB, K3 is greater than K1 and so at high curvature the splay deformation is 

preferred. Different rod-like nematic liquid crystals will have elastic constants of different 

magnitudes and will therefore switch director configurations at different points. 

 

The switch between the bipolar and radial director configuration on addition of analytes has also 

been observed for droplets of 5CB dispersed in water.
3, 52

 In pure water, droplets of 5CB adopt a 

bipolar director configuration as a result of a preferred parallel surface alignment being imparted 
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by the solvent. On addition of sodium dodecyl sulfate (SDS) the director configuration changes to 

a radial configuration via an escaped radial intermediate. SDS is a surfactant that can be used to 

promote a perpendicular surface anchoring
45

 in between flat surfaces, and is known to promote 

perpendicular surface anchoring in droplets of 5CB by creating a pseudo-hydrophobic 

environment around the droplet. As this transformation does not involve a change in the liquid 

crystal or the droplet size the switch must be purely controlled by changes in the surface 

anchoring. This responsive nature of liquid crystal droplets to changes in their external 

environment gives them applications as sensors on the microscale. 

 

Nematic droplets have been used for the sensing of changes in pH,
22, 53

 as well as sensing the 

presence of E-coli,
5
 among others.

6, 47, 52, 54, 55
  The response of droplets to magnetic and electric 

fields has also been investigated.
56, 57

 Spherical liquid crystal droplets are good sensors because 

their large surface area to volume ratio means the internal mesogens experience a large influence 

from the surface, and are therefore more sensitive to changes in surface anchoring.  Droplets as 

sensors have the added benefit of being able to pinpoint the location of the substance being 

detected within the sample as the director configuration of the droplets changes. Sensors in use 

today, for example dyes,
58

 show a sample wide change on the addition of the substance to be 

detected and do not give information on the extent to which the substance has travelled through 

the sample. Dyes are also hard to remove from samples as they are dissolved within the sample. 

The droplets are immiscible and will therefore be less likely to affect the sample by interacting 

with the chemistry. 

 

 CREATING NEMATIC DROPLETS 1.3.5

 

The simplest method to create a dispersion of liquid crystal droplets is to shake a liquid crystal 

with an immiscible liquid. A more viscous immiscible liquid such as glycerol or silicone oil will 

increase the lifetime of the droplets by slowing down coalescence. This method produces droplets 

with a large degree of droplet size polydispersity, but this allows for deductions to be made about 

the effect of the droplet size on its response capabilities or director configuration. The size of the 

droplets created by this method can be reduced further by using a sonic bath in order to create the 

dispersion, which depending on the viscosity of the system can allow for the creation of droplets 

within the size range of a few micrometres. Steric stabilisers such as hydroxypropyl cellulose, 

poly(vinyl acetate) (PVA) or poly(vinylpyrrolidone) (PVP) can also be added into the dispersions 

which slow coagulation and hinder the approach of a second droplet by coating the droplet 

surface in extended polymer chains.
59
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Polymer dispersed liquid crystals (PDLCs) are another method by which liquid crystal droplets 

can be formed.
36, 60-62

 PDLCs are typically produced by creating a homogeneous mixture of 

reactive monomer and liquid crystal which phase separates into droplets on polymerisation of the 

supporting polymer matrix, which can result in significant droplet size polydispersity.
63

 PDLCs 

can also be synthesised in methods similar to these described for liquid-in-liquid dispersions, 

polymerising the matrix after the droplets of liquid crystal have been dispersed within it.
64

 This 

method also creates a sample with a large degree of size polydispersity. The size of the droplets 

can be further reduced in this case by adding a co-solvent to the liquid crystal which is then 

evaporated before polymerisation.  PDLCs can be used for switchable windows
65

 as they can be 

switched from scattering (frosted) to transparent. In Figure 1.19(a) the PDLC has not been 

exposed to an electric field and the directors of the internal droplets are randomly orientated. Due 

to the random orientation of the liquid crystal droplets, any incident light is scattered resulting in 

an opaque appearance.
66

 When a field is applied across the PDLC (Figure 1.19(b)), the directors 

within the droplets re-orient themselves along the direction of the applied field which allows light 

to travel through the system with minimal scattering as the droplet and polymer matrix are 

refractive index matched. 
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Figure 1.19: A polymer dispersed liquid crystal device for switchable windows (a) in the off state 

light is scattered (b) when an electric field is applied scattering in minimal.  

 

Monodisperse liquid crystal droplets or droplets of a very specific size have been created by 

filling pre-synthesised polymer shells 
67

 made by polymerising a coating around premade silica 

particles and etching away the inside ready for filling.
2, 3

 This method can be used to assess the 

correlation of droplet size to director configuration as it allows for fine control of the droplet size. 

This method may result in the droplets being less sensitive to changes in their external 

environment as a result of having a coating surrounding them. The liquid crystal will experience 

the surface anchoring induced by the polymer capsule, but the surface anchoring of the solvent 

may not penetrate sufficiently to orientate the director.  

 

Monodisperse droplet dispersions and PDLCs have been created using microfluidics, a process by 

which a stream of liquid crystal is extruded into a co-flowing liquid.
68-71

 The size of the droplets 

(a) 

(b) 
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that are obtained by microfluidics is limited by the size of the capillary from which the liquid 

crystal is extruded, as well as the viscosity of the extruded liquid crystal, resulting in droplets 

with a diameter no smaller than ~20 µm. Solvent can be added to the liquid crystal stream in 

order to reduce the size of the liquid crystals droplets, as it reduces the viscosity of the liquid 

crystal allowing for the extrusion of smaller droplets. The removal of the solvent by evaporation 

in order to reinstate the liquid crystal phase within the droplets will also result in a further size 

reduction. A schematic of a standard microfluidics set-up is shown in Figure 1.20. 

 

 

 

 

Figure 1.20: A schematic representation of a microfluidics device forming droplets of a liquid A 

within a co flowing liquid B. In the case of the creation of liquid crystal droplets, liquid A is a 

liquid crystal. 

 

By using a polymerisable substance within the co-flowing liquid in microfluidics the dispersing 

liquid can be polymerised to form a monodisperse PDLC. Although microfluidics creates 

monodisperse samples it can only create relatively small samples of droplets and is therefore 

limited to small scale processes and would be unsuitable for industrial scale applications.  

   

Application of colloidal liquid-crystalline droplets is somewhat limited by their lifetime and 

fragile nature. They cannot easily be transferred from one solution to another, cannot be 

excessively heated and will coagulate over time if suspended in free solution. Polymer dispersed 

droplets have much longer lifetimes but are not applicable as sensors as the droplet surface is 

surrounded by the polymer matrix and is therefore inaccessible to surface analytes. Additionally, 

liquid crystal droplets cannot be easily removed from a sample as they are fluid in nature – they 

therefore cannot be filtered. Centrifugation should allow the dispersing solution to be removed 

from the droplets but in this process the droplets are likely to be destroyed.  

 

Liquid A 

Liquid B 

Liquid B 
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A major target of the research described in this thesis is to create nematic polymer particles and to 

investigate the potential for control of the director configuration in a similar way to what is 

observed for nematic droplets. Therefore, nematic polymers will now be introduced. 

 

 NEMATIC POLYMERS  1.4
 

 

Liquid crystal polymers are polymers within which a mesogenic moiety is incorporated. There are 

a number of different polymerisable units that can be incorporated onto a mesogen and this has an 

effect on the type of liquid crystal polymer that will result. The mesogens can be incorporated 

into the backbone of a polymer, as shown in Figure 1.21(a) to yield main-chain liquid crystal 

polymers, or the mesogens can be attached to the polymer backbone as a pendant group via a 

flexible spacer, as shown in Figure 1.21(b) and (c) to yield laterally attached side-chain liquid 

crystal polymers and terminally attached liquid crystal polymers respectively. 

 

 

 

Figure 1.21: Schematic of (a) a main-chain liquid crystal polymer (b) a laterally attached side-

chain liquid crystal polymer and (c) a terminally attached side-chain liquid crystal polymer. 

 

Liquid crystal polymers often have an anisotropic polymer backbone conformation rather than an 

isotropic random coil conformation which is observed for non-mesogenic polymers. This 

anisotropy arises as a result of the coupling of the orientation of the ordered mesogenic units with 

the polymer backbone segments. The degree of anisotropy that the polymer chains display is 

dependent on the order parameter (S) of the liquid crystal, the degree of coupling to the 

mesogenic units and the temperature of the system.  

 

(a) 

(b) 

(c) 
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 INFLUENCE OF THE POLYMER BACKBONE 1.4.1

 

The polymerisable unit of the monomer, and therefore the polymer backbone, has a significant 

influence on the chemical and physical properties of the nematic polymer as a result of affecting 

the flexibility of the system. Some example polymer backbone structures are shown in Figure 

1.22. Polymers featuring a methacrylate polymer backbone (indicated in Figure 1.22(a)) are quite 

rigid in nature. The flexibility increases when an acrylate polymer backbone is employed 

(indicated in Figure 1.22(b)) and increases further still for polysiloxanes (indicated in Figure 

1.22(c)). 

 

 

 

Figure 1.22: Examples of polymer backbone structures (a) a polymethacrylate, (b) a polyacrylate 

and (c) a polysiloxane. 

 

The glass transition temperature decreases across the series due to the increasing flexibility of the 

backbone, and the nematic phase range of the polymer often increases as a result.   

 

Flexible backbones reduce the coupling between the mesogen and the polymer backbone because 

the random-coil formation of a flexible chain is more easily distorted than that of a rigid one. 

With a flexible polymer backbone, the mesogenic organisation controls the conformation of the 

polymer backbone; conversely in rigid systems the polymer backbone conformation influences 

the mesogenic alignment and can affect the ability of the mesogenic units to organise. Therefore, 

polymers with more flexible backbones are more likely to show liquid-crystalline phase 

transitions as the mesogenic units have more freedom to organise anisotropically, as a result of 

being more decoupled.
20, 72

 

 

Investigations were completed
73, 74

 in order to quantitatively assess the effect of the polymer 

backbone on the phase transitions of liquid crystal polymers for which the mesogen and spacer 

groups were kept constant. A summary of the findings is shown in Figure 1.23. 

 

(a) (b) (c) 
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Figure 1.23: Liquid crystal polymers featuring a 6-[4-(4-methoxy-β-methylstyryl)phenoxy]hexyl 

side groups and (a) a methacrylate polymer backbone, (b) an acrylate polymer backbone and (c) a 

siloxane polymer backbone.  

 

Increasing the flexibility of the polymer backbone across the series from polymethacrylate to 

polysiloxane reduces the glass transition temperature of the polymers and hence increases the 

phase range of the nematic phase, as can be seen in Figure 1.23. 

 

The acrylate group polymerises to form a flexible polymer backbone which allows for the 

formation of liquid-crystalline phases whilst remaining compatible with heterogeneous 

polymerisation methods, and so shall be the polymerisable unit used within this thesis.  

 

 MAIN CHAIN LIQUID CRYSTAL POLYMERS (MCLCP) 1.4.2

 

As the mesogenic unit is incorporated directly into the polymer backbone within main chain 

liquid crystal polymers, they display a large degree of polymer chain anisotropy.  If the linker 

group between the mesogenic units within the polymer backbone of a main-chain liquid crystal 

polymer is very short, the polymer remains quite rigid and cannot facilitate a layered structure, 

hindering the formation of smectic phases within the polymer.
17, 72

 Main chain polymers with 

longer flexible units however, can more easily arrange in a layered configuration and smectic 

phases can be displayed.   

 

(a) (b) (c) 
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An example of a main-chain liquid crystal polymer is shown in Figure 1.24, and is comprised of 

alternating rigid and flexible sections which provide a low enough glass transition temperature for 

liquid crystal phases to be exhibited.  

 

 

 

Figure 1.24: An example of a main chain liquid crystal polymer which can exhibit a nematic 

phase. 

 

Main-chain liquid crystal polymers are not a focus within this research as the polymerisation 

methods typically used to create them cannot be easily adapted for creation of particles with 

heterogeneous polymerisation methods in polar solvents. 

 

 SIDE CHAIN LIQUID CRYSTAL POLYMERS (SCLCP) 1.4.3

 

In side-chain liquid crystal polymers, a flexible spacer is required in order to allow for the 

formation of the liquid crystal phase, as without a spacer present the random coil formation of the 

polymer backbone can dominate and supress the anisotropic organisation of the side groups and 

therefore the liquid crystal phase.
17, 73, 74

 By increasing the length of the flexible spacer moiety the 

motions of the mesogenic units can be decoupled from those of the polymer backbone.
75

 If there 

is sufficient coupling between the mesogenic units and the polymer backbone then the backbone 

will also display a degree of anisotropy imposed on it by the mesogenic organisation. 

 

The pendant groups of a side-chain liquid crystal polymer can be attached via a terminal linker, 

and as such will be positioned perpendicular to the polymer backbone. These polymers are 

referred to as terminally attached side chain liquid crystal polymers.
76

 The mesogenic units can 

also be attached laterally to the polymer backbone via a flexible spacer attached to the middle of 

the mesogenic unit, resulting in the mesogenic unit being positioned generally parallel to the 

polymer backbone. These systems are often referred to as laterally attached side chain liquid 

crystal polymers.
77
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Some example monomers which polymerise to form terminally attached side-chain liquid crystal 

polymers are shown in Figure 1.25. 

 

 

 

Figure 1.25: Examples of terminally attached side chain liquid crystal polymers (a) with a 

methacrylate polymer backbone (b) with an acrylate polymer backbone and (c) with a siloxane 

polymer backbone. 

 

The polymer which is shown in Figure 1.25(b) exhibits a low glass transition temperature and 

wide nematic phase. This monomer has been used in previous investigations into the synthesis of 

liquid-crystalline polymer particles
78, 79

 and so was an appropriate choice for investigation within 

this thesis as a proof-of-principle polymer. 

 

Typically, in side-chain liquid crystal polymers with end-on attached mesogens, the backbone is 

oblate in conformation as the mesogenic units sit generally perpendicular to the polymer 

backbone. The angle of the mesogenic unit relative to the polymer backbone, and therefore the 

degree to which the polymer is either oblate or prolate, can be altered by changing the parity of 

the flexible spacer. An example of this odd – even effect with respect to terminally attached side-

chain liquid crystal polymers is illustrated in Figure 1.26.  

 

(a) (b) (c) 
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Figure 1.26: Odd-even effect of terminally attached side chain liquid crystal polymers (a) odd 

numbered spacer group, and (b) even numbered spacer group. 

 

Laterally attached side chain liquid crystal polymers typically have a prolate backbone formation 

and do not often display smectic phases as the organisation of the mesogenic units does not 

facilitate a layered structure.
17

 Mostly, laterally attached side-chain liquid crystal polymers will 

exhibit the nematic phase. Laterally attached side-chain liquid crystal polymers typically have a 

greater degree of coupling between the mesogenic unit and the polymer backbone which can 

result in the degree of anisotropy within the polymer backbone closely reflecting that of the 

mesogenic units.  

 

Some example monomers which polymerise to form laterally attached side-chain liquid crystal 

polymers are shown in Figure 1.25. 

 

 

 

Figure 1.27: Examples of laterally attached side chain liquid crystal polymers (a) with a siloxane 

polymer backbone and (b) with an acrylate polymer backbone. 

 

The polymer which is shown in Figure 1.27(b) exhibits a low glass transition temperature and 

generally wide nematic phase in. This nematic polymer has been previously studied
80, 81

 and is 

known to exhibit an anisotropic polymer backbone with good responsive properties and so was an 

(a) (b) 

(a) (b) 
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appropriate choice for investigation within this thesis. It is also a polymer that has been widely 

studied for its actuation properties in liquid-crystalline elastomers.
11, 12, 15, 75, 77, 82

 The formation of 

nematic elastomer particles is a significant aim within this thesis, and so nematic elastomers shall 

be the next topic introduced.  

 

 NEMATIC ELASTOMERS 1.5
 

Elastomeric liquid crystals are polymeric liquid crystals with a significant enough degree of 

crosslinking to result in full networking of the polymer chains. A fully networked liquid crystal 

elastomeric system is insoluble, swellable and if aligned may have the ability to actuate 

(described later).
15, 80, 83-86

 Shown in Figure 1.28 is an illustration of an elastic network compared 

to a polymeric sample. 

  

 

Figure 1.28: (a) a polymeric liquid crystal and (b) an elastomeric liquid crystal.  

 

Elastomeric liquid crystals show similar liquid crystal textures to their low molecular weight and 

polymeric liquid crystal counterparts, though they do not display the same phase transitions 

because they do not flow. The crosslinking present in a liquid crystal elastomer can disrupt the 

liquid-crystalline order, often resulting in polydomain samples and smaller liquid crystal phase 

ranges than their polymeric counter parts. Crosslinking also results in increased rigidity which 

results in a higher glass transition temperature. 

 

An elastomer film can be prepared by a variety of different methods, the simplest of which is to 

create a homogenous mixture of reagents, including a nematic monomer, crosslinker and initiator, 

and polymerise the mixture either when spread as a thin film or after filling a well of specific 

morphology.
11

 The free radical polymerisation can be initiated either thermally or by UV 

(a) (b) 
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initiation, depending on the polymerisation initiator that is employed. Should it be required to 

impart nematic order on the film, then the polymerisation has to be performed within the nematic 

phase of the resulting elastomer. 

 

Liquid crystal elastomers undergo a nematic to isotropic network phase transition at a temperature 

specific to their composition in a way analogous to low molecular weight and polymeric liquid 

crystals. The network formation within a liquid crystal elastomer can result in a macroscopic 

shape-change occurring as this transition occurs, as a result of crosslinked polymer chains 

adopting a random coil formation as the mesogenic units organise isotropically. This shape 

change is reversible and, depending on the type of liquid crystal polymer present within the 

elastomer, has been shown to show shape-changes of up to 400%.
11

 Main-chain liquid crystal 

elastomers tend to change shape more dramatically than side-chain liquid crystal elastomers 

because the polymer backbone is more strongly coupled to the mesogens and is organised 

anisotropically, though shape changes are still observed when the mesogenic moiety is attached 

as a pendant if the mesogenic units and the polymer backbone display sufficient coupling. The 

degree to which an elastomer sample will change shape on its nematic to isotropic transition is 

also dependent on the alignment of the sample. Polydomain samples may not actuate because 

oppositely aligned domains can effectively cancel each other out. Figure 1.29 illustrates how a 

liquid crystal elastomer undergoes a shape change at its nematic to isotropic transition. An 

example of this shape change occurring in a main-chain liquid crystal elastomer is shown in 

Figure 1.30. 

 

 

 

Figure 1.29: Schematic illustration showing the effect of a nematic to isotropic transition within a 

side-on liquid crystal elastomer.  

 

ΔT 



31 

 

 

Figure 1.30: Image depicting a liquid-crystalline elastomer changing shape as it is heated. 

Reproduced from literature.
87

  

 

This shape change with temperature can be utilised in the formation of actuators for the use in 

switches, valves, motors and stirrers.
11

 Palffy-Muhoray et al used liquid crystal elastomers in 

order to create millimetre scale machines which can swim and fly.
88

 

 

When a fully networked liquid crystal elastomer is exposed to a solvent in which the 

corresponding polymer would dissolve, the elastomer swells.
89

 Swelling increases the size of an 

elastomer sample, as well as reducing the hardness, stiffness and tensile strength of the elastomer. 

Swelling in a solvent also results in the elastomer undergoing a reversible liquid crystal to 

isotropic phase transition as the solvent molecules completely disrupt the liquid-crystalline order 

of the mesogens. A schematic representation of this effect is illustrated in Figure 1.31. When the 

elastomer is dried the liquid-crystalline order will return. 
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Figure 1.31: A schematic representation showing the disruption of the nematic phase as the 

elastomer swells with solvent. 

 

If the degree of crosslinking within an elastomer is too substantial then the system will become 

too rigid and will no longer respond to the addition of solvents or increasing temperature. These 

extremely rigid and hard crosslinked systems are extremely temperature resistant and will display 

a high tensile strength but will not display liquid-crystalline or responsive behaviour and are 

therefore not nematic elastomers.  

 

 APPLICATIONS OF ELASTOMERIC LIQUID CRYSTALS 1.5.1

 

Liquid-crystalline elastomers have many varied possible applications because of their ability to 

change shape across a temperature range, swell reversibly with a response in their birefringence, 

and their ability to respond to external stimuli such as an electric field whilst remaining flexible 

and hard wearing. 

 

The ability of a liquid crystal elastomer to undergo a shape change on increasing temperature 

gives them potential applications as artificial muscles as their contraction will allow them to 

impart a pulling force on an object. Careful engineering of the director profile within a liquid 

crystal elastomer film can cause bending or curling when the material undergoes its nematic to 

isotropic transition, allowing the elastomer to ‘walk’ across a surface,
90

 swim,
91

 or act as a valve 

or stirrer in micro-machinery.
92

 Nematic elastomeric contact lenses have been created which 

allows for the focal point of the lens to be changed for reading or distance, whichever is needed.
93

 

By choosing a mesogenic unit which contains a UV active group which results in a trans-cis 

isomerisation of the mesogen, the shape change properties from which a number of elastomer 

Solvent molecule 
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applications originate can be controlled by light as well as by temperature. This has been used in 

the creation of light driven motors.
94, 95

 

  

Liquid crystal elastomers have the ability to link a mechanical effect, such as swelling or 

stretching, to an optical response provided by the mesogenic units. This results in a mechanical 

deformation of an elastomer film causing in a change in the birefringence of the film which could 

be used as an indicator for stress.
80

 

 

 NEMATIC POLYMER, ELASTOMER AND HARD PARTICLES 1.6
 

Liquid crystal polymers can be synthesised from mesogenic monomers in the presence or absence 

of a solvent. When polymerising a mesogenic monomer the polymerisation can be completed 

within the liquid crystal phase range of the resulting polymer, resulting in a greater degree of 

polymer chain anisotropy as the polymerisation takes place under the influence of the mesogenic 

organisation. Polymerising within the nematic phase of a nematic polymer can result in samples 

without defects if the liquid crystal is polymerised with an additional aligning influence, for 

example a rubbed surface or an electric field. A liquid crystal polymer can be cooled below its 

glass transition temperature into a nematic glass, retaining its internal mesogenic order as the 

liquid crystal organisation will be frozen within the glass.  

 

The primary focus of this thesis is in the synthesis, characterisation and investigation of nematic 

polymer and elastomer particles with the aim of creating particles that display director 

configurations that are comparable to those discussed for nematic droplets in section 1.3 of this 

introduction.  

 

Heterogeneous polymerisation methods are well established in the creation of polymeric particles, 

and more recently have also been employed to create liquid crystal polymer particles. 

Heterogeneous polymerisations are in most cases performed as free radical polymerisations, and 

it is only recently that other polymerisation methods (e.g. RAFT)
96

 have been adopted for the 

creation of particles. The different types of heterogeneous polymerisation methods which have 

been employed for the preparation of liquid-crystalline particles are shown in Figure 1.32.
97-99

 In 

most cases these have been carried out by free radical polymerisation which somewhat limits the 

choice of polymerisable units to those compatible with free radical polymerisation. The creation 

of liquid-crystalline polymer particles using main-chain liquid crystal polymers is therefore 

difficult.  
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Figure 1.32: Heterogeneous polymerisation methods that have been employed in the creation of 

liquid-crystalline polymer and elastomer particles.  

 

Dispersion polymerisation was selected  because it allows for the creation of nematic polymer 

particles with a size range of approximately 1 – 5 µm with a low degree of polydispersity.
100, 101

 

Extrapolating findings of Abbott et al.
2, 3

 on size dependent confinement in nematic droplets 

indicates that if nematic polymer particles exhibit similar behaviours to droplets then the chosen 

polymerisation method should create particles under approximately 10 µm in diameter, in order 

for those particles to display a completely surface controlled internal organisation. Liquid crystal 

droplets were shown to ignore the influence of the surface when below approximately 700 nm in 

diameter, as a result of unfavourable elastic deformations at high degrees of curvature. Particles 

below approximately 1 µm are also difficult to visualise and characterise using polarised optical 

microscopy because they are at the limit of optical resolution. Therefore, dispersion 

polymerisation should allow for the synthesis of nematic polymer particles observable by 

polarised optical microscopy, with controlled internal configurations, creating aligned nematic 

particles without the need for a further external aligning influence such as an electric field.
57

 

 

Dispersion polymerisation requires the use of a solvent in which all the reagents are initially 

soluble but in which the polymer is insoluble. Once the polymerisation is initiated and the 

polymer chains begin to grow, their solubility in the reaction solvent reduces until they reach a 

critical chain length where they become insoluble. At this point a particle nucleates and swells 

with the uptake of monomer and growing polymer chains. As the polymer does not interact 

favourably with the solvent, the amount of solvent within the nucleated particles is minimal and 
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the polymerisation continues within the particles as it would in the absence of solvent. A 

summary of the dispersion polymerisation process is shown in Figure 1.33. 

 
 

 

 

 

 

 

Figure 1.33: A schematic representation of particle formation within dispersion polymerisation.    

 

Zentel et al.
78, 79, 102, 103

 used dispersion polymerisation with a series of terminally attached 

nematic monomers in polar solvents and found it resulted in particles with bipolar director 

configurations as a result of a parallel mesogenic alignment to the particle surface. 

Comparatively, a perpendicular surface alignment and therefore a radial configuration, was 

achieved when particles were synthesised from non-polar reaction media.
78

 These studies 

involved a variety of smectic and nematic monomers with terminal mesogen attachment, 

displaying a variety of structures and liquid crystal phase ranges. Mesogens with a lateral 

attachment to the polymer backbone were not investigated, though all of the different polymers 

investigated exhibited the same trend of director configuration with polymerisation media.  These 

findings agree with previous results
6, 62, 104, 105

 that indicate that nematic particles and droplets will 

adopt a bipolar configuration in polar solvents. Although Zentel has completed dispersion 

polymerisation with an array of solvent mixtures, the choice of nematic monomers investigated 

were limited and lacked a systematic approach, focusing on terminally attached liquid crystal 

mesogens which are known to show less polymer chain anisotropy than their laterally attached 

counterparts. The effect of monomer structure on the director configuration, or the responsive 

behaviour of the particles to changes in their external environment was not investigated. 

Monomer, initiator 

and stabiliser are 

dissolved 

Solubility decreases 

as the polymer 
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Investigations into whether a bipolar director configuration will always result when the nematic 

particles are synthesised in polar media have also not previously been completed. 

 

Nematic polymer particles in range of 100 - 500 nm can be synthesised by emulsion and mini-

emulsion polymerisation.
106-108

 The process involves two immiscible fluids being emulsified in 

the presence of a surfactant, one fluid contains the nematic monomer and polymerisation initiator. 

The emulsion of droplets is then polymerised either via UV or thermal initiation to create nematic 

polymeric particles. Theoretical results
51, 109, 110

 indicate that although particles formed on the 

nanoscale regime are small enough to display monodomain internal structures, the surface 

curvature is of such unfavourable magnitude that the internal configuration is likely to disregard 

the surface influence to favour an orientation as a result of the bulk liquid-crystalline 

interactions.
2
 These particles are beyond the resolution of polarised optical microscopy and their 

confinement textures can therefore not be determined experimentally. Particles synthesised from 

emulsion and mini-emulsion techniques can made larger by seeded growth polymerisation,
108, 111-

113
  and have also been used in the creation of hollow particles by removal of the seed particle 

after further polymerisation.
113

   

 

Suspension polymerisation is a process where two immiscible layers are mixed and then 

polymerised. Suspension polymerisation creates droplets by stirring, resulting in the creation of 

large polymer particles in the range of 150 µm.
97

 The liquid-crystalline polymer particles created 

by suspension polymerisation are too large for their internal director configurations to be fully 

controlled by the surface anchoring as the radius of the particle exceeds the penetration depth of 

the surface anchoring. This means these particles are too large for applications as sensors because 

they may not respond to changes at their surface. 

 

Microfluidic techniques have also been used in the synthesis of nematic polymer particles in the 

size range of approximately 30 – 200 micrometres.
69

 For example, a solution of nematic monomer 

and initiator in a microfluidic set up can be polymerised in-situ by UV initiated free radical 

polymerisation as the droplet travels along the capillaries of the microfluidic set-up.
13, 82, 114, 115

 

Polymerising the nematic monomer droplets while they travel along the capillaries allows for the 

flow-driven internal alignment of the mesogens to be polymerised into the particle,
43, 68

 producing 

particles with parallel mesogenic organisation. Particles synthesised by microfluidics techniques 

are unlikely to have completely resolved surface controlled director configurations as a result of 

being larger than the penetration depth of surface anchoring. The monodispersity of systems 

created by microfluidics allows them to be assembled into monolayers
116-118

 which can in theory 

be developed into photonic crystals.
119-124
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Polymer dispersed liquid crystal (PDLC) films can also be used in the synthesis of nematic 

polymer particles. A PDLC which comprises of droplets of nematic monomer within a soluble 

polymer matrix allows for the nematic monomer droplets to be polymerised by UV initiated free 

radical polymerisation, and the polymer matrix can then be dissolved to free the polymer 

particles.  This synthetic method allows for the particles to be polymerised whilst the mesogenic 

organisation is impacted by the surface anchoring imparted by the polymer matrix.
57

 Poly(vinyl 

acetate) is a polymer known to impart a parallel surface alignment on liquid crystal droplets 

dispersed within it, creating a matrix of bipolar droplets which can then be polymerised into 

particles.  

 

Microscale elastomeric particles displaying the bipolar director configuration are of interest 

because the bipolar director configuration is anisotropic - in general all the mesogenic units 

within the bipolar configuration are orientated in the same direction. This internal alignment 

should allow the particles to display actuation in the same way as macroscopic fully aligned 

nematic elastomer films are capable. Displaying a shape change over a temperature range as the 

liquid crystal undergoes its nematic to isotropic transition
86, 125, 126

 would allow for possible 

applications as microscale switches or valves,
9, 127

 or as micro artificial muscles because actuators 

have the ability to impart force and can push or pull an object.
11, 94

 Microscale elastomeric 

particles may also give an optical response to mechanical influences such as swelling or 

mechanical deformation. Mechanical deformation of the particles should result in a reversible 

change in the observed birefringence of the particles as a result of affecting the internal 

mesogenic alignment of the particles. Swelling of nematic elastomer particles should result in a 

completely reversible nematic to isotropic phase transition occurring as a result of the solvent 

disrupting the internal mesogenic order, which can then be evaporated to reinstate the nematic 

phase.  

 

Microscale nematic elastic particles which have a resolved confinement texture have not yet been 

realised. The only examples of microscale elastomeric particles that exist in the literature are 

those created by microfluidics techniques in which the internal mesogenic configuration was 

imparted by the flow of the system through the capillary during the polymerisation process and 

not by the confinement of the system,
82, 128

 or by stretching the precursor droplets before 

polymerisation to create prolate particles.
129

 These prolate particles can be used as micro-stirrers 

in micro-machinery due to their shape anisotropy and possible response in an electric field.
130

  

 

It is reasonable to assume, that similar to droplets and polymer particles of a nematic material, the 

particle size determines whether there is a need for an additional aligning influence to be present 

within the polymerisation for the elastomer particles to have significant internal alignment. The 
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surface anchoring strength will determine the size range that a droplet or particle can be and still 

exhibit full surface controlled internal alignment. With nematic elastomeric particles, the surface 

anchoring may need to be much stronger in order to display the same control over the internal 

structure when compared to droplets of the same size, because of the additional constraints the 

elastic network places on the mesogenic units. The elastic network further constrains the 

mesogenic units and makes the system more rigid and unable to flow, raising the energetic cost of 

the splay, twist and bend elastic deformations which may result in the liquid crystal ignoring the 

surface anchoring influence in order to reduce the deformation energy cost. The size range in 

which nematic elastomer particles displays full surface controlled internal alignment may 

therefore be much smaller than that observed for nematic droplets dispersed in equivalent 

solvents.  

 

Nanoscale nematic elastomer particles have been synthesised by a mini-emulsion technique,
107, 131

 

producing nano-sized actuators. The shape change in this example was observed on heating above 

the nematic to isotropic transition temperature and was visualised by transmission electron 

microscopy (TEM) but in this case the shape change was irreversible and is therefore not true 

actuation. The director configuration within these particles was not established as the particles 

were below the minimum size resolvable for polarised optical microscopy, but a change in the 

overall shape of the particle on the nematic to isotropic transition indicates that the particles were 

overall anisotropic in nature. The irreversible nature of the shape change was rationalised as the 

cooling rate being too fast to allow for the nematic phase to reinstate before reaching the glass 

transition temperature of the elastomer - though if this was the case then gentle heating to 

temperatures above the glass transition but below the nematic-isotropic transition temperature 

should allow for the nematic phase to form fully and cause a reversal of the shape change. This 

reversal experiment was not conducted. The irreversible nature of the shape change raises 

questions about the success of the crosslinking, as the initial shape change could have resulted 

from significant polymer entanglement within the nanoscale nematic particles rather than 

significant network formation. The degree of crosslinking within the nano-sized actuators was not 

established quantitatively by experiment. Computational studies
51

 indicate that below 

approximately 700 nm, the mesogens within a droplet will disregard the surface anchoring due to 

an unfavourable degree of surface curvature and display a uniform texture. This uniform texture 

would be conducive to shape change in elastomeric particles but the actual director configuration 

of the nanoscale actuators in this case cannot be established due to their size. There is also little 

evidence to support whether elastomeric particles behave in a fashion analogous to droplets of 

low molecular weight liquid crystal when confined due to the additional elastic constraints 

elastomeric mesogenic units experience.    
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The liquid-crystalline elastomer particles prepared by microfluidics have so far been above 

approximately 20 µm in diameter, which are too large for the internal configuration to be 

completely influenced by the surface anchoring. The lower size limit is imposed by the capillary 

widths within the instrument. If the particles are polymerised in-situ within the microfluidics 

device, they might display fully aligned internal structures as a result of the co-flowing solvent 

causing flow driven internal alignment of the mesogenic units as a result of the polymer chains 

being shear aligned while the particle is a precursor droplet. However, if the droplets are collected 

and there is a delay before polymerisation then the droplets will eventually lose the internal 

alignment caused by the flow. Liquid-crystalline elastomer particles in the range of a few hundred 

micrometres have been created using micro-fluidics
12, 13, 82, 132

 where the solvent flow drove the 

internal alignment. This alignment was utilised to create a reversible shape change and was 

visualised using optical microscopy. In these examples the UV curing of the particles occurred 

within the microfluidic chamber. Particles can also be synthesised by trapping the liquid-

crystalline monomer droplets extruded from a micro-fluidic device in a PVA polymer matrix and 

exposing this to UV light.
82

 The PVA matrix in which the precursor droplets are trapped within 

before polymerisation imparts a parallel surface anchoring on the droplets which could result in a 

bipolar director configuration being observed,
57

 though the droplet size is likely be too large to be 

conducive for full surface controlled internal alignment. An electric field can be applied across 

the polymer dispersed droplets in order to align the mesogenic units within the precursor droplets; 

this can then be exposed to UV light in order to form the liquid-crystalline elastomer particles 

whilst the mesogens are fully aligned with the field. Again, these aligned particles should then 

display actuation properties, but their alignment and shape change will not be as a result of 

confinement induced internal alignment.  

 

A further aim of the research described in this thesis is the synthesis of nematic elastomer 

particles because they have the possibility of being reversibly and responsively swellable and 

insoluble.
126, 133

 Dispersion polymerisation is an attractive prospect for creating liquid-crystalline 

elastomer particles because this method creates low micrometre-sized particles, meaning no 

external influence beyond the surface anchoring imparted on the particle by the solvent may be 

required to create aligned nematic particles. A method for creating microscale nematic elastomer 

particles by heterogeneous polymerisation methods has not yet been realised. 
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 AIMS 1.7
 

 

The overriding aim of this PhD project was the creation and analysis of nematic polymer and 

elastomer particles by heterogeneous dispersion polymerisation. This involved the following 

specific targets: 

 The synthesis of novel nematic monomers based on a structural variation of a known 

lateral side-chain nematic monomer; their structural characterisation by 
1
H and 

13
C NMR, 

MS, IR and EA, and the investigation of their phase properties by DSC and POM.  

 The polymerisation of these monomers via a dispersion polymerisation process to create 

nematic polymer particles in the small micrometre size range.  

 Investigation of these particles for factors affecting particle size, shape and variance; as 

well as phase properties and director configuration by methods including SEM, DSC and 

POM.   

 The adaptation of heterogeneous dispersion polymerisation processes to create novel 

nematic elastomer particles in the small micrometre size range; their degree of network 

formation to be established by gel content analysis, heating and swelling studies. 

 Investigation of the responsive nature of nematic polymer and elastomer particles to 

changes in surface anchoring, temperature and the presence of an electric field.   
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2 SYNTHETIC METHODS 
 

 INTRODUCTION 2.1
 

This chapter outlines the synthesis of the monomers used throughout this thesis, as well as the 

different polymerisation methods used to synthesise polymers and microscale polymer particles. 

 

 NOMENCLATURE 2.1.1

 

Throughout this thesis the polymers will be primarily described according to the monomer they 

are made from and by which polymerisation method they were polymerised. As there is only one 

terminally attached monomer (M1), it shall be referred to as the ‘terminal’ monomer. The lateral 

monomers M2- M9 will be referred to by their ‘spacer’ length as well as the length of the ‘side 

chains.’ This nomenclature is illustrated in Figure 2.1. 

 

 

 

 

Figure 2.1: Monomer nomenclature. 

 

 MONOMERS 2.2
 

 INTRODUCTION 2.2.1

 

An array of monomers were synthesised in order to investigate the effect of monomer structure on 

the resulting phase transitions, molecular weight, particle size and director configuration of 

nematic polymer and elastomer particles synthesised by various polymerisation techniques. The 



43 

monomers that were synthesised are depicted in Figure 2.2 and were synthesised following routes 

as shown in Scheme 2.1 and Scheme 2.2 in the next section. 

