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Abstract 

This thesis reports on the investigation into how climate change may affect the energy 

consumption in supermarkets at various locations throughout Great Britain in the 2030s. 

Both complete supermarkets and refrigeration systems were studied. Information on 

questions on climate change impact can assist supermarket owners and operators with their 

long term planning regarding energy users, demand and infrastructure, and add impetus to 

the search for adaptation and mitigation strategies. 

After reviewing relevant literature and evaluating different energy research tools, the 

fundamentals of climate change modelling were studied to understand the reliability of 

climate predictions. The guiding principle for selecting analysis tools was to use as simple 

an approach as possible which still yielded meaningful results. This led to the selection of 

simple regression and change point regression models for investigating whole 

supermarkets. This analysis was preceded by the identification of seven comparable 

grocery supermarkets with a good geographic spread. A refrigeration system software 

model was developed based on thermodynamic principles, also allowing examination of 

the effect of condenser fan control on energy use. 

As climate change forecasts have a large error margin, the research findings should be 

treated as indicative only. To show the range of uncertainty, different values from the 

predicted temperature distribution were used. These results suggested that the electricity 

consumption for complete supermarkets will rise by between 0.6% and 4.7%, whilst gas 

use decreases by between 3.3% and 24.1%. This trend agrees with other research. The 

estimated increase of electricity use of between 1.7% and 13% from the refrigeration 

model indicates that this would account for most of the electricity demand rise. Future 

work should include investigating the condenser fan control, as the software model 

predicted an energy saving potential of approximately 4.5% by the use of better control 

algorithms. 
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1 Introduction 

Although the attribution of the quote “Predictions are difficult, especially about the future” 

is in some doubt (Pors and Kicia, 2007), its truthfulness is not. Therefore any study on how 

climate will change over the next couple of decades and how this will affect humankind 

will have to acknowledge the accuracy of this statement. This thesis, which explores the 

impact of climate change on energy use in supermarkets, is no exception. 

Climate change predictions use models which try to mimic an extremely complex system 

with simplifying assumptions and this in the face of uncertainty. That this has been 

appreciated by the scientific community in this field is well documented in reports 

collected by the IPCC (see, for instance, Nakicenovic et al (2000)). Notwithstanding that, a 

substantial body of work has been produced in this field and models have been developed 

to predict the climate to the end of this century and beyond. Although the model designers 

have strived for accuracy, results from these models should be used more as one of many 

possible scenarios. However, being aware of different possible trends and their likelihoods 

will put decision makers in a better position to weigh the advantages and disadvantages of 

various options to arrive at more robust decisions. 

As buildings have been said to account for approximately one third of all final energy use 

(Ürge-Vorsatz et al, 2012), a research field has developed to quantify the impact of climate 

change on energy demand. Probably the earliest work is a study by Loveland and Brown 

(1989) for the Office of Technology Assessment of the United States Congress in which 

the authors used building simulation software to estimate the change in energy use of five 

building types in six US cities. For the weather data, they used the then current typical 

meteorological years (TMYs) for those cities and a prediction of how these TMYs would 

change if the atmospheric CO2 were to double. Their models suggested that, in general, the 

cooling load would increase by more than the heating demand would decrease, thus 

resulting in a net increase in energy use, but the exact amount would be location dependent. 

Subsequently, other regions have also been investigated and their results have been 

summarised by Li et al (2012). They found that, in addition to building simulation software, 

the degree day method was popular in researching heating and cooling demand in 

residential dwellings and office buildings. After reviewing over one hundred research 

outputs the authors came to virtually the same conclusion as Loveland and Brown (1989). 
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Their intuitively credible review findings were that, if the climate warmed up, heating 

demand would decrease, but cooling requirements would rise. Whether this meant that 

electricity and gas consumption would change and, if so, by how much depended on the 

location of a building and its type. 

Although supermarkets belong to a building type with a high energy use intensity (   ) 

(Tassou et al, 2011) the literature research summarized in the next chapter indicates that 

climate change impact on supermarket energy usage has not been investigated. Therefore 

this forms one of the research aims. These objectives can be summarized as follows: 

 Quantify the possible influence of a changing climate in the UK on supermarket 

energy use. To be relevant to decision makers in supermarkets the time horizon is 

relatively short (the 2030s). 

 Investigate the effects of location on the energy consumption in supermarkets. This 

includes not only considerations regarding the local climate, but also examines 

differences in operational procedures. 

 Quantify the climate change impact on the refrigeration system separately, because 

this is a major temperature dependent energy consumer. 

 Suggest possible energy saving measures to reduce the impact of climate change on 

the use of energy in supermarkets. 

1.1 Context of research 

This section frames the climate change impact assessment within the wider context in 

which supermarkets operate. In doing so it seeks to highlight the practical value of the 

research to senior management in supermarkets in the following two ways: Reputation and 

effectiveness of strategic decisions.  

That a supermarket’s reputation with its customers is of utmost importance is apparent 

when the statement: “[The] customer is the focus of all retail decisions.” (Althouse et al, 

1996) is considered. How this may affect decisions is exemplified in an article on 

confectionary placement in a supermarket by Piacentini et al (2000). These researchers 

argued that the main reasons for adopting a socially responsible approach to placement 

decisions was “ensuring customer satisfaction, rather than altruistic reasons”. Another 
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Macro 

motivating factor was profitability, or more specifically, the trade off between short-term 

and long-term profitability. The conclusion by the authors that the socially responsible 

selling of confectionery can be marketed and thus presents an opportunity for a 

competitive advantage may also be true for other decisions. This conclusion is supported 

by Whitehouse (2006) who reported that, in the retail sector some, felt that conducting 

business in a socially responsible way was another way to differentiate themselves from 

competitors. In this way, the increase in consumers’ environmental consciousness may 

have encouraged the food retail sector to set the pace for the climate change agenda to the 

point that other sectors can learn from them (Oglethorpe and Heron, 2010). Amongst these 

Marks and Spencer seem to be a good example, as this company managed to bundle 

environmental concerns with other social-responsibility issues in a document they call 

‘Plan A’ (Jones et al, 2009). In his article on corporate responsibility and sustainability 

Grayson (2011) used Marks and Spencer’s ‘Plan A’ as a case study to show how to embed 

corporate responsibility and sustainability into a company. The research described below 

may very well feed into this activity, as it can be regarded as proof of the sponsor’s desire 

to further understand long-term developments in the natural environment so that they can 

respond to it in a socially responsible manner. 

 

 
Figure 1.1: Environments relating to supermarkets 

As regards the motives of engaging in socially or environmentally responsible practices it 

could be pointed out that, by law, company directors are required to maximise profits 

(Whitehouse, 2006, p 280). Therefore formulating and implementing strategies which take 

the wider context into consideration should benefit the company in one way or another, for 
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instance, by improving the company’s reputation. Indeed doing otherwise may distract 

supermarkets from their core business - retailing products to consumers (Moore, 2001). 

Figure 1.1 helps to highlight another way this research may be of value to supermarket 

decision makers. It shows that supermarkets engage in their main activity. i.e. the sales of 

goods and services from suppliers to end users for their personal use, in the following three 

types of environment (Cox and Brittain, 1996; Anderson, 1993): 

 Macro environment 

 Micro environment 

 Internal environment 

This diagram indicates the complex interactions between the different parts of these types 

of environment. It also highlights the subject of this research as the relationship between 

the physical/natural factors and items belonging to the physical resources. The macro 

environment considers aspects outside of the immediate control of the retailer (Anderson, 

1993, 50). This could lead to the conclusion that the supermarket may not be able to 

change macro environmental factors, but may have to adapt to them. Adaptation measures 

may relate to the internal environment and may need to address the question of how to 

modify a supermarket’s physical resources to cope with climate changes. One example of 

physical resources of supermarkets is their refrigeration systems, which have a design life 

span of between 10 and 15 years and may be affected by a change in temperature. 

Therefore choosing the 2030s as the time horizon for this research is appropriate in order 

to assist the decision makers in supermarkets with design and investment decisions 

regarding equipment like refrigeration plants. 

1.2 Organisation of thesis 

This thesis is organised as shown in Figure 1.2. This diagram indicates that, after this 

introduction, three chapters follow which are based on existing knowledge. The first of 

these is the literature review which summarizes literature on the impact of climate change 

on buildings and the energy analysis of supermarkets. The second chapter, discussing 

climate change predictions, is included to give an appreciation of the uncertainties attached 

to these and to introduce the background to the future climate estimates employed in 

calculating the energy consumption in the 2030s. This is followed by a survey of data-
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driven and deterministic analysis tools in order to evaluate their individual advantages and 

disadvantages as a preparation for selecting an appropriate research methodology. 

Chapters five to seven cover the research into the energy use in supermarkets and start with 

a description in chapter five of how seven similar stores throughout Great Britain were 

identified. This is followed in the same chapter by a discussion of the reasoning behind the 

selection of a method based on a statistical approach and how this methodology was then 

used to gather and analyse data. The sixth chapter, presenting the results, explains how the 

statistical models were constructed and what predictions these models yielded in terms of 

energy use change including error estimates. These results are discussed in chapter seven 

by comparing both the research approach and outcome with existing literature. It also 

examines errors and uncertainty, which influence the reliability of the results. 

 
Figure 1.2: Thesis flowchart 

Chapter eight is concerned with a refrigeration system installed in one of the selected 

supermarkets. The purpose of this chapter is to highlight how refrigeration systems, as a 

major temperature sensitive energy consumer, may react to a changing climate, thus adding 
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to the understanding of the behaviour of whole supermarkets developed in chapters five to 

seven. The description of the work on refrigeration systems begins, after a summary of the 

main topics of research in this field and a review of relevant thermodynamic theory, with a 

discussion of how the useful refrigeration effect of the installed plant, together with an 

efficiency figure, has been established. This is then expanded to construct a software 

model so that an estimate can be given of how the electricity consumption might change in 

the 2030s. The final piece of work covered in this chapter is the investigation into different 

approaches to condenser fan control. 

The final chapter summarizes this thesis, discusses its main findings and offers some 

conclusions based on the work described. These conclusions include the major outcome 

form this work that, based on the climate change prediction employed here, the gas usage 

will drop by an amount significantly larger than the increase in electricity consumption. 

The research results of the refrigeration system suggest that most, if not all, of this increase 

in electricity demand may arise from the refrigeration system. 
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2 Literature review 

This literature review chapter starts with describing the review rationale before relevant 

literature is summarized and evaluated. The first strand of research literature pursued here 

is regarding the impact of climate change on energy use in buildings, which is 

geographically organised. The second strand is concerned with how the energy use in 

supermarkets is analysed. For this topic the literature is divided into data-driven and 

deterministic tools. 

2.1 Review rationale 

The approach for researching the literature here is based on the systematic literature review 

method, a methodology found mainly in the medical field (Mulrow, 1994). The particular 

strength of this review approach is that it utilises a rigorous and structured way with the 

aim of identifying all relevant literature. This is in contrast to the more traditional approach 

which, according to Cronin et al (2008), lacks transparency. Hemingway and Brereton 

(2009) suggest that this leads to some bias because the traditional review method relies on 

the expert reviewer rather than on the peer review process. Since the systematic literature 

review has been designed with the medical literature in mind, not all of the stages of this 

process have been followed here. As this review was conducted from late 2012 to early 

2013, a small scale literature search was conducted in November 2014 to include any 

relevant literature published since then. 

What was found to be of particular help was the review protocol, which is included in 

Appendix A – Review protocol. This document sets out the background of the literature 

research and a focused research question, the search strategy (including search terms and 

resources), inclusion criteria and quality checks as well as the data extraction and synthesis 

procedures. This is complemented by a project timetable (Booth et al, 2012, pp. 58-60). 

The draft protocol was submitted to the main PhD supervisor and to a health care 

professional teaching on the systematic literature review method. After the protocol had 

been approved, it was used to research a very narrow question which only allowed the 

inclusion of less than ten documents out of the 900 screened. In order to assess the body of 

literature more fully this initial question was widened to include the following two main 

questions: 
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 What does the existing literature say about the impact of the changing climate on 

the energy consumption in buildings? 

 What methods have been used to investigate the energy consumption in whole 

supermarkets? 

2.2 Impact of climate change on energy consumption in buildings 

As Figure 2.1, which is based on the data reported in GEA (2012, pp 47, 48), shows 

buildings account for approximately one third of global energy end use. The energy 

demand arising from this sector, which is made up of residential as well as public and 

commercial buildings, arises mainly from heating and cooling (GEA, 2012, p 51). 

Therefore it is only logical that the effect of change climate on the consumption of energy 

in buildings has been studied for various locations. 

 
Figure 2.1: Sectoral breakdown of energy end-use 

The literature relating to the impact of climate change on the energy use in building starts 

with a non-location specific section before it follows geographically grouped research 

outputs. Within these subsections the literature is chronologically arranged (except for the 

USA where a section relating to California has been included). 
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2.2.1 Global and summary studies 

Isaac and van Vuuren (2009) modelled the global demand for energy for the residential 

sector by incorporating such diverse factors as HDDs (or CDDs for cooling), the 

population of a country and device efficiency. For their climatic data the researchers used 

IMAGE (Stehfest et al, 2014) output together with calibration and downscaling methods. 

Their model suggested an increase in demand for energy worldwide for both cooling and 

heating up to 2030 when heating demand was predicted to stabilize. However, cooling 

requirements were expected to continue to rise rapidly. The authors concluded that not all 

of this was owing to climate change, but also because of the increased comfort level 

demanded in homes. When exploring uncertainties, the authors pointed to uncertainties 

regarding future developments, lack of information about the present situation and their 

assumptions. 

Li et al (2012) reviewed the literature on how climate change was expected to alter energy 

demand in the built environment. They found that the two most popular research 

approaches were the degree day method and the use of building simulation software. These 

methods were mainly applied to commercial buildings (e.g. office buildings) and 

residential dwellings. Their research showed that for higher temperatures the cooling 

demand was predicted to increase and the heating demand was thought to decrease. For 

severely cold climates this would likely lead to an overall reduction in energy use. For 

other climatic areas the overall effect was not so clear, but a shift towards higher electricity 

demand for cooling away from fuels for heating may result. The authors found studies 

suggesting that for office buildings the effect of climate change would be not as drastic as 

for residential dwellings, because of the higher internal loads in offices. Furthermore the 

authors reported that a number of papers also explored adaptation and mitigation measures, 

such as higher temperature set-points for air-conditioning or changes to the building 

envelope. 

2.2.2 USA 

The report by Loveland and Brown (1989) for the US congress was already referred to in 

the introductory chapter as probably the earliest work predicting the effect of climate 

change on energy use in buildings. In this work five building types (including a retail 

building) in six cities were simulated with the computer programme CALPAS3. The 

weather files of a TMY for the then present climate and for a climate scenario with double 
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the CO2 levels were used to calculate changes in cooling and heating loads. One of the 

building types specifically excluded was food services (the paper also included food sales 

in this type of occupancy), because it was difficult to model this energy intensive building 

category and the total area of these types of commercial building was insignificant when 

compared with others. The overall conclusion was that the annual cooling load would 

increase more significantly than the heating load would decrease. However, the researchers 

were unable to indicate timing and duration of any annual demand patterns. 

Scott et al (1994) first summarized studies undertaken for utility companies which had 

predicted that an average warming of 1°C may decrease heating demand by 2% and 

increase cooling requirements by a similar amount. The authors then criticized this 

approach using heating degree days (HDDs) and cooling degree days (CDDs) (see Section 

4.5 for an explanation of the degree day method) as oversimplifying consumption 

predictions in commercial buildings, because this approach neglected any nonlinearities. 

For their building software model, these researchers not only used different future 

temperature scenarios, but also investigated the sensitivity to changes in humidity ratio and 

found significant nonlinear relationships between cooling energy and average temperature. 

The authors concluded that, for their study, the degree day method overpredicted heating 

and underpredicted cooling requirements, but also acknowledged that the overall effect of 

even simple climate change scenarios on the energy use in commercial buildings was 

difficult to predict. 

One year later Matsuura (1995) published a paper detailing the research on a hypothetical 

town house and an office building simulated with a modified version of the software 

package BLAST in seven different cities throughout the United States. For the town house 

two different urban geometries were also evaluated. His simulation results showed that it 

was possible to fit linear regression models to one degree of warming for all cities. The 

author also found that, except for the two most southern cities, the overall energy demand 

would decrease for an average temperature increase. The author also noticed that the use 

and surroundings of the buildings were important. Further Matsuura suggests considering 

shading devices to reduce the summer cooling load. 

In the same year as Matsuura, Rosenthal et al (1995) used the degree day method to 

investigate how warming of 1°C in 2010 would impact the total energy expenditure for 

space conditioning in the United States. Their research predicted that the overall monetary 
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impact would be a reduction in expenditure. The authors concluded that this trend 

remained the same, even if the considered increase was 2.5°C. The researchers 

acknowledged that their results were at variance with earlier studies and pointed out that 

earlier work had concentrated more on the increase in cooling rather than on the overall 

effect on cost. However, the research by Matsuura (1995) agreed with Rosenthal et al 

(1995) inasmuch as both pieces of research predict a countrywide reduction in energy 

demand. 

Belzer et al (1996) published work using sample survey data to investigate commercial 

buildings. Their methodology started with deriving models based on degree days and 

energy bills. The regression models for electricity incorporated a temperature independent 

term and for gas consumption the model employed only an HDD dependent term. Next 

they extrapolated these models to the whole commercial building stock. This was followed 

by extrapolating these intermediate results to the year 2030. The researchers did not find 

any significant nonlinearity for their model, but acknowledged that, for CDDs, the fit of 

the model was not as good as for the HDDs. Their research supports the conclusion by  

Rosenthal et al (1995) inasmuch as it predicted that an average temperature increase would 

reduce the energy use in commercial buildings in the US, albeit only modestly. 

Crawley (2003) used the different climate zones in the US (and one outside the US) to 

explore the global climate change impact on a small office building with the simulation 

software EnergyPlus. The researcher utilised modified weather files to represent the 

climate change for 2040, 2070 and 2100. His preliminary results showed that for a certain 

climate the overall energy use may not change, but a mere “fuel swap” from gas to 

electricity may occur. 

A systematic study of all seven climate zones in the USA was performed by Wang and 

Chen (2014). They used the building simulation software EnergyPlus to calculate the 

change in energy use intensity of nine different types of building including residential and 

commercial buildings. To do this the researchers morphed current TRY data for three 

emission scenarios to simulate 2080s conditions with the monthly climate change 

prediction from the HadCM3 as input. Their research showed that the change in     is 

both building type and location dependent. For cities located in the colder regions of the 

USA an overall reduction in     can be expected, for the climate zones an increase was 

predicted. 
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2.2.2.1 California 

Other research has been conducted relating to California only. For instance, Lebassi et al 

(2010) studied the historic climate change from 1970 to 2005 by means of temperature data 

from 159 locations in California. This research used HDDs and CDDs with a balance point 

temperature of 18°C because the authors felt this to be adequate to account for seasonal 

energy use variation. Their results showed that CDDs and HDDs differed significantly 

throughout California, which led to the authors differentiating between the coastal and 

inland effects. Based on their work these researchers suggested that the CDD for the lower 

coastal regions decreased whereas for inland locations situated at a higher altitude the 

CDD rose. This caused an uneven distribution of changes in peak electricity demand, 

ranging from a decrease in the southern coastal region to an increase in the more northern 

areas along the coast. Furthermore, the authors established that the reduction in HDDs was 

not matched by a corresponding increase in CDDs. According to these researchers this 

spatial distribution was due to the atmospheric and oceanic phenomena which dominated 

the climate in California.  

Another example is the paper by Xu et al (2012) in which the authors downscaled weather 

data for 63 sites in California to predict the building energy use for the 2040s, 2070s and 

for the end of this century. After that they used these weather files to simulate a number of 

residential and commercial buildings in 16 climate zones in California with two different 

software packages. This phase was followed by combining the simulation results with 

estimates of building stock in California. The authors claimed very confidently that the use 

of heating would decrease and the energy consumed to cool buildings would rise 

significantly over the next century. They suggested that the actual building type should 

also be considered as the change in energy usage may be building type specific. In addition, 

these researchers reported that variations in energy use were location dependent, which 

corroborates the findings by Lebassi et al (2010). 

2.2.3 Asia 

Researchers in Asia, notably at the City University of Hong Kong, have also contributed to 

insight on the impact of climate change on energy use in buildings. Research output from 

this university used, amongst other methods, the principle component analysis (PCA) to 

investigate the impact of climate change on a typical office building in Hong Kong (Lam et 
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al, 2010a). Lam et al (2010a) explained that this approach was superior to the degree day 

method, as the PCA allows the incorporation of other weather variables in addition to dry-

bulb temperature, and that it was also better than multiple linear regression (MLR) analysis 

as this method can cope with multicollinearity
1
 better. Their research indicated that dry-

bulb temperature, wet-bulb temperature and global solar radiation were the best predictors 

for their work leading to an estimate of an annual rise in cooling load of 9.1% translating 

into an increase in energy use of 4.3% for low radiative forcing (see Section 3.2.1 for an 

explanation of the term ‘radiative forcing’). The researchers also estimated the model error 

with the coefficient of variation of the root mean square error (        ) (explained 

further in Section 5.7) using data for 2006-2008. They found the        ) for the 

heating load to range from 11.5% to 30.9% and for the cooling load to vary from 3.6% to 

4.0%. A similar study on air-conditioning requirements in commercial buildings (Lam et al, 

2010c) predicted a rise in electricity use for air conditioning of 18.4% for the 2069-2100 

period (compared to 2008 consumption) for low radiative forcing. The        ) of their 

model varies from 9.2% to 23.5%. 

Another approach used at this university was the overall thermal transfer value (OTTV) 

which was used on residential buildings (Wong et al, 2010). The OTTV gauges the heat 

transfer from the outside of the building to the inside through the building envelope, or 

vice versa, taking into consideration both walls and fenestration. The researchers also 

included the evaluation of energy saving measures in their study indentifying an increase 

in thermal insulation as the most effective option. The results showed that the building 

cooling load was expected to increase by 12.3% (compared with the period between 1979 

and 2008) for 2071-2100 for low radiative forcing. It should be pointed out that the 

normalisation was different from that used in Lam et al (2010c) and therefore results are 

not completely comparable. 

Morphed weather files together with a building simulation software package (EnergyPlus) 

were used for another piece of research investigating an office building and a residential 

building under climate change at this university (Chan, 2011). The researcher predicted 

that the increase in air-conditioning energy requirements of the office building would rise 

by 9.9% for a low forcing emission scenario for 2080-2099 (when compared with results 

based on then present weather files), whereas for the residential building, demand was 

                                                 
1
 “Multicollinearity implies a near-linear dependence among the repressors.” (Montgomery et al, 2006, p 109) 
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expected to increase by 16.5% under the same conditions. The lower increase for the office 

building, the researcher surmised, would be due to the cooling load being significantly 

influenced by electrical equipment, which was not the case at the residential building. 

A further paper from this university (Wan et al, 2011a) summarized work on predictions of 

the increase in average building energy use in Hong Kong with a PCA and a number of 

adaptation measures, which were simulated with VisualDOE4.1, relating to the building 

envelope, temperature set point and chiller efficiency. When using data from local weather 

stations and predictions based on MICRO3.2-H (Nozawa et al, 2007) the researchers found 

a continuous warming trend. This is expected to cause an electricity demand increase of 

6.6% for the last decade of the 21
st
 century for low forcing (compared with 1979-2008) 

without adaptation. 

Wan et al (2011b) expanded the research done for Hong Kong to four other major cities in 

China. They also used a PCA which used the same three climate variables as in Lam et al 

(2010c) and, generally, the same approach as in Wan et al (2011a). The work done by the 

authors suggested an increase in the average cooling energy use from 11.4% to 24.2%, 

dependent on location, for low forcing for the rest of this century and a corresponding 

decrease in heating of between 13.8% and 26.6%.  

The heating energy in the city of Tianjin was investigated by Xiang and Tian (2013) 

employing a PCA together with a TRNSYS software model of a reference building. Their 

PCA agreed with Lam et al (2010c) inasmuch as they used the same climate variables. 

Based on their PCA and their software model the researchers developed a third order 

polynomial regression model which predicted a heating energy reduction of 18.1% under 

low forcing conditions (i.e. under the same conditions as in Lam et al (2010c)) for the 

latter part of this century compared with the base period from 1971 to 2010. Because the 

data used to estimate the error was also used for the PCA, the validity of this method may 

be called into question and, therefore, is not stated here. 

Chow et al (2014) investigated how better building regulations may alter the impact of 

climate change readiness in China. To this end they calculated the energy demand 

(although no calculation method was given in their paper) of an apartment block in each of 

four locations covering three climate zones in China. They found that the effect of the new 

regulations reduced the demand for heating, but pointed out that it depended on the climate 
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as to whether this was of significance, e.g. if the climate was so warm that heating 

requirements were already low impact, changes would be small. In addition, they 

mentioned that these measures may be counterproductive when it came to cooling as they 

could increase cooling demand. 

2.2.4 Rest of the world – excluding Europe 

Other research into climate change effects on areas of the world not covered so far include 

work by Zmeureanu and Renaud (2008), who examined the change in heating demands in 

Canadian houses by means of a simple regression model using HDDs as the independent 

variable and also a software model. Their statistical model incorporated a weather 

independent component not found in the normal degree day method. The data for the base 

year and future predictions was obtained from CCCMA (Environment Canada, n.d.). The 

results of this regression analysis compared well with the more detailed software model 

implemented in TRNSYS. This piece of research indicated that the reduction in the annual 

heating energy for 2040-2069 could range from 11% to 13.1% when compared with the 

data from 1961-1990. 

Another example is the work by Roshan et al (2012) who used HDDs and CDDs to 

investigate how climate change may impact on Iran. These researchers chose the degree 

day method because they considered it simple and reliable. For their research the authors 

used data from 43 weather stations in Iran from 1961 to 1990 as their baseline and the 

output from the MAGIC/SCENGEN software (Wigley, 2008) for predicting the climate 

change impact. According to their research the annual heat requirements will reduce by 

about 20% with a simultaneous increase in cooling requirements of approximately 65% in 

2075. 

The sub-Saharan climate was studied by Ouedraogo et al (2012) with the simulation 

software package IES. The researchers used data from the Burkina Faso Meteorological 

Office from 1977 to 2010 to generate a current test reference year (TRY) and projected 

data from the Hadley Centre model HadCM3 for a future TRY. When comparing the 

HadCM3 projections with historical data, the researchers found a mismatch which they 

considered acceptable. A typical detached, three story office building was modelled in IES 

with internal gain due to people, lighting and electric equipment. This study found that the 

cooling load differed from room to room with the middle floor having the lowest load. The 

researchers also concluded that the yearly cooling demand would more than triple for the 
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period between 2060 and 2079 when compared with the demand of an actual, comparable 

building for 2007. 

2.2.5 Europe – excluding the UK 

The work reported by Cartalis et al (2001) investigated how the HDDs and CDDs may 

change in 2030 in Greece and how this translated into altered energy consumption patterns. 

The climate model used for this research, ESCAPE (Rotmans et al, 1994), together with an 

HDD set-point temperature of 15.5°C and 18°C for CDD, yielded different results for a 

“typical building construction” (Cartalis et al, 2001) of a one-zone building depending on 

the policy scenario employed. For the most aggressive reduction in greenhouse gasses, the 

researchers found that HDDs would reduce by just below 5% and CDDs would increase by 

just under 15% with a corresponding decrease in heating energy use of 4.7% and an 

increase for cooling of 14.9%. For a business as usual emission scenario heating and 

cooling energy was predicted to change by -10% and +28.4% respectively. The authors 

explained that, because of climate model uncertainties, their results should be treated with 

some caution. Other sources of uncertainties were not explored in this paper. 

Frank (2005) employed the building simulation software HELLIOS to calculate the change 

in heating and cooling demand for a residential building and an office building in 

Switzerland. The base year period, for which the researcher used data from various sources 

(e.g. WM reference period (World Meteorological Organization, n.d.)), was modified to 

simulate rises of 0.7°C, 1°C and 4.4°C. He found that for each degree the temperature rose 

the heating energy demand in the residential building would drop by 8-13%. The increase 

in cooling demand, the author suggested, could be met by night time ventilation. The office 

building exhibited a similar drop in heating demand. However, due to a low starting value, 

the cooling demand was expected to rise by up to 1050% for a 4.4°C temperature increase. 

Christenson et al (2006) used the degree day method to investigate how climate change 

would impact on buildings in four locations in Switzerland. In their paper they described 

how they had condensed data from eight climate models to upper and lower limits for the 

second half of the 21
st
 century. They found that there was a large range of possible 

decreases for HDDs ranging from 13% to 87% in the period 1975-2085 with the 

temperature scenarios having a greater impact than location, building quality or balance 

point temperature. The CDDs had a much higher percentage increase, which was because 
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of a low starting point. These researchers also pointed out that the future projections were 

uncertain due a variety of possible socio-economic development paths. 

Changes in heating and cooling demands in two climatic regions in Slovenia were 

researched by Dolinar et al (2010) with a TRNSYS software model. This model also 

allowed the investigation of different building properties. The authors explained that 

temperature, precipitation and global radiation were important inputs in constructing their 

climate scenarios. Their research suggested that for the subalpine region the 2050 heating 

demand would drop by 16% to 25% (compared with 1961-1990 figures), but for the 

Mediterranean area no significant change was expected. Similarly, the cooling demand 

increase was expected to be significantly higher in the subalpine zone than in the 

Mediterranean region. In addition to this, the researchers reported that for significantly 

warmer, more solar intensive climates, better insulated houses would perform better. 

However, if the temperature increase was only modest, standard buildings required less 

cooling energy.  

Pilli-Sihvola et al (2010) sought to establish a relationship between climate change and 

electricity consumption across Europe. The authors collected electricity data for periods 

which varied from country to country, but generally included the period from 1989 to 2005. 

Then they made use of a multiple regression model to establish a link between electricity 

use on the one hand and seasonality, temporal trend, CDDs and HDDs on the other hand 

for Finland, Holland, Germany, France and Spain. The authors found a clear relationship 

between temperature and electricity demand for winter and also between the demand for 

cooling and temperature in summer for south Europe. Although the result for an individual 

country depended on the climate zone it was in, the overall result was a reduction in 

electricity use for Europe. In their section on conclusions the authors pointed out that, due 

to the long time horizon and uncertainty of the validity of their assumptions, any result 

should be treated as indicative only. 

Research by Berger et al (2014) on urban locations in Vienna, Austria, and climate change 

investigated four office buildings (one built before World War One, one after World War 

Two, a highly glazed office block built post 2000 and a Passive House Standard office 

building). The regional climate model from the Max Planck Institute in Hamburg, 

Germany, was used to generate weather data input for the building simulation software 

package TAS from EDSL. The results showed an estimated reduction in overall future 
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energy demand of up to 15% for 2050 compared with the 1961 values and that     is 

more significantly related to the building type than to the location. 

2.2.6 UK 

When it comes to climate change and its impact on buildings, the UK is arguably among 

the best researched countries in Europe. One early example is the research reported by 

Jenkins et al (2008a) who simulated 2030 conditions with the ESP-r software package for a 

“typical office building” (Jenkins, 2009) at five different locations throughout the UK. In 

addition to the changing climate, efficiency improvements in lighting and small pieces of 

office equipment were also taken into consideration. When comparing both factors the 

results showed that the effect of more efficient equipment had a greater impact on energy 

demand than climate change. As the researchers found the spatial differences in climate 

change in the UK to be small (which seems to be at variance with official statistics, e.g. 

Jenkins et al (2008b)), they presented a conclusion for the whole of the UK, which was 

that climate change reduced the heating requirements more than it increased cooling 

demand.  

De Wilde and Tian published two pieces of work on a theoretical office building located in 

Birmingham (de Wilde and Tian, 2009; de Wilde and Tian, 2010). They used the building 

simulation software EnergyPlus and future weather data based on UKCIP02 to investigate 

uncertainties in various input parameters such as changes to lighting levels, equipment 

efficiency and infiltration rate. When taking only climate change into account, their overall 

conclusion suggested that, although CDDs would rise, cooling energy would stay 

essentially the same. This was so because they considered only electricity for fans rather 

than complete air-conditioning systems. The heating requirements reduced more 

significantly pointing to an overall reduction of energy consumption due to climate change.  

A CDD based regression analysis with a balance point temperature of 22°C was used by 

Day et al (2009) to forecast the cooling demand in London with climate data from local 

sources. They found that for London the CDDs would rise by almost 90% between 2004 

and 2030 if no mitigation measures are adopted. 

Collins et al (2010) examined the future energy requirements for the residential building 

stock with the assumption of a widespread up-take of air conditioning. In their study they 

used climate data based on UKCIP02 and the IES building software to simulate six 
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housing types at four locations in the UK. Their study also showed that heating demand 

was expected to fall whereas the cooling requirements were expected to increase due to the 

adoption of cooling systems. However, as the cooling demand started from a very low 

level, the overall effect would be a reduction in energy demand.  

The updated version of the climate projection for the UK, UKCP09, along with IES was 

used by Gupta and Gregg (2012) to research the impact of climate change on four types of 

English houses in Oxford. Their work had the dual purpose of assessing the impact of the 

change in climate on thermal comfort and of evaluating adaption measures. The UKCP09 

provides simulation results in the form of cumulative probability distributions for three 

different climate change scenarios. For the highest emission scenario and 90% probability, 

the researchers found a reduction in heating requirements by the 2080s of up to 75%. For 

the summer time, they identified a risk of overheating, possibly leading to the use of 

mechanical cooling equipment. 

In addition to the academic community, other organisations have produced work concerned 

with the impact of climate change on buildings. One example is the summary report by 

Hacker et al (2005) in which the authors reported on the heat stress in six case study 

buildings and their carbon emissions as a function of the changing climate predicted for 

London, Manchester and Edinburgh. Their report concluded that many buildings in the UK 

would suffer from an increase in thermal discomfort and pointed to the absence of shading 

devices, controllable ventilation, insulation and thermal mass as high risk indicators. The 

authors suggested studying buildings in warmer climates to learn how to successfully adapt 

to the warming climate. The work summarised by Thompson et al (2015) may be 

considered an extension of the report by Hacker et al (2005) as it includes over 50 building 

adaptation case studies (including supermarkets). This document includes also 

recommendations for new building design such as the adoption of passive design features 

over energy consuming solutions.  

2.3 Analysis of energy consumption in supermarkets 

A major difference between a supermarket and other commercial buildings is the 

refrigeration system, which accounts for much if not most of the electricity consumption 

(Orphelin et al, 1997) and makes supermarkets highly energy intensive buildings (Hendron 

et al, 2012, pp 1-3). This has given rise to research in this area to see how refrigeration 
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systems may be made more efficient; Ge and Tassou (2000), Arias and Lundqvist (2006), 

Cecchinato et al (2010b), Llopis et al (2015) and others have published in this area. 

Associated with the refrigeration in supermarkets is the cold aisle phenomenon caused by 

the open display cases. Related problems have been investigation with simple heat 

balancing equations (Orphelin et al, 1997), computational fluid dynamics (Stribling, 1997) 

or elaborate test set-ups including large scale smoke visualisation (Ndoye et al, 2011). 

Other researchers examined how a supermarket’s internal conditions impacted on the 

cooling load of refrigerated display cases (see, for instance, Faramarzi (1999), Capozzoli et 

al (2006) or Bahman et al (2012)). 

In contrast with research on specific problems in supermarkets referred to in the previous 

two paragraphs, this section surveys the literature on the energy consumption of whole 

supermarkets. The three main themes developed are data-driven methods, development of 

first principle models and software building simulation. 

2.3.1 Research using data-driven approaches 

Literature included in this sub-section proceeds from simple methods useful for 

benchmarking to change point regression analysis and more advanced multi variant 

analysis (MVA) including artificial neural networks. 

2.3.1.1 Energy use intensity in supermarkets 

The Energy Use Intensity (   ) defined as the annual energy consumption per unit of area 

(usually given in kWh/m
2
 per year) has been used by Tassou et al (2011) to investigate 

2570 UK retail food outlets. DEFRA (2006, p.3) indicated that there were over 100,000 

grocery retail stores in the mid 2000s and therefore only approximately 2.5% of all stores 

were investigated in Tassou et al (2011). Nevertheless the authors maintained that their 

sample was representative. In their work they based their classification on the sales area 

and followed the division found in DEFRA (2006, p. 24). Therefore they listed 

convenience stores (sales area of less than 280 m
2
) as the smallest food outlet, followed by 

supermarkets with a sales area of between 280 m
2
 and 1400 m

2
. The category for stores 

with a sales area of between 1400 m
2
 and 5000 m

2
 was called superstores. This was 

followed by the biggest store format, hypermarkets, ranging from 5000 m
2
 to over 

10000 m
2
. The researchers suggested that the variation of the electrical     from 
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approximately 500 kWh/m
2
/pa for the larger retail food outlets to nearly 3000 kWh/m

2
/pa 

for convenience stores was mainly due to a different product mix, or, in other words, 

smaller stores had a higher percentage of refrigerated food. Other factors responsible for 

this spread, the authors explained, may be owing to store formats, shopping behaviour and 

how the store was operated (including equipment used). Despite this spread, the 

researchers suggested an empirical model for the annual electrical     (         

                     ) for which no coefficient indicating the goodness of fit was 

given. 

In his paper on energy saving measures in a supermarket in New Zealand Dazeley (2012) 

also used      to compare the actual impact of these measures. As the supermarket had an 

area of 6400 m
2
 it can be classified as a hypermarket according to Tassou et al (2011), 

assuming that the sales area was not less than 5000 m
2
. The     of this store before the 

implementation of energy saving measures had been 568 KWh/m
2
/pa and therefore was 

under the expected value according to the model in Tassou et al (2011). The     for after 

the improvements was given as 414 KWh/m
2
/pa. However, it was not quite clear how this 

figure was calculated as the author mentioned changes in store operation, but did not say 

how he treated them. The researcher attributed this change in     to the improvement 

measures, but did not mention if or how he controlled for weather variables (for one 

method of doing this see Fels (1986)). 

Although      can help with benchmarking in a simple way, other factors may have to be 

taken into consideration so as to avoid oversimplifications. This is what Schraps (2005) 

pointed out and, therefore, she included the differentiation between ‘warm stores’ and 

‘cold stores’. The author explained that the ‘warm stores’ had a higher cooling load owing 

to more baking ovens. However, this will not suffice if a more detailed analysis is required. 

2.3.1.2 Change point regression 

Change point regression models have a continuous graph with at least one point where the 

gradient suddenly changes and are more fully discussed in Section 4.2.2. This type of 

statistical model may be considered for a more complete analysis and has been applied to 

supermarkets and other buildings (Ruch and Claridge, 1992; Ruch and Claridge, 1993). 

For modelling energy use in buildings the outside temperature is normally used. Kissock et 

al (1998) discuss reasons why using only the ambient temperature is a valid approach. 
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Schrock and Claridge (1989) developed a change point regression model for a single-story 

supermarket in Texas based on data from March 1988 to April 1989. This store has a total 

area of approximately 3700 m
2
, a ceiling height of 4.9 m and an annual electricity 

consumption (used also for some heating) of 834 kWh/m
2
. The researchers found their 

approach superior to the simple regression models and divided the temperature range into 

heating and cooling regimes. The authors graphically determined the change point 

temperature for this model to be at 62°F (16.7°C) at which point the slope increased 

approximately six fold. The fit of this model in the cooling region was relatively good 

(  =0.755) (the meaning of the coefficient of determination    will be explained in 4.2.1). 

However, in the heating region it was not as good (  =0.370). The problems the authors 

found when conducting this research included incorrectly set defrost timer clocks, not all 

lights which could be switched off during night time operations were switched off, and 

large pieces of equipment failed. 

The same supermarket was also investigated by Ruch and Claridge (1992) using data for 

the period from June 1989 to May 1990. Their more rigorous approach to identifying the 

change point regression parameters employed a root mean square error (    ) algorithm 

resulting in a much better   of at least 0.915. Their research found the change point to be 

located at 15.6°C where the slope increased by a factor of approximately four. This may be 

owing to the more accurate statistical approach or due to the use of a different data set. 

When comparing Figure 3 in Schrock and Claridge (1989) with Figure 3 in Ruch and 

Claridge (1992) one finds that these two scatter plots look very similar, but are not 

identical. Ruch and Claridge (1992) also calculated confidence intervals for all model 

parameters and examined the residuals for heteroskedasticity
2
. From their data these 

researchers excluded holidays and data from a bad temperature sensor.  

2.3.1.3 Multi variant analysis 

If more than one independent variable needs to be included, an MVA may be appropriate. 

For supermarkets, MLR and change point principle component analysis have been used. In 

a study on how multiple regression can be used to identify appropriate indicators for 

benchmarking Chung et al (2006) investigated 30 supermarkets in Hong Kong. These 

supermarkets were described as being part of a building and having a total area of between 

                                                 
2
 Nonconstant variance of residual error (Ruch and Claridge, 1992) 
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75 m
2
 and 650 m

2
, which made most of them convenience stores according to the 

classification in DEFRA (2006, p. 24) (see also Figure 3 in Chung et al (2006) for the 

distribution of floor space). The researchers used an     which eliminated the temperature 

dependency and suggested that building age, floor area, opening hours, footfall and the 

energy conscientiousness of staff should be included in the model. This regression model 

had an    of 0.708. However, it should be pointed out that the last three predictors would 

have been rejected at a 10% confidence level (Anderson et al, 2004, pp. 606, 669). 

Chen (1991) and Ruch et al (1993) developed models based on principal component 

analysis (PCA) for the same supermarket as in Schrock and Claridge (1989) and Ruch and 

Claridge (1992). The authors gave the main advantage of PCA over MLR as the avoidance 

of multicollinearity thus avoiding misleading results for model coefficients. The cleansed 

data set included only 133 days from 19 June 1989 to 19 June 1990, because of a shortage 

of appropriate weather data. The change point temperature, which was found to be at 

15.4°C (this value was approximately 0.2°C lower than in Ruch and Claridge (1992)), 

served to divide the supermarket operation into a base level regime before the change point 

and a cooling regime beyond this temperature. For the base level model the researchers 

found that outside temperature, sales and specific humidity gave an adequate model with 

an    of 0.562. The predictor ‘sales’ was replaced with solar radiation for the cooling 

regime model resulting in an    of 0.749. The reason suggested by the authors was that, at 

a lower temperature, where the energy consumption was relatively constant, customers 

opening freezer doors had a higher impact. When the outside temperature was greater than 

the change point temperature the slope increased by approximately a factor of four and the 

influence of solar radiation also became more important. Interestingly, the change point 

model developed by Ruch and Claridge (1992), using only outside temperature as its 

independent variable, had a higher   . 

Artificial neural networks may be also classed as an MVA method as they normally have 

an input vector rather than just a single input variable. This method can be used if the 

underlying structure of the system studied is unknown. Input and output data provided is 

used to train the ANN. Datta et al (1997) reported on work in which they had applied the 

ANN method to a store in Airdire, UK. Their results from an ANN with eight inputs and 

three consumption related outputs were compared with MLR models showing that the 

correlation between the target output data and the predicted values for ANN was 0.955, but 
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for a second order regression model it was only 0.798 and for a linear model even worse. 

Datta and Tassou (1998) also detailed their approach of applying an ANN on a food retail 

store in Airdire, UK (presumable the same as in Datta et al (1997)). The researchers used 

two different training algorithms and calculated the mean absolute error as 4.6% for the 

best case. 

Mavromatidis et al (2013) reported on work performed on a supermarket located in Kent, 

UK, with a sales area of 3300 m
2
. Their aim was to train five networks with up to five 

input variables to predict the electric energy use in order to compare these predictions with 

the actual demand in order to detect abnormal stores operation. These networks achieved 

correlations of between 0.887 and 0.981. The authors suggested that ANNs required less 

expertise and effort than traditional methods. However, this approach may lead to models 

which have no real physical meaning. 

2.3.2 The development of supermarket thermal models 

Some researchers have decided to model supermarkets from first principles. The reason 

given by Arias (2005, pp 95-99) was that none of the complete building simulation 

software packages available then was capable of adequately modelling the idiosyncrasies 

of supermarkets (i.e.. refrigeration systems). Therefore he developed a computer 

programme based on seven supermarkets in Sweden. This software model derived values 

for the indoor climate based on internal gains, the interaction with cooling cabinets and 

cold rooms, and the outdoor weather, which was communicated to the inside through the 

HVAC system, the building envelope and infiltration (Arias, 2005, p. 105). The 

refrigeration models included direct and indirect refrigeration designs with the ability to 

model different compressors. The programme was able to assess the life cycle costs and 

the total equivalent warming impact so that supermarket designers may choose appropriate 

options (Arias and Lundqvist, 2005). 

A much simpler theoretical model was developed by Ducoulombier et al (2006) who 

modelled a supermarket with two zones, one set at -20°C and the other at +20°C. This 

model incorporated three heat pumps, two for the cold area (for refrigeration) and one for 

the warm space (for comfort cooling), one electric heater (for heating the warm space) and 

one internal heat load. The aim of this simple model, the authors explained, was to derive a 

thermodynamic efficiency maximum. Their research suggested that better insulated 

supermarkets reduced the demand for heating and cooling of the warm space due to better 
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heat recovery opportunities. However, the authors qualified this statement by explaining 

that an improved heat recovery rate would increase not only overall efficiency figures, but 

also total required energy. Thus they concluded that this model helped with understanding 

the underlying principles even if it was unable to cater for the complexities of real 

supermarkets. 

