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Abstract 

Rising global healthcare expenditures, the fallout from the global financial crisis and a 

commitment to improving patient outcomes have increased pressure on the budget of the 

National Health Service (NHS) in England to unprecedented levels. Therefore, ensuring 

services are delivered efficiently is key both politically and economically.  

In the context of the NHS, the large share of spending in secondary care means that this area 

is well analysed in the literature. However, the scale of the savings needed requires that both 

(a) more research is needed to identify further possible gains; and (b) the potential for 

improvement that has been identified by these studies is captured. To these ends, there are 

two specific aims of this thesis. The first is to examine the regulation of NHS hospital 

efficiency. Drawing from health care and other sectors of the economy, a number of lessons 

for regulators to promote hospital efficiency in the NHS and beyond are proposed. The 

second is to look to areas of hospital activity for which empirical evidence on efficiency is 

limited to identify further available gains. 

Many studies in the UK and beyond have sought to measure efficiency in health: the so-

called “supply” of efficiency analysis is booming. However, despite their potential, the use of 

these studies has been limited in the NHS. In response to this, this thesis seeks to answer 

some of the methodological and practical issues raised around efficiency measurement and its 

application to the setting of NHS hospital efficiency targets. How these findings are useful 

more widely to health care systems around the world is also discussed. 

Chapter 1 introduces the thesis, policy background and objectives of the work. Chapter 2 

gives an economic history of the NHS and observe trends in global health care costs. Chapter 

3 details the economic tools that are used to gather our empirical evidence. Chapters 4, 5 and 

6 report the thesis’s empirical work. Finally, chapter 7 concludes by drawing together 

findings and assessing the extent to which the aims set out have been achieved and comments 

on appropriate further research. 
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1. Introduction 

1.1 Thesis Motivation 

“Thesis, n. 

Forms:  Pl. theses /ˈθiːsiːz/ . 

Etymology:  < Greek θέσις putting, placing; a proposition, affirmation, etc., < root θε-

 of τιθέναι to put, place. 

 

4.  A proposition laid down or stated, esp. as a theme to be discussed and proved, or to be 

maintained against attack (in Logic sometimes as distinct from HYPOTHESIS n. 2, 

in Rhetoric from ANTITHESIS n. 3a); a statement, assertion, tenet.” 

Oxford English Dictionary Online (2015) 

 

The subject of this thesis is the efficiency of hospitals in the National Health Service (NHS) 

in England.  

The thesis – or proposition – posited here is that improvements can be made in both the 

regulation and the measurement of NHS hospital efficiency.  

This thesis describes the economic history and context into which the empirical work is set. It 

makes use of previous studies in health care and other sectors to provide direction for the 

regulation of efficiency in the NHS hospital market. It sets out the methodologies used to 

measure inefficiency; and some health-based issues in conducting efficiency analysis. It 

provides, by way of solutions, some advances in efficiency measurement. It provides 

empirical insights into where inefficiency resides within NHS hospitals - specifically, 

pathology laboratories within hospitals. 

1.2 Economic and Policy Landscape 

A long run issue for many governments is the amount of money that is spent on health care 

services. In England, the NHS is a publicly funded, largely publicly operated and publicly 

http://www.oed.com/view/Entry/90588#eid1061448
http://www.oed.com/view/Entry/8893#eid1361500
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regulated health care system. As such, the government’s focus on expenditure is particularly 

sharp. The British government spent around £140bn on the NHS in 2013/14 (HM Treasury, 

2015). This is, in terms of the proportion of GDP, around 9%, which roughly accords with 

comparable systems around the world (OECD, 2014). This proportion has been steadily 

growing over time across all observed health care systems (Chernew and Newhouse, 2012).  

Expenditure has been central in a litany of policies over the lifetime of the NHS, where we 

observe substantial increases over time. There appear to be a set of economic circumstances 

which explain this rise. Moreover, these reasons suggest rising expenditures are set to 

continue into the future. It is therefore of high importance to policy makers.  

In the short run, in the fallout from the economic crisis, there are substantial pressures on the 

NHS budget.  In response to this, the Nicholson Challenge set out targets for efficiency 

savings of £20bn by 2015 in the UK National Health Service (NHS) (Health Select 

Committee, 2010). However, financial pressure is expected to extend beyond 2015: the NHS 

will face a funding gap of £30bn by 2020 (NHS England, 2013). The NHS’s five year 

forward view proposes that around £22bn of this is to be derived from efficiency savings 

(NHS England, 2014a). Thus, ensuring efficiency in all areas of health care is key. 

Although there is a wide literature assessing efficiency in the NHS, new research is required 

since further gains are needed to meet the spending challenge. It has been argued that ‘easy’ 

efficiency savings have now been made across the NHS (National Audit Office, 2012). 

Further, surveys of NHS finance directors reveal growing scepticism about whether the 

Nicholson Challenge will be met at all (Appleby et al., 2013). Indeed, some hospital trusts are 

currently struggling to break even (Murray et al., 2014).  

A recent report detailed possible savings of £5bn p.a. based on staffing and pharmacy in 

hospitals (Department of Health, 2015); this is short of the £22bn required by some margin. 

Therefore, identifying additional potential efficiency improvements and encouraging them to 

be captured may ease budgetary pressure.  

The focus of this thesis is therefore efficiency in the NHS. To this end, a natural starting point 

is the question of whether the NHS is efficient. Although this question seems straightforward, 

beguilingly so, it has proved an area of contention for economists in the NHS setting and in 
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health care systems more widely, with little uptake of efficiency studies amongst policy 

makers (Hollingsworth and Street, 2006). 

There is a body of literature of both academic and non-academic studies (e.g. think tanks 

such as the King’s Fund, see Appleby et al., 2013) that has sought to measure inefficiency in 

the NHS. These may be at the macro or micro level. Typically, efficiency in the academic 

literature is measured by stochastic frontiers (SFs), data envelopment analysis (DEA) or 

multivariate, multilevel modelling (MVML), and using indicator analysis (such as spending 

per head, Davis et al., 2014) in the non-academic literature.  

At the macro level, the NHS itself is the unit of analysis, and is thus compared to other 

national health care services across the world. In Spinks and Hollingsworth (2009), the UK 

compared unfavourably (in terms of efficiency) amongst its OECD peers. However, the 

authors note that theoretical issues limit the interpretation of DEA results. Elsewhere, Smith 

and Street (2006) argue against the use of SFs at the macro level on theoretical grounds. 

Greene (2010) takes the view that using microeconomic tools at the macroeconomic level 

may be inappropriate. Practically, the usefulness of macro efficiency studies is somewhat 

restricted in the context of the current financial challenge because these studies do not 

indicate where specific savings can be made within the NHS.  

At the micro level, hospital studies dominate the national and international literature 

(Hollingsworth et al., 1999; Jacobs et al., 2006; Hollingsworth, 2003; 2008).  Within NHS 

services, expenditure on hospitals is dominant: in 2013/14, the NHS in England spent 

£58.3bn of public money on 244 providers of hospital services, representing around 55% of 

total NHS expenditure, and this proportion is growing over time (Department of Health, 

2014). At the same time the wealth of data available means that this is an area already well 

analysed in the more recent NHS-based literature (Farrar et al., 2009; Laudicella et al., 2010; 

Cooper et al., 2012; Gutacker et al., 2013a; Siciliani et al., 2013; Daidone and Street, 2013). 

There is work in other areas of service delivery, primary care services for example 

(Szczepura, 1993; Giuffrida and Gravelle, 2001), however, because the outputs of these 

services are difficult to define and to measure, eliciting meaningful efficiency estimates is 

challenging (Rosenman and Friesner, 2004; Lester and Roland, 2009; Amado and Santos, 

2009; Murrillo-Zamorano and Petraglia, 2011; Longo et al., 2012). Perhaps it is unsurprising, 

then, that Hollingsworth (2008) finds no recent NHS primary care efficiency studies. The 



4 
 

story is similar for other micro level services such as intermediate care. Given these issues, 

for the purposes of this thesis, our focus is on efficiency amongst NHS hospitals.  

Recently, following the introduction of the Health and Social Care Act (2012), the task of 

managing hospital efficiency has passed from the Department of Health to Monitor, the 

economic regulator of NHS hospitals that have achieved Foundation Status
1
. Since Monitor 

has assumed the role, it has begun to develop an approach to setting efficiency targets (known 

as the ‘efficiency factor’) based on econometric benchmarking (Deloitte, 2014b). This is in 

keeping with the aims of central government who have identified benchmarking as key to 

making efficiency savings in the public sector (HM Treasury, 2015). With this it aims to 

encourage hospitals to meet their efficiency targets and contribute to the top-level policy goal 

of plugging the oncoming funding gap. Our empirical work is designed around aiding this 

process. We therefore set out the following objectives. 

 

1.3 Thesis Objectives 

 

(i) To inform the process of setting efficiency targets for NHS hospitals by Monitor, 

by reviewing germane literature and conducting efficiency analysis and setting out 

empirical issues to which we are able to provide solutions; 

 

(ii) To provide new economic evidence for an area of NHS hospital activity for which 

empirical evidence is scant: pathology laboratories. This is, in turn, to feed into 

the top-level policy goal of making efficiency savings across the NHS; and 

 

 

(iii) To advance the measurement of efficiency in health markets and beyond. 

 

1.4 Structure of this Thesis and Empirical Chapters 

The rest of this thesis is set out as follows. Chapter 2 provides an economic history of the 

NHS in England where specific focus is given to NHS expenditure over time. This sets the 

                                            
1 Foundation status of a NHS trust (a trust is a hospital or small group of hospitals) means that it operates under an independent, not-for-

profit regime, allowing it financial autonomy which it does not have without having foundation status (Marini et al., 2008). Trusts apply for 

foundation status, which is granted by the regulator, Monitor, if the trust has satisfied the regulator of its financial competence. Foundation 
status has not been awarded to all NHS trusts. 
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economic context for this thesis and argues the case for the importance of efficiency – and 

therefore its measurement.  

Chapter 3 goes on to set out our methodological approach to efficiency measurement. We 

provide definitions of various concepts of, and relating to, efficiency. We justify of our 

approach, first by arguing in favour of frontier analysis, then our reasoning for adopting an 

econometric approach. We give an exposition of the cost function which we adopt in our 

empirical work, in both theoretical and empirical terms. We then set out, conceptually, our 

method for measuring inefficiency: the stochastic frontier model. We continue to describe 

three aspects of stochastic frontier methodology which are (a) of interest and importance in 

the health context; and (b) are the focus of empirical work in this thesis. These are efficiency 

change over time, unobserved heterogeneity and multi-level organisational structures.  

The main contribution of this thesis is across the three following chapters. In general, it is to 

contribute to the academic field of efficiency measurement and regulation in health markets, 

whilst providing evidence to enable regulators and policy makers to answer the economic 

challenge that faces NHS hospitals. We take two approaches in pursuing these ends. First, we 

examine the issue of regulating the performance of NHS hospitals. Second, we go on to 

measure efficiency in the NHS hospitals; we report our empirical work in two studies of 

pathology laboratories. We provide details of each chapter below. 

Chapter 4: National Health Service Performance Management, Price Regulation and 

Efficiency Measurement 

This chapter is an analysis comprising several aspects pertaining to NHS hospital efficiency. 

We first review a number of performance management regimes that have been applied to 

NHS hospitals to try to drive out performance improvements. We focus on the general issues 

that arise as regards what is effective, or otherwise, when setting targets. We draw out lessons 

for Monitor for use when applying efficiency targets.  Next, we review the hospital pricing 

mechanism for NHS hospitals, and suggest alterations that may encourage efficiency. Lastly, 

we review efficiency measurement and economic regulation in health care markets and other 

regulated industries in Britain. We make use of this to set out methodological challenges to 

efficiency measurement in health markets, and go on to propose solutions.  
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Chapter 5: Efficiency Over Time, Economies of Scale, Multi-Factor Productivity and 

Mergers in NHS Pathology 

In our first empirical study, we answer several policy-based questions regarding pathology 

services in that we, for the first time, provide insights in to the extent of inefficiency; how 

efficiency changes over time; how costs vary with a number of exogenous factors; economies 

of scale properties in pathology production; an account of overall multi-factor productivity in 

pathology services; and a simulation exercise to determine the cost implications of 

laboratories merging.  These features have been of interest to policy makers for a 

considerable length of time, as reflected in a number of prior studies. We are able to populate 

this policy debate with empirical evidence. 

Next, this study, being the first approach to efficiency analysis in NHS pathology, fulfils our 

research agenda’s goal of finding new areas of hospital services for efficiency gains. 

In addition, our study provides some methodological advances to the measurement of 

efficiency in health markets. We are the first to adopt an econometric approach to efficiency 

measurement in pathology services; the first to adopt a flexible model allowing for individual 

laboratories to have specific paths for efficiency change over time (Cuesta, 2000); and the 

first to use a cost function to simulate laboratory mergers.   

Chapter 6: Dual-level Inefficiency and Unobserved Heterogeneity in NHS Pathology 

In our second empirical study, we adopt a multi-level model that allows us to examine the 

organisational structure of pathology laboratories, and the location of inefficiency therein 

(Smith and Wheat, 2012). We use these estimates to derive an overall inefficiency measure 

per upper tier unit.  

We find that there are components of inefficiency at both of the levels examined. We find 

that inefficiency resides mostly at the lower, laboratory, level; whilst a small amount is found 

at the upper, strategic health authority (SHA)
2
, level. As with the previous application of this 

model, not only do we find that there is inefficiency at both levels, but that failure to account 

for the structure of the organisation may lead to the underestimation of overall inefficiency 

(Smith and Wheat, 2012). 

                                            
2 we note that these have, subsequent to policy reforms in 2012, been abolished. However, our data collected at the time that SHAs were in 
place and our analysis therefore uses this structure 
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Methodologically, there are several novel aspects. This study is the first application of the 

dual-level stochastic frontier (DLSF) model in health markets. In addition, ours is the first 

study to measure inefficiency at two vertically distinct organisational levels in health 

markets.  

The central contribution of this study, however, is the extension of the DLSF to account for 

unobserved heterogeneity between providers. We extend the model by taking advantage of 

methodological developments in the literature to augment the DLSF with statistical controls 

for unobserved heterogeneity (Farsi et al., 2005a; Kumbhakar et al., 2014). We use a set of 

statistical tests and adopt a measure which can account for different forms of unobserved 

heterogeneity. We demonstrate that it is important to do so, which is a key finding of this 

study. 

This study is thus important not only for studies in health markets but for inefficiency 

measurement across all sectors of the economy. 

Finally, chapter 7 concludes by bringing together the three studies. The major contributions 

of this thesis are in the review of incentive structures for NHS hospitals; the development of 

econometric techniques to measure areas of hospital activity that have not been studied 

previously to identify potential efficiency savings; novel application of econometric methods 

in health markets; the development of existing methods for health markets and for use 

beyond; development of appropriate testing strategies for the identification of various forms 

of unobserved heterogeneity; and the identification of vertically separate inefficiency in 

health. We discuss the extent to which the studies have answered the research objectives and 

go on to suggest useful areas for future work. 

We now move to chapter 2 to discuss the economic history of the NHS. 
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2. National Health Service Structure, Expenditure and Productivity 

 

Following our introduction in the previous chapter, this chapter examines government 

spending and economic issues related to health care services, with a particular focus on the 

NHS. We examine NHS productivity and draw out its importance for the provision of health 

care.  

 

We begin by discussing health care system models to define the NHS and its position 

amongst its peers. We use this for reference in subsequent discussion. We then the 

progression of NHS expenditure over its lifetime, before moving to economic reasons for 

changes in health care expenditure. Finally, we move to NHS productivity and discuss how 

NHS productivity has changed in recent years. We conclude the chapter by suggesting that 

natural rises in health care expenditure over time implies that productivity and efficiency are 

crucial for policy makers, both in the NHS context and beyond. 

 

Subsequent chapters go on to define efficiency and set out how it may be measured (chapter 

3). Next, a chapter, 4, is devoted to efficiency in the NHS context: policy context, setting 

targets for efficiency and health issues pertaining to measuring efficiency. Following from 

this are the two empirical chapters, 5 & 6, which measure efficiency in NHS hospitals. 