 

 

Monomer M1 (4-[4-(6-acryloyloxyhexyloxy)benzyloxy]benzonitrile) is known in the literature 

and has been used in the synthesis of liquid crystal polymers,
134

 including the synthesis of 

nematic polymer particles by dispersion polymerisation.
78, 79

 As it has been previously used to 

create nematic polymer particles of known configuration, this monomer was chosen as a 

reference to ensure consistency in the employed dispersion polymerisations. 

 

Monomers M2-M9 have a polymerisable unit attached laterally to the mesogenic unit. Monomer 

M3 ((4-acryloylbutyl)-2,5-di(4-butyloxybenzyloxy)benzoate) has been reported in the literature
80

 

 

 

Figure 2.2: The monomers synthesised. 



44 

and is known to produce a wide range nematic phase in polymers and elastomers, a low glass 

transition temperature, and strong coupling between the mesogenic units and the polymer 

backbone resulting in significant polymer backbone anisotropy.
15, 75, 77

 As discussed in the 

introduction, polymer backbone anisotropy increases the likelihood and magnitude of actuation in 

elastomers by coupling liquid crystal optical responsiveness to mechanical properties. Monomers 

M2-M9 can be compared to the terminally attached monomer M1, which allows for the 

determination of the effect of type of mesogen and mesogen attachment to the polymer backbone 

on the phase transitions, liquid crystal polymer particle size and director configuration. 

Monomers M2-M9 form a series in which the structure was changed to allow for systematic 

investigations into the effect of monomer structure on various particle properties, such as size and 

director configuration. The alkyl side chain groups were altered from propyl to octyl in M2-M7, 

and two spacer lengths to the polymerisable unit were also used - butyl in M2-M7 and undecyl in 

M8 and M9. 

 

 SYNTHESIS 2.2.2

 

M1 was synthesised via a pathway adapted from a literature procedure of a similar monomer
134

 

which is depicted in Scheme 2.1. 

 

The first step in this reaction procedure was an etherification between the terminal alcohol group 

of ethyl 4-hydroxybenzoate and 6-chlorohexanol. The ethyl ester acts a protecting group for the 

carboxylic acid to prevent unwanted reactions at that site. Further reaction with strong base 

cleaved the ethyl protecting group on the carboxylic acid to yield the benzoic acid derivative 1. 

The second step involved the coupling of the terminal alcohol on 4-(6-hydroxyhexyloxy)benzoic 

acid and acryloyl chloride to yield compound 2; at this stage and onwards butylated 

hydroxytoluene (DBPC) was added as a polymerisation inhibitor to preserve the reactive acrylate 

group. The final step was the esterification of 4-(6-acryloyloxyhexyloxy)benzoic acid with 4-

hydroxybenzonitrile, which afforded M1 in good yield with no unwanted polymerisation of the 

acrylate species. Column chromatography and recrystallization proved an effective method of 

purification for all intermediates. Details of the synthesis and characterisation for all monomers 

can be found in the Experimental chapter. 
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The synthetic pathway for the lateral monomers, M2 – M9, is illustrated in Scheme 2.2. These 

monomers were synthesised via a procedure adapted from literature for the synthesis of M3.
80, 81, 

133, 135
 

 

 

Scheme 2.1: Synthetic pathway for the synthesis of M1. 
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The carboxylic acid group on 2,5-dihydroxybenzoic acid was protected using benzyl bromide in 

DMF. NaHCO3 was used as a weak base in this case to limit the deprotonation to the carboxylic 

acid group, yielding compound 3. An esterification reaction using two equivalents of the 

                                   

 

Scheme 2.2: Divergent synthetic pathway for the synthesis of M2-M9. 
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alkoxybenzoic acid (propyloxybenzoic acid to octyloxybenzoic acid) yielded the benzyl protected 

species 4-9 in high yield. The removal of the benzyl protecting group to yield compounds 10-15 

was achieved using palladium catalysed hydrogenolysis in dichloromethane. The polymerisable 

unit was attached with its spacer group via a further esterification reaction to give final products 

M2-M9 in high yield. Butylated hydroxytoluene (DBPC) was again added in this last step as a 

radical quencher to inhibit the polymerisation of the acrylate group. Again, column 

chromatography and recrystallisation proved effective methods for separation and purification of 

all steps and no unwanted polymerisation of the acrylate group occurred.  

 

The synthetic pathway for the synthesis of 11-acryloylundecan-1-ol 16, used in the creation of 

monomers M2 – M9 is described in Scheme 2.3.  

 

 

 

Scheme 2.3: Synthesis of 11-acryloylundecan-1-ol 16. 

 

This synthetic pathway was adapted from a literature procedure
136

 detailing the synthesis of the 

methacrylate equivalent. The sodium acrylate, bromoundecanol and tetrabutylammonium 

bromide (TBAB) were refluxed with vigorous stirring in a mixture of chloroform and distilled 

water. This was a phase transfer process which allowed for 11-acryloylundecan-1-ol to be 

obtained in moderately high yield after three days. Butylated hydroxytoluene (DBPC) was added 

as a radical quencher to inhibit the polymerisation of the acrylate group. The 11-acryloylundecan-

1-ol was extracted from the chloroform layer after it was washed with NaOH solution and then 

with distilled water. The solvent was removed in vacuo and the crude product was obtained as a 

clear off white oil and was used as received in further reactions. 
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 SOLUTION POLYMERISATION 2.3
 

 METHOD 2.3.1

 

Apart from the monomer used, the polymerisation method has a vast effect on the morphology, 

and properties of the resulting polymer, such as molecular weight, molecular weight distribution 

and phase transitions. For comparison, the monomers were therefore polymerised by a typical 

free radical solution polymerisation procedure.
137

  

 

In order to polymerise the monomers by free radical solution polymerisation, they were dissolved 

in a solvent they were readily soluble in. The same solvent was chosen for all monomers to 

eliminate any solvent effects on the polymerisation. Dichloromethane was effective for all 

monomers. Rubber septum sealed glass vessels of the solutions of monomer (100 mg monomer in 

2 mL DCM) and thermal radical initiator AIBN (2 wt% relative to monomer) were purged 

thoroughly with nitrogen for a period of 30 minutes before being heated to 65 °C with constant 

and vigorous stirring for 24 hours. After the polymerisation had been allowed to proceed for 24 

hours, the mixture was allowed to cool to room temperature and then the polymer was 

precipitated into methanol. The sample was centrifuged (10 minutes at 2000 rpm), this 

sedimented the polymer and allowed the methanol to be decanted. The polymer was then re-

dissolved in THF and re-precipitated into methanol in order to purify the polymer further, as any 

soluble impurities would remain within the THF. The polymer was again separated from the 

solvent by centrifugation and then dried thoroughly in a vacuum oven at approximately 80 °C 

before further analysis. For the exact reagents and conditions used in each case, please see the 

experimental chapter. 

 

 METHOD DEVELOPMENT 2.3.2

 

The solvent that is selected for solution polymerisation is slightly less crucial than for the 

dispersion polymerisation methods investigated within this thesis. As long as the monomer and 

polymer are sufficiently soluble the polymerisation will proceed to some degree. The degree of 

polymerisation within solution polymerisation can be limited by the solvent should it quench the 

propagating radicals.  

 

Utilising dichloromethane (DCM) as the solvent for solution polymerisation allowed for high 

molecular weights to be achieved, but problems were encountered as the rubber seals on the 
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reaction vessels leaked dyes and impurities into the reaction as a result of the high vapour 

pressure of DCM within the vessel. The purification stage of solution polymerisation which 

involves the dissolution of crude polymer into a second solvent and re-precipitating was sufficient 

to remove these additional impurities. The properties of the solution polymerisation polymers will 

be discussed in comparison to polymers obtained via heterogeneous polymerisation methods in 

the general characterisation chapter.  

 

 HETEROGENEOUS POLYMERISATION 2.4
 

 INTRODUCTION 2.4.1

 

Dispersion polymerisation was chosen above other methods by which particles can be created 

(emulsion, suspension polymerisation etc.) because, as discussed in the introduction, it is a 

method that produces polymer particles with a relatively low degree of particle size polydispersity 

in the desired size range of a few micrometres.  

 

As discussed in the introduction, there are only very few examples in the literature in which 

nematic polymer particles have been synthesised by dispersion polymerisation. A terminal 

monomer used in a previous study
78

 has been selected as a point of reference within the 

investigations described in this thesis. 

 

 METHOD 2.4.2

 

In order to polymerise the monomers by dispersion polymerisation, a monomer (100 mg) was 

dissolved in a carefully selected solvent (1 mL) in which the polymer is insoluble. Various 

solvents and solvent mixtures were used in order to optimise for particle size and particle size 

monodispersity for each monomer, as well as to assess the correlation between solvent and 

director configuration of the resulting particles. A steric stabiliser was utilised 

(polyvinylpyrrolidone with a molecular weight of ~55,000 g mol
-1

) in order to prevent 

coagulation of the particles. The mixture was placed in a rubber septum sealed glass vessel and 

purged by bubbling nitrogen through the solvent for period of 30 minutes. During this period the 

vessel was kept in an ice bath to minimise solvent loss. After the vessel had been thoroughly 

purged it was placed in an oil bath at the reaction temperature (73 °C) with constant and vigorous 

stirring. A separate vessel containing the radical initiator AIBN (2 wt% relative to monomer) 

dissolved in the reaction solvent (0.6 mL) was also thoroughly purged for a period of 30 minutes 
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and then heated to 73 °C. The initiator was then injected by syringe into the reaction vessel 

through the septum to initiate the polymerisation process. The nucleation stage of the 

polymerisation can be observed as the reaction mixture becomes turbid. This is depicted in Figure 

2.3. After the polymerisation had been allowed to progress for 24 hours, the vessel was removed 

from the heat and allowed to cool to room temperature before immediate purification. In order to 

clean the particles the solvent was removed and exchanged via a centrifugation process which 

removes the soluble impurities from the particle surfaces.   

 

 

 

Figure 2.3: A series of images illustrating the nucleation stage of particle growth being observed 

as the reaction mixture becomes increasingly turbid. 

 

 METHOD DEVELOPMENT 2.4.3

 

The particle size and particle size polydispersity that can be achieved within dispersion 

polymerisation can be tuned by carefully adjusting the solvent and reaction conditions such as the 

temperature, stirring rate and amount of initiator or stabiliser present. Dispersion polymerisation 

is a very sensitive process and changing a small detail, for example a small change in polarity of 

the monomer, is enough to change the outcome as a result of affecting the solubility and 

nucleation point of the growing polymer chains in solution.  
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With systematic variation of the solvent composition the most effective solvent mixtures for 

promoting a fast singular nucleation stage with a good degree of polymerisation for each 

monomer were obtained.  As the monomer polarity, reactivity and solubility changed with every 

monomer the solvents that were successful with some monomers were not necessarily that 

effective with others. General observations for some commonly investigated solvent mixtures are 

summarised in Table 2.1. 

 

Table 2.1: Observations of the effect of different solvents within dispersion polymerisation 

Solvent mixture Observations 

EtOH Good monodispersity for polymers of M2-M7, creating 

samples with a good degree of polymerisation. Large and 

polydisperse particles obtained for polymers of M8 and M9 

where degree of polymerisation was also much lower. 

MeOH Poor solubility of lateral monomers results in small particles 

and coagulates. Good degree of monodispersity for terminally 

attached monomer M1. 

i
PrOH High degree of particle size polydispersity and coagulates 

across all monomers. 

1:1 EtOH: methoxyethanol Monodisperse samples achieved from polymerisation of 

terminal monomer M1. Often creates large particles with 

significant particle size polydispersity for lateral monomers 

M2-M9. GPC analysis shows a lower degree of 

polymerisation.  

5:1 EtOH: methoxyethanol Particles synthesised from M2-M9 still show a large degree of 

particle size polydispersity but overall particle size is reduced 

and degree of polymerisation is slightly improved. 

10:1 EtOH: methoxyethanol Particles of M2-M9 comparable to those obtained from pure 

EtOH, although slightly larger and still with a smaller degree 

of polymerisation. 

  

The solvent mixture can also affect the degree of polymerisation that is obtained, a contributing 

factor being that some of the solvents are more effective radical quenchers which can hinder the 

propagation of the polymer chains, for example methoxyethanol has an ether functionality which 

is a reasonably effective radical quencher.
138

 The degree of polymerisation in turn seems to affect 

the particle size that is obtained, with larger particles being formed with low polymer molecular 

weights. This correlation between particle size and polymer chain length is likely caused by 
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shorter polymer chains being able to travel to the inside of the growing particles more easily and 

tangle less efficiently than longer polymer chains, this means the particle should potentially be 

more swellable.
139

 Generally, particles synthesised from 1:1 EtOH: methoxyethanol are large, but 

gel permeation chromatography analysis shows that a lower average molecular weight was 

achieved than with EtOH alone. 

 

The molecular weights obtained for polymer particles formed by dispersion polymerisation 

indicated that radical polymerisation is successful within the dispersion polymerisation process. 

Typically, the molecular weights are high as polymerisation occurs primarily as bulk 

polymerisation within the nucleated particles and is complete after 24 hours. It is worthwhile to 

note that for the monomers with undecyl alkyl spacer groups (M8 and M9) the observed degree 

of polymerisation that was achieved is far lower than for the other monomers. A longer reaction 

time of 72 hours allowed for much higher molecular weights to be obtained, as shown in Table 

2.2. However, prolonging the reaction time also lead to significant particle coagulation in the 

dispersion polymerisation process and therefore cannot be used.  

 

Table 2.2: Molecular weights, degree of polymerisation and polydispersities of polymer particles 

made from M8 and M9 by a 24 or 72 hr dispersion polymerisation in EtOH.  In each case 15 wt% 

PVP55 was used as the particle stabiliser and 2 wt% AIBN as the radical initiator. The degree of 

polymerisation was calculated by dividing the average polymer molecular weight by the 

molecular weight of the monomer in each case. 

Material Reaction 

time 

Mn / g mol
-1

 Degree of  

polymerisation 

Molecular 

weight 

polydispersity  

[Mw / Mn] 

M8 C4 chain, C11 spacer 24 h 19,000 26 2.97 

  72 h 269,000 368 4.33 

M9 C7 chain, C11 spacer 24 h 15,000 18 2.96 

  72 h  368,000  451 3.90 

 

 

2.4.3.1 Purification of nematic particles 
 

The purification of the nematic particles was investigated to assess the degree to which impurities 

were removed, this involved effectiveness of the centrifugation process at removing PVP55 and 

unreacted monomer from the particle surfaces being investigated by 
1
H NMR. Crude and clean 
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particles were analysed by 
1
H NMR as well the washings. Example spectra are shown in Figure 

2.4, along with the resonance assignments.  

 

 

 

 

 

 

Figure 2.4: 
1
H NMR spectra of the crude particles, washings and clean particles to show removal 

of PVP and low molecular weight contaminants by centrifugation. The sample shown is particles 

synthesised by dispersion polymerisation of M3 in EtOH.  
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1
H NMR resonances of the polymer are broad and lose discrete couplings due to the slow rotation 

and chemical and magnetic inequivalence of the repeat units along the polymer chain, therefore 

any sharp peaks are evidence of low molecular weight impurities. As can be seen from the spectra 

above in Figure 2.4, the polymer particles are notably cleaner after the centrifugation process, 

with the absence of resonances which can be assigned to oligomeric chains, as is evidenced by the 

sharp resonances with observable couplings in the 
1
H NMR spectrum of the washings and crude 

particles, which is then not present in the 
1
H NMR spectrum of the clean particles. There is also 

evidence that the amount of polymer particles lost to the washing process is minimal. This 

investigation indicates that the centrifugation process is an effective method for cleaning the 

particles. 

 

2.4.3.2 Achieving monodispersity 
 

Obtaining a sample with a very narrow particle size distribution proved challenging as the 

conditions which result in a monodisperse sample from a particular monomer did not translate to 

other monomers in the series as the solvent affinities vary.  An example of this effect is shown in 

Figure 2.5.  

 

   

Figure 2.5: Polarised optical microscopy images illustrating the difference in particles size and 

variance obtained from dispersion polymerisation of (a) M1 and (b) M6 in 1: 1 EtOH: 

methoxyethanol. Images taken at room temperature through uncrossed polarisers with 200× 

magnification. 

 

A sample of particles created using M1 in 1:1 EtOH: methoxyethanol shows a good degree of 

monodispersity, with an average particle size of 1.28 µm and a particle size polydispersity of 

5.4%. Comparatively, when this solvent mixture is used in a polymerisation of M6 the result is 

(b) (a) 
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large polydisperse particles, with an average size of 5.1 µm and a particle size polydispersity of 

25%. The particle size polydispersity of a sample is calculated as the coefficient of variance, Cv, 

which is calculated from the standard deviation and the mean as shown in equation 5, where σ is 

the standard deviation of sizes in the sample and µ is the mean size of the sample. 

 

 Cv = σ/µ (5) 

  

 

However, a solvent change to EtOH results in a far more monodisperse sample for M6, as can be 

seen in the photomicrographs and SEM image in Figure 2.6. 

 

   

             

Figure 2.6: Polarised optical microscopy images showing particles synthesised from M6 in 

EtOH. (a) Image taken through uncrossed polarisers, (b) image taken with crossed polarisers 

towards the edge of the coverslip. Polarised optical microscopy images taken at room 

temperature with 200× magnification and (c) SEM taken at 2500× magnification. 

  

The packing which can be observed in Figure 2.6 (b) and in the magnified insert is the self-

assembly to a monolayer by capillary flow forces which also further reduces the local particle size 

(a) (b) 

(c) 
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polydispersity, as the capillary flow leads to size selection because particles of a similar size pack 

together and exclude the particles that do not fit. 

 

2.4.3.3 The addition of a crosslinker  
 

Another significant aim within this project was the synthesis of nematic elastomer particles with 

confirmed crosslinking using dispersion polymerisation. Adding a crosslinker at the start of the 

polymerisation process with the monomer feed results in the particles becoming misshapen or 

coagulating as the crosslinker affects the sensitive nucleation stage of particle growth within the 

polymerisation.
101

 This is a well-known phenomenon within dispersion polymerisation. Adding a 

crosslinker does not guarantee that the polymer particles will be fully networked as was observed 

within this method development. It is therefore important to assess the degree of crosslinking 

obtained in each case by swelling, heating and gel analysis investigations as a fully networked 

sample should be swellable, insoluble, will not melt and will have significant gel content.
140

  

 

Gel content analysis is a method by which the degree of crosslinking within a sample can be 

established. It is an experimental procedure which involves the extraction of any soluble polymer 

chains from an elastomeric system by centrifugation in order to determine the percentage of gel 

within the sample. Although gel content analysis provides an overview of the degree of gel 

content within the particles, it does not give any information about the distribution of crosslink 

points throughout the particle.  

 

Gel content analysis may result in the gel content being reported as lower than it is in actuality if 

the centrifugation process was not completely effective in separating the soluble and insoluble 

fractions. For this reason, the reproducibility of gel content analysis as a method for assessing the 

degree of crosslinking was assessed by completing the analysis twice on the same sample. The 

results obtained from this experiment are shown in Table 2.3.  

 

Table 2.3: Assessing the reproducibility of gel content analysis experiments using a sample of 

particles made from M1 and M2 respectively. 

Sample Name Gel / mg Sol / mg % gel by weight 

M1 sample 1 5.83 2.76 68% 

M1 sample 2 6.26 2.74 70% 

M2 sample 1 5.71 1.48 79% 

M2 sample 2 11.14 3.38 77% 

 



57 

As can be seen from the results depicted in Table 2.3, the results obtained for the gel content 

analysis are reproducible within 1-2%; therefore any significant variability seen across a series of 

the same monomer therefore lays within the samples themselves and not the method for 

establishing the gel content. 

  

Winnik et al.
101, 141-143

 describe a method in which the addition of a crosslinker is postponed until 

after the nucleation stage of polymer growth has completed, in order to prevent the crosslinker 

from affecting the nucleation stage and in turn lead to coagulation or affect the polymer shape and 

variance. As the crosslinker is added after the polymerisation begins it is feasible that the particles 

will have an uneven crosslink density throughout their composition which may result in hard 

regions and non-uniform swelling. The degree of crosslinking achieved in this case was 

established by gel content analysis.  

 

Winnik and colleagues’ delayed crosslinker addition method was adapted to accommodate 

nematic monomers with the hope of yielding nematic elastomer particles in the low micrometre 

size range. A series of experiments were performed varying parameters such as solvent mixture, 

crosslinker addition time and concentration allowed for fully networked particles to be achieved 

only for monomer M1. This method proved to be unsatisfactory for crosslinking with the lateral 

series of monomers M2-M9. This can be seen in the gel content analysis results shown in Table 

2.4.  

 

Table 2.4: Gel content analysis results for particles created by dispersion polymerisation with a 

delayed addition of crosslinker in various solvents. 

Monomer Solvent Gel fraction / mg  Soluble fraction / 

mg 

% gel by 

weight 

M1 Terminal MeOH 23.49 4.66 83.4% 

M3 C4 chain, C4 spacer MeOH 4.31 45.5 8.7% 

M3 C4 chain, C4 spacer EtOH 2.59 11.38 18.5% 

M6 C7 chain, C4 spacer MeOH 1.86 13.95 11.8% 

M8 C4 chain, C11 spacer MeOH 0.45 37.42 1.2% 

M9 C7 chain, C11 spacer MeOH 13.13 40.4 24.5% 

 

With a delayed addition of crosslinker, crosslinking has only successfully occurred for particles 

made from the terminal monomer M1 as the observed high percentage of gel in the particles 

indicates a near sample-wide network. However, for all lateral monomers tested the gel content of 

the samples is minimal, indicating that only negligible crosslinking had occurred during the 

polymerisation. A possible reason for this could be the increased viscosity of lateral systems 
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causing a slower reaction rate. Also, if the crosslinker does not have sufficient affinity to the 

monomer and growing polymer chains it may not be incorporated within the nucleated particles. 

Further investigation and different polymerisation methods were required in order to achieve a 

crosslinked sample for each monomer. Increasing the reaction time to 72 h did not greatly 

improve the degree of crosslinking that was achieved and also significantly reduced the particle 

yield due to coagulation.  

 

 

2.4.3.4 Effect of reaction concentration 
 

Within dispersion polymerisation with a delayed addition of crosslinker, a correlation between the 

reactant concentration and resulting particle size and topology was found with terminal monomer 

M1, the only monomer for which crosslinking was successful. This correlation allowed for the 

realisation of spherical and monodisperse 1.3 µm liquid-crystalline elastomer particles within a 

small concentration range, as well as smaller spherical particles at low concentration and non-

spherical particles when the concentration was high. The particle size and particle polydispersity 

of all samples at different reaction concentrations can be found in Table 2.5.  

 

Table 2.5: Size and polydispersities of particles created from M1 in MeOH using different 

reaction concentrations and a crosslinker addition time of four minutes. 

Concentration Description of Particles Average particle Size Coefficient of 

variance (Cv) 

0.35 mol dm
-3

 Non-spherical and 

polydisperse 

Average length: 1.01 µm 66.9% 

 Average width: 0.82 µm 86.6% 

0.27 mol dm
-3

 Non-spherical and 

polydisperse 

Average length: 0.6 µm 46.4% 

 Average width: 0.53 µm 73.9% 

0.15 mol dm
-3

 Spherical and 

monodisperse 

1.3 µm 6.3% 

0.14 mol dm
-3

 Spherical and bimodal Smaller Fraction: 0.66 µm 18.1% 

  Larger Fraction: 0.99 µm 83.5% 

0.13 mol dm
-3

 Spherical and bimodal Smaller Fraction: 0.68 µm 18.9% 

  Larger Fraction: 1.24 µm 54.4% 

 

From Table 2.5 it can be deduced that the delayed addition of crosslinker is only successful 

within a very narrow concentration range. A relatively monodisperse sample is produced from a 

reaction concentration of 0.15 mol dm
-3

, shown in Figure 2.7.  
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The non-spherical nature of the particles at high concentration may be as a result of a fusing of 

nucleating particles due to the high concentration present in the dispersing solvent.  The 

‘waistband’ on the particles in the sample completed at 0.27 mol dm
-3 

is evidence of the fusing of 

particles, and can be seen in Figure 2.8.  

 

   

Figure 2.8: Scanning electron microscopy photomicrographs of the particles produced at a 

reactant concentration of (a) 0.27 mol dm
-3

 and (b) 0.35 mol dm
-3

 taken at room temperature at 

10000× magnification. 

 

In the sample created at 0.35 mol dm
-3

 the particles are smooth and spheroid with no waist 

banding, which may indicate coagulation of the nuclei is occurring much earlier, before 

 

   

Figure 2.7: (a) Polarised optical microscopy (200× magnification, rt, slightly crossed polarisers) 

and (b) scanning electron microscopy photomicrographs (5000x magnification) of the particles 

produced at a reactant concentration of 0.15 mol dm
-3

 

(b) (a) 

(a) (b) 
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nucleation has completed. The formation of misshapen particles has been known to occur within 

dispersion polymerisation.
144, 145

 

 

The high particle size polydispersity observed at low concentrations is as a result of bimodality. 

The samples display two size ranges of particles, with the smaller particles having a much lower 

degree of particle size variance than the larger. The bimodality is evidence of the occurrence of a 

second nucleation event occurring during the polymerisation, possibly as a result of the solubility 

being affected by changing the solvent to monomer ratio resulting in an extended nucleation 

period.  

 

Overall, dispersion polymerisation proved not to be an effective method to produce nematic 

elastomer particles on the low microscale as it was only effective when the terminally attached 

monomer (M1) was employed and therefore an alternative method was investigated. 

 

 

 RAFT ASSISTED DISPERSION POLYMERISATION 2.5
 

 INTRODUCTION 2.5.1

 

The addition of a RAFT (reversible addition-fragmentation chain transfer) agent
96, 142, 146

 to 

dispersion polymerisation is another method by which crosslinking can be introduced into 

nematic particles and has been the focus of a recent Master’s thesis.
147

 RAFT-assisted dispersion 

polymerisation has been used to create monodisperse and crosslinked particles from various 

monomers.
96, 143, 148

 RAFT agents have also been utilised in the synthesis of living particles
143, 148-

151
 whereby the particles can be grown further with the addition of more monomer. This allows 

for particles to be synthesised with a different surface composition to that of its core by changing 

the monomer feed and continuing the polymerisation.
150-153

 RAFT agents follow a general 

structure which is illustrated in Figure 2.9 along with an example RAFT agent, DDMAT (2-

(dodecylthiocarbonothioylthio)-2-methylpropionic acid). 
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Figure 2.9: (a) general structure of a RAFT agent (b) the structure of DDMAT with the activating 

group labelled as ‘Z’ and the good radical leaving group labelled as ‘R’ as per the general 

structure. 

 

The RAFT agent facilitates living chain transfer and allows for a greater monodispersity in 

polymer chain length to be achieved. RAFT-assisted dispersion polymerisation creates a large 

proportion of shorter polymer chains with a low degree of polydispersity. This is useful when 

applied to dispersion polymerisation as it allows for more polymer chains to grow in solution 

before the nucleation of particles begins. The longer pre- nucleation time this creates results in 

larger and more monodisperse particles compared to those created in its absence. The general 

mechanism for the chain transfer process is described in Figure 2.10. 

 

 

 

Figure 2.10: General mechanism for the chain transfer process that occurs during RAFT assisted 

dispersion polymerisation. 
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A RAFT agent acts as a chain transfer agent as it contains a stable radical leaving group.
154

 When 

it reacts with the growing end of a polymer chain, this stable unit leaves and initiates the growth 

of a second polymer chain. This process therefore creates two shorter polymer chains when one 

would have been created in the RAFT agent’s absence. The RAFT agent causes a reduction in the 

overall polydispersity of the polymer via a constant exchange process, promoting the formation of 

a high number of low molecular weight polymer chains with little variation in chain length, 

compared to in the absence of RAFT agent where once initiated, polymer chains continue to 

grow. With RAFT polymerisation the polymer chains can be re-initiated and continue to grow. 

This constant polymer chain transfer process results in the equilibration of polymer chains lengths 

over time.
154

  

 

A RAFT agent may increase the degree of crosslinking that can be achieved within dispersion 

polymerisation compared to in the absence of a RAFT agent.
147

 As a RAFT agent facilitates a 

living chain transfer process, it results in a more even distribution of network points throughout 

the sample and therefore a higher degree of crosslinking compared to when the crosslinker is 

added after the nucleation stage of polymer growth.  

 

RAFT-assisted dispersion polymerisation has been used to create monodisperse particles from 

various non-liquid-crystalline monomers,
96, 143, 148

 as well as being utilised in the synthesis of 

living particles
143, 148-151

 whereby the particles can be grown further with the addition of more 

monomer. This method allows for particles to be synthesised with a different surface composition 

to that of its core by changing the monomer feed and continuing the polymerisation.
150-153

  

 

 METHOD 2.5.2

 

Particles were synthesised by RAFT-assisted dispersion polymerisation by first dissolving the 

chosen monomer (100 mg), the UV initiator (Darocur 1173, 4 wt % relative to monomer), the 

steric stabiliser (polyvinylpyrrolidone, 15 wt% relative to monomer) and the RAFT agent 

(DDMAT, 0.5 wt% relative to monomer) in the chosen reaction solvent (1.6 mL) in a rubber 

septum sealed glass vessel. This vessel was purged with nitrogen for a period of 30 minutes 

before being heated to a reaction temperature of 65 °C with constant and vigorous stirring. This 

temperature was selected to be within the nematic phase of the polymer being synthesised. When 

a homogeneous solution was obtained (typically in under one minute) the reaction vessel was 

exposed to broad band UV light for a period of 3 – 22 hrs. The nucleation stage can again be 

observed by the reaction mixture becoming turbid. After the designated exposure time the 

reaction vessel was allowed to cool to room temperature before immediate work up by a solvent 
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exchange method using centrifugation in order to remove all soluble impurities from the solvent 

and particle surfaces. A general reaction set up for RAFT-assisted dispersion polymerisation is 

shown in Figure 2.11.  For the synthesis of nematic elastomer particles by RAFT assisted 

dispersion polymerisation the process was the same except for that a crosslinker (10 wt% relative 

to monomer) was added to the reaction vessel before purging. All exact reagents and conditions 

for each polymerisation completed can be found in the experimental chapter, Chapter 8. 

 

 

 

 

Figure 2.11: Diagram of the reaction set up for RAFT-assisted polymerisation 

 

 METHOD DEVELOPMENT 2.5.3

 

Traditionally RAFT polymerisations are performed as solution polymerisation and are initiated 

thermally.
154

 RAFT agents slow the polymerisation as the chain transfer process results in the 

formation of more stable and therefore less reactive radicals. Within dispersion polymerisation, 

the nucleation of particles is affected if the growth of polymer chains is too slow,
98

 which can 

affect the particle yield. UV initiation provides a greater immediate influx of radicals than thermal 

initiation and therefore combats the slowing of the reaction by the RAFT agent. The 

polymerisation was still heated through this process so that the polymerisation could occur within 

the nematic phase of the polymer in order to encourage nematic order within the particles.  
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The UV light exposure time was also increased until a satisfactory degree of polymerisation and 

crosslinking was achieved. Kinetic studies involving the extraction of samples from a 

polymerisation over a 10 hour period for analysis by gel permeation chromatography were 

inconclusive. The degree of crosslinking that was achieved was improved significantly on 

increasing the UV exposure time from 3 to 5 hrs, and exposing samples to UV for a period of 22 

hrs resulted in a consistently high degree of crosslinking being achieved regardless of monomer 

used. 

 

RAFT-assisted dispersion polymerisation in general created samples with a better degree of 

particle monodispersity than those created from dispersion polymerisation in the absence of a 

RAFT agent. This is because the RAFT agent facilitates chain transfer, resulting in a greater 

number of polymer chains growing to the critical chain length before particles begin to nucleate. 

In traditional dispersion polymerisation the growing polymer chains are of vastly different 

molecular weights which may result in a longer nucleation stage when small quantities of the 

reacting polymer reach their critical size. Within RAFT assisted dispersion polymerisation as 

chain polydispersity is greatly reduced the polymer chains will reach this critical chain length in a 

large quantity which will reduce the time-span of the nucleation stage of polymer growth and 

therefore reduce the polydispersity of the system. The nematic polymer particles obtained from 

1:1 EtOH: methoxyethanol were consistently comprised of low molecular weight  polymer chains 

and no significant gel content was obtained when a crosslinker was employed, indicating 

incomplete network formation which was confirmed by swelling and heating studies.  

 

Gel content analysis was performed to assess the yield of networked polymer in the RAFT-

assisted dispersion polymerisation process. The yield of networked polymer that is achieved 

within RAFT-assisted dispersion polymerisation is not uniform across the series of monomers 

and is also dependent on the polymerisation medium. For example, in Table 2.6 samples created 

from different monomers and solvent mixtures have been summarised.  

 

For particles of P3, the trend in particle size and polydispersity indicates a solvent mixture of 5:1 

EtOH: methoxyethanol to be the most appropriate for achieving a uniform sample, although 

reducing the amount of methoxyethanol increases the degree of crosslinking that is obtained, with 

the highest network formation created when no methoxyethanol was present and the particles 

were polymerised in EtOH. As methoxyethanol has an ether group it acts as a radical quencher, 

reducing the degree of polymerisation by producing a more stable and less reactive radical.
154

 The 

least polar solvent tested was iPrOH, and this very polydisperse sample achieved a degree of 

crosslinking of only 29%.  
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Table 2.6: Gel content analysis results for particles created by RAFT-assisted dispersion 

polymerisation in various solvents.  

Monomer Solvent Soluble 

fraction / mg 

Gel fraction 

/ mg 

% gel 

P1 Terminal EtOH 1.63 5.74 93% 

P1 Terminal 1:1 EtOH: ME 15.05 18.49 55% 

P2 C3 chain, C4 spacer EtOH 3.29 2.07 97% 

P3 C4 chain, C4 spacer EtOH 3.94 14.35 85% 

P3 C4 chain, C4 spacer 1:1 EtOH: ME 12.68 14.15 47% 

P3 C4 chain, C4 spacer 5:1 EtOH: ME 11.40 9.11 55% 

P3 C4 chain, C4 spacer 10:1 EtOH: ME 7.40 3.27 69% 

P3 C4 chain, C4 spacer MeOH 4.94 9.29 65% 

P3 C4 chain, C4 spacer 
i
PrOH 4.20 1.75 29% 

P4 C5 chain, C4 spacer EtOH 1.89 5.90 78% 

P5 C6 chain, C4 spacer EtOH 4.66 5.00 66% 

P6 C7 chain, C4 spacer EtOH 0.66 0.46 83% 

P7 C8 chain, C4 spacer EtOH 6.24 7.24 61% 

P8 C4 chain, C11 spacer EtOH 5.08 9.18 71% 

P9 C7 chain, C11 spacer EtOH 13.46 8.00 66% 

 

The polymerisation duration has a marked effect on the degree of crosslinking that is achieved 

with RAFT-assisted dispersion polymerisation, with a significant increase in gel content 

occurring with an additional 2 hours UV exposure time. 

  

The amount of crosslinker in RAFT-assisted dispersion polymerisation used in this study (10 wt 

%) is slightly higher than that used in dispersion polymerisation with a delayed addition of 

crosslinker (10 mol %) as a result of replicating different literature procedures.
96, 101, 141-143

 The 

differences in the degree of crosslinking achieved is not as a result of this increase however, as 

increasing the percentage of crosslinker in the delayed addition of crosslinker to 10 wt% does not 

greatly improve the network formation within the particles. A reason for this is that the degree of 

crosslinking within dispersion polymerisation is not limited by the amount of crosslinker present 

within the reaction mixture, but by the extent to which the crosslinker is being incorporated 

within the growing particles. 
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 CONCLUSIONS 2.6
 

Nine nematic monomers were synthesised for use in the creation of nematic polymer and 

elastomer particles. Synthesis of novel monomers M2 and M4-M9 proved straight forward as 

known methods were easily adapted and most reactions yielded the monomers in high yield and 

purity.  

 

Various adaptations to heterogeneous polymerisation techniques were completed in order to 

modify the polymerisations for the accommodation of the nematic monomers. Novel nematic 

polymer particles in the low micrometre size range were successfully synthesised by a dispersion 

polymerisation technique that was carefully adapted and optimised to accommodate the inclusion 

of the nematic monomers. It was also possible to successfully optimise the reaction conditions for 

the creation of monodisperse particles.  

 

Attempts to adapt the dispersion polymerisation method for the creation of crosslinked elastomer 

particles proved largely unsuccessful. However, after careful optimisation of a RAFT type 

dispersion polymerisation process, it was possible to create nematic elastomer particles from all 

monomers and prove their crosslinking by gel content analysis. This preparation of nematic 

elastomer particles by heterogeneous polymerisation processes in this size range is previously 

unreported.  
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3 GENERAL CHARACTERISATION 
 

 INTRODUCTION 3.1
 

This chapter will detail the physical and thermal characterisation of the monomers, polymers and 

polymer and elastomer particles prepared in the previous chapter. All monomers and polymer 

materials were investigated for their phase behaviour by differential scanning calorimetry (DSC) 

and polarising optical microscopy (POM). Molecular weight and molecular weight polydispersity 

of solution polymers and polymer particles were analysed by gel permeation chromatography and 

the size particle size morphology and distribution of the polymer and elastomer particles was 

determined by either scanning electron microscopy (SEM) or POM. 

 

To assess their director configurations and responsiveness to external stimuli such as solvent 

exchange and exposure to electric fields, the polymer and elastomer particles were further studied 

by POM and electro-optic methods. These studies are discussed in separate chapters after this 

general characterisation chapter.  

 

 MONOMER CHARACTERISATION 3.2
 

Monomers M1 – M9 were characterised by differential scanning calorimetry (DSC) and polarised 

optical microscopy (POM) in order to determine their phase behaviour and to assess the effect of 

structural moieties on the resulting liquid crystal phases. 

  

 POLARISED OPTICAL MICROSCOPY 3.2.1

 

Polarised optical microscopy studies showed that the monomers M2 –M9 display nematic phases. 