In their paper Hill and Levermore (2011) criticized the National Calculation Methodology 

(NCM) required by the UK Building Regulations, because the NCM does not include the 

energy requirements of supermarket refrigeration systems. They then developed a first-

order dynamic model in Excel (Hill et al, 2012), which allowed the indoor temperature to 

change with time. Results from this model suggested that a building optimised to the NCM 

may not be as efficient as a supermarket with a refrigeration/HVAC heat exchanger 

installed. 

Suzuki et al (2011) developed a supermarket model based on a food supermarket in Japan 

with a sales area of 1568 m
2
 and an annual     of approximately 840 kWh/m

2
, (this is 

below the expected value of 958 kWh/m
2
 pa according to the empirical model developed 

by Tassou et al (2011)). This model used a heat balancing equation to investigate the 

impact of air leakage from refrigerated display shelves on the energy consumption. When 

comparing the model prediction with the measurements, the authors found good agreement 

for the hourly power consumption for lighting and refrigeration, but a larger deviation for 

the HVAC system. Notwithstanding that, the overall agreement between the overall 

calculated power consumption and the measurements was regarded as good. Regarding 

refrigerated display cabinets, the researchers concluded that air leakage from these had a 

considerable effect on both cooling and heating requirements. 

Other researchers have decided to use existing software packages. One example of using 

building simulation software to investigate supermarkets is work reported by Khattar and 

Henderson (2000) who introduced a building simulation package for supermarkets called 

Supermarket Simulation Tool (SST). This computer programme was developed because 

common simulation software packages were unable to model refrigeration systems 

properly at that time. Thereafter they studied a hypermarket with a total area of 16200 m
2
 

(sales area: 12500 m
2
). The simulated and actual electricity consumption in Khattar and 

Henderson (2000) exhibited good agreement and showed a temperature independent part 

before a steep temperature dependent increase occurred. On the other hand, the simulated 
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and actual gas plots in the same figure display a large discrepancy. The simulated data 

suggested that there was a certain point where gas consumption became temperature 

independent. When the temperature rose even further, estimated gas use increased rapidly 

due to summer dehumidification. Finally the authors offered some improvement 

suggestions and tested them with SST, presenting insights into, for instance, the limitation 

of evaporative condensers. The limitations of this software were not explored by the 

authors, but may arise from the simplifying assumptions of representing large areas, such 

as the sales floor, by only a small number of sections with only one zone temperature each 

(see also Section 4.6.1) thus disregarding the true temperature distribution. 

Jenkins (2008) used the building simulation software ESP-r to simulate a supermarket in 

Edinburgh with weather files for Manchester. The total area, including a mezzanine floor, 

was 10950 m
2
 (sales area: approximately 7800 m

2
) with a building height of 6 m and an 

    of just under 500 kWh/m
2
 (it is assumed that this is the annual consumption, although 

the paper does not state this explicitly), which was about 220 kWh/m
2
 below the expected 

value according to the model in Tassou et al (2011). To calculate the overall energy use, 

the author had to add the average consumption of the refrigeration system separately, as 

this software package could not explicitly model a supermarket refrigeration system, a 

common deficiency of building simulation packages highlighted earlier by Khattar and 

Henderson (2000). After the model was constructed, the author used it to evaluate six 

improvement scenarios which added up to energy savings of 51% compared with the base 

model. 

A software package developed by the US Department of Energy (DOE) (Crawley et al, 

2001) includes the capability of modelling supermarket refrigeration systems since 2004 

(Stovall and Baxter, 2010). EnergyPlus was compared with three other software tools: 

CyberMart (see also Arias (2005)), RETScreen and SuperSim (IEA Heat Pump Centre, 

2012). Based on the capability tables in the report by the IEA Heat Pump Centre (2012), it 

can be concluded that EnergyPlus is the software with the most relevant features. The DOE 

also developed 15 benchmark buildings including a superstore with 4180 m
2
 total area 

(Deru et al, 2011b). 

EnergyPlus was extensively used in a project with the aim of designing a supermarket 50% 

more efficient than a base case supermarket (Leach et al, 2009; Deru et al, 2011a). This 

project also included a follow up study on why the building’s performance did not meet 
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expectations (Deru et al, 2013). This superstore (4180 m
2
 total area, sales area 

approximately 3400 m
2
) was situated in Raleigh, North Carolina, USA. In their studies the 

project teams considered energy improvement measures relating to lighting technology, 

fenestration, building envelope, air conditioning equipment and energy generation. This 

necessitated EnergyPlus to be expanded to investigate all the options so that, in the end, 

over 75000 EnergyPlus models (Leach et al, 2009, p. iii) were constructed. This work 

suggested that 50% energy reductions could be achieved in a cost effective manner. For the 

case study an     of 662 kWh/m
2
/pa was predicted (Deru et al, 2013), which is about 20% 

below the expected value according to the model in Tassou et al (2011). The follow up 

study for this supermarket (Deru et al, 2013) showed that, due to operational issues (e.g. 

the set points were not fully implemented or some overrides were not reset), the predicted 

energy savings were not fully realised. 

Hill et al (2014) also used an EnergyPlus model to continue their argument for the 

inclusion of process related energy consumption in the NCM mentioned in the previous 

section. For this they concentrated on modelling the sales area of a supermarket with an 

approximate total building footprint of 3600 m
2
. The researchers compared their model 

with measured heating and electricity data and discovered that it explained only 43% of 

this measured data. In their sensitively analysis the researchers compared the model with 

the NCM and found that, for air change rate and U-values, these two methods showed 

dissimilar behaviour. The authors reconfirmed their conclusion from Hill and Levermore 

(2011) that following the NCM may result in suboptimal building design.  

2.4 Discussion and conclusions  

The overall conclusion of the surveyed literature is that for a warming climate the heating 

requirement decreases and the cooling demand increases. However, by how much and how 

this translates into changes in energy consumption is location and building design 

dependent. 

With the exception of Chung et al (2006), all the other research discussed above includes 

the dry-bulb temperature as an important, if not the only predictor in their models. For 

instance, the change point regression model by Ruch and Claridge (1992) achieved a good 

fit with the electricity consumption data by just using outside temperature. Also the PCA 
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by Lam et al (2010a), which originally considered five climate variables, incorporated the 

dry-bulb temperature in their final model with only two other variables. 

A small number of studies investigated the same area or building. One example is the 

research into office buildings in Hong Kong. Lam et al (2010a) used a PCA to predict a 

rise of 4.3% for the low forcing climate scenario and the time period 2009-2100. Wong et 

al (2010), on the other hand, employed the OTTV method to forecast an increase of 6.1%. 

Another example is the change point regression model for a supermarket in Texas. Schrock 

and Claridge (1989) suggested that the change point temperature was at 16.7°C based on a 

graphical method, whereas Ruch and Claridge (1992) found it to be at 15.6°C (     

method), and Ruch et al (1993) at 15.4°C (     method, different data inclusion criteria). 

This suggests that different research methods may lead to similar, but not identical results. 

Sources of uncertainty identified included not only climate change models (Cartalis et al, 

2001), but also problems during data collection. The latter was more explicitly explained in 

work relating to supermarkets and included holidays (Chen, 1991), data from a bad 

temperature sensor (Ruch and Claridge, 1992) and operational issues (Schrock and 

Claridge, 1989). One can expect to encounter similar problems during this research. 

Therefore a good understanding of climate model uncertainties will be advantageous in 

putting the research findings in context. Some of these uncertainties will be covered in 

Chapter 3 of this thesis. Issues related to data collection will be reported in Chapter 1. 

A final point of interest is the error estimating coefficient         . Lam et al (2010a) 

found that for their heating load model the        ) was approximately five times the 

       ) for the cooling load model and ranged from 11.5% to 32.6%. Lam et al (2010c) 

reported a similarly large        ) of between 9.2% and 23.5% for their electricity 

demand model. These values may well indicate that the models used perform rather poorly 

outside the researchers’ data set. 

The literature summarized above showed that the majority of the buildings already 

investigated for the impact of climate change on energy usage were office and residential 

buildings. Additionally, the literature on energy use analysis in supermarkets referred to 

throughout this chapter uses various tools to capture the effect of the refrigeration systems 

in supermarkets, but not the study of the impact of climate change on buildings. Therefore 
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the investigation here addresses this research gap by exploring how a change in climate 

may alter the energy demand in supermarkets throughout the UK. 
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3 Introduction to climate change prediction 

As a precursor to quantifying the effect of climate change later, this chapter develops the 

reasoning behind selecting the UKCP09 projections and will particularity highlight sources 

of uncertainty. To accomplish this, the chapter starts by introducing some aspects of the 

earth’s climate system which are then used to illustrate the uncertainties within the 

approach chosen by the UKCP09 team. 

In order to understand the main thrust of this development it is advantageous to define the 

meaning of ‘uncertainty’. According to ISO/IEC (2008) this expression refers to a 

parameter which “characterizes the dispersion of the values that could reasonably be 

attributed to” the quantity of interest. It is therefore not synonymous with the term 

‘accuracy’ which denotes the closeness of measurements to the true value. This leads to the 

counterintuitive conclusion that a result could be certain, because the spread of 

measurements approaches zero, but not accurate, i.e. not close to the true value. 

3.1 Climate system 

The earth’s climate system is a very complex collection of interactive systems exhibiting 

non-linear, erratic behaviour (IPCC, 2007, p 942). It is driven by solar radiation and can be 

divided into the five parts: atmosphere, hydrosphere, cryosphere, biosphere and geosphere 

(Baede et al, 2001, p 87). This section concentrates on only a few processes in the 

atmosphere, with the aim of showing the complexity and interconnectedness of the climate 

system. 

As shown in Figure 3.1 the atmosphere can be divided into various layers. The lowest part 

(troposphere) stretches up to about 10 km and contains about 80% of the mass of the 

atmosphere. Here is also where the majority of weather phenomena occur. The layer above, 

the stratosphere, extends to approximately 50 km above the earth’s surface and contains 

the ozone layer in its upper part (Baede et al, 2001, p 88). The mesosphere and 

thermosphere form the two outer layers of the atmosphere (Neelin, 2011, p 51; The Open 

University, 2002, p 17). 

An area at the top of the atmosphere perpendicular to the solar radiation receives 

approximately 1366 W/m
2
 from the 3.87 × 10

26
 W of radiation the sun emits. Since the 
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earth is roughly spherical and rotates, this instantaneous solar flux is averaged to 

341.5 W/m
2
 at the surface of the earth. The incoming radiation has a peak in the visible 

spectrum and a long tail in the infrared (IR) region. As it travels through the atmosphere it 

is partly reflected and absorbed and partly transmitted to the earth’s surface. Absorption 

can occur in the upper stratosphere where ozone filters out ultraviolet radiation. Lower 

down in the atmosphere the long wave energy is mainly absorbed by clouds, water vapour 

and small particles (called ‘aerosols’) causing the atmosphere to warm up. The remaining 

part of the radiation together with some of the IR radiation from this atmosphere heats up 

the surface of the earth. This thermal energy is subsequently released by either long wave 

radiation or by the sensible or latent heat exchange necessary for the water cycle (Neelin, 

2011, pp 44, 45). A basic energy consideration (if the heat flux from earth’s core is 

neglected as it is comparably small (Davies and Davies, 2010)), as illustrated in Figure 3.1, 

leads to the conclusion that, in order for the average temperature on the earth to stay the 

same, the same amount of energy has to be released by the atmosphere as enters it. 

 
Figure 3.1: A sketch of some parts of the global climate system 

The part of the water cycle which involves the atmosphere is of particular interest for the 

discussion here. The atmosphere is a mixture of gases, water vapour and aerosols. As 

mentioned in the previous paragraph the solar radiation, which reaches the earth’s surface, 

both evaporates water and heats up the air close to the surface. The buoyancy effect causes 

this air-vapour mixture to rise. As it rises it expands and cools. This allows the small solid 
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particles in the atmosphere to transform this supersaturated air into clouds. If the droplets 

around these aerosols become too heavy, the clouds start to turn into precipitation. Clouds 

can be classified as low clouds, where the cloud base is below approximately 2000 m, 

medium clouds (cloud base above 2000 m, but below 6100 m) and high clouds (cloud base 

above 6100 m). Some clouds can rise as high as 12000 m, i.e. can reach the lower 

stratosphere (Met Office, 2006, p 2). Convective clouds have a typical horizontal 

expansion of up to approximately 1km and can have a height of 10km (Neelin, 2011, p 37). 

Convective motions create an irregularly shaped top. Winds move clouds to other areas 

where they can turn into precipitation (The Open University, 2002, pp 88-93; IPCC, 2013, 

p 576). Clouds influence the climate system in a number of ways. For example they alter 

radiative fluxes both in the atmosphere and on the ground. They also transport heat and 

moisture horizontally over large distances (Jakob and Miller, 2003). 

Boucher et al (2013, pp 593, 594) summarize the current understanding of how clouds 

affect the climate and climate change. They first list effects on the current climate as 

warming the atmosphere when clouds are formed, reflecting both long and short wave 

radiation and causing up-draughts in clouds. Then they divide clouds into high-altitude and 

low-altitude clouds. Next, the dual effect of high clouds is explained as preventing sunlight 

from entering the climate system. At the same time they prevent infrared radiation from 

escaping into outer space with the result that changes in the amount of high clouds may 

have only a small overall effect on the surface temperature. On the other hand, the authors 

conclude that low clouds have a net cooling effect because they reflect more solar radiation 

back than they trap in IR radiation. Their overall conclusion is that based on available 

evidence: The net effect of the cloud feedback is likely to increase the effect of global 

warming. However, the magnitude of this is still uncertain. 

The carbon cycle cannot be omitted when climate change is discussed. This cycle consists 

of the flux exchanges between the atmosphere, hydrosphere, biosphere and lithosphere. 

Within this cycle there are sub-cycles such as the growth and decay of plants. While 

growing, plants store some carbon in their structure which is released when they die off. 

The annual characteristic oscillation relating to a this cycle is evident in the CO2 data 

(NOAA/ESRL, 2014) in Figure 3.2. Unlike the energy budget referred to earlier, there is 

no external source of carbon, so the total amount of carbon on the earth remains constant. 

Also the natural fluxes between carbon reservoirs are in balance when considering a long 
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enough time span. In addition to the annual oscillation, Figure 3.2 also shows an upward 

trend for the CO2 concentration in the atmosphere. This has been traced back to the 

perturbation of the natural cycle due to human activities (Denman et al, 2007, pp 511-517; 

Warr and Smith, 1993, pp 79-82). 

 
Figure 3.2: CO2 concentration as measured on Mount Mauna Loa (based on NOAA/ESRL (2014)) 

The terrestrial atmosphere is made up almost entirely of N2 and O2 with CO2 being only a 

trace gas. Nevertheless, this gas is very important, because it is involved in the greenhouse 

effect and, therefore, is also known as a greenhouse gas (GHG). The greenhouse effect, 

also illustrated in Figure 3.1, is the warming effect of all infrared absorbing parts of the 

atmosphere (IPCC, 2013, p 1455). Without this greenhouse effect, the earth would be too 

cold to live on, but if the greenhouse effect is too strong, the earth’s temperature can rise 

uncomfortably high (compare, for instance, the runaway greenhouse effect on Venus 

(Trenberth et al, 1995, pp 57-59)). 

As a final aspect of the climate system the El Niño/Southern Oscillation (ENSO) 

phenomenon is discussed here to illustrate natural climate variability and the development 

of understanding of how it affects the climate system. Although ENSO refers now to basin-

wide warming of the eastern part of the tropical Pacific Ocean, originally the term El Niño 

just referred to the warm current off the Peruvian coast around Christmas. This 
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phenomenon was known some time before the 20
th

 century. From the beginning of the 20
th

 

century to the 1980s, researchers discovered irregular oscillation of atmospheric surface 

pressure in the Pacific Ocean with a time scale of between two and seven years. It was 

debated whether this atmospheric phenomenon was related to the oceanic El Niño. Even 

after a coupled model was developed to predict the ENSO, this was still disputed, because 

the interaction was not fully understood. Only after further research a better, more complex 

ocean-atmospheric model could be developed with the result that now national weather 

services can routinely use ENSO events in their forecasts. These research findings showed 

the periodic atmosphere-ocean interaction included a warming phase during which the 

prevailing winds weaken, thus colder deep ocean water is prevented from upwelling with 

the effect of an increase in the sea surface temperature (Marshall and Plumb, 2008, p 266; 

Neelin, 2011, pp 14- 23; IPCC, 2007, p 945). 

3.2 Climate predictions and their uncertainty 

The main steps necessary to derive usable climate predications are described in this section. 

These steps along with some of the major associated uncertainties (both in the sense of the 

word defined earlier and with the meaning of ‘lack of knowledge’) are illustrated in Figure 

3.3 (Eames et al, 2012; Eum et al, 2012; Rowell, 2006) and will also be discussed along 

with each process step. 

 
Figure 3.3: Process of generating climate prediction data and some associated uncertainties 

3.2.1 Emissions 

In addition to CO2, which was introduced as a GHG in Section 3.1, other gases and 

aerosols can contribute to the greenhouse effect. Hence, to obtain usable climate change 
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data, the emission of GHGs and subsequent radiative forcing
3
 was forecasted. The IPCC 

has expended considerable effort on this task, but is still forced to acknowledge that 

predicting “future anthropogenic GHG emission is impossible” and therefore has 

developed 40 scenarios to capture the uncertainty of a large number of known factors 

inherent in very complex, opaque dynamic systems (Nakicenovic et al, 2000, p 23). This 

section briefly outlines this work to illustrate the level of uncertainties this project had to 

deal with. 

The process of arriving at emission scenarios started with reviewing literature on existing 

scenarios and their analysis. This was followed by constructing ‘storylines’ of credible, 

alternative future developments up to the year 2100. The next step was to quantify the 

emissions arising from these different development paths. The results were then reviewed, 

not only by the team members themselves, but also by a wider audience (Nakicenovic et al, 

2000, p 25). 

 
Figure 3.4: IPCC illustrative emission scenarios (based on Table II.1.1 in IPCC (2001, p 801)) 

The main drivers considered to formulate these four storylines were such diverse and 

difficult to predict factors as demographic predictions, economic and social development, 

                                                 

3  “Radiative forcing is the change in the net, downward minus upward, radiative flux (expressed in W/m2) at the 

tropopause or top of atmosphere due to a change in an external driver of climate change” (IPCC, 2013, p 1460). 
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energy use and technology, agriculture and climate policies. The four storylines, which 

were coded A1, A2, B1 and B2, have the following main characteristics (Nakicenovic et al, 

2000, pp 28, 104): 

A1: Very rapid economic growth and global integration, rapid introduction of new, 

more efficient technology, low population growth 

A2: Very heterogeneous world where self-reliance and local identity are highly 

valued, population growth dependent on location 

B1: Rapid change to a global service and information economy, low population 

growth 

B2: Emphasis on local solutions to economic, social and environmental problems, 

moderate population growth 

 
Figure 3.5: CO2 radiative forcing (W/m2) (based on Table II.3.1 in IPCC (2001, p 817)) 

These developments were then quantified in terms of GHG and sulphur emissions, which 

lead to significantly different emission scenarios. Although Nakicenovic et al (2000, p 46) 

emphasise that there is no single central or more probable scenario, they suggest the six 

illustrative scenarios which are shown in Figure 3.4. These scenarios are predicted to lead 

to radiative forcing as plotted in Figure 3.5. Comparing these two figures shows that, 

despite a significant spread in the emission scenarios (e.g. the emission of scenario A1FI is 
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twice the amount of B1 or B2 in 2050), the resulting radiative forcings are much closer 

together (the radiative forcing of A1FI is only approximately 30% higher than B2 in 2050). 

This suggests that the uncertainties associated with emission scenarios are significant, but 

their effect may be suppressed by the climate system, especially for near-term warming 

(Stocker et al, 2013, p 85). 

For the sake of completeness, it should be mentioned that the approach of using emission 

scenarios was found impractical because of the differences in model requirements and 

Representative Concentration Pathway (RCP) scenarios were developed in their place. 

This approach starts with specifying the radiative forcing as a function of time and then 

works backwards to establish data sets usable for climate models (IPCC, 2013, pp 147-

150). The implication of this approach is that it is less clear how these different RCPs 

relate to the real world. 

3.2.2 Climate models 

The global climate system is modelled by dividing the atmosphere and the ocean into 

smaller sections (except for in very simple models) and representing their internal 

processes and interactions with mathematical equations. These models can be classified 

according to their level of detail. The simple climate models (SCMs), for instance, consider 

only the ocean and atmosphere separately or split them into two hemispherical expansions 

to employ an energy balance approach to predicting the surface temperature (Meehl et al, 

2007, p 797). The earth system models of intermediate complexity (EMIC) are a more 

involved class of models and consider processes in the atmosphere, ocean, sea ice, land 

surface, biosphere etc and their interaction at a relatively low resolution or in a simple, 

idealistic way. They have been extensively used for the IPCC’s third assessment report 

(Randall et al, 2013, p 644-647). The next level of complexity contains the coupled 

atmosphere-ocean general circulation models (AOGCM), which provided most of the 

modelling power for the forth IPCC assessment report, and model the dynamics of the 

physical components at a finer scale than EMICs (Flato et al, 2013, p 746). Earth system 

models (ESM) are considered state-of-the-art and incorporate not only the physical 

interactions in the climate system, but also biogeochemical processes which interact with 

physical climate processes (Flato et al, 2013, p 746; Flato, 2011). 
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3.2.2.1 Model fundamentals 

The purpose of this section is not to give a comprehensive introduction to climate models, 

but to discuss some aspects of the modelling approach in order to appreciate their 

limitations and uncertainties. Hence, it will briefly explain the fundamental idea behind 

climate models before it discusses parameterisation, one of the main sources of modelling 

uncertainty (Meehl et al, 2007, p 805). 

The more complex models divide the atmosphere and the ocean into grid cells, for instance 

using the coordinates of latitude, longitude and height (or pressure for the atmospheric 

model) as illustrated in Figure 3.6 (Neelin, 2011, pp 146, 147; Flato et al, 2013, p 749). 

Each cell may be 200 km long or wide or even larger (Murphy et al, 2009, p 30; Neelin, 

2011, p 150). The number of grid cells depends to a large degree on the available 

computing power (Randall et al, 2013, p 601). Each cell has one value for each variable 

associated with it (e.g. average temperature of cell). The arrows in Figure 3.6 indicate the 

flow of, for instance, mass into and out of a particular cell. The magnitudes of these flows 

are calculated by considering the balance of forces, fluxes etc acting on each grid cell. This 

allows the computing of new values for each cell for the next time step (Neelin, 2011, pp 

146, 147). 

1

 
Figure 3.6: Example of climate model grids 
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Features smaller than the grid size, e.g. cumulus clouds, cannot be dynamically modelled 

and have to be approximated by parameterisation. The difference in parameterisation 

schemes and values are an important reason why different climate models yield different 

results (Randall et al, 2013, p 602). One example of parameterisation is subgrid-scale 

clouds. In early general circulation models, clouds were not explicitly considered at all, 

only precipitation was. The first scheme which included clouds considered the generation 

of clouds as a function of relative humidity in the grid cell and a convection parameter. 

The threshold for the relative humidity, above which cloud cover was assumed, was 

usually 80% and the cloud cover was calculated to rise as the relative humidity increased. 

The current parameterisation scheme is fully prognostic, that is to say that it has the form 

         , which translates to                  in a computer programme (Jakob and Miller, 

2003; Tiedtke, 1993). 

Parameterisation schemes in themselves are uncertain (Murphy et al, 2009, p 31). To 

illustrate this, the threshold value in the diagnostic cloud scheme mentioned above can be 

considered. If the relative humidity threshold value was lowered, clouds would appear 

earlier, which, in turn, would have a knock on effect on other parts of the model. In order 

to explore how much an individual parameter influences a particular model, a so-called 

perturbed physics experiment can be conducted during which the parameter is varied 

within meaningful limits (Meehl et al, 2007, p 805). Another approach is to run models 

from different modelling groups under the same initial assumptions and explore the inter-

model uncertainties (or a combination of both methods) (Flato et al, 2013, pp 754, 755). In 

this way the certainty of a result can be increased, but not necessarily its accuracy (The 

terms ‘certainty’ and ‘accuracy’ should be understood according to ISO/IEC (2008)). 

In addition to parameterisation there are other significant uncertainties linked with climate 

models ranging from a lack of understanding, exemplified by the history of the debate 

about the ENSO during much of the 20
th

 century, and subsequent imperfect capture based 

on a faulty understanding, to computational costs, i.e. the grid has to have a certain 

minimum resolution to produce cost effective results. Some sources of uncertainty, for 

instance, phenomena relating to natural climate variability, may have been deliberately 

excluded, such as changes in solar radiation, knowing that they will affect the climate 

system to some degree. Others may be unpredictable, for example the eruption of a 

volcano (Flato et al, 2013, pp 809, 810; Murphy et al, 2009, pp 25-36). 
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3.2.3 Downscaling 

As large scale models may not be able to represent the local climate adequately, 

downscaling methods need to be applied to assess the smaller scale impact of climate 

change. One method is to use regional climate models (RCMs) or another approach, often 

used in conjunction with them, is statistical downscaling. An RCM is a high resolution 

(typically 25 km) climate model which is nested within a coarser general circulation model 

(GCM) so that that this lower resolution model provides the boundary conditions for the 

RCM (see Figure 3.6). Statistical downscaling may use the results of an RCM (or other 

large scale data) and local weather (or climate) observations to establish statistical 

relationships (Christensen et al, 2007, pp 918-920; Flato et al, 2013, pp 813, 814). 

Also the application of these downscaling methods introduces uncertainties and errors. For 

instance, the problems associated with an RCM are similar to those of a lower resolution 

model discussed in Section 3.2.2.1. However, as the grid size of an RCM is smaller, more 

processes can be resolved and fewer need to be parameterised. On the other hand, as the 

RCM is driven by a large scale model, the uncertainties associated with this model cascade 

into the RCM. Additionally, as simulation time progresses, the two models may become 

more and more decoupled, possibly leading to inconsistencies. Uncertainties associated 

with statistical downscaling may stem, for instance, from the need for sufficient 

observational data at the required scale, which may introduce sampling errors (Flato et al, 

2013, p 815; Christensen et al, 2007, pp 918, 919).  

3.3 UKCP09 and its application 

The set of predictions published by the Department of Environment, Food and Rural 

Affairs in 2009 and abbreviated as UKCP09 (Street et al, 2009), is one of 16 different 

RCMs forecasting the climate change on a European scale (van der Linden and Mitchell, 

2009). As the release date suggests, these predictions are not based on the latest modelling 

advances, which are described in IPCC (2013), but on the emission scenarios discussed in 

Section 3.2.1. The UKCP09 climate predictions are used to further illustrate some of the 

principles introduced in the previous sections. 

Out of the six illustrative emission scenarios shown in Figure 3.4, above, three were 

chosen for UKCP09: A1F1, A1B and B1. As can be seen, A1F1 and B1 are the maximum 

and minimum graphs whereas the A1B trace follows an intermediate emission scenario. 
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Hence, they are usually referred to as high (A1F1), medium (A1B) and low (B1) emissions 

in UKCP09 literature (Murphy et al, 2009, pp 41, 42; Street et al, 2009). Murphy et al 

(2009, pp 41, 42) explain that there are essentially two sources of uncertainty attached to 

the use of these scenarios. The first is that there can be no likelihood given as to which is 

the most likely scenario. Furthermore the authors point out that these scenarios are based 

on assumptions which in themselves are uncertain. Therefore the authors suggest that 

UKCP09 users have to decide for themselves what the most appropriate scenario is (or 

scenarios are) for their application. 

UKCP09 is based on the AOGCM called HadCM3 developed by the Met Office Hadley 

Centre (Murphy et al, 2009, p 31). The atmospheric component uses a 2.5° latitude by 3.75° 

longitude horizontal gird with 19 vertical layers and a 30-min time step (Pope et al, 2000; 

Gordon et al, 2000). This means that the base side area of four of these surface gird boxes 

is larger than the total area of the UK. The oceanic component uses a finer horizontal 

resolution of a 1.25° times 1.25° and twenty layers (Gordon et al, 2000). The coupling of 

these two models occurs once for every day simulated. The whole model is comprised of 

approximately a million gird points and contains 100 or more parameters. Because of the 

large number of experiments to be run on this model, it was simplified to a ‘slab model’ by 

just representing the top 50 m of the ocean as one layer. This model was called HadSM3 

(Murphy et al, 2009, pp 30, 52). 

Murphy et al (2009) described how two types of model uncertainties were quantified. To 

efficiently quantify the first source of uncertainty stemming from the parameterisation, the 

most important processes within the climate model were identified. These 31 key 

parameters (and their associated maximum, medium and minimum values where necessary) 

were then utilized in a perturbed physics experiment. This created 280 simulation runs 

which were then used as inputs to an emulator. This statistical tool allowed integration 

over the whole parameter space (Murphy et al, 2009, pp 50-53). The second type of 

uncertainty, the structural error of the model, was quantified by predicting the simulation 

outcome of twelve models from different modelling centres, which are partly based on 

different assumptions (Murphy et al, 2009, p39). Generally speaking the parameter 

uncertainty is the biggest single contribution to the total uncertainty, but the structural 

uncertainties are also significant so that all model uncertainties constitute up to three 

quarters of all the uncertainties (Murphy et al, 2009, p 153). 
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Natural internal variability also introduces some, albeit smaller, uncertainties in forecasting 

future climates and includes phenomena such as storms and interaction between the ocean 

and atmosphere (e.g. ENSO). An attempt was made to quantify these sources of 

uncertainty by combining multiple model runs with different, random initial stages 

(Murphy et al, 2009, p 153). Some natural external variability, however, such as volcanic 

eruptions are unpredictable with current scientific knowledge and therefore no attempt was 

made to include these in the models for UKCP09 (Murphy et al, 2009, p 28). 

The results from the coarse GCM were downscaled dynamically for different scales 

including a 25 km grid for seven overlapping 30-year periods between 2010 and 2100 

(Murphy et al, 2009, pp 15-19). This process established a statistical relationship between 

RCM simulations and the large scale model so that only the GCM was needed to create 

small scale climate predictions rather than new simulation runs by an RCM. The climate 

variables thus predicted were mean daily temperature (and derived variables such as mean 

daily maximum/minimum temperatures), precipitation (and wettest day), relative and 

specific humidity, total cloud cover, mean sea level pressure and various radiative fluxes 

(Jenkins et al, 2009, pp 19, 20). The uncertainties introduced during this stage vary from 

climate variable to climate variable, but are generally considerably smaller than model 

uncertainties from the driving GCM (Murphy et al, 2009, pp 73-78; Rowell, 2006). 

 
Figure 3.7: Predicted mean annual temperature for Glasgow (cell ID: 764) for the 2030s 
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The UKCP09 predictions do not give a single forecast value, but pass on the results of their 

work on uncertainties by providing probabilistic forecasts. One way of expressing this is 

by a cumulative distribution function which shows what the likelihood is that a value is 

below a certain point (Murphy et al, 2009). Figure 3.7 displays the annual averages of 

daily mean temperature for the high, medium and low emission scenarios for the time 

period from 2020 to 2049 for the UKCP09 grid cell ID: 764 (Glasgow). In this figure the 

lower, dashed horizontal line refers to the 10% likelihood that the future value will be 

below this line. Similarly ‘50%’ denotes the central estimate and ‘90%’ indicates a 90% 

likelihood for the temperature to stay below this value. The same figure also shows that the 

results for emission scenarios differ only slightly compared with difference between, for 

instance, the 10% and 90% values. 

In order to use building simulation software to assess how climate change will impact 

buildings and their occupants, hourly data is needed for a specific set of climate variables. 

Two different approaches have been considered based on the UKCP09 data: data morphing 

and using the UKCP09 weather generator (WG). The first approach transforms the existing 

data from 14 different sites around the UK by shifting and/or stretching them (Hacker et al, 

2009, p 22) to incorporate the climate change signal. The WG used for the second method 

is based on a statistical rainfall model and generates data for daily mean temperature, 

diurnal mean temperature range, vapour pressure, sunshine duration and potential 

evapotranspiration (Jones et al, 2010, p 8). This set of climate variables had to be 

complemented by wind speed and direction, air pressure and cloud cover. The main 

advantage of the second approach is that data can be generated for any location whereas 

morphing requires pre-existing data. (Eames et al, 2011). Mylona (2012) summarized and 

compared four research projects which had converted the output of the UKCP09 WG into 

usable TRY for building energy simulation and design summer years (DSY) for design 

considerations. The author found that, although these projects use the same data source, 

they produce “a wide variety of future TRYs and DSYs”. Therefore the suggestion was 

made to conduct further research to quantify the spread of results when using these 

different TRYs and DSYs in different building software packages. 

3.4 Discussion and conclusions 

This chapter provided an outline of how future climate predictions are derived and what 

some of their uncertainties are. The complexity of the climate system makes the modelling 
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of it an extremely difficult task. Each model component introduces simplifications and 

uncertainties, which have to be born in mind when using model predictions. Efforts have 

been made to quantify sources of known uncertainties and it has been found that the 

parameterisation of GCMs is probably the biggest single contributor to uncertainties. In 

addition, there are also unknown uncertainties so Hall (2007) argues that the total amount 

of uncertainty will always be underestimated. On the other hand, it is worthwhile to 

include the comments by Murphy et al (2009, p 43), who say in their description of the 

UKCP09 project: 

Although it is important that prospective users understand the limitations and caveats, it is 

also worth emphasising that (a) current models are capable of simulating many aspects of 

global and regional climate with considerable skill […] ; and (b) they do capture, albeit 

imperfectly, all the major physical and biogeochemical processes known to be likely to 

exert a significant influence on global and regional climate over the next 100 yr or so. 

In addition to modelling uncertainties, users are also interested in the accuracy of forecasts. 

This answer is difficult to provide because accuracy, as explained in the introduction to 

this chapter, is the difference between the true and measured (or, here, predicted) values. 

However, in prediction the true value is unknown and even measuring a value introduces 

uncertainties. Some researchers use the method of ‘hindcasting’ or retrospective 

forecasting. For instance, Reichler and Kim (2008) calculated a single index to quantify the 

goodness of a climate model. Their results showed that the HadCM3 belonged to the best 

models. However, it should be pointed out that data which helped ‘tune’ the model cannot 

be used to evaluate its accuracy (Flato et al, 2013, p 750) and, from the article by Reichler 

and Kim (2008), it is not clear if there was an overlap. Also the inability to reproduce the 

current slowdown in global temperature increase by almost all climate models used for the 

fifth IPCC assessment report highlights the limitations of climate models in terms of 

accuracy (Stocker et al, 2013, pp 61-63). 

The above shows that it is very unlikely that a truly accurate and certain prediction of 

future emissions exits. Therefore the UKCP09 predictions were considered the best data 

for the purpose of this research because (a) the quality of the Handley Centre models is at 

least comparable to other models, (b) the data is relevant to the climate area of interest, (c) 

the process of how the data and their associated uncertainty estimates were generated is 

transparent, and (d) it is readily available. 
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The figures based on UKCP09 for the 2030s (e.g. Figure 3.7) period show little difference 

between the results for the three emission scenarios. This is consistent with the graphs for 

radiative forcing (for instance Figure 3.7), which showed only a moderate spread for the 

near term despite a larger range of emission scenarios. Taking this into consideration and 

the fact that the current trend of emissions follows the middle scenario quite closely 

(Stocker et al, 2013, p 64), it was decided to use just the medium emissions scenario set of 

predicted climate variables in further chapters. 
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4 Overview of energy analysis and simulation tools and their 

application 

Chapter 2 mentioned a few energy analysis tools, but did not discuss their advantages and 

disadvantages. Therefore this chapter gives an overview of the more popular ones, 

including their pros and cons, and also offers some remarks about the more recent 

developments (see also Appendix B – Summary table of analysis tools). In addition, this 

chapter also includes a more in depth discussion of regression analysis tools and the 

conceptual idea behind software simulation packages based on the heat balance equation. 

This summary will be useful for the method selection process detailed in Section 5.4. 

One way to classify these tools is illustrated by the Building Energy Software Tool 

Directory maintained by the US Department of Energy, which holds information of over 

400 energy related building software tools and divides them into three categories based on 

their application (Building Technologies Office, 2014). It is also possible to divide energy 

analysis techniques into steady state and dynamic tools (Krarti, 2011, p 4-1). Other 

terminology was used by Foucquier et al (2013) who divided these techniques into white 

box (or physical models), black box (statistical methods) and grey box approaches (i.e. a 

combination of white and black box tools). Here the terms data-driven (ASHRAE, 2013) 

and deterministic (Wang et al, 2012) are used to classify these tools. 

 
Figure 4.1: Comparing data-driven and deterministic approaches 

As Figure 4.1 indicates, the main difference between these two approaches is that data-

driven tools require both energy consumption and predictor data as inputs to calculate 

coefficients of a mathematical model. In other words, the information flow is towards the 
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model. Only afterwards can it be used for consumption prediction and similar tasks. A 

deterministic approach, on the other hand, requires a physical description of the building 

(this may be only one or two coefficients as in the case of the degree day method, which 

will be discussed later), its use and/or weather data to determine the energy use in a 

building as its output. Here the flow of information is towards the energy consumption. 

This difference also defines the application area. The data-driven tools are more geared 

towards energy use analysis for existing structures, whereas the deterministic approach is 

frequently used as a design tool. 

4.1 Some data-driven analysis tools 

Probably the simplest form of data-driven analysis tool is the ratio based normalized 

performance indicator. An example of this tool is the     for which the energy 

consumption is divided by the floor area (Wang et al, 2012) or space volume (Krarti, 2011, 

p 4-3) of a building. Such an indicator is frequently used for pre-audit analysis or for 

benchmarking (Beggs, 2002, pp 56-61). Although the indicator itself is easy to calculate, 

the interpretation of it may require a large database to determine the relative performance 

of a particular building against similar buildings (Krarti, 2011, p 4-2). An additional 

drawback is that it can include only a very limited number of influencing factors (Wang, 

2015). In the example given above, no weather data is considered, limiting this approach to 

buildings in a similar climate zone (Chung, 2011). 

A slightly more sophisticated tool is a plot in which the energy consumption data is plotted 

against a time axis. In addition to a cyclic (e.g. seasonal) pattern, such a graph may also 

allow the identification of the base load or a general time dependent trend. However, this 

tool may prove to be insufficient if there are important, time independent relationships as 

these may be difficult to recognize (Beggs, 2002, pp 61-63). 

4.2 Regression analysis 

A simple regression model in the form         overcomes the problem mentioned in 

the previous paragraph by exploring the possibility of a relationship between one response 

variable and a predictor variable. As such it requires the presence of (accurate) data. As the 

regression model equation shows, a large variety of independent variables is acceptable, 

such as heating degree days or production units in a factory. When using this tool it should 

be born in mind that any suggested relationship (or lack of it) should be substantiated by 
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other means to avoid erroneous conclusions regarding relationships (Beggs, 2002, pp 63-

67). The change point regression analysis can be considered as an extension to the simple 

regression analysis as it uses only one independent variable, but can deal with nonlinearity 

(Krarti, 2011, pp 16-6 - 16-10). If more than one predictor needs to be incorporated, the 

MLR may be considered. 

Simple, change point and multiple regression analysis have been widely accepted in 

correlating energy data to weather data and other influencing variables (Wang et al, 2012). 

The popularity of this method may be credited to the availability of tools, including visual 

tools, and easy interpretation of variables (Tso and Yau, 2007; Katipamula et al, 1998). 

Zhao and Magoulès (2012) mention research relating energy usage to one or more weather 

variables first in their list of applications indicating the popularity of this tool for this type 

of research. As a later chapter will show, this is also the application for regression analysis 

in this research. 

4.2.1 Simple linear regression 

If a set of   measurements exists in which    represents the     response to the input   , 

then a simple linear regression model may be written as: 

                
Equation 4.1 

Where: 

   and   : Unknown model parameters 

  : The error term for the     measurement 

If    and    are estimates of the unknown model parameters    and    respectively, then 

an estimated linear regression equation can be expressed as in the equation below. 

             
Equation 4.2 

Where: 

   : Estimated value of the dependent variable for the     data point 
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A common way of estimating    and    is to use the ordinary least square method which 

minimizes the following expression. 

             
                      

   

Equation 4.3 

These two parameters can be found by differentiating               
  with respect to 

   and    and then setting these two equations to zero to find the minimum. After some 

manipulation this yields the following two expressions. 

           
Equation 4.4 

   
             

   
        

  
               

         
 

Equation 4.5 

Where: 

  : Arithmetic mean of all           

  : Arithmetic mean of all           

These two parameters, i.e.    and   , have their own confidence interval associated with 

them, because they are only estimates of the unknown parameters    and   . Montgomery 

et al (2006, pp 28-30) show how these confidence intervals can be calculated. 

The coefficient of determination,   , is frequently used to indicate how well the estimated 

equation fits the data set and is calculated as shown in Equation 4.6 (see also Figure 4.2). 

In this equation the numerator is referred to as the ‘sum of squares due to regression’ and 

the denominator as the ‘total sum of squares’. The sum of squares due to regression can be 

considered a measure for the deviation from the mean (that is to say from   ) which can be 

explained by the estimated equation; whereas the total sum of squares measures the 

deviation with respect to   . Hence, the coefficient of determination can be interpreted as 

the proportion of deviation from the mean explained by the estimated equation. 

(Montgomery et al, 2006, p 35; Anderson et al, 2004, pp 527-530).  

    
          

         
 

Equation 4.6 
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It should be noted that the coefficient of determination does not support any conclusion 

about a statistically significant relationship between the dependent and independent 

variables (Anderson et al, 2004, p 532). This can be established by two other statistics 

which are described in the section on multiple linear regression below. 

 
Figure 4.2: Example of a linear regression model 

4.2.1.1 Estimation and prediction with simple regression models 

Once a regression model has been derived, it may be used for prediction and/or estimations. 

In that way the expected value for the specific    may be calculated as    . However, this 

value does not provide any information about the precision of this estimate. Therefore     

should be accompanied by an estimate of the prediction interval. The method of calculating 

this interval for a simple regression model is shown in Equation 4.7 and indicated in Figure 

4.2 for 12°C. Therefore the overall result may be stated as          (Anderson et al, 2003, 

pp 555, 556). 

         
 
          

   
   

 

 
 

        

         
 

Equation 4.7 

Where: 

    : The value of the   distribution for the level of significance   
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4.2.2 Change point regression 

A simple regression equation may not be sufficient because of an abrupt change in the data. 

If this occurs, a change point model may be considered. Change point regression models 

with three parameters have been used to model the gas consumption in homes (Krarti, 

2011, p 16-6; ASHRAE, 2013, p 19.25) and models with four parameters to analyse 

supermarkets (Ruch and Claridge, 1992). ASHRAE (2013, p 19.25) explains that four-

parameter models are particularly suited for buildings with continuous heating and cooling, 

such as grocery stores. Julious (2001) suggests that in such a model the change point may 

be of primary importance, rather than the equation parameters. For a three-parameter 

model for heating, this may be the balance point temperature (defined in 4.5) when the 

consumption leaves the temperature independent region and becomes a function of the 

outside temperature (ASHRAE, 2013, p 19.23). 

Both three and four-parameter models are shown in Figure 4.3. This figure shows that for a 

three-parameter model one part is temperature independent and is described by a single 

parameter (in this case     ). For the section after the change point temperature     the line 

requires two parameters (i.e.    and   ). The four-regression model uses two straight line 

equations which join at the change point. 

 
Figure 4.3: Change point regression models 

In order to derive the parameters, the same least square approach explained in the previous 

section may be used. It should be noted that one of the unknowns derived for the model is 

the change point itself. Therefore the equation for the four-parameter model is as given in 

Equation 4.8. The coefficient of determination is calculated as described in Section 4.2.1. 
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Equation 4.8 

4.2.3 Multiple linear regression analysis 

Both simple and change point regression have only the capability of regressing against one 

independent variable. MLR analysis, which can also include a change point (Katipamula et 

al, 1998), overcomes this problem by permitting the incorporation of any number of 

predictors (Lam et al, 2010b; Wang et al, 2012) and is thus one example of MVA, which 

all seek to establish a relationship between a set of independent variables and one 

dependent variables. Another example of MVA tools is the PCA. One drawback of both 

tools is that they require some statistical training for proper use (Pedersen, 2007; Wang et 

al, 2012). In addition, the same limitation of the simple regression with regards to only 

suggesting relationships and not establishing cause and effect needs to be kept in mind 

when interpreting results (Tso and Yau, 2007). 

A general MLR model is shown below, which relates   independent variables (or 

predictors) to one dependent variable. These predictors may be different quantities (such as 

temperature and relative humidity), different powers of the same physical quantity (e.g. 

        etc) or interaction between physical quantities (for instance the product of 

temperature and relative humidity). 

                            
Equation 4.9 

Where: 

   …   : Unknown model parameters 

Just as with the simple regression, the least square method can be used to estimate the 

parameters    …    (Montgomery et al, 2006, pp 66-70). The coefficients are normally 

estimated by software packages such as Excel, IBM SPSS Statistics or R. These 

programmes also calculate the coefficient of determination (including an adjusted 

coefficient) and statistics for significance tests. 