Chapter 7 provides a synopsis and overall conclusions.  

 

The rest of this chapter is set out as follows. Section 2.1 considers health care system models 

to make clear the NHS’s position amongst its peers. In section 2.2 moves to the progression 

of NHS expenditure over its lifetime. Section 2.3 goes on to discuss economic drivers of 

health care costs and expenditure. Section 2.4 examines NHS productivity and concludes. 
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2.1 Health Insurance Models 

 

To begin, consideration is given to the basic features of the NHS by way of comparison to 

other possible health care system structures. There are a number of ways in which a health 

system can be characterised, based on the regulation, financing and provision of health care. 

Bohm et al. (2013) set out ten basic types of system based on these features (of course, many 

more are possible, but these are deemed implausible; for example, a privately funded system 

with public provision). These are summarised in table 2.1. 

 

Health System Type Regulation Financing Provision Example(s) 

          

National Health Service State State State UK, Spain, Portugal, Scandinavia, 

Denmark, Iceland 

Non-profit National Health 

System 

State State Societal   

National Health Insurance 

System 

State State Private Australia, New Zealand, Canada, Italy, 

Ireland 

Etatist social Health System State Societal Societal   

Etatist Social Health 

Insurance 

State Societal Private France, Belgium, Poland, Israel, Japan, 

Korea 

Etatist Private Health System State Private Private   

Social Health System Societal Societal Societal   

Social Health Insurance 

System 

Societal Societal Private   

Corporatist Private Health 

System 

Societal Private Private Austria, Germany, Luxembourg, 

Switzerland 

Private Health System Private Private Private USA 

          

 Table 2.1: Types of Health System 

 

From a consumer’s perspective, from Rothenburg (1951) and Nagendran (2010), there are 

four basic types of medical insurance. These are private medicine – fee for service (i.e. no 

insurance); private medicine – voluntary sickness insurance; private medicine – compulsory 

sickness insurance; and socialised medicine. There is some overlap between health care 

system and insurance schedule, but the two are different fundamentally. 
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The simplest way in which to conceptualise the various systems is to consider a continuum. 

On the far left is the National Health System, adopted in the UK and elsewhere (table 2.1), 

characterised by state regulation, state financing and state provision. The NHS model (also 

referred to as the Beveridge model, after Sir William Beveridge) is placed on the far left (or 

close thereto). On the far right is private medicine – fee for service characterised by complete 

private sector provision for all services and no state intervention. The remaining insurance 

models lie along the continuum, with the compulsory insurance model to the left of the 

voluntary insurance model. The Etatist Social Health Insurance model (sometimes referred to 

as the Bismarck model, after Otto Van Bismarck’s late 19
th

 century welfarist reforms) rests 

close to the compulsory insurance model, but has elements of socialised medicine. Its 

defining features include the stringent regulation of insurance (often but not necessarily sold 

on a not for profit basis), claims paid without being challenged, no exclusion for pre-existing 

conditions, prices fixed by the state and private primary and secondary care outlets. The 

system in the USA was close to a compulsory insurance model (the 1934 American Blue 

Cross and Blue Shield models), although the recent health care bill
3
 looks to have shifted the 

system towards the Beveridge and Bismarck models. Indeed, more is spent on public health 

in the USA than in the UK: Medicare and Medicaid programmes (in 2013, Medicare cost 

$586bn, Medicare cost $449bn
4
 - both of which are in excess of the approximate £140bn 

spent on the NHS). The Canadian National Health Insurance (NHI) model is close to the 

compulsory health insurance model. In less developed nations, e.g. Senegal, health care is 

almost always uninsured private medicine. These are demonstrated below. 

 

Figure 2.1: Health Systems and Insurance Models 

 

The position of the various models along the continuum across time is subject to change. 

Remembering that all health systems were at one stage on the far right, there looks to be a 

                                            
3 See http://www.whitehouse.gov/health-care-meeting/reform-means-you for details 
4 See http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-
Sheet.html  

http://www.whitehouse.gov/health-care-meeting/reform-means-you
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet.html
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet.html
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movement to the left, implying systems move to the left as development occurs. However, 

this is a discussion for another set of ends. The point here is that this continuum gives a way 

in which to observe whether reforms over the course of the NHS have changed it 

fundamentally, from its far left origin.  

 

 

2.2 National Health Service Expenditure over Time 

 

We begin this chapter by considering NHS expenditure in real terms and as a proportion of 

total government expenditure. These are presented in figure 2.5 below.  

 

 

Figure 2.2: NHS Expenditure in real terms and as a proportion of GDP, 1950-2011. Source: 

Harker (2012) 

 

Figure 2.2 shows the growth in NHS expenditure since its beginning. In real terms, spending 

has increased from its base of around £12bn in 1950 to its peak of around £121bn in 2011. In 

terms of GDP, the % share of NHS spending has increased from 3.5% in 1950 to 8.3% in 

2011. Both series share a common trend which is that there is fairly uniform growth from 

1950 until around 2000, at which point the trend increases sharply, with the increased 

trajectory holding until 2011. This is a substantial increase in spending, particularly in more 

recent years (coinciding with the Blair government, who mandated spending increases). 
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Given this rise in expenditure over time, a natural question to ask is whether other sectors in 

the economy have experienced similar trends in expenditure in terms of total GDP. Presented 

below are such trends.  

 

 

Figure 2.3: Government Expenditure by Sector as a % of GDP, 1993-2013. Source: HM 

Treasury (2014). NB – only a selection of sectors have been taken for ease of interpretation 

 

Figure 2.3 shows the proportion of total GDP that is devoted to a number of sectors between 

1993 and 2013. Five have been chosen for comparison, rather than all areas of spending, to 

make for ease of interpretation. Health represents government expenditure on publicly 

provided health, the provision of which may be either public or private (see table 2.1). Other 

sectors include social protection which is the governments largest outlay (health is second), 

education, defence, housing (and community amenities) and environmental protection.  

 

As can be seen, health, education and social protection have had expenditure as a proportion 

of total GDP increased over the period. Health expenditure has outstripped increases in 

education spending over the period. The remainder of the sectors have either had fairly 

constant levels of expenditure, as in the case of environmental protection, or have had 
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expenditure reduced, as in the case of defence. Thus, not only has health expenditure grown 

as a proportion of GDP, it has grown relative to other sectors of the economy.  

 

The next question to consider is whether these rises in expenditure are being driven by certain 

aspects within health care services or whether it is all aspects of health care that are 

contributing to the rising costs. To help answer this question, the following data are available.  

 

 

 

Figure 2.4: NHS Cost Indices, 1950-2006. Source: Hawe (2009) 

 

Figure 2.4 shows cost indices for various services within the NHS over time. The Hospital 

index shows the cost index for hospitals. The Family_Health index refers to the costs of 

services that are considered to be for families, including primary care, optometry, dentistry 

and pharmacology. The NHS_other index refers to the costs of other services such as mental 

health, ambulances and special health authorities (e.g. National Blood Authority). These 

suggest that the costs of various subsets of NHS production are each increasing over time. 

The rates at which they increase vary: the costs of other services appear to have grown most 

over the period, followed closely by hospital costs. The costs of family health services seem 

to have lagged behind those of other services, reaching an index value of around 600, relative 
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to the 950 of other or the 800 of hospital costs. For Hospital and other services, the growth of 

the value of the indices appears to be reasonably constant from 1950 up until 2000, beyond 

which the trend appears to increase sharply. This corresponds to the pattern observed for 

overall spending, as in figure 2.2. For family health services, the trend appears to rise 

smoothly over the entire period.  

 

In summary, health care expenditure has increased over time in both real terms and in terms 

of the proportion of GDP spend. The rise in GDP spend has occurred in many other countries 

– none of the reported countries’ proportions of GDP spending reduced over the period. In 

addition, costs of various subsets of NHS activity have increased over time. In light of this, 

the natural question is as to why. To answer this, the following section explores reasons to 

explain these trends. 

 

2.3 Health Care Expenditure Drivers 

 

We first distinguish spending level and spending level growth. Spending level is simply the 

product of the quantity of outputs and their factor prices at a given equilibrium state. 

Spending level growth reflects a set of factors that cause this equilibrium state to shift over 

time; that is, those factors over and above the output alone that are causing health care costs 

to change over time. See Chernew and Newhouse (2012). Focus is given to spending level 

growth in this exposition. 

 

Population trends include the rising population over time. Simply, more people require more 

health care services. This is especially true in the context of NHS where, under its universal 

service, there is non-excludability. Over the last 50 years, the UK has seen a population 

increase of around 18.7%, around 10 million in number, to 63 million (ONS, 2014).  The 

population in the UK is set to rise by around 16% to 73 million by 2035 (ONS, 2012b). 

 

The next population trend is the rise in long term conditions (LTCs). Rising incidence and/or 

prevalence across a number of conditions, for example diabetes (Diabetes UK, 2012), has 

increased pressure on health care services. This issue is linked to health behaviours, which 

were identified as a driver of service use, and correspondingly as a driver of costs, in the 

context of the NHS (Wanless, 2002). For example, BMI, indicative of health behaviours, was 

recently found to be influential on health care expenditures (Willeme and Dumont, 2015). 
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Further, multimorbidity is expected to rise in the coming years, which has significant cost 

implications (Department of Health, 2012). Multimorbid patients are resource intensive: it is 

estimated that the 30% of patients with one or more long term conditions account for 70% of 

health care spending in England (NHS England, 2013). Moreover, spending per case appears 

to have increased with time, largely due to increases in multimorbidities and as a result of 

technological advance (Chernew and Newhouse, 2012).  

 

The next, and perhaps best documented, population trend is an ageing population. The 

median age in Britain is predicted to rise from just under 39 in 2010 to over 42 in 2035 (ONS, 

2012c). Economists had for a long time believed that it was the age of patients themselves 

that was driving the association with increases in health care costs (Bos and Weizsacker, 

1989). However, Zweifel et al. (1999) proposed the ‘red herring hypothesis’: that the driver 

of the observed expenditure rise was the patient’s proximity to death, rather than their age. 

Age was therefore just a proxy for proximity to death. Later, Seshamati and Gray (2004) 

revisited this issue, finding that both age and proximity to death appeared to be driving 

increases in health care expenditure. This finding is corroborated by recent evidence, which 

proposes an interaction of the two factors as a further determinant of rising costs (Geue et al., 

2014). Further evidence is in accordance but finds that whilst ageing did increase 

expenditure, the effect was meagre, by around a factor of four, relative to the effect of 

technological change (Dormont et al., 2006). 

 

A corollary of average age is age structure, that is, proportion of the population across age 

strata. The belief is that given two populations of equal average age, the one with a higher 

share of elderly patients will be more costly. However, there is little empirical support for this 

(Baltagi and Moscone, 2010).  

 

There is a growing recognition of frailty as a medical condition common amongst elderly 

populations (Clegg et al., 2013). It is inherently tied to both ageing and comorbidities, 

although is distinct from them (Fried et al., 2004). Frailty, both as an increased health risk 

itself and as an amalgam of several deleterious conditions, is likely to be financially 

burdensome (Clegg and Young, 2011).  
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Economic factors that have been suggested as driving health care expenditure growth include, 

firstly, Baumol’s law
5
 (Baumol, 1967; Baumol, 2012). The central idea is that, over time, the 

more labour-intensive industries will, ceteris paribus, become costly relative to the less 

labour-intensive industries, which are able to reduce production costs more rapidly through 

the adoption of technology. For example, the use of technology can be used to greater effect 

in reducing the unit cost of producing, say, an automobile than it can to reduce the unit cost 

of, say, an education, which requires a far higher share of labour input than its comparator. 

This is intuitively reasonable in the context of health markets, where there is a significant 

labour input. Indeed, labour cost shares are typically high in health markets (around 63% of 

total spend on hospitals, Department of Health (2015); as much as (circa) 80-90% in 

pathology production, see Department of Health (2008)). Much empirical testing shows that, 

whilst some results suggest that Baumol’s cost disease pervades health markets (Hartwig, 

2008; Hartwig, 2011; Bates and Santerre, 2013), other studies do not find evidence to support 

this idea (Gerdtham et al., 1992; Murthy and Ukpolo, 1994).  

 

The next economic factor is technological change. Technological advance is thought to be a 

major driver of health care expenditure (Manning et al., 1987). Indeed, one study estimated 

75% of expenditure growth was attributable to technological progress (Newhouse, 1992). 

This has become known as the ‘Newhouse conjecture’. This issue has proven challenging for 

economists - finding a suitable proxy for technological change has been difficult in empirical 

applications (Baltagi and Moscone, 2010). If proxy measures are supported, then the 

Newhouse conjecture has been supported empirically. As proxies, Baker and Wheeler (1998) 

used the number of surgical procedures; Okunade and Murthy (2002) used R&D spending; 

and Gerdtham and Lothgren (2000) used the passage of time. A recent study made use of two 

novel indicators, namely the number of approved medical devices and pharmaceutical 

products (Willeme & Dumont, 2015). The study findings are consistent with prior literature, 

where technological progress accounted for, on average across OECD countries, around 43% 

of health expenditures between 1980 and 2009. Dormont et al. (2006) make use of changes in 

clinical practice (pharmaceutical expenditures) as a proxy for technological change. The 

authors find that technological change is substantially more effective on expenditure 

increases than population age.  

 

                                            
5 Elsewhere referred to as ‘Baumol’s cost disease’ 
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Another issue around technology is the capability of clinicians: as technology advances, it is 

possible to treat conditions that had not been possible previously. This has been documented 

in the NHS, congenital heart disease services being a recent example (Glenwright et al., 

2014).  

 

Of course, the positive relationship may not hold true in all cases; some technological 

progress may help to lower costs in some settings. Much depends on the view – the 

Newhouse conjecture is a more macro, long-run effect. There may be different effects at 

different levels of aggregation or over different time horizons. For example, technological 

progress (as proxied by the passage of time) was thought to be explaining short run cost 

reduction in pathology services (Buckell et al., 2015). In some cases, medical intervention 

can be substituted by the use of drugs – termed ‘drug cost offset’ – evidence for which has 

been found in the literature (Willeme and Dumont, 2015).  

 

Next is the effect of rising incomes. Economic theory predicts that demand for health care 

will increase with rising incomes, both at the micro and macro levels (Rice, 2003). Health 

care expenditure will consequently rise. This has not only been supported in many empirical 

applications where studies reveal that health care expenditure is highly correlated with 

income, income has been shown to explain a significant share of the variation in total health 

care spending (Morris et al., 2007). The current debate amongst economists is whether the 

income elasticity of demand is greater than or less than one, and thus whether health care is a 

‘necessary’ (or ‘normal’) or ‘luxury’ good. Although many empirical studies have sought to 

answer this question, and a range of approaches employed, the evidence is mixed and the 

answer remains ambiguous (Lago-Penas et al., 2013).  

 

There are also often political factors that have bearing on expenditure. The structure of health 

finance and provision may have implications for expenditure. Chernew and Newhouse (2012) 

do not find significant differences between insurance schemes in markets in the USA. Xu et 

al. (2011) found some evidence to suggest that social insurance is expensive relative to 

general taxation across OECD countries. Insurance models based on co-payments present an 

additional aspect to insurance. The central example of such a scheme was the Rand Health 

Insurance Experiment in the USA in the 1980s. Economic analysis has shown that the system 

of insurance can indeed have bearing on health expenditures (Manning et al., 1987). 
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However, the authors note that the effect is inferior to that of technological change. 

Nonetheless, this issue may be important with the growth in private insurance in the UK.  

 

For public vs. private provision, Hollingsworth (2008), in an authoritative literature review of 

efficiency analyses, finds no clear consensus amongst empirical studies. If anything, the 

literature may point to public provision being preferable, but the answer remains unclear. 

Moreover, the optimum is likely to vary by region.  