M2 and M8 display monotropic liquid crystal phases and the monomers M3 – M7 and M9 

enantiotropic liquid crystal phases. Photomicrographs of some example nematic schlieren 

textures observed in POM studies of the monomers M2 – M9 are shown in Figure 3.1. 
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Figure 3.1: (a) Polarised optical photomicrograph of M3, taken at 40 °C on cooling at 5°C min
-1

 

at 100 × magnification through crossed polarisers (b) polarised optical photomicrograph of M6, 

taken at 55 °C on cooling at 5°C min
-1

 at 100 × magnification through crossed polarisers. 

 

 

 DIFFERENTIAL SCANNING CALORIMETRY 3.2.2

 

In the differential scanning calorimetry (DSC) investigations phase transitions were taken from 

the second heat/cool cycle recorded at 10 °C /min, and are shown in Table 3.1.  As an example, 

Figure 3.2 shows the DSC curves of M6.  

(a) (b) 
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Table 3.1: Phase transitions of nematic monomers M1 – M9. Method: DSC at 10 °C /min with 

the second heat/cool cycle recorded. Glass transition temperatures were recorded from the second 

cool. Samples indicated (*) are phase transitions from literature.
79, 80, 133

 The glass transition 

temperature for M8 is listed as an approximate value as no glass transition was recorded on 

cooling, so the glass transition on heating is listed.  

Material Cr / °C g / °C N / °C I 

M1 Terminal • 76     • 

M1 * Terminal • 72     • 

M2 C3 chain, C4 spacer   • -14 • 61 • 

M3 C4 chain, C4 spacer • 42   • 82 • 

M3 * C4 chain, C4 spacer • 71.9   • 98.3 • 

M4 C5 chain, C4 spacer • 34   • 58 • 

M5 C6 chain, C4 spacer • 36   • 81 • 

M6 C7 chain, C4 spacer • 21   • 61 • 

M7 C8 chain, C4 spacer • 23    • 69 • 

M8 C4 chain, C11 spacer   • ~-23 • 65 • 

M9 C7 chain, C11 spacer • -11   • 57 • 

 

 

Figure 3.2 shows the DSC trace for monomer M6 with all recorded heat and cool cycles included. 

The observed peaks within the trace are small and broad which may have resulted in the values 

for peak temperature (Tpeak) and onset temperature (Tonset) being difficult to quantify precisely. For 

example, the value of Tpeak shows a gradual progression through the heat/cool cycles which is not 

reflected in the temperatures quoted on onset. The broadness of the peaks may indicate that the 

sample was impure, though elemental analysis and NMR spectra of this compound indicate a 

good degree of purity. It is possible that the broad peaks are a result of exposing the monomer to 

extended heating, resulting in some polymerisation of the monomer occurring. However, if 

polymerisation was occurring throughout the DSC measurement it would be expected that the 

broadness of the peaks would increase as the experiment progressed as a result and this is not 

observed.  
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Figure 3.2: Example DSC of M6 taken at 10 °C /min. In all instances the temperatures from the 

second heat/cool cycle were recorded. 

 

The melting point of terminal monomer M1 agrees well with the melting point stated in literature. 

There is, however, a significant discrepancy observed for phase transitions of M3 compared to 

literature values, though if the first heat for M3 is considered then the values are more similar to 

those stated in literature (Cr 72 °C N 83 °C I). A reduction in the nematic-to-isotropic transition 

temperature may well indicate the presence of an impurity, though elemental analysis shows a 

very strong agreement with predicted values as well as those stated in the referenced literature. 
1
H 

NMR spectroscopy of M3 also provides a strong indication that the monomer is well purified. A 

1
H NMR spectrum of monomer M3 is shown in Figure 3.3. From this information it can be 

concluded that the difference in phase transition temperatures observed is not a result of monomer 

impurity and may indicate that the values stated in the literature are, for some reason, inaccurate. 
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Figure 3.3: The 
1
H NMR spectrum of monomer M3 dissolved in CDCl3  

 

From Table 3.1 it is apparent that the crystal-to-nematic phase transition temperature decreases 

with increasing side chain length, as a result of the longer flexible chains disrupting the molecular 

packing. A similar trend is observed in the nematic-to-isotropic phase transitions, as the packing 

necessary for the nematic phase is disrupted by the terminal alkyl side chain groups on the 

mesogens.    

 

The series of monomers from M2 – M7 with a C4 spacer group display a distinct odd-even effect 

in both their phase transition temperatures across the series, as can be seen from a plot of the 

transition temperatures against increasing side chain length, shown in Figure 3.4.  
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Figure 3.4: Graph to show the odd - even effect of the lateral monomers M2 –M7. 

 

Monomers with side chains that comprise of an even number of side-chain atoms display lower 

values than those with side chains that include an odd number. This well-known effect is a result 

of the even-membered chains causing a deviation from the more linear alkyl chain structure, 

disrupting the molecular packing.
17

 This effect is illustrated in Figure 3.5. 

 

 

 

Figure 3.5: Illustrating the odd – even effect, where even-membered side chain groups result in a 

deviation from a linear structure and disrupt the molecular packing. Shown are the side chain 

groups of monomers (a) M3 with phase transitions of Cr 42 °C N 82 °C I and (b) M4 with the 

reduced phase transitions of Cr 34 °C N 58 °C I.  

 

 NEMATIC POLYMERS 3.3
 

 

The polymers were each characterised by gel permeation chromatography, differential scanning 

calorimetry and polarised optical microscopy in order to draw conclusions about the effect of 

polymerisation method and monomer structure on the molecular weight and phase transitions that 

can be achieved.  

(a) (b) 
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 ASSIGNMENT OF THE NEMATIC PHASE 3.3.1

 

The polymers created by free radical solution polymerisation of M1 – M9 were investigated by 

polarised optical microscopy in order to unequivocally characterise the phase identity in the 

absence of confinement. All polymers displayed an enantiotropic phase when polymerised by 

solution polymerisation. Photomicrographs of two example nematic marble textures observed in 

the POM of the polymers are shown in Figure 3.6. 

  

     

Figure 3.6: (a) POM photomicrograph of M8, taken at 35 °C on cooling at 5°C min
-1

 at 100 × 

magnification through crossed polarisers (b) POM of M9, taken at 25 °C on cooling at 5°C min
-

1
 at 100 × magnification through crossed polarisers. 

 

 DIFFERENTIAL SCANNING CALORIMETRY 3.3.2

 

The polymer particles created by dispersion polymerisation, RAFT-assisted dispersion 

polymerisation and solution polymerisation were analysed by differential scanning calorimetry 

after removal of the host solvent and drying of the particles in order to assess the effect of 

polymerisation method on the resulting phase transition temperatures. Table 3.2 gives an 

overview of the phase transitions of polymers P1 – P9, derived from monomers M1-M9 

respectively, polymerised by these different polymerisation methods.  

(a) (b) 
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Table 3.2: Phase transition temperatures of polymers P1 – P9, derived from M1 – M9 

respectively. Method: DSC at 10 °C /min with values taken from the second heat/cool cycle. 

Glass transition temperatures stated are at the midpoint of the transition on cool, otherwise the 

onset on heat is quoted. DP stands for dispersion polymerisation. 

Material Method Tg / °C N / °C I 

  Solution • 27 • 101 • 

P1 Terminal DP • 28 • 115 • 

  RAFT-assisted DP • 26 • 114 • 

  Literature
78

 • 31 • 127 • 

  Solution • 45 • 83 • 

P2 C3 chain, C4 spacer DP • 52 • 108 • 

  RAFT-assisted DP • 51 • 92 • 

  Solution • 31 • 59 • 

P3 C4 chain, C4 spacer DP • 26 • 65 • 

  RAFT-assisted  • 24 • 72 • 

  Literature
10, 132

 • 40 • 130 • 

  Literature
128

 • 43 • 58 • 

  Solution • 23 • 49 • 

P4 C5 chain, C4 spacer DP • 34 • 73 • 

  RAFT-assisted DP • 29 • 71 • 

  Solution • 27 • 82 • 

P5 C6 chain, C4 spacer DP • 28 • 93 • 

  RAFT-assisted DP • 25 • 91 • 

  Solution • 28 • 70 • 

P6 C7 chain, C4 spacer DP • 24 • 70 • 

  RAFT-assisted DP • 23 • 70 • 

  Solution • 23 • 71 • 

P7 C8 chain, C4 spacer DP • 24 • 74 • 

  RAFT-assisted DP • 23 • 72 • 

  Solution • 15 • 78 • 

P8 C4 chain, C11 spacer DP • 18 • 92 • 

  RAFT-assisted DP • 20 • 90 • 

  Solution • -1 • 62 • 

P9 C7 chain, C11 spacer DP • 7 • 73 • 

  RAFT-assisted DP • 4 • 71 • 
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Representative DSC traces of polymers reported in Table 3.2 are shown in Figure 3.7. 

 

 

  

Figure 3.7: Example DSCs from Table 3.2. (a) P6 from dispersion polymerisation and (b) P6 

from RAFT-assisted dispersion polymerisation. 

 

The different phase transition temperatures with polymerisation method for each polymer are 

illustrated in Figure 3.8. 

(a) 

(b) 
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Figure 3.8: Phase transitions of polymers P1 – P9 made by different polymerisation methods. DP 

= dispersion polymerisation. 

 

Figure 3.8 illustrates the phase ranges and transition temperatures of polymers P1 to P7 prepared 

by different polymerisation methods for comparison purposes. Comparison of polymers P2 – P7 

shows that in general there is an influence of the mesogen side chain length on the reported phase 

transitions, showing a decrease in glass transition temperature as a result of increasing the side 

chain length on the mesogen. The glass transition temperature is far lower for polymers of M8 

and M9 due to their longer spacer group attached laterally on the mesogenic unit. From Figure 
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3.8 we can also conclude that the addition of the RAFT agent into the polymerisation process 

does not greatly affect the phase transitions of the resulting polymer in comparison to dispersion 

polymerisation, with the majority of cases only varying by 1-2 °C. For polymers obtained by 

solution polymerisation the phase transitions temperatures vary more significantly, often showing 

a lower nematic phase transition temperature compared to polymers formed by dispersion 

polymerisation or RAFT-assisted dispersion polymerisation. This is possibly as a result of the 

polymerisation occurring in solution, and therefore in the isotropic phase of the polymer. Solution 

polymerisation allows for the polymer chains to form random coil formations without anisotropic 

influence from the nematic phase which may disrupt the nematic alignment when the nematic 

phase forms, reducing its phase range. As in most cases the lower nematic to isotropic phase 

transition temperature is accompanied by a drop in the glass transition temperature, another 

explanation for the reduced phase transition temperatures from solution polymerisation could lie 

with the purity of the samples. Solvents are notoriously difficult to remove from polymer 

samples, and any amount of the solvent used, DCM, which remains within the polymer matrix 

will disrupt the nematic order and therefore reduce the nematic transition temperature. DCM at 

the same time acts as a plasticiser and reduces the glass transition temperature.  

 

 GEL PERMEATION CHROMATOGRAPHY 3.3.3

 

Gel permeation chromatography was completed on polymer samples of each monomer created by 

dispersion polymerisation, RAFT-assisted dispersion polymerisation and solution polymerisation 

to assess the degree of polymerisation that can be achieved in each case as well as the effect of 

the degree of polymerisation on the phase transitions obtained.  

 

Table 3.3 shows the molecular weights and polydispersities of polymers of P1 – P9 obtained by 

24 h solution polymerisation, dispersion polymerisation and RAFT-assisted dispersion 

polymerisation. The molecular weights and polydispersities were obtained from dried samples 

using triple detection gel permeation chromatography in THF, and the numbers quoted are an 

average of three experimental runs. The molecular weights are stated to the nearest 1000 g mol
-1

 

to reflect the average error across the three runs.  
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Table 3.3: Molecular weights of nematic monomers M1 – M9 polymerised by various 

polymerisation methods. Method: Triple detection GPC with THF mobile phase, calibrated with 

polystyrene with a molecular weight of 99,000 g mol
-1

. The values quoted are an average of three 

repeats. Solution polymerisations of  P1, P4, P5 and P7 and RAFT polymerisations of P7 do not 

feature in this study due to time constaints and lack of an available sample. 

Material Polymerisation method 
Mn /  

g mol
-1

 

Molecular weight 

polydispersity  

(Mw/ Mn) 

P1 Terminal Dispersion polymerisation 197,000 2.87 

  RAFT-assisted 188,000 2.40 

  Solution 441,000 2.67 

P2 C3 chain, C4 spacer Dispersion polymerisation 209,000 2.68 

  RAFT-assisted 128,000 1.74 

  Solution 256,000 7.91 

P3 C4 chain, C4 spacer Dispersion polymerisation 188,000 3.04 

  RAFT-assisted 171,000 1.61 

P4 C5 chain, C4 spacer Dispersion polymerisation 254,000 2.14 

  RAFT-assisted 152,000 1.80 

P5 C6 chain, C4 spacer Dispersion polymerisation 340,000 2.12 

  RAFT-assisted 105,000 2.02 

  Solution 204,000 2.16 

P6 C7 chain, C4 spacer Dispersion polymerisation 122,000 3.11 

  RAFT-assisted 215,000 1.65 

P7 C8 chain, C4 spacer Dispersion polymerisation 121,000 3.01 

  Solution 244,000 2.25 

P8 C4 chain, C11 spacer Dispersion polymerisation 19,000 2.97 

  RAFT-assisted 240,000 1.60 

  Solution 550,000 4.85 

P9 C7 chain, C11 spacer Dispersion polymerisation 15,000 2.96 

  RAFT-assisted 66,000 1.89 

 

Figure 3.9 shows an example gel permeation chromatograph from which the information in Table 

3.3 was calculated. In order to calculate the molecular weight the GPC trace must show a signal 

in all three detection modes. The refractive index (shown in red) often shows the presence of 

more analytes, such as oligomers, within the sample but as the concentration of those analytes are 

too low to be detected by a change in viscosity (shown in blue) or a change in the right angle light 
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scattering (RALS-shown in green) no molecular weight can be obtained for them. The peak 

which occurs at a retention time of ~ 23 minutes is the solvent front.  

 

 

 

Figure 3.9: A representative GPC analysis from which the information in Table 3.3 was extracted. 

P4 from dispersion polymerisation. The quoted values in Table 3.3 are an average of three 

experimental runs. Method: Triple detection GPC with a THF mobile phase, calibrated with 

polytstyrene with a molecular weight of 99,000 g mol
-1

. 

 

Right angle light scattering 

Viscosity 

Refractive index 
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From Table 3.3 it is apparent that polymer particles of P8 and P9 were obtained with significantly 

lower molecular weights in dispersion polymerisations than other polymers in the series due to 

the fact that these monomers polymerise more slowly, and coagulation occurred in attempted 

prolonged dispersion polymerisations. In most cases the highest molecular weight polymer is 

obtained from solution polymerisation rather than dispersion polymerisation or RAFT-assisted 

dispersion polymerisation. The viscosity increase which occurs within the nucleated particles of 

dispersion polymerisation hinders the polymerisation leading to increased termination and a 

reduction in the molecular weight that is achieved. Solution polymerisation results in higher 

molecular weights being obtained as a result of low viscosity allowing for a higher degree of 

polymerisation to be achieved, though the molecular weight polydispersity is also significantly 

increased when solution polymerisation is used.  

 

In most cases dispersion polymerisation and RAFT-assisted dispersion polymerisation results in 

polymers with similar degrees of polymerisation, though a RAFT-assisted dispersion 

polymerisation process results in slightly lower molecular weights being achieved than would 

have in the absence of the RAFT agent, as the RAFT agent aids the transfer of the radical to 

create a larger number of smaller polymer chains. RAFT-assisted dispersion polymerisation also 

results in a reduction in the molecular weight polydispersity of the polymer chain length as 

expected, as a RAFT agent promotes a living chain transfer process which results in the eventual 

equilibration of molecular weights across a sample However, for particles of P8 and P9, low 

molecular weights were obtained when the particles were synthesised by dispersion 

polymerisation and a marked increase in the degree of polymerisation was achieved when a 

RAFT agent was employed. This increase in the degree of polymerisation may be as a result of 

the RAFT-agent aiding radical transfer which was previously prevented by the high viscosity in 

the systems.  

 

 PARTICLE SIZE AND PARTICLE SIZE VARIANCE 3.3.4

 

 

The obtained particles were analysed for their particle size and size variance. The polymerisation 

solvent was evaluated in order to establish its effect on the particle size and particle size variance 

that can be achieved for each polymer P1-P9. Solvents which produce a low variance of particle 

size for particles of one monomer may not be suitable for the polymerisation of a different 

monomer due to the different relative solubilities and reactivities of those monomers.  Table 3.4 

shows the different particle sizes and particle size polydispersities that were achieved from 

dispersion polymerisation of monomers M1 – M9 (labelled P1 – P9) in different polar solvents 
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and solvent mixtures. Particle size polydispersity refers to the range of particle diameters that 

were obtained within samples of each polymerisation, stated as the coefficient of variance (Cv).  

 

Table 3.4: Particle size and particle size variance of polymer particles formed from monomers 

M1-M9 by polar dispersion polymerisation in a variety of solvents determined by POM and SEM 

studies. 1:1 refers to a solvent mixture of 1:1 EtOH: methoxyethanol. Sizes indicated (*) were 

calculated from POM and due to image resolution are stated to a lower accuracy. 

Dispersion polymerisation particles of 
Solvent 

Approximate  

size /µm  

Coefficient of 

variance (Cv) 

Terminal  P1 MeOH 0.85  10.7% 

  EtOH 0.86  7.2% 

  1: 1 1.28  5.4% 

C3 chain, C4 spacer P2 MeOH 0.96  28.1% 

  EtOH 1.90  16.0% 

C4 chain, C4 spacer P3 MeOH 1.30  21.7% 

  EtOH 2.08  15.4% 

  1: 1 3.2*  29% 

C5 chain, C4 spacer P4 MeOH 1.70  16.9% 

  EtOH 2.15  22.9% 

C6 chain, C4 spacer P5 MeOH 1.27  12.5% 

  EtOH 1.32  28.8% 

C7 chain, C4 spacer P6 EtOH 2.1 * 30% 

  1: 1 5.1 * 25% 

C8 chain, C4 spacer P7 MeOH 0.76  12.2% 

  EtOH 1.88  27.3% 

C4 chain, C11 spacer P8 MeOH 1.9 * 19% 

  EtOH 3.4 * 23% 

  1: 1 5.6 * 37% 

C7 chain, C11 spacer P9 MeOH 1.7 * 19% 

  EtOH 2.9 * 22% 

  1: 1 9.3 * 39% 

 

It can be noted from Table 3.4  that solvent polarity and monomer solubility have an effect on the 

resulting particle size and particle size variance, with particles made from lateral monomers in 

EtOH and methoxyethanol being generally larger and more polydisperse than those made from 

MeOH or EtOH alone. For example, the average particle size listed for P3 in Table 3.4 for 
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particles synthesised in EtOH is 2.08 µm with an average variance of 15.4%, compared to the 

particles synthesised in 1:1 EtOH: methoxyethanol which gives an average particle size of 3.2 µm 

with an average variance of 29%. This is as a result of monomers being very soluble in 

methoxyethanol; this allows the polymer chains to grow to a much larger degree before the 

nucleation of particles, producing an extended nucleation period with fewer growing particles 

which results in larger particles with a greater degree of variance being obtained. 

 

Particles synthesised from M1 are significantly larger when they are synthesised in a mixture of 

EtOH and methoxyethanol and display the best monodispersity of all samples investigated. This 

sample can be considered monodisperse because more than 90% of the particle size distribution 

lies within 5% of the median value.
155

 M1 has a significantly different structure to the other 

monomers being investigated as it is a terminally attached side-chain monomer with a cyano 

group terminating the mesogen, compared to the remaining monomers which are laterally 

attached side-chain monomers with terminating alkyl chains on the ends of the mesogenic group. 

This difference in structure explains its different solvent affinity, i.e. the monomer M1 is less 

hydrophobic and therefore better soluble in polar solvents, and therefore the particle sizes that are 

obtained in different reaction mixtures.  

 

The greatest degree of monodispersity, and also the smallest particle sizes, is generally achieved 

from MeOH, though the exact degree of particle size variance obtained varies for each monomer 

as a result of the different solvent affinities in each case.  

 

 NEMATIC ELASTOMERS 3.4
 

 DIFFERENTIAL SCANNING CALORIMETRY 3.4.1

 

The phase transition temperatures of the nematic elastomer particles were analysed by DSC. 

Table 3.5 gives the glass transition temperatures and nematic network phase ranges for the 

elastomer samples synthesised by RAFT assisted dispersion polymerisation. For comparison this 

table also lists the phase transition temperatures of the respective polymer particles.  
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Table 3.5: Phase transitions of nematic elastomer and polymer particles formed by RAFT-assisted 

dispersion. Phase transitions were established by DSC at 10 °C/min where the second/heat and 

cool cycle was recorded.  

Material Polymerisation method Tg / °C N / °C I 

  RAFT-assisted (no CL) • 27 • 114 • 

P1 Terminal RAFT-assisted (10 wt% CL) • 37 • 90 • 

  RAFT-assisted (no CL) • 53 • 92 • 

P2 C3 chain, C4 spacer RAFT-assisted (10 wt% CL) • 53   • 

  RAFT-assisted (no CL) • 30 • 77 • 

P3 C4 chain, C4 spacer RAFT-assisted (10 wt% CL) • 37 • 69 • 

  RAFT-assisted (no CL) • 33 • 71 • 

P4 C5 chain, C4 spacer RAFT-assisted (10 wt% CL) • 30 • 45 • 

  RAFT-assisted (no CL) • 23 • 91 • 

P5 C6 chain, C4 spacer RAFT-assisted (10 wt% CL) • 27 • 60 • 

  RAFT-assisted (no CL) • 25 • 70 • 

P6 C7 chain, C4 spacer RAFT-assisted (10 wt% CL) • 26 • 56 • 

  RAFT-assisted (no CL) • 20 • 90 • 

P8 C4 chain, C11 spacer RAFT-assisted (10 wt% CL) • 21 • 64 • 

  RAFT-assisted (no CL) • 6 • 71 • 

P9 C7 chain, C11 spacer RAFT-assisted (10 wt% CL) • 3 • 46 • 

 

From the examples presented in Table 3.5 we can see that in most cases the glass transition 

temperatures increase marginally on addition of crosslinker, which is to be expected as the 

formation of a network reduces the flexibility and freedom of the system. A reduction in the 

nematic phase range is also observed when a crosslinker is present because it disrupts the nematic 

order. 

 

 CONCLUSIONS 3.5
 

A series of monomers M1 –M9, synthesised from adaptations of literature procedures, which 

included the novel monomers M2 and M4 –M9, were analysed by differential scanning 

calorimetry and polarised optical microscopy in order to determine their phase transitions. All of 

the novel monomers displayed either monotropic or enantiotropic nematic phases with a wide 

temperature range. A distinct odd-even effect in both their Cr-N and N-I transition temperatures 

across the series was noted which correlated to the alkyl chain length on the spacer group. 
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Polarised optical microscopy and differential scanning calorimetry revealed the presence of the 

enantiotropic nematic phase across the entire series of polymers P1 – P9 irrespective of 

polymerisation method. Solution polymerisation methods were utilised in order to determine the 

effect of confinement on the nematic phase range that the particles would exhibit, revealing a 

reduction in glass transition temperature and N-I transition as a result of residual solvent 

molecules within the polymer matrix acting as a plasticiser as well as disrupting the nematic 

order. As the inclusion of solvent within nucleated particles is minimal, this effect was not 

observed for samples polymerised by heterogeneous methods. 

 

Gel permeation chromatography indicated that the inclusion of a RAFT agent into dispersion 

polymerisation resulted in a slight reduction in the molecular weight and molecular weight 

polydispersity that was obtained for the polymer particles. RAFT-assisted dispersion 

polymerisation also resulted in a significant increase in the degree of polymerisation obtained for 

particles of P8 and P9, indicating that it is a valid method for the polymerisation of all monomers. 

The highest molecular weight per polymer type was obtained when free radical solution 

polymerisation was employed, which is indicative that the viscosity within the growing particles 

of heterogeneous polymerisation methods limits the degree of polymerisation that can be 

obtained.  

  

Differential scanning calorimetry of nematic elastomer particles established the presence of a 

nematic phase across the series. The nematic phase range of the elastomer particles was slightly 

reduced compared to nematic polymer particles possibly as a result of the network points 

disrupting the nematic order. The differential scanning calorimetry results are further evidence 

that the elastomer particles created within this thesis have significant internal network formation. 
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4 CONFINEMENT TEXTURES OF NEMATIC 

POLYMER PARTICLES 
 

 INTRODUCTION 4.1
 

The successfully synthesised polymer particles were investigated by polarised optical microscopy 

in order to determine the director configuration. The effect of monomer structure, dispersing 

solvent and temperature were evaluated.  Using dispersion polymerisation nematic polymer 

particles were created within the size range of 1 – 5 µm in order to achieve a size range where 

surface controlled internal organisation should dominate.  

 

 EFFECT OF MONOMER 4.2
 

In Chapter 3, the general properties of polymers P1-P9 (made from M1-M9 respectively) were 

investigated, including factors like the phase transitions and degree of polymerisation obtained 

depending on the method of polymerisation used. In this section, amongst others, the effect of the 

mesogen structure on the particle properties will be investigated, specifically the director 

configurations that are observed. 

 

As surface anchoring strength was expected to be a major factor in determining the director 

configuration, all particles were analysed both in their crude dispersions with PVP still present in 

the reaction solvent as well as in clean dispersions in ethanol. A series of polymer particles were 

synthesised in identical conditions in EtOH to investigate the effect of the chemical structure on 

the resulting director configuration of the polymer. As surface curvature can affect the director 

configuration that will result, the particles were also synthesised in a variety of different solvents 

to allow for different particle sizes to be investigated.    

 

Table 4.1 summarises the different director configurations obtained from dispersion 

polymerisations of monomers M1-M9, each in EtOH and EtOH: methoxyethanol. The director 

configurations are described as observed in the crude dispersion and after purification in EtOH. 

As described in Chapter 2, the work-up stage involves solvent exchange into EtOH by a 

centrifugation process to remove any PVP55 from the surface of the particles.  
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Table 4.1: Configuration of polymer particles formed from monomers M1-M9 by polar 

dispersion polymerisation in EtOH and 1:1 EtOH: Methoxyethanol determined by POM.  For 

comparison all particles were also analysed when dispersed in clean EtOH after purification. 

Solvents listed as 1:1 describe a solvent mixture of 1:1 EtOH: methoxyethanol. 

Particles of: Solvent 
Crude 

configuration 

Configuration in 

EtOH 

Terminal  P1 EtOH Bipolar Bipolar 

  1: 1 Bipolar Bipolar 

C3 chain, C4 spacer P2 EtOH Bipolar Bipolar 

  1: 1 Bipolar Bipolar 

C4 chain, C4 spacer P3 EtOH Bipolar Bipolar 

  1: 1 Bipolar Bipolar 

C5 chain, C4 spacer P4 EtOH Radial Radial 

  1: 1 Bipolar Radial 

C6 chain, C4 spacer P5 EtOH Twisted Radial Radial 

  1: 1 Bipolar Radial 

C7 chain, C4 spacer P6 EtOH Radial Radial 

  1: 1 Bipolar Radial 

C8 chain, C4 spacer P7 EtOH Twisted Radial Radial 

  1: 1 Radial Radial 

C4 chain, C11 spacer P8 EtOH Bipolar Bipolar 

  1: 1 Bipolar Bipolar 

C7 chain, C11 spacer P9 EtOH Twisted Radial Radial 

  1: 1 Radial Radial 

 

In order to illustrate a change in director configuration in Table 4.1 more clearly, the table has 

been coloured according to the director configuration that is displayed, where green is bipolar, 

orange is radial and purple is twisted radial.  

 

Polymer particles from the terminally attached nematic monomer P1 display a bipolar 

configuration when analysed by POM in all investigated solvents. This director configuration has 

been arbitrarily assigned from the flashing the particles display as they spin with Brownian 

motion. For larger particles of other polymers the typical baseball extinction pattern of bipolar 

particles can be observed, as seen in Figure 4.1, but as the extinction pattern is too small to be 

fully resolved in some samples there is a possibility that these particles may display the uniform 
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confinement texture.
105

 The assignment of a bipolar texture agrees with literature findings
6, 62, 104, 

105
 for particles of this monomer where bipolar particles are formed in polar solvents. 

 

The lateral monomer series displays a systematic variation in chemical structure along the series. 

It was found that nematic polymer particles formed from monomers with short alkyl side chain 

groups of C3 or C4 (M2, M3 and M8) displayed bipolar/uniform textures when observed by 

POM in EtOH. Some samples were polydisperse with sizes ranging from below 1 µm to around 5 

µm; the director configuration was bipolar across the whole visible size range, indicating that the 

bipolar director configuration is preferred across a range of different surface curvatures. The 

preferred parallel surface anchoring is therefore strong enough in the investigated range to be a 

dominating factor in defining which director configuration will be displayed. 

 

In direct contrast to monomers with alkyl groups of C3 or C4, monomers with alkyl groups of C5 

or greater (M4-M7 and M9) displayed a radial director configuration in EtOH across all 

observable size ranges. This comparison is illustrated in Figure 4.1.  

 

   

Figure 4.1: POM photomicrographs taken at rt with 200× magnification through crossed 

polarisers of (a) particles formed from M8 in EtOH and (b) particles formed from M9 in EtOH. 

Inset are magnifications to show confinement texture.  

 

A possible rationalisation is that these polymers prefer a radial director configuration because the 

longer, laterally attached mesogenic groups may have a larger bend deformation elastic constant 

K3 and therefore cannot accommodate the curvature of the particle surface as easily. By switching 

to a radial director configuration and ignoring the parallel surface influence the director 

configuration is of lower energy because of the smaller energetic cost of the splay deformation K1 

(a) (b) 
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compared to the bend, K3. However, this explanation would infer a dependence of director 

configuration on size, because of the different surface curvatures that are observed in particles of 

different sizes, which is not observed within the size range studied, as the particles are either all 

radial or all bipolar, irrespective of size.  

 

Our results are in contrast to previous findings of nematic polymer particles synthesised by 

dispersion polymerisation in polar media such as water, EtOH and EtOH and methoxyethanol 

mixtures,
78, 79

 which although never analysed as such show that bipolar particles are obtained 

when synthesised in polar media. This is true for a variety of different terminal monomer 

structures in particles across a size range of approximately 1 µm to 10 µm.
6, 62, 78, 79, 102-105

 These 

findings do not include laterally attached monomers which polymerise to form prolate polymer 

chains with a large degree of coupling to the polymer backbone resulting in anisotropic polymer 

chains. Within our results, the anisotropic polymer backbone could be a factor in the ability of the 

liquid crystal to accommodate the surface curvature as the mesogenic freedom is reduced, and a 

switch to a radial director configuration may result in a significant change in the organisation of 

the polymer backbone which may result in a reduction in the energetic cost. The systematic 

approach chosen within this thesis revealed a direct and unexpected influence of an incremental 

change in mesogen structure on confinement texture.  

 

The alkyl chain length of the spacer group was varied between a butyl spacer (M2-M7) and an 

undecyl spacer (M8 and M9). There was no visible change in the director configuration as a 

result of this change, though an increase in particle size was observed. A possible rationalisation 

for this increase in size is as previously mentioned, the degree of polymerisation obtained for the 

longer spacer group monomers M8 and M9 was in general much lower for those with a butyl 

spacer (M2- M7). The difference in size obtained by using equivalent monomers with different 

spacer groups is illustrated in Figure 4.2. 
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 EFFECT OF SOLVENT 4.3
 

As discussed in the previous section, the structure of the monomer used has a marked effect on 

which director configuration the particles will display when dispersed in EtOH, with a switch 

occurring from a parallel surface alignment and a bipolar structure to perpendicular alignment and 

a radial structure between C4 and C5 side chain lengths. An investigation was carried out to 

establish whether this switch occurred at the same point in the lateral series when the particles 

were synthesised in a different reaction medium.  

 

Also shown in Table 4.1 are the director configurations of particles synthesised from monomers 

M1-M9 in both EtOH and 1:1 EtOH: methoxyethanol. Both of these reaction media are polar and 

promote a parallel surface anchoring of the liquid crystal, though as the addition of 

methoxyethanol changes the preferred director configuration for some polymers, it is reasonable 

to assume that it must change the surface anchoring strength of the solvent. This information is 

depicted graphically in Figure 4.3. 

 

 

  

Figure 4.2: POM images with 200× magnification of particles made from (a) M3 (C4 chains, C4 

spacer) and (b) M8 (C4 chains, C11 spacer) taken at room temperature through crossed 

polarisers. The scale bars represent 10 µm.  

(a) (b) 
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Figure 4.3: Showing the change in director configuration on increasing alkyl side chain length 

from C3 to C8 in polymers formed from M2-M7 when polymerised in different solvents. 

 

As can be seen in Table 4.1 and as illustrated in Figure 4.3, the switch from bipolar to radial 

occurs at longer alkyl side chain lengths in the series when the particles are obtained in EtOH: 

methoxyethanol mixture rather than EtOH alone, indicating that the particles are affected by the 

surface anchoring strength of their dispersing media. A response to changes in surface anchoring 

is an interesting prospect which could allow the particles to be used in applications as sensors for 

factors such as solvent polarity. Example photomicrographs are illustrated in Figure 4.4, showing 

the difference between particles of M6 when synthesised in EtOH and in an EtOH: 

methoxyethanol mixture. 

 

EtOH 

bipolar / planar radial 

EtOH: methoxyethanol 

bipolar / planar radial 
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Figure 4.4: POM photomicrographs illustrating the different director configurations displayed by 

particles of M6 when synthesised in (a) EtOH, the particles are displaying a radial director 

configuration and (b) EtOH: methoxyethanol, the particles are displaying a bipolar director 

configuration. Photomicrographs taken at room temperature through crossed polarisers with 200× 

magnification. The scale bars represent 10 µm. Inset are magnifications to show confinement 

texture. 

 

A switch in the preferred director configuration occurs between C4 and C5 alkyl side chain 

lengths when the particles are synthesised in EtOH. A switch from bipolar to radial occurs instead 

only between C7 and C8 when the nematic polymer particles are obtained from 1:1 EtOH: 

methoxyethanol. As the elastic constants of the polymers have not changed, it is reasonable to 

assume that the parallel surface anchoring strength of the EtOH: methoxyethanol mixture must be 

stronger than that of pure EtOH, making a bipolar configuration the most favourable 

configuration until later in the series, despite the unfavourable bend deformation. The cost of the 

bend deformation may then eventually exceed the gain of aligning with the imparted surface 

anchoring, but not until much later in the mesogen structure series.    

 

 EFFECT OF REACTION TEMPERATURE  4.4
 

For comparability of results, all polymerisation reactions were performed at the same 

temperature. Temperature is known to influence solubility which in turn will affect when the 

nucleation of particles occurs and the size that the particles reach. Polydispersity of particle size 

and molecular weight is also affected by temperature as the decay of AIBN is temperature 

dependent which influences the kinetics of free radical polymerisation and affects the degree of 

polymerisation that is obtained. Another factor strongly affected by temperature which may 

(a) (b) 
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potentially influence the resulting particle director configuration is the liquid-crystalline order 

within the particles.  Particles polymerised outside of their nematic phase, in the isotropic state, 

may display different director configurations or polydomain internal structures as a result of being 

polymerised while no internal liquid-crystalline order is present, though this is likely reversible in 

polymer particles as annealing the particles after synthesis at temperatures well above Tg will 

allow for the organisation of the anisotropic polymer backbone. 

 

Polymerising in the isotropic phase of the polymer in comparison to polymerising in the nematic 

phase was investigated to establish what effect this would have on the resulting director 

configuration of the particles. Polymerising at a higher temperature may also result in larger 

particles as a result of increased solubility of the monomer and polymer in the reaction medium. 

Figure 4.5 shows comparative photomicrographs illustrating the effect of polymerising in the 

isotropic versus the nematic phase. Of all the monomers synthesised, various monomers have the 

nematic – isotropic transition temperatures below the reaction temperature. The effect of 

polymerising within the nematic phase of the polymers was assessed for M6, M8 and M9. Of 

these, only M9 showed a difference when polymerised in the nematic phase as opposed to the 

isotropic, as shown in Figure 4.5. 

 

   

Figure 4.5: Polarised optical microscopy images taken through crossed polarisers at rt with 200× 

magnification. (a) M9 polymerised in EtOH at 55 °C (nematic phase of polymer) and (b) M9 

polymerised at 73 °C (isotropic phase of polymer). The scale bars represent 10 µm. 

 

When polymerised in the nematic phase rather than the isotropic phase of the polymer, the 

twisted radial configuration was observed, displaying an ‘X’ shaped extinction pattern rather than 

the Maltese cross pattern associated with the expected radial texture. The twisted radial structure 

is an intermediate escaped configuration known in the literature
156-159

 to be of borderline stability. 

(b) (a) 
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It exists as the slight twist in one plane results in a minimisation of the splay deformation the 

central hedgehog defect causes. The twist usually results in the slight migration of the hedgehog 

defect, as illustrated in the schematic of the twisted radial director configuration shown in Figure 

4.6. 

  

 

Figure 4.6: The twisted radial director configuration. A twist in one plane reduces the energetic 

cost of the splay deformation. The twist causes the central hedgehog defect to escape slightly in 

one plane. 

 

Twisted radial particles can be further distinguished from radial particles using a λ wave plate. 

The addition of the wave plate allows for the director orientation within the particles to be 

determined. Isotropic regions are observed as magenta with the addition of a λ wave plate because 

the wave-front ellipsoid of the λ wave plate results in retardation of green light. Within an 

anisotropic sample, a director orientation with a wave-front ellipsoid parallel to the ellipsoid of 

the λ wave plate is observed as blue as a result of the addition of the two ellipsoids resulting in 

the relative retardation increasing to longer wavelengths, which results in the extinction of red 

light at the second polariser. Conversely, an orientation of the director with a wave-front ellipsoid 

perpendicular to that of the λ wave plate will result in a yellow colour being observed because in 

this case the relative retardation is decreased and blue light does not pass through the second 

polariser. When radial particles are observed with a λ wave plate, the blue and yellow quadrants 

of the Maltese cross extinction pattern appear in the same orientation across the sample as a result 

of the radial director configuration being symmetrical. The twist within twisted radial particles 

breaks this symmetry and allows for different configurations to be observed, because the twist 

will occur in different directions across the sample and the particles are randomly orientated 

between the polarisers and wave plate. A polarised optical microscopy image showing the twisted 

radial director configuration of particles of P9 and the corresponding region with the addition of a 

wave plate showing the different observed twist directions within particles is shown in Figure 4.7. 