Problems may arise when using multiple predictors that are related to each other. This 

phenomenon is called multicollinearity and is detected by pairwise calculating correlation 

coefficients,  . If the absolute value of   is higher than 0.7 then there is the potential 
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problem of multicollinearity. Highly correlated predictors in a model may lead to spurious 

results, such as a model parameter having the wrong sign or that a test for predictor 

significance may be difficult to interpret (Anderson et al, 2004, pp 607, 608). This problem 

may be overcome by using principle component analysis (ASHRAE, 2013, p 19.26). 

4.2.3.1 Significance tests 

As mentioned above, the coefficient of determination does not support any conclusion 

about a statistically significant relationship between the dependent and independent 

variables (Anderson et al, 2004, p 532). This is usually established by two statistics, which 

test for overall and individual parameter significance. These statistics are based on the 

following assumptions (Montgomery et al, 2006, p 122; Anderson et al, 2004, p 536): 

 The assumption of a linear relationship between the response and the predictor(s) is 

at least approximately valid. 

 The error terms    have a mean of zero. 

 The error terms    are normally and independently distributed. 

 The error terms    have a constant variance of   . 

The   test can be employed to establish overall statistical significance of all regression 

models if the residuals are normally distributed. If a model has   predictors, the   test 

examines the null hypothesis               by calculating the   test statistic as 

shown in Equation 4.10 (Anderson et al, 2004, pp 603-606). 

   

          
 

  

          

        
 

Equation 4.10 

In the case of a simple regression model Equation 4.10 simplifies to:  

   
          

 

          

      
 

Equation 4.11 

This value is then compared with the critical value    from the   distribution with   

degrees of freedom in the numerator and       degrees of freedom in the denominator 
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for a given level of significance  . If      then    is rejected and a statistically 

significant relationship is assumed
4
.    is tabulated for different levels of significance and 

degrees of freedom (see for instance Anderson et al (2004, pp 672-675)). It should be 

noted that this test does not establish a cause and effect relationship or support the 

conclusion of a linear relationship between the response and predictor(s). 

The so-called   test establishes the statistical significance of individual parameters. In the 

case of a simple regression this test yields the same result as the   test, because there is 

only one predictor variable. If there is more than one predictor, the   test statistics are 

calculated with Equation 4.12 (Anderson et al, 2004, pp 537-540). 

   
            

 
          

        

       

Equation 4.12 

The   statistic allows the examination of the null hypothesis          by using the   

distribution (also called student distribution). If         , then    is rejected and a 

significant relationship can be assumed
3
. Values of      as a function of the degrees of 

freedom and level of significance (i.e.  ) are tabulated (see for instance Anderson et al 

(2004, p 669)). 

Residual analysis is used to verify that the underlying assumptions mentioned earlier are 

met. For instance, an  -  scatter plot of the residuals against the predicted values may 

show whether the assumption of a linear relationship is reasonable. This plot can also show 

whether the variance is constant or not. A cumulative probability plot, on the other hand, 

may be used to verify normal distribution of the error terms. A plot against time (or sample 

number) can help identify autocorrelation, that is to say if error terms are somehow related 

to a time element (Montgomery et al, 2006, pp 123-134). This type of test can be useful to 

establish the validation of the selected predictor(s), because one frequent cause of 

autocorrelation is that an important repressor has been omitted (Montgomery et al, 2006, p 

475). 

                                                 

4
 This result can also be stated by using  -values. 
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4.2.3.2 Estimation and prediction with multiple linear regression models 

When making predictions based on a MLR model the expected value for, say,     is    . 

The associated prediction interval can be calculated with Equation 4.13 so that the result 

may again be stated as          (Montgomery et al, 2006, pp 76, 77, 99, 100). 

              
          

   
      

            

Equation 4.13 

Where: 

   
 : The transposed vector for which an estimate is to be made in the form [1      … 

    ] 

 : In addition to the data for the predictors this matrix includes a column of ones as 

its first column 

4.3 Further data-driven analysis tools 

Another tool applied to building energy analysis is the artificial neural networks (ANN) 

approach (Datta et al, 1997; Zhao and Magoulès, 2012). This technique tries to imitate the 

learning capacity of the brain and its ability to store knowledge (Grossberg, 1988; 

Kalogirou, 2000; Tso and Yau, 2007). Such a network consists of three types of 

interconnected layers as shown in Figure 4.4 (it should be noted that there may be more 

than one hidden layer). The output of a hidden layer node is calculated by summing the 

weighted inputs and multiplying this sum by the activation function   (ASHRAE, 1997, p 

30.24). Neural networks ‘learn’ from the relationship between input and output training 

data and adjust the weights of the summation to minimize the error terms. ANNs are 

capable of modelling non-linear processes and have been used for estimating the heating 

and cooling loads of buildings and for the prediction of air movement in various types of 

building (Kalogirou, 2000; Foucquier et al, 2013). They have also been combined with a 

genetic algorithm (which is a stochastic, heuristic optimisation procedure) to predict 

energy electricity use (Azadeh et al, 2007). The learning capabilities of these networks 

together with their fault tolerance are their advantages. To fully utilize these strong points 

though, the network needs to be properly configured and trained (Foucquier et al, 2013). 

That this is not always straightforward is apparent by the comment in 2013 ASHRAE 
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HANDBOOK FUNDAMENTALS, where it says that “choosing an optimal network’s 

configuration for a given problem remains an art” (ASHRAE, 2013, p 19.29). This 

estimate is at variance with the claim by Mavromatidis et al (2013) who state that this 

method “requires less expertise and effort compared to traditional modelling approaches”. 

 
Figure 4.4: Schematic of an ANN 

A more recent approach to predicting energy consumption is another neural network 

technique called ‘the support vector machine’ (SVM). This fairly complex prediction 

method treats nonlinearities highly effectively. However, according to Zhao and Magoulès 

(2012), SVMs are not easy to use. Nonetheless, it has been successfully applied to 

predicting energy use in buildings (Dong et al, 2005). 

4.4 Some tools using the deterministic approach 

Many, if not most, of the deterministic tools are based on the heat balance equation. One of 

these is the simplified building energy model (SBEM), which has been developed for the 

implementation of the EU directive relating to the energy performance of buildings (also 

known as ‘EPBD’) (European Commission, 2002). This method calculates the monthly or 

seasonal heating and cooling demand with the following equations (Wang et al, 2012; BSI, 

2008): 

 Demandheating = Heat loss of areaheating – Gain utilization factorheating × Heat 

gainheating 

 Demandcooling = Heat gaincooling – Gain utilization factorcooling × Heat loss of 

areacooling 
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The underlying assumptions of SBEM limit its accuracy. Furthermore, boundary 

conditions and input values need to be carefully specified in order to achieve reasonable 

results (Corrado et al, 2007). 

Another method, which may be considered a variation of the heat balance method, 

employs a thermal network. This network is the discretization of the building into 

temperature nodes which are connected by thermal resistors and capacitors. Figure 4.5 

shows a construction element model (e.g. of a wall) where the distributed thermal 

resistances and capacitance have been lumped into the three elements    ,      and      

(Underwood and Yik, 2004, pp 33, 34). A five resistor one capacitor model has been 

suggested in EN 13790:2008 (BSI, 2008) to simulate the dynamic performance of 

buildings. The thermal network method is a very flexible tool, but may require some effort 

to achieve its full potential (ASHRAE, 2013, p 19.7). 

 
Figure 4.5: The thermal network of a construction element 

In contrast to the thermal network, which combines heat flows, the computational fluid 

dynamics (CFD) method decomposes a zone into a three dimensional mesh with a large 

number of control volumes. This versatile tool can be used to study natural ventilation, 

help design HVAC systems or predict the dispersion of pollutants (Zhai, 2006). CFD has 

also been coupled with building simulation software (e.g. EnergyPlus) to improve the 

cooling and heating load prediction of such software while keeping computational burdens 

at a relatively modest level (Zhai et al, 2002). This is desirable because one of the 

drawbacks of this detailed approach is its high computational cost. Other disadvantages are 

the need to understand fluid dynamics to some degree and to have a good understanding of 

the software package used (Foucquier et al, 2013). 

4.5 Degree days 

A deterministic tool with a long history is the degree day method (Day, 2006, p 13). This 

steady state approach can be used to calculate the annual heating and cooling loads of 
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rooms or (small) buildings (Zhao and Magoulès, 2012) and has also been applied to a 

theoretical supermarket model (Ducoulombier et al, 2006). As this methodology can be 

employed to characterise the climate concisely (ASHRAE, 2013, p 19.16), it has also been 

used extensively in climate change impact studies (Li et al, 2012). One of the major 

attractions is its simplicity, therefore, even in the age of sophisticated simulation software 

packages, this method is still popular (Al-Homoud, 2001; Li et al, 2012). Another point in 

its favour is that its underlying concept is easily understood. A major drawback of the 

degree day method is that it relies on the validity of the steady state assumption (De Rosa 

et al, 2014). 

It could be argued that the degree day method makes use of a very simple thermal network 

made up of only one resistor. When calculating the heating demand this resistor takes into 

consideration all heating loss mechanisms and therefore is referred to as the total heat loss 

coefficient. Day (2006, p 6) explains that this coefficient is made up of fabric transmission 

losses and the air infiltration rate, and then states an equation (see also Equation 4.14) on 

page 25 to calculate this coefficient. 

                    

Equation 4.14 

Where: 

    : Total heat loss coefficient 

 : U-Value of building component 

 : Area of building component 

 : Air infiltration rate 

 : Volume of space under consideration 

The degree day method allows the estimation of the heating and cooling requirements 

based on the concept of the balance point temperature,     . For the heating demand in a 

building, this temperature is defined as (ASHRAE, 2013, p 19.16):  
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[The] value of the outdoor temperature [        ] at which, for the specified value of the 

interior temperature [       ], the total heat loss […  is equal to the heat gain from sun, 

occupants, lights, and so forth. 

Based on this definition the yearly heating requirements can be calculated as shown in 

Equation 4.15 ASHRAE (1997, p 30.17). 

       
    

     
           

      

     

 

Equation 4.15 

Where: 

         
                                 

      
   

     : Efficiency of heating system 

This integral is normally approximated with a sum of days when the average daily 

temperature is below the average balance point temperature, thus Equation 4.15 is 

approximated by Equation 4.16. In this equation the summation is also called ‘degree days’. 

         
 

    
 
      

       
          

           
           

 

Equation 4.16 

Where: 

          
                                     

      
   

      : Total heat loss constant 

       : Efficiency constant of heating system 

When the average balance point temperature is not known, ASHRAE (2013, p 19.17) 

suggests to assume 18.3°C as the balance point temperature which was also used in the 

first recorded application of degree days in the 1920s. In the UK, traditionally the 

temperature of 15.5°C is adopted. That these values are still being used despite changes in 
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building standards and internal gains may make them seem questionable and verification 

for individual cases may be advisable (Day, 2006, p 13). 

One of the limitations of Equation 4.16 is that the total heat loss and the efficiency of the 

heating system are represented by constants. If these assumptions are significantly violated, 

then the results will be unreliable. Another weakness is that the balance point temperature 

is considered stable. However, as ASHRAE (2013, p 19.17) shows, the balance point 

temperature changes with the internal load over a day. The internal gains may change also 

over the year, which may affect the balance point temperature in an unpredictable way. 

Furthermore it should be noted that the equation above is only for sensible heat load. 

Analogous to the heating degree days, a method for estimating the cooling requirements 

can be developed. Here the occupancy behaviour can have a significant impact on the total 

heat loss, because people may open windows with the effect of changing the heat loss 

factor substantially (ASHRAE, 1997, p 30.18). Therefore Al-Homoud (2001) suggests to 

use the degree day method only for heating calculations and preferably for skin-load 

dominated buildings as the degree day method does not consider internal loads rigorously. 

Various methods have been developed to mitigate the shortcomings of the degree day 

calculations. One of them is the bin method, which has a number of bins for outside 

temperature or time intervals. This allows different balance point temperatures, loss and 

efficiency coefficients to be applied to each bin separately. The required heating (or 

cooling) energy is then the sum of all the bins (ASHRAE, 2013, p 19.19). 

4.6 Computer simulation 

Computer building simulation programmes are another example of deterministic tools. 

Before the advent of both these and powerful computers, building designers had to rely on 

manual calculation methods and/or rules-of-thumb. This posed the risk of misspecification 

of equipment leading to frequent oversizing with associated poor energy efficiency (Hong 

et al, 2000). This situation changed slowly in the mid to late 20
th

 century with the 

development of increasingly sophisticated building simulation tools (Clarke, 2001, p 4; 

Hong et al, 2000). One of these software packages, EnergyPlus, has its roots in a 

programme written in the late 1960s for the US Post Office. Its successor, DOE-2, was 

eventually combined with another piece of simulation software (BLAST) sponsored by the 
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US government to form EnergyPlus (Crawley et al, 2001). As the documentation for this 

software package is detailed, it will be referred to throughout this section. 

The literature review above indicated that the particular strength of this approach includes 

the evaluation of building design options and energy saving measures. However, Coakley 

et al (2014) pointed out that, despite sophisticated computer programmes, the performance 

gap can be as large as 100%. Therefore such a software model has to be calibrated if it is to 

be used for energy predictions rather than for comparing design options. The authors 

described this as a lengthy, opaque process. 

As a preparatory step to simulating a building, a significant amount of data has to be 

gathered to model the building envelope together with its equipment and usage (some 

aspects are illustrated in Figure 4.6). Once a model has been built, the space load in each 

zone is calculated based on weather data and casual gains (e.g. people or small-scale 

electric equipment). The next step, referred to as ‘system load calculations’ in Figure 4.6, 

relies on the description of the distribution systems. If an air-conditioning system with a 

central plant is considered, this phase involves calculating the electricity use of the supply 

and return fans. After that the zone loads are combined to calculate the energy 

requirements of the central plant. These calculations are solved either simultaneously or 

successively (ASHRAE, 2013; Wulfinghoff et al, 2011; Wang et al, 2012). 

 
Figure 4.6: Outline of the calculation procedure in building energy simulation programmes 

In order to calculate the thermal loads in zones, the heat balance equation is used with the 

following assumptions (Foucquier et al, 2013; Crawley et al, 2001): 
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 Each zone can be modelled with isotropic state variables. This means, for example, 

that the temperature in a zone is assumed to be the same throughout. 

 Each surface has a uniform surface temperature, long and short wave irradiation. 

 Heat conduction occurs only in one dimension.  

The heat balance equation and the heat transfer equation for the zone surfaces have been 

described as “two essential equations” (Zhai et al, 2002) for a building simulation 

programme. However, here only the heat balance equation is developed, which was 

considered sufficient to further sketch out the logic and assumptions of this approach. 

4.6.1 Heat balance equations 

The heat balance method is based on the first law of thermodynamics and calculates the 

instantaneous net sensible load in each zone. To accomplish this, a set of heat balance 

equations are written for all enclosing surfaces and one for the air in the zone (see Figure 

4.7). This allows the computation of surface and air temperatures, which are then used to 

determine the convective heat flows (ASHRAE, 1997, pp 19.4, 19.5). 

 

Figure 4.7: Diagram for the heat balance equation 

The first law of thermodynamics can be written as in Equation 4.17. 
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For the heat balance equation   is zero as the volume of the zone in Figure 4.7 remains 

constant. The term   is the net heat added to the system. Further noting that 

      

  
 
       

         

  

  

           
                 

  

  

             

Equation 4.18 

Therefore Equation 4.17 can be re-written as 

              
Equation 4.19 

Regarding Figure 4.7, the equation above can be expanded to yield the heat balance 

equation for one zone (US Department of Energy, 2013, p 7): 

                                                        

Equation 4.20 

This leads to Equation 4.21 if the addition of       changes the energy in the control 

volume shown in Figure 4.7. 

            

        

  
 

Equation 4.21 

According to EnergyPlus Engineering Reference (US Department of Energy, 2013, pp 7, 8) 

the following individual terms in Equation 4.20 can be expanded as below: 

 Convection from surfacei:                                  

 Infiltration from outside air:                                                  

 Infiltration from other zone:                                               

Substituting these expressions into Equation 4.22 yields: 

     

        

  
                           

        

                               

                               

           

                      

Equation 4.22 

With the assumption that the zone temperature is kept constant (Underwood and Yik, 2004, 

p 76) Equation 4.22 can be rearranged to finally calculate the system load. This equation, 
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or a similar equation, is used to calculate the energy used to condition, e.g., the room 

shown in Figure 4.6. 

                                 

        

                            

                               

           

            

Equation 4.23 

4.7 Conclusion 

This chapter introduced a number of data-driven and deterministic analysis techniques and 

considered in particular regression models and software simulation based on heat balance 

equations as an example of each. All of these tools and techniques have their individual 

strengths and weaknesses. How the discussion above influenced the decision process 

regarding the methodology choice for the whole supermarket research will be outlined in 

Chapter 5. 

 





 

- 67 - 

5 Selection and analysis of supermarkets 

From this chapter up to Chapter 1, complete supermarkets are the object of study. Figure 

5.1 shows the research covered in these chapters. The work involved in the first two steps 

is described first in the present chapter. The aim of these is to identify a number of 

supermarkets which satisfy the inclusion requirements; that is to say to select supermarkets 

which were as similar as possible. In this way the influence of differences relating to 

operational practice and local climate could be explored. In particular Sections 5.1 to 5.3 

covers this two stage process by first describing how the sponsor’s supermarkets were 

examined to narrow down the investigation to seven possible supermarkets. This is 

followed by a description of site visits to these supermarkets including their preparation. 

The discussion which follows shows why the seven supermarkets could be used to achieve 

the study aim mentioned here. 

 
Figure 5.1: Research flow for the whole supermarket investigation 

From Section 5.4, the discussion moves on to steps three to seven which are concerned 

with the actual analysis method and include a justification of the research method chosen. 

After that, a discussion on the preparation of the measured data follows. Next, an 

explanation of the way energy usage was estimated together with an error analysis 

completes this chapter. 

5.1 Selection process 

When the search for comparable stores began, the sponsoring supermarket reported a chain 

of 766 stores in the UK (of which 243 were franchised) (Marks and Spencer Group plc, 
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2014). The sponsor classified them according to their store format. The highest number of 

stores was in the ‘High street’ category. However, this format comprised an 

inhomogeneous building stock and, because the building type can have a significant impact 

on energy demand (see for instance Xu et al (2012)), this category was considered 

unsuitable for this study. In addition to this the same report indicated that, comparatively 

speaking, more stores were added to a different category. This type of store can be 

described as grocery supermarkets with a relatively large amount of refrigerated shelves. 

 
Figure 5.2: Locations of selected supermarkets (map by Descloitres (2002)) 

The sponsoring company divided those 176 grocery supermarkets into small and large 

stores. The category containing the larger sized stores had about 100 entries with sales 

areas ranging from approximately 531 m
2
 to 1910 m

2
 averaging approximately 950 m

2
. 

Their total annual     varied from 479 kWh/m
2
 to 1540 kWh/m

2
 (2012/13 figures). These 

approximately 100 stores were investigated as to building location and building type as 

well as to the presence of an in-store café and bakery. Here, the company’s on-line store 

guide was used as it not only gave the address, but also indicated if a particular store had 

an in-store café and bakery. All of this was recorded in a spreadsheet. To investigate the 

building location the Street View (Google, 2009-2012) and satellite option on Google 

Maps (Google, 2013) were used and results were also noted in the same spreadsheet. If 

possible the exact location within a building or parade of shops was recorded too. It was 

Washington 

Gateshead 

Hull 

Leicester 

Newbury 

Exeter 

Glasgow 



 

- 69 - 

found that 45 of these large grocery supermarkets were located in retail parks of which 18 

had both a café and bakery. As a final step it was ensured that all supermarkets had an 

R404/R744 type of refrigeration system. This led to the selection of seven supermarkets 

which had all these features in common. 

As Figure 5.2 indicates, the supermarket locations are well spaced out throughout Great 

Britain, two towards the west, two inland and three to the east. It was also hoped to include 

Wales because the Met Office lists Wales as a difference climate region (Met Office, 2013), 

but no suitable supermarket could be located. The proximity of the two stores in 

Washington and Gateshead offered the potential of investigating other sources of deviation 

than different weather patterns. 

 
Figure 5.3: Histogram - Sales area of all supermarkets in the category considered vs the ones selected 

The histogram in Figure 5.3 displays the distribution of the sales area of the nearly 100 

large grocery supermarkets and, in purple, the selected stores. It shows that the sales areas 

of the selected stores tend to be larger than the average of 939 m
2
. However, this was not 

considered significant as their sales areas are still considerably smaller than that of the 

largest store in this category. 

For the histogram in Figure 5.4, the electricity and gas consumption (if applicable) was 

added up to give a total     for each supermarket. The histogram shows a relatively 

constant store count from the bin labelled 700 to 1100. Although all seven supermarkets 

are within this range, five of them are below the average     of 882 kWh/m
2
. The two 
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stores which have a higher than average     are Washington (982 kWh/m
2
) and Glasgow 

(1070 kWh/m
2
). 

 
Figure 5.4: Histogram -     of all supermarkets in the category considered vs the ones selected 

5.2 Visits to supermarkets 

In order to verify the degree to which the selected supermarkets were actually comparable, 

site visits were conducted. These were preceded by devising a site visit protocol detailing 

the number of major energy consumers based on HVAC layout plans, lighting layout plans 

(if available) and other architectural drawings (these site visit protocols are included in 

Appendix C – Site visit protocols). 

The sponsoring company employs regional energy managers whose task it is to assist 

stores with reducing energy consumption. Three of them were contacted to arrange to visit 

with them the supermarkets for which they were responsible. In this way it could be 

studied how the different regional energy mangers interpreted the energy consumption and 

how they identified and investigated abnormalities. Six of the seven supermarkets were 

visited starting early May 2014 and finishing early July 2014. The store in Hull had been 

visited before for a pilot study. During the visits the following tasks were performed: 

 The actual numbers of energy consumers were compared with the number on the 

site visit protocol (this included documenting the installed refrigerated shelves). 

 The timer settings were documented. (Timers are centrally programmed.) 
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 The times the night covers for the refrigerated display cases and freezers were 

removed and put back were recorded. 

 The times the main baking time started and finished were noted down. 

 If possible informal discussions were held with the store manager, the operations 

manager and the Plan A champion (see Grayson (2011) for a description of the role 

of the Plan A champion). 

The major energy consumers, such as the HVAC system and lighting are centrally 

programmed and controlled via building timers. Therefore there is only a limited scope for 

how differences in operation can influence the energy use in individual supermarkets. The 

operational timings, which may have an impact on energy consumption and are listed in 

Table 5.1, are based on the estimates given by store personnel. This means that these 

values may be just approximate. Nonetheless it can be seen that some stores (i.e. Hull, 

Leicester and Newbury) put the night covers on the refrigerated display cases immediately 

after the store closes for the day whereas others allow for stocking during after store hours, 

which may be in addition to the preopening stocking time. One example of this is the 

Gateshead store, which has also different opening hours; thus the notation “Shut + 45 mins” 

was used to indicate that after the supermarket was closed to the public, stocking continued 

for approximately 45 mins. The table also records the times for the main bake of bread and 

cakes in the morning. This is significant because the ovens, which are in constant operation 

during this time, have a combined power consumption of 15 kW. Almost all stores start 

baking as early as possible and continue well after the supermarket has opened. The 

majority of stores suggested four hours for their main bake, with Glasgow and Washington 

being the outliers. 

Table 5.1: Operational timings 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Night cover        

Off 7:00 6:00 6:30 – 7:00 6:30 6 – 7:00 6:00 6 – 7:00 

On 20:50 Shut + 45 mins 20:30 – 20:45 20:00 20:00 20:00 20:45 

Total (h:min) 13:50 ≈15:00 ≈13:50 13:30 ≈13:30 14:00 ≈14:15 

Main bake        

On 6:00 6:00 6:30 6:00 6:00 6:00 6:00 

Off 11:00 10:00 9:30 10:00 10:00 9:30 - 10 10:00 

Total (h:min) 5:00 4:00 3:00 4:00 4:00 3:45 4:00 

 

After the visits the site visit protocols were updated, the main consumers were added up 

and recorded in Table 5.2. The volume-area ratio in this table shows whether or not a 

mezzanine floor was installed. For instance, this ratio shows that the supermarkets in 
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Glasgow, Hull and Exeter had only one floor whereas the other stores had a mezzanine 

floor. When dividing the installed lighting capacity by the total floor area, one finds that 

there is what may be considered only a modest spread from approximately 10 W/m
2
 to just 

over 13 W/m
2
. The larger spread observed in installed heating capacity density (between 

105 W/m
2
 and 179 W/m

2
) may be partly due to the absence of precise data for the 

undercase heating modules for the refrigerated display cases and partly due to different 

cold aisle heating schemes. It should be noted that the installed comfort cooling is 

relatively small for all supermarkets (except for the Newbury store). This is so because the 

open refrigerated display cases also removed the room heat, hence normally no additional 

cooling is required for the sales floor, but heating is. The table also records the nominal 

size of the refrigeration plants. If two figures are given, then the supermarket has two 

plants, otherwise only one has been installed. 

Table 5.2: Data of the selected supermarkets 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Latitude 55.743 54.923 54.900 53.748 52.684 51.385 50.717 

Longitude −2.870 −1.620 −1.532 −0.425 −1.088 −1.318 −3.538 

Weekly trading 

hours (h) 
81 80 78 75 79.5 77 78 

Total area (m
2
) 1550 1730 1320 1820 1640 1710 1440 

Sales area (m
2
) 1030 1210 743 1250 1000 1190 929 

Volume (m
3
) 12000 7800 7090 13700 9210 8270 10400 

Volume/total 

area (m) 
7.74 4.51 5.37 7.55 5.61 4.84 7.22 

Lobby (yes/no) Yes No Yes Yes Yes No Yes 

Installed lighting 

(kW) 
17.5 21.8 15.4 19.1 18.7 21.8 16.9 

Installed heating 

(kW) 
277 232 227 191.5 215 256 227 

Installed A/C 

cooling (kW) 
50.1 65.7 12.9 59.5 23.1 83.4 29.5 

Total length of 

ref. shelves (m) 
97 89 71.4 94.4 90.1 88.2 102 

Refrigeration 

plants (kW) 
80 + 60 100 100 80 + 60 100 100 100 

 

The number of cold room doors and how frequently they are opened may also influence 

the energy consumption in supermarkets. When visiting the selected supermarkets it was 

noted that, with the exception of Hull, all supermarkets had only one door to the cold room. 

In certain supermarkets, it was also observed that the light, which is controlled by a motion 

sensor, had been switched off indicating that the door had been open for a while. When 

visiting the Hull store it was noticed that, most of the time, at least one door was left open. 
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5.3 Discussion on the selection of supermarkets 

So far this chapter described which seven grocery supermarkets were selected for further 

study. These stores belong to a building category with a relatively homogonous building 

stock, i.e. retail units in a retail park.  

The     of all seven selected stores compares favourably with other supermarkets in the 

UK according to Tassou et al (Tassou et al, 2011). Based on their classification, all seven 

supermarkets can be categorized as mid-range stores with an expected annual     of 

between 997 kWh/m
2
 and 1100 kWh/m

2
. According to Tassou et al (2011) the lower limit 

is approximately 500 kWh/m
2
 per year. The actual yearly     is between 463 kWh/m

2
 (for 

Leicester) and 605 kWh/m
2
 (for Glasgow). This comparison shows that, although the 

actual consumption figures are lower than the expected figures, they may be still 

considered comparable with other supermarkets in the UK. 

Operational practice seems to have little impact on the supermarkets selected. The two 

supermarkets with the highest     have the night covers removed for approximately 13.75 

hours. Other supermarkets with a lower     have the night covers removed for longer. 

Furthermore the main baking time is very similar across the supermarkets, and the two 

with the highest     have the shortest and longest times. The Hull store with the two door 

cold room is the median store for the     and still better than the overall average. 

Therefore it could be argued that keeping both doors shut may reduce the energy 

consumption, although not significantly. 

The discussion above showed that the seven stores selected are comparable in size and 

energy consumption, and are also representative of the whole category. The operational 

practices investigated here seem not to influence the energy consumption significantly. 

Therefore research based on these supermarkets should yield meaningful results in 

answering the research question regarding the impact of climate change. 

5.4 Method selection 

In order to study the selected supermarkets, a number of different energy analysis methods 

are possible. The aim of the method selection process was to identify as simple an 

approach as possible which still yielded meaningful results. Li et al (2012) suggest that the 

two deterministic approaches, simulating buildings with software and the degree days 
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method, are the most popular research approaches for the impact assessment of climate 

change on energy use in buildings. Section 4.4 discussed simulation software models and 

showed in Figure 4.6 that there is a considerable amount of data from various sources to be 

collected before such a model can be built. For instance, in order to calculate the energy 

use in a building, hourly weather files and data regarding casual gains, e.g. from people, 

need to be available. However, how the number of customers will develop over the next 

couple of decades is not easy to predict and therefore may require a considerable amount 

of time to establish. Once the model has been constructed it needs to be calibrated to 

achieve more accurate and reliable results or else simulation results may deviate from the 

true value by as much as 100% (Coakley et al, 2014). The end product is a model which 

will be dealt with as a “black box”, because the content of the model is not so important. 

What is of importance is that the model yields credible results. Depending on the level of 

detail this modelling and calibration can require a significant amount of time per building 

(Rivalin et al, 2014). Therefore this approach was not pursued further, because it was 

considered to not be time efficient. 

The degree day method, also explained in Section 4.5, requires that a balance point 

temperature can be established. However, the data shows (see for instance Figure 5.8 on 

page 79) that heating is required all year round and, therefore, a balance point temperature 

(i.e. when heating is no longer required) cannot be established. The degree day approach 

can also be used for comfort cooling, but the purpose of refrigeration in a supermarket is to 

preserve food and not to provide comfort cooling. Hence, this method was also deemed 

unsuitable. 

The data-driven approach uses measurements to establish a relationship between weather 

variables and energy consumption. According to Belcher et al (2005), there are 14 weather 

variables which could be considered for building simulations, some of which are derived 

from other variables. In order to achieve the objective of producing a simple, but relevant 

model, the automatic weather station Davis Vantage Pro2 was considered, which also 

received favourable reviews (Burt, 2009; Bell et al, 2015). However, the sponsoring 

company found this approach impractical. Therefore whether temperature alone would 

suffice or whether it should be combined with relative humidity was studied. The literature 

review supported using only temperature, because it showed that some researchers 

successfully applied a temperature change point regression to a supermarket (Schrock and 
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Claridge, 1989; Ruch and Claridge, 1992; Kissock et al, 1998). Some deterministic 

analysis tools also use only outside temperature as their input parameter (e.g. the degree 

day method discussed in Section 4.5). Furthermore a pilot study showed that the humidity 

ratio   (a function of the relative humidity and temperature) had a strong correlation with 

temperature (greater than 0.9). This strong correlation, which is called multicollinearity, 

can be problematic for MLR since it can produce predictions which are overly sensitive to 

small changes in the data (Montgomery et al, 2006, pp 109-111). Therefore it was deemed 

acceptable to use the outside temperature as the only weather variable. 

 
Figure 5.5: Method flowchart for the pilot study 

The pilot study referred to in the previous paragraph was based on the supermarket in Hull 

and used the methodology sketched out in Figure 5.5. When comparing this method 

flowchart with the major steps depicted in Figure 5.1 it is evident that both approaches are 

very similar. Some of the minor differences are that the pilot study used relative humidity 

data for a multiple regression analysis and that the climate considered was for the 2040s 

rather than for the 2030s. 

The scatter plot matrices in Figure 5.6 and Figure 5.7 relate to the original data for the pilot 

study, which is to say that outliers had not been removed. Both matrices plot the 

temperature against the humidity ratio   and confirm the strong relationship between the 

two variables. The panels in which these variables are used as predictors for the electricity 

and gas consumption also show little difference in their predictive power. Further 

examining the relationship between electricity use and temperature (or  ) shows that it is 
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non-linear. On the other hand, the gas use and outside temperature (or  ) exhibits more of 

a linear relationship. 

 
Figure 5.6: Scatter plot matrix for the original electricity data of pilot study 

 
Figure 5.7: Scatter plot matrix for the original gas data of pilot study 

In view of the issues raised above it was felt that simple regression should be used where 

possible and change point regression models where necessary. To decide when to apply a 
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change point regression model, a second order polynomial regression model was evaluated 

and, if the coefficient of determination improved over a simple regression model by more 

than 10%, a change point regression model was used, which was an approach also used for 

similar previous studies (e.g. Schrock and Claridge (1989); (Ruch and Claridge, 1992)). 

Although this threshold was somewhat arbitrary, it took the shape of the graphs into 

consideration. It was believed that using these relatively simple models satisfied the goal of 

simplicity with meaningful results in order to assess the impact of climate change on 

supermarket energy use. 

5.5 Data collection and preparation 

The goal of the data collection phase was to acquire data for electricity and gas 

consumption as well as for site temperature to analyse weekly consumption and to check 

daily patterns for differences and irregularities of operation and of building timers. To this 

end the consumption data were downloaded in 15 minute and weekly intervals from the 

supermarkets’ energy loggers for the period from the week commencing (w/c) 1 July 13 to 

w/c 8 September 14. The period from w/c 1 July 13 to w/c 23 June 14 was used for the 

actual data analysis and the remaining data for error estimation. Weekly data, rather than 

daily or monthly data, were used because supermarkets tend to operate on a weekly cycle, 

therefore averaging over a week removes the dependency of the consumption on the day of 

the week. 

Table 5.3, which shows a summary of the downloaded consumption data for all seven 

supermarkets, makes frequent use of the term ‘   ’, which is given in kWh/m
2
 and in 

W/m
2
. The annual area    , which makes the comparison of the selected supermarkets 

with the energy use prediction in Tassou et al (2011) easier, is computed by dividing the 

annual consumption figure by the sales area. The annualized    ,      , is calculated by 

dividing the annual consumption by the total supermarket area and the weekly trading 

hours. Weekly opening hours, rather than annual trading hours, were used as only inter-

supermarket differences had to be eliminated. The average of the        , which is the 

average weekly energy use intensity, is listed as ‘Av        ’ in Table 5.3.  

The energy use data in Table 5.3 is listed from north (i.e. Glasgow) to south (i.e. Exeter). 

The average         for electricity has an average of 90 W/m
2
 and exhibits a linear 

relationship with the total supermarket area. This relationship has a correlation coefficient 
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of −0.854. The coefficients of variation (    ) have been calculated after the exclusion of 

data inconsistencies, such as outliers, to avoid a false impression of the magnitude of data 

spread and shows relatively little variation amongst the supermarkets. The electricity 

consumption for 25 and 26 December was considered the supermarket base load as the 

store was closed for these two days. Apart from the outlier at Newbury (the 2013 value for 

this supermarket was 24% higher than the one for 2012) the base consumption figures are 

also consistent with each other with low correlation to building area and volume. 

Table 5.3: Energy consumption data of supermarkets 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Electricity        

Annual (kWh) 647000 595000 542000 581000 556000 593000 552000 

Base load (kW) 35.0 31.6 28.6 31.6 33.5 42.7 34.7 

Annual area     
(kWh/m

2
) 

417 364 361 336 334 309 381 

      (W/m
2
) 5150 4300 5260 4260 4210 4670 4920 

Av         

(W/m
2
) 

99.0 82.7 101 81.9 81.0 89.8 94.6 

    (%) 6.26 6.62 7.15 6.26 6.08 5.50 5.05 

Gas        

Annual (kWh) 394000 328000 N/A 408000 254000 242000 210000 

Annual area 

    (kWh/m
2
) 

254 201  236 153 126 145 

      (W/m
2
) 3140 2370  2990 2000 1910 1870 

Av         

(W/m
2
) 

60.4 45.6  57.5 38.5 36.7 36.0 

    (%) 31.3 26.8  35.1 38.1 35.4 42.0 

 

The gas data in Table 5.3 has a distinct north-south divide with Glasgow, Gateshead and 

Hull making up the northern cluster and the other three supermarkets the southern cluster. 

This can also be seen by the strong linear relationship (  = 0.825) between a supermarket’s 

latitude and its average        . The relationship between annual average temperature and 

average         is much weaker (  = 0.505). The    , which also excluded inconstancies, 

has a relationship with latitude (  = −0.829) that is similarly strong to that of the average 

       , which may be related to the fact that daylight is also a function of latitude. Its 

associated standard deviation follows the supermarket volume almost perfectly (  = 0.978 

for a linear model). 

The plots of the gas and electricity consumption of the supermarket in Glasgow in Figure 

5.8 are in 15 minute intervals and for four days, one for each season. Other stores show 
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virtually identical graphs, therefore only the operation of the Glasgow store is discussed 

here. Before about 06:00 the gas consumption is zero and the electricity use is at its base 

load level. Then at approximately 06:00 staff arrives for stocking and baking which causes 

a jump in electricity consumption. The HVAC timer enables some of the heating at about 

the same time causing a peak in gas use. The store lights are switched on just before 08:00 

and the rest of the heating is turned on at 08:00 resulting in another sharp increase in both 

gas and electricity use. There tends to be a rise in electricity use after 12:00 which may be 

because of higher energy demands from the in-store café. The gas consumption reduces as 

the day progresses until just after 18:00. The peak at this time is because the HVAC plant 

is switched off for energy conservation from 16:00 to 18:00. When it is turned on again, 

the heating demand results in this peak in gas use. When the store closes at 20:00, the 

trading lights and HVAC plant are switched off resulting in a steep decrease in energy 

consumption. After all personnel have left (at about 20:30), the remaining lights are 

switched off, therefore the electricity consumption returns to its base load level. 

 
Figure 5.8: Gas and electricity consumption in 15 min intervals for the store in Glasgow 

During the download of the weekly data the following problems were encountered. Firstly, 

it was discovered that the gas data for the Washington store could not be retrieved and 

therefore only its electricity data was analysed. The      for the consumption and 

temperature data were calculated by dividing the standard deviation of a variable by its 
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average. When comparing the    s of weekly gas data, another problem was detected. It 

was noted that the coefficient of variations for Hull was significantly higher than for the 

remaining supermarkets. An investigation showed that the boiler had been out-of-order for 

3 months during the period of interest. Therefore the data for 2012, which was used for the 

pilot study mentioned above, was substituted for the analysis, and data from the w/c 30 

June 14 to w/c 8 September 14 was used for error estimation. 

An attempt was made to remotely access the site temperature sensors in order to download 

consumption data in 15 minute intervals for the same period. However, this was not 

possible for the supermarkets in Newbury and Exeter, therefore hourly data from a nearby 

MET Office weather station was substituted as supplied by the sponsoring company. The 

temperature data was then averaged for each week. 

 
Figure 5.9: Line graph of weekly energy use and average temperature for the Glasgow supermarket 

The traces in Figure 5.9 show the weekly consumption data and weekly average outside 

temperature for the supermarket in Glasgow. Again, the other supermarkets have similar 

plots so that only the line graph from this one store is displayed and discussed here. The 

electricity consumption is relatively constant throughout the year, which is consistent with 

the     of only 6.26% mentioned in Table 5.3. This is understandable when the electricity 

trace in Figure 5.8 is considered, which shows a constant base load during the night and a 
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temperature independent load portion (e.g. trading lights) during the day. The gas 

consumption in Figure 5.9 shows a much larger variability which agrees with the much 

larger coefficient of variation of 31.3%. This trace is essentially a scaled mirror image of 

the weekly temperature averages. One exception is the time around Christmas where both 

the electricity and gas consumption first rises and then drops because of staff stocking 

overnight and then the supermarket having reduced opening hours up to New Year’s Day. 

As this behaviour is temperature independent, it was excluded from the data sets for all 

supermarkets. 

 
Figure 5.10: Box plot of consumption data for the Glasgow supermarket 

In addition to graphs against time, box plots (for an example see Figure 5.10) were also 

employed to detect outliers. These plots use ranked data and are constructed around the 

data set median. The lower limit of the box is the median of the lower half of the data set, 

i.e. from the smallest value to the data set median, and the second limit is the 

corresponding median of the upper half. The line in the box is the median of all the data. 

The lines extending out of the box mark the minimum and maximum values except when 

they are 1.5 times of the box height away from the box limits. These points are considered 

outliers and need be investigated (Anderson et al, 2003, pp 108, 109). 
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The box plots in Figure 5.10 are for the supermarket in Glasgow and help to illustrate how 

these plots were used. Before the consumption data were plotted in these graphs, they were 

normalised so that gas and electricity data had an average of zero and a standard deviation 

of one. In this way different data sets could be more easily compared. Once a plot indicated 

an outlier, the reason for it was investigated. In the case of Figure 5.10 it is apparent that 

the electricity data contains outliers at week 24 and 25. On further investigation it was 

found that in week 23 (w/c 02/06/14) new refrigerated display cases were installed. 

Therefore the data from week 23 onwards were excluded to ensure data integrity. 

In this way, during the data preparation stage data points were excluded for the following 

reasons: 

 Christmas period (all stores): Here the supermarkets restock during the nights prior 

to Christmas (higher than normal energy use) and then have reduced opening hours 

up to New Year’s Day (lower than normal consumption of energy). 

 Addition of refrigerated display cases (Glasgow). 

 Faulty repair resulting in higher energy consumption (Gateshead). 

 Building timers for heating incorrectly set (Newbury). 

Table 5.4: Result of the data preparation phase 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Electricity        

Data points left 

(No) 
45 37 49 49 49 47 49 

Data points 

deleted (% No) 
13.5 28.9 5.77 5.77 5.77 9.62 5.77 

Data points deleted 

(% consumption) 
14.3 29.9 5.23 5.72 5.24 9.58 5.49 

Gas        

Data points left 

(No) 
49 50 N/A 50 49 46 49 

Data points deleted 

(% No) 
5.77 3.85  3.85 5.77 11.5 5.77 

Data points deleted 

(% consumption) 
7.28 6.35  3.25 6.09 11.5 7.73 

 

The overall result of the data preparation phase was a reduction in data points by between 

3.85% and 28.9%. As Table 5.4 shows, the largest decrease was for the electricity data for 

the Gateshead store. Only the supermarkets in Gateshead and Glasgow had more than 10% 

of their electricity data deleted and only the Newbury store had more than 10% of its gas 

data points removed. The percentage of the total consumption of the deleted data points, 
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which may more accurately reflect the impact of these deletions, shows only a slight 

deviation from the percentage of the number of removed data with the result that, for ten of 

the thirteen data sets, more than 90% of the original data was available for analysis. Even 

in the extreme case, more than 70% could still be included in the analysis, therefore it 

could be concluded that, for all supermarkets, useful data sets existed (the only exception 

was the missing gas for the Washington store). 

5.6 Estimation of energy use 

Next, the scatter plots of the data sets, prepared as described in the section above, were 

used to develop regression models. To this end, Excel was used to first assess the adequacy 

of simple regression models. As mentioned above, if a second order model improved    by 

more than 10%, a change point regression model was considered. If the    for the change 

point model was greater than for the quadratic polynomial model, then the change point 

model was used. The coefficients for the change point regression models were calculated 

with the Matlab function ‘lsqcurvefit’, which solves non-linear data fitting problems with 

the least square approach (the least square approach was explained in Section 4.2.1). The 

model was checked against the underlying assumption and its error was estimated as 

described in the next section. 

Table 5.5: Grid cell number of UKCP09 grid 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Grid cell No 764 1004 1004 1240 1393 1625 1657 

 

The estimation of the future energy consumption was based on the UKCP09 predictions by 

the MET Office (Met Office, n.d.). Cumulative probability distributions for the monthly 

mean air temperature for the 2030s (which is an abbreviation for the period from 2020 to 

2049) were downloaded from the UKCP09 website for the appropriate 25x25 km grid cells 

(see Table 5.5 for the grid cell numbers). A sample graph for the gird cell containing the 

supermarket in Glasgow is shown in Figure 3.7. A preliminary study showed that, for this 

time interval the temperature data does not vary greatly for different emission scenarios. 

Therefore only the emission scenario ‘medium’ was used for further analysis. From the 

downloaded cumulative probability density function, monthly temperature values for 10%, 

50% (i.e. central estimate) and 90% probabilities were extracted. The probability values 

show the likelihood that a temperature stays below a certain temperature. 
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In order to generate the weekly figures from the monthly data provided by the UKCP09 

website, the Matlab function ‘spline’ was considered and actually used for the pilot study. 

However, Baltazar and Claridge (2006), who studied how to best fill missing hourly data, 

recommended simple linear interpolation for small data sets. Therefore this technique was 

used to generate weekly predictions based on these monthly values and for values for the 

base period (1961-1990). Next, the energy consumption models for each supermarket were 

used to calculate the base period energy use and predicted energy consumption. Finally, 

the increase over the base period consumption was calculated. The Matlab programme for 

this is included in the Appendix D – Matlab programmes. 

5.7 Verification of regression models and their results 

When constructing and using the regression models, three different sets of verification 

checks were employed. The first set of tests was concerned with checking the regression 

models against the underlying assumptions mentioned in Section 4.2.3.1. In particular, the 

assumption of normal distribution of the residuals was verified, as this influences the 

validly of the  -test. 

The second verification step was concerned with calculating a prediction interval for the 

estimated values. The method used was explained in Section 4.2.1.1. In order to compute 

the propagated error, Equation 5.1 was used (Popula, 1991, p 479). This then was 

compared against the predicted change to see if detection seemed to be reasonable. 