 

Reforms to health care systems are often expensive. The Health and Social Care Act (2012) 

was a major top-down reorganisation of the NHS. Not only is evidence around the savings 

dubious, the actual costs have exceeded projections and the upheaval in service provision 

itself has likely driven up costs (cf. NAO, 2013; Walshe, 2014). Political commitments can 

also drive spending: New Labour famously
6
 matched NHS expenditure per capita to 

European levels during the 2000s (Smee, 2005; fig. 2.2). A further contributory factor can be 

major shocks, as Maynard and Ludbrook (1980, pp. 293) have described 1970s funding, 

 

“…what you got last year, plus an allowance for growth, plus an allowance for scandals.” 

 

Recession, or rather the fallout of recession, can have implications for health care 

expenditure. For example, the 2008 global financial crisis increased pressure on public sector 

expenditure and so on the costs of the health care system in the UK. In response to this, the 

Nicholson Challenge set out targets for efficiency savings of £20bn by 2015 in NHS (Health 

Select Committee, 2010). There have been real terms freezes in expenditure during the last 

few years, and financial pressure is expected to extend beyond 2015, with a funding gap of 

£30bn expected by 2020 (Roberts et al., 2012; NHS, 2013).  

 

In the long run, NHS expenditure has risen over time, both in absolute and real terms. 

Expenditure has grown as a proportion of GDP in Britain and across health care systems the 

world over. Expenditure has grown within all observed subsets of NHS activity. There are a 

number of reasons to explain this growth. Further, there are a number of reasons to expect 

that this growth will continue for the foreseeable future. As Baumol (2012) argues, this 

growth is not necessarily an issue; more an indication of gains made in other sectors.  

                                            
6 Tony Blair made the announcement on BBC 2’s ‘Breakfast with Frost’. This has since been dubbed ‘the most expensive breakfast in 
history’. 
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In more recent times, there have been issues that have had implications for health 

expenditure, both positively and negatively. In some cases, political intervention is often 

associated with expenditure rises; whereas in the fallout of recessions, health budgets are 

more constrained. 

 

The implication of these factors is that there is a delicate balance for budget holders in health 

markets. On the one hand, spending on health services must track the growth in costs. If 

spending reductions, or even spending held in line with inflation, services will, assuming 

constant productivity, be deprived. On the other hand, financial pressure on budgets often 

means budget holders must be cautious not to overspend. Therefore, increasing productivity, 

and its economic counterpart, efficiency, will allow policy makers to minimise over-

spending. Efficiency and productivity will have a central role in enabling governments to 

maintain levels of service and levels of quality under increasingly stringent budgets. We 

therefore move to discuss these concepts in the context of the NHS.  

 

2.4 NHS Efficiency and Productivity 

 

In the previous section, the growth – and likely continuation thereof – of NHS expenditure 

was discussed. Governments ought not therefore, where possible, to reduce or freeze health 

budgets, as services – and/or service quality – are risked when (real terms) budgets are wilted 

by health cost inflation. In response to this, the government has two basic options, namely to 

increase spending to match rising costs, or to improve efficiency and/or productivity so that 

the same level of output (in terms of both volume and quality) can be achieved whilst costs 

rise. We therefore consider these concepts in turn to examine this issue, but also to take a 

general view as to how the NHS is performing. 

 

The global level of NHS efficiency, that is considering the entire NHS as the unit of analysis, 

has been sought across a number of studies using a variety of methods. Three examples of 

these are presented in table 2.2 below. Here, SFA – stochastic frontier analysis and DEA – 

data envelopment analysis; see chapter 3 for definition. Indicator measures are just that, 

including, for example, mortality rates or spending per patient.  
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Study Year Method Conclusion 

        

Tandon et al. 2000 SFA 0.88-0.93; close to the top of rankings 

        

Spinks and Hollingsworth 2009 DEA 0.96-0.99; close to the bottom of rankings 

        

Commonwealth Fund 2014 Indicator Analysis NHS most efficient amongst peers 

        

Table 2.2: Macro NHS Efficiency Studies.  

 

On the basis of this evidence, it would appear that the NHS is highly efficient: across a 

number of studies which use a variety of methods, the estimates of efficiency are close to 1. 

Even in the case of the DEA estimates where the ranking is low, the estimates indicate there 

is almost no inefficiency. However, a number of issues arise when attempting to gauge 

efficiency at this aggregate level.  

 

First, the estimates and rankings are sensitive to estimation. Greene (2004), using the same 

data as Tandon et al. (2000), showed that both efficiency estimates and rankings are sensitive 

to model specification. Spinks and Hollingsworth (2009) outline theoretical issues in DEA 

estimates when methods are applied at the aggregate level which inhibit the validity of 

estimates. More broadly, Greene (2010) suggests that the application of microeconomic tools 

at the macroeconomic level may be inappropriate. Second, the results are somewhat 

conflicting. The DEA and SFA results both suggest that the NHS is highly efficient. 

However, the DEA results suggest the NHS is more efficient than the SFA results, yet the 

NHS ranks amongst the lowest according to DEA whilst it ranks amongst the highest in the 

SFA ranks. This conflict casts doubt over the legitimacy of these estimates. Thirdly, there are 

methodological issues. The indicator analysis uses the expenditure on health as a % of GDP 

as one of its measures of efficiency (Davis et al., 2014, pp. 23). These rather crude metrics 

neglect a number of aspects of expenditure, for example quality. Moreover, there are perverse 

incentives in adopting this approach: in order to rank more highly, expenditure on health 

should simply be reduced, which is undesirable.   
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Overall, whilst studies indicate that the NHS is highly efficient, there are technical issues for 

which the credibility of these estimates is questionable. We therefore look to measures of 

productivity for more reliable evidence as to how the NHS is performing.  

 

Productivity
7
, like efficiency, is critical for expenditure, as highlighted by the Office for 

Budget Responsibility’s health spending projections (OBR, 2014). If productivity rises by 

2.2% p.a. then spending is expected to be just over 8% of total GDP by 2063/64. If 

productivity rises, as historically, by around 1% p.a., then spending is expected to reach more 

the 20% of GDP by 2063/64.   

 

NHS productivity has been analysed directly in a number of ways. One way is at the macro 

level, such that an overall NHS productivity index is derived (Bojke et al., 2015; ONS, 2015). 

Another approach is at the regional level, assessing the inputs and outputs of the NHS by 

region (Bojke et al., 2013). There are also studies aimed at a more disaggregate level, 

hospitals being a recent example (Castelli et al., 2015).  

 

We consider two indices of overall NHS productivity to consider how the general level of 

NHS performance of the NHS has changed in recent years. Comparison of these indices is 

useful in identifying some issues that arise when constructing measures of productivity. 

Figure 2.5 below shows both the ONS’s (ONS, 2015) and University of York’s (Bojke et al., 

2015; referred to as UoY hereafter) indices of NHS productivity.  

 

                                            
7 For the purposes of discussion here, we refer to Total Factor Productivity (TFP); for a definition see chapter 3. This is in keeping with the 
nomenclature adopted in the measures examined here.  
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Figure 2.5: ONS Productivity Indices, ONS and University of York, 1995-2012. NB – the 

University of York use two indices which vary by input definition (“Mixed” uses staff 

numbers and expenditure; “Indirect” uses expenditure only). (TFP = Total Factor 

Productivity). Sources: ONS (2015), Bojke et al. (2015) 

 

As shown above, the overall productivity of the NHS appears to have increased over time. In 

both cases, the level of growth is similar, from each index’s origin at 100, to around 110 by 

2012. However, the time series for both indices varies. The ONS index commences in 1995, 

whereas the UoY indices commence in 2004. This would suggest that the gradient in growth 

in the UoY indices is higher on average. As can be seen, however, this is not the case since 

the gradient of the ONS index is rather flat until around 2003. Indeed, the pattern of both 

indices is rather close in the years 2004-2013, in terms of both direction and magnitude. To 

examine this issue in greater detail, Figure 2.6 below shows the annual change of each index 

in percentage terms.  
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Figure 2.6: Annual NHS Productivity Change, ONS and UoY Productivity Indices, 1995-

2012. Sources: ONS (2015), Bojke et al. (2015) 

 

Figure 2.6 above shows that in some years productivity change was positive, where values 

are to the right of the line (at zero), and in other years where growth was negative and values 

are to the left of the line. That the majority of the values are to the right of the line, and their 

distances are generally further from it, reflects that, on average, according to these indices, 

NHS productivity has grown. The average change across the indices, reflecting average 

productivity growth in percentage terms, is 0.71, 1.30 and 1.38 for the ONS, UoY Mixed and 

UoY Indirect, respectively.  

 

In many years, all three indices’ values are in the same direction. In 2008 they are all positive 

and in 2009 they are all negative. In other years, this was not the case, as in 2012. In most 

cases, the estimate of productivity change is similar between indices, as in 2007. However, in 

other cases, the indices’ values diverge, as in 2005. In these years, and more broadly, a 

question arises as to which is most reliable and thus how each index is constructed. To 

examine this issue, table 2.3 below compares the indices.  
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Index Data Sources 
Index Components 

Years Methods 
Inputs Outputs 

            

ONS DH; RC; WG; SG; 

DHSSPS; HSCIC 

(outpatients only); 

GOC; GDC; SD; 

Imputed; PCA 

Labour; Goods 

and Services; 

Capital 

Hospital and 

Community Health 

Services; Family 

Health Services; GP 

Drugs; Non-NHS 

1995/96-

2012/13 

Chain-linked 

Laspeyres Indices 

            

CHE York DH; RC; HES; 

Qresearch; GPPS; 

PSSRU; QOF; PCAS; 

HSCIC 

Labour; Goods 

and Services; 

Capital 

Hospital Activity; 

Inpatient and 

Community Mental 

Health; Community 

Care; Primary Care; 

Accident & 

Emergency; Other 

2004/05-

2012/13 

Chain-linked 

Laspeyres Indices; 

“mixed” (using 

staff numbers and 

expenditure for 

inputs) and 

"indirect" (using 

expenditure for 

inputs) 

            

Table 2.3: Composition of NHS Productivity Indices
8
. Sources: ONS (2015) and Bojke et al. 

(2015). 

 

Table 2.3 highlights some difference and similarities in the methods that have been applied to 

analyse NHS productivity. In terms of input categories and index methods, the indices are 

similar. However, in terms of data, output categories and years covered, the two methods 

diverge. Overall, whilst there is some divergence in some years, there is, considering the 

differences in construction, noticeable concordance between the two measures in other years 

in terms of both direction and magnitude (figure 2.5; figure 2.6): the two measures broadly 

agree. 

 

In principle, productivity is central to the aims of NHS resource management. However, there 

are two theoretical issues which hinder its usefulness, both of which have been observed 

when looking to measure NHS productivity directly.  

 

First, productivity, being a ratio of inputs to output, is unbounded. This means that the 

measure itself can neither define nor reach its own limit. The implication for using 

productivity measures in the NHS context is that targets can be continually reset with no 

regard to their potential limit, the ‘goalposts are kept shifting’. In this regard, some have 

                                            
8 Glossary: DH – Department of Health, RC – Reference Costs, WG – Welsh Government, SG – Scottish Government, DHSSPS – 
Department of Health, Social Services and Public Safety Northern Ireland, HSCIC – Health and Social Care Information Centre, GOC – 

General Ophthalmic Council, GDC – General Dental Council, SD – Survey Data, PCA – Prescription Cost Analysis, GPPS – GP Patient 

Survey, PSSRU – Personal & Social Services Research Unit; QOF – Quality and Outcomes Framework, PCAS – Prescription Cost Analysis 
Service. 
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questioned whether the current push for productivity gains is sustainable (Appleby, 2012). 

One way to overcome this issue is to use productivity to benchmark, as per, for example, 

health regions in the NHS (Bojke et al., 2013). 

 

The second issue is that the way in which these indices are constructed can often have a 

significant bearing on their magnitude. This is highlighted in the context of ONS’s NHS 

productivity measure (figure 2.5), which shifted from suggesting a decline in NHS 

productivity to an increase following a revision of the index (Black, 2013). One way to 

overcome this issue is to measure various components of productivity in order to avoid 

having to aggregate various metrics. This is the starting point of our analysis. 

 

Productivity comprises a number of aspects. Productivity can be improved through gains in 

efficiency, gains in the scale or scope of operation or through technological change. It is 

possible to measure these aspects of productivity separately in empirical settings (chapter 3 

which follows defines and describes how to measure each of these features). Moreover, it is 

possible to combine them to arrive back at an overall measure of productivity.  

 

For policy, efficiency is particularly useful. Here, the basic question is around how the 

government raises expenditure so as to cope with the natural rise in health costs, whilst 

concurrently not overspending (particularly during times of financial pressure). This would 

be a straightforward exercise if all the factors that cause health costs to rise are both known 

and perfectly observable, which they are not. Thus, defining a ‘natural’ rise in health costs is 

doubtless an impossible task. However, one clear way to satisfy these constraints is to 

maximise efficiency (or, conversely, to minimise inefficiency). Put differently, if budget 

holders know that services are efficient, then they also know that any cost increases are the 

result of natural economic factors rather than overspending.  

 

Overall, efficiency and productivity are crucial tools for policy makers seeking to spend as 

much as necessary but as little as possible on the provision of health care, both in the NHS 

and for health care systems around the world. Therefore, in the following chapter, we proceed 

to define efficiency, and set our methods to measuring efficiency and productivity. We are 

then prepared to approach formally efficiency in health, to which we turn in the following 

three empirical chapters.  
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3. Measuring Efficiency  

 

3.1 Introduction 

In the previous chapter, we argued that, driven by natural rises in a number of factors over 

time, rising expenditure on healthcare was justifiable. To manage this growth, governments 

should seek to maximise efficiency in the delivery of health care services. To achieve this 

goal, efficiency must first be measured. We make use of econometric methods in our 

empirical applications in subsequent chapters, we therefore discuss the econometric approach 

to efficiency analysis here. We set out our justification for doing so by way of comparison to 

rival methods.  

Once we have established the methods, we move to the first research chapter, 4, which 

reviews the literature on measuring performance in NHS hospitals; discusses the regulation of 

efficiency amongst NHS hospitals; and sets out the methodological landscape for measuring 

efficiency in health markets and other regulated sectors. From this, we set our research 

agenda which we go on to fulfil in two empirical chapters, 5 and 6. In all three chapters we 

develop the discussion of empirical efficiency analyses in health markets; we set the basis for 

this discussion in the remainder of this chapter.  

In this chapter, we first introduce the concept of efficiency and discuss its theoretical 

underpinnings. We give an exposition of the economic approach to efficiency analysis based 

on the cost function, which is the framework that is employed in later chapters and also 

commonly in the literature. We then proceed to the econometric development of the 

economic models, making the case for our use of econometric techniques. We describe these 

methods – based on the stochastic frontier (SF) model - in detail, in particular paying 

attention to three aspects of importance in the health context: time-varying inefficiency, 

unobserved heterogeneity and multi-level organisational structures. We further review the 

measurement of efficiency in health care, paying particular attention to econometric 

approaches. Finally, we describe an overall measure of performance, Total Factor 

Productivity, which makes use of the various components of the models described during the 

chapter by bringing them together into a single measure of overall performance.  

This chapter draws from a number of sources. We describe methodological aspects of use in 

this thesis, but leave a great deal for the purpose of brevity. For a fuller exposition of the 

theoretical aspects of the cost and production function, see Chambers (1988). For the link 
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between the production economics and the measurement of efficiency and productivity, see 

Coelli et al. (2005) and Fried et al. (2008). For the application of theory and methods in 

health, see Feldstein (1968), Jacobs et al. (2006), Morris et al. (2007) and Hollingsworth and 

Peacock (2008). Coverage of econometric techniques is provided in Gujarati (2003), Baltagi 

(2008) and Greene (2012c). For the estimation of econometric efficiency analysis, see 

Kumbhakar and Lovell (2000) and Greene (2012b). Finally, for the application of modelling 

techniques using contemporary software packages (e.g. LIMDEP, STATA), see Greene 

(2012b) and Kumbhakar et al. (2015).  

 

3.1.1 Defining Efficiency 

 

Koopmans (1951, pp. 460) defines efficiency as, 

“An attainable set of commodity flows [or attainable point in the commodity space]…is 

called efficient if there is no other attainable set of commodity flows in which all flows are at 

least as large as the corresponding flows in the original set, while at least one is actually 

larger.”  