 

y 

x 

z 

x 
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Figure 4.7: POM photomicrograph showing the twisted radial director configuration with the 

addition of a wave plate to show twist direction.  

 

As shown in Table 4.1, particles made of P9 also showed a twisted radial structure in crude EtOH 

dispersions. It would seem that these particles may have the propensity to escape into a twisted 

structure in order to reduce the energy cost of the splay deformation, as a twist in one plane 

reduces the amount in which the mesogenic units must splay. When polymerised in the nematic 

phase the mesogenic units arrange in the lowest energy configuration, the twisted radial director 

configuration. When polymerised in the isotropic phase the nematic organisation within the 

particles will not form until after the polymerisation has completed and the reaction is allowed to 

cool, with the possible result that the polymer chains are not in the optimal configuration for the 

lowest energy mesogenic organisation and therefore a different director configuration may result. 

When a nematic polymer with coupling between the backbone and the mesogenic unit is 

polymerised within the nematic phase the polymer chains organise anisotropically because of the 

organisation of the mesogenic units. This allows for the optimal organisation of the mesogens 

because the polymer organisation is dictated by their alignment. When a nematic polymer is 

polymerised within the isotropic phase the opposite is true, the polymer chains adopt an isotropic 

random coil formation as they are polymerised without an anisotropic influence. As the nematic 

phase is reinstated the polymer chains will align anisotropically with the mesogenic units as 

before but the entanglement of the polymer chains which occurred during polymerisation may 

prevent optimal alignment of the polymer chains and therefore result in a higher energy director 

configuration.  
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 COPOLYMERISATION STUDY 4.5
 

 

The results discussed so far within this chapter indicate that a small change in monomer structure 

can result in an observable change in the director configuration. A copolymerisation study in 

EtOH using mixtures of M8, which polymerises to form bipolar particles, and M9, which in 

general polymerises to form radial particles, was completed to investigate the transition between 

these two configurations on increasing alkyl chain length. The aim of this study was to investigate 

the influence of copolymer composition on the director configuration, with the possibility of 

finding a copolymer ratio that created particles with a configuration on the borderline of its stable 

range.  

 

The experiments were completed in 10 wt % increments, ranging from 100% M8 to 100% M9; 

with additional smaller increments investigated when one monomer accounted for over 90% of 

the monomer feed stock. It is difficult to state unequivocally the compositions of the copolymers 

in each case as one monomer may be incorporated into the chain preferentially, but it can be 

estimated with the aid of 
1
H NMR spectroscopy as the length of alkyl chain on each monomer is 

different. By evaluating the integrations of the alkyl regions in the spectra, the amount of M9 

present in the sample can be estimated.  

 

The results of the full 
1
H NMR study are displayed in the graph in Figure 4.8. Samples of each 

copolymer were thoroughly cleaned by a solvent exchange by centrifugation process and then 

dried for 
1
H NMR analysis. The samples were allowed to fully dissolve in deuterated chloroform 

before being analysed by 
1
H NMR. In order to increase the accuracy of integration the T1 delay 

time on the spectrometer was also increased to 10 s to accommodate for the slower relaxation 

time of the polymer.  
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Figure 4.8: Scatter graph to show the increasing alkyl region from 
1
H NMR spectra as the 

weight percentage of M9 present in the monomer mixture increases.  

 

It can be assumed that both monomers are being incorporated into the polymer in quantities 

roughly relative to the monomer mixtures as there is an observable increase in alkyl protons 

throughout the series. Although the observed results follow a similar gradient to the predicted 

results, they consistently integrate to lower values. When the relaxation delay period on the 

instrument was increased to accommodate for the slower polymer chains, the integration was then 

overestimated, though the series still followed an increasing trend.  

 

The copolymerisation study revealed a director configuration that was prevalent to some degree 

across the entire sample range, the twisted radial director configuration, which was also observed 

in crude dispersions of polymer particles of M9 in EtOH, as well as some polymerisations 

completed in the isotropic phase of the particles in EtOH. Shown in Figure 4.9 are example 

photomicrographs from the copolymerisation study, illustrating the presence of the twisted radial 

configuration to some extent across all copolymer compositions. These particles were synthesised 

using dispersion polymerisation in EtOH. Figure 4.9 (a) and (b) show particles large enough for 

the extinction pattern to be fully resolvable and the ‘X’ shape characteristic of the twisted radial 

samples to be observed. Particles in Figure 4.9(c) are smaller and the ‘X’ shaped extinction 
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pattern is resolved only for the larger particles. The remaining particles can be distinguished from 

bipolar particles as the observed birefringence does not change as they spin, and distinguished 

from radial particles as the addition of a wave plate shows the presence of a twist. Evidently these 

effects cannot be expressed in the images presented here. The image shown in Figure 4.9(d) is 

primarily a bipolar sample, which when the particles are small can be assigned by an observable 

flashing as a result of the changing birefringence the particles display on rotation. There is a small 

presence of twisted radial particles within this sample which are static in comparison.       

 

   

   

Figure 4.9: Selected polarised optical photomicrographs illustrating the presence of the twisted 

radial configuration to some degree throughout the entire copolymerisation series. Images taken 

at room temperature, through crossed polarisers. Scale bar represents 10 µm. 

 

It would seem that particles formed from M9 contain a predisposition to escape into a twisted 

structure, minimising the splay deformation from the central hedgehog defect. A second 

copolymerisation study was completed with monomers M3 and M6, which reproducibly display 

bipolar and radial textures in dispersions in EtOH respectively, to assess whether the twisted 

radial configuration will be present in samples without a predisposition to form the twisted 

structure. The results of this copolymerisation study, completed in 10 wt % increments, ranging 

(a) 90% M9 in feed (b) 50% M9 in feed 

(c) 30% M9 in feed (d) 10% M9 in feed 
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from 100% M3 to 100% M6, are illustrated in the graph in Figure 4.10. For this NMR study a 10 

second relaxation delay was employed to accommodate for the slower relaxation of polymers.  

 

 

Figure 4.10: Scatter graph to show the increasing alkyl region from 
1
H NMR spectra as the 

volume of M6 present in the monomer mixture increases. 

 

This copolymerisation study shows a very strong correlation between the integration of the alkyl 

region in the proton NMR and the predicted composition of the copolymer based on the monomer 

feed. This is strong evidence that the polymer composition reflects that of the monomer feed. 

However, the alkyl region of the NMR is integrating consistently higher than the predicted values 

calculated from the molecular weights of the relative monomer mixtures would suggest. This 

indicates that the relaxation delay used may not have been sufficient to allow for full relaxation of 

the polymer and therefore reducing the accuracy of the integration. Alternatively, it could indicate 

that there are impurities within the samples. PVP (poly(vinylpyrrolidone)), the steric stabiliser 

used in all the reactions shows predominantly in the alkyl region of the 
1
H NMR. Its presence 

would result in the alkyl region integrating considerably higher, though it is unlikely to result in a 

consistent increase as these particles were evaluated after cleaning by centrifugation, so the 

amount of PVP remaining on the particle surfaces will be minimal.     

 

Shown in Figure 4.11 are some example polarised optical microscopy photomicrographs from the 

copolymerisation of M3 and M6.  
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Figure 4.11: Selected polarised optical photomicrographs illustrating the entire copolymerisation 

series of M3 and M6. Images taken at room temperature, through crossed polarisers with 200× 

magnification. Insets are magnifications to show confinement texture. 

 

Unlike the copolymerisation of M9 and M10, the copolymerisation of M3 and M6 does not yield 

any twisted radial particles across the copolymerisation samples. Instead there is a steady increase 

of the presence of radial particles as the percentage of M6, the monomer which forms radial 

particles when polymerised in EtOH, increases. This is interesting as it indicates that the twisted 

radial structure observed previously is likely to be as a result of M9 having a propensity to form 

the escape structure, as it has been observed in some crude dispersions. The twisted radial 

structure is not observed throughout the copolymerisation study as neither M3 nor M6 have the 

propensity to form it. It is not easily understood why particles within the same sample are 

displaying different textures, though the constitution of the particles may vary slightly across the 

(a) 90% M3 in feed (b) 50% M3 in feed 

(c) 90% M6 in feed 
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samples both in size and copolymer composition which may result in different director 

configurations being the most energetically favourable. 

  

 RESPONSE STUDIES 4.6
 

It can be noted from Table 4.1 that polymer particle samples from a selection of monomers 

display different director configurations when in the crude suspension compared to the clean 

suspension in EtOH, especially if the reaction solvent was different. P5, P7 and P9 all display a 

radial configuration when dispersed clean in EtOH, though a twisted radial configuration is 

observed in crude dispersions where the steric stabiliser PVP55 is still present in the solvent. This 

twisted configuration may be as a result of the PVP55 promoting a parallel alignment at the 

surface, resulting in stronger surface anchoring and a tilt of the mesogenic units at the surface 

boundary. This is an example of how the particle can respond to changes in the external 

environment, in this case the removal of the surface analyte and steric stabiliser PVP55.  Earlier 

in this chapter the different director configurations as a result of polymerisation solvent were 

discussed, with some polymer particles synthesised in EtOH resulting in a radial configuration 

whereas if synthesised in 1:1 EtOH: methoxyethanol showed bipolar director configurations (P4-

P6). Table 4.1 illustrates that these particles can undergo a director configuration transition and 

display different configurations when transferred from 1:1 EtOH: methoxyethanol in their crude 

dispersion into EtOH when clean.  

 

A sample of P6 particles created in 1:1 EtOH: methoxyethanol displays a bipolar configuration in 

a crude dispersion which switches to radial when in the clean dispersion. This switch occurs at 

room temperature. These particles formed from M6 were subjected to a washing by a solvent 

exchange by centrifugation process in order to remove the stabiliser PVP55 and replace the 

dispersing medium to EtOH. This process takes approximately fifteen minutes to complete. 

Polarised optical microscopy of these particles after the centrifugation process reveals that a 

switch to a radial configuration had occurred within this time and at room temperature. A switch 

such as this would not be observed if the particles were redispersed while below their glass 

transition temperature, as the polymer chains will be rigid and will not allow reorientation of the 

mesogenic units. Below the glass transition temperature the particles are an unresponsive nematic 

glass rather than within their true nematic phase, which requires a degree of flow in order to 

reorganise. The glass transition temperature of polymer particles of P6 when polymerised by 

dispersion polymerisation was discussed in Chapter 3 and found to be approximately 24 °C by 

differential scanning calorimetry, a transition temperature which is close to but still above room 

temperature. A possible reason for the responsive nature of the nematic polymer particles at room 
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temperature is that they have taken up a small degree of EtOH: methoxyethanol from the 

surroundings. This would increase the flexibility of the polymer chains compared to their 

measured glass transition temperature when thoroughly dried, i.e. effectively lowering their glass 

transition temperature. Furthermore, polymers possess some flexibility in a rather wide window 

around their Tg.
137

 Shown in Figure 4.12 are images illustrating the crude dispersion in 1:1 EtOH: 

methoxyethanol, displaying a bipolar texture, and the radial director configuration that is 

observed after the particles are cleaned.  

 

   

Figure 4.12: Photomicrographs taken through crossed polarisers at 200× magnification at room 

temperature of nematic particles formed from M6 dispersed in (a) 1:1 EtOH: methoxyethanol 

mixture in the presence of PVP55 and (b) EtOH after washing to remove PVP55. Insets are 

magnifications to show confinement texture. 

 

SDS is a surfactant known to impart a perpendicular surface alignment, and therefore radial 

texture, on droplets of 5CB.
2, 3

 Addition of SDS to the crude suspension of the particles of M6 

was carried out, but the addition of the analyte did not result in a change of director configuration. 

A reason for this could be that the particles in this crude suspension are coated by the steric 

stabiliser PVP which promotes parallel surface anchoring and a bipolar configuration. The SDS 

cannot access the surface to impart a different preferred mesogenic anchoring. A switch may 

occur if a washed sample was investigated, though in this case the washed samples are already 

displaying a radial confinement texture as a result of removal of PVP from the particle surfaces 

and the transferral to a solvent with a different surface anchoring strength. A further systematic 

investigation of these effects was not performed. 

 

(a) (b) 
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 CONCLUSIONS 4.7
 

 

Previous research into the dispersion polymerisation of terminally attached nematic monomers 

indicates that a polar reaction medium and protic solvents result in the particles displaying a 

bipolar director configuration
78, 79, 102, 103

, a finding that is reflected in droplets of 5CB dispersed in 

polar solvents.
2, 3

 By investigating a series of lateral monomers with systematic variations in 

chemical structure it has been established that other director configurations are in fact possible 

within polar solvents. A switch in director configuration from bipolar to radial was observed on 

an incremental small change in the alkyl side chain length on the mesogenic unit. This switch 

could happen because the longer mesogenic units cannot accommodate the curvature at the 

surface of the particles when orientated parallel to the surface and so adopt a radial director 

configuration. This explanation indicates a dependence of director configuration on size however, 

which is not observed within the size range investigated. The surface anchoring strength is also a 

factor in determining which director configuration will be exhibited as the director configuration 

that is observed is a result of a balance between bulk and surface interactions, increasing the 

parallel surface anchoring strength results in the switch in director configuration occurring at a 

longer alkyl side chain length.  

 

Previous studies have been completed
79

 which investigate an array of different smectic and 

nematic monomers in dispersion polymerisation processes, though the study was not systematic 

and did not draw conclusions about the effect of monomer structure on the resulting particle 

director configurations. The systematic series of monomers and polymers created within this 

thesis allowed for a systematic investigation into the effect of monomer structure. The results 

establish a structure/property relationship of director configuration to mesogen structure, a factor 

that has not previously been investigated. This relationship allows for the controlled synthesis of 

polymer particles with a chosen director configuration. 

 

Some of the monomers with longer mesogenic units which form particles which display radial 

director configurations (M5, M7 and M9) also display a second configuration within crude 

dispersions. This director configuration was established to be the twisted radial director 

configuration, which is an escaped radial configuration of limited stability in which a twist has 

occurred in one plain in order to minimise the splay deformation. This configuration was also 

observed in one case when the particles were polymerised in their nematic phase but not when 

polymerised whilst in the isotropic phase. The twisted radial structure may be prevalent in these 

larger mesogens because it may minimise the energy of the defect locally. In the crude 
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dispersions the steric stabiliser PVP55 is present and promotes a parallel surface alignment. This 

increased surface anchoring strength when compared to the clean samples in pure ethanol could 

also be a reason for the twist to occur as it results in a tilt of the mesogenic units at the particle 

surface. The change in director configuration as a result of a change in host polarity shows that 

these systems respond to changes in the external environment, a property which could give 

applications as microscale sensors for the addition of an analyte or as a more resilient form of the 

liquid crystal droplet sensors which have already been reported.
5, 53, 160

 

 

The twisted radial director configuration is observed in copolymerisation studies of M9 (which 

displays a radial configuration in clean dispersions in EtOH but forms the twisted radial 

configuration in crude dispersions in the presence of PVP55) and M8 (which forms bipolar 

particles). The twisted radial configuration may result in the crude dispersions as a result of the 

PVP55 promoting a parallel surface alignment which could be sufficient to impart a tilt at the 

surface. The same effect occurs in the copolymerisation study possibly as a result of a second 

monomer being added to the reaction which itself prefers a parallel surface alignment. Since the 

twisted radial structure is an escaped structure of borderline stability, it should be responsive to 

external stimuli as a small change in surface anchoring will result in an observable change in the 

director configuration.   
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5 INVESTIGATION OF OPTICAL PROPERTIES 

OF NEMATIC ELASTOMER PARTICLES 
 

 INTRODUCTION 5.1
 

As has been discussed in the synthesis chapter (chapter 2), the synthesis of nematic elastomer 

particles is in principle comparable to those discussed for the preparation of nematic polymer 

particles. The creation of particles which were fully networked with elastomeric properties was 

however more difficult to realise.  

 

This chapter will investigate the elastomeric particles synthesised by RAFT-assisted dispersion 

polymerisation and dispersion polymerisation with a delayed addition of crosslinker via polarised 

optical microscopy, including studies which examine the effect of the addition of a swelling 

solvent, and heating above the nematic to isotropic transition temperature of the particles.  

 

 HEATING STUDIES 5.2
 

At room temperature elastomeric particles formed by RAFT-assisted dispersion polymerisation 

display polydomain structures possibly as a result of the network points throughout the particle 

disrupting the nematic order and preventing the formation of a resolved director configuration. 

An example of particles displaying this polydomain texture can be found in the photomicrographs 

Figure 5.1. Due to the degree of network formation within the particles the degree of freedom the 

mesogens experience is limited as the networked polymer chains will not reorganise or flow as 

they can in polymeric systems. However, the application of heat should allow for the director 

configuration to resolve once the networked polymer chains become flexible enough to allow for 

reorganisation of the mesogenic units. 
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Figure 5.1: (a) POM photomicrograph showing a dispersion of particles synthesised from M1 

by RAFT-assisted dispersion polymerisation in 1:1 EtOH: methoxyethanol showing a 

polydomain internal texture, (b) a magnified region to show unresolved confinement texture and 

(c) POM photomicrograph of the same sample taken with uncrossed polarisers to illustrate the 

particle size and variance that was obtained. Scale bar represents 10 µm. 

 

Elastomeric particles synthesised by RAFT-assisted dispersion polymerisation in the presence of 

crosslinker were dispersed in glycerol and heated into their isotropic phase. Glycerol was selected 

for a number of reasons: it is has a high boiling point, allowing for the samples to be heated above 

the nematic-isotropic temperature of the particles; it is miscible with EtOH, which allows for the 

easy transferral of particles; and it is similar in polarity to EtOH and so should not affect the 

director configurations that the particles are exhibiting. It is also a more viscous solvent, which 

will reduce the mobility of the particles with thermal motion, allowing for the observation of an 

individual particle. The particles were dispersed in glycerol by adding a sample of the clean EtOH 

(a) 

(b) 

(c) 
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dispersion to a sample tube containing glycerol.  Heating these particles above their glass 

transition temperatures allowed for the resolution of the director configurations within the 

particles. This investigation was also further evidence of the successful network formation within 

these systems, as non-crosslinked samples lose their discrete shapes when the temperature is 

maintained above the glass transition.  

 

Shown in Figure 5.2 is a heat study of particles of P1 and in Figure 5.3 is particle of P3, both 

synthesised by RAFT-assisted dispersion polymerisation in the presence of crosslinker. These 

heating studies were viewed with the addition of a λ wave plate to allow for the particles to be 

observed above their isotropic transition when they are no longer birefringent but also to aid in 

the determination of their director configurations. 

 

    

    

    

Figure 5.2: Series of images depicting the heating to isotropic of a series of LCE particles made 

from M1 and dispersed in glycerol. Images were taken at 200× magnification. 

 

(d) 30°C on cool (c) 90°C 

(b) 70°C 

(a) rt 
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In the magnified region of Figure 5.2(a) it can be seen that the particles at room temperature have 

polydomain regions within them, indicated by a change in colour when viewed by a λ wave pate 

as a result of a different director orientation. This is not observed when the particles are observed 

at elevated temperatures as can be seen in the magnified region of Figure 5.2(b), indicating that 

the director configuration becomes more resolved once the particles reach a temperature 

significantly above their glass transition, as the mesogenic units within the particles have 

increased freedom to align when the networked anisotropic polymer backbone chains are flexible. 

 

For elastomeric particles formed from the lateral monomer M3 the effect of improving 

confinement texture is not as pronounced as it is for elastomeric particles made from the 

terminally attached monomer M1, as can be seen in Figure 5.3. A reason for this diminished 

improvement may be that as laterally attached liquid crystal polymer systems display more 

coupling between the mesogenic unit and the polymer chains, the network disrupts the alignment 

more significantly.  

 

    

    

Figure 5.3: Series of images depicting the heating to isotropic of a series of LCE particles made 

from M3 and dispersed in glycerol. Images were taken at the temperature specified, through 

crossed polarisers with the addition of a λ wave plate at 200× magnification.  

 

It can be noted that the particles appear to increase in size as the temperature is elevated. This 

may be because they are more likely to swell slightly in a hot solvent compared to the solvent at 

room temperature, but could also be indicative of the particles losing their shape integrity as they 

(a) rt (b) 60°C 

(d) 30°C on cool (c) 80°C 



111 

soften above the glass transition. It is difficult to state unequivocally whether a shape change is 

occurring in this case because the particles are rather small and so any change in shape may not 

be resolvable. 

 

 SWELLING STUDIES 5.3
 

 

When a nematic polymer is exposed to a solvent in which it is soluble in, the polymer will 

dissolve. Liquid-crystalline elastomers are inherently insoluble because of the network, so cannot 

dissolve when exposed to a favourable solvent. Instead they swell with the uptake of this solvent, 

which disrupts the nematic order within the elastomer and results in the network becoming 

isotropic. As the elastomer is a fully crosslinked network this process should be completely 

reversible and the removal of the solvent should allow the nematic phase within the material to 

reinstate.  

 

Elastomeric particles created by RAFT-assisted dispersion polymerisation were subjected to a 

swelling study as a further assessment into the successful network formation within the particles, 

as well as to assess the response of the particles to solvent uptake. The particles were dispersed in 

EtOH and viewed by polarised optical microscopy. Toluene was added to one side of the sample 

and the particle behaviour was observed as the solvent front travelled across the viewing plane. 

The sample was then flooded with ethanol in order to de-swell the particles and allow for the 

birefringence to return. This process was repeated to ensure reproducibility.  

 

Shown in the series of images in Figure 5.4 and Figure 5.7 are swelling studies completed for 

LCE particles of P3 (Lateral monomer C4 chain, C4 spacer). Two different swelling solvents, 

toluene and acetone, were utilised to investigate the effect of solvent polarity and miscibility.  
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Figure 5.4: Series of images depicting the swelling of a series of LCE particles of P3 with 

toluene. Images were taken at room temperature through crossed polarisers with the addition of a 

λ wave plate at 200× magnification. 

 

Figure 5.4(b-c) shows that the particles remain discrete after the viewing plane is flooded with 

toluene. The birefringence has disappeared and the sample appears completely dark when only 

crossed polarisers are used to observe it, indicating that the particles are isotropic at this stage. 

When the birefringence begins to return in Figure 5.4(d-e) on addition of EtOH the particles are 

displaying a radial extinction pattern. This extinction pattern is more clearly illustrated in Figure 

5.5 where the still slightly swollen particles are viewed through crossed polarisers. Figure 5.5 was 

imaged at the same time as the image depicted in Figure 5.4(e) without the wave plate to allow 

for the extinction pattern to be more easily established. The radial director configuration may be 

observed at this stage because there is still a high proportion of toluene present within and 

surrounding the particles which, as a non-polar solvent, promotes a perpendicular surface 

alignment. The toluene takes approximately 30 minutes before it is fully removed from the 

particles and the unresolved texture returns.  

(a) before toluene (b) on addition of toluene (c)  swollen with toluene 

(d) on addition of EtOH (e) birefringence returning (f) unresolved texture  

returns 
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Figure 5.5: Image illustrating the radial director configuration of the particles of M3 through 

crossed polarisers at 200× magnification as the birefringence returns after addition of toluene. 

 

The initial resolution of a director configuration after swelling can also be seen in Figure 5.6, 

which shows a sample of particles of P6 (synthesised from monomer M6) after RAFT assisted 

dispersion polymerisation in the presence of a crosslinker and after swelling with toluene which 

results in the temporary resolution of the radial director configuration.  

 

   

Figure 5.6: POM photomicrographs showing particles created from M6 by RAFT-assisted 

dispersion polymerisation in EtOH (a) in the clean dispersion in EtOH showing polydomain 

textures and (b) after swelling with toluene showing radial confinement textures. 

 

This reversible swelling was observed for all particles synthesised from monomers M1-M9 by 

RAFT-assisted dispersion polymerisation. 

(a) (b) 
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A comparable swelling study with acetone is presented in Figure 5.7. In this case, when the 

birefringence returns a bipolar texture can be observed within the particles, probably because 

acetone is polar and hence induces similar alignment conditions to e.g. ethanol.  The 

birefringence takes considerably longer (approximately two hours) to return in the case of acetone 

compared to when the particles are swollen with toluene. 

  

     

     

Figure 5.7: Series of images depicting the swelling of a series of LCE particles of M3 with 

acetone. Images were taken at room temperature through crossed polarisers with the addition of a 

λ wave plate at 200× magnification. 

 

A good indication for crosslinking is if discrete particles remain while in a swollen isotropic gel 

state, since the particles would dissolve without network formation. If any nematic texture can be 

observed outside the particles after swelling with a favourable solvent this is an indication that 

some particles have dissolved or that some polymer chains that were not part of the network 

within the particles have been extracted. Due to the tangling that can occur within polymer 

particle systems, polymer particles with no crosslinker present may not dissolve immediately 

when swollen with toluene. For this reason the swelling study must be repeated or the particles 

left in the presence of toluene for a considerable duration. The pseudo-swelling of polymeric 

particles was not observed experimentally; non-crosslinked particles exposed to toluene quickly 

dissolved and agglomerated. For comparison to the results already discussed, an example 

experiment where the particles did not survive the addition of a favourable solvent is shown in 

Figure 5.8. 

(a) before acetone (b) on addition of acetone (c) swollen with acetone 

(f) resolved bipolar texture (e) birefringence returning (d) on addition of EtOH 
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Figure 5.8: Example of nematic particles where there has been insufficient network formation for 

the particles to maintain their discrete shape on addition of a favourable solvent. This is a sample 

formed from RAFT-assisted dispersion polymerisation of M1 in 1:1 EtOH: methoxyethanol, 

viewed at rt with crossed polarisers and a λ wave plate at 200× magnification. 

 

The degree to which a crosslinked system can swell is indicative of the density of crosslinking 

within. A fully networked system will be insoluble as a result of all the polymer chains within the 

particle being linked together, so that there are no free polymer chains within the system. At the 

lower limit of full network formation the system will still display a good degree of flexibility and 

will be swellable, whereas a densely crosslinked system will be hard and therefore will only 

increase in size marginally, if at all, when swollen with a favourable solvent. Shown in Table 5.1 

is the increase in particle size observed for particles of M3 as they were swollen with toluene and 

acetone, and the extent to which that change in size was reversible.  

 

(a) Before toluene (b) On addition of toluene 

(c) EtOH added back in 
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Table 5.1: Particle size change for LCE particles of M1 and M3 synthesised by RAFT assisted 

dispersion polymerisation as they are swollen with toluene and acetone. 

Sample Particle size before 

swelling / µm 

(variance) 

Particle size 

during swelling / 

µm (variance) 

Particle size after 

swelling / µm 

(variance) 

% 

increase 

P3 swollen with 

toluene 
3.4 (24%) 6.5 (22%) 3.1 (20%) 88% 

P3 swollen with 

acetone 
3.9 (16%) 5.0 (24%) 3.7 (28%) 28% 

 

It is difficult to establish whether or not the liquid-crystalline elastomer particles maintain their 

shape integrity through this process. It seems likely that, as the particles swell and become soft 

they may flatten slightly, or the particles become sticky and they attach to the glass surface upon 

swelling. This appears to happen within these investigations, as the particles did not tumble in 

solution which would allow for their shape to be more easily assessed. By increasing the 

hydrophobic nature of the glass with different alignment layers it may be possible to prevent the 

particles from sticking to the glass surfaces even if they are in their swollen state. This should 

allow for more in depth shape analysis as the particles will still freely move in the flowing 

solvent.  

 

The results depicted in Table 5.1 indicate that the particles have a greater affinity to toluene than 

to acetone, as they swell to a higher degree. It can also be noted that the swelling appears to be 

reversible; with both experiments displaying a reduction in size after the swelling solvent was 

removed; this could be as a result of any free polymer chains not involved in the network being 

extracted from within the particles, or the swelling allowing for the mesogens to pack more 

efficiently while the elastomer is above its glass transition.  

 

In order to investigate the swelling capability of the liquid-crystalline elastomer particles further, 

toluene was added to a sample of particles until the turbid dispersion became clear. This indicated 

that the particles had undergone their nematic-isotropic transition as they became swollen with 

the toluene. This sample was then left in a sealed environment to prevent the evaporation of 

toluene or EtOH for a period of 48 hours. This test would allow us to determine whether network 

formation had occurred within the particles, or whether the swelling observed previously was as a 

result of the tangled polymer chains within a sample of negligible network formation. Shown in 

Figure 5.9 are POM photomicrographs of the dispersion before the inclusion of toluene, after 48 

hrs in the presence of toluene, and after the solution had been left open to the air for 24 hrs for the 

toluene to evaporate from the system. 
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Figure 5.9: Series of images depicting the swelling of a series of LCE particles of M3 with 

toluene over a period of three days. Images were taken at room temperature through crossed 

polarisers with the addition of a λ wave plate at 200× magnification. 

 

It is apparent from the images displayed in Figure 5.9 that discrete particles are observable at all 

stages of this experiment. There is a degree of fusion occurring in the particles after being swollen 

for this extended amount of time, indicating that the particles are becoming sticky while in their 

swollen states, which is known for acrylate polymers.
161

 

 

 CONCLUSIONS 5.4
 

Novel liquid-crystalline elastomer particles were investigated by polarised optical microscopy for 

their director configurations, their swellability, as well as their response to changes in 

temperature. Confirming the degree of network formation within elastomeric systems is important 

as inclusion of a crosslinking agent within the polymerisation process does not necessarily ensure 

that crosslinking is taking place. An even distribution of network points throughout the particles 

is important in order for them to be able to swell and for them to have the mobility above the 

glass transition temperature to respond to changes in external stimuli. Confirming the network 

formation within particles requires an approach from multiple directions, as the gel content of a 

(a) before toluene 

addition 

(b) in the presence of 

toluene for 48 h 

(c) after removal of 

toluene 



118 

sample does not give an indication to the distribution of the network points throughout the 

sample. Swelling and heating studies are needed in order to evaluate the degree of crosslinking, 

hardness and swellability of the system. The nematic elastomer particles that have been created 

within this thesis have been subjected to multiple analyses in order to confirm their network 

formation. 

 

Particles with significant network formation are insoluble and can therefore be repeatedly swollen 

in a favourable solvent. This results in the birefringence being lost as the liquid-crystalline 

mesogens within the system become isotropic as the system is solvated. The birefringence will 

return reproducibly as the favourable solvent is removed and the nematic order is reinstated. This 

reversible swelling was observed for all particles synthesised from monomers M1-M9 by RAFT-

assisted dispersion polymerisation and is a strong indication that these elastomer particles are 

successfully networked. These particles not only reversibly swell and de-swell with re-established 

birefringence, but the confinement texture that is observed immediately after swelling is 

dependent on the polarity of the swelling solvent. Particles swollen with acetone displayed 

bipolar textures when the birefringence returned, whereas a radial texture was observed for 

particles that were swollen with toluene. The reversible response to changes in the surface 

anchoring shown with this experiment allows the particles possible applications as sensors.   

 

Nematic elastomer particles on the small microscale with confirmed internal network formation 

and elastic character are novel. They could be utilised for applications including as micro-stirrers 

for small scale reaction vessels and equipment,
9, 11, 94, 127

 as sensors for external stimuli including 

host polarity, temperature or the detection of analytes. If the mesogens are aligned parallel to the 

surface in a bipolar/uniform configuration then it is possible that these particles will display 

actuation at their nematic to isotropic transition. These microscale actuators could have many 

possible applications as micro-switches and valves
9, 127

 and could behave as microscale muscles 

as they may have the ability to impart force on an object.   
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6 ELECTRO-OPTICAL STUDIES OF NEMATIC 

PARTICLES 
 

 INTRODUCTION 6.1
 

Electro-optical investigations are traditionally employed within the field of liquid crystals to 

assess the switching capability of a liquid crystal and establish its suitability for display 

applications. For the vast majority of nematic liquid crystals, the application of an electric field of 

sufficient magnitude results in the orientation of the director either parallel or perpendicular to the 

field, depending on the sign of the dielectric anisotropy (Δε) of the nematic medium.
17

 

 

Traditionally, the electro-optical response of a nematic liquid crystal device will depend on the 

boundary conditions that the liquid crystal experiences, imparted by the alignment layers in the 

cell to promote either homogeneous, homeotropic or a tilted alignment of the liquid crystal. 

Polymer dispersed liquid crystal (PDLC) films can also be assessed with regards to electro-optical 

applications. In electro-optical investigations of liquid crystal droplets, either in free dispersions 

or when dispersed in a polymer matrix, the encapsulation and confinement of the liquid crystal 

defines its internal alignment.    

 

The primary application for PDLCs as switchable windows requires an electro-optical response of 

the liquid crystal when confined within sub millimetre droplets within a polymer matrix. This 

allows for the window to be switched from the scattering state (when the liquid crystal droplets 

are displaying confinement textures defined by their surface anchoring) to the transparent state, 

when the liquid crystal is aligned with the field. PDLCs are also of interest electro-optically 

because of the prospect of being used for large area flexible displays.  

 

Studies of confined liquid crystals within an electric field are less prevalent than aligned nematic 

films due to the large liquid crystal display market, though research into confined liquid crystals, 

such as PDLCs
162

 and free dispersions of liquid crystal droplets is increasing. Electro-optical 

investigations of an ordered array of monodisperse bipolar droplets of 5CB found that with strong 

parallel surface anchoring the application of an electric field caused reorientation of the bipolar 

droplet with the field, rather than a reorganisation of the mesogenic units within the droplet to a 

uniform configuration.
57, 163

 The reason for this is postulated as the surface mesogenic units 

responding first to the application of the electric field, causing a reorientation of the overall 
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anisotropic configuration within the droplets. Removal of the electric field shows the bipolar 

droplets relax back to their original orientation. This study was carried out on a film of closely 

packed bipolar droplets dispersed in a thin PVA matrix and therefore the droplets are not 

spherical. The hexagonal packing of the bipolar droplets has resulted in the droplets being almost 

hexagonal in shape. As a defect is of lowest energy when it is positioned in a region of maximum 

curvature,
129

 it returns to that position when the electric field is removed. The droplets were 

monodisperse as they were created by microfluidics before polymerisation of their surrounding 

matrix, so a description in the effect of droplet size and surface curvature was not completed. 

Additionally, the confinement of the droplets of this experiment does not allow for the droplets to 

change shape.  

 

A study of PDLC films by electro-optics which did allow for the effect of size of droplet to be 

considered has been completed.
164

 The PDLC films were created by allowing homogenous 

mixtures of liquid crystal and reactive monomers to phase separate on polymerisation which 

resulted in polydisperse PDLC films. The average size of the droplets within these films was 

determined by the percentage of liquid crystal present in the original mixture. The droplets within 

this study were again not spherical, and were established by confocal microscopy as ‘polyhedral 

foam dispersions’ with droplet sizes ranging from over 10 µm to below 0.2 µm. The authors 

found that less voltage was required to cause a switch of mesogen orientation in larger droplets, 

possibly as a result of decreased surface influence compared to droplets of smaller size which are 

significantly more confined. The relaxation time for larger droplets was also found to be much 

greater than for smaller ones, again this is likely to be because of the strong surface influence on 

the small droplets.  This is another example of liquid crystal confinement within fixed geometries, 

and does not allow for any change in the droplet topology. 

 

By dispersing liquid crystal droplets within a liquid polymer,
165

 it was observed that the shape and 

position of the droplet is not fixed and can respond to the application of an electric field. This 

study showed the droplets developing an elongated shape along the perpendicular direction 

induced by the application of an electric field. This effect is described as an electro-wetting 

process that occurs as droplets agglomerate until they are large enough to come into contact with 

one of the glass sides of the cell and then spread to cover the glass surface. A reduction in 

birefringence is noted on application of an electric field as the droplets flatten and so postulate the 

change in shape to be related to the dielectric gradient between the droplet and the surrounding 

medium, and to a homeotropic organisation of the mesogenic units within the droplets as a result 

of aligning with the electric field. These droplets did not show fully reversible transitions between 

discrete spherical and flat droplets as a result of coagulating in the presence of an electric field, 

but did show relaxation back to a spherical shape when the field was removed. This study does 
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not describe any droplet shape change for droplets free in the liquid polymer, only those in 

contact with the glass, and does not allow for a thorough investigation into the behaviour of 

microscale droplets in an electric field as the agglomeration of droplets causes them to grow 

quickly to up to 1 mm in size. 

 

The literature reports on the investigation of liquid crystal polymer particles in an electric field 

are limited. One study observed formations of lines of liquid crystal particles as a result of the 

particles acting as dipoles when an electric field is applied due to becoming polarised by the field. 

The authors observed this line formation regardless of the director configurations of the 

particles.
102

 Using a different cell set up they observed reorientation of bipolar droplets in line 

with the field direction in a way analogous to that observed for bipolar droplets in a polymer 

matrix described previously.
57

    

 

Within this chapter we shall explore the effect of an electric field on free dispersions of liquid 

nematic polymer particles and assess the effect of director configuration and glass transition 

temperature of the particle in the behaviour that is exhibited.  

 

 MATERIALS AND METHODS 6.2
 

The behaviour of nematic polymer and elastomer particles in an electric field was investigated by 

electro-optical studies using different cell configurations, field strengths and dispersing solvents. 

From this, it can be deduced whether the behaviour of the particles when exposed to an electric 

field is as a result of its anisotropic nature or as a result of ionic contaminants on the particle 

surface. 

 

Two different cell configurations were investigated in order to visualise the effect of an electric 

field, the different cell configurations with respect to viewing angle and electric field application 

are illustrated within Figure 6.1. 
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Figure 6.1: Schematics showing the electric field with respect to the viewing angle for the two 

types of cells being investigated. (a) applies an electric field perpendicular to the viewing plane, 

(b) applies an electric field parallel to the viewing plane. 