             
 

 

 

Equation 5.1 

Where: 

      : Total propagated error 

    : Individual error 

For the last set of tests the mean bias error (   ),      and the          were 

calculated based on data from w/c 30 June 14 to w/c 8 Sept 14. These statistics have been 

used for data-driven energy models and in deterministic models to indicate how well the 

model performs (Lam et al, 2002; Coakley et al, 2014). The     is a measure of the 

overall bias of the model and is calculated as shown in Equation 5.2. 
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Equation 5.2 

The     , which is computed according to Equation 5.3, shows by how much the 

estimated values deviate from the measured values. When it is normalised by dividing it by 

the annual average consumption, the coefficient of variation of     , abbreviated as 

        , is obtained. The annual average consumption was preferred to the average of 

the period from w/c 30 June 14 to w/c 8 Sept 14, because this approach avoided seasonal 

bias. Coakley et al (2014) list a small number of acceptance criteria for the     (e.g. 5% 

for monthly data) and the          (e.g. 15% for monthly data) when used in calibrating 

building simulation models. 

      
           

 
 

Equation 5.3 

5.8 Summary of selection and analysis of supermarkets 

This chapter described the research steps mentioned in Figure 5.1 and how they were 

executed in order to estimate the change in energy use. This investigation started with 

indentifying a small number of supermarkets from total of 766 which had common features 

relevant for energy use. After visiting these supermarkets to verify installed energy 

consumers and record two local operation procedures, consumption and temperature data 

were collected and prepared for analysis by removing outliers. In addition, this chapter 

covered how regression models were developed and how these models were verified. 
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6 Results of whole supermarket analysis 

The results from the research described above are presented in this chapter which is 

divided into three sections. The first shows the outcome of the process which allowed the 

development of the regression models for the supermarkets. Although this section 

concentrates on the store in Glasgow, as all the relevant features of the model generation 

process can be exemplified by this supermarket, it also includes the results of the other 

supermarkets. After that the estimated changes in gas and electricity use are given along 

with error estimates. The final part in this chapter is concerned with an error analysis based 

on real consumption data. 

6.1 Energy consumption models 

Figure 6.1 and Figure 6.2, which show the scatter plots for the supermarket in Glasgow, 

divide the data clouds into included and removed data points. The excluded data in Figure 

6.1 are outliers in the true sense of the word. For instance, the excluded data points for the 

Christmas and New Year period include two points which have a lower than expected 

consumption (because of shorter opening hours) and one with a higher than average 

consumption (due to overnight stocking). Another example is that, after new refrigerated 

display cases were installed, the electricity use increased appreciably as shown by the 

outliers marked as ‘New display outliers’. 

When examining the included data one notices a non-linear relationship which is well 

captured by the change point regression model resulting in a high coefficient of 

determination (for    see Table 6.1). This change point regression model, based only on 

the data points marked ‘included’, is represented by the turquoise line in Figure 6.1. The 

reason for this change point is likely due to the control algorithm of temperature sensitive 

electric equipment (If it were owing to the building fabric, a linear relationship would be 

expected.). This equipment may be the air conditioning units, but it is more likely that it is 

the refrigeration system, because the air conditioning units are standard products which 

should behave in an identical manner and the analysis showed that three supermarkets can 

be adequately represented by linear models. Further investigation should confirm if this 

chance point is related to the point when the minimum head pressure of the refrigeration 

system is insufficient. 
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Figure 6.1: Scatter plots of electricity consumption vs outside temperature for the supermarket in Glasgow along 

with the model of this supermarket (turquoise line) 

 
Figure 6.2: Scatter plots of gas consumption vs outside temperature for the supermarket in Glasgow along with 

the model of this supermarket (turquoise line) 

The scatter plot displayed in Figure 6.2 shows that the excluded gas data are much closer 

to the expected value, indicated by the regression line, than the electricity outliers. The 

included data points in this scatter plot exhibit a relatively linear relationship, therefore a 

Christmas outliers 

New display 
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New display 
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simple linear regression model, shown as a straight turquoise line in Figure 6.2, portrays 

this behaviour well (for    see Table 6.2). Interestingly, after the additional open 

refrigerated display cases were installed, the gas use was generally lower than the expected 

value. This seems counterintuitive as it is to be expected that more heat is removed from 

the sales area because of the additional shelves and therefore one would assume a higher 

heating demand and, in turn, an increase in gas use. 

The results relating to the development of the regression models listed in Table 6.1 and 

Table 6.2 are given in a north-south axis. The headings ‘   (Linear)’ and ‘   (Square)’ in 

these tables refer to the coefficients of determination for a linear regression model and for 

a quadratic polynomial regression model respectively. The rows entitled ‘Improvement: 

Square (%)’ in Table 6.1 and ‘Improvement (%)’ in Table 6.2 on page 91 were included to 

make clearer the decision process regarding which models were used. These improvements 

are correlated with the store volume given in Table 5.2 with a correlation factor of 0.891 

for electricity and −0.767 for gas. If a change-point model, rather than a simple regression 

model, was used,    is the intercept and    the gradient before the change-point 

temperature    , and   
  and   

  are the intercept and gradient, respectively, after this 

temperature. All   tests for the selected models show that statistically significant 

regression models were selected. The residual analysis showed that all error terms were 

normally distributed to a reasonable degree. 

Table 6.1: Models of electricity consumption in the selected supermarkets 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

   (Linear) 0.826 0.859 0.945 0.676 0.563 0.674 0.642 

   (Square) 0.934 0.956 0.954 0.878 0.607 0.705 0.743 

Improvement: 

Square (%) 
13.1 11.2 1.03 29.8 7.77 4.73 15.7 

r
2
 (Change point) 0.950 0.973  0.896   0.766 

Improvement: 

Change point (%) 
15.0 13.3  32.5   19.3 

   (W/m
2
) 90.0 73.9 82.3 78.0 71.4 78.9 88.0 

   (W/m
2
/°C) 0.578 0.582 1.55 0.0875 0.739 0.840 0.452 

    (°C) 11.6 16.0  15.0   14.5 

  
 
 (W/m

2
) 67.5 39.2  39.2   58.6 

  
 
 (W/m

2
/°C) 2.52 2.75  2.68   2.48 

 -test 714 1250 803 407 60.75 92.9 154 
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Table 6.1, which displays results for the electricity consumption models, shows that, for 

four supermarkets, a change point regression model improved the predictive power by 

between 13.3% and 32.5% over that of a simple regression model. Although the slope 

change ratio for these models varies between 4.36 (Glasgow) and 30.6 (Hull) the slope 

after the change point temperature is approximately the same. The change point 

temperature fluctuates between the low and mid teens. For the other three supermarkets, 

the slopes can be considered consistent with each other as they vary only by a factor of 

approximately 2.  

Figure 6.3 displays results for the electricity consumption models and thus visually 

represents the model parameters listed in Table 6.1. In this figure the change point models 

are blue whereas the linear models are red. These graphs indicate that, in addition to 

temperature, other parameters need to be considered in order to produce valid         

predictions. One of these factors may be location as suggested by comparing the graphs for 

the Hull and Gateshead stores (both of which are located close to the east coast of England 

and the graphs are relatively close together) with those for the models for the supermarkets 

in Glasgow and Exeter (these supermarkets are situated towards the west of Britain and 

their regression models also show some proximity).  

 
Figure 6.3: Summary graph of all models for electricity consumption 
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Table 6.2: Models of gas consumption in supermarkets 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

   (Linear) 0.934 0.833 N/A 0.843 0.930 0.846 0.886 

   (Square) 0.951 0.893  0.846 0.939 0.912 0.888 

Improvement (%) 1.94 6.67  0.391 0.975 7.19 0.154 

   (W/m
2
) 102 70.1  111 75.7 69.4 77.7 

   (W/m
2
/°C) -3.94 -2.27  -4.16 -2.83 -2.56 -3.54 

 -test 651 239  263 653 242 366 

 

Table 6.2 summarises the gas consumption model results and shows that the spread of    

(Linear) is much smaller for gas than for electricity, and has an average of 0.879. Therefore 

only linear models were used. The two supermarkets for which the second order regression 

would have offered the greatest improvement were those without a lobby. Both the slopes 

and the intercepts of these models have a strong correlation (  for a linear model is at least 

0.959) with the building volume, consistent with basic thermodynamic principles. It can 

also be observed that both coefficients vary by a factor of less than 2 indicating a good 

degree of consistency amongst models. 

 
Figure 6.4: Summary graph with all models for gas consumption 

Figure 6.4, which relates to Table 6.2, shows two groups of models. The graphs for the 

supermarket without a mezzanine floor at Glasgow, Hull and Exeter (shown as non-solid 

lines) are virtually parallel lines, whereas the other three (shown as solid lines) are not. As 
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already mentioned, the intercepts of all of these models have a strong correlation (  = 

0.959) to the building volume. The slope is also closely correlated to the building volume 

(  = 0.968), but the relationship with the volume-to-total-area ratio is even stronger (  = 

0.977). Based on this the following equations can be suggested to compute the coefficients 

in the model for gas consumption,     
                  . 

       
 

  
        

 

  
        

Equation 6.1 

         
 

    
      

 

    
 

      

          
 

Equation 6.2 

 
Figure 6.5: Weekly temperature and predicted energy use for the supermarket in Glasgow 

The model parameters given in Table 6.1 and Table 6.2 were used to estimate the gas and 

electricity use for the base period and the 2030s. Figure 6.5, which displays the weekly 

results for the supermarket in Glasgow, also includes temperature graphs. The gas data is, 

in effect, a scaled mirror image of the temperature data. The electricity data, on the other 

hand, has an interval from approximately week 20 to about week 40 when the electricity 

plots first fan out before converging again. This is due to the non-linear change point 

model. The black lines are for the data from UKCP09 and the grey trace for the measured 

temperature data. In addition to the seasonal variation, also seen in the UKCP09 
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temperature data, the measured data includes a stochastic element. Because of the non-

linear behaviour of the electricity use in supermarkets, this may be of significance, but this 

was not pursued further, as this element, by definition, is random and was considered too 

difficult to model reliably. The measured temperature shows that the UKCP09 weather 

data are within the model data range so no extrapolation had to be used. This is only the 

case for this supermarket and for the one in Hull. For the other five supermarkets the lower 

temperature is not covered by the measured temperature. 

Table 6.3: Changes in energy use (including errors) and temperature as percentage of the respective base years 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Electricity-gas ratio 

(Base period) (%) 
1.35:1 1.53:1 N/A 1.1:1 1.54:1 1.91:1 2.15:1 

Electricity        

Change 10% (%) 0.722 0.559 1.23 0.554 0.598 0.638 0.628 

Error 10% (%) 0.431 0.327 0.519 0.614 1.26 0.965 0.649 

Change 50% (%) 2.11 1.40 2.92 1.68 1.61 1.72 2.00 

Error 50% (%) 0.421 0.320 0.507 0.601 1.24 0.950 0.641 

Change 90% (%) 3.78 2.84 4.73 3.32 2.76 2.94 3.71 

Error 90% (%) 0.411 0.314 0.498 0.593 1.22 0.939 0.636 

Gas        

Change 10% (%) -3.37 -3.34 N/A -4.45 -3.54 -3.71 -5.41 

Error 10% (%) 1.91 2.73  3.32 2.35 3.33 3.01 

Change 50% (%) -8.90 -7.92  -10.6 -9.55 -9.98 -14.2 

Error 50% (%) 1.86 2.66  3.25 2.30 3.27 2.98 

Change 90% (%) -15.0 -12.82  -17.7 -16.3 -17.1 -24.1 

Error 90% (%) 1.82 2.62  3.21 2.27 3.23 2.95 

Av temperature        

Base (°C) 8.15 8.24 8.24 9.22 8.88 9.36 9.86 

Current (°C) 10.3 11.1 12.2 12.5 13.1 12.4 11.8 

Change current (%) 26.4 34.7 48.3 36.0 48.0 32.2 20.6 

Change 10% (%) 7.44 9.16 9.16 8.40 7.11 7.04 6.72 

Change 50% (%) 19.7 21.7 21.7 20.1 19.2 18.9 17.7 

Change 90% (%) 33.2 35.1 35.1 33.3 32.8 32.4 30.0 

6.2 Changes in energy consumption in the 2030s 

This section gives the future energy estimates in two formats (in Table 6.3 as well as in 

Figure 6.6 and Figure 6.7) so that different types of comparison can be made more easily. 

The results are stated as changes relative to the base period of the relevant parameter for 

each respective location. The error bars, shown as whiskers on the bar graphs in Figure 6.6 

and in Figure 6.7, indicated the propagation error. The chart type bar graph was chosen to 

emphasise that the estimates include values up to the maximum value, but are not 

necessarily equal to this maximum. For instance, the estimate for Glasgow labelled ‘90%’ 

in Figure 6.6 is 3.78%. This means that the likelihood that the increase does not exceed 



 

- 94 - 

3.78% is 90%. It is possible that the increase will be less than that. The error bars in these 

bar charts take only uncertainties introduced through the modelling process into account 

(see Section 5.7). They show that, for the central estimates and the 90% estimates, changes 

in energy consumption should be detectable. For the 10% likelihood cases the detection is 

more doubtful. 

The predictions presented here suggested that the percentage change in electricity 

consumption are smaller than for gas consumption and, when taking the electricity-gas 

ratio in Table 6.3 into consideration, it can be concluded that this is also true for the 

absolute amount. This is also consistent with the lower      of electricity as shown in 

Table 5.3. The underlying reason for both of these results is that heating, and therefore gas 

use, is more temperature sensitive, whereas electricity is also used for temperature 

independent consumers, such as lighting.  

 
Figure 6.6: Changes in electricity consumption in the 2030s relative to the relevant base period 

The reduction in gas consumption depicted in Table 6.4 is relatively consistent over the 

three probability values. Although the spread increases, the ranking of the supermarkets 

stays the same. The figures show that the reduction tends to be the largest in the 

supermarkets without mezzanine floors, which is consistent with the steeper slopes seen in 
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Figure 6.4. The change ranges from a minimum of -3.34% (10% probability) to a 

maximum of -24.1% (90% probability). 

 
Figure 6.7: Changes in gas consumption in the 2030s relative to the relevant base period 

When comparing the electricity consumption of the store in Hull with the one in Leicester 

in Figure 6.6, one notices the effect of the change point model for Hull. For the 10% 

temperature change, the value for Hull is just below the figure for Leicester. However, 

when considering the 50% case, the roles are reversed, and this is even more apparent for 

the 90% probability. That this is not due to a steeper temperature increase can be seen 

when examining the temperature increase in Table 6.3. Although the increase for Hull is 

always greater than that for Leicester, the gap narrows with increasing probability of 

temperature maximum. Because of modelling the electricity use of only a small number of 

supermarkets with non-linear regression models, location dependency is difficult to 

attribute. Looking at the span of predictions, one finds that the largest increase in 

electricity of 4.73% for a 90% likelihood is for the smallest supermarket (in Washington), 

whereas the largest supermarket (in Hull) has a maximum increase of 3.32%. The largest 

store has also the lowest overall electricity increase estimate of 0.554%. 

When comparing the temperature increases for the 2030s with the average of the measured 

temperature, both listed in Table 6.3, one finds that the measured average is at least as high 
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as the 50% probability temperature values. If the predictions for the 2030s are correct, then 

the period for which the supermarkets were examined may be a good indication of future 

average energy consumption. 

6.3 Error estimate based on measured consumption data 

In addition to the error estimates based on error propagation as described in the previous 

chapter, the      and       were also calculated. The estimates of the propagation 

error shown in Figure 6.6 and Figure 6.7 indicated that, expect for the 10% case of 

electricity change for the stores in Hull, Leicester, Newbury and Exeter, a change in energy 

usage should be attributable to a change in climate, everything else being equal. The      

and       were based on the measured data from w/c 30 June 14 to w/c 8 Sept 14, and 

are shown in Table 6.4. The      for the electricity indicate that, for the chosen period, 

the models tend to underpredict electricity use. The         ) is below 10%, except for 

Glasgow where the higher error is due to the installation of more refrigerated shelves. For 

the gas data the models tend to overpredict consumption. The         ) for gas is above 

10% for all locations, and for the three southern supermarkets it is greater than 25%, due to 

the low annual consumption.  

Table 6.4: Models of gas consumption in the selected supermarkets 

Location Glasgow Gateshead Washington Hull Leicester Newbury Exeter 

Electricity        

    (W/m
2
) -11.8 -5.11 2.45 -1.90 -6.35 0.56 -6.01 

     (W/m
2
)  12.0 5.29 6.60 2.43 7.38 2.04 6.82 

       ) (%) 12.2 6.50 6.49 2.96 9.07 2.27 7.19 

Gas        

    (W/m
2
) 9.02 5.53  6.15 9.13 9.16 8.80 

     (W/m
2
) 9.28 6.91  6.81 11.17 10.72 9.27 

       ) (%) 15.0 15.6  11.72 28.65 29.2 26.3 

 

The results of the     and          estimates displayed here are larger than the values 

of the propagation errors, but, except for the electricity consumption in the Glasgow store 

and the gas consumption in the three southern supermarkets, they are within or close to the 

targets mentioned in Section 5.7. The reason (additional refrigerated shelves) for the 

changes in the Glasgow supermarket is credible. However, why the three stores in the 

south have such large         ) is not clear. One reason could be that the annual gas 

consumption for these three supermarkets is significantly lower than for the more northern 

stores. Another reason may be that the data used for the error estimate were collected for 
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the summer months, i.e. out of the main heating season, and expanding the data to include 

winter months should yield more accurate results. 

6.4 Summary of whole supermarket analysis 

In this chapter the results of the data analysis, described in the previous chapter, are shown 

and the gas and electricity consumption models were used to predict the change in energy 

usage for seven UK supermarkets. Throughout this chapter the data from the supermarket 

in Glasgow are used to illustrate the important steps in developing regression models for 

the electricity and gas use in the selected supermarkets. These models are simple linear 

regression models for the gas use data and for three out of the seven electricity data sets. 

The maximum change in electricity use is approximately 4.7% for the 60 year interval 

investigated and approximately 24% for gas demand. The propagation error showed that 

for the 10% probability case detection of changes in energy demand is doubtful, but is 

more likely for the high probability values. The error estimate based on measured data 

indicates that the estimates for the electricity demands are more reliable than the gas 

predictions. 

 





 

- 99 - 

7 Discussion on whole supermarket analysis 

The results presented in the previous chapter are discussed here in the following order: 

First it is shown how the results have addressed the question regarding the impact of 

climate change and location on energy use in supermarkets. This is followed by a 

discussion of sources of errors and uncertainties. The third section of this chapter critically 

evaluates the methodology used here against other possible approaches. After that, the 

results are compared with work from other researchers. A discussion on practical 

implications completes this chapter. 

7.1 Comparison with research aims 

The analysis of the selected seven similar supermarkets proposed answers to the questions 

regarding how (a) climate change and (b) location influence energy consumption in 

supermarkets. The UKCP09 central estimate for the 2030s predicts an increase in annual 

average temperature of approximately 20% over the base period with little spread among 

the supermarkets (    = 7.38%). This translates into a predicted maximum rise in the 

average electricity use of 2.9% for all seven supermarkets (    = 26.1%), and a maximum 

drop in average gas consumption of 14% (    = 21.3%) for these temperatures. Although 

the seven supermarkets consume between 10% and 115% more electricity than gas, the 

predictions suggest that there will be a reduction in overall energy demand. The electricity 

estimate for the temperatures at 10% and 90% probabilities give an average deviation from 

the central estimate of −1.2 percentage points (for the 10% temperature values) and +1.5 

percentage points (for the 90% temperature values). For the same temperatures the gas 

consumption deviated from the central estimate by +6.2 percentage points (for the 10% 

temperature values) and −7.0 percentage points (for the 90% temperature values) on 

average. 

The research also looked at how location may influence energy consumption. One aspect is 

the differences in climate and weather. Here the temperatures have a span of 1.71°C (    

= 7.51%) for the base period climate and 2.80°C (    = 7.92%) for the measured 

temperatures. Although the minimum for both temperature ranges occurs in Glasgow, the 

maximum for the base year climate is in Exeter and for the measured temperature in 

Leicester. Neither set of temperature values follows a straight north south trend. This may 

be partly due to difference in local topologies and partly due to how the data had been 
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acquired and prepared. For instance, the current temperature has generally been measured 

at the supermarket. However the UCKP09 data are given as one value for each 25 x 25 km 

square based on measurements from the MET weather stations network. Therefore it can 

be said that temperature is not a strict function of location and, by extension, energy use by 

temperature sensitive equipment is only loosely related to latitude and longitude. 

Another aspect of local influence may be the way a specific supermarket is operated. When 

visiting the stores it was noticed that most large energy consumers, such as lighting or gas 

boilers, were centrally controlled, hence differences were minor. The two operational 

practices investigated were the main baking time and the times the night covers were 

removed and replaced. The main baking time estimated by the baking staff is 

approximately four hours for five of the seven supermarkets. Therefore establishing a 

relationship between a supermarket’s     and the baking times was not possible. The 

reported practice regarding refrigeration night covers varies from supermarket to 

supermarket (see Table 5.1), but a linear regression model indicated that a store’s     does 

not seem to be related to its night cover placement practice. An operation practice not 

thoroughly investigated was the routine closing of the cold room doors. As only the 

supermarket in Hull has more than one door, it could have been suspected that it performed 

the worst of all the supermarkets. However, the model graphs in Figure 6.3 as well as 

Table 5.3 showed that this idea cannot be substantiated by the current research. At best it 

could be argued that keeping both doors shut may reduce the energy consumption, 

although not significantly. Taking the findings summarized in this paragraph into account 

it can be concluded that local variations in operational procedures have no appreciable 

effect on the gas and electricity consumption in the researched supermarkets. 

Another indication that the differences in local operation procedures seem to have only a 

small overall effect is that the differences in gas use models were adequately explained 

with thermodynamic principles and building dimensions. Part of this reasoning is that air 

behaves similarly to a perfect gas. This means that, for a given temperature rise, the 

required amount of heat is proportional to the volume of the thermodynamic system, 

everything else being equal. However, for Gateshead and Newbury, this model seems to 

start to break down as the second order model improves the fit by over 5%. This behaviour 

may be due to the lack of a lobby resulting in the outside temperature having a more direct 
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influence. This may need further investigation to see if this is also the case for electricity 

consumption. 

7.2 Other approaches 

The coefficients of determination for the electricity model range from 0.563 (simple 

regression model for Leicester) to 0.973 (change point regression model for Gateshead) 

and for the simple regression models for gas use from 0.843 (Hull) to 0.934 (Glasgow). 

These figures indicate that the models chosen have the potential to explain a high 

percentage of the data variation. A similarly high    was also reported by Ruch and 

Claridge (1992) for their electricity change point regression model for the supermarket 

they investigated. The relatively low coefficient for some of the electricity models here 

may be because of equipment problems at those stores (e.g. the site temperature sensors for 

Newbury and Exeter were not accessible) and not because of the approach chosen. 

Methodologies employed by Ruch et al (1993) to investigate electricity used in a 

supermarket were MLR and PCA. The researchers found that the values for    were 

comparable with each other and were given for the PCA, which included temperature, 

humidity and solar radiation, as 0.562 for the range before the change point temperature, 

and 0.740 for the temperature range afterwards. However, when they are compared with 

the coefficients of determination for the electricity models here, one finds that the PCA 

coefficients do not improve the predictive power. 

First principle models were developed by Arias and Lundqvist (2005) and Suzuki et al 

(2011). Although their models showed a good general agreement with measured data, there 

were discrepancies between estimated and actual consumption. Both papers gave only 

graphical indications of the model error and not     or      values. Therefore 

comparing them with the models used in the investigation above is difficult. However, it 

can be said that the time invested to investigate only the response to temperature change 

would have been too high. 

Another alternative approach is using building simulation software outright. As pointed out 

earlier, constructing models in those software packages is not a trivial task and even after 

these have been carefully constructed, they may not be accurate and therefore they need to 

be calibrated (Coakley et al, 2014; Deru et al, 2013). Research which uses this approach 

frequently takes advantage of the software’s ability to investigate mitigation and adaptation 
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options (Jenkins et al, 2008a; Wan et al, 2011b; Wan et al, 2011a; Deru et al, 2013). As no 

such further investigation was part of this study, such an approach would have been time 

inefficient. Taking the discussion above into consideration, it may be concluded that the 

methodology selected yielded results of a level of credibility comparable to other options 

in a time efficient manner. 

7.3 Errors and uncertainties 

In this section the errors associated with measured data are discussed first, which is 

followed by considering uncertainties relating to predictions. The first two sources of error 

acknowledged, but not further pursued here, are associated with the measuring devices. 

These measuring devices include the on-site temperature sensors or the MET office 

stations (for Newbury and Exeter). To increase the intercomparison of the results, these 

sensors could be compared with each other, particularly those at the two supermarkets in 

Gateshead and Washington which are close together, so that differences in energy 

performance can be more thoroughly investigated. The second source relates to non-linear 

models, which may yield different results for different temperature distribution with the 

same mean value. This is to say that larger data spans (e.g. through the introduction of 

some randomness to temperature data) may produce higher electricity demand. However, 

how great such a data spread should be is a problem difficult to solve. 

Another source of error arises from faulty equipment or the way the equipment is operated. 

During the site visits and data collection phase, it was discovered that building timers were 

incorrectly set, equipment had broken down or repairs were carried out incorrectly. Other 

researchers reported similar problems (Ruch and Claridge, 1992; Schrock and Claridge, 

1989). The possibility of not all of these problems having been detected is indicated by the 

low coefficients of determinations for, e.g., Leicester. 

The error estimates from the statistical models were summarized in two different ways. 

The first was by computing an error estimate based on error propagation, which showed a 

modest error. The second way was by calculating the      and       for a period 

outside the analysed period. These error values were considerably greater than the 

propagation error estimates, especially for the gas consumption. However, other 

researchers found their           to be of similar magnitude (Lam et al, 2010a; Lam et 
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al, 2010c), therefore, although the results should be treated with appropriate caution, they 

should be still considered useful and comparable with other research outputs. 

Sources of uncertainty may relate also to changes to supermarkets and future shopping 

behaviour. One example is the additional refrigerated shelving units installed in Glasgow, 

which had a significant impact on electricity consumption. Improved supermarket 

refrigeration systems summarized by Tassou et al (Tassou et al, 2011) are an example of 

technological changes which may well alter the energy use in supermarkets. Other 

alterations may relate to the advances in technology for which Jenkins (2009) investigated 

the impact on an office building. He found a significant difference in energy use between 

the scenario with the present day equipment and one with more efficient equipment. These 

potential developments and changes in shopping behaviour should be taken into account to 

obtain a more complete picture of future energy demand in supermarkets. 

Chapter 3 introduced major uncertainties in climate change predictions ranging from 

insufficient understanding of the natural climate system to limited computer power. 

Although some of the known uncertainties have been made explicit in the UKCP09 

predictions, many are difficult to account for and, therefore, any prediction based on these 

will suffer from the same shortcomings. 

The discussion above acknowledged a few sources of uncertainties and tried to put them 

into the context of research into climate change impact assessments. It is apparent that the 

results presented in the previous chapter have a potentially large error margin and should 

be regarded as indicative only. They can only be validated when measurements are 

available. However, it should also be pointed out that the discussion in this section 

mentions published research literature which reported errors of comparable magnitudes. 

7.4 Comparison with other research 

Early research into climate change impact on buildings suggested that, depending on 

location, an increase in cooling load and corresponding decrease in heating demand can be 

expected (Loveland and Brown, 1989). This assessment has been substantiated and 

quantified in other research (Li et al, 2012). The work reported here agrees with this 

assessment by suggesting an increase in electricity use of between 1.4% and 2.9% for the 

central estimates. As electricity is not used for heating, but rather for comfort cooling and 

refrigeration, it is likely that this increase is due to a higher cooling load. The heating 
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demand, on the other hand, is predicted to drop by between 7.9% and 14.2% for the central 

estimates. When comparing the absolute total amount, one finds that there is actually a 

decrease in energy demand and not a ‘fuel swap’ suggested by Crawley (2003) and more in 

line with work by Pilli-Sihvola et al (2010) who predict a larger drop in heating demand 

than a rise in cooling demand for Central and North Europe. 

The geographical spread of the predicted change in energy usage is larger for electricity 

than for gas. This is similar to work done on different types of dwellings in four locations 

in Great Britain (Collins et al, 2010). This research suggests a drop in gas consumption for 

three of the four locations of 26%, and of 32% for the other. The estimates presented in the 

previous chapter predicted a decrease for five of the six stores included in the gas 

consumption analysis of between 7.9% and 10.6%, with the remaining one dropping by 

14.2%. However, the percentage increase in electricity use reported by Collins et al (2010) 

due to a rise in cooling load, is higher both in magnitude and in spread. This is owing to 

low initial figures for the current demand. Although the change in electricity use in the 

supermarkets investigated here does not exhibit such a high increase, its associated     

shows a sensitivity to differences in these small changes. The location dependant energy 

change in Great Britain reported for an office building by Jenkins et al (2008a) also agrees 

with the results for gas here both in magnitude (average: -10.7%) and spread (average: 

9.6%). However, the increase in electricity use suggested in this paper (average magnitude: 

31.6%, average spread: 14.6%) is much higher. This may be because supermarkets have a 

higher electricity     owing to the refrigeration system and higher lighting density. 

Four out of the seven supermarkets could be modelled with nonlinear change point 

regression models. Scott et al (1994) found indications that this may be true for 

commercial buildings in general. The work done on change point regression for 

supermarkets (Schrock and Claridge, 1989; Ruch and Claridge, 1992) corroborate the 

change point regression models developed here. These previous studies investigated a 

superstore with a sales area at least 2.5 times the size of the supermarkets researched here. 

The change point temperatures (15.6°C in Ruch and Claridge (1992) and (16.7°C in 

Schrock and Claridge (1989)) are also comparable for three out of the four change point 

models here. Only the one for Glasgow indicates that the quasi temperature independent 

temperature range finishes relatively early at 11.6°C. The slope ratio in Ruch and Claridge 

(1992) is 4.4 and the slope after     is 19.4 kWh/m
2
/°C there. Except for the slope ratio for 
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Hull, both parameters are comparable with the results here. For instance, the slope after the 

change point for Gateshead is 16.4 kWh/m
2
/°C (please note that Table 6.1 uses different 

units). Based on the research here it may be suggested that there is an upper limit for a 

linear regression model after which change-point regression models should be considered. 

7.5 Practical implications 

One of the practical implications is that the heating consumption for supermarkets in retail 

units may be predictable with a relatively simple model using only building geometry. This 

may be helpful in verifying the correct operation of the heating systems and in detecting 

any abnormalities.  

Another useful insight gained through this research is that the electricity consumption over 

the next decade or so should not drastically increase due to climate change. This statement 

should be regarded as tentative and read in conjunction with the section on errors and 

uncertainties. In addition, research indicated that dwellings may use considerably more 

electricity (e.g. Collins et al (2010)), therefore utility companies may have to cater for this 

demand in novel ways to make more effective use of the energy infrastructure. 

The drop in gas consumption for heating suggested by this research may open up other 

avenues of gas use. One possibility is the use of combined heat and power (CHP) plants to 

combat the increase in electricity use. The change in consumption calculated here is from 

the base period from 1961 to 1990, so some reduction in gas use may have occurred 

already. 

One implication of the randomness in supermarket operation (e.g. incorrectly set timers, 

fault repairs, equipment breakdowns) could be that, if a large enough sample is used, 

including this randomness gives a more authentic picture of energy use in supermarkets 

than detecting and excluding outliers. 

7.6 Conclusions of whole supermarket analysis 

The discussions in this chapter compared the results with the research aims and put it into 

context by comparing them with other relevant research literature. The chapter showed that 

for the central estimate the yearly electricity demand would rise by 2.9% and the gas use 

would drop by 14% over a 60 year interval ending in 2030s. 
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This chapter also indicated that location and temperature are somewhat related, but 

because of local microclimate there is no strong north-south correlation. Also the influence 

of local variation in operation could not be match with variation in energy use in the 

different supermarkets. 

When comparing the investigation here with other research projects it was found that the 

method chosen of a level of credibility comparable to other options. The discussion on the 

geographic spread found in other research papers showed also that the variation found here 

was comparable to them. In addition, this chapter showed that the change point regression 

models used for some supermarkets are comparable to the ones published in research 

literature. 
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8 The R404A/CO2 refrigeration system and climate change 

As the literature review indicated in Section 2.3, the refrigeration system usually makes up 

a large proportion of the electricity consumption in a supermarket. Therefore it is useful to 

investigate such a system in isolation to more fully appreciate how supermarkets respond 

to climate change. This is the main aim of this chapter, which is organised in the following 

way. The first section concentrates on literature introducing the main strands of research 

into supermarket refrigeration. The next section discusses the basic principles of vapour 

compression systems. This is followed by an explanation of how the useful refrigeration 

effect     was derived and how it was used to calculate the coefficient of system 

performance (    ) for a complete refrigeration system in steady state. Based on this 

work, a software model was developed and implemented in Matlab. After its verification, 

this was used to achieve the main aim of this part of the research: estimating the response 

of a refrigeration system to climate change. The section thereafter employed the Matlab 

model to investigate the energy savings potential of a different approach to controlling the 

condenser fans. The final section in this chapter discussed the results and drew conclusions 

based on the work presented in this chapter. 

8.1 Major topics of supermarket refrigeration system research 

Research into supermarket refrigeration systems includes investigation of different 

topologies and HVAC integration strategies (Cecchinato et al, 2010b; Cecchinato et al, 

2012). This field of research also covers secondary loop (SL) refrigeration systems in 

which the primary system is a vapour compression system and the SL system serves as a 

distribution system. This type of refrigeration system has also been installed in the 

supermarket discussed below. Wang et al (2010) reviewed such systems and found that 

one of the driving forces behind the move towards them was the Montreal Protocol, which 

enforced the phasing out of chlorinated hydrocarbon refrigerants. Replacement refrigerants 

may be flammable or toxic, so limiting them to a closely controlled primary system seems 

advisable. After discussing flammable refrigerants at some length the authors mentioned 

two R&D challenges. The first one is  the degradation of the system’s efficiency due to the 

introduction of a circulation system including pump(s) and the second is the higher initial 

costs. 
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Tassou et al (2010) published a review on emerging technology for food refrigeration 

including also a description of refrigeration systems for supermarkets which were 

considered modern at that time. Such systems used the refrigerant R404A, a multi-

compressor pack with an air-cooled condenser and variable head pressure control. The 

authors found that capacity control for the compressor bank of such systems was achieved 

by cylinder unloading, on-off cycling of individual compressors and by using a variable 

speed drive for a trim compressor. This description fits the system analysed below very 

well, thus it can be concluded that it is representative of a significant percentage of 

currently installed systems. Therefore results from investigating this system should be not 

peculiar to this supermarket, but should be valuable for supermarkets in general. 

8.1.1 Refrigerated display cabinets 

The distinguishing feature of energy consumption in supermarkets compared with other 

commercial buildings is the influence of refrigerated display cabinets. That is why Hill et 

al (2014) argued to include the refrigeration system and the impact of these open 

refrigerated display cases in the NCM, a statutory energy assessment. These researchers 

found that the NCM severely underpredicted cooling and heating demands which were, in 

fact, twice as much as lighting for the supermarket used for their case study. However, 

according to the NCM, lighting seemed to be the largest item in an energy audit. Heating 

and cooling, on the other hand, were virtually nonexistent according to this methodology.  

The effect of indoor relative humidity on the refrigerated display units was examined by 

Howell et al (1997). These researchers found for the supermarket in Florida they 

investigated that, if the indoor relative humidity was reduced from 55% to 50%, energy 

savings of 4.7% were possible for the whole store. Subsequently Bahman et al (2012) built 

on this work investigating energy saving potentials when assessing refrigeration and 

HVAC energy consumption together. The methodology developed for researching this 

supermarket in Florida was based on a moisture balance equation. These researchers 

discovered that the measured indoor annual average was 51.1% relative humidity, which 

was below the design value of 55% relative humidity. Their paper reported on the results 

of reducing the humidity as low as 40%. The authors found that the overall energy used 

was reduced despite a higher annual energy demand from the air condition system. Kosar 

et al (2005) investigated reduction of the indoor relative humidity to 35% in supermarkets 

in general and found that, even then, energy could be saved. 
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8.1.2 Modelling of supermarket refrigeration systems 

Refrigeration systems in supermarkets form a subset of all the commercial vapour-

compression systems. Ding (2007) reviewed then recent developments in simulating 

vapour compression systems. He found that the mathematical models for compressors 

depended on the aim of the research and divided them into steady state and dynamic 

models. In conjunction with the steady state models, the author referred to the polytropic 

exponent, mass flow rate and motor efficiency as necessary model inputs. Evaporator and 

condenser models were also divided into steady state and dynamic models and, for the 

latter method, Ding found the following three approaches: lumped parameter models, zone 

models and distributed models. Regarding the algorithms he observed that the more 

abstract simultaneous solving method and the sequential module method, which had a 

more physical meaning, were used. In his review of future developments the author 

included knowledge transfer into industry and associate problems as well as nanofluids for 

refrigeration as topics for further research. 

The paper reviewing modelling approached by Ding (2007) discussed in the previous 

paragraph did not include the thesis by James (1976) who researched a produce freezing 

plant for energy conservation. This researcher used a first principle approach based on the 

conservation laws to model the steady state and transient behaviour of an air condition 

system as well as a quick freezing and liquid chilling plants. According to the author his 

work was particularly useful for improving the control settings of the air conditioning 

system. He also found ways to improve the capacity control of the freezing plant, but 

admitted that the model for the chilling plant only offered more insight without yielding 

definite results. 

Ge and Tassou used the energy simulation software package TRNSYS to simulate 

supermarket refrigeration systems (and whole supermarkets, e.g. Ge and Tassou (2011)). 

One example of their work for which these researchers used TRNSYS was the modelling 

of a multi-compressor refrigeration system (Ge and Tassou, 2000). In the corresponding 

paper the researchers described the mathematical models in quite some detail taking into 

consideration points such as the heat transfer between the inlet and outlet of the 

compressors. The researchers used their model to investigate the benefits of variable speed 

drives and variable head pressure control. These improvements had become the norm when 

they published their paper referred to earlier (Tassou et al, 2010). 



 

- 110 - 

When discussing climate change and refrigeration systems, only the effect of the 

refrigeration system as a contributing cause to climate change is normally examined. One 

example, is the paper by Wang et al (2010) mentioned above which discussed the need for 

replacement refrigerants for ozone depleting chlorinated hydrocarbon refrigerants. Another 

example is Lucas (2006) who explored the consequences for professional practice and 

changes to life style because of necessary changes in refrigeration technology arising from 

the need for replacement refrigerants. Earlier examples are summarized in Devotta et al 

(2005).  

The effect of the changing climate on refrigeration systems, however, does not seem to be 

an area of active research. Therefore the main aim of this chapter is to investigate the 

impact of climate change on refrigeration systems. A secondary research question revolves 

around how the condenser fan control could be improved. For this research the 

supermarket system in Hull was investigated as a typical refrigeration system. A first 

principle model was chosen for this as such a model allows the investigation of 

improvement ideas, e.g., in conjunction with the condenser fans more easily then a data-

driven model. As mentioned in an earlier chapter, the same type of system has been 

installed in all the investigated stores. Therefore results of the research here should be 

relevant to other supermarkets as well. 

 
Figure 8.1: Schematics of a simple vapour compression system 
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8.2 Introduction to refrigeration systems 

The aim of refrigeration is to generate and maintain a space at a temperature lower than its 

surroundings. This can be achieved through various ways, but, currently, the most common 

approach for supermarkets are vapour compression cycles (Arora, 2010, pp 1-7; Gordon 

and Ng, 2000, p 15). All of these cycles use thermodynamic processes and principles. To 

illustrate how they may be applied to refrigeration systems a simple, steady state vapour 

compression system with a pure substance refrigerant and the components as shown in 

Figure 8.1 is considered. These four components are also included in the subsequently 

analysed installed system and the software model. 

8.2.1 Vapour compression cycles 

The  -  diagram in Figure 8.2 is of a hypothetical, pure refrigerant (a similar approach was 

used by Riffe (1994)) containing three vapour compression cycles. The cycle indicated by 

the dashed black line (1 → 2 → 3 → 4 → 1) is the fully reversible Carnot cycle. This cycle 

consists of two isothermal processes (4 → 1 and 2 → 3) and two processes for which the 

entropy remains constant (1 → 2 and 3 → 4). During the process 4 → 1, the refrigerant 

absorbs heat from the higher temperature surroundings by being partly vaporized. This 

vapour-liquid mixture is then adiabatically and without any losses compressed to point 2, 

at which point the refrigerant is a saturated vapour. Next, heat is rejected during the 

process 2 → 3 to the lower temperature surroundings. A fully reversible expansion process, 

i.e. 3 → 4, returns the refrigeration from the saturated liquid line to the two phase region at 

point 4. It has been shown that this theoretical cycle constitutes the maximum limit for 

thermal efficiency for a given temperature difference so that actual cycles can be compared 

against it (Çengel and Boles, 2007, p 625; Stoecker and Jones, 1983, pp 187-188). 

One of the reasons why this cycle is not used in practice is that compressors can be 

damaged when dealing with wet vapour (Arora, 2010, pp 135, 136; Gordon and Ng, 2000, 

p 19). Therefore the Carnot cycle is amended by replacing the process 1 → 2 with the 

isentropic compression process 1’ → 2’. This process along the constant entropy line does 

not acknowledge any losses, such as heat or friction losses. This deviation is shown as the 

process 1’ → 2” in Figure 8.2. To capture this deviation, the isentropic efficiency may be 

used, which is defined as the ratio between the isentropic work and the actual work (Arora, 

2010, p 148). Another approach, which allows the exploration of the underlying 

thermodynamic principles, is to assume this process to be polytropic (Arora, 2010, p 172). 
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Figure 8.2: Vapour compression cycles in  -  diagram 

8.2.1.1 Analysis of compression process 

The analysis of the different processes and system components makes use of the laws of 

thermodynamics, in particular the first law. This is sometime also referred to as the “law of 

the conservation of energy” (ASHRAE, 1997, p1.2) and can be written as in Equation 8.1. 

                               

Equation 8.1 

In the analysis here only steady state conditions are considered, therefore the change in 

energy term is zero. The same implications apply for a steady state mass flow rate through 

an open system. With these two simplifications Equation 8.1 may be re-written as in 

Equation 8.2 (Stoecker and Jones, 1983, pp 21, 21; Arora, 2010, p 31). 

   
  

 
    

  

    
  

 
    

   

     

Equation 8.2 

Where: 

 : Specific enthalpy 

 : Velocity 

 : Gravitational acceleration 
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 : Elevation 

 : Specific heat 

 : Specific work 

  : Index indicating variables associated with energy entering a system 

   : Index indicating variables associated with energy leaving a system 

The simplifying assumptions for the compression process include that the compression 

process is adiabatic, during which the change in kinetic and potential energy are negligible 

(Stoecker and Jones, 1983, p 22) so Equation 8.2 can be modified to yield Equation 8.3. 

                
Equation 8.3 

A way of characterising an actual compressor is by using isentropic efficiency,      . 

Referring to Figure 8.2 the       can be defined as in Equation 8.4 (Arora, 2010, p 125). 

This efficiency is particularly relevant for compression processes which are (at least nearly) 

adiabatic (Çengel and Boles, 2007, p 379). 

      
               

           
  

  
     

 

  
      

  

Equation 8.4 

Another method of calculating the specific work input to an isentropic compression for 

steady flow is to integrate the      work using the equation below (Arora, 2010, p 109): 

              
Equation 8.5 

Where: 

 : Absolute pressure 

 : Specific volume 

 : Specific heat ratio 
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Such an approach yields Equation 8.6: 

      
   

 

   
         

  

  
 

     
  

     

Equation 8.6 

Where: 

    
 : Specific work input into the compression process (     integral) 

  : Absolute pressure at suction port of compressor 

   : Specific volume at suction port of compressor 

   : Absolute pressure at discharge port of compressor 

8.2.1.2 Analysis of condensing process 

The refrigerant is first de-superheating in a condenser either from point 2” Figure 8.2 (for 

an actual compression process) or from point 2’ (for an isentropic process) and then passes 

point 2 when the actual condensing process starts. Depending on the condenser the process 

finishes at the saturated liquid line (point 3) or extents into the sub-cooled region (not 

shown in the diagram). For the analysis here the saturated liquid line marks the end of the 

condensation process. With this in mind Equation 8.2 can be simplified when noting that 

the specific work is zero and neglecting changes in potential and kinetic energies to give 

Equation 8.7. 

           
Equation 8.7 

Where: 

  : Specific heat rejected by the condenser 

   : Specific enthalpy in the superheat region (either at point 2’ or 2”) 

  : Specific enthalpy at outlet of condenser 

The heat    is rejected into the air stream forced through the condenser by the fan indicated 

in Figure 8.1, which increases the enthalpy of the air by        . Noting that the specific 

heat constant at constant pressure,   , is defined as (Çengel and Boles, 2007, p 179): 
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Equation 8.8 

it is possible to write an equation that relates the change in enthalpy, which is equal to the 

rejected heat   , to the change in air temperature. Equation 8.9 is for the case where    is 

constant. 

                  
Equation 8.9 

Where: 

    : Temperature of air leaving condenser 

   : Temperature of air entering condenser 

The power required to remove this heat is governed by the fan laws, which show that the 

fan power consumption is proportional to the cube of the volumetric flow rate of the air 

(ASHRAE, 2008, p 20.4). 