 

Debreu (1951) and Shephard (1953) provided graphical representations of efficiency through 

radial distances of producers from a frontier, both in an output-expanding direction (Debreu) 

and an input contracting direction (Shephard).  

 

Farrell (1957) made, simultaneously, a number of significant steps. First, he defined cost 

efficiency as distinct from productive efficiency (and in doing so paved the way for the 

development of its analogue, revenue efficiency). Cost efficiency embeds input prices and 

asserts a behavioural assumption, cost minimisation, on the analysis of inputs and outputs in 

the production process. This leads to the second of Farrell’s developments, which is the 

recognition that cost inefficiency is the product of two components, namely technical and 

allocative efficiencies. In this thesis, cost efficiency is measured. We therefore pay attention 

to its definition below.  

 

Technical efficiency is the extent to which more resources are used in the production process 

than are absolutely necessary. Allocative efficiency is the extent to which suboptimal 
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combinations of inputs are used to produce a given level of output. In other words, there are 

usually many ways in which two (or more) inputs can produce a single desired output.  It is 

unlikely that the two inputs are the same price to the producer. Then, the optimal combination 

is that which uses the least of the more expensive input whilst maintaining the production of 

the desired output. Any deviation from this optimum is the allocative inefficiency. These 

concepts are shown below in figure 3.1. 

 

Figure 3.1: Allocative and Technical Efficiency 

 

Figure 3.1 shows a firm’s production of a given output, q. The graph shows a locus of 

production at q=100 representing the minimum combination of inputs, x1 and x2, that can 

produce 100q; the gradient represents the marginal rate of technical substitution between 

inputs. The parallel lines are isocost curves, C1 and C2 that represent uniform costs of 

production along them and increasing cost with distance from the origin: C2 > C1.  The 

gradient reflects the ratio of input prices.  

 

Assuming an output of q=100, the producer seeks to minimise its costs of production. The 

producer is technically efficient at any point along the locus of production, that is, it is not 

possible to produce 100q without using at least each amount of input along the curve. Any 

point above the curve for which production is 100q is technically inefficient, e.g. A3, since it 

uses more inputs than are necessary to produce 100q.  
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Points A1 and A2 are both technically efficiency. However, at A1 the cost of production is 

lower. This is due to the use of a combination of inputs which, for the same output, have a 

lower cost. This is, relative to A2, allocatively efficient.  

 

The optimal point of production is where the locus of production is tangential to the isocost 

curve; that is, it is not possible to produce 100q at lower cost. Here, technical and allocative 

efficiency are jointly achieved. A corollary of this is that allocative efficiency implies 

technical efficiency, but not the reverse. That is, technical efficiency is a necessary condition 

for cost minimisation and allocative efficiency is a sufficient condition for cost minimisation. 

Isocost line C3 is unattainable for 100q.  

 

Overall, cost efficiency is defined at the sum of technical and allocative efficiencies.  

 

Finally, Farrell was the pioneer of empirical application, using linear programming 

techniques in agriculture. This seminal work inspired the development of two broad empirical 

techniques for frontier analysis, data envelopment analysis (DEA) and stochastic frontier 

analysis (SFA). In this thesis, we make use of SFA as our device for the measurement of 

efficiency. We justify our use of this method in the subsections that follow.  

 

We proceed to the justification of frontier techniques on theoretical grounds, before 

presenting the cost function, which forms the basis of our approach. We then move to the 

econometric cost function, then to the stochastic frontier model and finally to total factor 

productivity. 

 

3.2 The Theoretical Case for Frontier Techniques  

 

As noted in previous chapters, we are interesting in NHS efficiency. Specifically we are 

interested in hospitals within the NHS. Despite a litany of theoretical groundwork, empirical 

analyses and sequential methodological advances, there exists, at present, no singly accepted 

framework for assessing hospital efficiency (cf. Hollingsworth, 2008; Hussey et al., 2009; 

Mutter et al., 2011). There is significant potential for frontier-type efficiency measures in 

health markets (Lovell, 2006; Mutter et al., 2011). We argue in favour of frontier techniques. 

The theoretical case for frontier-based analysis is set out as follows.  
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The implication of attempting to measure efficiency at all is that all economic agents are not 

completely efficient. A widely accepted theory of inefficiency is Leibenstein (1966), who 

labels organisational inefficiency X-efficiency. Leibenstein’s contention is twofold: at the 

firm level, that as a result of information dissemination, motivation, difficulty in monitoring 

all staff and agency issues, any sizeable organisation is likely to be – at least to some degree - 

inefficient; and at the individual level, that human behaviour is composed of two parts, one of 

rationality (maximising their utility) and another of non-rational behaviour (suboptimal 

performance), which may lead to an inefficient level of individual or firm performance.  

 

Other authors have proposed theories for both firm and individual behaviour (Table 3.1 – and 

this list is by no means exhaustive) which may lead to some suboptimal level of individual or 

(by extension) firm performance. These theories are thought to share an ontological core – 

inefficiency - and are thus interchangeable with Leibenstein's X-efficiency. Put differently, 

underlying these theories is the basic notion that for one reason or another, be it X-efficiency, 

the Peter Principle, weak identification, bounded rationality, etc., organisations may not be, 

always and everywhere, fully efficient.  

 

Two further important developments in the literature are, firstly, Leibenstein & Maital 

(1992), who posit that frontier techniques are perhaps the best way in which to measure X-

efficiency and secondly, Rice (2003), who suggests X-efficiency is valid in health markets. 

Rosko and Mutter (2011) is a recent example of an X-efficiency based health care frontier 

efficiency analysis. These together suggest that frontier methods are appropriate for 

determining the quantity of interest, namely inefficiency. Further, that frontier methods are 

derived from the foundations of empirical efficiency analysis (Cooper and Lovell, 2011)
 9

, 

and have been applied frequently in health care, give us confidence in this approach 

(Hollingsworth et al., 1999; Hollingsworth, 2003, 2008; Mutter et al., 2011).   

 

Finally, Shleifer’s (1985) theory of yardstick competition operationalises measurement of 

relative efficiency in a franchised monopoly market. This represents another health based use 

of frontier-type analyses and has been applied recently in health efficiency analysis (Olsen 

and Street, 2008).  

                                            
9 See http://www.terry.uga.edu/~knox/courses/READINGLIST8820I.pdf for a fuller literature survey of ‘raw methods’. 
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These together constitute a robust theoretical case for frontier techniques in health care. 

Recently, economists in the NHS setting appear to have discarded frontier methods, but 

maintain the use of cost function-based approaches. Frontiers are elsewhere seen as the 

foremost hospital efficiency analysis tool and are seen to have great potential in health (cf. 

Lovell, 2006; Mutter et al., 2011). Then, the natural question is as to why these methods are 

out of favour with NHS-based economists. Some answers are to be found in the empirical 

setting. Indeed, we seek to answer some of these concerns in our empirical work. We return 

to this issue in due course.  
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Year Author Publication 
Firm/Individu

al 

Technical/Behaviou

ral 
Synopsis 

1935 Hicks Econometrica Individual Behavioural 

Once a monopolist has obtained a monopolistic position, s/he is unlikely to continue 

to maximise 

profits; Monopolists enjoy a quiet life 

1938 Skinner The Behaviour of Organisms Individual Behavioural Operant conditioning 

1955 Simon Quarterly Journal of Economics Individual Behavioural People are 'satisficers' - they do enough; Bounded rationality 

1962 
Alchian & 

Kessel 
Aspects of Labour Economics Firm Technical Maximising profits is a 'cardinal sin' 

1962 
Averch & 

Johnson 
American Economic Review Firm Technical The A-J Effect 

1964 Williamson 
The Economics of Discretionary Behaviour: Managerial Objectives in a Theory 

of a Firm 
Both Behavioural Maximising profit is but one of several managerial objectives 

1965 Alchian Il Politico Firm Technical Defrayed ownership leads to diminished managerial monitoring and thus control 

1966 Leibenstein American Economic Review Firm Behavioural 

X-inefficiency at firm level due to information, agency issues, monitoring, 

decentralisation of 

Command 

1969 Peter & Hull The Peter Principle Individual Technical The Peter Principle – individuals rise to reach their level of incompetence 

1971 Niskanen Bureaucracy and Representative Government Individual Technical Public mangers maximise their budgets regardless of inefficiency 

1971 Evans Canadian Economic Journal Both Technical 

No reason for doctors to be efficient; hospitals do not cost minimise/profit maximise 

in the 

neo-classical sense 

1974 de Alessi Public Choice Individual Technical Public managers have bias towards capital-intensive budgets 

1976 Lindsay Journal of the Political Economy Individual Technical Public managers seek visible inputs 

1976 Stigler American Economic Review Both Technical X-inefficiency is a myth; individuals maximise utility in different ways 

1977 Harris Bell Journal of Economics Firm Technical Hospitals are two organisations each with differing objectives 

1982 
Bailey & 

Freidlaender 
Journal of Economic literature Firm Technical Hospitals are scarcely fully occupied always and everywhere 

1988 Hansmann Journal of Law, Economics and Organisation Firm Technical 

Firms have more complex classification than simply public or private; problems arise 

via 

hierarchy, coordination, incomplete contracts, monitoring, agency costs 

2003 Rice The Economics of Health Reconsidered Firm Technical X-efficiency applicable in health 

2006 Smith & Street The Elgar Companion to Health Economics Firm Technical Principal-agent relationship at all levels 

2012 Oliver Journal of Health Politics, Policy & Law Individual Behavioural Behavioural economics applied to the health sector (NHS) 

Table 3.1: Theories of Inefficiency
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3.3 The Cost Function 

Frontier approaches to efficiency measurement are based on cost and production functions. In 

this section, we outline our tool of choice, the cost function, which is the basic economic 

model from which our econometric counterparts in later chapters are derived. Because we do 

not use the economic counterpart of the cost function, the production function, it is presented 

only tangentially, where necessary, in our discussion. The cost function is preferred to a 

production function as it embodies a richer economic problem (that is both allocative and 

technical inefficiencies; production function-based frontiers permit measurement of technical 

efficiency only) and allows multiple outputs to be included simultaneously (cf. Jacobs et al., 

2006; Eakin, 2008). Attention is given to the conceptual features and properties of the cost 

function, and health-specific considerations. In our econometric work, we test these 

properties to validate empirical models. We pay attention only to aspects of theory relevant to 

this thesis; for comprehensive coverage of production theory, econometrics and health 

applications thereof, see Chambers (1988), Greene (2012c), Hollingsworth and Peacock 

(2008), respectively.  

 

3.3.1 The Economic Cost Function 

In theory, firms are assumed to seek to minimise costs according to output(s) and input (or 

factor) prices. Therefore, a cost function represents the minimum attainable cost for a firm in 

a fixed period of time for a given combination of outputs and input prices. These are assumed 

exogenous to the firm; thus the mix of inputs is sought which minimises costs. Then, the 

problem is typically defined mathematically as one of minimisation, 

𝐶(𝑦, 𝑤) = min
𝑥≥0

(𝑤′𝑥: 𝑥 ∈ 𝑉(𝑦))                                                                                                      (3.1) 

Where C are costs and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′ is a vector of outputs. Similarly, w and x are 

vectors of input prices and inputs, respectively. 𝑤′𝑥is the inner product of the vectors w and 

x
10

. 𝑉(𝑦) is the feasible set of outputs. A feasible set denotes the range of outputs that are 

attainable to the firm; not all outputs are attainable (there may be minimum levels of output, 

indivisible units of output, etc.).  

The cost function is said to embody a set of regularity conditions, meaning that the following 

properties are upheld: 

                                            
10 that is, 𝑤′𝑥 = 𝑤1. 𝑥1 + 𝑤2. 𝑥2 + ⋯ + 𝑤𝑛. 𝑥𝑛 



34 
 

(i) Non-negativity: Costs can never be negative. Mathematically, 

 

𝑐(𝑦, 𝑤) > 0 ∀ 𝑦 > 0, 𝑥 > 0                                                                                         (3.2) 

 

(ii) No fixed costs: Zero output is costless
11

. Mathematically, 

 

𝑐(0, 𝑤) = 0                                                                                                                      (3.3) 

 

(iii) Non-decreasing in w: When input prices are increased, costs do not decrease. 

Mathematically, 

 

𝑖𝑓 𝑤0 ≥ 𝑤1𝑡ℎ𝑒𝑛 𝑐(𝑦, 𝑤0) ≥ 𝑐(𝑦, 𝑤1)                                                                      (3.4) 

 

(iv) Non-decreasing in y: When outputs are increased, costs do not decrease. 

Mathematically, 

 

𝑖𝑓 𝑦0 ≥ 𝑦1𝑡ℎ𝑒𝑛 𝑐(𝑦0, 𝑤) ≥ 𝑐(𝑦1, 𝑤)𝑖𝑓 𝑤0 ≥ 𝑤1𝑡ℎ𝑒𝑛 𝑐(𝑦, 𝑤0) ≥ 𝑐(𝑦, 𝑤1) (3.5) 

 

(v) Positive linear homogeneity: multiplying all input prices by an amount k will 

result in a k-fold increase in costs. Mathematically, 

 

𝑐(𝑦, 𝑘𝑤) = 𝑘𝑐(𝑦, 𝑤) ∀ 𝑘 > 0                                                                                      (3.6) 

 

(vi) Concavity in w: This property is derived directly from the fundamental inequality 

of cost minimisation (Chambers, 1988 pp.53). Mathematically, 

 

𝑐(𝑦, 𝜃𝑤0 + (1 − 𝜃)𝑤1) ≥ 𝜃𝑐(𝑦, 𝑤0) + (1 − 𝜃)𝑐(𝑦, 𝑤1)                                    (3.7) 

 

For a fuller discussion of these properties, and their proofs, the reader is referred to Chambers 

(1988). The fundamental uses for these properties in empirical settings are discussed by 

Coelli et al., 2005 (pp. 24). One important feature is that these properties allow validation of 

                                            
11 In some circumstances, there may be short run costs incurred for zero production, e.g. start-up costs before production begins.  
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econometric cost functions. We make use of the cost function as the basis of assessing 

producer inefficiency. For the purposes of the empirical work in this thesis, it is therefore 

important that the cost function is justifiable on economic grounds.  

 

3.3.2 Economies of Scale and Scope 

Economies of scale properties are often a quantity of interest to both researchers and policy 

makers. Economies of scale properties in production can readily be assessed via the cost 

function. Economies of scale are defined as the proportional change in costs that corresponds 

to a change in the level of output. By taking natural logarithms, proportional changes are 

observed, then scale economies can be assessed by differentiating the cost function with 

respect to output(s), 

𝜀𝑐𝑦 = [∑
𝜕𝑙𝑛𝑐

𝜕𝑙𝑛𝑦𝑛

𝑁

𝑛=1

]

−1

                                                                                                                          (3.8) 

Where there are up to n outputs
12

. If 𝜀𝑐 > 1, economies of scale exist; 𝜀𝑐 = 1 denotes the 

optimal scale of production; 𝜀𝑐 < 1 reflects that the firm is operating under diseconomies of 

scale. We make use of this measure in our empirical work in subsequent chapters.  

When n > 1, a further quantity of interest is economies of scope; that is, the extent to which 

costs vary under joint production. Economies of scope can be measured empirically, 

𝑆 = [∑
𝑐(𝑦𝑛, 𝑤)

𝑐(𝑦, 𝑤)

𝑁

𝑛=1

] − 1                                                                                                                      (3.9) 

Where S is the global (i.e. across all outputs) economies of scope (for product-specific 

measures refer to Coelli et al. 2005, pp.30). This represents the proportional change in costs if 

all outputs are produced separately. If 𝑆 < 0, then production should be separate; where 

𝑆 > 0, produce jointly. In our empirical chapters, n = 1, we are therefore unable to compute a 

measure of economies of scope. We retain its exposition for completeness. 

 

 

 

                                            

12Which reduces to  𝜀𝑐 = [𝜕𝑙𝑛𝑐

𝜕𝑙𝑛𝑦
]

−1

when n=1 
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3.3.3 Additional Features of the Economic Cost Function 

The basic cost function defined above relates firms’ costs of production to levels of output 

and input prices, considered to be exogenous to the firm. That is, the basic cost function takes 

the form, 

𝑐 = 𝑓(𝑦, 𝑤)                                                                                                                                        (3.10) 

Where c are costs, y is (are) output(s) and w are input prices. In reality, there are a number of 

other exogenous characteristics of the production environment in which firms operate. This 

point is of particular relevance in the field of health. It is therefore important to augment the 

basic function with these features.  