 

The first cell configuration, shown in Figure 6.2, applies an electric field perpendicular to the 

viewing plane to allow for the sample to be viewed along the direction of the applied field. The 

second cell configuration, shown in Figure 6.3, applies an electric field parallel to the viewing 

plane, which allows for the effect of the electric field to be viewed across the cell.  

 

     

Figure 6.2: Pre-fabricated cells with homeotropic alignment. 

 

(a) (b) 

E E 
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Figure 6.3: Homemade cells with lateral electric field and homeotropic alignment 

 

The cells illustrated in Figure 6.2 were the type predominantly used throughout these 

investigations, and are premade homeotropic cells with a 5 µm cell gap purchased from Instec. 

The homeotropic alignment prevented the liquid crystal particles from sticking to the glass 

surfaces and so did not impart any alignment on the mesogenic units as they were not in direct 

contact with the alignment layer. 

 

The cells depicted in Figure 6.3 were homemade cells in which the electrodes were created from 

copper tape to allow for the electric field to be applied across the sample. The copper electrodes 

were placed as close as possible to allow for the application of an electric field in sufficient 

magnitude. A homeotropic alignment layer was necessary in order to prevent the particles from 

sticking to the glass. Many different treatments were attempted including lecithin and 

trichlorosilanes of various alkyl chain lengths. The longer the alkyl group of a trichlorosilane, the 

more hydrophobic the coating is. Attempting some shorter trichlorosilanes proved unsuccessful in 

preventing the liquid crystal particles from sticking to the glass surface. Octadecyltrichlorosilane 

(OTS) treatment eventually proved successful in preventing the sticking of the nematic polymer 

particles to the glass, and evidence of the successful hydrophobic coating of the glass slide is 

shown in Figure 6.4 as the contact angle of water on the surface has been noticeably increased.  
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Figure 6.4: Photographs showing the increasing contact angle of water when a droplet is placed 

on a hydrophobic coated slide (right) compared to plane glass (left).  

 

Unfortunately, no particle response was observed when the cells depicted in Figure 6.3 were used 

and due to time constraints the use of these cells of was never optimised. A possible reason is that 

the distance between the electrodes was too great and caused the electric field per µm
3
 to be too 

small to elicit a response from the particles. In the premade Instec cells shown in Figure 6.2 the 

maximum cell gap was only 5 µm which allowed for the application of a significant electric field 

across the sample.  

  

In order for the particles to be investigated by electro-optical studies they were first dispersed into 

a solvent mixture with a low dielectric constant. The reason for this transferral of the particles 

was to prevent solvent flow on the application of the electric field masking the particle motion. In 

all cases particles purified by a solvent exchange by centrifugation were used in order to minimise 

the amount of ionic contaminants within the sample affecting the results. The solvent mixture 

chosen was a 1:1 mixture of dodecane and 1-undecanol, as this proved to have a low enough 

dielectric constant whilst still being of a high enough polarity to allow for the particles to remain 

dispersed. Completely non-polar solvents such as silicone oil were tested but this resulted in the 

particles coagulating. More polar solvents such as glycerol and ethanol resulted in de-wetting 

occurring between the glass slides on application of an electric field, the significant flow this 

caused made investigation of particle response difficult. 
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 HIGH GLASS TRANSITION TEMPERATURE PARTICLES 6.3
 

Nematic polymer particles synthesised from monomers which form polymers with glass transition 

temperatures above room temperature were exposed to an electric field to see if any macroscopic 

reorientation or motion would occur when the mesogenic units were locked in place by the 

amorphous structure of the anisotropic polymer backbone. The effect of the director configuration 

was also evaluated to assess whether bipolar particles (which are overall anisotropic) would 

behave differently to radial particles (which are overall isotropic).  

 

Bipolar nematic polymer particles made from P1 dispersed in a mixture of 1:1 dodecane: 1-

undecanol were exposed to various strengths of electric field. The particles were approximately 1 

µm in diameter which meant any change in shape would be difficult to visualise as the particles 

were of a size range on the limit of resolution for optical microscopy. The application of a field 

induced significant particle motion and rotation.  A video of the motion of the particles on 

application of a field with a frequency of 1 Hz and peak amplitude of 10 V can be found as Video 

1 on the accompanying disk. Screenshots from Video 1 are shown as Figure 6.5. 

 

   

Figure 6.5: Screen shots from Video 1 showing the motion of bipolar nematic particles of P1 

moving in an applied field. Video taken at room temperature with partially crossed polarisers at 

200 × magnification. 

 

Although it is difficult to illustrate the motion of particles with still images, a change in the 

birefringence can be observed for the particles indicated, showing their rotation in the field. This 

is an indication of the bipolar particles acting as dipoles because of being overall anisotropic in 
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structure and aligning with the switching field.
102

 In Video 1, the bipolar particles move 

horizontally even though the electric field is applied vertically through the sample. The switching 

of the motion is related to the frequency of the applied field but does not correspond to a change 

in direction with every change in current. Some particles within the viewing plane do not move in 

response to the application of an electric field. It is thought that these particles are unresponsive 

because they are stuck to the glass. 

 

Radial nematic polymer particles made from P6 dispersed in a mixture of 1:1 dodecane: 1-

undecanol were also exposed to various strengths of electric field to give an indication as to the 

effect of the internal director configuration of the particles. The application of an electric field 

resulted in significant particle motion analogous to that observed for the bipolar particles of P1. 

The rotation of radial particles is difficult to observe as their director configuration does not 

change on rotation. A video of the motion of the radial nematic polymer particles on application 

of a field with a frequency of 1 Hz and peak amplitude of 30 V can be found as Video 2 on the 

accompanying disk. Screenshots from Video 2 are shown in Figure 6.6.  

 

   

Figure 6.6: Figure 6.7: Screen shots from Video 2 showing the motion of radial nematic 

particles of P6 moving in an applied field. Video taken at room temperature with partially 

crossed polarisers at 200 × magnification. 

 

The motion of a random selection of particles within the sample range shown in Video 2 were 

tracked to allow for any relationship between particle motion and field frequency to be 

investigated. The particles were tracked using open-source software ‘Tracker’
166

 and the data was 

manipulated in order to give information about displacement of the particles against time. The 

particles display a back and forth motion which could be related to the switching of the field but it 

does not directly correlate with the frequency of the field as shown in Figure 6.8. 
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Figure 6.8: Normalised displacement of particles against time for an applied field frequency of 

1Hz.   

 

As can be seen from Figure 6.8, the frequency with which the particles change direction is 

approximately once every 3 seconds which is three times slower than the frequency of the electric 

field, which switches once per second. At higher frequencies, the particle motion observed is 

smoother and displays less back and forth motion possibly as a result of the frequency exceeding 

the maximum speed at which the particle can travel due to the viscosity of the dispersing medium. 

 

 LOW GLASS TRANSITION TEMPERATURE PARTICLES 6.4
 

Low glass transition radial polymer particles, that is, particles with a glass transition temperature 

below room temperature, were synthesised from dispersion polymerisation of M9 and were 

investigated using premade homeotropic cells and dispersed in a dodecane: 1-undecanol mixture. 

In contrast to the particle motion observed for high glass transition bipolar and radial particles, 

these particles deformed in an electric field as a result of the mesogenic units within the particles 

aligning with the field. As the field is perpendicular to the viewing plane this was observed as 

particles becoming optically extinct as the mesogenic units aligned homeotropically. A series of 
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images depicting this transformation is shown in Figure 6.9. These images are frames from the 

video showing the transformation in full which can be found in the attached disk as Video 3.  

 

   

  

Figure 6.9: Frames from Video 3 on the attached disk. Images taken with half crossed polarisers, 

200 × magnification and at rt. (a) Before application of electric field (b) on application of a square 

waveform field with a frequency of 1 Hz and a peak amplitude of 30 V (c) particles during 

exposure (d) immediate appearance of particles after removal of electric field (e) appearance of 

particles without an electric field present and relax back to spherical. 

 

On switching on the electric field, the particles change shape and become oblate as the mesogenic 

units align with the field. Shown in Figure 6.10 is an illustration of an oblate particle with the 

axes labelled.  

 

 

 

Figure 6.10: The mesogen organisation within the particles during application of an applied along 

(a) 

(e) (d) 

(c) (b) 

Z 

X 

Y 
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the Z axis. 

 

In general when the electric field is applied the particles begin to flatten along the axis 

perpendicular to the electric field which results in the observation of large, optically extinct disks, 

as shown in Figure 6.9(c). The particles appear optically extinct because the mesogenic units are 

aligned with the short axis along which the particle is being viewed (labelled z in Figure 6.10), 

resulting in homeotropic mesogenic alignment. When the field was removed the particles relaxed 

back to a spherical shape. In contrast to these observations, when the field was again switched on 

for the second time, a number of particles within the sample flatten orthogonally to those 

previously described, with the short axis of the oblate particle orientated parallel with the viewing 

plane. Again this change of shape was reversible. These particles appear as bright thin lines as 

they are being observed along their edge, a selection of which are highlighted in Figure 6.11.  

 

 

Figure 6.11: Screenshots from Video 4, showing the orthogonal deformation of a selection of 

particles within the sample. Video taken at rt through crossed polarisers and 200 × magnification 

during the application of a square waveform electric field with a frequency of 1 Hz and a peak 

amplitude of 30 V. 

 

As can be seen in Figure 6.11, these particles appear bright as the mesogenic units are arranged 

homogeneously with respect to the polarisers when the particle is in this orientation. Particles that 

flatten in this direction eventually turn and become optically extinct, as the mesogenic units 
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within the particles force a rotation of the particles in order to align with the electric field.  

Screenshots from Video 4 which can be found on the attached disk show this flattening and 

rotation of particles in Figure 6.12. 

 

   

   

   

Figure 6.12: Screenshots from Video 4 showing the flattening and turning of particles of M9 

dispersed in dodecane/undecanol on application of a 1 Hz, 30 V square waveform electric field. 

(a) Before application of the electric field, (b – e) Flattening of particles in the field, either 

parallel to the viewing plane (an example is indicated in red) or orthogonal to the viewing plane 

(an example indicated in white), (f-h) shows the turning of the orthogonal oblate particles until 

they are orientated parallel with the viewing plane, (i) after turning, all oblate particles appear 

optically extinct due to the internal homeotropic alignment of the mesogens.   

 

The number of particles present within a sample which display this orthogonal elongation 

increases with each repetition, as can be seen when comparing Video 3 with Video 4 which was 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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recorded afterwards. On the first application of the electric field, there are very few particles 

which deform in a different direction, after multiple repeats there is a significant proportion of the 

sample elongating in this way. This occurs possibly because the deformation of the polymer 

chains that occurs in order to accommodate the reorganisation of the mesogenic units with the 

electric field is not completely elastic, and does not return to the same original configuration on 

relaxation when the field is removed. When the electric field is applied a second time the particle 

will now have a preferred axis of elongation as the polymer chains can more easily accommodate 

the changing in shape in that direction. As the particles are free to rotate and move in the solvent 

this axis might not be perpendicular to the field as it was on the first deformation. This 

explanation suggests that the particles experience a lower energetic cost for the particle to deform 

in a way favourable for the polymer chains and then orient to align the mesogenic units with the 

field than reorganising the polymer chains with each application of the field. 

 

From the corresponding videos of Figure 6.9 and Figure 6.12, it can be observed that this 

deformation process is reversible, with the particles regaining their radial configuration after the 

electric field is removed. This deformation is similar to those described in the introduction to this 

chapter for free droplet of liquid crystal within a liquid polymer
165

 in that the particles flatten and 

increase in the direction axial to the electric field, though the polymer influence results in some of 

the particle deforming in a different direction and then turning to align with the field is a novel 

finding.  

 

Below a threshold voltage the particles behave in a way analogous to those with higher glass 

transition temperatures, i.e. they do not deform in the field. The likely reason for this is that at 

low voltages the strength of the field is insufficient to exceed the surface tension and cause a 

deformation from a spherical shape.  

 

Analysis of low glass transition nematic polymer particles displaying a bipolar texture was 

attempted in order to determine whether the reversible shape deformation observed for radial 

particles was dependent on the director configuration of the particles. Due to the low polarity of 

the dispersing solvent and perpendicular surface anchoring it imparts, the bipolar droplets 

converted to a radial director configuration when they were transferred into the 1:1 dodecane: 

undecanol mixture. Due to times constraints a suitable solvent which would allow for the analysis 

of bipolar low glass transition nematic polymer particles was not established. It is expected that 

the bipolar particles that were observed for sample P1 described in the previous section remained 

as such because they were below their glass transition temperature, preventing mesogenic 

reorientation to a radial configuration. 
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 EFFECT OF TEMPERATURE 6.5
 

 

A sample of nematic polymer particles of P9 displaying a radial director configuration were  

investigated by electro-optics whilst in their isotropic phase to establish whether the shape change 

discussed previously was determined by the reorientation of the mesogenic units. The video of the 

experiment can be found in the attached disk as Video 5, screenshots are shown in Figure 6.13.  

 

   

Figure 6.13: Screenshots from Video 5 showing the deformation isotropic of particles of M9 

dispersed in dodecane/undecanol on application of a 1 Hz, 30 V square waveform electric field, 

taken at 60 °C. In image (b) the contrast has been increased to allow for the deformed particles to 

be observed. 

 

The effect we observe when an electric-field is applied to these particles when heated into their 

isotropic phase is different to that observed when the particles are in the nematic phase, which 

infers the liquid crystal state has an influence on the particle behaviour. Rather than retaining 

their discrete shape, the particles completely deform and when the field is removed droplets 

reform which were not necessarily the same size as originally due to coagulation of the droplets 

when the field was applied. This effect is similar to that mentioned for droplets of liquid crystal as 

a free dispersion in a liquid polymer which coagulate together when they become prolate in the 

field. As this is occurring in the isotropic phase of the nematic polymer it is an electro-wetting 

effect rather than a liquid crystal process. The reversible shape change process that takes place 

when the particles are observed within their nematic phase without loss of discrete particles may 

be because of significant polymer entanglement and high viscosity preventing particle 

coagulation.  

 

 

(a) (b) (c) 
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 CONCLUSIONS 6.6
 

 

The electro-optical response of nematic polymer particles of different director configurations and 

glass transition temperatures was evaluated. The particles were dispersed in a solvent mixture of 

1:1 dodecane:1-undecanol to allow for the particle response to be established without 

interferences from the solvent flowing in the electric field. It was observed that when the glass 

transition temperature of the particles was above room temperature, the particle shape was fixed 

and particle motion was observed. There are previous examples of nematic particle motion within 

an electric field as a result of the particle acting as a dipole.
102

 Control of a particle in an electric 

field is significant as it could find possible applications as micro-stirrers for microscale 

machinery. 

 

When the glass transition temperature of the polymer particles investigated was below room 

temperature a reversible shape change was observed. A reversible shape change of microscale 

polymer particles in the presence of an electric field agrees with current understanding of the 

behaviour of free dispersions of liquid crystal droplets within a field. The presence of the polymer 

network results in a different shape change response compared to liquid crystal droplets as the 

reorganisation of the polymer chains dictates the direction of the shape change before 

reorientation of the now oblate particle so that the mesogenic units can align with the electric 

field. This effect of a polymer network on the behaviour of the mesogenic units may be further 

evidence into the coupling between laterally attached mesogenic units and the anisotropic 

polymer backbone. As the polymer that was investigated in this case was comprised of mesogenic 

units attached via long spacers to the polymer backbone this may indicate that a degree of 

coupling still exists in systems where the spacer length is long.   
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7 CONCLUSIONS  
 

The fundamental aim of this research was the synthesis and investigation of nematic polymer and 

elastomer particles on the microscale. To this end, a variety of different polymerisation methods 

and novel monomers were utilised. Nematic polymer particles were synthesised via dispersion 

polymerisation and RAFT-assisted dispersion polymerisation and were optimised for particle 

size, particle size variance and director configuration. Nematic elastomer particles were 

synthesised using techniques including RAFT-assisted dispersion polymerisation and dispersion 

polymerisation with a delayed addition of crosslinker with varied degrees of network formation 

being achieved. These particles were optimised for director configuration and crosslink density 

and were analysed by gel content analysis, heating and swelling studies in order to confirm the 

network formation within the particles. Investigations of the particles included DSC and NMR 

studies, as well as thorough analysis using polarised optical microscopy and scanning electron 

microscopy. The behaviour of a variety of particle systems in an electric field was also evaluated. 

   

 NEMATIC POLYMER PARTICLES ON THE MICROSCALE 7.1
 

Nematic polymer particles synthesised by dispersion polymerisation were found to range in 

director configuration, particle size and particle size variance depending on the nematic monomer 

and dispersing solvent utilised. A series of laterally attached nematic monomers, seven of which 

were novel, with sequential changes in structure allowed the systematic investigation of the effect 

of monomer structure on the director configuration that would result. In a series of otherwise 

identical experiments it was found that a change in the director configuration occurred with 

increasing side chain length on the mesogenic pendant group. This resulted in radial particles 

being synthesised in a polar host mixture without the aid of any surface analytes to promote a 

perpendicular surface alignment. This is a novel finding that is previously unreported in the 

literature where over a significant range of monomers investigated, a bipolar configuration is 

achieved when the particles are synthesised or dispersed in a polar host such as water, EtOH or 

MeOH.
78, 79, 107

 The results within this thesis suggest that the director configuration of a nematic 

particle is dependent on a balance between surface interactions and the interactions of the liquid 

crystal in the bulk. By altering the mesogen structure within the particles the bulk interactions 

including the elastic constants of the liquid crystal are affected as a result of the mesogen 

changing size. Changing the relative cost of the elastic deformations of a confined liquid crystal 

can result in the lowest energy director configuration changing from bipolar, when the bend 
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deformation is the least energetically costly for the liquid crystal, to the radial when the bend 

deformation becomes too unfavourable and the splay deformation becomes the most favourable 

scenario. This systematic study has allowed for the realisation of a controlled synthetic pathway 

for liquid crystal polymer particles of the microscale, with specific particle size, particle size 

variance and director configuration.  

 

Creating a series with distinct differences in the director configuration that results in otherwise 

identical dispersion polymerisations is significant because it allows for the systems to be tuned 

for surface sensitivity. By creating a system in which the liquid crystal particles are on the 

borderline of stability a switch in director configuration can occur with a small change in surface 

anchoring strength. This change in surface anchoring can be as a result of altering the medium 

that the particles are dispersed in, the addition of a substrate or surface analyte. This response 

allows these particles possible applications as sensors for small changes in the external 

environment on the microscale. Previous work has been completed in the use of encapsulated 

liquid crystal droplets for sensing applications, sensing for example pH and the presence of 

certain bacteria.
5, 156, 167

 Particles would be better suited to this role due to increased durability and 

shelf life. They are also easier to transfer into different host media, as well as being easier to 

remove afterwards by centrifugation or filtration. Systems suitable for a possible application in 

sensing were created by completing copolymerisation investigations using monomers with 

different preferred configurations in ethanol. By tuning the ratios of the two monomers used a 

system was created in which the director configuration displayed was an escaped conformation, 

which should allow for a facile switch with the addition of analytes such as SDS, which promotes 

a perpendicular surface alignment, and PVP which promotes a parallel surface alignment.  

 

RAFT-assisted dispersion polymerisation resulted in a greater degree of monodispersity being 

achieved across a range of different polar solvents compared to dispersion polymerisation. 

Monodisperse samples can assemble into photonic crystals, and by using liquid crystal particles 

for the basis of the assembly of photonic crystals the wavelength of reflected light can in theory 

be tuned by inducing a change in director configuration, or inducing the nematic to isotropic 

transition of the particles. 

 

 SUCCESSFULLY CROSSLINKING NEMATIC PARTICLES 7.2
 

A primary aim within this thesis was to create successfully crosslinked microscale liquid-

crystalline elastomer particles, and to investigate their responsive ability. Their crosslink density 

is crucial to their function but will also add to the lifetime of the working particle.    
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Particles were evaluated thoroughly in order to establish whether there has been significant 

network formation. The particles were investigated by being swollen in solvents multiple times 

and assessed for any leaching of uncrosslinked polymer chains and also the degree to which they 

maintain their shape integrity. A sample of the particles was also dried for gel content analysis in 

order to establish what percentage of the particles’ compositions was insoluble and therefore fully 

networked. It was found that by delaying the addition of the crosslinker until after the nucleation 

stage of particle growth had completed was successful when utilising the terminally attached 

monomer, though had limited successes with the lateral series of monomers. Achieving 

elastomeric particles via a delayed addition of crosslinker is less than ideal as the system is very 

sensitive to concentration and crosslinker addition time, leading to discrepancies in the results and 

difficulties in reproducibility. Crosslinked and monodisperse particles were successfully 

synthesised using a delayed addition of crosslinker with dispersion polymerisation after careful 

tuning of the reaction conditions.  This is the first instance of crosslinked nematic particles with 

confirmed network formation being synthesised by heterogeneous polymerisation methods on the 

low micrometre scale.  

 

When RAFT-assisted dispersion polymerisation was utilised, nematic elastomer particles were 

obtained from polymerisations of all monomers. These particles were not displaying resolved 

director configurations analogous to their non-crosslinked counterparts and were instead often 

polydomain in structure. However, these particles do show director configurations as the 

birefringence returns after swelling in a favourable solvent such as toluene or acetone, but the 

polydomain structure returns once the particles have completely deswollen. The director 

configuration that is observed is related to the polarity of the swelling solvent which is an 

example of these nematic elastomer particles acting as sensors for changes in their surface 

anchoring. RAFT-assisted dispersion polymerisation in the presence of a crosslinker is the first 

heterogeneous method to create a significant crosslink density within nematic particles on the 

microscale irrespective of monomer structure. It is significant as further adaptations to the method 

in order to achieve particles with resolved director configurations will reveal a facile synthetic 

method for the synthesis of nematic microscale elastomer particles which should have the ability 

to actuate. 

 

 OPTICAL INVESTIGATIONS OF NEMATIC POLYMER PARTICLES 7.3
 

The electro-optical experiments with nematic polymer particles revealed a reversible shape 

change response to the addition of an electric field when the glass transition temperature of the 

polymer was below room temperature. A reversible shape change of microscale polymer particles 
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in the presence of an electric field agrees with current understanding of the behaviour of liquid 

crystal droplets within a field. The effect of the polymer network results in the shape change 

response of the liquid crystal particle to be viewed from different angles as the tumbling of the 

particles in solution allow the shape change to be viewed from the side. This result is significant 

as it allows for the confirmation of the reorganisation of the mesogenic units within the field and 

shows the impact of the coupling between the mesogenic units and the polymer backbone. 

Polymer particles synthesised from polymers which have a glass transition temperature above 

room temperature did not show a change in shape as a result of the mesogenic units not having 

the freedom to reorientate when the polymer chains are rigid and inflexible. These particles 

displayed particle motion when the field was applied which did not appear to correlate to the 

frequency of the field being applied. The particle motion is indicative of charged impurities on 

the particle surfaces.  

 

 CONCLUDING REMARKS 7.4
 

The synthesis of nematic polymer and elastomer particles on the microscale with reproducible 

director configurations, size, polydispersities and where applicable network formation is 

complicated due to the sensitive nature of dispersion polymerisation and its various 

modifications. Significant work was completed into the optimisation of various reactions to 

maximise monodispersity and the degree of crosslinking within the particles. In this venture 

further conclusions were drawn, including how the degree of crosslinking that can be achieved 

varies with different polymerisation methods and how the monomer structure can affect the 

particle size and director configuration that is obtained.  

 

The synthesis of liquid crystal elastomer particles with confirmed network formation on the 

microscale is a novel result. Swelling studies have established that even with significant 

crosslinking the director configuration of the particles can still respond to changes in the external 

environment, for example a change in solvent polarity. This is preliminary evidence of the 

responsive nature of these particles which gives them a possible application in microscale 

sensing.  

 

The ability to tune the stability of a director configuration in a particular solvent by carefully 

selecting the monomer mixture from which the particles are formed is a novel finding as previous 

results have so far only noted bipolar particles when synthesised or dispersed in polar solvents. 

By creating a system in which the director configuration is at the limit of its stable range we 
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should observe a more facile switch of the director as a response to an external stimulus, 

improving the sensing sensitivity of the particles.  
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8 EXPERIMENTAL 
 

 GENERAL INFORMATION 8.1
 

All reagents and solvents used in the synthesis of the monomers and in the dispersion 

polymerisations were readily available commercially and were used as supplied without any 

further purification. Accurate weights were obtained using a Mettler Toledo XS 105 dual range 

balance. Flash column chromatography was performed using 35 – 70 µm silica gel and thin layer 

chromatography (TLC) was performed on silica gel F254 pre-coated aluminium backed sheets and 

visualised using UV light from a UVGL-58 lamp that emits light at 254 or 365 nm. 

Centrifugation was performed using a Fisher Scientific accuspin400 centrifuge containing a 

C003649 rotor fitted with swinging buckets. Optical microscopy studies were performed using a 

Zeiss AXIOSKOP 40 polarised light microscope and together with the Mettler Toledo FP82HT 

hot stage the melting points and phase transitions were obtained. Gel Permeation 

Chromatography (GPC) was completed using a triple detection GPC fitted with a Viscotek 

VE3580 RI detector and a Viscotek 270 dual detector and a 100 µL column with THF as the 

mobile phase against a polystyrene standard. Scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) photomicrographs were taken in the Biology 

Technology Facility at the University of York. For SEM, the samples were mounted on 

conductive stubs with silicon wafers and sputter coated with approximately 7 nm of 

gold/palladium using a Quorum SC7640 sputter coater before being analysed with a JEOL 

JSM6490-LV instrument. Differential scanning calorimetry (DSC) analysis was carried out on a 

Mettler Toledo DSC 822
e
 with STAR

e
 acquisition and analysis software calibrated against an 

indium standard. Nuclear magnetic resonance (NMR) spectra were recorded using a JEOL EX400 

NMR spectrometer (
1
H: 400 MHz, 

13
C: 100.4 MHz). NMR spectra were viewed and analysed 

using MestReNova analysis software. All infrared (IR) spectra were completed on a Shimadzu IR 

Prestige-21 FT IR spectrophotometer. Electrospray ionisation (ESI) mass spectra were performed 

on a Thermo-Finnigan LCQ mass spectrometer. Size Distributions were calculated from SEM 

images using ImageJ software
51

. In each case a minimum of 100 particles were measured and the 

particle size polydispersity calculated as the coefficient of variance (Cv) using the standard 

deviation and the mean. Percentage yields were calculated from the moles of obtained product as 

a comparison to the moles of limiting reagent in the reaction. 
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 SYNTHESIS OF MONOMERS 8.2
 

 SYNTHESIS OF TERMINALLY ATTACHED MONOMER M1 8.2.1

 

The synthesis of monomer M1 was completed via a synthesis adapted from literature:
134

 

 

 

 

 

Scheme 8.1: Reaction scheme for the synthesis of terminal monomer M1. 
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8.2.1.1 4-(6-Hydroxyhexyloxy)benzoic acid (1) 
 

 

 

Figure 8.1: 4-(6-Hydroxyhexyloxy)benzoic acid. 

 

A solution of ethyl-4-hydroxybenzoate (33.38 g, 200.8 mmol), 6-chlorohexanol (32.5 mL, 240.7 

mmol) potassium carbonate (55.40 g, 400.9 mmol) and potassium iodide (3.00 g) in 

cyclohexanone (300 mL) was brought to reflux with vigorous stirring for 16 h. The excess 

potassium carbonate was then hot filtered and washed with cyclohexanone. The solvent was 

removed in vacuo. The resulting oil was dissolved in methanol (300 mL) and was stirred under 

reflux for a further 16 h after the addition of potassium hydroxide (44.9 g, 800 mmol) in water 

(50 mL). The reaction mixture was then allowed to cool to room temperature and the solvent 

removed in vacuo. The residue was dissolved in ice water.  The addition of concentrated 

hydrochloric acid yielded a white precipitate which was recrystallised from ethanol.  

 

Yield:    White powder, 39.22 g, 164.8 mmol, 82 %.  

 

Mp:    135.6 - 137.2 °C. 

 

1
H NMR (CDCl3) δ (ppm):  1.35 (m, 6H, -CH2-), 1.69 (m, 2H, -CH2-), 3.37 (m, 2H, -CH2O-), 

4.01 (m, 2H, -CH2O-), 4.35 (br s, 1H, OH), 6.98 (d, 2H, J= 8.2 

Hz, ArH), 7.85 (d, 2H, J= 8.2 Hz, ArH), 12.55 (br s, 1H, OH). 

 

IR (FTR) ν (cm
-1

):  3394 (O-H), 2939 (C-H), 2862, 2808, 2630, 2515, 1897, 1681 (C=O), 

1604 (C-C), 1465 (C-H), 1411, 1249, 1165, 1103, 1056, 1002, 948, 840, 

763. 
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8.2.1.2 4-(6-Acryloyloxyhexyloxy)benzoic acid (2) 
 

 

 

Figure 8.2: 4-(6-Acryloyloxyhexyloxy)benzoic acid. 

 

Under nitrogen, 4-(6-hydroxyhexyloxy)benzoic acid (39.00 g, 163 mmol), DBPC (0.3 g, catalytic 

quantity) and N, N-dimethylaniline (21 mL, 163 mmol) were dissolved in dry dioxane (200 mL). 

The reaction mixture was heated to 60 °C with stirring. Acryoyl chloride (17 mL, 170 mmol) was 

then added drop wise so that the temperature did not exceed 65°C and the resulting mixture 

stirred at 60 °C for 2 h. The solution was poured onto ice water to precipitate the product which 

was recrystallised from propan-2-ol.  

 

Yield:   White powder, 35.01 g, 120 mmol, 74 %.
   

 

Mp:   83.4 – 84.6 °C. 

 

1
H NMR (CDCl3) δ (ppm):  1.41 (m, 4H, -CH2-), 1.65 (m, 2H, -CH2-), 1.77 (m, 2H, -CH2-), 

3.96 (m, 2H, -CH2O-), 4.11 (m, 2H, -CH2O-), 5.76 (dd, 1H, J= 

1.5 Hz, 10.3 Hz, CH=), 6.06 (dd, 1H, J= 10.3 Hz, J= 17.4 Hz, 

CH=), 6.31 (dd, 1H, J= 1.5 Hz, 17.4 Hz, CH=), 6.86 (d, 2H, J= 

8.8 Hz, ArH), 7.98 (d, 2H, J= 8.8 Hz, ArH).  

 

IR (FTR) ν (cm
-1

):  2939, 2854 (C-H), 2669, 2561 (O-H), 1720, 1681 (C=O), 1604 (C-C), 

1512, 1141 (C-H), 1296, 1249, 1165, 1041, 979, 763, 640. 
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8.2.1.3 4-[4-(6-Acryloyloxyhexyloxy)benzoyloxy]benzonitrile (M1) 
 

 

 

Figure 8.3: 4-[4-(6-Acryloyloxyhexyloxy)benzoyloxy]benzonitrile (M1). 

 

A solution of 4-(6-acryloyloxyhexyloxy)benzoic acid (34.5 g, 118 mmol), 4-hydroxybenzonitrile 

(14.04 g, 118 mmol), EDAC (22.63 g, 118 mmol) and a spatula tip of DMAP and DBPC 

dissolved in DCM (300 mL) was stirred at room temperature for 72 h and monitored by TLC until 

the starting materials were consumed. The solvent was removed in vacuo and the resultant 

product purified using column chromatography in 2:1 hexane: ethyl acetate. Yield is poor because 

of a breakage of glassware. Recrystallised from ethanol.  

 

Yield:    White powder, 18.98 g, 48.2 mmol, 41 %.  

 

Mp:    71.7 – 72.9 °C. 

 

1
H NMR (CDCl3) δ (ppm):  1.51 (m, 4H, -CH2-), 1.72 (m, 2H, -CH2-), 1.84 (m, 2H, -CH2-), 

4.05 (t, 2H, J= 6.2 Hz, -CH2O-), 4.19 (t, J= 6.7 Hz, 2H, -CH2O-), 

5.82 (dd, 1H, J= 10.4, 1.5 Hz, CH=), 6.12 (dd, 1H, J= 17.3, 10.4 

Hz, CH=), 6.40 (dd, 1H, J= 17.3, 1.5 Hz, 17.4 Hz, CH=), 6.97 (d, 

2H, J= 9.0 Hz, ArH), 7.34 (d, 2H,  J= 8.7 Hz, ArH), 7.73 (d, 2H, 

J= 8.8 Hz, ArH), 8.12 (d, 2H, J= 8.9 Hz, ArH).  

 

13
C NMR (CDCl3) δ (ppm):  25.77 (CH3-), 28.62, 29.04 (-CH2-), 64.54, 68.26 (C-O), 77.13 (t, 

CDCl3), 109.63, 114.55 (C≡N), 118.47, 120.67, 123.09, 128.62, 

130.72, 132.57, 133.77 (ArC), 154.53, 163.97, 166.43(C=O).  

 

MS (ESI):  C23H23NO5 calculated [M + Na] m/z 416.1468, found 416.1463.  

 

EA (CHN):  calculated C 70.21 %, H 5.89 %, N 3.56 % found C 70.18 %, H 5.92 %, 

N 3.67 %. 
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IR (FTR) ν (cm
-1

):  2939 (C-H), 2862, 2322, 2229 (C≡N), 1735, 1712 (C=O), 1597 (C-C), 

1504, 1404 (C-H), 1249, 1203, 1165, 1056, 979, 848, 810, 694, 547.  
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 SYNTHESIS OF LATERAL MONOMERS M2-M9 8.2.2

 

Monomers M2 – M9 were created using a divergent synthesis derived from the literature 

synthesis of M3.
14, 80, 133

 

 

                                

Scheme 8.2: Reaction scheme of the divergent synthetic procedure of M2-M9. 
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8.2.2.1 Benzyl-2,5-dihydroxybenzoate (3) 
 

 

 

Figure 8.4: Benzyl-2,5-dihydroxybenzoate. 

 

Solid NaHCO3 was added (36.04 g, 425 mmol) to a stirred solution of 2,5-dihydroxybenzoic acid 

(26.18 g, 170 mmol) in DMF (600 mL) and the mixture brought to 70 °C for 1 h. Benzyl bromide 

(29.07 g, 170 mmol) was then added and the mixture stirred and heated at 70 °C overnight. The 

reaction mixture was then allowed to cool, diluted with water (600 mL) and extracted three times 

with 50:50 hexane/ethyl acetate mixture. The organic phase was washed twice with water to 

remove the residual DMF and dried over Na2SO4.  The solvent was removed in vacuo and the 

resultant product was purified by recrystallization from a hexane/ethanol mixture.  

 

Yield:    White powder, 38.58 g, 158.1 mmol, 93 %. 

  

1
H NMR (CDCl3) δ (ppm):  4.86 (s, 1H, -OH), 5.36 (s, 2H, CH2O-), 6.88 (d, J = 9.0 Hz, 1H, 

ArHc),  7.00 (dd, J = 8.9, 3.1 Hz, 1H, ArHb), 7.31 (d, J = 3.2 Hz, 

1H, ArHa), 7.49 – 7.34 (m, 5H, ArH), 10.33 (s, 1H, -OH). 

 

IR (FTR) ν (cm
-1

):  3387, 3124, (OH), 2954, 2893 (CH), 2330, 2044, 1897, 1667 (C=O), 

1597 (Ar), 1481 (CH), 1396, 1303, 1203, 1072, 956, 779, 740, 687, 556. 
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8.2.2.2 Benzyl-2,5-di(4-alkyloxybenzoyloxy)benzoates (4-9) 
 

 

 

Figure 8.5: Benzyl-2,5-di(4-alkyloxybenzoyloxy)benzoates (4-9), R= C3H7 to C8H17 

 

A solution of benzyl-2,5-dihydroxybenzoate, an alkyloxybenzoic acid, EDAC and a catalytic 

quantity of DMAP in DCM (100 mL) was stirred at RT for 12 h. The reaction was monitored by 

TLC and when completed solvent removed in vacuo and purified by flash column 

chromatography in DCM.  

 

Benzyl-2,5-di(4-propyloxybenzoyloxy)benzoate (4) 

 

Reagents:  Benzyl-2,5-dihydroxybenzoate (5.42 g, 22 mmol), 4-propyloxybenzoic 

acid (8 g, 44 mmol), EDAC (3.45 g, 44 mmol). 

 

Yield:    White powder, 7.45 g, 13 mmol, 60 %. 

 

1
H NMR (CDCl3) δ (ppm):  1.02-1.10  (m, 6H,  -CH3), 1.78-1.94 (m, 4H, -CH2-), 4.01 

(m,4H, -CH2O-), 5.19 (s, 2H, -CH2Ar), 6.97 (dd AAʹ XXʹ, 4H, J 

= 6.4, 8.8 Hz, ArH), 7.23 (m, 5H, ArH),  7.28 (d, 1H, J = 8.8 Hz, 

ArHc), 7.47 (dd, 1H, J = 2.5, 8.8 Hz, ArHb), 7.94 (d, 1H, J = 2.9 

Hz, ArHa), 8.06 – 8.17  (m AAʹ XXʹ, 4H, ArH). 

 

IR (FTR) ν (cm
-1

):  3071, 2970, 2939 (CH), 2878, 1720 (C=C), 1604, 1512 (Ar), 1242, 1165, 

1126, 1072, 1010, 972, 841, 687, 648, 556. 

 

Benzyl-2,5-di(4-butyloxybenzoyloxy)benzoate (5) 
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Reagents:  Benzyl-2,5-dihydroxybenzoate (19.00 g, 78 mmol), 4-butyloxybenzoic 

acid (30.4 g, 156 mmol), EDAC (24.2 g, 156 mmol).  

 

Yield:    White powder, 20.94 g, 35.1 mmol, 45 %. 