Major differences between the theoretical and actual processes in the condenser include the 

drop of pressure along the condenser, which makes the condensing process non-isothermal 

for pure substances (Stoecker and Jones, 1983, p 203). If the refrigerant is not a pure 

substance, then the condensing process may not be isothermal, even if it were isobaric 

(ASHRAE, 1997, p 1.10). Another possible difference is the sub-cooling in the condenser, 

that is to say that the refrigerant is cooled beyond the saturated liquid line, which may be a 

design feature of an actual cycle, to ensure that only liquid enters the expansion device 

(Stocker et al, 2001, p 203). 

8.2.1.3 Analysis of the expansion process 

The most severe deviation from the Carnot cycle is probably the irreversibility through the 

throttling valve. When assuming that the changes in potential and kinetic energy can be 

neglected, Equation 8.2 can be simplified to yield Equation 8.10 if neither heat nor work 

enters or leaves the valve throughout the process (Arora, 2010, p 123). 

       
Equation 8.10 
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Where: 

  : Specific enthalpy of the refrigerant entering the expansion valve 

  : Specific enthalpy of the refrigerant leaving the expansion valve 

ASHRAE (1997, pp 1.12-1.13) analyses an actual refrigeration system and suggests that 

there is no heat exchange between the expansion valve and its surroundings. However, 

Arora (2010, p 151) explains that there is some heat transfer to the expansion device in real 

systems with a corresponding increase in exit enthalpy. 

8.2.1.4 Analysis of evaporation process 

The refrigerant evaporates in the isothermal process from 4’ to 1’ (or from 4 to 1 in the 

Carnot cycle is considered). This latent heat provides the desired refrigeration effect. The 

specific refrigeration effect    can also be calculated based on Equation 8.2. Again, 

neglecting any changes in kinetic and potential energy and noting that there is no work 

done by or on the system, Equation 8.11 can be derived (Arora, 2010, p 123). 

      
    

  
Equation 8.11 

Where: 

    Specific heat absorbed by the evaporator 

  
   Specific enthalpy at the outlet of the evaporator 

  
   Specific enthalpy at the inlet of the evaporator 

The mass flow rate,     , to give the required total refrigeration effect     can be calculated 

as shown below (ASHRAE, 1997, p 1.9). 

                    
   
  

  
   

      
 

Equation 8.12 

Deviations from the theoretical evaporation process in Figure 8.2 are very similar to the 

one discussed for the condenser, such as the pressure drop along the evaporator. In the case 

of an evaporator the vapour may be deliberately superheated (rather than sub-cooled) to 

avoid wet compression (Stoecker and Jones, 1983, p 203). 
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Other losses in the refrigeration system include heat exchanges along connecting pipes and 

other system devices, and pressure drops along these. The refrigerant may also contain an 

amount of lubricant required for the compressors, moisture and noncondensable gases, thus 

changing its behaviour. (Arora, 2010, pp 148-153). The example in ASHRAE (1997, pp 

1.12-1.14) shows that the component with the highest losses is the compressor due to, for 

instance, friction losses, motor inefficiencies and heat exchange with its surroundings. 

8.2.1.5 COP and COSP 

The two efficiencies figures which will be used to throughout this chapter are the 

coefficient of performance (   ), which is for the core refrigeration system, and the 

coefficient of system performance (    ), which also includes other components. A later 

section will discuss them and their relationship with each other more closely. Below is the 

definition for the     (ASHRAE, 1997, p 1.3) and      (Evans et al, 2014). 

    
                           

                                                        
 

Equation 8.13 

     
                           

                                                         
 

Equation 8.14 

8.3 Introduction of the installed system and its      

The two cascaded R404A/CO2 refrigeration systems investigated here are installed in the 

Hull supermarket mentioned in the previous chapters. These systems have a nominal 

cooling capacity of 60 and 80 kW (Searle Manufacturing Company, 2008, p 69). Although 

this study concentrates mainly on the larger of these two refrigeration systems, data for 

both systems were downloaded and used for intercomparison to detect errors in data 

acquisition and preparation. The reason for this selection was that the electricity 

consumption of the condenser fans could be studied more effectively as there are twice as 

many in the larger system. The two refrigeration systems are located in the plant area 

behind the supermarket (see Figure 8.3). The wall of this area, which is north facing, also 

has an outdoor temperature sensor installed approximately 2 m above ground. 

The focus of the explanations below is on describing how the necessary specific enthalpies 

and the overall mass flow rate were calculated so that the useful refrigeration effect     and 

the      of the complete system could be estimated. 
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Figure 8.3: Refrigeration systems in Hull (including condensers and CO2 pumping stations) 

8.3.1 Description of system 

The main components of the 80 kW system are listed in Table 8.1. In addition to the 

position of these components within the system, Figure 8.4 also indicates schematically the 

position of the temperature and pressure sensors used throughout this section. The yellow 

circles with numbers in Figure 8.4 correspond to those in Figure 8.5 (shown later in this 

chapter) and were added to more easily identify the thermodynamic processes. The CO2 

system, shown in blue in Figure 8.4, is considered as the load of the refrigeration system 

and is not further analysed. The CO2 vessel is maintained at approximately 30 barg 

corresponding to a temperature of about -4.4°C. 

Table 8.1: Main components of the installed refrigeration system 

Short Component Model No Remarks 

N/A Refrigerant R404A 1  

C1 Compressor Bitzer, 4DC-5.2Y 1 VSD: 20 Hz – 60 Hz 

C2 Compressor Bitzer , 4PCS-10.2Y 1 50%/100% capacity control 

C3 Compressor Bitzer, 4J-13.2Y 1  

C4 Compressor Bitzer, 4DC-5.2Y 1  

N/A Condenser GEA, MGC222H-09-EC3 1 No sub-cooling section 

Fan Condenser fan Searle, 231-9091-EC 43 4 
1.9 kW/fan, VSD, all fans 

some VSD signal 

HXe,1, 

HXe,2 
Evaporator heat exchanger Alfa Laval, AlfaChill 120 2  

EEA Electronic expansion valve Carel, E3V 2  

HXsub Heat exchanger Ecolfex, GBS800H, 44 plates 1  

 

Temperature sensor 
System No. 1 

System No. 2 

CO2 pumping 

station No. 1 

CO2 pumping 

station No. 2 
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The suction line accumulator of the actual system contains a heat exchange coil to boil off 

any liquid refrigerant from the evaporator. However, as the quality of the refrigerant 

leaving the evaporator is not measured, the accumulator is thought of as a simple flash tank 

with the assumption that the expansion valve is controlled in such a way that the quality of 

the refrigerant is close to unity. This simplification may overestimate the useful 

refrigeration effect    . All the sub-cooling is attributed to the heat exchanger, shown as 

HXsub in the centre of Figure 8.4. 

 
Figure 8.4: Schematics of the installed refrigeration system with sensor positions 

The controller for the refrigeration system controls both the compressor bank of the four 

reciprocal, semi-hermetic, 4-cylinder compressors and the four condenser fans. The speed 

control signal is the same for all four fans. Originally, only compressors C1 to C3 were 

fitted. C4 was added later (but before this analysis started) to boost the system’s cooling 

capacity. Compressors C3 and C4 have only on/off controls, C2 has the capacity to offload 

two of its four cylinders (Bitzer Kühlmaschinenbau GmbH, 2014, p 8) and C1 is controlled 

via a variable speed drive (VSD) which operates from 20 Hz to 60 Hz (Searle 

Manufacturing Company, 2008, p 69). 

The control input for the compressor bank is the suction pressure, which has a set-point of 

3.5 barg, (corresponding to a refrigerant temperature of -9.1°C). For the condenser fans the 
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condenser pressure is monitored and has a target value of 10 barg and a control band of 

±0.5 bar. The condenser fans also have a night set back which limits the maximum fan 

speed to 53% of its maximum (Searle Manufacturing Company, 2008, pp 69-71). 

8.3.2 Data acquisition and preparation 

Data for the period from 1 June 2014 to 30 Nov 2014 were remotely downloaded from the 

following on-site devices. Firstly, the readings of the sensors shown in Figure 8.4 and 

mentioned in Table 8.2 are routinely recorded by controllers (one controller for 

refrigeration system No. 1 and one for system No. 2) and therefore could be remotely 

downloaded in 15 s intervals (lowest resolution) from these controllers. Secondly, data 

from two power meters, each measuring the electricity consumption of one complete 

system, were also downloaded in 15 s intervals. These power readings cover the 

compressors, condenser fans, CO2 pumping station, controls and auxiliary equipment such 

as control room heaters and lights. As they have been considered the power supplied to the 

complete refrigeration system, they have been used as was. The third data source was the 

temperature sensor in the plant area on the north side of the building (see Figure 8.3). 

Temperature (as well as relative humidity) data from this sensor were downloaded in 1 min 

intervals as changes in these values were expected to be captured within this time frame. 

Table 8.2: Measuring devices and sensors per refrigeration system 

Device Model No 

Pressure sensor RDM, PT4-18S 2 

Temperature sensor (Refrigeration system) RDM, PT1000 3 

Temperature sensor (Condenser) RDM, PT1000 2 

Power meter Elcomponent, AEM33 485 DIN 1 

Temperature sensor (outside temperature RDM, PT1000 1 

 

Before averaging the data, it was investigated if the averaging span had an effect on the 

quality of the compressed data. In order to do this power consumption data for two months 

were averaged over the following three different intervals: of 10 min, 15 min and 20 min. 

It was found that the 20 min interval reduced data points too much so that the behaviour 

could not be studied in sufficient detail. Therefore the 15 min interval was chosen to 

reduce the number of data points as much as possible without losing resolution.  

After this was determined, data from these data sources were combined in monthly 

spreadsheets and averaged over 15 min intervals. For the control data of the compressors 

C2 to C4 this included converting the text form, i.e. ‘on’ and ‘off’, into ‘0’ and ‘1’ before 
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averaging them for a 15 min interval for each compressor to obtain an average on time 

them. For C1 the VSD signal was converted into a percentage value of the full load at 

50 Hz using Equation 8.15. This value was then multiplied with the converted on/off value 

before it was averaged over a 15 min interval. 

                                   
Equation 8.15 

8.3.3 Description of the R404A refrigeration cycle 

 
Figure 8.5: R404A cycles (     : brown,     : purple,      : turquoise) 

Table 8.3: Main pressures and temperatures in the refrigeration cycles  

      
   

(barg) 

     

(°C) 

       

(°C) 

   

(barg) 

     

(°C) 

          

(°C) 

      
(°C) 

Min 3.80 15.9 -6.90 8.80 48.0 17.7 3.98 

Average 3.51 15.1 -8.48 10.53 46.2 21.4 7.54 

Max 3.15 17.7 -11.2 15.5 64.0 34.4 20.2 

 

The three refrigeration cycles in Figure 8.5 show the full operation range of the 

refrigeration system under consideration by displaying the cycles for the minimum, 

average and maximum pressure difference between the evaporator (or low pressure) side 

and the condenser (or high pressure) side of the system. The numbers in the yellow circles 

indicate how the data from the sensors in Figure 8.4 have been interpreted. From this 

diagram it is apparent that none of the second order effects mentioned in Section 8.2 have 
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been taken into consideration. Table 8.3 lists the data which were used to construct these 

cycles and is based on measurements and R404A refrigeration data for the software 

CoolPack (Skovrup et al, 2012).  

8.3.3.1 Suction point 

 
Figure 8.6: Pressure vs temperature scatter plot for the suction point 

The description of the cycle starts with the suction inlet of the compressor (referred to as ‘1’ 

in Figure 8.5) because this is the point monitored by the controller. The scatter plot in 

Figure 8.6 displays data for this point which is also considered the low pressure output port 

of the heat exchanger HXsub. The day time operation, which relates to the set back of the 

condenser fan speed mentioned above, extends from 06:00 to 20:00. The rest of the time 

the refrigeration system is in night time operation mode (see Section 8.3.3.5 for more 

explanations). The diagram shows that the set point of 3.5 barg is achieved well (overall 

average: 3.51 barg,) and that over 95% of the data points lie within a ±0.25 bar band. 

Table 8.4 lists some statistics for the suction point which indicates that the coefficient of 

variation     (=    ) is small (less than 4% for all cases). This table also shows that the 

pressure tends to be lower than average during the day corresponding to a higher 

evaporation temperature, which may be owing to a higher load through the day. The 

converse is true for the night time operation. 
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Table 8.4: Evaporator pressure and temperature statistics 

 Overall Day time operation Night time operation 

 Min Av σ Max Min Av σ Max Min Av σ Max 

Evaporator 

pressure    
(barg) 

2.89 3.51 0.14 4.00 3.02 3.44 0.10 4.00 2.89 3.62 0.11 3.87 

Suction 

temperature 

     (°C) 

12.4 16.3 1.13 20.62 14.4 16.0 1.33 20.6 14.2 16.7 0.57 19.6 

 

To derive the enthalpy equation for this operational area of the refrigeration cycle, R404A 

enthalpy data for the pressure range from 3.1 barg to 4 barg and for the temperature interval 

from 12°C to 21°C were exported from the CoolPack software package (Skovrup et al, 

2012). The following multiple regression analysis yielded Equation 8.16 with an    of 1.00 

and a maximum residual of 0.027 kJ/kg (which is 0.007% of the average enthalpy value of 

interest). 

      
  

  
      

  

    
          

  

       
    

Equation 8.16 

8.3.3.2 Compression 

The compressor bank increases the pressure of the vapour and transports the refrigerant 

through the system. To work out the overall mass flow rate the Bitzer software (BITZER 

Kühlmaschinenbau GmbH, 2013) was used to calculate the coefficients for the maximum 

mass flow rate,        , as a function of the condenser and evaporator temperatures for 

each compressor. This software presents the results in the polynomial form as specified in 

the standard BS EN 12900: 2013 (BSI, 2013) which is also shown in Equation 8.17. The 

ten coefficients of for these equations are given in Table 8.5.  

                                      
                        

          
 

              
               

           
  

Equation 8.17 

Where: 

      : Temperature at suction port of compressor 

    : Condensing temperature 
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Table 8.5: Mass flow rate coefficients according to BS EN 12900:2013 

Compressor                                 

4J-13.2Y 1740 61.8 -6.19 0.822 -0.133 5.74e-04 4.32e-03 -1.14e-03 -4.50e-05 4.18e-06 

4PCS-10.2Y 

(50%) 
659 23.3 -1.75 0.310 -0.035 -1.763e-02 1.64e-03 -3.47e-04 -2.224e-04 6.45e-05 

4PCS-10.2Y 

(100%) 
1320 46.6 -3.49 0.620 -0.070 -3.54e-02 3.28e-03 -6.93e-04 -4.46e-04 1.30e-04 

4PCS-10.2Y 659 23.3 -1.74 0.310 -0.035 -1.78e-02 1.64e-03 -3.46e-04 -2.23e-04 6.54e-05 

4DC-5.2Y 756 26.8 -3.31 0.352 -0.089 -6.036e-03 1.78e-03 -8.12e-04 2.52e-05 4.77e-05 

 

The individual maximum mass flow rates thus calculated were multiplied with the 

respective averages of the compressor on time and added up to obtain the overall mass 

flow rate      . The average overall mass flow rate was computed to be 1140 kg/h with a 

minimum of 0 and a maximum of 2350 kg/h. 

8.3.3.3 Discharge point 

Figure 8.7 displays the scatter plot for the discharge point of the cycle (noted as ‘2’ in 

Figure 8.5). As Figure 8.4 indicates, the sensor measuring the refrigerant temperature is 

sited somewhat away from the discharge point. Therefore this temperature is referred to as 

superheat temperature,    , rather than discharge temperature. 

 
Figure 8.7: Superheat temperature vs condensing pressure scatter plot for the discharge point 
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The night time operation data points in Figure 8.7 have a smaller spread than the day time 

operation, which is also confirmed by the smaller standard deviations in Table 8.4 for both 

the discharge pressure    and temperature. The day time and night time plots show that the 

superheat temperature has a minimum between 9.5  barg and 10 barg. This corresponds to 

the control set point for the condenser fans and can be explained with a feedback from the 

increase of the air flow rate through the condenser. After this minimum the discharge 

temperature rises with increasing pressure, for the day time operation almost linearly (   = 

0.945 for a linear model when the discharge pressure is above 10.3 barg). That the graph 

for the day time extends to higher pressure values is partly due to higher refrigeration loads 

during the day (for instance, night blinds removed) and partly due to higher outside 

temperatures during the day time affecting the condenser. The discharge enthalpy is not 

necessary for the calculation of the      and therefore will be discussed in Section 8.4.2.7 

when the compression software model is developed.  

Table 8.6: Discharge point pressure and temperature statistics 

 Overall Day time operation Night time operation 

 Min Av σ Max Min Av σ Max Min Av σ Max 

Condenser 

pressure    (barg) 
8.80 10.5 1.01 15.5 9.50 10.9 1.14 15.5 8.80 9.95 0.210 12.1 

Superheat tem-

perature     (°C) 
37.6 47.5 3.79 64.8 41.0 48.8 4.11 64.8 37.6 45.6 2.25 52.8 

 

8.3.3.4 Condensing 

The condenser rejects heat to the surroundings which is described by the thermodynamic 

processes from point 2 to point 3 in Figure 8.5. Depending on the fan speed the operation 

of the condenser can be divided into three different modes (ignoring radiation and 

conduction). For low condenser pressures the fans are at a standstill and therefore the heat 

is rejected through natural convection. During the transitional range, when the fan speed 

increases, the rejection rate is a function of the fan speed and the approach temperature 

difference. The final mode of operation occurs when the fans run at maximum speed and 

an increase in heat rejection can only be achieved by increasing the condenser temperature. 

If the vapour enters the condenser in a superheated state, then the vapour has to be first de-

superheated to the temperature       at the start of the two phase region before it can be 

condensed. Although the refrigerant is a zeotropic mixture, the glide during the 
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condensation process is small (maximum glide: −0.433 K, data from CoolPack (Skovrup et 

al, 2012)). Because the condenser has no sub-cooling section (GEA Searle, 2015) the 

refrigerant leaves the condenser as a saturated liquid.  

The temperature      , necessary to compute the mass flow rate (see Equation 8.17), was 

calculated based on the saturated vapour and liquid data from the CoolPack software 

(Skovrup et al, 2012) for the pressure range from 8.8 barg to 15.5 barg. It has a maximum 

residual of 0.0558 (or 0.2% of the average      ) and an    of 1.00. 

               
 

     
   

        
 

    
           

Equation 8.18 

It was assumed that no pressure drop occurs across the condenser, therefore an equation for 

the specific enthalpy of the refrigerant leaving the condenser could be derived as a function 

of the discharge pressure. In order to accomplish this, data for the saturated liquid were 

exported from CoolPack (Skovrup et al, 2012) and the equation below was computed with 

Excel (  =1.00) for the pressure range between 8.8 barg and 15.5 barg. 

       
  

  
      

  

       
           

  

        
   

  

Equation 8.19 

The maximum absolute residual for this equation was found to be 0.0724 or 0.03% of the 

average enthalpy value for saturated liquid, which was 239 kJ/kg. 

8.3.3.5 Condenser cooling 

All four condenser fans (1.9 kW per fan) were controlled by the same signal from the 

controller. According to the user’s manual (Searle Manufacturing Company, 2008, p. 70) 

this signal is limited to 53% for night time operation (from 20:00 to 06:00), but when 

examining the actual values, it was apparent that day time and night time operation had 

been swapped around (see Figure 8.8). 

According to the actual controller settings and the explanations in the user’s manual 

(Searle Manufacturing Company, 2008, p 70) the signal for the fan speed is related to the 

compressor pressure in the following way. The control signal is zero until a condenser 

pressure of 9.5 barg is reached, then the signal increases up to its maximum at 10.5 barg. 

During the night this maximum is 100% whereas for the day time operation this signal is 
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limited to 53%. When examining the variable speed drive (VSD) signal in Figure 8.8, it is 

apparent that, for this transitional period, the data spreads and the relationship between the 

condenser pressure and the VSD signal is not linear. The ramifications for modelling will 

be discussed in Section 8.4.2.4.  

 
Figure 8.8: Scatter plot of the fan VSD signal and power vs the discharge pressure 

In addition to the VSD signal Figure 8.8 also displays the electric power consumed by the 

condenser fans. As the power increases by the third power of the fan speed (ASHRAE, 

2008, p 20.4) and the VSD signal is proportional to the fan speed, Equation 8.20 was used 

to calculate the fan power. Figure 8.8 shows that the electric power for the day time levels 

off at a much lower value than for the night time operation. This level is 15 % (= 0.53
3
) of 

the full load power during the night. 

                            
Equation 8.20 

8.3.3.6 Sub-cooling/Superheating 

After the liquid refrigerant enters the heat exchanger it is sub-cooled from point 3 to point 

4 in the diagram in Figure 8.5. This is accomplished by superheating the refrigerant vapour 

in the low pressure side of the heat exchanger from point 5 to point 1 in Figure 8.5. As 

plate heat exchangers are generally considered efficient (Gut and Pinto, 2003) and this 
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particular heat exchanger is covered by a 19 mm layer of insulation (Searle Manufacturing 

Company, 2008, p 90), no energy losses were considered. Therefore the heat flux into the 

high pressure side was equated to the heat flux out at the low pressure side. This allowed 

the calculation of the specific enthalpy of the sub-cooled liquid    (point 4 in Figure 8.5) 

by subtracting the difference between the enthalpy at the suction point,   , from the 

enthalpy of the saturated vapour, i.e.    (see Equation 8.21). 

                 
Equation 8.21 

Data for the saturated vapour from 3.2 barg to 3.8 barg from CoolPack (Skovrup et al, 2012) 

were used to work out the equation for    (see Equation 8.22). The coefficient of 

determination was 1.00. 

       
  

  
     

  

       
    

Equation 8.22 

For this equation the maximum absolute residual was 0.0261 kJ/kg which is 0.007% of the 

average enthalpy of the saturated vapour used to work out Equation 8.22. 

8.3.3.7 Expansion 

The expansion through the electronic expansion values used in this system was thought of 

as being a constant enthalpy process and therefore the specific enthalpy    into the valves 

was the same as the one leaving them. As Figure 8.5 shows, the inlet fluid was in the sub-

cooled region. This is necessary to avoid flashing in the expansion valves (CAREL 

INDUSTRIES, 2012). After the expansion process was completed the refrigerant was in 

the two phase region. 

8.3.3.8 Evaporation 

The refrigerant leaving the electronic valves enters the plate heat exchangers HXe,1 and 

HXe,2 which serve as evaporators (see Figure 8.4). As the quality of the refrigerant coming 

out of the evaporators is not measured, it was assumed that the refrigerant was a saturated 

vapour at the exit of the heat exchangers. Based on this assumption the useful refrigeration 

effect can be calculated as follows. 
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Equation 8.23 

As mentioned in Section 8.3.3.2 the temperature      at the end of the evaporator was 

required to calculate the mass flow rate. The equation which was used to compute this 

temperature, Equation 8.24, was based on the saturated vapour data from CoolPack 

(Skovrup et al, 2012) for the pressure range from 3.1 barg to 3.8 barg and had an    of 1.00. 

The largest absolute residual of this equation was 0.0008°C or 0.01% of the average 

temperature of the saturated vapour of the range of interest. 

            
 

     
   

        
 

    
           

Equation 8.24 

The values in Table 8.7 are the averages of the saturated liquid and saturated vapour 

temperatures at the same pressure. This table shows that during the day the temperature 

was lower corresponding with the lower average pressure mentioned in Table 8.4. This 

may be because of higher refrigeration loads during the day. Or in other words, the 

refrigerant and the CO2 in the evaporator had to have a higher temperature difference to 

provide a higher refrigeration effect. 

Table 8.7: Average evaporator temperatures 

 Overall Day time operation Night time operation 

 Min Av σ Max Min Av σ Max Min Av σ Max 

Av evaporator 

temperature (°C) 
-13.0 -8.78 0.881 -5.68 -12.1 -9.22 0.640 -5.68 -13.0 -8.05 0.702 -6.84 

 

8.3.4 Power consumption and      of refrigeration system 

The graphs in this section show the results of the calculations detailed above. For instance, 

Figure 8.9 and Figure 8.10 display the electricity consumption scatter plots of the complete 

system (as defined in 8.3.2) against the outside temperature. The data points of each plot 

were divided into four approximately equal amounts. This allowed visual gauging of how 

the data are spread around the average values for     of 58.4 kW (day time operation) and 

31.7 kW (night time operation). Figure 8.9 indicates that the lowest data cloud has a large 

spread, but the upper data clouds are more tightly packed. The situation for Figure 8.10 is 

the reverse inasmuch as the data cloud towards the higher end of the refrigeration effect 

has a larger spread. 
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The four data clouds in Figure 8.9 have a progressively steeper gradient as the     increases. 

If all four data clouds are combined, a second order polynomial trendline has an    of 

0.678. This may mean that the increase in power consumption accelerates as the 

temperature rises.  

 
Figure 8.9: Power consumption of the complete refrigeration system in day time operation mode 

 
Figure 8.10: Power consumption of the complete refrigeration system in night time operation mode 
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The blue scatter points in Figure 8.9 include data when the refrigeration system was in day 

time mode, but the supermarket was still closed. Under these conditions the relationship 

between temperature and power consumption is fairly linear (         for linear model). 

This relationship is still visible for temperatures above 22°C where some blue data points 

continue on a straight line. 

In Figure 8.10 the step change in power consumption between 17°C and 19°C is 

approximately 8 kW. Allowing for a small temperature difference between ambient 

temperature and the condenser temperature, this can be explained by the control strategy 

for the condenser fans. As shown in Figure 8.8 the condenser fans quickly ramp up to full 

speed between the condenser pressures of 9.5 barg and 10.5 barg, corresponding to a 

refrigerant temperature in the 2-phase region of between approximately 18.5°C and 22°C. 

Examining all of the power consumption data shown in Figure 8.9 and Figure 8.10 against 

outside temperature with change point models found that, for the refrigeration system No. 

1, such a model has a change point at 14.9°C where the gradient increases by a factor of 

4.38. The refrigeration system No. 2 can also be modelled with a change point regression 

equation and has a change point at 15.0°C. Here the gradient increases by a factor of 3.8. 

These refrigeration change point models have a slightly better coefficient of determination 

(0.676 for system 1 and 0.556 for system 2) than a second order polynomial model (0.657 

for system 1 and 0.540 for system 2). 

The coefficient of system performance in day time mode is displayed in Figure 8.11. It 

shows a non-linear relationship with the outside temperature. Up to approximately 11.7°C 

the      is approximately 3.0 and virtually independent of the outside temperature. After 

that the      can be modelled as a linear function when outliers are ignored. The overall 

model given by Equation 8.25 also ignores outliers and has an    of 0.787. 

       
                                         

                                          
  

Equation 8.25 

The      for the night time operation also contains a virtually temperature independent 

range (up to 16°C) where the      is approximately 2.8. Figure 8.12 shows that the      

drops steeply between 17°C and 19°C to about 1.8. This corresponds to the sharp increase 
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in power consumption of the condenser fans mentioned earlier. The data points beyond 

19°C suggest that the      becomes relatively temperature independent again. 

 
Figure 8.11:      of the complete refrigeration system in day time operation mode 

 
Figure 8.12:      of the complete refrigeration system in night time operation mode 
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8.3.5 Discussion of the installed system 

Based on the measurements and calculations above the maximum refrigeration effect 

        is 84.3 kW. This occurs when the mass flow rate of C1 has been calculated to be 

106% of its nominal maximum, C2 and C3 are constantly on and C4 constantly off for the 

corresponding 15 min interval. The outside temperature was measured to be 26.1°C, which 

is close to the design ambient temperature of 27°C (Searle Manufacturing Company, 2008, 

p 4). This means that this value has been computed for the original system (i.e. without 

compressor C4) virtually under design conditions. Using the assumption that the nominal 

cooling capacity of 80 kW occurs at design conditions, it can be concluded that the model 

in Figure 8.4 and the calculations based on it overestimate the cooling effect by between  

5% and 6%. This may be owing to the simplification and assumptions used for the 

calculations, such as that the accumulator being modelled as a simple tank without heating 

and the assumption that the refrigerant arrives with a quality of close to unity in this tank. 

 
Figure 8.13: Refrigeration system simulated by the software model 
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8.4 R404A refrigeration model 

The software model described below is based on the refrigeration system described in the 

previous section. The development of certain model parameters was also based on 

measured data for the installed system analysed above. R404A data from the software 

package CoolPack (Skovrup et al, 2012) were employed to help calculate specific 

enthalpies. The usual simplifying assumptions for a steady state system were applied (for a 

list see, for instance, Arora (2010, p 121)). Other simplifications are mentioned in the 

relevant component sub-sections. 

The refrigeration system was modelled under steady state conditions with the five 

components displayed in Figure 8.13 using Matlab (MathWorks, 2011). This diagram 

indicates that the CO2 distribution system was regarded as the load of this refrigeration 

system. It also shows that the bank of four compressors was represented as just one 

compressor with a VSD. This was because the mass flow rates of the individual 

compressors were combined in the analysis above to give only one overall refrigerant flow 

rate. The heat rejection from the condenser relies on forced convection only. The natural 

convection below the condenser fan set-point was modelled as a constant rejection rate.  

 
Figure 8.14: The  -  diagram for the software model Description of software model 
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8.4.1 Description of software model 

The corresponding  -  diagram in Figure 8.14 indicates that the refrigeration cycle 

followed standard simplifying assumptions for a pure refrigerant. This means that 

evaporation and superheating were modelled as isobaric processes with a constant pressure 

of 3.5 barg, which is also the suction set-point of the compressors. The compression was 

thought of as an isentropic process with the implication that work input is a function of 

     as the gradient of the entropy change decreases with increasing superheating (note 

logarithmic  -axis). The processes in the condenser and the sub-cooling were also 

modelled isobarically. The pressure range used here starts at 9 barg, which is 

approximately the minimum pressure of the installed system (see Table 8.3), and extends 

to 18.5 barg corresponding to the maximum ambient temperature for which the installed 

system was designed (Searle Manufacturing Company, 2008, p 4).  

8.4.2 Description of main programme 

The main programme has three loops as illustrated in Figure 8.15. The two outer loops are 

for the independent variables     and     for which the energy consumption      is 

calculated. Their values are passed on to the programme in two vectors:       for the useful 

refrigeration effect as the load of the system and      for the ambient temperature, which is 

the temperature of the air entering the condenser. 

The main purpose of the third loop is to determine whether the air flow through the 

condenser is able to remove the rejected heat from the condenser at a given condenser 

pressure. It starts with the minimum value for    and loops through until it reaches its end 

value. Whilst doing this it calculates all the required enthalpies and the refrigerant mass 

flow rate      as described in the next few sections. With these and other variables the 

main programme calls a separate function to calculate the fan speed. This function returns 

an error if the maximum air flow rate is insufficient. This causes the main programme to 

record a high value (i.e. 9e99) in the vector storing all values for the fan power for this 

inner loop. Otherwise the programme calculates the fan power consumption      with the 

value for the speed of the condenser fan      returned by the function. 

Once the third loop has calculated all the possible combinations, the lowest possible 

compressor power consumption is identified taking into consideration only values for 
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which the function did not return an error. This is than stored in a vector for displaying the 

results after all values in       and      have been processed. 

 
Figure 8.15: Flowchart of main programme of the Matlab model 
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achieves sub-cooling the liquid and superheating the vapour at the same time (Stoecker and 

Jones, 1983, pp 200 - 202). This allows using      and      to calculate the specific 

refrigeration effect    , instead of      and      as indicated in Figure 8.14 eliminating the 

need for     . To derive the relationship between these two streams, Equation 8.2 can be 

applied to a control volume around the cold refrigerant stream section. If  

                 
Equation 8.26 

Where: 

      : Specific heat rate from the hot stream 

    : Specific enthalpy of the hot stream entering the heat exchanger 

    : Specific enthalpy of the hot stream leaving the heat exchanger 

then the following equation can be written. 

                      
Equation 8.27 

Where: 

     : Specific enthalpy of the cold stream leaving the heat exchanger 

     : Specific enthalpy of the cold stream entering the heat exchanger 

The model used here is based on the effectiveness-NTU method (Incropera and DeWitt, 

1985, pp 561-562). The effectiveness   is defined as in Equation 8.28. 

  
  

     

 

Equation 8.28 

Where: 

  : Actual heat transfer rate 

     : Maximum possible heat transfer rate 

When noting that 

                                    
Equation 8.29 
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and that the specific heat constant in the vapour region of interest,       , is smaller than 

the specific heat constant in the liquid region of interest and therefore is equal to       , 

one can derive Equation 8.30 for the specific heat     which takes the refrigerant from 

     to     . Because        changes only by 0.0421 kJ/kg/J (about 5%) from the saturated 

vapour point to the maximum recorded suction temperature, the average         of 

0.872 kJ/kg/K was used. 

                                          
Equation 8.30 

From the measurements for the installed refrigeration system,   as a function of     could 

be constructed. This is shown in Figure 8.16 and the corresponding equation, Equation 

8.31, has an    of 0.864. 

                  
 

  
              

 

   
    

  

Equation 8.31 

 
Figure 8.16: Heat exchanger effectiveness vs useful refrigation effect 

The input temperatures were approximated by temperatures for the saturated vapour,       , 

of -8.8 °C and the statured liquid,        as a function of the discharge pressure. Based on 

R404A data for the pressure range from 9 barg to 18.5 barg the following equation was 
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derived (     . This equation is slightly different from Equation 8.18, because the 

pressure range is different. 

                     
 

    
           

 

     
   

  

Equation 8.32 

8.4.2.2 Modelling compression 

Before the compression process was modelled as isentropic it was investigated to see if this 

assumption gave a reasonable approximation of the measured data. To test this assumption 

the difference between     and    in the actual system was multiplied by the mass flow rate 

of all four compressors to compute the theoretical work input to the installed system, 

          . These results were compared with the measured power consumption for when 

the fan VSD signal was less than 25% (corresponding to a maximum fan power 

consumption of 119 W) so that the calculation related to the compressor consumption. 

A constant entropy compression process follows the chain lines in Figure 8.14, in which 

logarithmic plot they are shown as straight lines with decreasing slopes towards higher 

enthalpy. Therefore the       had to be calculated first as a function of    in order to be 

able to calculate    afterwards. Using R404A data (Skovrup et al, 2012) Equation 8.33 

was developed. 

                    
  

  
 

Equation 8.33 

With the       from this equation the estimated discharge enthalpy    was calculated with 

Equation 8.34. This allowed the calculation of the theoretical power input as described 

above. 

             
      

      
      

Equation 8.34 

The scatter plot in Figure 8.17 shows that a linear model describes the relationship between 

the theoretical work input according to the measure data,           , and the actual 

compressor power
5
 well (   =0.957) . This supports the idea of modelling this process as 

                                                 
5
 The actual power is the power supplied to the compressor motor, controllers and other ancillary equipment, 

and thus is not related to the isentropic efficiency. 



 

- 140 - 

isentropic. The scaling factor and offset can be attributed to the compressor motors and 

other system components. 

 
Figure 8.17: Scatter plot of the actual system consumption (excluding condenser fans) vs the theoretical power 

consumption 

The actual compression process is more involved. What looks like an isentropic process 

may be the effect of two phenomena which cancel each other out. On the one hand, the 

friction in the compressor will add some heat to the refrigerant, thus increasing its enthalpy. 

On the other hand, the refrigerant will have lost some heat energy through the compressor 

head and connecting pipe work so that the overall effect looks like an isentropic 

compression (Arora, 2010, p 125). Nonetheless, the discussion above showed that the 

assumption of isentropic compression is supported by the measured data.  

Based on this investigation      was calculated as shown below. In this equation the       

was also calculated with Equation 8.33. 

               
      

              
        

Equation 8.35 

Another approach to calculating      could have been to use Equation 8.3 and Equation 

8.6. Equating these two equations and solving them for      yields Equation 8.36. 



 

- 141 - 

     
 

   
                

      

        
 

     
  

          

Equation 8.36 

However, James (1976, p 4.20), who used a similar approach, had to first estimate his 

constants and then adjust them to fit actual data. Therefore it was decided to derive 

Equation 8.35 based on the  -  diagram rather than using the      integral. The chosen 

method yields acceptable results and was considered simpler than the      integral 

approach. 

8.4.2.3 Condenser 

The constant pressure process in the condenser shown in Figure 8.14 first de-superheats the 

refrigerant from      to     
  and then condenses it to      by rejecting the heat to the air 

which is forced through the condenser. This means that the refrigerant temperature in the 

condenser is not constant. Nonetheless Stoecker and Jones (1983, p 248) suggest treating 

the condenser processes as isothermal. Here, however, a more realistic approach has been 

chosen to account for the de-superheating process. Out of the three steady-state methods 

described by Ding (2007), the one used here is based on the zone method with only two 

zones: The de-superheating zone and the condensing zone (see also Figure 8.18). 

From Figure 8.18 it is evident that the total heat rejected,    , and therefore the heat taken 

up by the air stream through the condenser, is the sum of     and    . Hence, a Matlab 

function (see Figure 8.20) was written that checks if the air mass flow rate is sufficient to 

cope with the condenser load    . This is done by assuming that the condenser temperature 

at a certain point is higher than the temperature of the air leaving this point by a constant 

offset   of 2 K. This together with the assumption of an isochoric process (see Equation 

8.9) allowed the calculation of the required         and        . 

           
   

                     
 

Equation 8.37 

           
   

                  
 

Equation 8.38 
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Figure 8.18: Condenser model 

If a linear temperature distribution can be assumed, then the average temperature for the 

de-superheating section may be written as: 

     
            

 
 

Equation 8.39 

The total required air mass flow rate is then the sum of           and          . 

8.4.2.4 Condenser fan 

The air mass flow rate       through the condenser is coupled to the condenser pressure 

through control laws (Searle Manufacturing Company, 2008, p 70). The actual control 

values, which were remotely accessed, were the target value of 10 barg and the control 

band of ±0.5 bar. The data clouds for day and night time operation in Figure 8.19 indicate, 

that, in the pressure range of interest, the VSD signal quickly rises from close to zero to 

maximum, but the dependency on the condenser pressure is not as strong as the description 

in the user’s manual suggests. It is also apparent that the relationship between the VSD 

signal and the condenser temperature is non-linear. It was decided to use a logistic function 

to model this behaviour, because this type of function allows modelling of the steep rise at 

the beginning of the active region before the tapering off. The parameters for the two 

curves in Figure 8.19 were graphically determined and differ only by the factor     . 

                         
    

                    
                  

 

Equation 8.40 
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Condensing 
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Where: 

     : Speed of condenser fan in % of total maximum fan speed 

    : Maximum fan speed (day time operation: 53% of total maximum fan speed, 

night time operation: 100% of total maximum fan speed) 

    : Condenser pressure in barg 

 
Figure 8.19: VSD signal for the fan with fan model for the software simulation overlaid 

This equation allows the stating of the overall equation for the fan speed as shown in 

Equation 8.41. The air mass flow rate can then be calculated as       ×          , where 

          is 27.9 m
3
/s (GEA Searle, 2015). 

      

 
 
 

 
 

            
    

                  
 

    
            

                    

                

  

Equation 8.41 

The Matlab function which calculates the fan speed (see Figure 8.20) converts       to its 

corresponding mass flow rate in order to calculate the maximum value of heat the air can 
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remove. This allows the simulating of the natural convective mode below 9.5 barg with a 

constant value for     of 15kW (this estimate was based on the measured data). 

If the error variable returns a one, 9e99 is recorded for this condenser pressure indicating 

that the condenser pressure is insufficient. Otherwise the power consumption      

computed with Equation 8.42 (ASHRAE, 2008, p 20.4) is entered. 

                
  

Equation 8.42 

 
Figure 8.20: Flowchart for calculating the condenser fan speed 
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8.4.2.5 Expansion device 

The electronic expansion valve was modelled as an isenthalpic throttling process. This 

means that when passing through this restriction the pressure and temperature of the 

refrigerant is reduced, but the enthalpy remains the same. Therefore the enthalpy      in 

Figure 8.14 at the end of the sub-cooling process can be used to calculate the useful 

refrigeration effect. As mentioned earlier,      and      are used in conjunction with the 

useful refrigeration effect, because the difference between them is the same as between 

     and     . 

8.4.2.6 Evaporation and mass flow rate 

In this Matlab model the isobaric evaporation process takes the refrigeration effect     as 

the input argument, which allows the calculation of the required mass flow rate as shown 

in Equation 8.43 (ASHRAE, 1997, p 1.8). 

 

      
   

          
 

Equation 8.43 

8.4.2.7 Power consumption of compressor  

As the compression process is treated here as isentropic, the theoretical power input       

into the refrigeration cycle can be calculated with the following equation (ASHRAE, 1997, 

p 1.8). 

                            
         

          
 

Equation 8.44 

 

8.4.3 Calibration 

After the model was debugged, it was calibrated against the measured data. The first step 

in this process was to relate       to the measured consumption of the compressors. In 

order to achieve this the Matlab programme was modified so that it could calculate the 

      with    ,          and a variable indicating day/night time operation as input vectors. 
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The measured data includes not only the compressor consumption, but also the power 

consumption of the condenser fans and auxiliary equipment. Because the model adds the 

fan power to the total power input separately, an equation could be developed estimating 

the power consumption of the compressors and auxiliary equipment as a function of the 

     . This idea led to the evaluation of the following three possible scenarios for the VSD 

signal: less than 20%, 30% and 40%. For a VSD signal of less than 40% the fan power 

consumption is (0.4
3
 × 7.6 kW =) 0.49 kW, which is less than 10% of the total measured 

power consumption. For the equations in Table 8.8 outliers (such as cooling load = 0 and 

C2 above 90%) were eliminated. 

Table 8.8: Possible equations for       

VSD signal  Equation    

<20%                           0.955 

<30%                           0.966 

<`40%                           0.965 

 

 
Figure 8.21: The measured data overlaid by the modelled data (day time operation) 

The coefficients of determination in Table 8.8 show a good agreement for a linear model. 

In order to decide which set of coefficients give the best results, the model was run in day 

mode for cooling loads equal to 55 kW, 60 kW and 65 kW, and for the following values in 

night mode: 27.5 kW, 32.5 kW and 37.5 kW. These values were selected because they are 



 

- 147 - 

the bands used in Figure 8.9 and Figure 8.10 and, therefore, a meaningful comparison 

between the model output and the measured data was straightforward. These tests showed 

that the equation for the 20% VSD signals yielded the best results. However, the average 

fan power from the model was 62.7 kW, whereas the average consumption based on the 

VSD values was only 20 W. The difference was subtracted from the intercept to give 

Equation 8.45. 

                       
Equation 8.45 

 
Figure 8.22: The measured data overlaid by the modelled data (night time operation) 

Finally, Equation 8.45 was used to verify a good fit of the model for day and night time 

operations. Figure 8.21, which shows the results for the day time operation, indicates that 

the lower limit at 55 kW bounds the data cloud well. For a temperature range of between 

13°C and 23°C data points spill over the upper model prediction. The graphs for the night 

time operation shown in Figure 8.22 also generally show a good agreement. 

8.4.4 Error estimation 

To further evaluate the accuracy of the model, error scatter plots were developed and the 

     and the     were calculated. The values in the scatter plots in Figure 8.23 and 

Figure 8.24 were normalised against the maximum measured value, i.e. also the estimated 
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power consumption is expressed in percentages of the measured maximum. Both figures 

display a green centre line, which indicates when the value from the software model 

exactly agrees with the measure value. The chain lines indicate the ±10% and the dashed 

line the ±20% limits. 

 
Figure 8.23: Scatter plot of the estimation from the model vs the measured data from the refrigeration system 

No. 1 

 
Figure 8.24: Scatter plot of the estimation from the model vs the measured data from the refrigeration system 

No. 1 for the data points where the fan VSD signal less than 20% 
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Figure 8.23 shows that the majority of data points (88.5%) lie between the ±10% 

boundaries. From approximately 75% (measured consumption) onwards the model tends to 

overestimate the consumption. From approximately 28% to about 40% the model 

overestimates the consumption for a number of data points, which may be due to the way 

the fan control has been simulated. The scatter plot in Figure 8.24 uses only the data points 

for when the fan VSD signal is less than 20%. Similar to Figure 8.23, most of the data 

points are within the ±10% limits, and only a few exceed the ±20% boundaries. 

The      was calculated for all the data points and found to be 1.43 kW or 8.22% of the 

average measured consumption. The     is 0.480 kW indicating that for the data set used 

the model tends to overpredicts the energy consumption.  

8.4.5 Summary of software model results 

The model developed above contains a number of simplifications such as using a constant 

air temperature difference for the condenser or an isentropic process for the compressor. In 

addition, the control of the fans could not capture the spread of the measured data well. 

Notwithstanding that, almost 90% of simulation results for the measured data fall within 

the ±10% error band and the overall        ) is 8.22%, therefore it can be concluded 

that the model captures the main features of the refrigeration system with adequate 

accuracy. 

8.5 Response to climate change 

This section describes how the change in energy consumption of the refrigeration system 

due to climate change was estimated. It contains a method section explaining how the 

software model developed above was used and what further assumptions were made. The 

part headed ‘Results’ displays the results based on the medium emission scenario for the 

2030s. The discussion which follows restricts its comments to this chapter. A discussion 

relating the results here to other chapters can be found at the end of this thesis. 