The first of these features is time. Incorporating time into the cost function can accommodate 

exogenous shifts in the production environment that firms face over time. Time trends are 

interpreted as technological change (Kumbhakar and Lovell, 2000); indeed, they are typically 

used to compute total factor productivity (TFP) indexes from econometric efficiency models 

(Coelli et al., 2005). In empirical settings, this can be operationalised in a number of ways, 

for example by inserting a time trend or time period dummy variables into the cost function. 

The cost function then becomes, 

𝑐 = 𝑓(𝑦, 𝑤, 𝑡)                                                                                                                                    (3.11) 

Next, there may be exogenous heterogeneity present in the production environment - that has 

bearing on firms’ costs – that can be captured in the cost function. Empirically, capturing this 

observable heterogeneity is conducted using what are termed environmental variables (Coelli 

et al., 2005).  

To the extent that hospitals offer a range of services and specialisations, it is unlikely that two 

are the same. Indeed, hospitals are commonly in various stages of investment cycles, under 

differing ownership regimes, providing varying levels/types of teaching, and to varying 

extents are part of service networks, inter alia (Mutter et al., 2011). Unless these features are 

controlled for, assigning common cost or production functions is questionable. Some features 

can be readily incorporated into efficiency analysis, ownership status for example (Tiemann 

et al., 2012). For other sources of heterogeneity, data are continually refined and developed 

for various aspects of service heterogeneity in health. For instance, the way in which 

healthcare diagnoses and procedures are coded - by ICD or OPCS coding – are subject to 



37 
 

regular updates to reflect developments in practice (WHO, 2004; HSCIC, 2013). These 

should be, where possible, incorporated into the cost function. 

In addition, there is heterogeneity at the patient level. Patient-level heterogeneity is a clear 

issue when characterising cost functions (Iezzoni, 2009). Daidone and Street (2013) used 

patient-level data to control for patient-level heterogeneity in the costs of specialised care in 

the NHS, in part to make judgements on performance.  

However, even in the case that highly granular data are to hand, there are likely many 

differences that remain unobserved, the age of hospital buildings or their physical layout, for 

example. This implies controlling for unobservable heterogeneity is critical. We return to this 

issue in subsection 3.5.4.4. 

The incorporation of environmental variables (observable heterogeneity), denoted z, leads to, 

𝑐 = 𝑓(𝑦, 𝑤, 𝑡, 𝑧)                                                                                                                                (3.12) 

Lastly, it is important to characterise the quality of the services provided in the hospital 

setting (Sloan, 2000). Capturing service quality in health efficiency analyses is a challenging 

task owing to it being unobservable directly and complexity. There are a number of ways to 

proxy its measurement, a number of health studies that have incorporated the measurement of 

quality in their efficiency analyses. We return to discuss this issue in detail in section 4.5. 

Irrespective of the specific measure of quality, the amendment to the general cost function 

yields, 

𝑐 = 𝑓(𝑦, 𝑤, 𝑡, 𝑧, 𝑞)                                                                                                                            (3.13) 

With this, we complete the definition of the economic cost function in hospital markets. It is 

then possible to define and test a cost function empirically as the basis for our analysis of 

efficiency. We return to the specific realisations of these general features both later in this 

chapter, and in our empirical applications.  

Of course, it is necessary to make the link between the definition of the cost function and the 

measurement of efficiency using frontier-based techniques. As a first step in this process, we 

move to the discussion of the econometric cost function, which is the basis of our empirical 

endeavours in later chapters.  

One central issue to highlight in passing is that of unobserved heterogeneity. In the case that 

data for the features of the cost function are lacking, the features are measured imperfectly or 

that the properties of the cost function are breached, there may be inaccuracy in the cost 
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function itself. Thus, when making use of frontier techniques, which are based on distances 

from the cost function, it is of importance to make allowances for any unobserved influences 

on costs. We return to this issue in detail in subsequent sections in this chapter and in 

chapters, 4, 5 and 6.  

 

3.4 The Econometric Cost Function 

In this section, we develop the econometric counterpart to the economic cost function defined 

above. We begin by setting out the cross-sectional (or pooled panel) model. Next, we discuss 

panel models, that is, models based on several cross-sections observed over time. Next, 

functional form is considered. Estimation and testing are discussed throughout. These models 

represent the basis from which our efficiency analysis tools are developed. We therefore 

proceed to develop the efficiency analysis tool – the stochastic frontier model.  

3.4.1 Cross-sectional Econometric Cost Functions 

In cross-sectional settings, firms are observed only once, and observations are assumed to be 

independent. The cross-sectional cost function takes the form, 

𝑐𝑖 = 𝛼0 + 𝛽1𝑦𝑖 + 𝛽2𝑤𝑖 + 𝛽3𝑧𝑖 + 𝛽4𝑞𝑖 + 𝜀𝑖                                                                                (3.14) 

Where ci is the cost of firm i and 𝛼0 is a constant term. 𝑦𝑖 is a kx1 vector of outputs for firm i, 

𝑤𝑖, 𝑧𝑖 and 𝑞𝑖 are kx1 vectors of input prices, environmental variables and quality, 

respectively. The 𝛽 terms are parameters to be estimated. 𝜀𝑖is the error term (also referred to 

as the residual or the disturbance) which captures any variation in costs that are not captured 

by the regressors (Gujarati, 2003). 

The betas are the first derivative of cost with respect to each variable, so, for example in the 

case of output, 
𝜕𝑐

𝜕𝑦
= 𝛽1. This allows the researcher to, ceteris paribus, estimate the 

relationship of cost and each variable.  

The model is assumed to embody Gaussian assumptions (for detail, see Gujarati, 2003 pp.66-

76). Estimation proceeds typically via Ordinary Least Squares (OLS). 

 

3.4.2 Econometric Cost Functions with Panel Data 

We now consider the case where the cross-section of firms is observed repeatedly over 

several time periods. When such data exists, it is termed panel data. One way in which to 
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proceed is to ignore the structure of the data, assuming the observations are independent. This 

is called pooling, and the treatment is as section 3.4.1 above. However, there are many 

advantages to using panel data that are of use in our empirical work. First, there is likely to be 

information about firms held in the structure of the data, which can be exploited. Specifically, 

repeated observations of the firm mean that a firm-specific effect can be observed. Second, 

panel data are more informative: there is more variability in the data, a greater number of 

degrees of freedom and parameter estimates are more efficient from panel data models.  

Importantly, collinearity is less of an issue than in the cross sectional equivalent models. 

Third, the dynamics of data can be studied using panel data. Lastly, issues around 

aggregation across firms may be reduced with panel data. See Baltagi (2008) for details.  

The panel data cost function is, with the reintroduction of time into the cost function, of the 

general form, 

𝑐𝑖𝑡 = 𝛼𝑖 + 𝛽1𝑦𝑖𝑡 + 𝛽2𝑤𝑖𝑡 + 𝛽3𝑧𝑖𝑡 + 𝛽4𝑞𝑖𝑡 + 𝛽5𝑡 + 𝜀𝑖𝑡                                                            (3.15) 

Where 𝑐𝑖𝑡 are the costs of the i
th

 firm in time period t. 𝑦𝑖𝑡 is a kx1 vector of outputs for firm i 

in time period, t; 𝑤𝑖𝑡, 𝑧𝑖𝑡 and 𝑞𝑖𝑡 are kx1 vectors of input prices, environmental variables and 

quality, respectively. The 𝛽terms are parameters to be estimated. 𝜀𝑖𝑡 is the residual. 𝛼𝑖 is the 

firm effect, that is, the capture of all factors that are unobserved, firm-specific and time-

invariant. 

Estimating the model can be done in two ways, namely fixed or random effects. For fixed 

effects, the 𝛼𝑖 are fixed parameters - simply firm dummy variables; estimation proceeds via 

Least Squares Dummy Variable (LSDV) regression with the constant term removed. In this 

setting, any correlation between the regressors and firm effects is captured in the effect. 

Estimates of beta are within (group) estimates and are unbiased.  

For random effects, estimation proceeds via either Generalised Least Squares (GLS) or 

maximum likelihood (ML). In this setting, the firm effects are assumed uncorrelated with the 

regressors; this can be duly tested. Estimates of beta are thus within and between (group) and 

are (potentially) biased, if there is correlation between regressors and firm effects. 

Advantages of the random effects approach is that the beta estimates are, relative to the fixed 

effects, efficient. In addition, the random effects model can incorporate time-invariant 

variables, which is not possible for fixed effects estimation. 
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The choice between fixed and random effects can be made in a number of ways. The 

researcher may have their own preference depending on their own circumstances. For 

example, if there are important binary variables, then a random effects approach is preferable 

because the fixed effects approach cannot accommodate these variables. Statistically, a 

Hausman test (Hausman, 1978) based on the strength of the correlation between the firm 

effects and the regressors, can indicate whether fixed or random effects are preferred. 

However, this should only be an indicator; there should not be an overreliance placed on this 

test (Baltagi, 2008). An alternative approach is the Wu test proposed by Greene (2012b) 

which makes use of group mean variables. In a similar spirit, it is possible to retrieve within 

beta estimates in random effects estimation using group mean variables, which capture the 

correlation between the regressors and the firm effects (cf. Mundlak, 1987; Baltagi, 2006). 

This allows estimation of unbiased and consistent beta parameters. However, this is at the 

expense of degrees of freedom, and so the approach may be of limited use in smaller samples.  

 

3.4.3 Data Transformation and Functional Form 

In preceding sections, the variables are in their raw form. In empirical settings, researchers 

typically use transformations of the data when estimating models. This is for a number of 

economic and technical reasons. We begin with the commonly used Cobb-Douglas functional 

form (Nerlove, 1963). 

A Cobb-Douglas cost function, which is said to be the dual
13

 of the Cobb-Douglas production 

function, is imposed by taking the natural logarithms of the dependent and independent 

variables, such that, in the case of the (cross-sectional) cost function, 

ln (𝑐) = 𝛼 + ∑ 𝛽𝑛ln (𝑥𝑛)

𝑁

𝑛=1

+ 𝜀                                                                                                      (3.16) 

Where 𝑥𝑛 = (𝑦, 𝑤, 𝑧, 𝑞). The Cobb-Douglas functional form has a number of appealing 

features. First, it imposes concavity (and thus is in agreement with property (vi) section 3.3.1) 

of the economic cost function. Second, it implies that (as per its name), the estimates of beta 

can be directly interpreted as cost elasticities. Third, it allays (to some extent) 

heteroscedasticity concerns (Jacobs et al., 2006), which is in keeping with the Gaussian 

assumptions of the econometric model.  

                                            
13 That is, from the cost function, it is possible to work back to the production function via the transformation function, and vice versa (see 
Coelli et al., 2005, chapter 2). 
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Next, another commonly used functional form, is the transcendental logarithmic or translog 

(Christensen and Greene, 1976). A translog is a generalisation of the Cobb-Douglas, with the 

addition of squared and interaction terms for all variables. Thus for n variables, there are 

approximately 𝑛(𝑛 + 1)/2 parameters. The translog takes the form, 

ln (𝑐) = 𝛼 + ∑ 𝛽𝑛ln (𝑥𝑛)

𝑁

𝑛=1

+
1

2
∑ ∑ 𝛽𝑚𝑛ln (𝑥𝑛)ln (𝑥𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

+ 𝜀                                             (3.17) 

Where 𝑥𝑛 = (𝑦, 𝑤, 𝑧, 𝑞) and ln (𝑥𝑛)ln (𝑥𝑚) denotes interactions between variables. A translog 

has some appealing empirical and economic features: its flexible nature means it provides a 

second-order differential approximation to any unknown function 𝑓(. ) (Kumbhakar and 

Hjalmarsson, 1995); it does not impose restrictions on substitution possibilities; and allows 

economies of scale to vary with output levels. This is likely to provide a better empirical 

approximation of the unknown cost function than the Cobb-Douglas. The price is the addition 

of variables, which may affect the precision of estimates.  The translog has the useful feature 

that it is possible to mean-scale the regressors in order to interpret the first order terms as 

elasticities. See Appendix A for derivation of this result. 

For a complete approximation of an unknown function, the Fourier functional form has been 

proposed (Gallant, 1981). The Fourier cost function comprises squared terms and linear 

combinations of the sine and cosine of the variables, thus, 

ln(𝑐) = 𝛼 + ∑ 𝛽𝑛ln (𝑥𝑛)

𝑁

𝑛=1

+
1

2
∑ ∑ 𝛽𝑚𝑛ln (𝑥𝑛)ln (𝑥𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

+ ∑[𝛽𝑚 cos(ln(𝑥𝑛)) + 𝛽𝑝sin (ln(𝑥𝑛))] + 𝜀

𝑁

𝑛=1

                                                (3.18) 

Where 𝑥𝑛 = (𝑦, 𝑤, 𝑧, 𝑞). Calculus shows that a Fourier series can exactly represent any 

underlying function, 𝑓(. ) (Mitchell & Onvural, 1996). To achieve its exact representation, 

the addition of (potentially infinite) higher order sine and cosine terms are required. Thus 

estimation may problematic in small samples (Mitchell & Onvural, 1996). Therefore, a trade-

off may be required between the number of parameters and the desired fit.  

As shown above, the Fourier form nests the translog. The Fourier form – an exact 

representation of 𝑓(. ) - may be preferable to the translog, which is an approximation. Indeed, 

a translog may have difficulty capturing the true underlying cost function when the size of 

firms varies significantly (Feng & Serletis, 2009). The translog, in turn, nests the Cobb-
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Douglas, which again is more restrictive. Therefore, using this sequence of functional forms, 

the researcher is equipped with the full range of flexibility when seeking to characterise the 

underlying cost function. Given that these forms are nested, it is readily possible to test down 

to arrive at a preferred specification. In empirical applications, the Fourier functional form is 

not widely used; the translog is used most often. 

Other common functional forms include the linear, quadratic, normalised quadratic and the 

generalised Leontief (Coelli et al., 2005 pp. 211).  

In passing, we note some alternative methods for transforming variables, including the Box-

Cox (of which a special case is the Cobb-Douglas as being a logarithmic transform) and the 

Inverse Hyperbolic Sine transformation (Burbidge et al., 1988). However, we do not make 

use of these in this thesis, in keeping with the wider literature in making use of the translog.  

Finally, we discuss the imposition of positive linear homogeneity in the cost function 

(assumption (v) section 3.3.1). Consider a cross-sectional, Cobb-Douglas cost function with a 

single output and two input prices variables, 

ln (𝑐𝑖) = 𝛼0 + 𝛽1ln (𝑦𝑖) + 𝛽2ln (𝑤𝑙𝑖) + 𝛽3ln (𝑤𝑘𝑖) + 𝜀𝑖                                                          (3.19) 

Here, 𝑤𝑙𝑖 are labour input prices and  𝑤𝑘𝑖are capital input prices. For linear homogeneity of 

degree one in input prices, we require ∑ 𝛽𝑤 =𝑤 𝛽2 + 𝛽3 = 114. Imposing this is possible in 

two ways. First, the restriction can be imposed for estimation (this is done straightforwardly 

in any modern software package). Alternatively, it is possible to normalise costs and input 

prices variables by one of the input price variables and substitute in terms (see Kumbhakar et 

al., 2015, pp103-104 for derivation). The choice of input price with which to normalise is 

irrelevant. That is, 

ln (
𝑐𝑖

𝑤𝑘𝑖
) = 𝛼0 + 𝛽1ln (𝑦𝑖) + 𝛽2𝑙𝑛 (

 𝑤𝑙𝑖

𝑤𝑘𝑖
) + 𝜀𝑖                                                                          (3.20) 

 

3.4.4 Summary: Cost Functions 

In sections 3.3 and 3.4, we have defined and described the cost function, both in terms of its 

economic features and its econometric representation and estimation. As noted, the cost 

function is the tool from which our efficiency analysis is derived. Further, we make use of 

features of the cost function in our empirical work, underlining the importance of its 

                                            
14 Which is extended to include ∑ 𝛽𝑤𝑘 = 0 ∀ 𝑘𝑤  and ∑ 𝛽𝑤𝑦 = 0 ∀ 𝑦𝑤  in the translog setting. k are other input prices; y are outputs. 
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exposition. Specifically, we look to validate our empirical models by testing correspondence 

with the economic properties of cost functions. Next, we make use of the ability to measure 

both scale properties and technical change in our empirical application. We make use of and 

test a number of functional forms, as detailed here.  