  

1
H NMR (CDCl3) δ (ppm):  0.98 (m, 6H, -CH3), 1.49 (m, 4H, -CH2-), 1.77 (m, 4H, -CH2-), 

4.02 (m, 4H, -CH2O-), 5.35 (s, 2H, CH2Ar), 6.93 (m, 5H, ArH), 

7.03 (d, 1H, J = 9 Hz, ArHc), 7.27 (dd, 1H, J = 2.9, 9 Hz, ArHb), 

7.40 (d, 1H, J = 2.9 Hz, ArHa), 7.38 (m AAʹ XXʹ, 4H, ArH), 8.05 

(m AAʹ XXʹ , 4H, ArH).  

 

IR (FTR) ν (cm
-1

):  3071, 2932 (CH), 2870, 1720 (C=O), 1581, 1504 (Ar), 1242, 1165, 1064, 

964, 841, 679, 548, 509. 

 

Benzyl-2,5-di(4-pentyloxybenzoyloxy)benzoate (6) 

 

Reagents:  Benzyl-2,5-dihydroxybenzoate (4.64 g, 19 mmol), 4-pentyloxybenzoic 

acid (8 g, 38 mmol), EDAC (5.96 g, 38 mmol).  

 

Yield:    White powder, 8.29 g, 13 mmol, 70 %. 

  

1
H NMR (CDCl3) δ (ppm):  0.89 – 1.00 (m, 6H, -CH3), 1.42-1.51 (m, 6H, -CH2-), 1.79 – 1.85 

(m, 4H, -CH2-), 4.04 (t, 4H, J= 6.5 Hz, CH2O-), 5.19 (s, 2H, -

CH2Ar), 6.96 (m AAʹ XXʹ, 4H, ArH), 7.23 (m, 5H, ArH), 7.26 

(d, 1H, J = 8.7 Hz, ArHc), 7.44 (dd, 1H, J = 2.9, 8.8 Hz, ArHb), 

7.90 (d, 1H, J = 2.9 Hz, ArHa), 8.07 (m AAʹ XXʹ, 4H, ArH).  

 

IR (FTR) ν (cm
-1

):  3071, 2932 (CH), 2862, 2770, 1582 (C=O), 1504 (Ar), 1466, 1389, 1242, 

1165, 1126, 1065, 995, 841, 617, 548. 

 

Benzyl-2,5-di(4-hexyloxybenzoyloxy)benzoate (7) 

 

Reagents:  Benzyl-2,5-dihydroxybenzoate (4.4 g, 18 mmol), 4-hexyloxybenzoic 

acid (8 g, 36 mmol), EDAC (5.58 g, 36 mmol).  

 

Yield:    White powder, 8.41 g, 13 mmol, 72 %. 

  



152 

1
H NMR (CDCl3) δ (ppm): 0.89-0.93 (m, 6H, -CH3), 1.34-1.37 (m, 8H, -CH2-), 1.38 – 1.52 

(m, 6H, -CH2-), 1.79 – 1.84 (m, 4H, -CH2-), 4.04 (m, 4H, CH2O-

), 5.18 (s, 2H, -CH2Ar), 6.93 (m, AAʹ XXʹ, 4H, ArH), 7.23 (m, 

5H, ArH), 7.24 (d, 1H, J = 8.7 Hz, ArHc), 7.43 (dd, 1H, J = 8.7, 

2.9 Hz, ArHb), 7.89 (d, 1H, J = 2.9 Hz, ArHa), 8.09 (m, AAʹ XXʹ, 

4H, ArH). 

 

IR (FTR) ν (cm
-1

):  3070, 2924 (CH), 2862, 1728, 1605 (C=O), 1504 (Ar), 1458, 1419, 1373, 

1242, 1165, 1134, 1072, 1003, 887, 841, 625, 556. 

 

Benzyl-2,5-di(4-heptyloxybenzoyloxy)benzoate (8) 

 

Reagents:  Benzyl-2,5-dihydroxybenzoate (19.00 g, 78 mmol), 4-heptyloxybenzoic 

acid (36.8 g, 156 mmol), EDAC (24.216 g, 156 mmol).  

 

Yield:    White powder, 33.4g, 49.1 mmol, 63 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.81 (m, 6H, -CH3), 1.32 (m, 12H, -CH2-), 1.45 (m, 4H. –CH2-), 

1.79 (m, 4H, -CH2-), 3.79 (m, 2H, -CH2O-), 4.04 (t, 4H J = 6.6 

Hz, -CH2O), 5.18 (s, 2H, CH2Ar), 6.92 (m, AAʹ XXʹ, 4H, ArH) 

7.22 (m, 5H, ArH), 7.25 (d, 1H, J = 8.7 Hz, ArHc), 7.45 (dd, 1H, 

J = 8.7, 2.9 Hz, ArHb), 7.89 (d, 1H, J = 2.9 Hz, ArHa), 8.10 (m 

AAʹ XXʹ, 4H, ArH).  

 

IR (FTR) ν (cm
-1

):  3387, 3070, 2939, 2893 (CH), 1743, 1667, 1597 (C=O), 1481 (Ar), 1204, 

1072, 957, 779, 741, 741, 687, 548, 501. 

 

Benzyl-2,5-di(4-octyloxybenzoyloxy)benzoate (9) 

 

Reagents:  Benzyl-2,5-dihydroxybenzoate (3.91 g, 16 mmol), 4-octyloxybenzoic 

acid (8 g, 32 mmol), EDAC (2.48 g, 32 mmol).  

 

Yield:    White powder, 7.86 g, 11 mmol, 69 %. 

 

1
H NMR (CDCl3) δ (ppm):  0.87 – 0.90 (m, 6H, CH3-), 1.21-1.39 (m, 14H, -CH2-), 1.40 – 

1.58 (m, 6H, -CH2-), 1.72 – 1.90 (m, 4H, -CH2-), 4.04 (t, 4H, J – 

6.2 Hz, CH2O-), 5.18 (s, 2H, CH2Ar), 6.94 (m, AAʹ XXʹ 4H, 
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ArH), 7.21 (m, 5H, ArH), 7.25 (d, 4H, J= 8.7 Hz, ArHc), 7.45 

(dd, 1H, J = 8.8, 2.9 Hz, ArHb), 7.89 (d, 1H, J = 2.9 Hz, ArHa), 

8.09 (m, AAʹ XXʹ, 4H, ArH).
 

 

IR (FTR) ν (cm
-1

):  2924 (CH), 2855, 2561, 1728, 1604 (C=O), 1581, 1512, 1458 (Ar), 1373, 

1249, 1172, 1126, 1072, 1003, 972, 841, 548, 501. 
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8.2.2.3 2,5-Di(4-alkyloxybenzoyloxy)benzoic acids (10-15)  
 

 

 

Figure 8.6: 2,5-Di(4-alkyloxybenzoyloxy)benzoic acids (10-15) R= C3H7 to C8H17 

 

A solution of benzyl-2,5-di(4-alkyloxybenzoyloxy)benzoate in DCM (100 mL) was stirred at 

room temperature. 10% palladium on carbon (~0.2 g) was added and the reaction mixture 

degassed three times with hydrogen to activate the carbon. The reaction mixture was then left 

under a hydrogen atmosphere for 24 h. The reaction was monitored by TLC and on completion 

was filtered through a celite pad and recrystallised from ethanol.  

 

2,5-Di(4-propyloxybenzoyloxy)benzoic acid (10) 

 

Reagents:   Benzyl-2,5-di(4-propyloxybenzoyloxy)benzoate (5 g, 8.8 mmol) 

 

Yield:    White powder, 4.12g, 8.6 mmol, 97 %. 

 

1
H NMR (CDCl3) δ (ppm):  1.02-1.10  (m, 6H,  -CH3), 1.78-1.94 (m, 4H, -CH2-), 4.01 

(m,4H, -CH2O-), 6.97 (m, AAʹ XXʹ, 4H, ArH), 7.28 (d, 1H, J = 

8.8 Hz, ArHc), 7.47 (dd, 1H, J = 2.5, 8.8 Hz, ArHb), 7.94 (d, 1H, 

J = 2.9 Hz, ArHa), 8.06 – 8.17  (m AAʹ XXʹ, 4H, ArH).  

 

IR (FTR) ν (cm
-1

):  3070, 2931 (CH), 2877 (OH), 2654, 2546, 2324, 2222, 2083, 1728 

(C=O), 1697, 1605, 1512 (Ar), 1389, 1250, 1165, 1065, 972.12, 926, 

841, 756, 687, 633, 501. 

 

2,5-Di(4-butyloxybenzoyloxy)benzoic acid (11) 

 

Reagents:   Benzyl-2,5-di(4-butyloxybenzoyloxy)benzoate (19.00 g, 33 mmol).  

 

Yield:    13.87g, 27.4 mmol, 83 %. 



155 

  

1
H NMR (CDCl3) δ (ppm):  0.99 (m, 6H, -CH3), 1.50 (m, 4H, -CH2), 1.81 (m, 4H, -CH2-), 

4.05 (t, 4H, J=6.5 Hz, -CH2-O), 6.98 (m, AAʹ XXʹ, 4H, ArH), 

7.06 (d, 1H, J= 9 Hz, ArHc), 7.36 (dd, 1H,J= 2.8 Hz, 9 Hz ArHb), 

7.74 (d, 1H, J= 2.7 Hz, ArHa), 8.11 (m, AAʹ XXʹ, 4H, ArH). 

 

IR (FTR) ν (cm
-1

):  3734, 3502, 3263, 3078, 2939 (OH), 2870 (CH), 2738, 2607, 2530, 2322, 

2098, 1921, 1735, 1674 (C=O), 1604 (Ar), 1442 (CH), 1150, 1126, 1064, 

1002, 848, 763, 640, 555. 

 

2,5-Di(4-pentyloxybenzoyloxy)benzoic acid (12) 

 

Reagents:   Benzyl-2,5-di(4-pentyloxybenzoyloxy)benzoate (5 g, 8 mmol).  

 

Yield:    White powder, 4.17g, 7.8 mmol, 98 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.77-0.99 (m, 6H, CH3-), 1.32 – 1.53 (m, 8H, -CH2-), 1.75 -1.92 

(m, 4H, -CH2-), 4.04 (m, 4H, CH2O-), 6.97 (m, AAʹ XXʹ, 4H, 

ArH), 7.30 (d, 1H, J = 8.8 Hz, ArHc), 7.48 (dd, 1H, J = 2.9, 8.8 

Hz, ArHb), 7.94 (d, 1H, J = 2.9 Hz, ArHa), 8.10 – 8.17 (m AAʹ 

XXʹ, 4H, ArH). 

 

IR (FTR) ν (cm
-1

):  2932 (CH), 2862, 2561, 1690 (C=O), 1605, 1582 (Ar), 1512, 1373, 1250 

(CH), 1165, 1126, 1072, 988, 841, 756, 687, 501.  

 

2,5-Di(4-hexyloxybenzoyloxy)benzoic acid (13) 

 

Reagents:   Benzyl-2,5-di(4-hexyloxybenzoyloxy)benzoate (5.8 g, 8.9 mmol).  

 

Yield:    White powder, 4.96g, 8.82 mmol, 99 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.81 – 0.97 (m, 6H, -CH3), 1.27 - 1.40 (m, 6H, -CH2-), 1.42 - 

1.54 (m, 4H, -CH2-), 1.70 – 1.95 (m, 4H, -CH2-), 4.04 (m, 4H, 

CH2O-), 6.96 (m, AAʹ XXʹ, ArH), 7.30 (d, 1H, J = 8.8 Hz, ArHc), 

7.48 (dd, J = 2.9, 8.8 Hz, 1H, ArHb), 7.93 (d, 1H, J = 2.9, ArHa), 

8.13 (m, AAʹ XXʹ, ArH).  

 



156 

IR (FTR) ν (cm
-1

):  2932 (OH), 2862 (CH), 2654, 2576, 1690 (C=O), 1605 (Ar), 1582, 1512, 

1458, 1420, 1373, 1250, 1173, 1126, 1072, 1003, 926, 841, 756, 548, 

501.   

 

2,5-Di(4-heptyloxybenzoyloxy)benzoic acid (14) 

 

Reagents:   Benzyl-2,5-di(4-heptyloxybenzoyloxy)benzoate (30 g, 46.4 mmol).  

 

Yield:    White powder, 19.7g, 33.4 mmol, 72 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.99 (m, 26H, -CH3), 4.05 (t, 4H, J=8 Hz, -CH2-O), 7.5 (m, AAʹ 

XXʹ, 4H, ArH), 7.35 (d, 1H, J= 9 Hz, ArHc), 7.38 (dd, 1H,J= 3 

Hz, 9 Hz, ArHb), 7.73 (d, 1H, J= 3 Hz, ArHa), 8.11 (m, AAʹ XXʹ, 

4H, ArH), 10.33 (br s, 1H, OH) 

 

IR (FTR) ν (cm
-1

):  3880, 3795, 3741, 3518, 3448, 3208 (OH), 3078, 2916, (CH). 2854, 

2592, 2322, 2206, 2083, 1990, 19805, 1728, 1666 (C=O), 1597, 1581, 

1442, 1150, 1064, 1002, 848, 763, 648, 555. 

 

2,5-Di(4-octyloxybenzoyloxy)benzoic acid (15) 

 

Reagents:   Benzyl-2,5-di(4-octyloxybenzoyloxy)benzoate (4.17 g, 5.9 mmol).  

 

Yield:    White powder, 3.55g, 5.7 mmol 97 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.87 – 0.90 (m, 6H, CH3-), 1.21-1.39 (m, 14H, -CH2-), 1.40 – 

1.58 (m, 4H, -CH2-), 1.72 – 1.90 (m, 4H, -CH2-), 4.04 (t, 4H, J – 

6.2 Hz, CH2O-), 6.94 (m, AAʹ XXʹ, 4H, ArH), 7.25 (d, 1H, J= 

8.7 Hz, ArHc), 7.45 (dd, 1H, J = 8.8, 2.9 Hz, ArHb), 7.89 (d, 1H, 

J = 2.9 Hz, ArHa), 8.09 (m, AAʹ XXʹ, 4H, ArH).  

 

IR (FTR) ν (cm
-1

):  2924 (OH), 2855 (CH), 2654, 2561, 1728, 1690, 1605 (C=O), 1582, 

1519, 1458, 1373, 1250, 1173, 1126, 1072, 1010, 964, 841, 756, 648, 

501.  
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8.2.2.4 (4-Acryloylbutyl)-2,5-di(4-propyloxybenzyloxy)benzoate (M2) 
 

 

 

Figure 8.7: (4-Acryloylbutyl)-2,5-di(4-propyloxybenzyloxy)benzoate (M2). 

 

A solution of 2,5-di(4-propyloxybenzoyloxy)benzoic acid (2 g, 4.17 mmol), 4-

hydroxybutylacrylate (0.6 g, 4.17 mmol), EDAC (0.81 g, 4.17 mmol) and a catalytic quantity of 

DMAP in DCM (50 mL) was stirred at room temperature for 48 hr. The reaction was monitored 

by TLC. On completion, the solvent was removed in vacuo and the resultant product was purified 

by flash column chromatography in DCM. 

 

Yield:    White powder, 2.34g, 3.87 mmol, 92 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.98 – 1.11 (m, 6H, –CH3), 1.54 – 1.65 (m, 4H, -CH2-), 1.81 – 

1.90 (m, 4H, -CH2-), 3.96 – 4.03 (m, 6H, CH2O-), 4.18 – 4.21 

(m, 2H, CH2O-), 5.81 (dd, 1H, J = 1.5, 10.4 Hz, CH=), 6.11 (dd, 

1H, J = 10.4, 17.3 Hz, CH=), 6.34 (dd, J = 1.5, 17.3 Hz, CH=), 

6.99 (m, AAʹ XXʹ, 4H, ArH), 7.27 (d, 1H, J= 8.7 Hz, ArHc), 7.44 

(dd,1H, J = 2.9, 8.7Hz, ArHb), 7.87 (d, 1H, J = 2.9 Hz, ArHa), 

8.15 (m, AAʹ XXʹ, 4H, ArH). 

 

13
C NMR (CDCl3) δ (ppm):  10.63, 22.42, 25.24 (CH3CH2-), 63.95, 65.02, 69.83 (CH2O-), 

77.11 (t, CDCl3), 114.47, 125.18 (CH=), 127.62, 128.52, 130.69, 

132.52, 148.43 (ArC), 163.55, 163.74, 164.15, 166.39 (C=O). 

 

DSC: g -14 °C N 61°C I  

 

MS (ESI):  C34H37O10 calculated [M + Na] m/z 627.2201, found 627.2169. 

 

EA (CHN):  calculated C 67.54 %, H 6.00 % found C 67.55 %, H 6.04 %. 
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IR (FTR) ν (cm
-1

):  3071, 2940 (CH), 2878, 1728, 1605 (C=O), 1474 (Ar), 1473, 1242, 1165, 

1056, 972, 756, 687, 640, 548, 501.  
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8.2.2.5 (4-Acryloylbutyl)-2,5-di(4-butyloxybenzyloxy)benzoate (M3) 
 

 

 

Figure 8.8: (4-Acryloylbutyl)-2,5-di(4-butyloxybenzyloxy)benzoate (M3) 

 

A solution of 2,5-di(4-butyloxybenzoyloxy)benzoic acid (5g, 9.88 mmol), 4-hydroxybutylacrylate 

(1.284g. 9.88 mmol), EDAC (1.533g 9.88mmol) and DMAP (0.08 g, 0.6 mmol)  in DCM (200 

mL) was stirred at RT for 48 hr. The reaction was monitored by TLC. On completion, the solvent 

was removed in vacuo and the resultant product was purified by flash column chromatography in 

DCM. 

 

Yield:    White powder, 4.56 g, 7.2 mmol, 73 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.99 (m, 6H, CH3-), 1.61 (m, 4H, -CH2-), 1.81 (m, 4H, -CH2-), 

4.05 (m, 6H, -CH2O-), 4.20 (t, 2H, J=6.2 Hz, CH2O-), 5.79 (dd, 

1H, J=10.4, 1.4, CH=), 6.07 (dd, 1H, J=17.3, 10.4 Hz, CH=), 

6.36 (dd, 1H, J=17.3, 1.4 Hz, CH=), 6.97 (m AAʹ XXʹ, 4H, 

ArH), 7.29 (d, 1H, J=8.7 Hz, ArHc), 7.45 (dd, 1H, J=8.7, 2.9 Hz, 

ArHb), 7.88 (d, 1H, J=2.9 Hz, ArHa), 8.15 (m AAʹ XXʹ, 4H, 

ArH).  

 

13
C NMR (CDCl3) δ (ppm):  13.92, 19.28, 25.21, 31.21 (CH3CH2-), 64.00, 64.98, 68.11, 68.13 

(CH2O-), 77.10 (t, CDCl3) 114.45, 121.08, 121.39 (CH=), 

124.85, 125.13, 127.33, 128.48, 130.79, 132.49, 132.51 (ArC), 

148.19, 148.45, 163.75, 163.84, 164.14, 164.74, 164.96(C=O).   

 

DSC: Cr 42 °C N 82 °C I  

 

MS (ESI):  C36H40O10 calculated [M + Na] m/z 655.2514, found 655.2479. 

 

EA (CHN):  calculated C 68.34 %, H 6.37 % found C 68.30 %, H 6.26 %. 
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IR (FTR) ν (cm
-1

):  2940 (CH), 2870, 1728, 1605 (C=O), 1474 (Ar), 1373, 1242, 1157, 1126, 

1065, 972, 756, 687, 640, 548, 501. 
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8.2.2.6 (4-Acryloylbutyl)-2,5-di(4-pentyloxybenzyloxy)benzoate (M4) 
 

 

 

Figure 8.9: (4-Acryloylbutyl)-2,5-di(4-pentyloxybenzyloxy)benzoate (M4) 

 

A solution of 2,5-di(4-pentyloxybenzoyloxy)benzoic acid (2 g, 3.74 mmol), 4-

hydroxybutylacrylate (0.54 g, 3.74 mmol), EDAC (0.72 g, 3.74 mmol) and DMAP (0.08 g, 0.6 

mmol) in DCM (50 mL) was stirred at room temperature for 48 hr. The reaction was monitored 

by TLC. On completion, the solvent was removed in vacuo and the resultant product was purified 

by flash column chromatography in DCM.  

 

Yield:    White powder, 2.16g, 3.27 mmol, 87 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.93 – 0.96 (m, 6H, –CH3), 1.39 – 1.62 (m, 11H, -CH2-), 1.81 – 

1.84 (m, 4H, -CH2-), 3.00 – 4.06 (m, 6H, CH2O-), 4.20 (t, 2H, J 

= 6.2 Hz, CH2O-), 5.80 (dd, 1H, J = 1.4, 10.5 Hz, CH=), 6.08 

(dd, 1H, J = 10.4, 17.3 Hz, CH=), 6.38 (dd, J 1.4, 17.3 Hz, CH=), 

6.98 (m, AAʹ XXʹ, 4H, ArH), 7.27 (d, 1H, J= 8.7 Hz, ArHc), 7.45 

(dd,1H, J = 2.9, 8.7 Hz, ArHb), 7.88 (d, 1H, J = 2.9 Hz, ArHa), 

8.15 (m, AAʹ XXʹ, ArH). 

 

13
C NMR (CDCl3) δ (ppm):  14.11, 22.53, 24.95, 25.21, 27.80, 28.21, 28.87 (CH3CH2-), 

64.00, 64.47, 64.98, 67.53, 68.44 (CH2O-), 77.11 (t, CDCl3) 

114.45, 115.01, 121.05, 121.38, 124.85, 125.13, 127.33 (CH=), 

128.48, 130.79, 132.30, 132.49, 132.52 (ArC), 148.19, 148.43, 

164.84, 164.15, 164.70, 165.03, 166.22 (C=O). 

 

DSC: Cr 34 °C N 58 °C I  

 

MS (ESI):  C38H44O10 calculated [M + Na] m/z 683.2827, found 683.2801. 
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EA (CHN):  calculated C 69.07 %, H 6.71 %, found C 69.06 %, H 6.80 %. 

 

IR (FTR) ν (cm
-1

):  3078, 2932 (CH), 1721, 1605 (C=O), 1582, 1512 (Ar), 1466, 1412, 1373, 

1242, 1165, 1065, 980, 756, 687, 548.  
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8.2.2.7 (4-Acryloylbutyl)-2,5-di(4-hexyloxybenzyloxy)benzoate (M5) 
 

 

 

Figure 8.10: (4-Acryloylbutyl)-2,5-di(4-hexyloxybenzyloxy)benzoate (M5) 

 

A solution of 2,5-di(4-hexyloxybenzoyloxy)benzoic acid (2 g, 3.55 mmol), 4-

hydroxybutylacrylate (0.51 g, 3.55  mmol), EDAC (0.68 g, 3.55 mmol) and DMAP (0.08 g, 0.6 

mmol)  in DCM (50 mL) was stirred at RT for 48 hr. The reaction was monitored by TLC. On 

completion, the solvent was removed in vacuo and the resultant product was purified by flash 

column chromatography in DCM. 

 

Yield:    White powder, 2.33g, 3.38 mmol, 95 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.91 (m, 6H, CH3-), 1.26 – 1.43 (m, 6H, -CH2-), 1.41-1.70 (m, 

10H, -CH2-), 1.73-1.93 (m, 4H, -CH2-), 3.96 – 4.12 (m, 6H, -

CH2O-), 4.20 (t, 2H, J=6.2 Hz, CH2O-), 5.97 (dd, 1H, J=1.5, 10.4 

Hz, CH=), 6.07 (dd, 1H, J=10.4, 17.3 Hz, CH=), 6.36 (dd, 1H, J= 

1.5, 17.3 Hz, CH=), 6.97 (m, AAʹ XXʹ, 4H, ArH), 7.26 (d, 1H, 

J=8.7 Hz, ArHc), 7.45 (dd, 1H, J= 2.9, 8.7 Hz, ArHb), 7.88 (d, 

1H, J = 2.9 Hz, ArHa), 8.15 (m, AAʹ XXʹ, 4H, ArH). 

 

DSC: Cr 36 °C N 81 °C I  

 

MS (ESI):  C40H48O10 calculated [M + Na] m/z 711.3140, found 711.3118. 

 

EA (CHN):  calculated C 69.75 %, H 7.02 % found C 69.69 %, H 7.06 %. 

 

IR (FTR) ν (cm
-1

):  3078, 2932 (CH), 2862, 1721, 1605 (C=O), 1582, 1512 (Ar), 1266, 1412, 

1373, 1242, 1165, 1065, 980, 841, 756, 687, 548.  
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8.2.2.8 (4-Acryloylbutyl)-2,5-di(4-heptyloxybenzyloxy)benzoate (M6) 
 

 

 

Figure 8.11: (4-Acryloylbutyl)-2,5-di(4-heptyloxybenzyloxy)benzoate (M6) 

 

A solution of 2,5-di(4-heptyloxybenzoyloxy)benzoic acid (5g, 8.46 mmol), 4-

hydroxybutylacrylate (1.103g. 8.46 mmol), EDAC (1.313g, 8.46 mmol) and DMAP (0.08 g, 0.6 

mmol)  in DCM (200 mL) was stirred at room temperature for 48 hr. The reaction was monitored 

by TLC. On completion, the solvent was removed in vacuo and the resultant product was purified 

by flash column chromatography in DCM.  

 

Yield:    White waxy solid, 6.81 g, 9.5 mmol, 89 %.  

 

1
H NMR (CDCl3) δ (ppm): 0.90 (m, 6H, CH3-), 1.44 (m, 16H, -CH2-), 1.61 (m, 4H, -CH2-), 

1.80 (m, 4H, -CH2-), 4.03 (m, 6H, -CH2O-), 4.20 (t, 2H, J=6.2 

Hz, CH2O-), 5.80 (dd, 1H, J=10.4, 1.4 Hz, CH=), 6.07 (dd, 1H, 

J=17.3, 10.4 Hz, CH=), 6.36 (dd, 1H, J=17.3, 1.5 Hz, CH=), 6.97 

(m, AAʹ XXʹ, 4H, ArH), 7.26 (d, 1H, J= 8.7 Hz, ArHc), 7.45 (dd, 

1H, J=8.7, 2.9 Hz, ArHb), 7.88 (d, 1H, J=2.9 Hz, ArHa), 8.15 (m, 

AAʹ XXʹ, 4H, ArH). 

 

13
C NMR (CDCl3) δ (ppm):  14.19, 22.70, 25.21, 26.03, 29.13, 29.18, 31.85 (-CH3CH2-), 

63.99, 64.97, 68.43 (CH2O-), 77.10 (t, CDCl3), 114.45, 114.47 

(ArC), 121.06, 121.39, 124.85, 125.08 125.12, 127.32, 128.49 

(CH=), 130.77, 132.48, 132.51 (ArC), 148.19, 148.43, 163.75, 

163.85, 163.13, 164.68, 165.02, 165.20(C=O).  

 

 DSC: Cr 21 °C N 61 °C I  

 

MS (ESI):  C42H52O10 calculated [M + Na] m/z 739.3453, found 739.3438.  
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EA (CHN):  calculated C 70.37 %, H 7.31 % found C 70.36 %, H 7.39 %. 

 

IR (FTR) ν (cm
-1

):  3071, 3009, 2939 (CH), 2870, 1728, 1605 (C=O), 1474 (Ar), 1373, 1242, 

1157, 1065, 972, 756, 687, 640, 548, 501. 



166 

8.2.2.9 (4-Acryloylbutyl)-2,5-di(4-Octyloxybenzyloxy)benzoate (M7) 
 

 

 

Figure 8.12: (4-Acryloylbutyl)-2,5-di(4-octyloxybenzyloxy)benzoate (M7) 

 

A solution of 2,5-di(4-octyloxybenzoyloxy)benzoic acid (2 g, 5.23 mmol), 4-

hydroxybutylacrylate (0.47 g, 3.23 mmol), EDAC (0.62 g, 3.23 mmol) and DMAP (0.08 g, 0.6 

mmol)  in DCM (50 mL) was stirred at RT for 48 hr. The reaction was monitored by TLC. On 

completion, the solvent was removed in vacuo and the resultant product was purified by flash 

column chromatography in DCM. 

 

Yield:    White waxy solid, 1.56g, 2.09 mmol, 65 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.89 (t, 6H, J = 6.9 Hz, -CH3), 1.19-1.41 (m, 14H, -CH2-), 1.51 – 

1.73 (m, 8H, -CH2-), 1.73 – 1.90 (m, 4H, -CH2-), 3.93 – 4.12 (m, 

6H, -CH2O-), 4.20 (t, 2H, J = 6.2 Hz, CH2O-), 5.79 (dd, 1H, J = 

1.5, 10.4 Hz, CH=), 6.07 (dd, 1H, J = 10.5, 17.3 Hz, CH=), 6.36 

(dd, 1H , J = 1.5, 17.3 CH=), 6.97 (m, AAʹ XXʹ, 4H, ArH), 7.26 

(d, 1H, J = 8.7 Hz, ArHc), 7.45 (dd, 1H , J = 2.9, 8.7 Hz, ArHb), 

7.88 (d, 1H, J = 2.9 Hz, ArHa), 8.15 (m, AAʹ XXʹ, 4H, ArH). 

 

DSC: Cr 23 °C N 69 °C I  

 

MS (ESI):  C44H56O10 calculated [M + Na] m/z 767.3766, found 767.3730. 

 

EA (CHN):  calculated C 70.94 %, H 7.58 % found C 70.88 %, H 7.17 %. 

 

IR (FTR) ν (cm
-1

):  2924 (CH), 2855, 1721, 1605 (C=O), 1582, 1512 (Ar), 1466, 1420, 1373, 

1242, 1165, 1065, 1011, 841, 756, 633, 548, 501.   
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8.2.2.10 11-Acryloylundecan-1-ol (16)136 
 

 

 

Figure 8.13: 11-Acryloylundecan-1-ol 

 

Sodium acrylate (15.05g, 160 mmol), bromoundecanol (10g, 40 mmol), tetrabutylammonium 

bromide (3.42g, 10mmol) and DBPC (catalytic) were placed in a 100mL round bottom flask and 

chloroform (20 mL) and distilled water (40 mL) were added. The mixture was refluxed with 

vigorous stirring at 110 °C for 3 days. The chloroform layer was then washed 4x with NaOH 

solution and 4x with distilled water. The solution was dried over MgSO4 and the solvent removed 

in vacuo and the crude product was used as received in further reactions. 

 

Yield:    Clear off white oil, 7.46 g, 30.8 mmol, 77 %.  

 

1
H NMR (CDCl3) δ (ppm):  1.21 (br m, 14H, -CH2-), 1.48 (m, 2H, -CH2-), 1.59 (m, 2H, -

CH2-), 3.54 (t, 2H, J=6.7 Hz, CH2O-), 4.07 (t, 2H, J=6.7 Hz, 

CH2O-), 5.74 (dd, 1H, J=10.4, 17.3 Hz, CH=), 6.05 (1H,dd, 

J=10.4, 17.3 Hz, CH=), 6.32 (1H, dd, J=17.3, 1.5 Hz, CH=). 

 

MS (ESI):  C14H26O3 calculated [M + Na] m/z 265.1774, found 265.1772. 

 

EA (CHN):  calculated C 69.38 %, H 10.81 % found C 66.38 %, H 10.35 %. 
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8.2.2.11  (11-Acryloylundecyl)-2,5-di(4-butyloxybenzoyloxy)benzoate 

(M8) 
 

 

 

Figure 8.14: (11-Acryloylundecyl)-2,5-di(4-butyloxybenzoyloxy)benzoate (M8) 

 

A solution of 2,5-di(4-butyloxybenzoyloxy)benzoic acid (1.5g, 2.96 mmol), 11-acryoylundecan-

1-ol (0.718g, 2.96 mmol), EDAC (0.460g, 2.96 mmol) and a spatula tip of DMAP in DCM (50 

mL) was stirred at RT for 48 hr. The reaction was monitored by TLC. On completion, the solvent 

was removed in vacuo and the resultant product was purified by flash column chromatography in 

DCM.  

 

Yield:    Cream coloured waxy solid, 1.49g, 2.04 mmol, 69 %.  

 

1
H NMR (CDCl3) δ (ppm):  0.99 (t, 6H, J= 7.4 Hz, CH3-), 1.21 (m, 14H, -CH2-), 1.52 (m, 6H, 

-CH2), 1.62 (m, 4H, -CH2-), 1.81 (m, 4H, -CH2-), 4.05 (m, 4H, 

CH2O-), 4.14 (m, 4H, CH2O-), 5.81 (dd, 1H J=10.4, 1.5 Hz, 

CH=), 6.11 (dd, 1H, J=17.3, 10.4 Hz, CH=), 6.39 (dd, 1H, 17.3, 

1.5 Hz, CH=), 6.97 (m AAʹ XXʹ, 4H, ArH), 7.25 (d, 1H, J=8.7 

Hz, ArHc), 7.44 (dd, 1H, J=8.7, 2.9 Hz, ArHb), 7.88 (d, 1H, J= 

2.9 Hz, ArHa), 8.15 (m AAʹ XXʹ, 4H, ArH). 

 

13
C NMR (CDCl3) δ (ppm):  13.92, 19.29, 26.01, 28.69, 29.27, 29.34, 29.56, 31.21 (-CH3CH2-

), 64.80, 65.75, 68.08, 68.13, 69.58 (CH2O-), 77.11 (t, CDCl3) 

114.38, 121.10, 121.52, 125.09, 127.17, 128.48, 128.73 (CH=), 

130.53, 132.47, 132.54 (ArC), 148.39, 163.67, 164.24, 165.03 

(C=O).  

 

DSC: g -23 °C N 65 °C I  

 

MS (ESI):  C43H54O10 calculated [M + Na] m/z 753.3609, found 753.3591.  



169 

 

EA (CHN):  calculated C 70.66 %, H 7.45 % found C 70.30 %, H 7.43 %. 

 

IR (FTR) ν (cm
-1

):  2924 (CH), 2855, 1728, 1605 (C=O), 1474 (Ar), 1373, 1242, 1165, 1126, 

1065, 964, 764, 687, 640, 556, 501. 
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8.2.2.12 (11-Acryloylundecyl)-2,5-di(4-heptlyloxybenzoyloxy)benzoate 

(M9) 
 

 

 

Figure 8.15: (11-Acryloylundecyl)-2,5-di(4-heptlyloxybenzoyloxy)benzoate (M9) 

 

A solution of 2,5-di(4-heptyloxybenzoyloxy)benzoic acid (1.5g, 2.54 mmol), 11-acryoylundecan-

1-ol (7) (0.615g, 2.54 mmol), EDAC (0.394g, 2.54 mmol) and a spatula tip of DMAP in 50 mL of 

DCM at stirred at RT for 48 hr. The reaction was monitored by TLC. On completion, the solvent 

was removed in vacuo and the resultant product was purified by flash column chromatography in 

DCM. 

 

Yield:    Cream coloured waxy solid, 1.47g, 1.80 mmol, 71 %.  

 

1
H NMR (CDCl3) δ (ppm): 0.90 (t, 6H, J=6.9Hz, CH3-), 1.31(m, 20H, -CH2-), 1.65 (m, 6H, -

CH2-), 1.82 (m, 4H, -CH2-), 4.04 (m, 4H, CH2O-), 4.14 (m, 4H, 

CH2O-), 5.80 (dd, 1H, J=10.4, 1.5 Hz, CH=), 6.11 (dd, 1H, 17.3, 

10.4 Hz, CH=), 6.39 (dd, 1H, J= 17.4, 1.5 Hz, CH=), 6.96 (m, 

AAʹ XXʹ, 4H, ArH), 7.25 (d, 1H, J=8.7 Hz, ArHc), 7.44 (dd, 1H, 

J= 8.7, 2.9 Hz, ArHb), 7.88 (d, 1H, J= 2.9 Hz, ArHa), 8.15 (m, 

AAʹ XXʹ, 4H, ArH). 

 

13
C NMR (CDCl3) δ (ppm):  14.19, 22.70, 25.90, 26.04, 28.47, 28.70, 29.13, 29.18, 29.27, 

29.34, 29.48, 29.56, 31.86 (-CH3CH2-), 64.79, 65.74, 68.40, 

68.45 (CH2O-), 77.14 (t, CDCl3), 114.39, 121.10, 121.52 (CH=), 

125.08, 127.17, 128.73, 130.52, 132.52, 132.47, 132.54 (ArH), 

148.18, 163.66, 163.83, 164.68, 165.02, 165.42 (C=O). 

  

DSC: Cr -12 °C N 57 °C I  

 

MS (ESI):  C49H66O10 calculated [M + Na] m/z 837.4548, found 837.4630.  
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EA (CHN):  calculated C 72.21 %, H 8.16 % found C 71.78 %, H 8.09 %. 

 

IR (FTR) ν (cm
-1

):  2924 (CH), 2855, 1728, 1605 (C=O), 1512 (Ar), 1466, 1373, 1242, 1165, 

1080, 972, 841, 972, 841, 756, 640, 548.  
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 SYNTHESIS OF NEMATIC POLYMERS BY SOLUTION 8.3

POLYMERISATION  
 

Below is a technique which has been used to synthesise nematic polymers of P1 – P9, synthesised 

from monomers M1 – M9, respectively. The exact reagents and conditions used in each case are 

specified in Table 8.1. 

 

Sealed vessels (Quick-fit Pyrex glass test tubes with rubber seals) of a solution of monomer (100 

mg monomer in 2 mL of solvent) and thermal radical initiator AIBN (2 wt% relative to monomer) 

were purged thoroughly by bubbling with nitrogen for a period of 30 minutes before being heated 

to 65 °C with constant and vigorous stirring for 24 hours. After the polymerisation had been 

allowed to react for 24 hours, the mixture was allowed to cool to room temperature and then the 

polymer was precipitated into methanol. The methanol was removed by centrifugation (10 

minutes at 2000 rpm) as this sedimented the polymer and allowed the methanol to be decanted. 

To purify the polymer it was dissolved in THF and re-precipitated into methanol, removing any 

soluble impurities. The polymer was then dried in a vacuum oven for analysis by methods such as 

GPC, DSC, 
1
H NMR and IR.  