8.5.1 Method of estimation 

In order to use the software model, the following, three input vectors were required: a 

temperature vector, a cooling load vector and a vector specifying the operation of the 

refrigeration system (i.e. day/night time operation). The TRY data files for the 2030s and 

the base period (1970) for Hull were downloaded from the website from the Centre for 
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Energy and the Environment, The University of Exeter (2010). This data is based on the 

weather generator introduced in Section 3.3 and contains probabilistic data derived from 

the UKCP09 (Eames et al, 2011). Amongst other data, these files contain hourly dry-bulb 

temperatures, which were used for the four temperature vectors (base period temperature, 

10% probability, central estimate and 90% probability of future temperature). 

Since the temperature data was only available as hourly data, the other input vectors were 

also hourly. As the refrigeration model was developed and tested with quarter hourly data, 

it was deemed advisable to test the software with hourly data. To this end the test vectors 

used for the calibration of the software model in Section 8.4.3 were averaged for every 

four values so that the hourly average for day and night operation for the six months was 

available (see Appendix for Matlab function developed). Figure 8.25, which was based on 

hourly data, shows a very similar pattern to Figure 8.23 inasmuch as most data remains 

within the ±10% error boundary. Also the model starts to systematically overestimate the 

power consumption from approximately 75% measured consumption onwards. The     

of 0.527 kW and the      of 1.37 kW (         = 8.22%) are also very close to the 

values for 15 min data. The slight difference may be owing to the averaging of operation 

modes, as the programme can deal only with day or night time mode, but not with an input 

mixing these. Therefore, it can be concluded that using the software model with the hourly 

temperature data should yield valid results. 

 
Figure 8.25: Scatter plot of the estimation from the model vs the measured data from the refrigeration system 

No. 1 with hourly data 
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In order to generate the four vectors for    , the relationships between the cooling load and 

the outside temperature and relative humidity were investigated. The relative humidity was 

considered because it has been shown that the inside humidity has an impact on the cooling 

load (Kosar et al, 2005). The humidity data for July 2014 (the warmest month in the data 

series) and for November 2014 (the coldest month in the data series) was averaged over 15 

min intervals because the refrigeration loads were calculated in 15 min intervals, and then 

used in SPSS (IBM, 2012) to evaluate the regression model in Equation 8.46 separately for 

the night and day time operation. 

                                 
                    

                    
Equation 8.46 

This investigation suggested that there was no statistically significant relationship between 

the relative humidity and the cooling load for the day time operation. For the night time 

mode the predictive power with and without relative humidity was low. Therefore relative 

humidity was excluded as a predictor for    . 

 
Figure 8.26:     as a function of the outside temperature and operation mode 

The data clouds in Figure 8.26 are for day and night time operations with outliers (e.g. due 

to stocking) having been removed. They show that there is an apparent divide between day 

time and night time operations. The scatter for the night time operation shows a medium 
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correlation with the temperature (correlation coefficient = 0.54). This is plausible as the 

refrigerated cases were covered to reduce the cooling load and the HVAC system was not 

in operation. Also, casual gain from other equipment was low as the light was switched off 

and staff and customers were not present. Therefore Equation 8.47 was used for the night 

time operation for the cooling load for all load vectors.  

          
  

 
               

Equation 8.47 

The linear model (with a correlation coefficient of 0.68) in Equation 8.48 for the day time 

operation was preferred to a third order polynomial equation because this model was used 

outside its data span. It was judged that a linear model gave more credible results, e.g. at 

the minimum temperature in the future weather files of -7.8°C a third order model 

suggested a cooling load of -41.0 kW and the linear model 36.1 kW. 

          
  

 
               

Equation 8.48 

8.5.2 Results 

The results in Table 8.9 are for the base year 1970 and the TRY 2030 with three different 

likelihoods. For these probabilities the consumption figures represent the maximum value, 

e.g. for the 10% case this means that there is a 10% likelihood for the consumption to be 

equal to or less than this value if the relationship with the outside temperature is 

represented correctly. 

Table 8.9: Simulation estimates of the annual electricity consumption change of the refrigeration system 

 Base 10% Central 90% 

          (°C) 10.0 10.5 11.7 13.0 

Consumption (kWh) 124000 126000 132000 140000 

Change (kWh)  2160 7960 16000 

Change (%)  1.74 6.41 12.9 

 

The temperatures and total consumption figures in Table 8.9 show a linear relationship 

suggesting that, for every degree of annual average temperature increase, the energy 

consumption of the refrigerating system raises by approximately 5330 kWh pa. 

The results here are based on tools and data available and therefore the accuracy of the 

results is limited by these. For instance, the software model used has a limited accuracy. 
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Furthermore as a predictor for the cooling load, only the outside temperature was used as 

the outside relative humidity did not improve the predictive power of the model. The large 

data spread seen in Figure 8.26 indicates that other predictors may be more powerful or 

necessary. However, as both data sets (measured data and predicted climate variables) had 

only these two predictors in common, no other variables could be considered. 

To compare the results for the climate change impact on the refrigeration system 

investigated here with the outcomes from the assessment of the whole supermarket in Hull 

absolute values for the predicted changes in electricity use for the supermarket and for both 

refrigeration systems have been calculated. Table 8.10 lists these figures for the 2030s and 

the medium emission scenario. Both sets of figures show that, for a rise in temperature, an 

increase in energy consumption can be expected. This table also indicates that most, if not 

all of this increase in supermarket electricity use may be attributed to the refrigeration 

systems. This is plausible as almost all other electrical equipment can be regarded as non-

temperature sensitive and the air conditioning systems total 25 kW installed cooling 

capacity or 18% of the nominal refrigeration capacity of both refrigeration systems. 

Table 8.10: Comparing the electricity consumption of the model for the complete supermarket in Hull with the 

model for the refrigeration systems installed there. 

 Base  10% probability 50% probability 90% probability 
Elec. 

(kWh) 

         

(°C) 

Change 

(kWh) 

Change 

(%) 

         

(°C) 

Change 

(kWh) 

Change 

(%) 

         

(°C) 

Change 

(kWh) 

Change 

(%) 

         

 (°C) 

Supermarket 561000  3110 0.554  9420 1.68  18600 3.32  

Temperature  9.35   10.1   11.2   12.4 

            

Pack No 1 12400  2160 1.74  7960 6.41  16000 12.9  

Pack No 2 84700  1470 1.74  5430 6.41  10900 12.9  

Temperature  10.0   10.5   11.7   13.0 

 

Figure 8.27 visualises the table data and shows more clearly the effect of the change point 

in the supermarket model. It also shows that, beyond the temperature of approximately 

11.4°C, the increase in refrigeration energy requirements is generally higher than that of 

the whole supermarket. One of the reasons for this may be that two different data 

collection periods were used, 2012 for the whole supermarket model and June 2014 to 

November 2014 for the refrigeration models. This might be significant because it is 

possible that the supermarket was operated in a slightly different way (e.g. different 

building timer settings or opening times). Another cause of inconsistency could be that the 

temperature data was prepared differently (hourly for the refrigeration model and weekly 
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for the supermarket model). The impact of this can be seen when considering the 

temperature averages, also given in the table, which are lower for the whole supermarket 

data. When testing the software model it was also noticed that, for higher temperatures, the 

model tends to overpredict the energy use. A further reason may be owing to how the 

cooling load was treated. In the investigating of the whole supermarket, the supermarket 

was regarded as a “black box” and, therefore, the cooling load was implicitly included in 

the model, whereas the cooling load had to be separately estimated for the refrigeration 

model. On the other hand, it might be possible that other equipment uses less electricity at 

higher temperatures, but, as only a hot water heating with a gas boiler is installed and no 

electric heating, this seems unlikely. 

 
Figure 8.27: Comparing the estimates of absolute changes in annual electricity demand 

A higher agreement could have been achieved by recalibrating the software model. 

However, it was not apparent that the simplifications used for the whole supermarket 

model had led to more accurate results. The section on climate change prediction also 

pointed out that those predictions had significant uncertainties attached to them. Therefore 

any investigation based on these predictions will not be able to compensate for them, but 

only add more to them. Taking these things into consideration it was not clear that new 

insight into the development of future energy consumption could have been gleaned for 

making these two models agree. 
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8.6 Improvements to condenser fan control 

The air through the condenser removes the heat     from the condenser. For a dry 

condenser an increase in     can be met by either increasing the flow rate through the 

condenser or by increasing its temperature. Increasing the condenser temperature requires a 

rise in the compressor discharge pressure as indicted by Equation 8.17, which then in turn 

requires a larger work input to the refrigeration cycle by the compressor. This 

interdependency is well described by Manske et al (2001) who studied an industrial 

refrigeration system with an evaporative condenser. These authors pointed out that there 

was a trade-off between the power consumption of the compressor and the energy used by 

the fans. Contrary to Ge and Tassou (2000), who claim that the “fan power is only a small 

fraction of the total power consumption”, it was found that, for the installed system, the 

maximum fan power is 95% of the maximum power of the compressors C1 and C4 

(BITZER Kühlmaschinenbau GmbH, 2013).  

The trade off between the compressor and condenser fan power seems to have been no 

thorough investigation performed for supermarket refrigeration systems. Some insight into 

this issue can be gleaned from work by Chan and Wu who investigated air cooled chillers. 

In one of their earlier works Chan and Yu (2002) modelled an air-cooled reciprocating 

chiller with a thermodynamic model and used it to investigate static head pressure and 

floating head pressure control. They found that for floating head pressure control the 

energy saved for running compressors as efficiently as possible is outweighed by the 

energy used to run more condenser fans. Three years later, Yu and Chan (2006) published 

work in which they included staged VSD condenser fans in their TRNSYS model. Their 

control algorithm included the staging of condenser fans in addition to speed control. The 

authors reported efficiency gains from the improved fan control which were dependent on 

the outside temperature and chiller load, hence they suggested using these as input 

parameters for fan controls. A later paper by Yu and Chan (2007), in which they employed 

their model to investigate a centrifugal chiller, includes a figure similar to Figure 8.23 and 

Figure 8.25 for compressor power. For their model the researchers reported that 95% of 

their data points were within the ±10% error limits. 

Although work by Chan and Yu summarized in the previous paragraph suggests that the 

control strategy used in the Hull supermarket is sub-optimal, their results need to be 

verified for supermarket refrigeration systems. One reason for this is that refrigeration 
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systems generally have fewer condenser fans and they may be all controlled by the same 

VSD signal. A further reason is that, although these systems are comparable, their 

applications are different. Therefore this part of Chapter 8 studies the difference between a 

     optimised supermarket refrigeration system and the software model of the installed 

system. Before this, a discussion on the difference between the     and the      is 

necessary to more fully appreciate the need to optimise the fan control. This is followed by 

a section describing how this improvement idea was implemented in the Matlab simulation. 

Results presented in the section after that indicate that the      optimisation led to energy 

savings of approximately 4.5% for the data used in Section 8.3. 

8.6.1 Difference between     and      

The discussion below defines and contrasts the two ways of describing the efficiency of the 

refrigeration system mentioned in Section 8.2.1.5. The first is the coefficient of 

performance, which has the generic definition (ASHRAE, 1997, p 1.3): 

      
                           

                                         
 

Equation 8.49 

The denominator in this equation can be defined in a number of different ways. For 

instance, the same source (on page 1.8) analyses a theoretical single-stage cycle and 

equates the net supplied energy to the mass of the refrigerant multiplied by its enthalpy 

change. Obviously this does not take any compressor or motor losses into account. 

Probably this is why ASHRAE also gives compressor specific definitions of the energy (or 

rather power) supplied. In the handbook HVAC Systems and Equipment (ASHRAE, 2002, 

p 37.2), the power input is defined as either the electric power supplied to the motor 

terminals (for hermetic or semi-hermetic compressors) or as the mechanical power acting 

on the compressor shaft (for open compressors). This short discussion shows that (a) the 

well-known term     may lead to misunderstandings as it can mean different things to 

different people, and (b) it does not consider any other energy requirements of the wider 

refrigeration system. 

The performance figure      can be used to clearly distinguish between the efficiency of 

the core refrigeration system, which may be characterized by a     number, and the 

efficiency of the whole refrigeration plant. In other words,      includes the additional 
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power consumption of equipment such as pumps and condenser fans as indicated in 

Equation 8.50 (Evans, 2008). 

     
   
    

 
   

                 
 

Equation 8.50 

It is also possible to create a relationship between those two efficiency coefficients as 

shown in Equation 8.51. For this equation it was assumed that        is much smaller than 

both Ecomp and      and, for this reason, can be neglected. Furthermore it was assumed that 

the compressor is semi-hermetic (as in the installed system) and therefore the     equals 

         .  

     
   

      
    

   

 

Equation 8.51 

When analysing Equation 8.51 it is apparent that, when the fans are switched off, the COP 

is equal to the     . A less obvious result is that when     (the cooling load) increases, the 

relative importance of the power use of the condenser fans diminishes. On the other hand, 

as the     increases, so does the influence of fan power consumption. Figure 8.28 and 

Figure 8.29 visualize the results of this equation for one part load point (    = 20%        ) 

and for  full load (the maximum fan power is assumed to be 10% of        ). They show 

that the      is influenced by the condenser fan, particularly under part-load conditions. 

 
Figure 8.28: Surface of      as a function of      and     for                 
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Figure 8.29: Surface of      as a function of      and     for                  

 
Figure 8.30: Flowchart for the condenser fan speed to maximise      

8.6.2 Controlling fans for maximum      

The flowchart for the Matlab function to calculate the necessary condenser fan speed is 

shown in Figure 8.30. This function takes the same parameters as inputs as the function 

described in 8.4.2.4, except for the variable ‘day’. The function structure is simpler than 

the one displayed in the flowchart in Figure 8.20. For instance, there is no differentiation 
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between the day time and night time operations. Also the natural convective mode is not 

considered separately, because, as the heat rejected in this mode is quite small, the air 

requirements for this, computed by the Matlab function, are modest and the corresponding 

energy consumption is also small. If the required air flow,         , is greater than the 

maximum flow rate          , an error is returned, otherwise the fan speed is calculated 

with Equation 8.52 and returned. 

      = 
        

         
 

Equation 8.52 

 
Figure 8.31: Comparing different fan control methods for a cooling load of 20 kW 

The consumption of the refrigeration model was calculated for the new control method, for 

the day time and night time operation modes. The results for the cooling load of 20 kW are 

displayed in Figure 8.31. This graph contains lines for the total consumption (solid lines) 

and the compressor power (dotted lines). The total energy consumption for the new control 

method is below the old methods for the outside temperature to approximately 15°C. From 

approximately 16.5°C onwards the graphs for the total consumption spread out whilst the 

different compressor consumption lines remain close together. In this temperature range 

the compressor in the night time mode consumes the least power, closely followed by the 

day time mode. The dotted line for the new control indicates that compressor electricity 

consumption is somewhat higher. When examining the total consumption the results are 

reversed. The new approach is predicted to have an appreciably lower total energy use than 

both the day time and night time operation. For instance at 19°C the total consumption of 
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the system in night time mode is 16 kW, of which 7.6 kW, or 47.5%, is the condenser fan 

power. The day time mode uses about 9.6 kW and the new approach only 8.8 kW. In other 

words the lower compressor power (and therefore the higher    ) requires a higher total 

power input. 

 
Figure 8.32: Comparing the total power consumption for cooling loads of 20 kW, 50 kW and 80 kW 

The results for a     of 20 kW, 50 kW and 80 kW are displayed in Figure 8.32. This graph 

shows that the range where all three approaches yield a comparable result moves toward 

the lower temperature range as cooling load increases. Below this range, the gap between 

the new approach and the old approaches increases with increasing cooling load. For the 

temperature range beyond this region the gap narrows and disappears almost completely 

for the day time operation at the highest refrigeration load. This agrees with higher 

requirements for the air flow rate for a higher load as more heat needs to be removed from 

the condenser. 

8.6.3 Results of maximising      

The results presented below consider the      (i.e. cooling load divided by total power 

consumption) for the three control methods:      optimised control, day time and night 

time operations. The cooling loads of 20 kW, 50 kW and 80 kW were chosen so as to be 

able to compare the results of the software model with measurements from the installed 

system. These figures show that the      of all three control approaches improves as the 

cooling load increases. For the original control methods the      rises from just above 2.5 

    = 80 kW 

    = 50 kW 

    = 20 kW 
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to approximately 3.5 for the minimum temperature. This spread agrees with Figure 8.11 

and Figure 8.12 because the      for the night time operation starts at approximately 2.5 

and the day time      reaches nearly 3.5 at the lower temperature range. Similar to 

Figure 8.11, the day time operation trace in Figure 8.34 for the mid range refrigeration load 

shows a change point at approximately 11.5°C. For the 50 kW and 80 kW cooling loads 

the day time      in Figure 8.11 also shows agreement at the higher temperature range. 

This is reasonable because it can be expected that air infiltration into the supermarket of 

warmer air causes a higher cooling load. 

 
Figure 8.33:      for all control methods for the cooling load of 20 kW 

 
Figure 8.34:      for all control methods for the cooling load of 50 kW 
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Figure 8.35:      for all control methods for the cooling load of 80 kW 

The graphs for the night time operation in Figure 8.33 to Figure 8.35 follow the general 

shape in Figure 8.12 albeit that the drop is not as steep. Also the slope after this decline is 

larger than in Figure 8.12. This may be owing to the inability of the software model to 

represent the large spread in the condenser fan data (seen in Figure 8.19). 

 
Figure 8.36: Fan power consumption for the      maximised system for different cooling loads 

The      optimised system shows the best performance under all three cooling loads, 

albeit only marginally for the day time control mode for the highest cooling load case 

above 13.5°C. For all load cases the      of the new control approach below the 
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temperature where the lines touch, is better than either the day time or the night time mode. 

This gap increases with rising cooling load. This is reversed for temperatures above this 

common point. There the gap between the original control methods and the      

optimised method narrows with increasing load. This is consistent with the discussion in 

Section 8.6.1, which suggested that the influence of the fan power on the overall system 

efficiency decreases as the cooling load increases. 

The traces in Figure 8.36 relate to the power consumption of the      optimised system 

and show that, as the cooling load increases, so does the fan power consumption. However, 

it always stays below the maximum power of 7.6 kW. It can also be seen that, although the 

temperature has some influence, the cooling load is the determining factor. All graphs 

show a ‘kink’ which corresponds to the point at which the minimum condenser pressure is 

no longer sufficient and needs to be increased to reject the required amount of heat. 

The measured data from the installed refrigeration system was used to estimate the energy 

saving potential of the      maximisation approach. The software model calculated an 

energy consumption of 78400 kWh for the six months from July 2014 to Nov 2014 with 

the original control method, and 74900 kWh with the new approach. The reduction of 

3500 kWh represents an energy saving of approximately 4.5%. 

8.6.4 Discussion and conclusion on      maximisation 

In this section the simplified equation relating the      to     and the power 

consumption of the condenser fans (see Equation 8.51) and its ramifications were 

compared with the software model. It was found that the insight gained by this simplified 

approach can be supported by the results from the software model.  

This insight included appreciating the importance of the condenser fan power consumption 

on the overall efficiency. If the fan speed can be closely matched to the rejected heat, then 

the speed can be kept to a minimum. This, in turn, can have a significant impact on the 

overall power use because (a) the maximum fan power is comparable to the two smaller 

compressors of the installed system and (b) the power consumption rises by the power of 

three of the fan speed. 

The work above also showed that it is possible to improve the      by driving the 

compressor somewhat harder to allow the condenser fan to reduce its speed. This approach 
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was implemented in the Matlab model with an estimated energy reduction of 4.5% for the 

six months of the data set. 

This idea should be taken forward to verify if the energy saving potential can also be 

achieved in practice. To do this the system may have to be modified to allow the 

measurement of the mass flow rate. In addition the control algorithm has to be modified to 

allow the calculation of the speed according to the heat rejection requirements. 

8.7 Discussion and conclusions on the refrigeration system 

This chapter concentrated on the investigation of the larger of the two refrigeration systems 

installed in the Hull supermarket mentioned in previous chapters in order to quantify the 

impact of the changing climate on the electricity consumption. The results predicted a 

temperature dependent rise in electricity use of between 1.7% (10% probability) and 12.9% 

(90% probability) with the central estimate being 6.4%. Furthermore the first principle 

model developed to answer this research question also allowed the investigation of a 

further question regarding the condenser fan controls. It was found that, based on the data 

set used for the model development, there was an energy saving potential of approximately 

4.5%. 

Errors and uncertainty of these findings arise from at least three different sources. The first 

of these is the approach chosen for model development including its assumption. For 

instance, the condenser fan control model approximated a large data spread with average 

values, which introduced errors. Other uncertainties stem from the way the cooling load for 

the base and future periods were estimated. The linear cooling load versus outside 

temperature models based on the measurement achieved only an    of 0.46 for the day 

time operation and    of 0.29 for the night time operation. Another source of uncertainty is 

the base year and future temperature data. This is explicitly acknowledged by stating 

consumption values for 10%, 50% and 90% temperature likelihoods and this approach 

gives rise to an 11 percentage point difference between the 10% and the 90% electricity 

values. 

Apart from the modelling method chosen here, other research approaches are possible such 

as statistical models, similar to the supermarket models described in the previous chapters. 

However, as it was apparent that night time and day time were distinctly different early on 

in the investigation of the refrigeration system, a first principle model was chosen to be 
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able to explore and explain these differences. Some of the first principle models developed 

by other researchers use more sophisticated models for compressors (Ge and Tassou, 2000) 

or condensers (Arias and Lundqvist, 2005; Cecchinato et al, 2010a). Although these 

approaches may be more accurate they also introduce uncertainties, as these models also 

rely on “performance data published by the manufacturer” (Ge and Tassou, 2000) and 

“design experience and/or open literature correlations” (Cecchinato et al, 2010a) and this 

probably more so than the simplified approach chosen here, because more coefficients 

need to be determined. When comparing the results of the model here with the more 

detailed one by Yu and Chan (2007), one finds that the model by Yu and Chan seems to be 

similar in accuracy as the compressor model in their paper also has 95% of its data points 

within a ±10% error band. Therefore the model developed here can be considered adequate 

for its purpose so that an estimate of the magnitude of change in electricity use could be 

given and the differences in day time and night time operations be explained. 

In this chapter a different approach to controlling the condenser fans was also investigated 

and it was shown that, for the data set used here, a      optimised system uses 4.5% less 

energy than the approach used during the study period. Although this figure may not 

reflect the annual savings accurately because the data did not include winter months, it 

suggests that controlling a refrigeration system in a more holistic way will save energy. 

Further work on a real system would be beneficial to verify this conclusion. 
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9 Conclusions and further work 

This thesis described how the research objectives mentioned in the introductory chapter 

were met. These aims were put into context in Chapters 2 to 4 which summarized existing 

knowledge on changes in energy consumption due to climate change, energy analysis tools 

and climate change uncertainties. How the first research goal of quantifying the influence 

of climate change and location on the energy use in supermarkets was investigated and the 

results of this investigation are detailed in Chapters 1 to 1. The chapter thereafter explained 

how a refrigeration software model was developed to meet the second objective of 

calculating the change in electricity consumption arising from the changing climate and 

how this model was used to study approaches to condenser fan controls. The research 

findings were discussed in Chapter 1 and in Section 8.7. Apart from comparing these 

results with each other, this chapter aims to put the research presented in the chapters 

above into the temporal context, present overall conclusions and suggest further work. 

In order to appreciate the meaning of the predictions more fully it may be beneficial to 

highlight the three time periods involved. As this research investigated a change in climate, 

it compared variables (in particular temperature) over 30 year periods. The base period was 

from 1961 to 1990 and the ‘2030s’ run from 2020 to 2049. If the average temperature 

occurs in the middle of these intervals, the estimated energy use changes will occur in two 

decades. The predictions have a base line which is about four decades prior to the time 

when the research was conducted (i.e. 2013/14). This means that at least some of the 

changes in energy use may have occurred already. Another point to consider is how the 

2013/14 study period should be viewed. Is it the middle or the end of a 30 year climate 

period? If it is the end and, therefore, 1999 is about the midpoint, then it is possible to 

estimate how far the temperature has risen towards the predicted temperature rise for the 

2030s. For instance, the work by Prior and Perry (2014), which used a bandwidth of 29 

years for their smoothing algorithm, showed that a temperature rise from the base period 

(i.e. 1961-1990) to the latest period they studied (i.e. the period from 1982 to 2011) of 

approximately 0.6°C had occurred all over Great Britain (compared with the average 

central estimate of 1.8°C for the seven supermarket locations based on UKCP09). However, 

they also find that, for data towards the end of their period, this increase slowed down or 

even reversed so the exact increase both in magnitude and timing is extremely difficult to 

predict with any level of accuracy. 
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9.1 Overall conclusions 

When examining gas data it is apparent that linear gas models are capable of explaining at 

least 83% of the variation in the analysed data. This examination also supports the 

conclusion that the gas use is mainly a function of outside temperature (that is, if the boiler 

is in operation). Regarding the parameters of these models, Chapter 1 has demonstrated 

that they can be explained based purely on a supermarket dimensions. 

The study of the electricity consumption data showed that, for these data, non-linear 

models generally performed better than linear models. For four out of the seven 

supermarkets change point regression models improved the coefficient of determination by 

at least 13% over a simple regression model. The research here has also established that 

outside temperature is only one of the factors determining the electricity use in 

supermarkets. This is so because other electricity consumers, such as lighting, can be 

regarded as temperature independent and the use of kitchen equipment in the café areas is 

more stochastic in nature. The work here also showed that the model parameters are not 

just a function of the building geometry. 

The major conclusion based on the climate science literature reviewed above is that 

climate change predictions have a high level of uncertainties. Sources of these 

uncertainties range from being unaware of natural phenomena or their influence on the 

climate to the lack of computer resources to modelling natural process in sufficient detail. 

When combining the gas and electricity regression models with 1961-1990 climate data 

and predictions for the period from 2020 to 2049 the results showed an increase in 

electricity use and a reduction in gas consumption both in absolute and relative terms, or, 

in other words, the results predicted an overall reduction of energy usage. 

The investigation into differences in location dependent energy use could not establish a 

link between any variation in operational procedures and differences in energy usage. 

These differences could be more credibility explained, in the case of gas average        , 

with the latitude and, in the case of the average         for electricity, with the total 

supermarket area. 

Studying the refrigeration system in Hull showed that using simplifying assumptions 

yielded a model with a          with less than 10%. This model helped establish that 



 

- 169 - 

most of the additional electricity use due to climate change is owing to the refrigeration 

system. This section also demonstrated that a higher cooling load yielded a better     . 

Furthermore it showed that the method of controlling condenser fans employed during the 

study period can be improved and, thus, energy could be saved. 

9.2 Further work 

The work started here could be extended in a number of ways including further research 

into the condenser fan controls. This would start with using the software model developed 

in this work to investigate if widening the control band of ±0.5 bar (the setting during the 

period of investigation) would reduce the electricity use of the refrigeration system, 

followed by a verification with the installed system. The next step could be to develop an 

approach to estimating the cooling load in real-time, and then using the cooling load as an 

input to the condenser fan controller so that fan control can be optimised. 

Another area of further work could concern the refrigeration model itself. This has been 

implemented in Matlab, but may benefit from being transferred to another software 

package, such as Simulink (The MathWorks, 2011), which is more geared towards 

simulating dynamic systems. This could be followed by developing better condenser 

models so that the de-superheating process can be better represented. Afterwards it could 

be investigated if and how gas coolers can be modelled in order to simulate, for example, 

transcritical CO2 refrigeration systems. 

The research with respect to whole supermarkets could be expanded by investigating how 

model parameters for both electricity and gas models can be estimated. The research 

indicated that, for gas consumption, only the building volume may suffice. However, the 

sample size needs to be increased in this building type and then broadened to include also 

other types of building (including buildings without a lobby). For the electricity model the 

dependency on the total area of supermarkets could be investigated. This could serve as a 

base line against which actual consumption could be compared with in order to detect 

energy inefficiencies. 

Another strand of further research could include the construction of a reliable UK 

supermarket model (including refrigeration systems) in a building simulation software 

package as, so far, only a detailed US model is available (Deru et al, 2013). Such a model 

could be compared to a CFD model to explore possible stratification in supermarkets. This 
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work could suggest if there is an optimum ceiling height, or if combined heat and power 

plants or phase change material would be of benefit. 
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Appendix A – Review protocol 

Review Question: What is known about the impact of different weather patterns on 

the energy consumption of supermarkets (in the UK)? 

Background 

According to figures from the DECC
6
 the retail industry uses just under 2% of the 

total energy consumed in the UK. This is unlikely to decrease despite sustained 

efforts by this sector to improve their energy efficiency. The article published on the 

website of The Guardian
7
 supports this evaluation as it explains that, although the big 

supermarket chains are committed to energy efficiency, most of them reported an 

increase in their energy use, which was mainly put down to their business growth. 

A future cause of increased energy consumption may be a change in the prevailing 

weather pattern. The IPCC
8
 suggests that it is almost certain that the weather will 

have more warm temperature extremes and a decrease in cold spells. This may mean 

that, while the heating efforts of supermarket decreases, the cooling efforts for both 

food refrigeration and room cooling may increase, thus leading to a net increase in the 

demand for energy. This may necessitate a re-negotiation of contracts with energy 

suppliers and a re-evaluation of the existing utility supply facilities, e.g. to ensure that 

the main electric incoming cable is capable of supplying sufficient electricity. In 

addition to this, supermarkets may have to investigate what further technical solutions 

can be employed to mitigate this increase, e.g. better insulation of certain refrigeration 

pipes, more rigorous maintenance of condensing units etc. 

Although there has been some research conducted in this area
9
 the reviewer is not 

aware of a recent systematic review. In particular, the impact of a change in the 

weather pattern has not been investigated. Also the quality of models used for 

predicting energy consumption needs to be looked at in order to identify the most 

useful one to comprehensively answer the consumption question with respect to 

different weather parameters (and not dry bulb temperature only). 

                                                 
6
 DECC (2012). Energy consumption in the UK. Available at www.decc.gov.uk/en/content/cms/statistics/ 

publications/ecuk/ecuk.aspx. Accessed: 20/10/2012 
7
 SULLIVAN, R. and GOULDSON A (2012) Are there limits to energy efficiency for supermarkets? 

Available at http://www.guardian.co.uk/sustainable-business/limits-energy-efficiency-supermarkets-retail. 

Accessed: 19/10/2012 
8
 IPCC (2012). Summary for policy makers. In: Managing the risks of extreme events and disasters to 

advance climate change adaptation. [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, 

M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special 

Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge, UK, and New York, NY, USA, pp. 1-19 
9
 E.g. ARIAS, J. 2005. Energy Usage in Supermarkets: Modelling and Field Measurements. Kungliga 

Tekniska Hogskolan (Sweden) DrTechn., Kungliga Tekniska Hogskolan (Sweden); GE, Y. T. & TASSOU, S. 

A. 2011. Performance evaluation and optimal design of supermarket refrigeration systems with supermarket 

model “SuperSim”, Part I: Model description and validation. International Journal of Refrigeration, 34, 527-

539. or DUCOULOMBIER, M., TEYSSEDOU, A. & SORIN, M. 2006. A Model for Energy Analysis in 

Supermarkets. Energy and Buildings, 38, 349-349. 
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Objectives 

 Understanding the amount and quality of published literature available to 

assess the impact of the change in weather on the energy use of supermarkets 

 Identify any gaps in the existing literature. 

Criteria for Inclusion and Exclusion of Studies: 

Types of studies 

 Mathematical models 

Types of populations 

 Supermarkets in the UK 

The review may also include: 

 Non-domestic buildings in the UK 

 Supermarkets outside the UK 

 Non-domestic buildings outside the UK 

Types of intervention or exposure 

The type of exposure that will be of interest here is the local weather. This is different 

from the local climate (i.e. the long term weather trend) and includes various 

parameters, e.g.: 

 Dry and wet bulb temperature 

 Relative humidity 

 Wind speed and direction 

 Atmospheric pressure 

 Global and horizontal solar radiation 

It is expected that the reviewed material will include mainly dry bulb temperature and 

relative humidity. 

Types of outcome measures 

Prediction of electricity consumption. 

Prediction of gas consumption. 

Or prediction of electricity and gas consumption 

Setting/context (where applicable) 

N/A 

Search strategy for Identification of Studies 

Electronic Databases to be used: 

 Web of Knowledge (Web of Science) 

 IEEE/IET Electronic Library 
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 BSOL – Full text British Standards 

 Construction Information Service (CIS) 

 ProQuest (incl ProQuest dissertations and theses, technology research 

database) 

 TechXtra 

 DART - Europe E-theses portal 

 EThOS 

 University of Sheffield star library 

 Google Scholar 

 Index to theses 

 JSTOR 

 Oxford Scholarship Online 

 White Rose eTheses Online (WREO) 

 White Rose Research Online (WRRO) 

 Questia 

 Academic Journals – Engineering 

 Library catalogue of Sheffield Hallam University 

 COS Conference Papers Index 

 DOAJ 

 ASHRE 

Other Search methods: 

 Hand search of list of references of included items 

 Search citation index of included documents 

 Hand searching the following magazines: 

 Contemporary engineering science 

 Building and energy 

 Building and environment 

 Applied energy 

 Other magazines may be added as needed 

The following websites will also be searched to locate any grey literature: 

 Envirowise 

 Carbon Trust 

 Tesco 

 Morrision 

 Sainsburry’s 

 Asda 

 Waitrose 

 Co-op 

 Marks and Spencer 

Keywords in title and/or abstract: 

1. Supermarket* 

2. Hypermarket* 

3. Store* 

4. Retail* 

5. Shop* 

6. Non-domest* 
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7. Energy 

8. Power 

9. Electricity 

10. Gas 

11. Weather 

12. Climate 

13. Environment* 

14. Model 

15. Simulation 

16. Refrigerat* 

17. UK 

18. Building simulation 

19. 1 or 2 or 3 or 4 or 5 or 6 (operationalizing “supermarket”) 

20. 7 or 8 or 9 or 10 (operationalizing “energy”) 

21. 11 or 12 or 13 (operationalizing “weather”) 

22. 14 or 15 (operationalizing “modelling”) 

23. 19 and 20 

24. 19 and 20 and 17 

25. 19 and 20 and 21 

26. 19 and 22 

27. 19 and 22 and 17 

As this review relates to supermarkets in the UK, the keywords will be in English 

only. 

Because of technical advances, literature prior to 1981 will be disregarded. 

Method of Review 

Selection of studies 

To determine whether to include a particular piece of literature the reviewer will read 

the title and the abstract/preface of all identified literature. A piece of literature will 

be included if it establishes a link between the energy consumption of a supermarket 

in the UK (or store etc) and at least one weather parameter. Literature establishing 

other links between energy consumption and supermarkets (e.g. footfall) may also be 

included. If less then 150 items are identified, then literature relating to supermarkets 

outside of the UK will be considered. 

Literature relating to non-domestic buildings, but not explicitly studying 

supermarkets will be excluded. 

Assessment of methodological quality 

The quality assessment questions include: 

 Has the model been verified? 

 What is the average percentage error between the prediction of the model and 

the data used to verify it? 

 Has a sensitivity analysis been performed? 
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Data Extraction 

The following data will be extracted: 

 How many supermarkets (refrigeration systems) have been studied? 

 In which city/town are these supermarkets (refrigeration systems)? 

 What is the average consumption breakdown of refrigeration, HVAC and 

lighting? 

 What model has been used (Forward or reverse)? 

 How has the model been derived? 

 What is the error of the model? 

 What weather data has been included? 

 What is the source of the weather/climate data? 

 What is the relationship between the weather data (or other predictors) and the 

energy/electricity/gas consumption (in m
2
)? 

Data Synthesis 

The reviewer will initially record the qualitative data in an Excel spreadsheet and then 

divide the literature into different weather phenomena studies and summarize their 

conclusions. 

If there is enough information on the models, the reviewer will perform a quantities 

study increasing the outside temperature from 13°C (about the UK average
10

) to 

17 °C (not an impossible rise according to the IPCC
11

) and compare the change in 

energy consumption (supermarket size: 2800m
2
, the average size of my sponsor 

supermarkets). 

Timeframe 

Milestone     Target date 

Final protocol     24 Oct 2012 

Literature search    05 Nov 2012 

Study selection    26 Nov 2012 

Data extraction and critical appraisal  17 Dec 2012 

Data synthesis     31 Dec 2012 

Conclusions     07 Jan 2013 

Report writing     16 Jan 2013 

 

                                                 
10

 MET (n.d.) Climate averages 1971–2000. Available at www.metoffice.gov.uk/climate/uk/averages/ 

19712000/areal/england.html. Accessed: 19/10/2012 
11

 IPCC (n.d.) Projection in future changes in climate – AR4 WG1 Summary for policy maker. Available at 

http://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html. Accessed: 19/10/2012 
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Feedback from Module Tutor or PhD Supervisor 

Joint HAR6029 module co-ordinator 

Dear Martin, 

Thank you for sending through your review protocol- I think it is looking very good. 

You have set the scene well with the background section. Your question and 

inclusion/exclusion criteria is focused, and I like that you have specified up front 

what you will do in case of no/little UK literature. 

Your search approach is very thorough and you are searching a number of different 

sources and methods, which is very good practice. 

I think your search strategy itself is very good but have a couple of comments 

1.       Where possible, try and use Database Index terms in your search, however it 

may not be possible on the databases you are searching (at the moment you are using 

free-text terms incorporating truncation which is fine). 

2.       I think your step 20 is the set of results you want to use (at least initially). Some 

of the later steps in the strategy restrict the search too much. I’m not sure about 

including the steps 14 and 15 as this could be very restrictive. Similarly, if you are 

refining to UK literature, you need to include more synonyms (Great Britain, 

England, Scotland, Wales, Northern Ireland) so you don’t miss anything. It all 

depends on how much literature is returned at step 20 though. 

In terms of quality assessment, do you know of any published checklists for models? 

If so, it might be worth using this here or explaining why you are using the criteria 

you have selected.  In terms of data synthesis, it sounds like you will be doing a 

narrative review- so you should state this. 

It’s looking very good and detailed, so just a few tweaks. 

 Best wishes, 

 Diana  

-- 

Joint HAR6029 module co-ordinator 

 

PhD Supervisor (Prof Stephen Beck) 

Looks OK. Timeframe too tight! 6 months more realistic. 



 

 

Overview of some analysis and simulation tools for the energy consumption in buildings and some comments on  

 Name Description Advantages Disadvantages 

D
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Ratio based performance 

indicators 

Provides a single figure for benchmarking 

or for pre-audit analysis 
 Easy to calculate 

 Quick to use 

 Normalization is limited 

 Requires large database if used for 

benchmarking 

Plot against time 
Allows identification of general trends, base 

load and seasonal patterns 
 Simple  Allows only time dependent analysis 

Simple linear regression 
Quantifies the relationship between two 

variables 
 Versatile and simple 

technique 

 Only one independent variable possible 

 Cause and effect not established  

Multiple regression 

analysis 

Versatile tool for whole building energy use 

or analysis of individual equipment etc 
 Flexible 

 Model parameters have 

physical meaning 

 Cause and effect not established 

 May require statistical training 

Artificial neural networks 
Consists of several connected layers to 

forecast short- and long-term energy use 
 No prior knowledge of 

model structure required 

 No indication of statistical signification 

 Parameters may have no physical meaning 

Support vector machine  
Machine learning algorithm  Solves non-linear 

problems effectively 

 Complex modelling technique 

D
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Simplified building 

energy model 

Uses simple heat balance equation to 

calculate heating and cooling loads 
 Can be used for 

compliance test 

 Limited by underlying assumptions 

Thermal network models 
Discrete components form a network with 

temperature nodes 
 Versatile  Limited by discretization 

Computational fluid 

dynamics method  

Uses a mesh of control volumes to simulate 

fluid flow 
 Detailed simulation of 

fluid flows 

 High computational load 

 Requires understanding of fluid dynamics 

Degree days 
Uses balance point temperature to estimate 

heating or cooling loads 
 Simple  Only for steady state 

Building simulation 

software  

Employed for simulating large buildings 

with complex HVAC systems 
 Capable of modelling 

complex buildings 

 One temperature per zone 

 Requires high level of expertise 

 Potentially very inaccurate 
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Appendix C – Site visit protocol 

Site Visit Protocol - Glasgow 

Date of visit: 6 May 2014 

Name ANNIESLAND SF Store manager  Coordinates 

Number 0397 Ops manger  Lat 55.7432 

Address Great Western 

Road, 

Glasgow, G13 2TH 

Plan A champion  Long -2.8699 

Energy manager  Altitude 30 m (AMSL) 

Opening hours Mo – Sa: 8:00 – 20:00 Su: 9:00 – 18:00 

Store opened Nov 2010 Building approval ?  

Building 

Area 
Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total 
51.3 39.5 1554.5 

Volume: ca 

12000 m
3
 

One floor 

Sales floor 44.2 24.8 967.8 Lobby: 24 m
2
 Incl. customer toilets 

Café 17.4 6 104.4   

Stock  
18.45 14.3 223  

Incl. coldroom & IT, 

excluding boiler room 

Offices & 

Staff area 
26.5 5.9 156.35   

Plant 
16 6.8 108.8  At ground level 

Building timers 

Name Description Day On Off On Off 

Night cover    7:00 20:50  

Main bake   6:00 11:00   

Occu Occupied alarm: Stock light      

M1 Master 1: Store trading times 
Mo - Sa 8:00 20:00   

Sun 9:00 18:00   

M23 Master 23: HVAC – non essential 
Mo – Sa 8:00 16:00 18:00 20:00 

Sun 9:00 11:00 13:00 18:00 

M24 Master 24: HVAC - essential 
Mo – Sa 8:00 20:00   

Sun 9:00 18:00   

  



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  37.

5 

 37.5 h/week 

Light – Stocking T5 49 W 57 Occu  

Light – Trading T5 49 W 57 M1 

-5min, 

0 

 

Light – Trading Twin spot lights 70 W 48 M1 

-5min, 

0 

 

Light Hybrid R5 8 W 3 M1 

-5min, 

0 

Bakery 

Light Recessed downlighter 2x26 W 9 

8 

M1 

-5min, 

0 

Customer WC 

Lobby 

Light T5 28 W 90 M1 

0, 0 

Piped case 

Light T5 21 W 24 M1 

0, 0 

Mobile 

Light T8 30 W 28 M1 

0, 0 

Freezer 

Air curtain Diffusion Airboss 2000W 16 kW - HW 2 M23 

-2, 0 

Lobby 

Unit heater Diffusion SRW5/22 7.5 kW - HW 7 M23 

-2, 0 

 

Cold aisle heater GEA Searle, FAH-WC-

1R1C-15 

6 kW est - HW 

0.72 kW - El 

12 M23 

-2, 0 

 

Fan SAVLX63S-223 10 kW 1  Sales area, 

cold smoke 

Fan Saver, SAVAF250 300 W 1 M24 

-5 min, 

0 

Customer WC 

Refrigerated 

display unit 

Lincoln (8ft = 2.44 m) 72 W 2  Produce 

Refrigerated 

display unit 

Lincoln (12ft = 3.66 m) 120 W 2  Produce 

Refrigerated 

display unit 

Brookland MK4  

(5ft = 1.52 m) 

54 W 8   

Refrigerated 

display unit 

Brookland MK4  

(6ft = 1.83 m) 

56 W 1   

Refrigerated 

display unit 

Brookland MK4  

(8ft = 2.44 m) 

72 W 2   

Refrigerated 

display unit 

Brookland MK4  

(14ft = 4.27 m) 

126 W 1   

Refrigerated 

display unit 

Brookland MK4  

(18ft = 5.49 m) 

162 W 1   

Refrigerated 

display unit 

Brookland MK4  

(36ft = 10.97 m) 

324 W 2   

Refrigerated 

display unit 

Brookland MK4  

(38t = 11.58 m) 

342 W 4   



 

 

Name Model Power No Timer Remarks 

Freezer Constan - Symphony 2 kW 7  Incl lights  

(120 W) 

Refrigerated 

display unit 

Brooklands mobile  10   

Wine cooler Caravell, CBC 800H 

MK2 

700 W 1   

Ice cream freezer Carrier – TF/TS 17 1.1 kW 1   

Tills Pan Oston Dutch Florin  5  24h on  

(for updates) 

Self check out   1  24h on 

 (for updates) 

Automatic door Record  3   

Oven Mono – FG158 7.5 kW 2   

Oven Mono – DX (Eco-touch) 5 kW 1  Newly 

installed 

Fridge-freezer Williams, LJ1SA R1 400 W 1  Bakery 

Bread slicer Pico, 450 Jac 490 W 1  Bakery 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  6  37. 5h/week 

Light – Stocking T5 49 W 4 Occu  

Light – Trading T5 49 W 4 M1 

5 min, 

0 

 

Light PP9 Pendant 10 W 3 M1 

0, 0 

 

Light Recessed downlighter 2x26 W 4 M1 

0, 0 

 

Light Spot lights 35 W 4 M1 

0, 0 

 

Refrigerated 

display unit 

SD2 (1.5 m) 1.6 kW 1 M1 

0, 0 

Timer for 

lights 

Refrigerator 

(small) 

Delfield 220 W 2   

A/C: 4 way blow 

cassette 

PLA-RP 125BA2 H: 11.9 kW 

C: 11.25 kW 

2 M23 

0, 0 

 

A/C: Wall mount PKA-RP100KAL H: 9.5 kW 

C: 9.2 kW 

1 M23 

0, 0 

 

Fan SAVAF500 1.7 kW 1 M24 

-5 min, 

0 

 

Dishwasher Hobart - AMXXS/31 6.15 - 15.9 

kW 

1   

Coffee Machines Faema – Emblema 4.2-7 kW 2   

Microwave Merrychef - 1925C45UK 3.12 kW 2   

Combination 

oven/microwave 

Merrychef 

E3CXE 

0.7/3 kW 1   

Hot water boiler Bunn, Single 3 kW 2   

Coffee grinder Matthew Algie, Eureka 85 W 2   



 

 

Name Model Power No Timer Remarks 

Flykiller IF50 50 W 1   

Kettle Marco - Aquarious 15 2.8 kW 1   

Warming Drawers Wing 1 kW 1  Estimated 

Icemaker Scotsman, ACM56 0.4 kW 1   

Cash register  ? 1   

Stock area 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  4.5  37.5 h/wk 

Light 49W with reflector 58 W 18 PIR Incl. Boiler 

room 

Light T5 49 W 2 ? Loading bay, 

outside 

Light T5 49 W 6 PIR Coldroom 

Outside lamps Halogen,   ? ?  