 

3.5 The Stochastic Frontier Model 

We have introduced the concept of efficiency, argued in favour of frontier approaches for 

measuring efficiency and presented the cost function, both economically and 

econometrically. We now move to the final methodological stage, which is to define our 

efficiency measurement method of choice: the stochastic frontier (SF).  

We present the model conceptually and go on to justify its use over mathematical 

programming alternatives. We then present the stochastic frontier in its simplest form, the 

model’s assumptions and estimation. In the next subsection we discuss the retrieval of firm-

specific inefficiency predictions. Next, we consider extensions of the SF for panel data and 

additional features for capturing efficiency change over time and unobserved heterogeneity. 

Finally, we consider SF models for inefficiency measurement at vertically separate 

organisational levels.  

In the section that follows, we round off the methodological discussion with an overview of 

the features defined in this section and introduce the concept of Total Factor Productivity. We 

demonstrate how to measure the change in Total Factor Productivity based on cost frontiers. 

This is important insofar as it allows an overall account of performance in the sample; we go 

on to estimate such a quantity in chapter 5 of this thesis. 

The SF model, in essence, uses the cost function as the efficiency frontier faced by firms in 

the market. The frontier assumes the shape of the cost function. The frontier represents, in the 

case of the cost frontier, the minimum attainable cost for a firm, given its levels of outputs 

and input prices (and other features defined by the cost function, see section 3.3.3). 

Deviations of firms from the frontier are considered to be, in part, due to inefficiency. The 

distance to the frontier represents the magnitude of the inefficiency. In addition, the SF model 

allows for the removal of random statistical noise in the data from inefficiency estimates
15

.  

                                            
15 It is from this feature that the model derives its name; without the treatment of noise, the frontier is deterministic 
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Random noise can encompass a number of features. Typically, researchers suggest the noise 

comprises random shocks to production, including untoward events such as strikes, unusual 

weather, force majeure, etc. In addition, this component can account for measurement error 

and approximation error (from the choice of functional form) (Coelli et al., 2005). The 

defining feature of the SF model is its ability to remove these factors so that they do not 

distort the underlying metric of interest – inefficiency. We discuss how this is achieved in 

following subsections.  

Then, the overall observed deviation from the frontier is considered to comprise both 

inefficiency and random shocks to firms’ production that impinge on their costs. Figure 3.2 

shows the conceptual features of the SF model. 

 

 

Figure 3.2: The Stochastic Cost Frontier Model 

Fig 3.2 shows the basic features of the SF model. The gradient of the frontier is defined 

according to the cost function and is the deterministic element of the model. In this case, 

costs, 𝑐, are defined as a function of outputs, 𝑦 (i.e. 𝑐 = 𝛼0 + 𝑦′𝛽).  

We consider observation A, representing firm A. Here, as shown, firm A has output, 𝑦𝐴, at 

which the conditional costs for firm A – shown via the cost frontier - are 𝑐𝐴 = 𝛼0 + 𝑦𝐴
′ 𝛽. The 

observed value is in fact point A, which is higher than the expected (conditional) costs for 

firm A, given its level of output. Then, the firm-specific observed deviation, 𝜀𝐴, comprises 
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both the firm’s inefficiency, 𝑢𝐴, and random statistical noise, 𝑣𝐴. In this case, both noise and 

inefficiency have a positive influence on costs. 

In some cases, firms are observed as below the deterministic frontier, as in observation B 

where the observed deviation from the frontier, 𝜀𝐵, is negative. This is the result of a noise 

component, 𝑣𝐵, which is negative and greater than the firm’s (positive) inefficiency, 𝑢𝐵. 

Here, firm B has output, 𝑦𝐵, at which the cost frontier is 𝑐𝐵 = 𝛼0 + 𝑦𝐵
′ 𝛽.  

We discuss our preference for the stochastic frontier model next, before considering the 

econometric estimation of the SF model.  

 

3.5.1 Stochastic Frontier Analysis versus Data Envelopment Analysis 

It would be possible to measure efficiency using data envelopment analysis (DEA), an 

approach to efficiency measurement based on mathematical programming
16

. Here, the 

frontier is a perimeter around the extreme points of the data (the minimum in the case of a 

cost frontier); measures of inefficiency are based on distances to this frontier. This is shown 

in figure 3.3 below. 

 

Figure 3.3: Data Envelopment Analysis 

                                            
16 See Fried et al. (2008) for methods and applications of DEA 
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We make use of SF models exclusively - we do not make use of DEA in this thesis. The SF 

approach is preferred for a number of reasons, which can be broadly categorised as 

methodological, cost function-based advantages and the incorporation of uncertainty. 

Methodological issues include, firstly, that the residual is composed in DEA measures – there 

is no distillation of noise from the measure of inefficiency (fig. 3.3). This means that the 

inefficiency measure is necessarily biased by noise, unless noise is assumed away. This may 

distort the expected duality between costs and production functions (Greene, 2008). 

Importantly, total inefficiency is overestimated, which is undesirable in the policy context. Of 

course, in the SF world, an assumption must be made around the distribution of inefficiency 

to allow estimation, which some have argued is arbitrary (Newhouse, 1994). However, there 

is evidence to suggest that efficiency predictions and corresponding ranks are correlated 

between distributional assumptions, both in the general setting (Coelli et al., 2005) and 

specifically in the NHS context (Jacobs et al., 2006, pp. 68). Moreover, in some cases, 

distributional assumptions are preferable to distribution-free approaches based on panel data 

(Kim and Schmidt, 2000).   

Next, that the DEA frontier is constructed on the extreme data points in the sample implies 

that inefficiency estimates are susceptible to extreme outliers, meaning that, again, overall 

inefficiency is overestimated. Further, the method is unable to account for measurement error 

and approximation error. This may introduce bias, both positively and negatively, which is 

unwanted.  

DEA measures do not have the advantage of being able to analyse features of the cost 

function which is possible with SFs. Specifically, cost efficiency cannot be delineated into its 

technical efficiency and allocatively efficiency components, which is possible in the SF 

framework. Next, although it is possible to observe scale changes, it is not possible to 

examine scale properties in the depth that can be achieved in the SF model. Using a translog 

functional form, for example, allows the researcher insights into the economies of scale 

properties across the output range. This is not possible in the DEA framework. Further, the 

incorporation of other variables into the cost frontier allows for the measurement of the effect 

of certain features on costs, which is likely of high value to policy makers. For example, 

estimating the marginal cost of quality, or, as we do in our empirical work, estimating the 

effect on costs of providing teaching is key information sought by policy makers. A further 

advantage is that it is possible to check that the coefficients correspond to the economic 
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reality, or not as the case may be. This is helpful when looking to validate the model. This is 

not possible with DEA. 

Lastly, the estimated cost function can be used for predictions, which can be useful in a 

number of ways. For example, in our empirical work in chapter 5, we are able to make 

predictions based on the estimated parameters of the cost function to simulate the effect on 

costs of organisational units merging. This was useful for policy makers who observed a 

trend of mergers, but lacked data, and thus evidence, on the effect on costs. Again, this would 

not be possible using DEA. 

Lastly, the DEA framework does not allow the incorporation of uncertainty into the analysis 

in the same way that the SF framework does. Firstly, uncertainty can be reflected in 

confidence intervals around parameter estimates of cost function variables; and prediction 

intervals around point estimates of inefficiency (intervals are not confidence intervals for 

inefficiency predictions - this is an important distinction, see Wheat et al., 2014). There are 

bootstrapping techniques available for confidence intervals around DEA estimates to reflect 

the sampling uncertainty (Simar and Wilson, 2000). There are further methods to use a DEA 

approach and separate efficiency and noise, the Stochastic Non-smoothed Envelopment of 

Data (STONED) method (Kuosmanen and Kortelainen, 2012). However, these approaches do 

not allow the wealth of advantages relative to an econometric approach.  

In addition, that SF modelling is based on econometrics means that there is a wealth of 

testing available for sensitivity in a number of forms (model specification, functional form, 

etc.), which there is not for DEA being based on mathematical programming.   

Therefore, for these three general categories of reasons, we adopt an econometric approach in 

favour of a mathematical programming approach. 

 

3.5.2 Cross-Sectional Stochastic Frontiers 

We begin the discussion with the simplest form of econometric efficiency analysis: Corrected 

Ordinary Least Squares (COLS). This model makes use is the econometric cost function, 

equation (3.14), and subtracts the minimum error from each observed residual. This, in effect, 

shifts the cost function to the minimum observation in the sample. The measure of 

inefficiency is then the distance of each observation from the frontier. Thus, 

�̂�𝑖 = 𝜀𝑖 − min
𝑖

{𝜀𝑖}                                                                                                                            (3.21) 
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This model is not strictly a stochastic frontier, given that there is no decomposition of noise 

and inefficiency; COLS is, in essence, the econometric equivalent of DEA. The practical 

appeal of COLS is its simplicity – it can be run via OLS, and does not impose the 

distributional assumptions of the stochastic frontier model. Accordingly, it is typically used in 

settings where the stochastic frontier model is unidentified
17

. Technically, COLS allows the 

possibility of fully efficient firms, which is not the case in the stochastic frontier model, to 

which we now turn.  

 

The stochastic frontier was proposed simultaneously by Aigner et al. (1977) and Meeusen 

and van den Broeck (1977). It takes the form (a Cobb-Douglas functional form is assumed), 

ln (𝑐𝑖) = 𝛼0 + ln (𝑥𝑖)
′𝛽 + 𝜀𝑖                                                                                                            (3.22) 

𝜀𝑖 = 𝑢𝑖 + 𝑣𝑖                                                                                                                                        (3.23) 

Where 𝑐𝑖are the costs of firm i, 𝛼0 is a constant term, 𝑥 is a vector of cost function variables, 

𝑥 = (𝑦, 𝑤, 𝑧, 𝑞), and 𝛽 are corresponding parameters to be estimated. The observed error, 𝜀𝑖, 

comprises both random noise, 𝑣𝑖, and the metric of interest, the firm-specific inefficiency, 𝑢𝑖 

as per eqn. (3.22).  

The model is based on a number of assumptions. First, the two components of the error term 

are assumed orthogonal to each other and to the regressors. In addition, there a number of 

assumptions made about the noise and inefficiency components. Noise is assumed to have 

zero mean, to be homoscedastic and uncorrelated,  

𝐸(𝑣𝑖) = 0                                                                                                                                           (3.24) 

𝐸(𝑣𝑖
2) = 𝜎𝑣

2                                                                                                                                        (3.25) 

𝐸(𝑣𝑖𝑣𝑗) = 0 ∀ 𝑖 ≠ 𝑗                                                                                                                         (3.26) 

The inefficiency component is assumed homoscedastic and uncorrelated, 

𝐸(𝑢𝑖
2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                                                                           (3.27) 

𝐸(𝑢𝑖𝑢𝑗) = 0 ∀ 𝑖 ≠ 𝑗                                                                                                                        (3.28) 

The inefficiency component is not assumed to have zero mean since some inefficiency is 

assumed.  

                                            
17 This is often the case in regulatory settings where the sample size is small; see chapter 4.5 
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These assumptions are problematic for estimation by OLS. Parameters can be estimated 

consistently, however, the inefficiency causes upward bias to the intercept, meaning that via 

OLS it is not possible to estimate cost efficiency. However, by making suitable distributional 

assumptions regarding both components of the error term, it is possible to estimate the model 

via maximum likelihood. Therefore, the following assumptions are made, 

𝑣𝑖~𝑖𝑖𝑑𝑁(0, 𝜎𝑣
2)                                                                                                                               (3.29) 

𝑢𝑖~𝑖𝑖𝑑𝑁+(0, 𝜎𝑢
2)                                                                                                                            (3.30) 

With these at hand, Aigner et al. (1977) proposed the log likelihood function for a production 

frontier, which can readily be adapted for a cost frontier, 

 𝑙𝑛𝐿(𝑐|𝛽, 𝜎, 𝜆) = −
𝐼

2
ln (

𝜋𝜎2

2
) + ∑ 𝑙𝑛Φ (−

𝜀𝑖𝜆

𝜎
) −

1

2𝜎2
∑ 𝜀𝑖

2𝐼
𝑖=1

𝐼
𝑖=1                                          (3.31) 

Where c are costs, I is the number of observations, 𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2 and 𝜆2 = 𝜎𝑢
2 𝜎𝑣

2⁄ . When 

𝜆2 = 0, the variance is due solely to random noise – there is no inefficiency
18

. The 

disturbance is defined as 𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖 = 𝑐 − 𝛼0 − 𝑥′𝛽. Finally, Φ(𝑥) is the cumulative 

distribution function (CDF) of the standard normal variable evaluated at x.  

Estimation of the parameters cannot be achieved analytically since the first derivatives are 

highly non-linear, meaning that they have no analytical solution. Instead, an iterative 

maximisation procedure can be conducted, by using some starting values (say those derived 

from OLS) and altering their magnitude to maximise the likelihood function. See Greene 

(2012c) for maximum likelihood estimation techniques. 

It is possible to use alternative assumptions of the distribution of inefficiency. Alternative 

distributions include exponential and gamma (Kumbhakar and Lovell, 2000). Using different 

distributional assumptions will have bearing on the predictions of inefficiency. Given that the 

choice is somewhat arbitrary, this poses issues for the validity of estimates. Helpfully, 

estimates and their rankings are often robust to the assumptions imposed (Coelli et al., 2005; 

Jacobs et al., 2006). However, independent of the choice of distribution, all firms are, by 

construction, to some degree inefficient
19

.  

Truncation can be introduced to allow for the centre of probability mass to leave zero. This 

parameter can be tested. The Rayleigh distribution allows for similar flexibility without the 

                                            
18 A test on this parameter has been suggested as a test for the presence of inefficiency, however, researchers typically use a likelihood ratio 
based test of the SF model versus ordinary least squares (Coelli et al., 2005 pp. 258). 
19 This is due to the fact that the probability of drawing any value from the distribution exactly is zero, so although zero is a possible value, 

the probability that zero is drawn from the distribution is exactly zero (Rho and Schmidt, 2015). Recent models have been developed to 
overcome this issue (Kumbhakar et al., 2013; Rho and Schmidt, 2015) 
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need to estimate an additional parameter (Hajargasht, 2014).  It is further possible to 

introduce variables into the mean and variance of the inefficiency. This allows insights into 

factors which affect inefficiency. However, there is little consensus as to whether variables 

should be included in the cost function or in the mean of the inefficiency (Kumbhakar and 

Lovell, 2000). It is possible to introduce the variables in both parts of the model, however, 

this may induce endogeneity, which is known to distort inefficiency estimates in SF models 

(Mutter et al., 2013).  

 

3.5.3 The Retrieval of Firm-Specific Inefficiency Predictions 

The estimate of cost efficiency from the SF model above is,   

𝐶�̂�𝑖 = exp (−�̂�𝑖)                                                                                                                               (3.32) 

Where 𝐶�̂�𝑖 is the estimate of firm i’s cost efficiency and �̂�𝑖 is the component of inefficiency 

in the SF model. This is not observed directly. The SF model yields residuals, 𝜀�̂�, which are a 

composition of both statistical noise and inefficiency. Having estimated the model, therefore, 

an additional stage is required to compute the firm-specific inefficiency predictions.  