 

 

Typical characterisation data for polymer P1: 

 

1
H NMR (CDCl3) δ (ppm):  1.27 – 1.80 (br m, 12H, -CH3CH2-, CH2(pb), CH2(pb)), 2.28 (br 

m, 2H, -CH2-), 4.01 (br m, 4H –CH2O-), 6.93 (br m, 2H, ArH), 

7.31 (br m, 2H, ArH), 7.69 (br m, 2H, ArH), 8.08 (br m, 2H, 

ArH). 

DSC:  g 27 °C N 101 °C I 

 

Typical characterisation data for polymer P2: 

 

1
H NMR (CDCl3) δ (ppm):  0.95 (br m, 6H, -CH3-), 1.44 – 1.95 (br m, 15H, -CH2-, CH2(pb), 

CH2(pb)), 2.25 (br m, 2H, -CH2-), 3.91 (br m, 8H, -CH2O-), 6.85 

(br m, 4H, ArH), 7.13 (br m, 1H, ArH), 7.34 (br m, 1H, ArH), 

7.78 (br m, 1H, ArH), 8.02 (br m, 4H, ArH).  

DSC:  g 45 °C N 83 °C I 

GPC: Mn: 441,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.67 
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Typical characterisation data for polymer P3: 

 

1
H NMR (CDCl3) δ (ppm):  0.86 (br m, 6H, -CH3-), 1.27 – 1.82 (br m, 15H, -CH2-, CH2(pb), 

CH2(pb)), 2.06 (br m, 2H, -CH2-), 3.98 (br m, 8H, -CH2O-), 6.80 

(br m, 4H, ArH), 7.08 (br m, 1H, ArH), 7.36 (br m, 1H, ArH), 

7.74 (br m, 1H, ArH), 7.97 (br m, 4H, ArH). 

DSC:  g 31 °C N 59 °C I 

GPC: Mn: 256,000 g mol
-1

 

Polydispersity (Mw/Mn): 7.91 

 

Typical characterisation data for polymer P4: 

 

1
H NMR (CDCl3) δ (ppm):  0.97 (br m, 6H, -CH3-), 1.45– 1.92 (br m, 18H, -CH2-, CH2(pb), 

CH2(pb)),  2.21 (br m, 2H, -CH2-), 4.05 (br m, 8H, -CH2O-), 6.98 

(br m, 4H, ArH), 7.25 (br m, 1H, ArH), 7.48(br m, 1H, ArH), 

7.89 (br m, 1H, ArH), 8.14 (br m, 4H, ArH). 

DSC:  g 23 °C N 49 °C I 

 

Typical characterisation data for polymer P5: 

 

1
H NMR (CDCl3) δ (ppm):  0.97 (br m, 6H, -CH3-), 1.33 – 1.69 (br m, 20H, -CH2-, CH2(pb), 

CH2(pb)), 4.09 (br m, 8H, -CH2O-), 6.96 (br m, 4H, ArH), 7.31 

(br m, 1H, ArH), 7.51 (br m, 1H, ArH), 7.94 (br m, 1H, ArH), 

8.10 (br m, 4H, ArH). 

DSC:  g 27 °C N 82 °C I 

 

Typical characterisation data for polymer P6: 

 

1
H NMR (CDCl3) δ (ppm):  0.90 (br m, 6H, -CH3-), 1.18 – 1.58 (br m, 22H, -CH2-, CH2(pb), 

CH2(pb)), 1.76 (br m, 6H, -CH2-), 2.14 (br m, 2H, -CH2-), 3.93 

(br m, 8H, -CH2O-), 6.85 (br m, 4H, ArH), 7.13 (br m, 1H, ArH), 

7.48(br m, 1H, ArH), 7.78 (br m, 1H, ArH), 8.02 (br m, 4H, 

ArH). 

DSC:  g 28 °C N 70 °C I 

GPC: Mn: 204,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.16 
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Typical characterisation data for polymer P7: 

 

1
H NMR (CDCl3) δ (ppm):  0.94 (br m, 6H, -CH3-), 1.33 – 1.84 (br m, 22H, -CH2-, CH2(pb), 

CH2(pb)), 2.24 (br m, 2H, -CH2-), 4.06 (br m, 8H, -CH2O-), 6.98 

(br m, 4H, ArH), 7.26 (br m, 1H, ArH), 7.45 (br m, 1H, ArH), 

7.89 (br m, 1H, ArH), 8.16 (br m, 4H, ArH). 

DSC:  g 23 °C N 71 °C I 

 

Typical characterisation data for polymer P8: 

 

1
H NMR (CDCl3) δ (ppm):  0.99 (br m, 6H, -CH3-), 1.22 – 1.37 (br m, 14H, -CH2-, CH2(pb), 

CH2(pb)), 1.53 (br m, 6H, -CH2-), 2.28 (br m, 2H, -CH2-), 4.15 

(br m, 8H, -CH2O-), 6.97 (br m, 4H, ArH), 7.31 (br m, 1H, ArH), 

7.45 (br m, 1H, ArH), 7.90 (br m, 1H, ArH), 8.15 (br m, 4H, 

ArH). 

DSC:  g 15 °C N 78 °C I 

GPC: Mn: 244,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.25 

 

Typical characterisation data for polymer P9: 

 

1
H NMR (CDCl3) δ (ppm):  0.9 (br m, 6H, -CH3-), 1.21 – 1.71 (br m, 28H, -CH2-, CH2(pb), 

CH2(pb)), 1.85 (br m, 6H, -CH2-), 2.28 (br m, 2H, -CH2-), 4.06 

(br m, 8H, -CH2O-), 6.99 (br m, 4H, ArH), 7.27 (br m, 1H, ArH), 

7.46 (br m, 1H, ArH), 7.92 (br m, 1H, ArH), 8.18 (br m, 4H, 

ArH). 

DSC:  g -1 °C N 62 °C I 

GPC: Mn: 550,000 g mol
-1

 

Polydispersity (Mw/Mn): 4.85 

 

Table 8.1 gives the exact reagents and conditions used in each case to synthesise nematic 

polymers by solution polymerisation. 

 



175 

Table 8.1 : Summary of the solvents used to create nematic polymers by solution polymerisation. 

Reaction Polymer Solvent/ initiator 

S-P1-1 P1 THF/AIBN 

S-P1-2 P1 THF/AIBN 

S-P3-1 P3 THF/AIBN 

S-P3-2 P3  THF/AIBN 

S-P6-1 P6 THF/AIBN 

S-P6-2 P6 THF/AIBN 

S-P8-1 P8 THF/AIBN 

S-P8-2 P8 THF/AIBN 

S-P9-1 P9 THF/AIBN 

S-P9-2 P9 THF/AIBN 

S-P2-1 P2 THF/AIBN 

S-P4-1 P4 THF/AIBN 

S-P5-1 P5 THF/AIBN 

S-P7-1 P7 THF/AIBN 

S-P1-3 P1 DCM/AIBN 

S-P3-3 P3 DCM/AIBN 

S-P6-3 P6 DCM/AIBN 

S-P8-3 P8 DCM/AIBN 

S-P9-3 P9 DCM/AIBN 

S-P2-2 P2 DCM/AIBN 

S-P4-2 P4 DCM/AIBN 

S-P5-2 P5 DCM/AIBN 

S-P7-2 P7 DCM/AIBN 



176 

 SYNTHESIS OF POLYMER PARTICLES BY DISPERSION 8.4

POLYMERISATION 
 

Below is an adapted technique from literature procedures
78, 79

 which has been used to synthesise 

nematic polymer particles of P1 – P9, synthesised from monomers M1 – M9, respectively. The 

exact reagents and conditions used in each case, where different to below, are specified in Table 

8.2 to Table 8.10. 

 

A vessel sealed with a rubber septum containing a solution of monomer (100 mg) and the 

stabiliser PVP55 (polyvinylpyrrolidone with an average molecular weight of 55,000 g mol
-1

) (15 

wt % relative to monomer, 15 mg, 2.75 x 10
-4

 mmol) in EtOH (1 mL) was purged by gently 

bubbling N2 through for a period of 30 mins. The vessel was kept in ice throughout this process to 

minimise solvent loss. This vessel was then heated to a reaction temperature of 73 °C with 

constant and vigorous stirring. The reaction vessel, stirrer size and stirring rate were kept constant 

across all experiments to minimise variables that may affect the resulting particles. A solution of 

the initiator AIBN (2 wt % relative to monomer, 2 mg, 0.012 mmol) in EtOH (1 mL) was purged 

in the same way as the previously mentioned reaction vessel and then brought to the same 

temperature. This was then injected through the rubber septum of the reaction vessel to initiate 

the polymerisation. The nucleation of the particles can be observed as the solution becomes 

turbid. This takes approximately 3 to 4 minutes to occur and depends on the monomer and solvent 

and their relative affinities. This was allowed to react at constant temperature with constant and 

vigorous stirring for 24 h. The reaction was stopped by removing the rubber septum to expose the 

reaction to air and allowed to cool to room temperature before immediate work up.  

 

To clean the particles the solution is decanted from the reaction vessel into a 10 mL Teflon 

centrifuge tube and spun at 2000 rpm for up to 5 mins. The duration of centrifugation required 

depends on the relative size of the particles which is dependent on the monomer and solvent used. 

The minimum centrifugation time is used to reduce the amount of particle coagulation that 

occurs. This centrifugation process allows the reaction solvent to be decanted and replaced with 

clean EtOH in which the particles are then redispersed. This sedimentation, solvent replacement 

and particle dispersion step is repeated a total of 3 times – this cleans the PVP55 from the particle 

surfaces. The particles are analysed by POM both in the crude reaction mixture as well as clean in 

EtOH. Following work up the particles are further characterised using SEM in order to gauge 

particle size, surface morphology and size distribution. A sample was dried to constant weight in 

a vacuum oven for analysis by GPC, DSC, IR and NMR. 
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Typical characterisation data for particles of P1: 

 

Particle size distribution: Average particle size: 0.86 µm  

     Variance (Cv): 7.2 % 

1
H NMR (CDCl3) δ (ppm):  1.24 – 2.34 (br m, 12H, -CH2-, CH2(pb), CH2(pb)), 4.02 (br m, 

4H, -CH2O-), 6.93 (br m, 2H, ArH), 7.31 (br m, 2H, ArH), 7.69 

(br m, 2H, ArH), 8.08 (br m, 2H, ArH). 

IR (FTR) ν (cm
-1

):  2931, 2862 (CH), 2229 (C≡N), 1728 (C=O), 1604 (C-C), 1504, 1458 

(Ar), 1396, 1249, 1203, 1049, 1002, 879, 840, 687, 633, 548. 

DSC:  g 28 °C N 115 °C I 

GPC: Mn: 197,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.87 

 

Table 8.2: Summary of reactions to form nematic polymer particles of P1 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P1-1 - Bipolar particles 

DP-P1-2 Solvent: 
i
PrOH Bipolar particles 

DP-P1-3 Solvent: 1:1 EtOH: methoxyethanol  Bipolar particles 

DP-P1-4 - GPC analysis 

DP-P1-5 5.5 wt% triton X305  Bipolar particles 

DP-P1-6 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P1-7 - Bipolar particles 

DP-P1-8 - For experimental analysis 

 

Typical characterisation data for particles of P2: 

 

Particle size distribution: Average particle size: 1.9 µm 

  Variance (Cv): 16 % 

DSC: g 52 °C N 108 °C I 

GPC:  Mn: 209,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.68 
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Table 8.3: Summary of reactions to form nematic polymer particles of P2 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P2-1 - Bipolar particles 

DP-P2-2 - Repeat of KLH-P124. Bipolar particles 

DP-P2-3 Solvent: MeOH Bipolar particles 

DP-P2-4 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P2-5 - For DSC analysis. Tg 27 °C N-I 70 °C 

DP-P2-6 - For experimental analysis 

 

Typical characterisation data for particles of P3: 

 

Particle size distribution: Average particle size: 2.08 µm  

  Variance (Cv): 15.4 % 

1
H NMR (CDCl3) δ (ppm):  0.97 (br m, 6H, -CH3), 1.42 - 1.83 (br m, 12H, -CH2-, CH2(pb), 

CH2(pb)), 4.00 (br m, 8H, -CH2O-), 6.81 (br m, 4H, ArH), 7.14 

(br m, 1H, ArH), 7.82 (br m, 1H, ArH), 8.12 (br m, 4H, ArH).    

DSC: g 26 °C N 65 °C I 

GPC:  Mn: 188,000 g mol
-1

 

Polydispersity (Mw/Mn): 3.04 

 



179 

Table 8.4: Summary of reactions to form nematic polymer particles of P3 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P3-1 Solvent: MeOH Bipolar particles 

DP-P3-2 - Bipolar particles 

DP-P3-3 Solvent: 
i
PrOH Bipolar particles 

DP-P3-4 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P3-5 Solvent: 1:1 EtOH: methoxyethanol Repeat of KLH-P60. Bipolar particles  

DP-P3-6 Solvent: 1:1 EtOH: methoxyethanol Repeat of KLH-P57. Bipolar particles 

DP-P3-7 Solvent: 1:1 EtOH: methoxyethanol Repeat of KLH-P58. Bipolar particles 

DP-P3-8 - Bipolar particles 

DP-P3-9 - For DSC analysis. Tg 32 °C N-I 81 °C 

DP-P3-10 5.5 wt% triton X305 Bipolar particles 

DP-P3-11 5.5 wt% triton X305 

Solvent: 1:1 EtOH: methoxyethanol 

Large coagulates 

DP-P3-12 - Bipolar particles 

DP-P3-13 Monomer: 90 % M3, 10 % M6 Copolymerisation study 

DP-P3-14 Monomer: 50 % M3, 50 % M6 Copolymerisation study 

DP-P3-15 Monomer: 10 % M3, 90 % M6 Copolymerisation study 

DP-P3-16 Monomer: 70 % M3, 30 % M6 Copolymerisation study 

DP-P3-17 Monomer: 50 % M3, 50 % M6 Copolymerisation study 

DP-P3-18 Monomer: 30 % M3, 70 % M6 Copolymerisation study 

DP-P3-19 Monomer: 80 % M3, 20 % M6 Copolymerisation study 

DP-P3-20 Monomer: 20 % M3, 80 % M6 Copolymerisation study 

DP-P3-21 - Cosmetics company sample 

DP-P3-22 - Cosmetics company sample 

DP-P3-23 - Cosmetics company sample 

DP-P3-24 - Cosmetics company sample 

DP-P3-25 - Cosmetics company sample 

DP-P3-26 - Cosmetics company sample 

DP-P3-27 - For experimental analysis 

 

Typical characterisation data for particles of P4: 

 

Particle size distribution: Average particle size: 2.15 µm 

  Variance (Cv): 22 % 

DSC: g 34 °C N 73 °C I 
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GPC:  Mn: 254,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.14 

 

Table 8.5: Summary of reactions to form nematic polymer particles of P4 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P4-1 - Radial particles 

DP-P4-2 Monomer: 90 % M3, 10 % M4 Copolymerisation study 

DP-P4-3 Monomer: 80 % M3, 20 % M4 Copolymerisation study 

DP-P4-4 Monomer: 70 % M3, 30 % M4 Copolymerisation study 

DP-P4-5 Monomer: 60 % M3, 40 % M4 Copolymerisation study 

DP-P4-6 Monomer: 50 % M3, 50 % M4 Copolymerisation study 

DP-P4-7 Monomer: 40 % M3, 60 % M4 Copolymerisation study 

DP-P4-8 Monomer: 30 % M3, 70 % M4 Copolymerisation study 

DP-P4-9 Monomer: 20 % M3, 80 % M4 Copolymerisation study 

DP-P4-10 Monomer: 10 % M3, 90 % M4 Copolymerisation study 

DP-P4-11 Solvent: MeOH Small particles 

DP-P4-12 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P4-13 - For DSC analysis. Tg 34 °C N-I 73 °C 

DP-P4-14 - For experimental analysis  

 

Typical characterisation data for particles of P5: 

 

Particle size distribution: Average particle size: 1.32 µm 

  Variance (Cv): 29 % 

DSC: g 28 °C N 93 °C I 

GPC:  Mn: 340,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.12 
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Table 8.6: Summary of reactions to form nematic polymer particles of P5 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P5-1 - Radial particles 

DP-P5-2 Solvent: MeOH Small particles 

DP-P5-3 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P5-4 - For DSC analysis. Tg 30 °C N-I 93 °C 

DP-P5-5 - For experimental analysis 

 

Typical characterisation data for particles of P6: 

 

Particle size distribution: Average particle size: 2.1 µm  

  Variance (Cv): 30 % 

1
H NMR (CDCl3) δ (ppm):  0.86 (br m, 6H, -CH3-), 1.22 – 1.40 (br m, 18H, -CH2-, CH2(pb), 

CH2(pb)), 1.72 (br m, 4H, -CH2-), 3.89 (br m, 8H, -CH2O-), 6.80 

(br m, 4H, ArH), 7.08 (br m, 1H, ArH), 7.30 (br m, 1H, ArH), 

7.72 (br m, 1H, ArH), 7.96 (br m, 4H, ArH). 

DSC:  g 24 °C N 70 °C I 

GPC:  Mn: 122,000 g mol
-1

 

Polydispersity (Mw/Mn): 3.11 
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Table 8.7: Summary of reactions to form nematic polymer particles of P6 by dispersion 

polymerisation. 

Sample 

name 

Specific conditions Comments 

DP-P6-1 - Radial particles 

DP-P6-2 Solvent: MeOH Radial particles 

DP-P6-3 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P6-4 - Radial particles 

DP-P6-5 Solvent: MeOH Radial particles 

DP-P6-6 Solvent: 1:1 EtOH: methoxyethanol Crude: bipolar, clean: radial 

DP-P6-7 - For GPC analysis. 

DP-P6-8 Reaction temperature: 55 °C Radial particles 

DP-P6-9 Solvent: 1:1 EtOH: methoxyethanol Repeat of KLH-P82. Bipolar particles 

DP-P6-10 - For DSC analysis. Tg 24 °C N-I 70 °C 

DP-P6-11 5.5 wt% triton X305 Radial particles 

DP-P6-12 5.5 wt% triton X305 

Solvent: 1:1 EtOH: methoxyethanol 

Bipolar particles 

DP-P6-13 Solvent: 1:1 EtOH: methoxyethanol Solvent study 

DP-P6-14 Solvent: 1:1 EtOH: methoxyethanol Solvent study 

DP-P6-15 Solvent: 5:1 EtOH: methoxyethanol Solvent study 

DP-P6-16 Solvent: 10:1 EtOH: methoxyethanol Solvent study 

DP-P6-17 Solvent: 15:1 EtOH: methoxyethanol Solvent study 

DP-P6-18 - Radial particles 

DP-P6-19 - Cosmetics company sample 

DP-P6-20 - Cosmetics company sample 

DP-P6-21 - Cosmetics company sample 

DP-P6-22 - For experimental analysis 

DP-P6-23 Monomer: 10 % M3, 90 % M6 Copolymerisation study 

DP-P6-24 Monomer: 20 % M3, 80 % M6 Copolymerisation study 

DP-P6-25 Monomer: 30 % M3, 70 % M6 Copolymerisation study 

DP-P6-26 Monomer: 40 % M3, 60 % M6 Copolymerisation study 

DP-P6-27 Monomer: 50 % M3, 50 % M6 Copolymerisation study 

DP-P6-28 Monomer: 60 % M3, 40 % M6 Copolymerisation study 

DP-P6-29 Monomer: 70 % M3, 30 % M6 Copolymerisation study 

DP-P6-30 Monomer: 80 % M3, 20 % M6 Copolymerisation study 

DP-P6-31 Monomer: 90 % M3, 10 % M6 Copolymerisation study 
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Typical characterisation data for particles of P7: 

 

Particle size distribution: Average particle size: 1.88 µm 

  Variance (Cv): 27 % 

DSC: g 24 °C N 74 °C I 

GPC:  Mn: 121,000 g mol
-1

 

Polydispersity (Mw/Mn): 3.01 

 

Table 8.8: Summary of reactions to form nematic polymer particles of P7 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P7-1 - Radial particles 

DP-P7-2 Solvent: MeOH Radial particles 

DP-P7-3 Solvent: 1:1 EtOH: methoxyethanol Radial particles 

DP-P7-4 - For DSC analysis. Tg 26 °C N-I 74 °C 

DP-P7-5 - For experimental analysis 

 

 

Typical characterisation data for particles of P8: 

 

Particle size distribution: Average particle size: 3.4 µm 

  Variance (Cv): 23 % 

1
H NMR (CDCl3) δ (ppm):  0.95 (br m, 6H, -CH3), 1.15 – 1.23 (br m, 13H, -CH2-, CH2(pb), 

CH2(pb)), 1.47 (br m, 8H, -CH2-), 1.75 (br m, 4H, -CH2-), 3.98 

(br m, 8H, -CH2O-), 6.91 (br m, 4H, ArH), 7.19 (br m, 1H, ArH), 

7.38 (br m, 1H, ArH), 7.83 (br m, 1H, ArH), 8.09 (br m, 4H, 

ArH). 

DSC: g 18 °C N 92 °C I 

GPC:  Mn: 19,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.97 
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Table 8.9: Summary of reactions to form nematic polymer particles of P8 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P8-1 - Bipolar particles 

DP-P8-2 Solvent: MeOH Bipolar particles 

DP-P8-3 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P8-4 - Bipolar particles 

DP-P8-5 Solvent: MeOH Bipolar particles 

DP-P8-6 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DP-P8-7 - For GPC analysis.  

DP-P8-8 Reaction time: 48 hr For GPC analysis. 

DP-P8-9 - Bipolar particles 

DP-P8-10 - Bipolar particles 

DP-P8-11 - For DSC analysis. 

DP-P8-12 - For electro-optics, bipolar particles 

DP-P8-13 - Cosmetics company sample 

DP-P8-14 - Cosmetics company sample 

DP-P8-15 - Cosmetics company sample 

DP-P8-16 - Cosmetics company sample 

DP-P8-17 - Cosmetics company sample 

DP-P8-18 - For experimental analysis 

 

Typical characterisation data for particles of P9: 

 

Particle size distribution: Average particle size: 2.9 µm 

  Variance (Cv): 22 % 

1
H NMR (CDCl3) δ (ppm):  0.88 (br m, 6H, -CH3-), 1.16 – 1.42 (br m, 32H, -CH2-, CH2(pb), 

CH2(pb)), 1.76 (br m, 4H, -CH2-), 4.02 (br m, 8H, -CH2O-), 6.92 

(br m, 4H, ArH), 7.21 (br m, 1H, ArH), 7.39 (br m, 1H, ArH), 

7.84 (br m, 1H, ArH), 8.10 (br m, 4H, ArH). 

DSC:  g 7 °C N 73 °C I 

GPC:  Mn: 15,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.96 
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Table 8.10: Summary of reactions to form nematic polymer particles of P9 by dispersion 

polymerisation. 

Sample name Specific conditions Comments 

DP-P9-1 - Radial particles 

DP-P9-2 Solvent: MeOH Radial particles 

DP-P9-3 Solvent: 1:1 EtOH: methoxyethanol Radial particles 

DP-P9-4 - Radial particles 

DP-P9-5 Solvent: MeOH Radial particles 

DP-P9-6 Solvent: 1:1 EtOH: methoxyethanol Radial particles 

DP-P9-7 - For GPC analysis. 

DP-9-8 Monomer: 10 % M8, 90 % M9 Twisted radial particles 

DP-P9-9 Monomer: 20 % M8, 80 % M9 Twisted radial particles 

DP-P9-10 Monomer: 30 % M8, 70 % M9 Twisted radial particles 

DP-P9-11 Monomer: 40 % M8, 60 % M9 Twisted radial particles 

DP-P9-12 Monomer: 50 % M8, 50 % M9 Twisted radial particles 

DP-P9-13 Monomer: 60 % M8, 40 % M9 Twisted radial particles 

DP-P9-14 Monomer: 70 % M8, 30 % M9 Twisted radial particles 

DP-P9-15 Monomer: 80 % M8, 20 % M9 Twisted radial particles 

DP-P9-16 Monomer: 90 % M8, 10 % M9 Twisted radial particles 

DP-P9-17 Monomer: 5 % M8, 95 % M9 Twisted radial particles 

DP-P9-18 Monomer: 95 % M8, 5 % M9 Twisted radial particles 

DP-P9-19 Monomer: 2.5 % M8, 97.5 % M9 Twisted radial particles 

DP-P9-20 Monomer: 97.5 % M8, 2.5 % M9 Twisted radial particles 

DP-P9-21 Reaction time: 48 hr For GPC analysis.  

DP-P9-22 Reaction temperature: 55 °C Twisted radial particles 

DP-P9-23 - Radial particles 

DP-P9-24 Monomer: 90 % M8, 10 % M9 For electro-optics, twisted radial 

particles 

DP-P9-25 - For DSC analysis.  

DP-P9-26 - For electro-optics, radial particles 

DP-P9-27 Monomer: 50 % M8, 50 % M9 For electro-optics, twisted radial 

particles 

DP-P9-28 - Cosmetics company sample 

DP-P9-29 - Cosmetics company sample 

DP-P9-30 - Cosmetics company sample 

DP-P9-31 - For experimental analysis 
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 SYNTHESIS OF ELASTOMER PARTICLES BY DISPERSION 8.5

POLYMERISATION 
 

Below is an adapted technique from literature procedures
78, 79, 101, 141-143

 which has been used to 

synthesise nematic elastomer particles of P1 via dispersion polymerisation with a delayed 

addition of crosslinker. Gel content of particles synthesised from P2-P9 using this method was 

negligible.  The exact reagents and conditions used in each case, where different from specified 

below, are listed in Table 8.11 to Table 8.19. CL1: 1,6-hexandioldiacrylate, CL2: dipropylene 

glycol diacrylate, CL3: trimethyloylpropane triacrylate.  

 

A vessel sealed with a rubber septum containing a solution of monomer (50 mg) and the stabiliser 

PVP55 (polyvinylpyrrolidone with an average molecular weight of 55,000 g mol
-1

) (15 wt % 

relative to monomer, 15 mg, 2.75 x 10
-4

 mmol) in EtOH (0.5 mL) was purged by gently bubbling 

N2 through for a period of 30 minutes. The vessel was kept in ice throughout this process to 

minimise solvent loss. This vessel was then heated to a reaction temperature of 73 °C with 

constant and vigorous stirring. The reaction vessel, stirrer size and stirring rate were kept constant 

across all experiments to minimise variables that may affect the resulting particles. A second 

sealed vessel containing a solution of monomer (50 mg) and crosslinker (1,6 hexanedioldiacrylate 

(CL1),  10 mol % relative to total monomer) in EtOH (0.5 mL) was also purged with N2 for 30 

minutes in ice at this time and then brought to reaction temperature with stirring.  A solution of 

the initiator AIBN (2 wt % relative to monomer, 2 mg, 0.012 mmol) in EtOH (0.6 mL) was also 

purged and brought to the same temperature. This was then injected through the rubber septum of 

the first vessel to initiate the polymerisation. The nucleation of the particles can be observed as 

the solution becomes turbid. This takes approximately 3 to 4 minutes to occur and depends on the 

monomer and solvent and their relative affinities. After the nucleation of the particles the second 

monomer solution containing crosslinker was then injected into the reaction vessel through the 

rubber septum. Delaying the addition of the crosslinker until after the nucleation of the particles 

has completed prevents the crosslinker from interfering with the early stages of particle growth. 

This was allowed to react at constant temperature with constant and vigorous stirring for 24 h. 

The reaction was stopped by removing the rubber septum to expose the reaction to air and 

allowed to cool to room temperature before immediate work up.  

 

To clean the particles the solution is decanted from the reaction vessel into a 10 mL Teflon 

centrifuge tube and spun at 2000 rpm for up to 5 mins. The duration of centrifugation required 

depends on the relative size of the particles which is dependent on the monomer and solvent used. 

The minimum centrifugation time is used to reduce the amount of particle coagulation that 
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occurs. This centrifugation process allows the reaction solvent to be decanted and replaced with 

clean EtOH in which the particles are then redispersed. This sedimentation, solvent replacement 

and particle dispersion step is repeated a total of 3 times – this cleans the PVP55 from the particle 

surfaces. The particles are analysed by POM when in the crude reaction mixture as well as when 

dispersed in clean EtOH to allow for an investigation into the effect of dispersing medium and 

presence of PVP on the director configuration of the particles. Following work up the particles 

are further characterised using SEM in order to gauge particle size, surface morphology and size 

distribution. A few sample reactions are also dried to constant weight in a vacuum oven for 

analysis by DSC, IR and NMR. To assess the degree of crosslinking that has taken place the 

samples are subjected to a gel content analysis process which is described in detail in section 8.7.  

 

Typical characterisation data for particles of P1: 

 

Particle size distribution: Average particle size: 1.3 µm 

  Variance (Cv): 6.3 % 

1
H NMR (CDCl3) δ (ppm):  1.55 – 1.75 (br m, 16H, -CH2-, CH2(pb), CH2(pb)), 4.02 (br m, 

4H, -CH2O-), 6.86 (br m, 2H, ArH), 7.24 (br m, 2H, ArH), 7.62 

(br m, 2H, ArH), 8.01 (br m, 2H, ArH). 

DSC: g 36 °C N-I 97 °C 

Gel content: 83.4 % 
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Table 8.11: Summary of reactions to form nematic elastomer particles of P1 by dispersion 

polymerisation.  

Sample name Specific conditions Comments/analysis 

DA-P1-1 to 

DA-P1-6 

Solvent: MeOH CL added 3 to 8 minutes after initiation, 

bipolar 

DA-P1-7 to 

DA-P1-11 

Solvent: 0.9 mL MeOH CL added 3 to 7 minutes after initiation, 

bipolar 

DA-P1-12 Solvent: 0.5 mL MeOH Concentration study, bipolar particles 

DA-P1-13 Solvent: 0.7 mL MeOH Concentration study, bipolar particles 

DA-P1-14 Solvent: 1.1 mL MeOH Concentration study, bipolar particles 

DA-P1-15 Solvent: 1.3 mL MeOH Concentration study, bipolar particles 

DA-P1-16 Solvent: 1.5 mL MeOH Concentration study, bipolar particles 

DA-P1-17 Solvent: 1.7 mL MeOH Concentration study, bipolar particles 

DA-P1-18 Solvent: 1.9 mL MeOH Concentration study, bipolar particles 

DA-P1-19 Solvent: 0.8 mL MeOH Concentration study, bipolar particles 

DA-P1-20 to 

DA-P1-22 

Solvent: MeOH 

AIBN: 5 to 15 wt% 

AIBN concentration study, bipolar 

particles 

DA-P1-23 to 

DA-P1-24 

Solvent: MeOH 

PVP: 5 and 30 wt% 

PVP concentration study, bipolar 

particles 

DA-P1-25 Solvent: MeOH Repeat of KLH-P32, bipolar particles 

DA-P1-26 Solvent: MeOH Scale up of KLH-P32, bipolar particles 

DA-P1-27 - Bipolar particles 

DA-P1-28 Solvent: MeOH Repeat of KLH-P32, bipolar particles 

DA-P1-29 Solvent: 
i
PrOH Bipolar particles 

DA-P1-30 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DA-P1-31 Solvent: MeOH For monolayer study, bipolar particles 

DA-P1-32 - For monolayer study, bipolar particles 

DA-P1-33 Solvent: MeOH Bipolar particles 

DA-P1-34 Solvent: MeOH Bipolar particles 

DA-P1-35 - Bipolar particles 

DA-P1-36 5.5 wt% Triton X305 Bipolar particles 

DA-P1-37 Solvent: 1:1 EtOH: methoxyethanol 

5.5 wt% Triton X305 

Bipolar particles 

DA-P1-38 Crosslinker: CL3  Bipolar particles 

DA-P1-39 - Bipolar particles 

DA-P1-40 - Bipolar particles 
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The degree of gel content obtained for particles of P2-P9 by dispersion polymerisation with a 

delayed addition of crosslinker was low and thus it was assumed that no significant network 

formation had taken place. The characterisation of those particles is here for reference, but the 

particles are not elastomeric in nature. 

 

Typical characterisation data for particles of P2: 

 

1
H NMR (CDCl3) δ (ppm):  1.03 (br m, 6H, -CH3-), 1.26 – 1.88 (br m, 15H, -CH2-, CH2(pb), 

CH2(pb)), 2.20 (br m, 2H, -CH2-), 4.00 (br m, 8H, -CH2O-), 6.91 

(br m, 4H, ArH), 7.19 (br m, 1H, ArH), 7.39 (br m, 1H, ArH), 

7.83 (br m, 1H, ArH), 8.07 (br m, 4H, ArH). 

 

Table 8.12: Summary of reactions to form nematic elastomer particles of P2 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P2-1 - For experimental analysis, polydomain 

 

Typical characterisation data for particles of P3: 

 

1
H NMR (CDCl3) δ (ppm):  0.87 (br m, 6H, -CH3-), 1.40 – 1.71 (br m, 18H, -CH2-, CH2(pb), 

CH2(pb)), 3.92 (br m, 8H, -CH2O-), 6.87 (br m, 4H, ArH), 7.17 

(br m, 1H, ArH), 7.37 (br m, 1H, ArH), 7.82 (br m, 1H, ArH), 

8.04 (br m, 4H, ArH). 

Gel content: 8.7 % 
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Table 8.13: Summary of reactions to form nematic elastomer particles of P3 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P3-1 - Bipolar particles 

DA-P3-2 Solvent: MeOH Radial and polydomain particles 

DA-P3-3 Solvent: 
i
PrOH Bipolar particles 

DA-P3-4 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DA-P3-5 Solvent: 1:1 EtOH: methoxyethanol Repeat of KLH-P60, bipolar particles 

DA-P3-6 - Repeat of KLH-P57, bipolar particles 

DA-P3-7 Solvent: MeOH Bipolar particles 

DA-P3-8 Solvent: MeOH For GCA study 

DA-P3-9 - For GCA study 

DA-P3-10 - Bipolar particles 

DA-P3-11 Reaction time: 72 hr Bipolar particles 

DA-P3-12 5.5 wt% triton X305 Stabiliser investigation 

DA-P3-13 Solvent: 1:1 EtOH: methoxyethanol 

Crosslinker: CL3 

5.5 wt% triton X305 

Stabiliser investigation 

DA-P3-14 Crosslinker: CL3 Bipolar particles 

DA-P3-15 - For experimental analysis, bipolar 

 

Typical characterisation data for particles of P4: 

 

1
H NMR (CDCl3) δ (ppm):  0.93 (br m, 6H, -CH3-), 1.41 – 1.58 (br m, 15H, -CH2-, CH2(pb), 

CH2(pb)),1.67 – 1.78 (br m, 6H, -CH2-), 1.76 (br m, 4H, -CH2-), 

4.05 (br m, 8H, -CH2O-), 6.90 (br m, 4H, ArH), 7.17 (br m, 1H, 

ArH), 7.38 (br m, 1H, ArH), 7.83 (br m, 1H, ArH), 8.07 (br m, 

4H, ArH). 

DSC:  g 33 °C N 52 °C I 

 

Table 8.14: Summary of reactions to form nematic elastomer particles of P4 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P4-1 - For experimental analysis, radial 
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Typical characterisation data for particles of P5: 

 

1
H NMR (CDCl3) δ (ppm):  0.93 (br m, 6H, -CH3-), 1.37– 1.82 (br m, 28H, -CH2-, CH2(pb), 

CH2(pb)), 2.20 (br m, 2H, -CH2-), 4.05 (br m, 8H, -CH2O-), 6.98 

(br m, 4H, ArH), 7.27 (br m, 1H, ArH), 7.44 (br m, 1H, ArH), 

7.86 (br m, 1H, ArH), 8.16 (br m, 4H, ArH). 

DSC:  g 31 °C N 61 °C I 

 

Table 8.15: Summary of reactions to form nematic elastomer particles of P5 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P5-1 - For experimental analysis, radial 

 

Typical characterisation data for particles of P6: 

 

1
H NMR (CDCl3) δ (ppm):  0.89 (br m, 6H, -CH3-), 1.31– 1.78 (br m, 30H, -CH2-, CH2(pb), 

CH2(pb)), 2.19 (br m, 2H, -CH2-), 4.07 (br m, 8H, -CH2O-), 6.89 

(br m, 4H, ArH), 7.16 (br m, 1H, ArH), 7.36 (br m, 1H, ArH), 

7.82 (br m, 1H, ArH), 8.13 (br m, 4H, ArH). 

DSC: g 26 °C N 62 °C I 

Gel content: 11.8 % 

 

Table 8.16: Summary of reactions to form nematic elastomer particles of P6 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P6-1 - Radial particles 

DA-P6-2 Solvent: MeOH Radial particles 

DA-P6-3 Solvent: 1:1 EtOH: methoxyethanol Stabiliser/solvent exchange study. 

Crude bipolar, clean radial 

DA-P6-4 Solvent: MeOH For GCA study, 

DA-P6-5 - For GCA study, radial particles 

DA-P6-6 5.5 wt% triton X305 Stabiliser investigation 

DA-P6-7 Solvent: 1:1 EtOH: methoxyethanol 

Crosslinker: CL3 

5.5 wt% triton X305 

Stabiliser investigation 

DA-P6-8 - Radial particles 
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Typical characterisation data for particles formed from M7: 

 

1
H NMR (CDCl3) δ (ppm):  0.87 (br m, 6H, -CH3-), 1.30 – 2.04 (br m, 30H, -CH2-, CH2(pb), 

CH2(pb)), 2.18 (br m, 2H, -CH2-), 4.06 (br m, 8H, -CH2O-), 6.88 

(br m, 4H, ArH), 7.16 (br m, 1H, ArH), 7.36 (br m, 1H, ArH), 

7.81 (br m, 1H, ArH), 8.05 (br m, 4H, ArH). 

DSC:  g 28 °C N 64 °C I 

 

Table 8.17: Summary of reactions to form nematic elastomer particles of P7 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P7-1 - For experimental analysis, radial 

 

Typical characterisation data for particles of P8: 

 

1
H NMR (CDCl3) δ (ppm):  0.99 (br m, 6H, -CH3-), 1.20 – 1.81 (br m, 32H, -CH2-, CH2(pb), 

CH2(pb)), 2.27 (br m, 2H, -CH2-), 4.08 (br m, 8H, -CH2O-), 6.96 

(br m, 4H, ArH), 7.24 (br m, 1H, ArH), 7.44 (br m, 1H, ArH), 

7.88 (br m, 1H, ArH), 8.14 (br m, 4H, ArH). 