Light LED  4 Door Freezer 

Coldroom 

evaporator 

Searle DSR68-

6MSHCO2P 

104 W 2  1 from pack 1 

1 from pack 2 

Freezer evaporator Searle KEC55-6 230 W 1   

Boiler MHS Boiler – Ultramax 

R604 

285.2 kW 1 M23 

-2h, 0 

Boiler room 

Unit heater Diffusion SRW5/22 7.5 kW  1 M23 

-2, 0 

 

Air curtain Diffusion Mirage 2000SC 20.6 kW 1 M23 

-2h, 0 

Loading bay 

Fan SAVAF400 1.2 kW 1 M24 

-5min, 

0 

Stock area 

Fan OPUS60S-CR  1 M24 

-5min, 

0 

Cleaner  

Water Heater Heatrae - Mega  1 M23 

-2h, 0 

Boiler room 

Pump Grundfoss – Twin 

impeller, 85D05965 

2 x 1.1 kW 1 M23 

-2h, 0 

Boiler room 

Shutter – Electric 

roller 

Landlords  1  Loading bay 

Scissor lift Sara  1  Loading bay 

Printer HP 4350n 790 W 1   

Computer  150 W 2  incl screen, 

estim. 

Fresh water 

booster pump 

Grundfoss, CM 5-5 900 W 2   

  



 

 

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  2  37.5 h/wk 

Light Crompton - Modulay 4x14 W 29 Occu  

A/C: 4 Way blow 

cassette 

PLA-RP100BA3 H: 9.5 kW 

C: 9.2 kW 

1 M23 

-2, 0 

Admin office 

A/C: 4 Way blow 

cassette 

PLA-RP100BA3 H: 9.5 kW 

C: 9.2 kW 

1 M23 

-2, 0 

Staff room 

Fan SAVAF315 730 W 1 M24 

-5 

min, 0 

Staff WC  

Fan SAVAF500 1.7 kW 1 M24 

-5 

min, 0 

General extract  

Coffee machine Crane – V4 2.3 kW 1  Catering unit 

Chiller for cold 

water 

Waterlogic 150 W 1  Catering unit 

Microwave Panasonic – NE1037 1.5 kW 2  Catering unit 

Kettle Russell Hobbs 3 kW 1  Catering unit 

Toaster  2.2 kW 1   

Computer Computer etc 150 W 6   

Printer Different models av 300 W 4   

Shredder   1   

Charging station   1   

Refrigerator, small Gram, K 210 RG 3N 99 W 1   

Refrigerator, large Gram. K 410 RG C 6N 103 W 1   

Plant area 

Name Model Power No Timer Remarks 

Pack No 1 

CCU-CO2-080 

4DC-5.2Y 

4PC-10.2Y 

4J-13.2Y 

5.29 kW 

6.41 kW 

12.5 kW 

1 

1 

1 

 From drawings 

because no 

keys available 

Pump Station No 1 MSH-CO2-Pump-400V 4 kW 1  Estimated (incl 

pump) 

Condenser  1.7 kW 4   

Condenser No 1 MGC222H-09-EC3 1.9 kW 4   

Pack No 2 

CCU-060-CO2 

4EC-4.2Y 

4DC-5.2Y 

4NCS-12.2Y 

4.39 kW 

5.29 kW 

11.15 kW 

2 

1 

1 

  

Pump Station No 2 MSH-CO2-Pump-400V 4 kW 1  Estimated (incl 

pump) 

Condenser  1.7 kW 2   

Condenser No 2 MXA123H-90-EC3 1.9 kW 2   

Freezer 

Condenser 

Searle NSQ18-3LS-C 3.7 kW 1   

AHU Systemair 

KK 062 ST20 40kW 

LPHW 

40kW HW 

2.4 kW - El 

1 M23 

-5 

min, 0 

Full fresh air 

AHU + LPHW 

heating coil 

and G4 filter 

A/C: Condenser Mitsubishi 8.3 kW 1 M23  



 

 

Name Model Power No Timer Remarks 

PUHZ-RP250YKA (max) -5 

min, 0 

A/C: Condenser Mitsubishi 

PUHZ-RP100YKA 

5 kW (max) 3 M23 

-5 

min, 0 

 

Condensing unit Rivacold, 

Hum140Z0312/04 

3.26 kW 2  For cooling 

refrigeration 

packs 

Sensor 

ID Description Controlling Location Type 

S1 Outside temp HVAC Plant Outside north facing wall PT1000 Sontay TT 

531/E External  

S6 Salesfloor temp Unit heater No2-1 Horticulture area PT1000 Fortune  

300 mm Pendant 

S7 Salesfloor temp Unit heater No2-2 to 

2-4 

Food area PT1000 Fortune  

300 mm Pendant 

S8 Salesfloor temp Unit heater No2-5 to 

2-7 

Tills area PT1000 Fortune  

300 mm Pendant 

S12 Café temp AC 1-1 and 1-2 Café seating area PT1000 Fortune  

300 mm Pendant 

 

  



 

 

Site Visit Protocol - Gateshead 

Date of visit: 7 May 2014 

Name GATESHEAD 

TEAM VALLEY SF 

Store manager  Coordinates 

Number 0433 Ops manger  Lat 54.923 

Address Team Valley RP 

Gateshead 

NE11 0BD 

Plan A champion  Long -1.620 

Energy manager  Altitude 13.7m (AMSL) 

Opening hours Mo –We, Sa: 8 – 20:00  

Th, Fr: 8:00-21:00 

Su: 

10:30 – 16:30 

Store opened Aug 2011 Building approval ?  

Building 

Area 
Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total 54.29 16.75 1726.7 Volume ca 

7800 m
3
 

Both floor, staircases 

and lift 

Sales floor 54.29  16.75 931.8 GF: 771.1 m
2
, 

FF: 160.7 m
2
 

Incl. customer toilets 

No lobby 

Café 13.7 13.71 204.3  1
st
 floor 

Stock  21.7 16.3 261.75  Incl. coldroom & IT, 

excl.  boiler room 

Offices & 

Staff area 

13.3  13.8 159   

Plant 10 7.9 79.1  1
st
 floor 

Building timers 

Name Description Day On Off On Off 

Night cover    6:00 Closing 

+ 45 

min 

 

Main bake   6:00 10:00   

Occu Occupied alarm: Stock light      

M1 Master 1: Store trading times Mo – We, 

Sa 

8:00 20:00   

Th - Fr 8:00 21:00   

Sun 10:30 16:30   

M27 Master 27: HVAC – non 

essential 

Mo – We, 

Sa 

7:30 16:00 18:00 19:30 

Th - Fr 7:30 16:00 18:00 20:30 

Sun 10:00 16:00   

M28 Master 28: HVAC - essential Mo – Sa 8:00 20:00   

Sun 10:30 16:30   



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff   35  37.5 h/week 

Light – Stocking T5 49 W 69 Occu  

Light – Trading T5 49 W 70 M1 

-5min, 

-5min 

 

Light – Trading Single spot light 35 W 7 M1 

-5min, 

-5min 

 

Light - Trading Twin spot light 70 W 70 M1 

-5min, 

-5min 

Off which 12 

1
st
 floor 

Light Hybrid R5 8 W 2 M1 

-5min, 

-5min 

Bakery 

Light Recessed downlighter 2x26 W 8 M1 

-5min, 

-5min 

Customer WC 

Light 2DE luminaire 14W (est) 2 M1 

-5min, 

-5min 

Stair case 

Light T5 21 W 54 M1 

0, 0 

Piped cases & 

mobile 

Light T5 28 W 29 M1 

0, 0 

Piped cases & 

mobile 

Light T8 30 W 16 M1 

0, 0 

Freezer 

Air curtain Diffusion 

Airboss 2000W 

13.7 W - HW 1 M28 

0, 0 

Entrance door 

(no lobby) 

Unit heater Diffusion 

SRW5/22 

7.5 kW – HW 

150W - El 

2 M28 

0, 0 

Sales area 

A/C: 4 way blow 

cassette 

PLA-RP125BA2 H: 11.9 kW 

C: 11.25 kW 

2 M27 

0, 0 

Sales area – 

ground floor  

A/C: 4 way blow 

cassette 

PLA-RP100BA3 H: 9.5 kW 

C: 9.2 kW 

2 M27 

0, 0 

Sales area – 

first floor 

Cold aisle heater GEA Searle, FAH-WC-

1R1C-15 

6 kW est - HW 

0.72 kW - El 

12 M28 

0, 0 

 

Cold aisle heater Diffusion, WH18/4 

HOCH 

5.3 kW – HW 

34 W - El 

1 M28 

0, 0 

 

Fan AX63AA-463A 4 kW 1  Sales area, cold 

smoke 

Fan AX560-453A 1.5 kW 1  Sales area, cold 

smoke 

Fan NALAF250 130 W 1 M27 

0, 0 

Customer WC 

Refrigerated 

display unit 

Lincoln (8 ft = 2.44 m) 72 W 2  Produce 

Refrigerated 

display unit 

Lincoln (12 ft = 3.66 m) 120 W 2  Produce 

Refrigerated 

display unit 

Lincoln (20ft = 6.1 m) 192 W 1  Produce 



 

 

Name Model Power No Timer Remarks 

Refrigerated 

display unit 

Brookland MK4 

(5 ft = 1.52 m) 

54 W 6   

Refrigerated 

display unit 

Mobile 

Brookland MK4 

(8 ft = 2.44 m) 

72 W 2  Mobile 

Refrigerated 

display unit 

Brookland MK4 

(8 ft = 2.44 m) 

72 W 1   

Refrigerated 

display unit 

Mobile 

Brookland MK4 

(6 ft = 1.83 m) 

56 W 2  Mobile 

Refrigerated 

display unit 

Brookland MK4 

(14 ft = 4.27 m) 

126 W 3   

Refrigerated 

display unit 

Brookland MK4 (26 ft = 

7.92m) 

234 W 4   

Refrigerated 

display unit 

Brookland MK4 (30 ft = 

9.14 m) 

270 W 2   

Wine cooler Caravell, CBC 800H 

MK2 

700 W 1   

Freezer Constan - Symphoney 2 kW 4   

Ice cream freezer Carrier – TF/TS 17 1.1 kW 1   

Tills Pan Oston Dutch Florin  4   

Selfcheck out   5   

Automatic door Record  1   

Oven Mono – BX 7.5 kW 2  Bakery 

Freezer Williams, LJ1SAR1 400 W 1  Bakery 

Breadslicer Pico, 450 Jac 490 W 1  Bakery 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  18  37.5 h/week 

Light T5 49W 16 Occu Incl 3 in 

kitchen 

Light T5 49W 15 M1 

-5, -5 

Incl 4 in 

kitchen 

Light PP9 Pendant 10W 6 M1 

-5, -5 

 

Light 1x58W c/w reflector 58W 7 M1 

-5, -5 

 

Light Recessed downlight 2x26W 4 M1 

-5, -5 

 

Refrigerated 

display unit 

SD2 (1.5 m=5 ft) 1.6 kW 2 M1 

-5, -5 

 

Fridge Williams 310 W 4   

Fridge Defrige 340 W 1   

Freezer Williams 345 W 1   

A/C: 4 way blow 

cassette 

PLA-RP 100BA3 H: 9.5 

C: 9.2 

2 M27 

0, 0 

 

Fan NALAF500 1.7 kW 1 M27 

0, 0 

Extractor 

Dishwasher Horbart – AMXXS/31 10 - 15.9 kW 1   



 

 

Name Model Power No Timer Remarks 

Coffee Machines Faema – Emblema 4.2-7 kW 3   

Kettle Marco - Aquarious 15 2.8 kW 1   

Hot water boiler Bunn, Single 3 kW 1   

Blender Magrini, Vitamix 85 W 2   

Microwave Merrychef – 1925c 3.12 kW 2   

Insectocutor IF50 S/S 50W 1   

Oven/Microwave 
Merrycheff –eikon e4 

3.2 kW/1.5 

kW 

2   

Warming Drawers Wing 1 kW 1  Estimated 

Icemaker Scotsman, ACM56 0.4 kW 1   

Fridge Delfried, Willams 217 W 2   

Coffee grinder Matthew Algie, Eureka 85 W 2   

Cash register   3   

Stock area (incl Goods in) 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  10  37.5 h/week 

Light 1x49W c/w reflector 49 W 31 PIR Off which 10 

ground floor 

Light T5 49 W 49 W 8 PIR Cold room 

Light Bulkhead 18 W 7 Switch  

Cold room 

Evaporator 

Searle  

DSR62-6ALCO2P 

75 W 1  Pack 1 

Cold room 

Evaporator 

Searle  

DSR51-6 

75 W 1  Condensing 

unit 

Freezer 

Evaporator 

Searle 

KEC45-6 

230 W 1  Condensing 

unit 

Boiler MHS Boiler – Ultramax 

R603 

242 kW 1  Boiler room 

Unit heater Diffusion 

SRW5/22 

7.5kW – HW 1 M28 

0, 0 

 

Air curtain Diffusion 

Mirage 2000SC 

20.6kW 1 M28 

0, 0 

Loading bay 

Fan NALAF315 730 W 1  Stock & 

cleaners 

Fan NALAF400 1.2 kW 1  Stock area 

Water Heater Heatrae – Mega 24.3 kW 1  Boiler room 

Pump Grundfoss – UPS 650 W 1  Boiler room 

Shutter – Electric 

roller 

Landlords  1  Loading bay 

Scissor lift Sara  1   

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  2  37.5 h/week 

Light T5 49 W 5 Occu Stair case 

Light T8 Recessed modular 4x14 W 33 PIR  

Light Recessed downlighter 2x26W 4 PIR  



 

 

Name Model Power No Timer Remarks 

A/C: Wall 

mounted 

PAK-RP35HAL H: 3.5 kW 

C: 3.2 kW 

1 M27 

0, 0 

Admin office 

A/C: 4 Way blow 

cassette 

PLA-RP35BA H: 3.5 kW 

C: 3.2 kW 

1 M27 

0, 0 

Staff room 

Fan NALAF250 330 W 1 M27 

0, 0 

Staff WC  

Fan NALAF315 730W 1 M27 

0, 0 

General  

Coffee machine Crane – V4 2.3 kW 1  Catering unit 

Chiller for cold 

water 

Waterlogic, F4FW 150 W 1  Catering unit 

Microwave Panasonic, NE1037 1.5 kW 2  Catering unit 
Toaster Russell Hobbs 2.2 kW 1   

Printer  300 W 2  Estimated 

Photocopier   1   

Shredder   1   

Charging station  150 W 2   

Refrigerator 

(small) 

Gram, K 210 RG 3N 99 W 1  Catering unit 

Refrigerator 

(large) 

Gram. K 410 RG C 6N 103 W 1  Catering unit 

Plant area 

Name Model Power No Timer Remarks 

Light 2DE Luminaire 16 W 8   

Light Recessed downlighter 2x26 W 6   

A/C: Condenser Mitsubishi 

PUHZ-RP250YKA 

12.4 kW 1 M27 

0, 0 

 

A/C: Condenser Mitsubishi 

PUHZ-RP200YKA 

11.2 kW 2 M27 

0, 0 

 

A/C: Condenser Mitsubishi 

PUHZ-RP35VHA4 

2.5 kW 2 M27 

0, 0 

 

AHU System Air – KW100 

ST200 42 kW LPHW 

42 kW - HW 

2.13 kW 

1 M27 

0, 0 

Supply AHU 

complete with 

LPHW heater 

& filter 

Refrigeration Pack 

Searle CCU-CO2-

100 

4CC-6.2Y 

4J-13.2Y 

4G-20.2Y 

4TCS-8.2Y 

6.36 kW 

12.5 kW 

17.12 kW 

8.17 kW 

1 

1 

1 

1 

  

Pump Station 

 

MSH-CO2-Pump-400V 4 kW 1  Estimated 

(Incl pump) 

Condenser  1.7 kW 4   

Condenser unit – 

Cold room  

Searle, SCQ27-1MX-A-

CU 

1.7 kW 1  Cold room 

Condenser unit - 

Freezer 

Searle, NCQ24-3LS-

D2W1 

4.8 kW 1   

 

  



 

 

Sensor 

ID Description Controlling Location Type 

S1 Outside temp HVAC Plant Outside north facing wall PT1000 Sontay TT 

531/E External  

S6 Salesfloor temp Unit heater No2-1 & 

H2-2 

Tills area  PT1000 Fortune  

300 mm Pendant 

S7 Salesfloor temp Unit heater No2-3 to 

2-4 

General merchandise  PT1000 Fortune  

300 mm Pendant 

S12 Café temp AC 12 Café seating area PT1000 Fortune  

300 mm Pendant 

 

  



 

 

Site Visit Protocol - Washington 

Date of visit: 7 May 2014 

Name WASHINGTON 

GALLERIES SF 
Store manager  Coordinates 

Number S0420 Ops manger  Lat 54.900 

Address Washington 

Tyne and Wear 

NE38 7SD 

Plan A champion  Long -1.532 

Energy manager  Altitude 66m (AMSL) 

Opening hours Mo – Sa: 8 – 20:00 Su: 10:30 – 16:30 

Store opened May 2011 Building approval ?  

Building 

Area Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total GF: 44.8 

FF: 22.8 

GF:19.7 

FF: 19.7 

GF: 883 

FF: 439 

Volume: ca 

7090 m
3
 

Two floors 

Sales floor 41.7 19.7  650 Lobby: 26 m
2
 Incl. customer toilets 

Café 20.2 4. 6 93   

Stock  22.3  15.3 268.4
 
  incl. coldroom & IT, 

excluding boiler room 

Offices & 

Staff area 

13.3 10.4  140   

Plant 12.2 4.7 60  1
st
 floor 

Building timers 

Name Description Day On Off On Off 

Night cover   6:30 – 

7:00 

20:30 - 

20:45 

  

Main bake   6:30 9:30   

Occu Occupied alarm      

M1 Master 1: Store trading 

times 

Mo - Sa 8:00 20:00   

Sun 10:15 18:30   

M13 Master13: HVAC – non 

essential 

Mo-Fr 8:30 16:00 18:00 19:00 

Sa 8:30 18:00   

Sun 11:00 16:00   

M14 Master14: HVAC – 

essential 

Mo-Fr 8:00 20:00   

Sa 8:00 19:00   

Sun 10:30 18:30   

  



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  19  37.5 h/week 

Light – Stocking T5 49 W 44 Occu  

Light – Trading T5 49 W 45 M1 

0, 0 

 

Light – Trading Single spot light 35 W 94 M1 

0, 0 

 

Light Hybrid R5 8 W 3 M1 

0, 0 

Bakery 

Light Recessed down lighter 2x26 W 13 

8 

M1 

0, 0 

M1 

0, 0 

Customer WC 

Lobby 

Light 2DE luminary 14W (est) 2  Stair case 

Light T5 28 W 22 M1 

0, 0 

Piped cases 

Light T8 30 W 8 M1 

0, 0 

Freezer 

Light T5 21 W 31 M1 

0, 0 

Piped cases 

Air curtain Diffusion 

Airboss 2000W 

16 kW - HW 2 M13 

0, -0.5 

Lobby 

Unit heater Diffusion 

SRW5/22 

7.5 kW - HW 4 M13 

0, -0.5 

 

Cold aisle heater Gea Searle, FAH-WC-

1R1C-15 

6 kW est - HW 

0.72 kW 

10 M14 

0, -1 

 

Fan NALT-200L 125 W 1 M13 

0, -0.5 

Sales area 

Fan NALT-250 130 W 1 M13 

0, -0.5 

Customer WC 

Refrigerated 

display unit 

Lincoln (8ft = 2.44 m) 72 W 4   

Refrigerated 

display unit 

Brookland MK4 

(5ft = 1.52 m) 

54 W 10   

Refrigerated 

display unit 

Brookland MK4 

(10ft = 3.05 m) 

90 W 7   

Refrigerated 

display unit 

Brookland MK4 

(38ft = 11.6 m) 

350 W 3   

Wine cooler Caravell, CBC 800H MK2 700 W 1   

Ice cream freezer Carrier – TF/TS 17 1.1 kW    

Freezer Constan - Symphoney 2 kW 4   

Tills Pan Oston Dutch Florin  3   

Self check out   4   

Automatic door Record  3   

Oven Mono – BX 7.5 kW 2  Bakery 

Oven Mono - DX 5 kW 1  Bakery 

Freezer Williams, LJ1SAR1 400 W 1  Bakery 

Breadslicer Pico, 450 Jac 490 W 1  Bakery 

  



 

 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  6  37.5 h/week 

Light T5 49 W 6 Occu  

Light T5 49 W 6 M1 

0, 0 

 

Light PP9 Pendant 10 W 3 M1 

0, 0 

 

Light Recessed downlight 2x26 W 5 M1 

0, 0 

 

Light Spot lights 35 W 9 M1 

0, 0 

 

Refrigerated 

display unit 

SD4-150E (1.5m) 1.6 kW 1   

A/C: 4 way blow 

cassette 

PLA-RP 140BA2 H: 13.6 kW 

C: 12.9 kW 

1 M13 

0, 0 

 

Fan NALAF500 1.7 kW 1 M14 

0, 0 

Extractor 

Dishwasher Horbart - AMXXS/31 10 - 15.9 kW 1   

Hot water boiler Bunn, Single 3 kW 2   
Blender T&G2 Magrini 1.2 kW 1   
Warming Drawers Wing 1 kW 1  Estimated 
Insectocutor IF50 S/S 50W 1   

Refrigerator 

 

Dellfield, RS10100U 250 W 3   

Combination 

oven/microwave 

Merrychef 

E3CXE 

0.7/3 kW 1   

Microwave Merrychef, 1925C 3.12 kW 1   

Blender Magrini, Vitamix 85 W 1   

Coffee grinder Matthew Algie, Eureka 85 W 2   

Kettle Marco - Aquarious 15 2.8 kW 1   
Coffee Machines Faema – Emblema 4.2-7 kW 2   
Icemaker Scotsman, ACM56 0.4 kW 1   
Fridge      
Cash register   1   

Stock area 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  7  37.5 h/week 

Light 1x49 W c/w reflector 49 W FF: 

21 

4 

6 

6 

PIR 

 

PIR 

 

 

Downstairs 

Coldroom 

Staircase 

Lights Bulkhead 18 W 8 Switch Freezer 

Air curtain Diffusion 

Mirage 1500SC 

17.16 kW 1 M13 

0, -0.5 

Loading bay 

Unit heater Diffusion 

SRW5/22 

7.5 kW - HW 1 M13 

0, -0.5 

1
st
 floor 

AHU Systemair 25 kW - HW 1 M14 Full fresh air 



 

 

KK 25 kW LPHW 1.33 kW 

(electric) 

0, 0 AHU with 

LPHW heating 

coil and G4 

filter 

Fan NALAF315 730 W 1 M13 

0, -0.5 

Stock area 

Coldroom 

Evaporator 

Searle  

DSR62-6CO2P 

104 W 1   

Coldroom 

Evaporator 

Searle  

DSR51-6 

192 W 1   

Freezer 

Evaporator 

Searle 

KEC70-6L 

231 W 1   

Boiler MHS Boiler – Ultramax 

R603 

237 kW 1 M14 

0, -1 

Boiler room 

Pump Grundfoss, T040 900 W 1  Boiler room 

Pump Siemens, 1101 3 kW 1  Boiler room 

Lift - Goods OTIS, ND8905  1  Boiler room 

Water Heater Heatrae – Mega 24.3 kW 1  Boiler room 

Pressurisation 

Unit Lowara Mini v series 

 1  Boiler room 

Pump Grundfoss – TPE  1.1 kW (?) 2  Boiler room 

Shutter – Electric 

roller 

Landlords  1  Loading bay 

Scissor lift Sara  1   

Printer HP 4350n 790 W 1   

Computer  150 W 2  incl screen, 

estim. 

Fresh water 

booster pump 

Grundfoss, CM 5-5 900 W 2   

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  3  37.5 h/week 

Light Crompton - Modulay 4x14W 32 Occu  

Fan NALAF250 330 W 1 M13 

0, -0.5 

Staff WC  

Fan NALT-100L 75 W 1 M13 

0, -0.5 

Spare office  

Water cooler Waterlogic, F4FW 150 W 1  Catering Unit 
Kettle Russell Hobbs, 13949 3 kW 1  Catering Unit 
Microwave Panasonic, NE1037 1.5 kW 2  Catering Unit 
Coffee Machines Crane, V4 2.3 kW 1  Catering Unit 
Toaster Russell Hobbs 2.2 kW 1   

Refrigerator 

(small) 

Gram, K 210 RG 3N 99 W 1  Catering unit 

Refrigerator 

(large) 

Gram. K 410 RG C 6N 103 W 1  Catering unit 

Shredder HSM, Securo B32  1   

Computer  150 W 6   

Printer  300 W 3  estimated 

Photocopier   1   

Charging station Different models av 100 W 5  estimated 



 

 

Plant area 

Name Model Power No Timer Remarks 

Light Bulk head 18 W 8   

A/C: Condenser PUHZ-RP140YKA 4.36 kW 1 M13 

0, 0 

 

R404A pack 

Searle, CCU100 

4CC-6.2Y 

4J-13.2Y 

4G-20.2Y 

4TCS-8.2Y 

6.36 kW 

12.5 kW 

17.12 kW 

8.17 kW 

1 

1 

1 

1 

  

Pump Station 

 

Star, CCU-CO2-HSG 3 kW 1  Nikkiso 

BR22D-A3 

Condenser  1.7 kW 4   

Condenser unit - 

Freezer 

Searle, NCQ24-3LS-D2W1 4.8 kW 1   

Condenser unit – 

Cold room 

Searle, SCQ27-1MX-A-CU 1.7 kW 1   

Sensor 

ID Description Controlling Location Type 

S1 Outside temp HVAC Plant Outside north facing 

wall 

PT1000 Sontay TT 

531/E External  

S6 Salesfloor temp Unit heater No2-1 & 

H2-2 

Tills area  PT1000 Fortune  

300 mm Pendant 

S7 Salesfloor temp Unit heater No2-3 to 

2-4 

General merchandise  PT1000 Fortune  

300 mm Pendant 

S12 Café temp AC 12 Café seating area PT1000 Fortune  

300 mm Pendant 

  



 

 

Site Visit Protocol - Hull 

Date: 2 Nov 2012 (and 4 July 2014) 

Name ANLABY HULL SF Store manager  Coordinates 

Number 0374 Ops manger  Lat 53.748 

Address Springfield Way 

Hull, HU10 6RJ 

Plan A champion  Long -0.425 

Energy manager  Altitude 6 m (AMSL) 

Opening hours Mo: 9:00 – 18:00 

Tu – Sa: 8 – 20:00 

Su: 10:00 – 16:00 

Store opened July 2010 Building approval ?  

Building 

Area 
Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total 57.3 31.8 1822 Volume: ca 

13700 m
3
 

One floor 

Sales floor 40.9 32.6 1192 Lobby: 26 m
2
 Incl. customer toilets 

Café 16.5 7 115.5   

Stock  14.5 21.5 301  Incl. coldroom & IT, 

excluding boiler room 

Offices & 

Staff area 

16.7 10 167   

Plant 11.2 9.98 111.8  At ground level 

Building timers 

Name Description Day On Off On Off 

Night cover    6:30 20:00  

Main bake   6:00 10:00   

Occu Occupied alarm: Stock light      

M1 Master 1: Store trading times Mo – Fr 8:00 20:00   

Sun 10:00 16:00   

M8 Master 23: HVAC – non essential Mo – Sa 7:30 16:00 18:00 19:30 

Sun 9:00 11:00 13:00 18:00 

M9 Master 24: HVAC - essential Mo – Sa 7:30 18:00 18:00 19:30 

Sun     

 

  



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  23  37.5h/week 

Light – Stocking T5 49 W 63 Occu  

Light – Trading T5 49 W 78 M1  

Light – Trading Twin spot lights 35 W 112 M1  

Light T5 49W 57  Refrigeration 

Light T8 30W 12   

Light Hybrid R5 8 W 3 M1 Bakery 

Light Recessed downlighter 2x26 W 9 

8 

M1 Customer WC 

Lobby 

Air curtain Diffusion Airboss 2000W 13.7 kW - HW 2  Lobby 

Unit heater Diffusion SRW5/22 7.5 kW - HW 5   

A/C: Condenser Mitsubishi 

PLA_PRRPBA2 

H: 11.9 kW 

C: 11.5 kW 

3 M1  

Fan SAVLX56P-273 10 kW   Sales area, 

cold smoke 

Fan Saver, SAVAF250 300 W 1 M8 Customer WC 

Refrigerated 

display unit 

Lincoln (16ft = 4.9 m)  2  Produce 

Refrigerated 

display unit 

Lincoln (8ft = 2.44 m)  2  Produce 

Refrigerated 

display unit 

Brookland MK4 (5ft = 

1.52 m) 

 10 M1 Case light 

timer 

Refrigerated 

display unit 

Brookland MK4 

(8ft = 2.44 m) 

 4 M1 Case light 

timer 

Refrigerated 

display unit 

Brookland MK4 

(18ft = 5.47 m) 

 1 M1 Case light 

timer 

Refrigerated 

display unit 

Brookland MK4 

(36ft = 10.97m) 

 5 M1 Case light 

timer 

Refrigerated 

display unit 

Brookland Mobile 

(6ft = 1.83m) 

 5 M1 Case light 

timer 

Freezer Constan - Symphony 2 kW 3 

(5) 

M1 Case light 

timer 

Wine cooler Caravell, CBC 800H MK2 700 W 1   

Tills Pan Oston Dutch Florin  5  24h on (for 

updates) 

Self check out   5  24h on (for 

updates) 

Automatic door Record  3   

Oven Mono – BX 7.5 kW 2  Bakery 

Main bake 

Fridge-freezer Williams, LJ1SA R1 400 W 1  Bakery 

Breadslicer Pico, 450 Jac 490 W 1  Bakery 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  8  37.5h/week 

Light – Stocking T5 49 W 6 M1  

Light – Trading T5 49 W 9 M1  



 

 

Name Model Power No Timer Remarks 

Light PP9 Pendant 10 W 4 M1  

Light Recessed downlighter 2x26 W 5 M1  

Light Spot lights 35 W 4 M1  

Refrigerated 

display unit 

SD2 (1.5m)  1 M1 Timer for 

lights 

Refrigerator 

(small) 

Delfield, RS 10100 250 W 2   

A/C PLA-RP100BA3 H: 9.5 

C: 9.2 

2 M8  

Fan SAVAF500 1.7 kW 1 M8  
Dishwasher Hobart - AMXXS/31 6.15 - 15.9 kW 1   
Coffee Machines Faema – Emblema 4.2-7 kW 2   
Microwave Merrychef - 1925C45UK 3.12 kW 1   

Hot water boiler Bunn, Single 3 kW 2   

Coffee grinder Matthew Algie, Eureka 85 W 2   

Flykiller IF50 50 W ?   
Kettle Marco - Aquarious 15 2.8 kW 1   
Warming Drawers Wing 500 W 1   
Cash register  ? 1   
Icemaker Scotsman, ACM56 0.4 kW 1   
Blending station Vitamax, T&G VM0122 1.5kW 1   

Stock area 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  5  37.5h/wk 

Light T5 49 W 27 PIR Incl. Boiler 

room 

Light T5 49 W 6 PIR Coldroom 

Outside lamps Halogen ? 5  Outside 

Light LED  3 Door Freezer 

Coldroom 

evaporator 

Searle DSR62-6AL CO2P 75 W 1 

1 

 1 from pack 1 

1 from pack 2 

Freezer evaporator Searle ? ? W 1   

Boiler MHS Boiler – Ultramax 

R604? 

285.2 kW 1 M8 

-2h, 0 

Boiler room 

Unit heater Diffusion SRW5/22 7.5 kW - HW 2 M8  

Air curtain Diffusion Mirage 2000SC 20.6 kW 1 M8 

-2h, 0 

Loading bay 

Fan SAVAF500 1.1 kW 1 M9 Stock area 

Fan OPUS95D-CR 100W 1 M9 Cleaner  

Water Heater Heatrae - Mega  ? M8 

-2h, 0 

Boiler room 

Pump Grundfoss – Twin impeller 

85D05965 

2 x 1.1 kW ? M8 

-2h, 0 

Boiler room 

Shutter – Electric 

roller 

Landlords  1  Loading bay 

Scissor lift Sara  1  Loading bay 

 

  



 

 

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  3  37.5h/wk 

Light Crompton - Modulay 4x14 W 25 Occu  

A/C: 4 Way blow 

cassette 

PLA-RP35BA H: 3.5 

C: 3.3 

1 M8 Admin office 

A/C: 4 Way blow 

cassette 

PLA-RP35HAL H: 3.5 

C: 3.3 

1 M8 Staff room 

Fan SAVAF315 300W 1 M9 Staff WC  

Fan SAVAF400 1.1 KW 1 M9 General 

extract  

Door   1  Goods in 

Coffee machine Crane – V4 2.27 kW 1  Catering unit 

Chiller for cold 

water 

Waterlogic 150 W 1  Catering unit 

Microwave Panasonic – NE1037 1.5 kW 2  Catering unit 

Kettle Russell Hobbs    Catering unit 

Computer Computer etc 150 W 4   

Printer Different models av 300 W 1   

Shredder   1   

Charging station  150 W 1   

Refrigerator 

(small) 

Gram, K 210 RG 3N 99 W 1   

Refrigerator (large) Gram. K 410 RG C 6N 103 W 1   

Plant area 

Name Model Power No Timer Remarks 

Pack No 1 

CCU-080-CO2 

4J-13.2Y-40P 

4PCS-10.2Y-40P 

4DC-5.2Y-40P 

15 kW 

12 kW 

4.5 kW 

1 

1 

2 

  

Pump Station No 

1 

MSH-CO2-Pump-400V 4 kW 1   

Condenser  1.7 kW 4   

Condenser No 1 MGC222H-09-EC3 1.9 kW 4   

Pack No 2 

CCU-060-CO2 

4NCS-12.2Y-40P 

4DC-5.2Y-40S 

4EC-4.2Y-40S 

13.3 kW 

4.5 kW 

6 kW 

1 

1 

2 

  

Condenser  1.7 kW 2   

Pump Station No 

2 

MSH-CO2-Pump-400V 4 kW 1   

Condenser No 2 MXA123H-90-EC3 1.9 kW 2   

Freezer 

Condenser 

Searle NSQ18-3LS-C 3.7 kW 1   

AHU Systemair 

MRLT031X 65kW LPHW 

2.4 kW 

(electric) 

65kW - HW 

1 M8 Full fresh air 

AHU with 

LPHW coil 

and G4 filter 

A/C: Condenser Mitsubishi 

PUHZ-RP125VKA 

5 kW(max) 1 M8  

A/C: Condenser Mitsubishi 2.5 kW(max) 2 M8  



 

 

Name Model Power No Timer Remarks 

PUHZ-RP35VKA 

A/C: Condenser Mitsubishi 

PUHZ-RP200VKA 

10.5 

kW(max) 

1 M8  

A/C: Condenser Mitsubishi 

PUHZ-RP250YKA 

ca 12 

kW(max) 

3 M8  

Condensing unit GEA Searle, NSQ15-3LS-

A3WI 

3.1 kW 1   

Sensor 

ID Description Controlling Location Type 

S1 Outside temp HVAC Plant Outside north facing 

wall 

PT1000 Sontay TT 

531/E External  

S2 Salesfloor temp Unit heater No2-1 Sales floor rear area PT1000 Fortune 

300mm Pendant 

S3 Salesfloor temp Unit heater No2-2 to 

2-4 

Sales till area PT1000 Fortune 

300mm Pendant 

S8 Salesfloor temp Unit heater No2-5 to 

2-7 

Café revive area PT1000 Fortune 

300mm Pendant 

 

  



 

 

Site Visit Protocol - Leicester 

Date: 3 July 2014 

Name LEICESTER 

THURMASTON SF 
Store manager  Coordinates 

Number 0386 Ops manger  Lat 52.684 

Address Thorpe Lane 

Leicester 

LE4 8GP 

Plan A champion  Long -1.088 

Energy manager  Altitude 72 m (AMSL) 

Opening hours Mo – Sa: 8:00 – 20:00 Su: 9 – 16:30 

Store opened Nov 2010 Building approval ?  

Building 

Area 
Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total 48 28 1640 Volume: 9210 m
3
 Two floors 

Sales floor 48 28 899 Lobby: 20.25 m
2
 Incl. customer toilets 

Café 17 6 101   

Stock  24 18.5 390  Incl. coldroom & IT, 

excluding boiler room 

Offices & 

Staff area 

17.5 9.2 200   

Plant 3.2 3.2 10.4 On roof First floor 

Building timers 

Name Description Day On Off On Off 

Night cover    6-7:00 20:00  

Main bake   6:00 10:00   

Occu Occupied alarm: Stock light      

M1 Master 1: Store trading times 

 

Mo - Sa 08:00 20:00   

Sun 09:00 16:30   

M8 Master 8: HVAC staff zone Mo – Su 04:00 18:00   

M9 Master 9: HVAC sales zone Mo – Sa 08:00 16:00   

Sun 08:00 15:00   

 

  



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  26  37.5h/week 

Light – Stocking T5 49 W 77 Occu  

Light – Trading T5 49 W 78 M1 

0, 0 

 

Light – Stocking T5 49 W 7 Occu Stair case 

Light – Trading Spot lights 35 W 81 M1 

0, 0 

 

Light T5 28 W 63  Refrig. 

shelves 

Light T5 21 W 8  Refrig. 

shelves 

Light T8 30 W 24  Freezer 

Light Recessed downlighter 2x26 W 9 

6 

M1 

0, 0 

Customer WC 

Lobby 

Air curtain Diffusion Savanna 2000 

high cap 

20 kW - HW 2 M9 

0,0 

Lobby 

Unit heater Carrier 42 GW008 6.7 kW - HW 4 M9 

0,0 

 

Cold aisle heater GEA Searle, FAH-WC-

1R1C-15 

6 kW est - HW 

0.72 kW 

9 M9 

0,0 

 

Fan AXC 800-9/31 6 3 kW 1  Sales area, 

cold smoke 

Fan Saver, KVKEF250 265 W 1 M9 

0,0 

Customer WC 

Refrigerated 

display unit 

Lincoln (8ft = 2.44m) 72 W 2  Produce 

Refrigerated 

display unit 

Lincoln (18ft = 5.5m) 162 W 2  Produce 

Refrigerated 

display unit 

Brookland MK4 (5ft = 

1.52m) 

54 W 8   

Refrigerated 

display unit 

Brookland MK4 

(6ft = 1.83m) 

56 W 4  Mobile 

Refrigerated 

display unit 

Brookland MK4 

(26ft = 8m) 

234 W 7   

Refrigerated 

display unit 

Brookland MK4 

(28ft = 8.5m) 

238 W 1   

Freezer Constan - Symphony 2 kW 6   

Wine cooler Caravell, CBC 800H MK2 700 W    

Ice cream freezer Carrier – TF/TS 17 1.1 kW 1   

Tills Pan Oston Dutch Florin  4  24h on (for 

updates) 

Self check out   4  24h on (for 

updates) 

Automatic door Record  3   

Oven Mono – BX 7.5 kW 2  Bakery 

Fridge-freezer Williams, LJ1SA R1 400 W 1  Bakery 

Breadslicer Pico, 450 Jac 490 W 1  Bakery 

Computer  150 W 2   

  



 

 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  5  37.5h/week 

Light – Stocking T5 49 W 5 Occu  

Light – Trading T5 49 W 6 M1 

0, 0 

 

Light PP9 Pendant 10 W 4 M1 

0, 0 

 

Light Recessed downlighter 2x26 W 4 M1 

0, 0 

 

Light Spot lights 35 W 18 M1 

0, 0 

 

Refrigerated 

display unit 

SD2 (1.5m)  1  Timer for 

lights 

Refrigerator Delfield 217 W 2   

Refrigerator Williams, Ha135SA 279 W 1   

Refrigerator 

(small) 

Delfield 220 W 2   

A/C: 4 way blow 

cassette 

PLA-RP 71 BA H: 6.8 kW 

C: 6.5 kW 

2 M9 

0,0 

 

Fan MUB 042 500 DV-K2 1.5 kW 1 M9 

0,0 

 

Dishwasher Hobart - AMXXS/31 6.15 - 15.9 kW 1   
Coffee Machines Faema – Emblema 4.2-7 kW 2   
Microwave Merrychef - 1925C45UK 3.12 kW 1   

Combination 

oven/microwave 

Merrychef 

E3CXE 

0.7/3 kW 1   

Hot water boiler Bunn, Single 3 kW 1   

Coffee grinder Matthew Algie, Eureka 85 W 1   

Flykiller IF50 50 W 1   
Kettle Marco - Aquarious 15 2.8 kW 1   
Warming Drawers Wing 1 kW 1   
Icemaker Scotsman, ACM56 0.4 kW 1   
Cash register  ? 1   

Stock area 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  4.5  37.5h/wk 

Light T5 49 W GF: 6 

FF: 19 

PIR Incl. Boiler 

room 

Light T5 49 W 6  Coldroom 

Light T5 49 W 3  Loading bay, 

outside 

Outside lamps Halogen 150 W 7  Estimated 

Light LED  4 Switc

h 

Freezer 

Coldroom 

evaporator 

Searle DSR51-6 75 W 2  1 from pack 1 

1 from pack 2 

Freezer evaporator Searle 50 W 1   

Boiler MHS Boiler – Ultramax 285.2 kW 1  Boiler room 



 

 

Name Model Power No Timer Remarks 

R603 

Unit heater Diffusion SRW 5/50 10 kW - HW 1 M9 

0, 0 

FF 

Air curtain Diffusion Mirage 

1500W 

16 kW 2 M9 

0, 0 

Loading bay 

Fan KVKE 315 EC 300 W 1 M9 

0, 0 

GF: Goods in 

Fan MUB 042 450 580 W 1 M9 

0, 0 

FF: Stock 

room 

Fan OPUS60S-CR 50 W 1 M9 

0, 0 

Cleaner  

Water Heater 

Heatrae - Mega 

 1 M9 

0, 0 

Boiler room 

Heating pump 

Grundfoss 

1.1 kW 2 M9 

0, 0 

Boiler room 

Shutter – Electric 

roller 

Landlords    Loading bay 

Scissor lift Sara    Loading bay 

Fresh water 

booster 

Grundfoss 1.1 kW 2  Loading bay 

AHU Modulair 28kW – HW 

1.5 kW (est) 

1  Loading bay, 

sealing 

Computer  150 W 2   

Printer  300 W 2   

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  2.5  37.5h/week 

Light Down lighter 55 W 14 PIR  

Light Recessed downlighter 2x26 W 9 PIR  

Light T5 49 W 3 PIR  

A/C: 4 Way blow 

cassette 

PLA-RP50BA H: 5.1 kW 

C: 4.6 kW 

1 M9 

0, 0 

Admin office 

A/C: 4 Way blow 

cassette 

PLA-RP60BA H: 5.05 kW 

C: 5.5 kW 

1 M9 

0, 0 

Staff room 

Fan KVKE 250 EC 265 W 1 M9 

0, 0 

Staff WC  

Fan KVKE 200 EC 157 W 1 M9 

0, 0 

General 

extract  

Fan KVKE 160 EC 100 W 2 M9 

0, 0 

Staff & spare 

Door   1  Goods in 

Coffee machine Crane – V4 2.3 kW 1  Catering unit 

Chiller for cold 

water 

Waterlogic 150 W 1  Catering unit 

Microwave Panasonic – NE1037 1.5 kW 2  Catering unit 

Computer Computer etc 150 W 7  Incl 1 TV 

Printer Different models av 300W 3   

Shredder   1   

Charging station  120 W 2   



 

 

Name Model Power No Timer Remarks 

Refrigerator 

(small) 

Gram, K 210 RG 3N 99W 1   

Refrigerator (large) Gram. K 410 RG C 6N 103W 1   

Plant area 

Name Model Power No Timer Remarks 

Pack No 1 

CCU-CO2-100 

4CC-6.2Y-40S 

4TCS-8.2Y-40P 

4J-13.2Y-40P 

4G-20.2Y-40P 

6.5 kW 

8.2 kW 

12.5 kW 

17.12 kW 

1 

1 

1 

1 

  

Pump Station No 1 MSH-CO2-Pump-400V 3 kW 1   

Condenser No 1 MGC222H-09-EC3 1.9kW 4   

Freezer 

Condenser 

Searle NSQ15-3LS-C 3.1kW 1   

A/C: Condenser Mitsubishi 

PUHZ-RP50VHA4 

2.5 kW 1 M8 

0, 0 

 