By using the assumptions about the distributions of both noise and inefficiency, it is possible 

to derive the joint density of the composed error term (see Kumbhakar et al., 2015 pp. 319-

322 for the derivation). From this, the conditional mean (or mode) can be taken as the point 

estimate of inefficiency, 𝑢𝑖. This work was pioneered by Jondrow et al. (1982). For the case 

of the half-normal distribution, the prediction of firm-specific inefficiency is
20

, 

𝐸[𝑢𝑖|𝜀𝑖] =
𝜎𝜆

(1 + 𝜆2)
[

𝜙(𝜀𝑖𝜆 𝜎⁄ )

Φ(− 𝜀𝑖𝜆 𝜎⁄ )
−

𝜀𝑖𝜆

𝜎
]                                                                                  (3.33) 

Where 𝜎, 𝜆 𝑎𝑛𝑑 𝜀𝑖 are as before. Equally, Φ(𝑥) is the cumulative distribution function (CDF) 

of the standard normal variable evaluated at x; 𝜙(𝑥) is the corresponding probability density 

function (PDF). 𝑢𝑖 is the inefficiency component of the model which can be used to compute 

the prediction of firm cost efficiency, as above.  

Once firm-specific predictions are obtained, the level of efficiency across the sample can be 

computed by extension, 

𝐶𝐸̅̅ ̅̅ =  
∑ 𝐶�̂�𝑖

𝐼
𝑖=1

𝐼
                                                                                                                                 (3.34) 

                                            
20 Alternatively, the minimum squared error predictor can be used to derive point estimates (Kumbhakar and Lovell, 200 pp. 104) 
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Where 𝐶𝐸̅̅ ̅̅  is the market (sample) average cost efficiency and 𝐶�̂�𝑖 are firm-specific cost 

efficiencies.  

3.5.4 Stochastic Frontier Models for Panel Data 

The stochastic frontier model can be extended when panel data are available. Panel data sets 

are often much larger than their cross-sectional counterparts, allowing greater precision of the 

estimated model parameters. In addition, the richer information that can be derived from 

panel data models can be exploited in measuring firm inefficiency. Panel data models also 

allow characterisation of three conceptual features, namely temporal efficiency change, 

unobserved heterogeneity and multi-level organisational structures. We focus on these three 

aspects of SF models because they feature in our empirical work. They do so because these 

issues are of particular relevance in health markets and specifically in the NHS. We discuss 

these in turn. First, we present the general form of the panel data stochastic frontier, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽 + 𝑢𝑖 + 𝑣𝑖𝑡                                                                                             (3.35) 

Where 𝑐𝑖𝑡are the costs of firm i in time period t and 𝑥𝑖𝑡 are cost function variables. 𝛼0 is the 

intercept and 𝛽 is a vector of parameters to be estimated. 𝑢𝑖 is the inefficiency of firm i which 

is time-invariant; and is 𝑢𝑖𝑡 when inefficiency varies over time. 𝑣𝑖𝑡 is random statistical noise.   

Estimation proceeds in a variety of ways, depending on the model’s features and 

specification. Greene (2012b) provides technical details for the estimation of all models 

detailed below.  

 

3.5.4.1 Stochastic Frontier Models for Panel Data: Time-Invariant Inefficiency 

Perhaps the simplest of the panel data stochastic frontiers are those that consider the firm-

specific effect in panel data models as the firm’s inefficiency (that is, the 𝛼𝑖s in section 

3.4.2). These models include a fixed effects model based on LSDV (Schmidt and Sickles, 

1984) and random effects model based on GLS (Kumbhakar and Lovell, 2000) formulations. 

The following transformation is made on the firm effect to derive the measure of inefficiency, 

�̂�𝑖 = 𝛼𝑖 − min
𝑖

{𝛼𝑖}                                                                                                                           (3.36) 

The advantage of the fixed effects formulation is that it does not impose the distributional 

assumptions of SFs more widely. The drawback of this approach is that the effect captures all 

firm-specific, time-invariant effects on costs which, although likely include inefficiency, may 
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also include a number of other features – anything that is not captured by the regressors. 

Further, this method neglects any variation in inefficiency over time.  

In the random effects setting, the firm effects are assumed uncorrelated with the regressors. 

The central advantages of this approach are that estimation of the firm effects is more 

efficient than its fixed effects equivalent; and it allows for time-invariant regressors, which 

the fixed effects approach does not. Of course, the estimated of beta may be biased if the 

assumption of no correlation with the regressors is breached. As with its fixed effects 

counterpart, this method does not allow for temporal inefficiency change. 

Finally, in the case where distributional assumptions are tenable and when there is little 

concern for correlation between inefficiency and noise, then a time-invariant SF model 

(estimated ML) is available (Pitt and Lee, 1981). The advantage is that in general, this 

method is more efficient than its alternatives, since it exploits the distributional information. 

The drawback is that assumptions need to be imposed for estimation. The equivalent to the 

Jondrow et al. (1982) prediction of firm inefficiency is, 

𝐸[𝑢𝑖|𝜀𝑖,𝑡=1, 𝜀𝑖,𝑡=2, … , 𝜀𝑖,𝑡=𝑛]

= (1 − 𝛾𝑖). (−𝜀�̅�)

+ 𝜎𝑢
2𝛾𝑖 [𝜙

(1 − 𝛾𝑖). (−𝜀�̅�)

𝜎𝑢
2𝛾𝑖

Φ
(1 − 𝛾𝑖). (−𝜀�̅�)

𝜎𝑢
2𝛾𝑖

⁄ ]                                                                         (3.37) 

Where 𝜎, 𝜆, 𝜀𝑖𝑡, 𝜙 𝑎𝑛𝑑 Φ are as per section 3.5.3. In addition,  𝛾𝑖 =
1

1+𝜆2𝑇𝑖
 and 𝜀�̅� =

1

𝑇
∑ 𝜀𝑖𝑡

𝑇
𝑡=1  

(Greene, 2012b). 

Empirical evidence suggests that, in general these three approaches produce similar results in 

terms of rank correlation (Kumbhakar and Lovell, 200 pp. 106-107 for discussion of studies 

which make comparisons). However, there is Monte Carlo evidence to suggest that, in cases 

where the technology that firms face is complex, the performance of these models 

deteriorates (Gong and Sickles, 1989). This point is particularly relevant in health markets 

which are characterised by vast heterogeneity. Therefore, we pay attention to this issue in our 

empirical work. 

This general class of models is appropriate for short panels (that is, panels where the number 

of time periods is limited). As the length of the panel increases, the assumption of constant 

inefficiency becomes less plausible. Schmidt and Sickles (1984) suggest these models are 

appropriate for N>T. We turn to models that allow this assumption to be relaxed. 
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3.5.4.2 Stochastic Frontier Models for Panel Data: Time-Varying Inefficiency 

The general panel data stochastic frontier with time varying inefficiency is, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                                          (3.38) 

There are broadly two approaches to modelling the temporal evolution of firm inefficiency. 

These are, firstly, those that estimate a time-invariant component and apply to it a parameter 

estimated from changes over time. These models specify a deterministic relationship between 

time and inefficiency, indeed they have been termed time-dependent rather than time-varying 

(Greene, 2012b). These include the models of Kumbhakar (1990), Cornwell et al. (1990) and 

Battese and Coelli (1992) (amongst others, see Kumbhakar and Lovell, 2000 pp. 108-115 for 

details). The Battese and Coelli (1992) model specifies, 

𝑢𝑖𝑡 = 𝑢𝑖 . exp {−𝜂(𝑡 − 𝑇)}                                                                                                               (3.39) 

Where 𝑢𝑖 is the time-invariant, firm-specific inefficiency
21

, t is the time period, T is the final 

year in the data and 𝜂 is a parameter estimated from the data. Here, the sign on 𝜂 determines 

whether firms are becoming more or less inefficient over time. Whether firms’ inefficiency 

changes at all over time can be tested readily via a t-test on 𝜂22. Where 𝜂 = 0, the model 

reduces to that of Pitt and Lee (1981). This model is referred to as BC92 hereafter. 

This model has the advantage of being estimable by maximum likelihood, which is generally 

more efficiency that LSDV or GLS (as per alternative models such as Cornwell et al. (1990)) 

and has relatively few parameters relative to its alternatives. 

In some cases, this formulation results in ‘drop-off’, which is when firms’ inefficiency in 

some cases curiously drops off the frontier in their final year. The model can be amended to 

correct for this by using an estimated parameter, rather than T (Wheat and Smith, 2012). 

Thus, 

𝑢𝑖𝑡 = 𝑢𝑖 . exp {−𝜂(𝑡 − 𝜉𝑖)}                                                                                                              (3.34) 

                                            
21 As per the Pitt and Lee (1981) formulation from section 3.5.4.1 
22 𝐻0: 𝜂 = 0 
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The model can be extended further in two important ways. First, as proposed by Battese and 

Coelli (1992), to allow (and test) for efficiency change to be non-monotonic, it is possible to 

specify a squared term as
23

, 

𝑢𝑖𝑡 = 𝑢𝑖 . exp {−𝜂1(𝑡 − 𝑇) + (−)𝜂2(𝑡 − 𝑇)2}                                                                            (3.41) 

Second, to address that the BC92 model imposes the rather restrictive assumptions that all 

firms’ inefficiencies move in the same direction over time (including, by implication that 

rankings are constant), a generalisation can be made. The BC92 model has been extended by 

introducing individual time trends for each firm (Cuesta, 2000). The model with this feature 

has proved useful in the regulatory setting (Smith, 2012). The model takes the form, 

𝑢𝑖𝑡 = 𝑢𝑖 . exp {−𝜂𝑖(𝑡 − 𝑇)}                                                                                                             (3.42) 

Where now there are individual time paths for firm-specific inefficiency, 𝜂𝑖. Of course, this is 

at the cost of having up to i-1 additional parameters to estimate. Each can, accordingly, be 

tested. We utilise this model in our empirical work in subsequent chapters. 

The second approach to capturing changes in inefficiency over time is one in which 

realisations of inefficiency are independent over time. Models in this category include the 

simple pooled panel model, the Battese and Coelli (1995) model for the truncated normal 

panel data SF model and the ‘true’ models proposed by Greene (2005). We present the ‘true’ 

models in subsequent subsections, and so do not present them here for brevity.  

It is thought that the independence of inefficiency over time allows a more realistic reflection 

of firms’ performance than an invariant component with a systematic time trend applied to it. 

This essentially implies that inefficiency in previous time periods has no bearing on 

inefficiency in current periods, which is questionable. Indeed, in regulatory settings, a model 

in which there is no link between firms’ efficiency year-on-year is unattractive. On the other 

hand, whilst a smooth pattern of temporal evolution may be realistic, that same evolution of 

inefficiency over time may neglect any volatility in inefficiency change, which again may be 

questionable. Ultimately, the researcher makes choices as to their preferred assumptions 

about how inefficiency evolves over time. In our empirical work, our solution is to test a 

number of specifications with differing assumptions.  

                                            
23 The non-monotonicity derives from the squared term which allows a point of inflection in the time path of inefficiency. It would be 

possible to add higher order terms to allow more than a single point of inflection. This may be of use when T is large and the direction of 
inefficiency changes multiple times. Higher order terms can readily be tested.   
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Finally, we note that, in contrast to time-invariant inefficiency models that assume away 

time-varying inefficiency, this class of model cannot isolate any firm-specific time-invariant 

inefficiency. We therefore move to models that are able to capture both forms of inefficiency. 

 

3.5.4.3 Stochastic Frontier Models for Panel Data: Short and Long Run Inefficiency 

In both of the preceding approaches, make somewhat restrictive assumptions about the nature 

of inefficiency: either that it is entirely time-invariant or that it is entirely time-varying. Of 

course, in reality, there may be a component of both in the firm’s total inefficiency. Models 

have been developed that allow these assumptions to be relaxed. They do so by allowing 

estimation of both time-invariant and time-varying inefficiency. The time-invariant 

component of inefficiency is referred to as ‘long run inefficiency’ and the time-varying 

inefficiency is known as ‘short run inefficiency’. These models are of the general form, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽 + 𝛾𝑖 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                               (3.43) 

Where 𝛾𝑖represents the firm-specific, time-invariant inefficiency and 𝑢𝑖𝑡 is the firm-specific, 

time-varying inefficiency. This model can be estimated in a number of ways. Kumbhakar and 

Hjalmarsson (1995) take a multi-stage approach.  

Despite the conceptual appeal of being able to capture short and long run inefficiency, these 

models, like the Schmidt and Sickles (1984), rely on the regressors to capture all 

heterogeneity. In the case of hospital production, this is highly implausible. Therefore, we 

extend our review of SF models to consider models that seek to capture unobserved 

heterogeneity.  

 

3.5.4.4 Stochastic Frontier Models for Panel Data: Unobserved Heterogeneity 

The conceptual appeal of making an allowance for unobservable heterogeneity is to allay 

concerns about differences in production environments between providers, across a number 

of dimensions, which are not captured by a set of explanatory regressors. Significant 

developments in the recent literature have been made regarding methods to control for 

unobservable heterogeneity.  

In the frontier literature, much attention has been given to this topic, and a number of 

methods have been developed to accommodate unobservable heterogeneity. Approaches 

based on restrictions to the cost or production function have been applied in models across a 
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number of sectors, including health. Simply adding time-invariant dummy variables to 

account for unobserved characteristics is perhaps the simplest approach – in Chapter 5 

(Buckell et al. (2015)) regional dummies are used as one (of a range) control for unobserved 

heterogeneity. In this case, the SF model (3.35) is extended to, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽 + 𝜓𝑧𝑖 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                               (3.44) 

Where 𝑧𝑖 are time-invariant variables capturing unobserved heterogeneity. This approach 

relies on the there being such variables available and that these variables are appropriate, that 

is, there is economic reasoning for the unobserved heterogeneity being captured in this way. 

A test on 𝜓 can be readily conducted. 

Another approach to capturing unobserved heterogeneity is based on Mundlak (1978) and 

decomposes firm-specific effects using group mean variables. The central assumption in this 

framework is that unobserved heterogeneity is correlated with regressors, which is 

disentangled by the use of the group mean variables. In random effects models, these 

variables are inserted directly into the equation. This method has been applied in health 

markets to nursing homes (Farsi et al., 2005a). The SF model (3.35), if estimated by GLS is 

extended as follows, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽𝑎 + ln(�̅�𝑖)
′ 𝛽𝑏 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                  (3.45) 

Where �̅�𝑖 are group mean variables. This approach can be readily tested via a joint test on the 

group mean parameters, 𝛽𝑏.  

Next, there are a set of models that can account for unobservable heterogeneity making use of 

firm-specific effects. These include, firstly, the “true” models (Greene, 2005). These models 

make the assumption that the firm effect captures the unobserved heterogeneity; inefficiency 

is then captured by applying the standard SF decomposition to the residual. That is, 

unobserved heterogeneity is assumed time-invariant, and inefficiency is assumed to vary over 

time. Thus, if all inefficiency is time-varying (that is, the firm effect is considered to 

comprise unobserved factors only), then these models are able to correctly identify firm 

inefficiency. In cases where there is time-invariant inefficiency, total inefficiency is 

underestimated. These models assume the general form, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽 + 𝜔𝑖 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                                 (3.46) 
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Where the firm effect, 𝜔𝑖 is considered to be unobserved heterogeneity. These models can be 

based on either fixed effects or random effects. The model in this form has a clear parallel 

with model (3.42). Indeed, the difference here is in the interpretation of the firm effect. 

For fixed effects, the ‘true fixed effects’ (TFE) model is tantamount to the classic panel data 

SF with firm dummies (Greene, 2012b). The model is estimated via maximum likelihood, 

and as such is at risk from the incidental parameters problem, especially when the T, the 

number of periods, is small (Greene, 2012c). Two approaches to deal with this issue have 

been proposed. Firstly, by model transformation, using either within-transformation or first 

differences (Wang and Ho, 2010). Second, an approach based on deviations from the mean 

(Chen et al., 2014). 

For random effects, the ‘true random effects’ (TRE), estimation is slightly more involved 

than its fixed effect namesake. The procedure makes use of maximum simulated likelihood 

(Greene, 2005) and results in the segregation of three model components: time-invariant 

unobserved heterogeneity, time-varying inefficiency and random statistical noise. In addition, 

this model, being based on random effects, has the advantage that it can be augmented with 

Mundlak approach described above, as per (Farsi et al., 2005a; Filippini and Greene, 2015). 