DSC:  g 23 °C N 71 °C I 

Gel content: 1.2 % 

 

Table 8.18: Summary of reactions to form nematic elastomer particles of P8 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P8-1 - Bipolar particles 

DA-P8-2 Solvent: MeOH Bipolar particles 

DA-P8-3 Solvent: 1:1 EtOH: methoxyethanol Bipolar particles 

DA-P8-4 Solvent: MeOH For GCA study, 

DA-P8-5 - For GCA study, bipolar 

DA-P8-6 - For experimental analysis, bipolar 

DA-P8-7 - For experimental analysis, bipolar 

DA-P8-8 Solvent: 1:1 EtOH: methoxyethanol For electro-optics 
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Typical characterisation data for particles of P9: 

 

 

1
H NMR (CDCl3) δ (ppm):  0.92 (br m, 6H, -CH3-), 1.20 – 1.66 (br m, 34H, -CH2-, CH2(pb), 

CH2(pb)), 2.26 (br m, 2H, -CH2-), 4.07 (br m, 8H, -CH2O-), 6.96 

(br m, 4H, ArH), 7.24 (br m, 1H, ArH), 7.44 (br m, 1H, ArH), 

7.91 (br m, 1H, ArH), 8.18 (br m, 4H, ArH). 

DSC:  g 4 °C N 55 °C I 

Gel content:  24.5 % 

 

Table 8.19: Summary of reactions to form nematic elastomer particles of P9 by dispersion 

polymerisation. 

Sample name Specific conditions Comments/analysis 

DA-P9-1 - Radial particles 

DA-P9-2 Solvent: MeOH Radial particles 

DA-P9-3 Solvent: 1:1 EtOH: methoxyethanol Radial particles 

DA-P9-4 Solvent: MeOH For GCA study, 

DA-P9-5 - For GCA study, radial 

DA-P9-6 - For experimental analysis,  radial 
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 SYNTHESIS OF POLYMER AND ELASTOMER PARTICLES BY 8.6

RAFT ASSISTED DISPERSION POLYMERISATION 
 

Below is an adapted technique from a literature procedure
96

 which has been used to synthesise 

nematic elastomer particles of P1 – P9, synthesised from monomers M1 – M9 respectively, via 

RAFT-assisted dispersion polymerisation technique. The exact reagents and conditions used in 

each case, where different from below, are specified in Table 8.20 to Table 8.37. 

 

A solution of monomer (100mg), PVP30 (polyvinylpyrrolidone with an average molecular weight 

of 30,000 g mol
-1

) (15 wt % relative to monomer, 15 mg, 5 x 10
-4

 mmol), UV initiator Darocur 

1173 (4 wt% relative to monomer, 4 mg, 2.4 x 10
-2

 mmol), RAFT agent DDMAT (0.5 wt% 

relative to monomer, 0.5 mg, 1.4 x10
-3

 mmol) and if elastomer particles are required a crosslinker 

is also present (1,6-hexanedioldiacrylate (CL1), 10 wt% relative to monomer, 10 mg). All of 

these reagents are transferred into a sealed reaction vessel using stock solutions with the reaction 

solvent (EtOH) to ensure maximum accuracy. The total volume of reaction solvent in the sealed 

vessel is then made up to 1.6 mL. The reaction vessel is then gently purged with N2 for a period of 

30 min before being heating to a reaction temperature of 65 °C with constant and vigorous 

stirring. The reaction vessel, stirrer size and stirring rate were kept constant across all experiments 

to minimise variables that may affect the resulting particles. Once the reaction vessel has reached 

reaction temperature and all the reagents have dissolved the vessel is exposed to UV light (365 

nm) for 5 h. The exact time for each reaction is specified in the appropriate table. The nucleation 

of the particles can be observed by the reaction mixture becoming turbid. With RAFT-assisted 

dispersion polymerisation this often takes around 10 – 15 minutes to occur. After the reaction 

vessel has been exposed to UV light for the designated amount of time the vessel is opened to 

expose the sample to air and is allowed to cool to room temperature before immediate work up.  

 

To clean the particles the solution is decanted from the reaction vessel into a 10 mL Teflon 

centrifuge tube and spun at 2000 rpm for up to 5 mins. The duration of centrifugation required 

depends on the relative size of the particles which is dependent on the monomer and solvent used. 

The minimum centrifugation time is used to reduce the amount of particle coagulation that 

occurs. This centrifugation process allows the reaction solvent to be decanted and replaced with 

clean EtOH in which the particles are then redispersed. This sedimentation, solvent replacement 

and particle dispersion step is repeated a total of 3 times – this cleans the PVP30 from the particle 

surfaces. The particles are analysed by POM when in the crude reaction mixture as well as when 

dispersed in clean EtOH to allow for an investigation into the effect of dispersing medium and 

presence of PVP on the director configuration of the particles. Following work up the particles 
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are further characterised using SEM in order to gauge particle size, surface morphology and size 

distribution. A few sample reactions are also dried to constant weight in a vacuum oven for 

analysis by DSC, IR and NMR. To assess the degree of crosslinking that has taken place the 

samples are subjected to a gel content analysis process which is described in detail in section 8.7. 

 

Typical characterisation data for polymer particles of P1: 

 

1
H NMR (CDCl3) δ (ppm):  1.26 – 1.82 (br m, 10H, -CH2-, CH2(pb), CH2(pb)), 2.33 (br m, 

2H, -CH2-), 4.09 (br m, 4H, -CH2O-), 7.01(br m, 2H, ArH), 

7.37(br m, 2H, ArH), 7.69 ( br m, 2H, ArH), 8.05 (br m, 2H, 

ArH).     

DSC: g 26 °C N 114 °C I 

GPC: Mn: 188,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.40 

 

Table 8.20: Summary of reactions to form nematic polymer particles of P1 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P1-1 - Polydomain particles 

RAFT-P1-2 Solvent: 1:1 EtOH: methoxyethanol Polydomain particles 

RAFT-P1-3 - Living character study, bipolar particles 

RAFT-P1-4 Solvent: 1:1 EtOH: methoxyethanol Polydomain particles 

RAFT-P1-5 - Experimental analysis, bipolar 

 

Typical characterisation data for elastomer particles of P1: 

 

Particle size distribution: Average particle size: 3.3 µm 

  Variance (Cv): 15% 

1
H NMR (CDCl3) δ (ppm):  1.22 (br m, 2H, -CH2-), 1.25 – 1.78 (br m, 8H, -CH2-, CH2(pb), 

CH2(pb)), 2.27 (br, 2H, -CH2-), 3.69 – 3.73 (br m, 2H, -CH2O-), 

3.98 (br m, 2H, -CH2O-), 6.89 (br m, 2H, ArH), 7.33 (br m, 2H, 

ArH), 7.64 (br m, 2H, ArH), 8.03 (br m, 2H, ArH).  

IR (FTR) ν (cm
-1

): 2938 (C-H), 2230 (C≡N), 1728 (C=O), 1601, 1580, 1510 (C=C), 1422, 

1253, 1208, 1160, 1055, 1006, 845, 760, 690, 649, 629, 549, 510. 

DSC: g 37 °C N 90 °C I 

Gel content:  93% 
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Table 8.21: Summary of reactions to form nematic elastomer particles of P1 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker.  

Sample name Specific conditions Comments/analysis 

RAFT-P1-6 - Bipolar particles 

RAFT-P1-7 - Bipolar particles 

RAFT-P1-8 Solvent: 1:1 EtOH: methoxyethanol Polydomain particles 

RAFT-P1-9 Solvent: 1:1 EtOH: methoxyethanol 

Crosslinker: CL3 

Bipolar particles 

RAFT-P1-10 Crosslinker: CL2 Bipolar particles 

RAFT-P1-11 Crosslinker: CL2 Bipolar particles 

RAFT-P1-12 - Living character study, bipolar particles 

RAFT-P1-13 - Polydomain particles 

RAFT-P1-14 Crosslinker: CL2 Polydomain particles 

RAFT-P1-15 Crosslinker: CL2 Polydomain particles 

RAFT-P1-16 - Cosmetics company sample 

RAFT-P1-17 - Cosmetics company sample 

RAFT-P1-18 - Cosmetics company sample 

RAFT-P1-19 Solvent: 1:1 EtOH: methoxyethanol Cosmetics company sample 

RAFT-P1-20 Solvent: 1:1 EtOH: methoxyethanol Cosmetics company sample 

RAFT-P1-21 Solvent: 1:1 EtOH: methoxyethanol Cosmetics company sample 

 

Typical characterisation data for polymer particles of P2: 

 

DSC: g 51 °C N 92 °C I 

GPC: Mn: 128,000 g mol
-1

 

Polydispersity (Mw/Mn): 1.74 

 

Table 8.22: Summary of reactions to form nematic polymer particles of P2 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P2-1 - Polydomain particles, bipolar character 

RAFT-P2-2 22 h UV exposure Polydomain particles 
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Typical characterisation data for elastomer particles of P2: 

 

1
H NMR (CDCl3) δ (ppm): 1.04 (br m, 6H, -CH3), 1.06 – 1.86 (br m, 14H, -CH2-, CH2(pb), 

CH2(pb)), 3.98 (br m, 8H, -CH2O-), 6.94 (br m, 4H, ArH), 7.21 

(br m, 1H, ArH), 7.44 (br m, 1H, ArH), 7.80 (br m, 1H, ArH), 

8.03 (br m, 4H, ArH).  

IR (FTR) ν (cm
-1

): 2925, 2854 (C-H), 1730 (C=O), 1605, 1580, 1510 (C=C), 1488, 1467, 

1422, 1393, 1304, 1248, 1159, 1058, 1007, 970, 844, 794, 760, 724, 690, 

644, 629, 550, 510.  

Gel content:  97% 

 

Table 8.23: Summary of reactions to form nematic elastomer particles of P2 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P2-3 - Some radial character 

RAFT-P2-4 - Polydomain particles 

RAFT-P2-5 Crosslinker: CL2  Polydomain particles 

RAFT-P2-6 Crosslinker: CL3 Polydomain particles 

RAFT-P2-7 22 h UV exposure Polydomain particles 

 

Typical characterisation data for polymer particles of P3: 

 

Particle size distribution: Average particle size: 2.2 µm 

  Variance (Cv): 21% 

1
H NMR (CDCl3) δ (ppm): 1.03 (br m, 6H, -CH3), 1.46 – 1.85 (br m, 14H, -CH2-, CH2(pb), 

CH2(pb)), 1.98 (br m, 2H, -CH2-), 4.03 (br m, 8H, -CH2O-), 6.85 

(br m, 4H, ArH), 7.20 (br m, 1H, ArH), 7.40 (br m, 1H, ArH), 

7.86 (br m, 1H, ArH), 8.01 (br m, 4H, ArH). 

IR (FTR) ν (cm
-1

):  2928, 2856 (C-H), 1729 (C=O), 1605 (C=C), 1510, 1245, 1159, 1058, 

1006, 968, 844, 760, 690, 644, 629, 552, 510. 

DSC:  g 24 °C N 72 °C I 

GPC:  Mn: 171,000 g mol
-1

 

Polydispersity (Mw/Mn): 1.61 
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Table 8.24: Summary of reactions to form nematic polymer particles of P3 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P3-1 3 h UV exposure Bipolar particles 

RAFT-P3-2 3 h UV exposure Some radial character 

RAFT-P3-3 3 h UV exposure Repeat of KLH-P194, bipolar particles 

RAFT-P3-4 - Kinetic study 

RAFT-P3-5 - Kinetic study 

RAFT-P3-6 Solvent: 1:1 EtOH: methoxyethanol Polydomain particles 

RAFT-P3-7 - Kinetic study, bipolar particles 

RAFT-P3-8 22 h UV exposure Cosmetics company sample 

RAFT-P3-9 22 h UV exposure Cosmetics company sample 

RAFT-P3-10 22 h UV exposure For experimental analysis 

 

Typical characterisation data for elastomer particles of P3: 

 

Particle size distribution: Average particle size: 0.9 µm 

  Variance (Cv): 28% 

1
H NMR (CDCl3) δ (ppm): 0.91 – 1.01 (m, 6H, -CH3), 1.49 – 1.79 (br m, 14H, -CH2, 

CH2(pb), CH2(pb)), 2.16 (br m, 2H, -CH2-), 3.67 – 4.23 (br m, 

8H, -CH2O-), 6.90 (br m, 4H, ArH), 7.14 (br m, 1H, ArH), 7.37 

(br m, 1H, ArH), 7.82 (br m, 1H, ArH), 8.09 (br m, 4H, ArH).    

IR (FTR) ν (cm
-1

): 2961 (C-H), 1721 (C=O), 1604, 1580, 1510 (C=C), 1468, 1422, 1246, 

1158, 1055, 1007, 844, 796, 760, 690, 644, 629, 547, 509.  

DSC:  g 37 °C N 69 °C I 

Gel content:  85% 
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Table 8.25: Summary of reactions to form nematic elastomer particles of P3 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P3-11 3 h UV exposure Bipolar particles 

RAFT-P3-12 - Bipolar particles 

RAFT-P3-13 Solvent: MeOH Polydomain particles 

RAFT-P3-14 Solvent: 
i
PrOH Polydisperse and polydomain 

RAFT-P3-15 - Polydomain particles 

RAFT-P3-16 Solvent: 1:1 EtOH: methoxyethanol Polydomain and very large 

RAFT-P3-17 Solvent: 5:1 EtOH: methoxyethanol Polydomain 

RAFT-P3-18 Solvent: 10:1 EtOH: methoxyethanol Polydomain 

RAFT-P3-19 Solvent: 1:1 EtOH: methoxyethanol 

Crosslinker: CL3 

Misshapen 

RAFT-P3-20 Solvent: 1:1 EtOH: methoxyethanol 

Crosslinker: CL3 

Misshapen 

RAFT-P3-21 Crosslinker: CL2 polydomain 

RAFT-P3-22 Crosslinker: CL2 polydomain 

RAFT-P3-23 - bipolar 

RAFT-P3-24 Solvent: 15:1 EtOH: methoxyethanol Solvent study 

RAFT-P3-25 Solvent: 15:1 EtOH: methoxyethanol 

Crosslinker: CL2 

Solvent study 

RAFT-P3-26 Solvent: 15:1 EtOH: methoxyethanol 

Crosslinker: CL3 

Solvent study 

RAFT-P3-27 - bipolar 

RAFT-P3-28 Crosslinker: CL2 Polydomain 

RAFT-P3-29 Crosslinker: CL3 polydomain 

RAFT-P3-30 - Cosmetics company sample 

RAFT-P3-31 - Cosmetics company sample 

RAFT-P3-32 - Cosmetics company sample 

RAFT-P3-33 - Cosmetics company sample 

 

Typical characterisation data for polymer particles of P4: 

 

DSC: g 29 °C N 71 °C I 

GPC: Mn: 152,000 g mol
-1

 

Polydispersity (Mw/Mn): 1.80 
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Table 8.26: Summary of reactions to form nematic polymer particles of P4 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P4-1 - Some radial character 

RAFT-P4-2 22 h UV exposure Some radial character 

 

Typical characterisation data for elastomer particles of P4: 

 

1
H NMR (CDCl3) δ (ppm): 0.90 (br m, 6H, -CH3), 1.36 – 1.80 (br m, 22H, -CH2-, CH2(pb), 

CH2(pb)), 4.02 (br m, 8H, -CH2O-), 6.95 (br m, 4H, ArH), 7.17 

(br m, 1H, ArH), 7.27 (br m, 1H, ArH), 7.85 (br m, 1H, ArH), 

8.10 (br m, 4H, ArH).  

DSC: g 30 °C N 45 °C I 

Gel content: 78% 

 

Table 8.27: Summary of reactions to form nematic elastomer particles of P4 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P4-3 - Some radial character 

RAFT-P4-4 - Some radial character 

RAFT-P4-5 Crosslinker: CL2  polydomain 

RAFT-P4-6 Crosslinker: CL3 polydomain 

RAFT-P4-7 22 h UV exposure polydomain 

 

Typical characterisation data for polymer particles of P5: 

 

DSC: g 25 °C N 91 °C I 

GPC: Mn: 105,000 g mol
-1

 

Polydispersity (Mw/Mn): 2.02 
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Table 8.28: Summary of reactions to form nematic polymer particles of P5 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P5-1 - Some radial character 

RAFT-P5-2 22 h UV exposure polydomain 

 

Typical characterisation data for elastomer particles of P5: 

 

1
H NMR (CDCl3) δ (ppm): 0.89 (br m, 6H, -CH3), 1.24 – 1.79 (br m, 28H, -CH2-, CH2(pb), 

CH2(pb)), 4.02 (br m, 8H, -CH2O-), 6.93 (br m, 4H, ArH), 7.22 

(br m, 1H, ArH), 7.86 (br m, 1H, ArH), 8.09 (br m, 4H, ArH). 

DSC: g 27 °C N 60 °C I 

Gel content: 66% 

 

Table 8.29: Summary of reactions to form nematic elastomer particles of P5 by RAFT-assisted 

dispersion polymerisation .Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P5-6 - polydomain 

RAFT-P5-7 - polydomain 

RAFT-P5-8 Crosslinker: CL2  polydomain 

RAFT-P5-9 Crosslinker: CL3 polydomain 

RAFT-P5-10 22 h UV exposure polydomain 

 

Typical characterisation data for polymer particles of P6: 

 

Particle size distribution: Average particle size: 2.1 µm 

  Variance (Cv): 29% 

1
H NMR (CDCl3) δ (ppm): 0.92 (br m, 6H, -CH3), 1.40 – 1.98 (br m, 14H, -CH2-, CH2(pb), 

CH2(pb)), 2.10 (br m, 2H, -CH2-), 4.05 (br m, 8H, -CH2O-), 7.02 

(br m, 4H, ArH), 7.26 (br m, 1H, ArH), 7.44 (br m, 1H, ArH), 

7.79 (br m, 1H, ArH), 8.00 (br m, 4H, ArH). 

IR (FTR) ν (cm
-1

): 2926, 2855 (C-H), 1738 (C=O), 1729 (C-C), 1605, (C=C), 1510, 1580, 

1245, 1150, 1059, 1134, 1007, 844, 760, 790, 644, 629, 551, 510.  

DSC:  g 23 °C N 70 °C I 
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GPC: Mn: 215,000  

Polydispersity (Mw/Mn): 1.65 

 

Table 8.30: Summary of reactions to form nematic polymer particles of P6 by RAFT-assisted 

dispersion polymerisation.  

Sample name Specific conditions Comments/analysis 

RAFT-P6-1 - Radial particles 

RAFT-P6-2 - Living character study, radial particles 

RAFT-P6-3 - For experimental analysis 

 

Typical characterisation data for elastomer particles of P6: 

 

1
H NMR (CDCl3) δ (ppm): 0.88 (br m, 6H, -CH3), 0.91 – 1.62 (br m, 26H, -CH2-, CH2(pb), 

CH2(pb)), 4.02 (br m, 8H, -CH2O-), 6.92 (br m, 4H, ArH), 7.19 

(br m, 1H, ArH), 7.44 (br m, 1H, ArH), 7.80 (br m, 1H, ArH), 

8.04 (br m, 4H, ArH).IR (FTR) ν (cm
-1

): 2927, 2856 (C-H), 1729 

(C=O), 1605, 1580, 1510 (C=C), 1489, 1467, 1422, 1393, 1245, 1159, 

1059, 1007, 968, 844, 760, 690, 644, 630, 551, 511.   

DSC: g 26 °C N 56 °C I 

Gel content: 83% 

 

Table 8.31: Summary of reactions to form nematic elastomer particles of P6 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P6-4 - Radial particles 

RAFT-P6-5 Crosslinker: CL2 Radial particles 

RAFT-P6-6 Crosslinker: CL2 Radial particles 

RAFT-P6-7 - Some radial character 

RAFT-P6-8 Crosslinker: CL2 polydomain 

RAFT-P6-9 Crosslinker: CL3 polydomain 

RAFT-P6-10 22 h UV exposure polydomain 

 

 

 

Typical characterisation data for polymer particles of P7: 
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DSC:  g 23 °C N 72 °C I 

 

Table 8.32: Summary of reactions to form nematic polymer particles of P7 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P7-1 - Radial particles 

RAFT-P7-2 - Radial particles 

RAFT-P7-3 22 h UV exposure Polydomain particles 

 

Typical characterisation data for elastomer particles of P7: 

 

Gel content: 61% 

 

Table 8.33: Summary of reactions to form nematic elastomer particles of P7 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P7-4 - Radial particles (low birefringence)  

RAFT-P7-5 - polydomain 

RAFT-P7-6 - polydomain 

RAFT-P7-7 Crosslinker: CL2 polydomain 

RAFT-P7-8 Crosslinker: CL3 polydomain 

RAFT-P7-9 Solvent: MeOH Small particles 

RAFT-P7-10 22 h UV exposure polydomain 

 

Typical characterisation data for polymer particles of P8: 

 

Particle size distribution: Average particle size: 2.9 µm 

  Variance (Cv): 22% 

IR (FTR) ν (cm
-1

): 2926, 2853 (C-H), 1729 (C=O), 1604 (C-C), 1510 (C=C), 1466, 1421, 

1305, 1245, 1159, 1058, 1006, 968, 845, 760, 690, 43, 629, 551, 510.   

DSC: g 20 °C N 90 °C I 

GPC: Mn: 240,000 g mol
-1

 

Polydispersity (Mw/Mn): 1.60 
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Table 8.34: Summary of reactions to form nematic polymer particles of P8 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P8-1 - Bipolar particles 

RAFT-P8-2 - For electro-optics, bipolar particles 

RAFT-P8-3 Monomer: 50% M8 50% M9 For electro-optics, twisted radial 

RAFT-P8-4 22 h UV exposure Some bipolar character 

RAFT-P8-5 22 h UV exposure Some bipolar character 

RAFT-P8-6 22 h UV exposure For experimental analysis 

 

Typical characterisation data for elastomer particles of P8: 

 

1
H NMR (CDCl3) δ (ppm): 0.91 (br m, 6H, -CH3), 0.95 – 1.47 (br m, 12H, -CH2, CH2(pb), 

CH2(pb)), 1.54 – 1.60 (m, 12H, -CH2-), 1.76 (br m, 4H, -CH2-), 

3.99 (br m, 8H, -CH2O-), 6.92 (br m, 4H, ArH), 7.21 (br m, 1H, 

ArH), 7.40 (br m, 1H, ArH), 7.84 (br m, 1H, ArH), 8.10 (br m, 

4H, ArH).    

IR (FTR) ν (cm
-1

): 2924, 2854 (C-H), 1731 (C=O), 1605, 1580, 1510 (C=C), 1488, 1467, 

1421, 1421, 1246, 1159, 1132, 1059, 1007, 968, 844, 760, 690, 644, 630, 

551, 510.  

DSC: g 21 °C N 64 °C I 

Gel content:  71% 
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Table 8.35: Summary of reactions to form nematic elastomer particles of P8 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P8-7 - Some radial character 

RAFT-P8-8 - Bipolar particles 

RAFT-P8-9 - Bipolar particles 

RAFT-P8-10 Crosslinker: CL2 Bipolar particles 

RAFT-P8-11 Crosslinker: CL3 Bipolar particles 

RAFT-P8-12 7 h UV exposure Bipolar particles 

RAFT-P8-13 Crosslinker: CL2 

7 h UV exposure 

Bipolar particles 

RAFT-P8-14 Crosslinker: CL3 

7 h UV exposure 

Bipolar particles 

RAFT-P8-15 Solvent: MeOH  

RAFT-P8-16 22 h UV exposure Bipolar particles 

RAFT-P8-17 - Bipolar particles 

RAFT-P8-18 22 h UV exposure Bipolar particles 

RAFT-P8-19 22 h UV exposure Some bipolar character 

RAFT-P8-20 22 h UV exposure Some bipolar character 

RAFT-P8-21 22 h UV exposure Some bipolar character 

 

Typical characterisation data for polymer particles of P9: 

 

Particle size distribution: Average particle size: 3.1 µm 

  Variance (Cv): 37% 

IR (FTR) ν (cm
-1

): 2924, 2854 (C-H), 1731 (C=O), 1605 (C=C), 1580, 1510, 1488, 1467, 

1421, 1246, 1160, 1060, 1007, 968, 844, 760, 690, 644, 630, 552, 510.   

DSC: g 4 °C N 71 °C I 

GPC: Mn: 66,000 g mol
-1

 

Polydispersity (Mw/Mn): 1.89 
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Table 8.36: Summary of reactions to form nematic polymer particles of P9 by RAFT-assisted 

dispersion polymerisation. 

Sample name Specific conditions Comments/analysis 

RAFT-P9-1 - Radial particles 

RAFT-P9-2 - Kinetic study, radial particles 

RAFT-P9-3 - For electro-optics, radial particles 

RAFT-P9-4 22 h UV exposure For experimental analysis, polydomain 

 

Typical characterisation data for elastomer particles of P9: 

 

1
H NMR (CDCl3) δ (ppm): 0.87 (br m, 6H, -CH3), 0.94 -1.55 (br m, 34H, -CH2-, CH2(pb), 

CH2(pb)), 1.77 (br m, 4H, -CH2-), 4.05 (br m, 8H, -CH2O-), 6.92 

(br m, 4H, ArH), 7.21 (br m, 1H, ArH), 7.40 (br m, 1H, ArH), 

7.84 (br m, 1H, ArH), 8.13 ( br m, 4H, ArH).  

IR (FTR) ν (cm
-1

): 2925, 2854 (C-H), 1730 (C=O), 1605, 1580, 1510 (C=C), 1488, 1467, 

1422, 1393, 1246, 1159, 1059, 1007, 910, 844, 760, 724, 690, 644, 630, 

552, 510.   

DSC: g 3 °C N 46 °C I 

Gel content:  66% 

 

Table 8.37: Summary of reactions to form nematic elastomer particles of P9 by RAFT-assisted 

dispersion polymerisation. Unless specified these particles were synthesised using 10 wt% of 1,6-

hexanediol diacrylate (CL1) as the crosslinker. 

Sample name Specific conditions Comments/analysis 

RAFT-P9-5 - Radial particles 

RAFT-P9-6 - Radial particles 

RAFT-P9-7 Crosslinker: CL2 Radial particles 

RAFT-P9-8 Crosslinker: CL3 Radial particles 

RAFT-P9-9 Solvent: MeOH Small particles 

RAFT-P9-10 22 h UV exposure Some radial character 

RAFT-P9-11 - Radial particles 

RAFT-P9-12 22 h UV exposure Some radial character  

RAFT-P9-13 22 h UV exposure Some radial character 
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  METHOD FOR COMPLETING GEL CONTENT ANALYSIS OF 8.7

ELASTOMER PARTICLES 
 

Gel content analysis a process by which the degree of network formation within a sample of 

particles can be estimated. Below is a technique adapted from a literature procedure.
101

 

 

A sample of particles is decanted into a pre weighed sample tube and dried in a vacuum oven to 

constant weight. Chloroform (1 mL) is then added to the sample tube and the mixture is sealed 

and allowed to stir gently at room temperature for 24 h. Samples with high gel content may be 

notably translucent in appearance at this stage. After the samples have stirred for the designated 

amount of time the samples are decanted into 10 mL Teflon centrifuge tubes. The samples are 

centrifuged at 4000 rpm for 15 min to allow for the dissolved fraction to be extracted from the 

insoluble network. The two separate fractions are then collected in pre weighed vessels and dried 

to constant weight. The gel content of the sample can then be calculated as a percentage of the 

total weight of the sample. Samples with a high enough degree of crosslinking to survive heating 

and swelling studies have been found to have a gel content of approximately 80% by the method.   

 

All of the Gel content analysis that was completed is specified below in Table 8.38. 
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Table 8.38: Gel content analysis results for samples created using dispersion polymerisation with 

a delayed addition of crosslinker and also RAFT-assisted dispersion polymerisation. 

Reaction Monomer / 

crosslinker 

used 

Polymerisation method % gel 

DA- P1-33 P1/ CL1 Delayed addition dispersion polymerisation 83% 

DA-P3-8 P3 / CL1 Delayed addition dispersion polymerisation 9% 

DA-P6-4 P6/ CL1 Delayed addition dispersion polymerisation 12% 

DA-P9-4 P9/ CL1 Delayed addition dispersion polymerisation 25% 

DA-P1-35 P1/ CL1 Delayed addition dispersion polymerisation 65% 

DA-P3-9 P3/ CL1 Delayed addition dispersion polymerisation 14% 

DA-P3-11 

P3 / CL1 

72 hr Delayed addition dispersion 

polymerisation 

9% 

RAFT-P8-7 P8/ CL1 RAFT-assisted dispersion polymerisation 78% 

RAFT-P1-8 P1/ CL1 RAFT-assisted dispersion polymerisation 78% 

RAFT-P6-4 P6/ CL1 RAFT-assisted dispersion polymerisation 41% 

RAFT-P7-4 P7/ CL1 RAFT-assisted dispersion polymerisation 13% 

RAFT-P3-13 P3/ CL1 RAFT-assisted dispersion polymerisation 65% 

RAFT-P3-14 P3/ CL1 RAFT-assisted dispersion polymerisation 29% 

RAFT-P1-7 P1/ CL1 RAFT-assisted dispersion polymerisation 69% 

RAFT-P3-15 P3/ CL1 RAFT-assisted dispersion polymerisation 59% 

RAFT-P1-8 P1/ CL1 RAFT-assisted dispersion polymerisation 55% 

RAFT-P3-16 P3/ CL1 RAFT-assisted dispersion polymerisation 47% 

DA-P1-36 P1/ CL1 Delayed addition dispersion polymerisation 62% 

DA-P3-12 P3/ CL1 Delayed addition dispersion polymerisation 72% 

DA-P6-6 P6/ CL1 Delayed addition dispersion polymerisation 50% 

RAFT-P3-17 P3/ CL1 RAFT-assisted dispersion polymerisation 55% 

RAFT-P3-18 P3/ CL1 RAFT-assisted dispersion polymerisation 69% 

DA-P1-37 P1/ CL1 Delayed addition dispersion polymerisation 52% 

DA-P3-13 P3/ CL1 Delayed addition dispersion polymerisation 60% 

DA-P6-7 P6/ CL1 Delayed addition dispersion polymerisation 56% 

DA-P1-38 P1/ CL3 Delayed addition dispersion polymerisation 79% 

DA-P3-14 P3/ CL3 Delayed addition dispersion polymerisation 56% 

RAFT-P8-8 P8/ CL1 RAFT-assisted dispersion polymerisation 64% 

RAFT-P9-5 P9/ CL1 RAFT-assisted dispersion polymerisation 37% 

RAFT-P2-3 P2/ CL1 RAFT-assisted dispersion polymerisation 39% 
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Table 8.38: Gel content analysis results for samples created using dispersion polymerisation with 

a delayed addition of crosslinker and also RAFT-assisted dispersion polymerisation. 

Reaction Monomer / 

crosslinker 

used 

Polymerisation method % gel 

RAFT-P4-3 P4/ CL1 RAFT-assisted dispersion polymerisation 76% 

RAFT-P5-3 P5/ CL1 RAFT-assisted dispersion polymerisation 52% 

RAFT-P7-5 P7/ CL1 RAFT-assisted dispersion polymerisation 54% 

RAFT-P3-23 P3/ CL1 RAFT-assisted dispersion polymerisation 77%, 79% 

RAFT-P1-13 P1 / CL1 RAFT-assisted dispersion polymerisation 73% 

RAFT-P1-14 P1 / CL2 RAFT-assisted dispersion polymerisation 55% 

RAFT-P1-15 P1/ CL3 RAFT-assisted dispersion polymerisation 85% 

RAFT-P3-27 P3/ CL1 RAFT-assisted dispersion polymerisation 85% 

RAFT-P3-28 P3/ CL2 RAFT-assisted dispersion polymerisation 66% 

RAFT-P3-29 P3/ CL3 RAFT-assisted dispersion polymerisation 91% 

RAFT-P6-7 P6/ CL1 RAFT-assisted dispersion polymerisation 83% 

RAFT-P6-8 P6/ CL2 RAFT-assisted dispersion polymerisation 54% 

RAFT-P6-9 P6/ CL3 RAFT-assisted dispersion polymerisation 85% 

RAFT-P8-10 P8/ CL2 RAFT-assisted dispersion polymerisation 69% 

RAFT-P8-11 P8/ CL3 RAFT-assisted dispersion polymerisation 93% 

RAFT-P8-12 P8/ CL1 7 hr RAFT-assisted dispersion polymerisation 64% 

RAFT-P8-13 P8/ CL2 7 hr RAFT-assisted dispersion polymerisation 67% 

RAFT-P8-14 P8/ CL3 7 hr RAFT-assisted dispersion polymerisation 87% 

RAFT-P9-6 P9/ CL1 RAFT-assisted dispersion polymerisation 55% 

RAFT-P9-7 P9/ CL2 RAFT-assisted dispersion polymerisation 78% 

RAFT-P9-8 P9/ CL3 RAFT-assisted dispersion polymerisation 73% 

RAFT-P2-4 P2/ CL1 RAFT-assisted dispersion polymerisation 97% 

RAFT-P2-5 P2/ CL2 RAFT-assisted dispersion polymerisation 59% 

RAFT-P2-6 P2/ CL3 RAFT-assisted dispersion polymerisation 90% 

RAFT-P4-4 P4/ CL1 RAFT-assisted dispersion polymerisation 78% 

RAFT-P4-5 P4/ CL2 RAFT-assisted dispersion polymerisation 63% 

RAFT-P4-6 P4/ CL3 RAFT-assisted dispersion polymerisation 80% 

RAFT-P5-4 P5/ CL1 RAFT-assisted dispersion polymerisation 71% 

RAFT-P5-5 P5/ CL2 RAFT-assisted dispersion polymerisation 58% 

RAFT-P5-6 P5/ CL3 RAFT-assisted dispersion polymerisation 86% 

RAFT-P7-6 P7/ CL1 RAFT-assisted dispersion polymerisation 61% 
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Table 8.38: Gel content analysis results for samples created using dispersion polymerisation with 

a delayed addition of crosslinker and also RAFT-assisted dispersion polymerisation. 

Reaction Monomer / 

crosslinker 

used 

Polymerisation method % gel 

RAFT-P7-7 P7/ CL2 RAFT-assisted dispersion polymerisation 64% 

RAFT-P7-8 P7/ CL3 RAFT-assisted dispersion polymerisation 91% 

RAFT-P7-9 P7/ CL1 RAFT-assisted dispersion polymerisation 66% 

RAFT-P8-7 P8/ CL1 RAFT-assisted dispersion polymerisation 72% 

RAFT-P99 P9/ CL1 RAFT-assisted dispersion polymerisation 68% 

RAFT-P8-16 P8 / CL1 22 hr RAFT-assisted dispersion polymerisation 85% 

RAFT-P9-10 P9/ CL1 22 hr RAFT-assisted dispersion polymerisation 73% 

RAFT-P8-17 P8/ CL1 RAFT-assisted dispersion polymerisation 71% 

RAFT-P4-7 P4/ CL1 22 hr RAFT-assisted dispersion polymerisation 73% 

RAFT-P4-8 P4/ CL1 22 hr RAFT-assisted dispersion polymerisation 75% 

RAFT-P1-16 P1 / CL1 RAFT-assisted dispersion polymerisation 93% 

RAFT-P2-8 P2/ CL2 RAFT-assisted dispersion polymerisation 75% 
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ABBREVIATIONS LIST 
 

AIBN Azobisisobutyronitrile 

br m Broad multiplet 

br s Broad singlet 

CDCl3 Deuterated chloroform 

Cr Crystalline 

Cv Coefficient of variance 

CL Crosslinker 

d Doublet 

dd Double doublet 

DBPC Azobisisobutyronitrile 

DCM Dichloromethane 

DDMAT 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid 

DMAP 4-Dimethylaminopyridine 

DMF Dimethylformamide 

DMSO-D6 Deuterated dimethyl sulfoxide  

DSC Differential scanning calorimetry 

EA Elemental analysis 

ESI Electrospray ionisation 

EtOH Ethanol 

FT-IR Fourier transform infra-red 

g Grams 

g Glass 

g mol
-1

 Grams per mole 

GPC Gel permeation chromatography 

h Hours 

HPC Hydroxypropyl cellulose 

I Isotropic phase 

i
PrOH Isopropanol 

IR Infrared 

ITO Indium tin oxide 

K2CO3 Potassium carbonate 

KI Potassium iodide 

KOH Potassium hydroxide 
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m Multiplet 

MeOH Methanol 

mg Milligrams 

MgSO4 Magnesium sulfate 

Mn Number average molecular weight 

mol Moles 

mmol Millimoles 

mol % Percentage by moles 

Mp Melting point 

MS Mass spectrometry 

Mw Weight average molecular weight 

m/z Mass to charge ratio 

N Nematic phase 

N* Chiral nematic phase 

NaHCO3 Sodium hydrogen carbonate 

NaOH Sodium hydroxide 

nm nanometres 

NMR Nuclear magnetic resonance 

POM Polarised optical microscopy 

ppm Parts per million 

PVP30 Polyvinylpyrrolidone with a molecular weight of 30,000 Da 

PVP55 Polyvinylpyrrolidone with a molecular weight of 55,000 Da  

q Quartet 

RAFT Reversible addition fragmentation chain transfer 

RALS Right angle light scattering 

rpm Revolutions per minute 

RT Room temperature 

s Singlet 

SDS Sodium dodecyl sulfate 

SEM Scanning electron microscopy 

t Triplet 

td Triplet of doublets 

TEM Transmission electron microscopy 

Tg Glass transition temperature 

TLC Thin layer chromatography 

TN-I Nematic to isotropic transition temperature 
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THF Tetrahydrofuran 

UV Ultra violet 

wt % Percentage by weight 

1:1 1:1 Ethanol: methoxyethanol 

5CB 4-cyano-4’-pentylbiphenyl 

µm Micrometre  

λ Wavelength 
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