A/C: Condenser Mitsubishi 

PUHZ-RP60VHA4 

3.7 kW 1 M8 

0, 0 

 

AC: Condenser Mitsubishi 

PUHZ-RP140YKA 

7.7 kW 1 M9 

0, 0 

 

Condensing unit Searle, SCQ31-1MX-A-

CU 

1.8 kW 2  For cooling 

refrigeration 

packs 

Sensor 

ID Description Controlling Location Type 

 Outside temp Boiler   

See drawing 

  



 

 

Site Visit Protocol - Newbury 

Date of visit: 20 May 2014 

Name PINCHINGTON 

LN NEWBURY SF 
Store manager  Coordinates 

Number 0387 Ops manger  Lat 51.385 

Address Pinchington Lane 

Newbury 

RG14 7HU 

Plan A champion  Long -1.318 

Energy manager  Altitude 123.9m 

Opening hours Mo – Fr: 8:00 – 20:00 

Sa: 8:00 - 19:00 

Su: 10:00 – 16:00 

Store opened: Nov 2010 Building approval:   

Building 

Area 
Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total 54.3 17.7 1912 (inc 

stairs) 

Volume: 

8266m
3
 

Two floors 

Sales floor 46.3 17.7 1190 No lobby Both floors 

Incl. customer toilets 

Café 15 17.7 219.6   

Stock  18.8 17.7 199  Incl. coldroom and IT, 

excluding boiler room 

Offices & 

Staff area 

10.6 13.9 145   

Plant 6.4 6.1 40  At ground level 

Building timers 

Name Description Day On Off On Off 

Night cover    6:00 20:00  

Main bake   6:00 9:30-

10:00 

  

Occu Occupied alarm: Stock light      

M1 Master 1: Store trading times Mo - Fr 8:00 20:00   

Sa 8:00 19:00   

Sun 10:00 16:00   

M8 Master 8: HVAC - Essential Mo-Fr 8:00 20:00   

Sa 8:00 19:00   

Sun 10:00 16:00   

M9 Master 9: HVAC – non essential Mo – 

Fr 

7:30 16:00 18:00 19:30 

Sa 7:30 16:00 18:00 18:30 

Sun 9:30 16:00   

  



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  33  37.5h/week 

Light – Stocking T5 49 W 51 

16 

Occu Ground floor 

1
st
 floor 

Light – Trading T5 49 W 52 

17 

M1 

0, 0 

Ground floor 

1
st
 floor 

Light Twin spot lights 70 W 49 

16 

M1 

0, 0 

Ground floor 

1
st
 floor 

Light Single spot lights 35 W 7 M1 

0, 0 

Ground floor 

Light Hybrid R5 8 W  3 M1 

0, 0 

Bakery 

Light Recessed downlighter 2x26 W 10 

5 

M1 

0, 0 

Customer 

WC 

Others 

Light T8 30 W 12 M1 

0, 0 

Freezer 

Light T5 21  W 4 M1 

0, 0 

Piped case 

Light T5 28  W 51 M1 

0, 0 

Piped case 

Light T5 36  W 28 M1 

0, 0 

Piped case 

Air curtain Diffusion Airboss 

1550W 

9.66 kW - HW 2 M9 

0, 0 

Lobby 

Unit heater Diffusion SRW5/22 7.5 kW - HW 2 M8 

0, 0 

Ground floor 

A/C: 4 Way blow 

cassette 

PLA-RP71BA2 H: 8.55 kW 

C: 6.8 kW 

2 M9 

0, 0 

Ground floor 

A/C: 4 Way blow 

cassette 

PLA-RP71BA2 H: 8.55 kW 

C: 6.8 kW 

2 M9 

0, 0 

1
st
 floor 

Cold aisle heater GEA Searle, FAH-WC-

1R1C-15 

6 kW est - HW 

72 W - Elec 

10 M9 

0, -5 

min 

 

Fan SAVLX56P-273 12 kW 1 M8 

0, 0 

Sales area, 

cold smoke 

Fan Saver, SAVAF250 300 W 1 M8 

0, 0 

Customer 

WC 

Refrigerated 

display unit 

Lincoln (10ft = 3 m) 100 W 4  Produce 

Refrigerated 

display unit 

Brookland MK4 

(5ft =1.52 m) 

54 W 8   

Refrigerated 

display unit 

Brookland MK4 

(6ft = 1.83 m) 

56 W 2   

Refrigerated 

display unit 

Brookland MK4 

(16ft = 4.9 m) 

144 W 2   

Refrigerated 

display unit 

Brookland MK4 

(26ft = 7.9 m) 

234 W 2   

Refrigerated 

display unit 

Brookland MK4 

(28ft = 8.5 m) 

252 W 4   

Refrigerated Brookland MK4 378 W 1   



 

 

Name Model Power No Timer Remarks 

display unit (42ft = 12.8 m) 

Freezer Constan - Symphoney 2 kW 3   

Wine cooler Caravell, CBC 800H 

MK2 

700 W 1   

Ice cream freezer Carrier – TF/TS 17 1.1 kW 1   

Tills Pan Oston Dutch Florin  5  Also FF 

Self check out   5   

Automatic door Record  1   

Oven Mono – FG158 7.5kW 2  Bakery 

Fridge-freezer Williams, LJ1SA R1 400 W 1  Bakery 

Bread slicer Pico,  450 Jac 490 W 1  Bakery 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  10  37.5h/week 

Light – Stocking T5 49 W 17 Occu  

Light – Trading T5 49 W 17 M1 

0, 0 

 

Light T5 49 W 6 M1 

0, 0 

 

Light PP9 Pendant 10 W 4 M1 

0, 0 

 

Light Recessed downlighter 2x26 W 5 M1 

0, 0 

 

Light Spot lights 35 W 6 M1 

0, 0 

 

Light Twin spot lights 70 W 7 M1 

0, 0 

 

A/C: 4 way blow 

cassette 

PLA-RP 125BA2 H: 11.9 kW 

C: 11.5 kW 

3 M9 

0, 0 

 

AC: Wall mounted PKA-RP100KAL H: 9.55 kW 

C: 9.2 KW 

1 M9 

0, 0 

 

Refrigerator Delfield RS 101001 217 W 5   

Refrigerator Delfield RS 101001-FM83 279 W 1   

Refrigerator Delfield RS 20700 340 W 1   

Refrigerator Delfield RS 21400 370 W 1   

Refrigerated 

display unit 

SD2 (1.2m) 1.6 kW 1   

Fan SAVAF500 1.7kW 1 M8 

0, 0 

 

Dishwasher Horbart – AMXXS/31 10 - 15.9 kW 1   

Coffee Machines Faema – MA17427 4.2-7 kW 2   

Microwave Merrychef - 1925C45UK 3.12 kW 2   

Oven Merrychef E3CXE 4.3 kW 2   

Hot water boiler Soft heat SHBREW1 3 kW 1   

Coffee grinder Matthew Algie, Eureka 85 W 2   

Flykiller IF50 50W 1   

Icemaker Scotsman, ACM56 0.4 kW 1   

Kettle Marco - Aquarious 15 2.8 kW 2   

Blender Magrini, Vitamix 85 W 2   



 

 

Icemaker Scotsman, ACM56 0.4 kW 1   

Cash register   3   

Stock area 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  7.5  37.5h/week 

Light 

Incl. Boiler room 

T5 49 W 7 

21 

PIR 

PIR 

Ground floor 

1
st
 floor 

Light T5 49W 6 PIR Coldroom 

Outside lamps Son floodlight 70W 4 Photocell  

Light LED (large)  4 PIR Freezer 

Coldroom 

evaporator 

Searle  

DSR62-6ALCO2P 

75 W 1  Pack 1 

Cold room 

Evaporator 

Searle  

DSR51-6 

75 W 1  Condensing 

unit 

Freezer 

evaporator 

Searle KEC55-6 75 W   Condensing 

unit 

Fan SAVAF315 730 W 1 M8 

0, 0 

 

Fan SVAVF500 1.7 kW 1 M8 

0, 0 

 

Unit heater Diffusion SRW5/22 7.5kW - 

HW 

2 M8 

0, 0 

GF: 1, FF: 1 

Boiler MHS Boiler – Ultramax 

R603 

237.2 kW 1 M8 

-2 h, +0.5 

h 

Boiler room 

Pump Grundfoss – Twin impeller 

85D05965 
2 x 1.1kW 1  Boiler room 

Scissor lift Sara  1  Loading bay 

Computer  150 W 2   

Printer  300 W 1   

Charger  150 W 3   

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  2.5  37.5h/week 

Light Crompton - Modulay 4x14 W 3 

27 

PIR 

PIR 

Ground floor 

1
st
 floor 

Light T5 49 W 7 Occu Stair case 

A/C: 4 Way blow 

cassette 

PLA-RP35BA H: 9.5 kW 

C: 9.2 kW 

1 M8 

0, 0 

Staff room 

A/C: Wall mount PKA-RP35HAL H: 3.5 kW 

C: 3.3 kW 

1 M8 

0, 0 

Admin office 

Fan SAVAF250 330 W 1 M8 

0, 0 

General 

extract  

Fan SAVAF315 730 W 1 M8 

0, 0 

Staff WC 

Coffee machine Crane – V4 2.3 kW 1  Catering unit 

Chiller for cold 

water 

Waterlogic 150 W 1  Catering unit 



 

 

Name Model Power No Timer Remarks 

Microwave Panasonic – NE1037 1.5 kW 2  Catering unit 

Kettle Russell Hobbs 3 kW 1  Catering unit 

Computer Computer etc 150 W 5   

Printer Different models av 300 W 3   

Shredder HSM  1   

Charging station  120 W 1   

Refrigerator 

(small) 

Gram, K 210 RG 3N 99 W 1  Switched off 

Refrigerator (large) Foster EPRO G600H 349 W 1   

Plant area 

Name Model Power No Timer Remarks 

Pack No 1 

CCU-CO2-100 

4CC-6.2Y-40S 

4TCS-8.2Y 

4PC-10.2Y 

4J-13.2Y 

6.4 kW 

8.2 kW 

9.37 kW 

12.5 kW 

1 

1 

1 

1 

 Inside plant area 

Condenser  1.7 kW 4   

Pump Station No 1 MSH-CO2-Pump-400V 4 kW 1  Inside plant area 

Condenser Unit No 1 NSQ18-3LS-C2W 3.7 kW 1  Outside plant 

area 

Condenser Unit No 2 N2DQ90-3MS-E3W 10.2 kW 1  Outside plant 

area 

A/C: Condenser Mitsubishi 

PUHZ-RP250YKA 

ca 12.4 

kW(max) 

1  Outside plant 

area 

A/C: Condenser Mitsubishi 

PUHZ-RP140YKA 

7.7 kW 2  Outside plant 

area 

A/C: Condenser Mitsubishi 

PUHZ-RP125YKA 

5.6 kW 1  Outside plant 

area 

A/C: Condenser Mitsubishi 

PUHZ-RP100YKA 

4.7 kW 1  Outside plant 

area 

A/C: Condenser Mitsubishi 

PUHZ-RP35VHA4 

2.7 kW 2  Outside plant 

area 

AHU Systemair 

KK 100 ST200 54kW 

LPHW 

2.2kW – 

Elec 

54 kW - HW 

1 M9 

0, 0 

Inside plant area 

Fresh water booster 

pump 

MHI404 -1/E/1-230-50-

2 

0.75 kW 2  Inside plant area 

Sensor 

ID Description Controlling Location Type 

 Outside temp HVAC Plant  PT1000 Sontay TT 

531/E External  

 Salesfloor temp Unit heater No 2 General merchandise  PT1000 Fortune  

300 mm Pendant 

  



 

 

Site Visit Protocol - Exebridge 

Date of visit: 21 May 2014 

Name EXEBRIDGE 

EXETER SF 
Store manager  Coordinates 

Number 5295 Ops manger  Lat 50.717 

Address Unit 4 

Exeter Bridges 

Retail Park  

Exeter, EX4 1AH 
 

Plan A champion  Long -3.538 

Energy manager  Altitude 10m  

Opening hours: Mo – Sa: 8:00 – 20:00 Su: 

11:00 – 17:00 

Store opened: Dec 2011 Building approval:   

Building 

Area 
Longest 

length (m) 

Longest 

width (m) 

Area 

(m
2
) 

Others Remarks 

Total 54.39 26.65 1444 Volume: 

10440m
3
 

Height only appr. 

Sales floor 36.8 26.65 790.2 Lobby: 24.2m
2
 Incl customer WC 

Café 15.5 6.8 114.6   

Stock  17 20.2 210  Incl cold rooms 

Excl boiler room 

Offices & 

Staff area 

17 10.6 150   

Plant Two plant areas: one mezzanine floor (incl boiler): 24.2m
2
 , one outside: 19.9m

2
 

Building timers 

Name Description Day On Off On Off 

Night cover    6-

7:00 

20:45  

Main bake   6:00 10:00   

Occu Occupied alarm: Stock light      

M1 Master 1: Store trading times Mo - Sa 8:00 20:00   

Sun 11:00 17:00   

M4 External loading bay light Mo - Th 5:30 9:00   

Fr 5:00 8:00   

Sa 5:30 9:00   

Su 7:00 9:00   

M26 Master 26: HVAC  Mo - Sa 7:30 16:00 18:00 19:30 

Sun 10:30 16:00   

 

  



 

 

Sales area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  23  37.5 h/week 

Light – 

Stocking 

T5 49 W 52 Occu  

Light – 

Trading 

T5 49 W 52 M1 

0, -10 

min 

 

Light T5 28 W 45 M1 

0, 0 

Piped cases 

Light T5 21 W 14 M1 

0, 0 

Mobile cases 

Light T8 30 W 24 M1 

0, 0 

Freezer 

Light Twin spot lights 70 W 47 M1 

0, 0 

 

Light Single spot lights 35 W 6 M1 

0, 0 

 

Light Hybrid R5 8 W 4 M1 

0, 0 

Bakery 

Light Recessed downlighter 2x26 W 8 

13 

M1, 0, 0 

PIR 

Lobby 

Customer WC 

Air curtain Diffusion Airboss 2000W 16 kW - HW 2 M26 

-15min, 0 

Lobby 

Unit heater Diffusion SRW5/22 7.5 kW - HW 4 M26 

-15min, 0 

 

Ducted unit 

heater 

Diffusion, HWW27 18-4B 5.4 kW - HW 1 M26 

-15min, 0 

 

Cold aisle 

heater 

GEA Searle, FAH-WC-

1R1C-15 

6 kW est - HW 

0.72 kW 

12 Not 

active 

 

Fan SAVLX63S-223 10kW 1  Sales area, cold 

smoke 

Fan Nuaire, NALAF 150 100 W 1 M26 

0, 0 

Customer WC 

Refrigerated 

display unit 

Lincoln  

(8 ft = 2.44 m) 

72 W 2  Produce 

Refrigerated 

display unit 

Lincoln  

(12 ft = 3.66 m) 

120 W 2  Produce 

Refrigerated 

display unit 

Brookland MK4 

(5 ft =1.52 m) 

54 W 10   

Refrigerated 

display unit 

Brookland MK4 

(6 ft = 1.83 m) 

56 W 1   

Refrigerated 

display unit 

Brookland MK4 

(8 ft = 2.44 m) 

72 W 5   

Refrigerated 

display unit 

Brookland MK4 

(18 ft = 5.49 m) 

162 W 1   

Refrigerated 

display unit 

Brookland MK4 

(22 ft = 6.71 m) 

198 W 4   

Refrigerated 

display unit 

Brookland MK4 

(24 ft = 7.32 m) 

216 W 4   

Refrigerated 

display unit 

Brookland MK4 

(36ft = 10.97 m) 

324 W 1   



 

 

Name Model Power No Timer Remarks 

Freezer Constan - Symphoney  6  Incl lights (120 

W) 

Wine cooler Caravell, CBC 800H MK2 700 W 1   

Ice cream 

freezer 

Carrier – TF/TS 17 1.1 kW 1   

Tills Pan Oston Dutch Florin  3  24h on 

Self check 

out 

  6  24h on 

Automatic 

door 

Record  3   

Oven Mono – FG158 7.5kW 2  Bakery 

Fridge-

freezer 

Williams, LJ1SA R1 400W 1  Bakery 

Bread slicer Pico, 450 Jac 490W 1  Bakery 

Café area 

Name Model Power No Timer Remarks 

Staff Full time equivalent  7  37.5 h/week 

Light  T5 49W 8 Occu  

Light  T5 49W 8 M1 

0, -10 

min 

 

Light PP9 Pendant 10W 4 M1 

0, -10 

min 

 

Light Recessed downlighter 2x26W 5 M1 

0, -10 

min 

 

Light Spot lights 35W 8 M1 

0, -10 

min 

 

Refrigerated 

display unit 

SD2 (1.5m) 36 W 1 M1 

0, -10 

min 

 

Refrigerator 

(small) 

 200 W 3   

A/C: 4 way blow 

cassette 

PLA-RP 125BA2 H: 11.9 kW 

C: 11.25 kW 

2 M26 

0, 0 

 

Fan Nuaire, SAVAF500 1.7 kW 1 M26 

0, 0 

 

Dishwasher Horbart - AMXXS/31 6.15 - 15.9 kW 1   

Coffee Machines Faema – MA17689  2   

Coffee Machines Faema – Emblema 4.2-7 kW 2   

Microwave Merrychef - 1925C45UK 3.12 kW 1   

Oven 

 

Merrychef 

E3CXE 

0.7/3 kW 1   

Hot water boiler Soft heat SHSTAT1 3 kW 1   

Coffee grinder Matthew Algie, Eureka 85 W 1   

Flykiller IF50 50W 1   

Kettle Marco - Aquarious 15 2.8 kW 1   



 

 

Name Model Power No Timer Remarks 

Icemaker Scotsman, ACM56 0.4 kW 1   

Cash register  ? 1   

Stock area 

Name Model Power No Timer Remarks 

Ops staff Full time equivalent  5  37.5 h/week 

Light T5 49 W 24 PIR Incl. Boiler 

area 

Light T5 49 W 4 M4 

0, 0 

Loading bay, 

outside 

Outside lamps Son floodlights 70W 3   

Light T5 49 W 8 PIR Coldroom 

Light Bulk head 18 W 8 Switch Freezer 

Coldroom 

evaporator 

Searle DSR68-

6MSHCO2P 

Searle DSR42-6 AL 

50 W 

50 W 

1 

1 

 1 from pack 

1 

1 from pack 

2 

Freezer evaporator Searle KEC55-6 75 W 1   

Boiler MHS Boiler – Ultramax 

R603 

237.2 kW 1 M1 

-2h, -

0.5h 

Boiler area 

(Mezzanie) 

Unit heater Diffusion SRW5/22 7.5kW - HW 1 M26 

0, 0 

 

Air curtain Diffusion Mirage 

2000SC 

20.6kW - 

HW 

1 M26 

0, 0 

Loading bay 

AHU Systemair 29 kW - HW 

1.5 kW (fan) 

1 M26 

0, 0 

 

Fan Nuaire, NALAF400 1.2 kW 1 M26 

0, 0 

Stock area 

Fan Nuaire, NALAF150 100 W 1 M26 

0, 0 

Cleaner  

Water Heater Heatrae - Mega ? 1  Boiler area 

(Mezzanine) 

Pump Grundfoss – 96430300 1.15 kW   Boiler area 

(Mezzanine) 

Pump Grundfoss 50 W 1  Boiler area 

(Mezzanine) 

Cold water booster 

pump 

 750 W 2   

Shutter – Electric 

roller 

Landlords  1  Loading bay 

Scissor lift Sara  1  Loading bay 

Computer  150 W 2   

Printer HP Laser Jet 4350n 800 W 1   

Charging stations  150 W 2  Estimated 

  



 

 

Offices & Staff area 

Name Model Power No Timer Remarks 

Office staff Full time equivalent  1  37.5 h/week 

Light Crompton - Modulay 4x14W 32 PIR  

A/C: 4 Way blow 

cassette 

PLA-RP35BA H: 3.3 kW 

C: 3.5 kW 

1 M26 

0, 0 

Admin office 

A/C: 4 Way blow 

cassette 

PLA-RP35BA H: 3.3 kW 

C: 3.5 kW 

1 M26 

0, 0 

Staff room 

Fan Nuaire, NALAF200 230 W 1 M26 

0, 0 

Staff WC  

Fan Nuaire, NALAF250 330 W 1 M26 

0, 0 

General extract  

Coffee machine Crane – V4 2.3 kW 1  Catering unit 

Chiller for cold 

water 

Waterlogic 150 W 1  Catering unit 

Microwave Panasonic – NE1037 1.5 kW 2  Catering unit 

Computer Computer etc 150 W 6   

Printer Different models av 300W 2   

Shredder   1   

Charging station  150 W 4  Estimated 

Refrigerator (large) Gram. K 410 RG C 6N 103W 1   

Toaster  2.2 kW 1   

Photo copier  400 W 1  Estimated 

Plant areas (one in building, one outside) 

Name Model Power No Timer Remarks 

Pack No 1 

Searle, MSO100 -

CO2-HX 

4DC-5.2Y 4G 20.2 

4CC-6.2Y-40.2S 

4TCS-8.2Y 

4J-13.2Y 

5.3 kW 

6.7 kW 

8.2 kW 

12.5 kW 

1 

1 

1 

1 

  

Pump Station No 1 MSH-CO2-Pump-400V 3 kW 1   

Condenser  1.7 kW 4   

Condenser No 1 MGC224H-EC465 1.9kW 4   

Freezer 

Condenser 

Searle NDQ45-3MS-C 5.1 kW 2   

A/C: Condenser Mitsubishi 

PUHZ-RP250YKA 

ca 11.7 

kW(max) 

2   

A/C: Condenser Mitsubishi 

PUHZ-RP35VHA4 

2.4 kW 2   

Condensing unit Searle, NSQ18-3LX-C 3.7 kW 1  For cooling 

refrigeration 

packs 

 

  



 

 

Sensor 

ID Description Controlling Location Type 

S1 Outside temp HVAC Plant Outside north facing 

wall 

PT1000 Sontay TT 

531/E External  

S6 Till area space 

temperture 

Unit heater No2-1, 2 Sales Tills area PT1000 Fortune  

300 mm Pendant 

S7 Sales GM area 

temperature 

Unit heater H2-3, 4 Sales GM Area PT1000 Fortune  

300 mm Pendant 

S14 Café space 

temperature 

AC 1 Café revive area PT1000 Fortune  

300 mm Pendant 





 

 

Appendix D – Matlab programmes 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This script calculates estimates for future energy consumption in 
% supermarkets. It is part of the PhD project 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Tidy 
clear 
clc 

  
disp('Started') 

  
%% Import data 
Mdl=importdata('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx'); 
TPbs=mth2wk(Mdl.data(:,2)); % Generating weekly data from monthly 
TP10=mth2wk(Mdl.data(:,3)); 
TP50=mth2wk(Mdl.data(:,4)); 
TP90=mth2wk(Mdl.data(:,5)); 

  
gB0=Mdl.data(1,6); % Gas model intercept 
gB1=Mdl.data(1,7); % Gas model slope 

  
eCP=Mdl.data(1,8); % Electricity model change point 
eB0=Mdl.data(1,9); % Electricity model intercept before CP 
eB1=Mdl.data(1,10); % Electricity model slope before CP 
eB0_a=Mdl.data(1,11); % Electricity model intercept after CP 
eB1_a=Mdl.data(1,12); % Electricity model slope after CP 

  
gMSres=Mdl.data(1,13); % Mean of square of gas data residuals 
elMSres=Mdl.data(1,14); % Mean of square of electricity data residuals 

  

  
%% Calculating gas consumption 
Gbs=gB1*TPbs+gB0; % Weekly consumption 
G10=gB1*TP10+gB0; 
G50=gB1*TP50+gB0; 
G90=gB1*TP90+gB0; 

  
TotGbs=sum(Gbs); % Annual consumption 
TotG10=sum(G10); 
TotG50=sum(G50); 
TotG90=sum(G90); 

  
%% Calculating electricity consumption 

  
% Weekly consumption 
if eCP~=0 % If change point model 
    for i = 52:-1:1 

         
        if TPbs(i) < eCP 
            Ebs(i)=eB1*TPbs(i)+eB0; 
        else 
            Ebs(i)=eB1_a*TPbs(i)+eB0_a; 



 

 

        end 

         
        if TP10(i) < eCP 
            E10(i)=eB1*TP10(i)+eB0; 
        else 
            E10(i)=eB1_a*TP10(i)+eB0_a; 
        end 

         
        if TP50(i) < eCP 
            E50(i)=eB1*TP50(i)+eB0; 
        else 
            E50(i)=eB1_a*TP50(i)+eB0_a; 
        end         

  
        if TP90(i) < eCP 
            E90(i)=eB1*TP90(i)+eB0; 
        else 
            E90(i)=eB1_a*TP90(i)+eB0_a; 
        end         

         
    end 
else % If not change point model 
    Ebs=eB1*TPbs+eB0; 
    E10=eB1*TP10+eB0; 
    E50=eB1*TP50+eB0; 
    E90=eB1*TP90+eB0; 
end 

  

  
TotEbs=sum(Ebs); % Annual consumption 
TotE10=sum(E10); 
TotE50=sum(E50); 
TotE90=sum(E90); 

  

  
%% Error estimate 
t = 2; % for 95% confidence and 40 df (50 not in table)   
c = 1+1/52; 

  
% Base year temperature error 
Sx=sum(TPbs); 
Sxx= sum(TPbs.^2) - Sx^2/52; 
gasErVc=t*sqrt(gMSres*(c+(TPbs-Sx)/Sxx)); 
elErVc=t*sqrt(elMSres*(c+(TPbs-Sx)/Sxx)); 
gasErbs=sqrt(sum(gasErVc.^2)); 
elErbs=sqrt(sum(elErVc.^2)); 

  

  
% Future 10% temperature error 
Sx=sum(TP10); 
Sxx= sum(TP10.^2) - Sx^2/52; 
gasErVc=t*sqrt(gMSres*(c+(TP10-Sx)/Sxx)); 
elErVc=t*sqrt(elMSres*(c+(TP10-Sx)/Sxx)); 
gasEr10=sqrt(sum(gasErVc.^2)); 
elEr10=sqrt(sum(elErVc.^2)); 

  

  
% Future 50% temperature error 
Sx=sum(TP50); 



 

 

Sxx= sum(TP50.^2) - Sx^2/52; 
gasErVc=t*sqrt(gMSres*(c+(TP50-Sx)/Sxx)); 
elErVc=t*sqrt(elMSres*(c+(TP50-Sx)/Sxx)); 
gasEr50=sqrt(sum(gasErVc.^2)); 
elEr50=sqrt(sum(elErVc.^2)); 

  
% Future 90% temperature error 
Sx=sum(TP90); 
Sxx= sum(TP90.^2) - Sx^2/52; 
gasErVc=t*sqrt(gMSres*(c+(TP90-Sx)/Sxx)); 
elErVc=t*sqrt(elMSres*(c+(TP90-Sx)/Sxx)); 
gasEr90=sqrt(sum(gasErVc.^2)); 
elEr90=sqrt(sum(elErVc.^2)); 

  
%% Calculating change in consumption 

  
gasChange10 = (TotG10-TotGbs)/TotGbs; % Relative increase gas 
gasChange50 = (TotG50-TotGbs)/TotGbs; 
gasChange90 = (TotG90-TotGbs)/TotGbs; 

  
gasChange10Er = sqrt(gasEr10^2+gasErbs^2)/TotGbs; % Relative error of gas 

increase 
gasChange50Er = sqrt(gasEr50^2+gasErbs^2)/TotGbs; 
gasChange90Er = sqrt(gasEr90^2+gasErbs^2)/TotGbs; 

  
elChange10 = (TotE10-TotEbs)/TotEbs; % Relative increase electricity 
elChange50 = (TotE50-TotEbs)/TotEbs; 
elChange90 = (TotE90-TotEbs)/TotEbs; 

  
elChange10Er = sqrt(elEr10^2+elErbs^2)/TotEbs; % Relative error of 

electricty increase 
elChange50Er = sqrt(elEr50^2+elErbs^2)/TotEbs; 
elChange90Er = sqrt(elEr90^2+elErbs^2)/TotEbs; 

  
%% Calculating change in temperature 

  
avTpbs = mean(TPbs); 
avTp10 = mean(TP10); 
avTp50 = mean(TP50); 
avTp90 = mean(TP90); 

  
tpChange10 = (avTp10-avTpbs)/avTpbs; 
tpChange50 = (avTp50-avTpbs)/avTpbs; 
tpChange90 = (avTp90-avTpbs)/avTpbs; 

  
%% Wrting results back into Excel workbook - Sheet 2 

  
% Headers 
col_header={'Week No','Temp_base (°C)','Elec_base (W/m2)','Gas_base 

(W/m2)',... 
    'Temp_10% (°C)','Elec_10% (W/m2)','Gas_10% (W/m2)',... 
    'Temp_50% (°C)','Elec_50% (W/m2)','Gas_50% (W/m2)',... 
    'Temp_90% (°C)','Elec_90% (W/m2)','Gas_90% (W/m2)',... 
    '','','Change 10%','Error 10%','Change 50%','Error 50%','Change 

90%','Error 90%'}; 
row_header1={'Average';'Total use';'Total error'}; 
row_header2={'Electricty (%)';'Gas(%)';'Temperture (%)'}; 

  
% Data 



 

 

xlsData1=[[1:52]' TPbs' Ebs' Gbs' TP10' E10' G10' TP50' E50' G50' TP90' 

E90' G90']; 
xlsData2=[avTpbs, mean(Ebs), mean(Gbs), avTp10, mean(E10), mean(G10),... 
    avTp50, mean(E50), mean(G50), avTp90, mean(E90), mean(G90),;... 
    0, TotEbs, TotGbs, 0, TotE10, TotG10, 0, TotE50, TotG50, 0, TotE90, 

TotG90;... 
    0, elErbs, gasErbs, 0, elEr10, gasEr10, 0, elEr50, gasEr50, 0, elEr90, 

gasEr90]; 
xlsData3=100*[elChange10, elChange10Er, elChange50, elChange50Er, 

elChange90, elChange90Er;... 
    gasChange10, gasChange10Er, gasChange50, gasChange50Er, gasChange90, 

gasChange90Er]; 
xlsData4=100*[tpChange10,0,tpChange50,0,tpChange90]; 

  
% Writing to Excel 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',col_head

er,'Sheet2','A1') 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',row_head

er1,'Sheet2','A55') 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',row_head

er2,'Sheet2','O2') 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',xlsData1

,'Sheet2','A2') 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',xlsData2

,'Sheet2','B55') 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',xlsData3

,'Sheet2','P2') 
xlswrite('C:\Users\bao_mading\Documents\MATLAB\Supermarket.xlsx',xlsData4

,'Sheet2','P4') 

 
disp('Finished') 
% END OF PROGRAMME 

  



 

 

function wkData=mth2wk(mthData) 
% Generates weekly data by interpolating between monthly data points 

  
if length(mthData)~=12 
  error('Vector needs to contain 12 monthly values') 
end 

  
mth=1:14; 
mthData2=[mthData(end) mthData' mthData(1)]; 
wkd=linspace(1,length(mth),56); % to have Dec and Jan and oposite end 
wkDatad=interp1(mth,mthData2,wkd); 
wkData=wkDatad(3:54); 

  
end %End of function mth2wk 

 

  



 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%    REFRIGERATION SYSTEM MODEL (M&S Hull, Anlaby: Pack 1) 
% 
%    20/02/15: Started (MB) 
%    24/02/15: Fixed bug - saw tooting at higher temperature (Tcd-dT<Tamb) 
%              Finished version 1.0 
%    25/02/15: Version 1.1: Change the way h3 and the n_fan of the old 
%              contorl is calculated 
%    01/03/15: Version 1.2: Finished testing, tweekt E_comp equation to 
%    overlay well on measured data 
%    04/03/15: Version 1.3: E_comp relates now simulation results to 
%    measurements => Better fit 
%   21/04/15: Renumbering of enthalpies 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% This script emulates the R404A side of the pack 1 of the refrigeration  
% system installed in the M&S supermarket in Hull, Anlaby. 

  
%% Main Cell 
clear all 

  
% VARIABLE DECLARATION 

  
c_rf = 0.8917; % [kJ/kg/K]: Average heat constant in superheat region 
% dS [kJ/kg/K]: Enthalpy change in vapour region 
h5 = 363.29; % [kJ/kg]: Specific enthalpy at evaporator out 
% h1 [kJ/kg]: Specific enthalpy as suction port of compressor 
% h2 [kJ/kg]: Specific enthalpy at discharge port of compressor 
% h2d [kJ/kg]: Specific enthalpy at start of isothermal condensing 
% h3 [kJ/kg]: Specific enthalpy at outlet of condenser 
% dh_HX [kJ/kg]: Specific enthalpy change through HX 
% m_dot [kg/s]: Refrigeration mass flow rate 
% op_mode [-]: day time = 1, night time = 0 
% p_c [bar_g]: (vector) Condenser pressure 
p_e = 3.5; % p_e [bar_g]: Evaporator pressure 
% E_comp [kW]: Energy consumption of compressor 
% E_fan_n [kW]: Energy consumption of fan with new control algorithm 
% E_fan_od [kW]: Energy consumption of fan old control algorithm - day 
% mode 
% E_fan_on [kW]: Energy consumption of fan old control algorithm - night 
% mode 
% E_n [kW]: (Matrix) Total energy consumption for new algorithm 
% E_o [kW]: (Matrix) Total energy consumption for old algorithm 
% eps [-]: Average effectiveness of HX 
eta = 1; %[-]: Efficiency of compressors 
% i [-]: Loop index for p_c loop 
% j [-]: Loop index for T_on loop 
% k [-]: Loop index for Qdot_e loop 
maxE_fan = 7.6; %[kW]: Maximum power consumption of all condenser fans 
% Qdot_e [kW]: (vector) Refrigeration effect 
% Tamb [°C]: Ambient temperature 
% T_c [°C]: Average condensing temperature 
T_e = -8.8; % [°C]: Temperature of saturated vapour at evaporator out 
% T_on [°C]: (vector) Air temperature onto the compressor 

  
% Qdot_e=[30 60]; day=0; 
Qdot_e = 20:1:80; 
day = 0; % Night time operation test 



 

 

% Qdot_e = [55 60 65]; day = 1; % Day time operation test 
T_amb = 5:0.1:30; 
p_c = 9:0.01:18.5; 
% p_c=[9:18.5]; 
clc 
disp ('Programme started') 

  
% CALCULATIONS 
% Loops 
for k = length (Qdot_e):-1:1;% Refrigeration load loop 
  for j = 1:length (T_amb) % Air onto condenser loop 
    for i = 1:length (p_c)% Condenser pressure loop 

     
      % Enthalpies 
      eps = -0.000055278132 * Qdot_e(k)^2 + 0.001676007808 * Qdot_e(k) + 

0.857278155966; 
      T_c = -0.0722 * p_c(i)^2 + 4.6862 * p_c(i) - 19.142; 
      dh_HX = eps * c_rf *(T_c - T_e); 
      h1 = h5 + dh_HX; 
      % dS = 0.003407 * h1 + 0.3864; 
      a=0.12397*h1-24.793; 
      % h0 = 159.18*dS^2-296.71*dS+397.47; 
      h2 = a*log((p_c(i)+1)/4.5)+h1; 
      h2d = -0.069930 * p_c(i)^2 + 2.8095 * p_c(i) + 357.35; 
      h3 = -0.081402 * p_c(i)^2 + 6.8432 * p_c(i) + 169.91; 
      m_dot = Qdot_e(k)/(h1-h3); 

       
      % Energy consumption of compressor 
      E_comp(i) = 1.91*m_dot * (h2 - h1)+3.1; 

       
      % - Energy consumption of fans and total consumption 
      [n, pc_sm] = n_old(p_c(i),h2,h2d,h3,T_c,T_amb(j),m_dot,day); 
      if pc_sm ~= 1 
        oE_fan(i) = maxE_fan * n^3;        
      else 
        oE_fan(i) = 9e99; %High values to avoid false minimums 
      end 
      oE (i) = oE_fan(i) + E_comp(i); 

       
      [n, pc_sm] = n_new(p_c(i),h2,h2d,h3,T_c,T_amb(j),m_dot); 
      if pc_sm ~= 1 
        nE_fan(i) = maxE_fan * n^3; 
      else 
        nE_fan(i) = 9e99; %high values to avoid false minimums 
      end 
      nE (i) = nE_fan(i) + E_comp(i); 

       
    end 

     
    % Find minimum new control 
    [nMinE_tot(k,j),nc_min]=min(nE); 
     nMinE_fan (k,j) = nE_fan(nc_min); 
     nMinE_comp (k,j)= nMinE_tot(k,j)-nMinE_fan (k,j); 

     
    % Find minimum old control 
    [Dummy, c_temp] = min (oE_fan); % To start search after high value 
    [oMinE_comp(k,j),oc_min]=min(E_comp(c_temp:length(E_comp))); 
    oc_min=oc_min+c_temp-1; % index relative to start of sensible fan 

values 
    oMinE_fan (k,j) = oE_fan(oc_min); 



 

 

    oMinE_tot (k,j) = oE(oc_min); 

     
  end 

      
end 
disp ('Finished calculating :-)') 

  
%% OUTPUT 

  
% Preparing output 
for l = length(Qdot_e):-1:1; 
  COPo(:,l)=Qdot_e(l)./oMinE_tot(l,:)'; 
end 

  
figure(1); plot(T_amb,COPo(:,1),'r',T_amb,COPo(:,2:end),'r','linewidth', 

2.5) 
title(['Maximum COP - Cooling load: from ',num2str(Qdot_e(1)),' kW to 

',num2str(Qdot_e(end)),' kW'],'FontSize',20) 
grid on 
xlabel('Ambient temperature (deg C)','FontSize',18) 
ylabel ('COP','FontSize',18) 

  
figure(2); plot(T_amb,nMinE_tot(1,:),'r',T_amb,nMinE_comp(1,:),'c--

',T_amb,nMinE_tot(2:end,:),'r',T_amb,nMinE_comp(2:end,:),'c--

','linewidth', 2.5) 
title(['Maximum COSP - Cooling load: from ',num2str(Qdot_e(1)),' kW to 

',num2str(Qdot_e(end)),' kW'],'FontSize',20) 
grid on 
xlabel('Ambient temperature (deg C)','FontSize',18) 
ylabel ('Power (kW)','FontSize',18) 
legend ('Total power','Compressor power') 

  
figure(3); plot(T_amb,oMinE_tot(1,:),'r',T_amb,oMinE_comp(1,:),'c--

',T_amb,oMinE_tot(2:end,:),'r',T_amb,oMinE_comp(2:end,:),'c--

','linewidth', 2.5) 
title(['Maximum COP - Cooling load: from ',num2str(Qdot_e(1)),' kW to 

',num2str(Qdot_e(end)),' kW'],'FontSize',20) 
grid on 
xlabel('Ambient temperature (deg C)','FontSize',18) 
ylabel ('Power (kW)','FontSize',18) 
legend ('Total power','Compressor power') 

  
figure 
surf(oMinE_tot); 

  
disp ('Finished :-)') 
% END OF PROGRAMME 

  



 

 

function [n, err] = n_old(p_c,h2,h2d,h3,T_cdg,T_on,m_rf,day) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%    REQUIRED AIR MASS FLOW RATE (OLD CONTROL)   
% 
%    22/02/15: Started (MB) 
%    23/02/15: Finished version 1.0 (MB) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% This function calculates the required mass flow rate when the fans are  
% controlled with the old control algorithm, i.e. 
% n_% = 0 for p_c < 9.5 bar_g 
% n_% = (p_c-9.5) / 100 for 9.5 bar_g <= p_c <= 10.5 bar_g (max 53% for 

day) 
% n_% = 100% (night) or 53% (day) for p_c > 10.5 bar_g 

  
% VARIABLE DECLARATION 
c_air = 1.006; % [kJ/kg/K]: Specific heat constant of air 
% day [-]: 1 if refrigeration system in day time operation mode  
dT = 2; %[K]: Temperature difference between average condenser 

temperature 
% dT_air [K]: Temperature difference between air on and off condenser 
% and air off the condenser 
err = 0; % [-]: Error variable, 1 if insufficient air through condenser 
% h2 [kJ/kg]: Specific enthalpy at discharge port of compressor 
% h2d [kJ/kg]: Specific enthalpy at start of isothermal condesing process 
% h3 [kJ/kg]: Specific enthalpy at outlet of condenser 
% m_arq [kg/h]: Air mass flow rate required to reject heat from condenser 
% m_rf [kg/s]: Refrigeration mass flow rate 
max_m_fan = 33.7148; %[kg/s]: Maximum mass flow rate through condenser  
%                   (maxV_fan * roh = 28 m3/s * 1.2014 kg/m3) 
n = 0; % [-]: Speed of fans 
roh = 1.2041; %[kg/m3] Average density of air  
% T_cdg [°C]: Average condensing temperature 
% T_on [°C]: Air temperature onto the condenser 
% T_sh [°C]: Superheat temperature at h2 
Q_air = 15; % [kW]: Heat removed through air passing through condenser 
%                Default value for convective mode, i.e. n = 0 
% Qdot_c [kW]: Total heat reject by condenser 
% Qdot_cdg [kW]: Heat rejected during condensing of the refrigerant 
% Qdot_sh [kW]: Heat reject during de-superheating the refrigerant 

  
% CALCULATIONS 

  
Qdot_c = m_rf * (h2-h3); %Heat rejected by condenser 
Qdot_cdg = m_rf * (h2d - h3); %Heat rejected by condensing part 
Qdot_sh = Qdot_c - Qdot_cdg; %Heat rejected by de-superheating part 

  
T_sh = 0.0049022 * p_c^2 + 0.00011216 * h2^2 + 6.6677 * p_c + 1.02716 * 

h2 -0.013191 * p_c * h2 - 401.16; 

     
mair_cdg = Qdot_cdg / c_air / (T_cdg - dT - T_on); 
mair_sh = Qdot_sh / c_air / ((T_sh + T_cdg)/2 - dT - T_on); 
m_arq = mair_cdg + mair_sh; 
dT_air = Qdot_c / m_arq / c_air; 

  
if p_c > 10.5 
   if day == 1 
      n = 0.53; 



 

 

   else 
      n = 1; 
   end 
Q_air = n * max_m_fan * c_air * dT_air; 
end 

  
if (p_c >= 9.5 && p_c <= 10.5) 
   if day == 1 
     n = 0.53/(1+0.25*exp(-15*(p_c-10))); 
   else 
     n = 1/(1+0.25*exp(-15*(p_c-10)));         
   end 
Q_air = n * max_m_fan * c_air * dT_air; 
end 

  
if Qdot_c > Q_air | (T_cdg-dT) < T_on 
  err = 1; 
  n = -1; 
end 

  
%END FUNCTION 
end   

  



 

 

function [n, err] = n_new(p_c,h2,h2d,h3,T_cdg,T_on,m_rf) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%    REQUIRED AIR MASS FLOW RATE (NEW CONTROL)   
% 
%    23/02/15: Started (MB) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% This function calculates the required mass flow rate and returns the 

speed 
% if it is 1 or less otherwise the error variable becomes 1. 

  
% VARIABLE DECLARATION 
c_air = 1.006; % [kJ/kg/K]: Specific heat constant of air 
dT = 2; %[K]: Temperature difference between average condenser 

temperature 
err = 0; % [-]: (o/p) Error variable, 1 if insufficient air through  
%              condenser 
% h2 [kJ/kg]: (i/p) Specific enthalpy at discharge port of compressor 
% h2d [kJ/kg]: (i/p) Specific enthalpy at start of isothermal condensing 
% h3 [kJ/kg]: (i/p) Specific enthalpy at outlet of condenser 
% m_arq [kg/h]: Air mass flow rate required to reject heat from condenser 
% m_rf [kg/s]: (i/p) Refrigeration mass flow rate 
max_m_fan = 33.7148; %[kg/s]: Maximum mass flow rate through condenser  
%                   (maxV_fan * roh = 28 m3/s * 1.2014 kg/m3) 
n = -1; % [-]: (o/p) Speed of condenser fans as fraction of full speed 
% T_cdg [°C]: (i/p) Average condensing temperature 
% T_on [°C]: (i/p) Air temperature onto the condenser 
% T_sh [°C]: Superheat temperature at h2 
% Qdot_c [kW]: Total heat reject by condenser 
% Qdot_cdg [kW]: Heat rejected during condensing of the refrigerant 
% Qdot_sh [kW]: Heat reject during de-superheating the refrigerant 

  
% CALCULATIONS 
% - Enthalpies 
Qdot_c = m_rf * (h2-h3); 
Qdot_cdg = m_rf * (h2d - h3); 
Qdot_sh = Qdot_c - Qdot_cdg; 

  
T_sh = 0.0049022 * p_c^2 + 0.00011216 * h2^2 + 6.6677 * p_c + 1.02716 * 

h2 -0.013191 * p_c * h2 - 401.16; 

  
% - Required air mass flow rate 
mair_cdg = Qdot_cdg / c_air / (T_cdg - dT - T_on); 
mair_sh = Qdot_sh / c_air / ((T_sh + T_cdg)/2 - dT - T_on); 
m_arq = mair_cdg + mair_sh; 

  
if m_arq > max_m_fan | (T_cdg-dT) < T_on 
  err = 1; 
else 
  n = m_arq / max_m_fan; 
end 

  
%END FUNCTION 
end 

 