Next are a set of models that are an extension of the ‘true’ models to allow for the separation 

of firm-specific unobserved heterogeneity and time-invariant inefficiency. These have been 

referred to as ‘four component’ or ‘generalised true random effects’ models. These models 

take the general form, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽 + 𝜔𝑖 + 𝛾𝑖 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                        (3.47) 

Where the model components are as per previous models, with the additional component, 𝛾𝑖, 

which is the firm-specific, time-invariant inefficiency. 𝜔𝑖 captures unobserved heterogeneity.  

Here, overall cost efficiency is computed as the product of the short and long run 

inefficiencies, such that, 

𝑂𝐶𝐸 = 𝐿𝑅𝐶𝐸 ∗ 𝑆𝑅𝐶𝐸 = exp(−𝛾𝑖) . exp (−𝑢𝑖𝑡)                                                                            (3.48) 

Where OCE is overall cost efficiency, LRCE is long run cost efficiency and SRCE is short 

run cost efficiency. The model can be estimated in a variety of ways, including the multi-

stage residual decomposition approach of Kumbhakar et al. (2014), a single-stage approach 

based on Bayesian estimation (Tsionas and Kumbhakar, 2014) and a single-stage approach 

based on maximum likelihood (Columbi et al., 2014; Filippini and Greene, 2015). As with 
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the true random effects models, this model, being based on random effects, has the advantage 

that it can be augmented with the Mundlak approach described above.  

It is useful to point out that unobserved heterogeneity may arise in a number of forms. Using 

the Kumbhakar et al. (2014) approach is able to disentangle unobserved heterogeneity that is 

uncorrelated with the regressors. Using the Mundlak approach, it is possible to remove 

unobserved heterogeneity that is correlated with the regressors. This means that it is useful to 

combine the two approaches. Indeed, each can be tested separately. This is the approach we 

have adopted in chapter 6, which corresponds to Smith et al. (2015).  

Finally, there are approaches to capturing unobserved heterogeneity through differences in 

the parameters of the cost function variables. These include, firstly, parameter heterogeneity 

by group, or class, known as the latent class stochastic frontier (LCSF) (Orea and 

Kumbhakar, 2004; Besstremyannaya, 2011). Here, it is assumed that the firms are members 

of a finite number of groups, or classes, unobserved to the researcher. Estimation allows these 

groups to be identified, and individual firms assigned to classes. The LCSF is of the general 

form, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽𝑗 + 𝑢𝑖𝑡|𝑗 + 𝑣𝑖𝑡|𝑗                                                                                     (3.49) 

In this setting, subscripts i and t denote firm and time as before. Subscript j denotes the class. 

Here, j classes have their own group-specific parameter estimates, 𝛽𝑗, and corresponding 

inefficiency and noise terms, 𝑢𝑖𝑡|𝑗 and 𝑣𝑖𝑡|𝑗, respectively. The number of classes is typically 

determined by the fit of the data, but it is possible to specify a predetermined number of 

classes (Greene, 2012b). Assignment of firms to classes is conducted probabilistically post-

estimation. Inefficiency is relative to the group’s own frontier. Estimation proceeds via 

maximum likelihood.  

A related but distinct approach is the random parameters stochastic frontier model (RPSF) 

(Greene, 2005). In this model, heterogeneity is captured by allowing a firm-specific 

parameter to be estimated for each firm. This is, in essence, a fully generalised case of the 

latent class SF (that is, in the case that the number of classes is equal to the number of firms). 

The general form of the RPSF, 

ln(𝑐𝑖𝑡) = 𝛼0 + ln(𝑥𝑖𝑡)′ 𝛽𝑖 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                                         (3.50) 

Where 𝛽𝑖 reflects the firm-specific estimates of the parameters. Estimation proceeds via 

maximum simulated likelihood.  
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Although these models can incorporate unobserved heterogeneity, they have some 

drawbacks. Firstly, they require large data since there are a large number of parameters to be 

estimated. Indeed, when T is small, especially in the case of the RPSF, estimation may be 

problematic. Second, as with some comparator models, these models are unable to identify 

time-invariant inefficiency. Thirdly, estimation may be prohibitively slow. Here, Halton 

sequences provide a solution to accelerating the estimation (Greene, 2005). These methods 

are not commonly used in empirical applications. 

Before we turn to the estimation of vertically separate inefficiency, we summarise the models 

presented above. Table 3.2 below shows the model features and empirical specifications of 

the models presented above (we suppress the dummy variable and Mundlak approaches for 

brevity; other than additional variables, their specification is as per other models). 
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REM P&L BC92 CUESTA TRE GTRE LCSF RPSF 

      
   

Firm-specific 
component, αi 

𝑖𝑖𝑑(0, 𝜎𝛼
2) 𝑖𝑖𝑑(0, 𝜎𝛼

2) 𝑖𝑖𝑑(0, 𝜎𝛼
2) 𝑖𝑖𝑑(0, 𝜎𝛼

2) 𝑁(0, 𝜎𝜔
2) 𝑁(0, 𝜎𝜔

2) 𝑖𝑖𝑑(0, 𝜎𝛼
2) 𝑖𝑖𝑑(0, 𝜎𝛼

2) 

         

Random Error, εi 𝑖𝑖𝑑(0, 𝜎𝜀
2) 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 

𝜀𝑖𝑡

= 𝜔𝑖 + 𝑢𝑖𝑡 + 𝑣𝑖𝑡 

𝜀𝑖𝑡

=  𝛾𝑖 + 𝜔𝑖 + 𝑢𝑖𝑡

+ 𝑣𝑖𝑡 
𝜀𝑖𝑡|𝑗 = 𝑢𝑖𝑡|𝑗 + 𝑣𝑖𝑡|𝑗 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 

  
𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢

2)| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢
2)| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢

2)| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢
2)| 

𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢
2)| 

𝛾𝑖~|𝑁(0, 𝜎𝛾
2)| 

𝑢𝑖𝑡|𝑗~|𝑁(0, 𝜎𝑢|𝑗
2 )| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢

2)| 

  
𝑣𝑖𝑡~𝑁(0, 𝜎𝑣

2) 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2) 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣

2) 
𝑣𝑖𝑡~𝑁(0, 𝜎𝑣

2) 

𝜔𝑖~𝑁(0, 𝜎𝜔
2) 

𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2) 

𝜔𝑖~𝑁(0, 𝜎𝜔
2 ) 

𝑣𝑖𝑡|𝑗~𝑁(0, 𝜎𝑣|𝑗
2 ) 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣

2) 

         

Time-Invariant 

Inefficiency 
Component 

�̂�𝑖 − 𝑚𝑖𝑛{�̂�𝑖} 𝐸[𝑢𝑖|𝑢𝑖𝑡 + 𝑣𝑖𝑡] N/A N/A N/A 𝐸[𝛾𝑖| ln(𝑐𝑖𝑡)] N/A N/A 

         

Time-Varying 

Inefficiency 
Component 

N/A N/A 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡] 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡] 𝐸[𝑢𝑖𝑡|𝛼𝑖 + 𝜀𝑖𝑡] 𝐸[𝑢𝑖𝑡|ln (𝑐𝑖𝑡)] 
𝐸[𝑢𝑖𝑡|𝑗|𝑢𝑖𝑡|𝑗

+ 𝑣𝑖𝑡|𝑗] 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡] 

         

Temporal 

Inefficiency 
N/A N/A 

𝑢𝑖𝑡 = exp[𝜂(𝑡 − 𝑇)] . 𝑢𝑖 

 

𝑢𝑖𝑡 = exp [𝜂𝑖(𝑡 − 𝑇)]. 𝑢𝑖 

 

𝑢𝑖,𝑡 ⊥ 𝑢𝑖,𝑡−1 ∀ 𝑡 

 

𝑢𝑖,𝑡 ⊥ 𝑢𝑖,𝑡−1 ∀ 𝑡 

 

𝑢𝑖,𝑡 ⊥ 𝑢𝑖,𝑡−1 ∀ 𝑡 

 

𝑢𝑖,𝑡 ⊥ 𝑢𝑖,𝑡−1 ∀ 𝑡 

 

         

Unobserved 

Heterogeneity 
N/A N/A N/A N/A 𝜔𝑖 𝜔𝑖 𝛼0|𝑗 , 𝛽𝑗 𝛼0|𝑖, 𝛽𝑖 

         

Table 3.2: Empirical Specifications and Features of Stochastic Frontier Models. REM – random effects model (Kumbhakar and Lovell, 2000); P&L – Pitt and Lee (1981); 

BC92 – Battesse and Coelli (1992); CUESTA – Cuesta (2000); TRE – True Random Effects (Greene, 2005); GTRE – Generalised True Random Effects (Filippini and 

Greene, 2015); LCSF – Latent Class SF (Orea and Kumbhakar, 2004); RPSF – Random Parameters SF (Greene, 2005)
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3.5.4.5 Stochastic Frontier Models for Panel Data: Multi-Level Organisational Structures 

Many organisations are typified by hierarchical organisational structures, where upper tier 

entities have some degree of control over entities lower down in the hierarchy. Due to this, it 

may be the case that the upper tier has an effect on the overall inefficiency of the 

organisation. If this issue is overlooked, there may be several implications for analysis of 

inefficiency, for example, that inefficiency beyond the control of lower tier units is 

incorrectly apportioned to them. Worse, there may be distortions to overall estimates. There 

have recently been models developed that are able to incorporate the organisational structure, 

and decompose inefficiency variation vertically.  

There are two basic approaches that have been applied to account for this. We consider the 

cost frontier for the purposes of illustration. The first is the two tier stochastic frontier (2TSF) 

first proposed by Polacheck and Yoon (1987). In this model, the effect on cost at the lower 

tier is, as per standard SF models, considered to be positive. Conversely, the effect at the 

upper tier of the organisation is negative; that is, the upper tier is assumed to be reducing 

inefficiency, rather contributing to it. The second approach is the dual-level stochastic 

frontier (DLSF) proposed by Smith and Wheat (2012). In this model, the effects on costs at 

both organisational levels are positive, that is, both upper and lower tiers are assumed to be 

contributing to the total inefficiency. We make use of the DLSF in our empirical work, we 

therefore present this model.  

The DLSF model is derived from panel data stochastic frontier models, with the exception 

that the structure of the panel is amended from firm and time to firm and sub-company, 

where the sub-company units are repeat observations of their respective firms. In this way, 

the structure of the organisation is embodied in the model. This allows the decomposition of 

inefficiency at the two organisational levels in the hierarchy.  

 

The imposed form of inefficiency is well suited to the multi-level model. As discussed above, 

in traditional panels, having an overall inefficiency comprising a component of upper tier 

inefficiency that is time-invariant and a lower tier component that varies randomly over time 

may not accurately capture the natural temporal evolution of inefficiency. In contrast, 

imposing an upper tier-invariant component and a lower tier-varying component to the 

structure of inefficiency (that allows for independence between observations) befits the aim 

of characterising the organisational structure.  
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The DLSF takes the general form, 

ln(𝑐𝑖𝑠) = 𝛼0 + ln(𝑥𝑖𝑠)′ 𝛽 + 𝛾𝑖 + 𝑢𝑖𝑠 + 𝑣𝑖𝑠                                                                                  (3.51) 

Where 𝑐𝑖𝑠 are the costs of lower tier unit, s, nested within its upper tier unit, i. 𝛾𝑖 is the 

component of upper tier inefficiency and 𝑢𝑖𝑠 is lower tier unit-specific inefficiency. 𝑣𝑖𝑠 is 

random noise, 𝑥𝑖𝑠 are cost function variables and 𝛽 is a vector of parameters to be estimated.  

Estimation can be carried out broadly in two ways. The first follows the multi-stage approach 

of Kumbhakar and Hjalmarsson (1995). Here, the first stage is an upper tier-stratified within 

or GLS regression (depending on fixed or random effects, respectively), followed by a 

second stage stochastic frontier applied to the residuals, stratified by the lower tier, once 

purged of the upper tier effect.  

The second approach is based of the ‘true’ formulations of Greene (2005), though our 

interpretation of this effect is upper tier inefficiency, rather than unobserved heterogeneity. 

For a true fixed effects approach, required is the insertion of upper tier dummies directly into 

the lower tier-stratified stochastic frontier. This has the clear advantage of being a single 

stage procedure. Potential drawbacks include that it may be difficult to identify upper tier-

specific effect (if the dummy variables are not significant) and, as with all true fixed effects 

models, may suffer from the incidental parameters problem. There have been solutions found 

to this problem in standard models, see subsection 3.5.3.4. 

The true random effects formulation is available as an alternative and a feasible single-stage 

approach. Its disadvantage is that it may be difficult to estimate in small samples, which has 

been found in the literature (Farsi et al., 2007).  

Once predictions of inefficiency at two vertically distinct levels are retrieved, it is necessary 

to compute and overall measure, as below, 

�̅�𝑖 = 𝛾𝑖 +
∑ 𝑐𝑖𝑠. 𝑢𝑖𝑠

𝑆
𝑠=1

∑ 𝑐𝑖𝑠
𝑆
𝑠=1

                                                                                                                      (3.52) 

Where �̅�𝑖 is the measure of overall inefficiency across unit i. This is the sum of the upper tier-

specific inefficiency and the cost weighted lower tier-specific inefficiencies (Smith and 

Wheat, 2012).  

This model has significant potential in health markets where organisations often have some 

hierarchical structure. However, the model in this form is of limited use due to the issue of 

unobserved heterogeneity. Smith and Wheat (2012) assume the unobserved heterogeneity 



63 
 

away, which is untenable in health markets. Therefore, in the empirical work, we extend this 

model in a number of ways to account not only for unobserved heterogeneity, but to allow for 

it to enter the model in a number of forms. We apply a suitable testing procedure to identify 

the presence and/or form of the unobserved heterogeneity. For details, see chapter 6. 

 

3.5.5 Summary: Stochastic Frontier Models 

In seeking to measure inefficiency in NHS hospitals, we have chosen to use the stochastic 

frontier model. We have presented a number of stochastic frontier models which are able to 

reflect a number of features. The literature on stochastic frontiers is vast, we could not hope 

to provide a complete coverage. For this, the reader is referred to Kumbhakar and Lovell 

(2000), Greene (2012b) and Parmeter and Kumbhakar (2014). In light of this, we have 

focussed our discussion methods to capture three important issues that relate to health 

markets. These are the temporal variation of inefficiency, unobserved heterogeneity and 

multi-level organisational structures. These features form the basis of the empirical work in 

this thesis and, therefore, the contribution of this thesis. In subsequent chapters, we discuss 

why these features in particular are of relevance. Before doing so, we round off our 

methodological discussion by combining elements from the preceding discussion into an 

overall measure of performance: total factor productivity. We then complete this chapter with 

an overall view of efficiency measurement in health with a particular focus on the NHS.  

 

3.6 Total Factor Productivity 

We noted in section 2.7 that productivity comprises several separate features. We have shown 

that it is possible, using the cost function (or derivatives of cost functions, notably the 

stochastic frontier), to measure these features, namely economies of scale, technical change 

and inefficiency. Whilst these are individually doubtless important to policy makers, it may 

be of use to take an overall account of performance over time, by combining these features. 

This is achieved by making use of productivity, or its full economic title, Total Factor 

Productivity (TFP) (or Multi-Factor Productivity (MFP), in the absence of a full set of 

components). Moreover, given the overarching goal of cost reduction, savings in scale and 

through technical change may be as important as efficiency.  

It is possible to observe Total Factor Productivity change, between subsequent years, defined 

by Coelli et al. (2005) pp. 300-306, 
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𝑇𝐹𝑃 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 ×  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 × 𝑠𝑐𝑎𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒                (3.53) 

These concepts are demonstrated below in figure 3.4, with the concepts drawn from prior 

subsections. 

 

Figure 3.4: Total Factor Productivity Concepts 

Technical change: technical change, also termed frontier shift, is the change in technology 

that firms face – the frontier itself - between time periods. On fig. 3.4, this is shown as the 

shift of the cost frontier from t=0 to t=1. In this case, technical change is positive, in the sense 

that costs are declining over time. This is called technical progress; the reverse is technical 

regress. Technical change is measured empirically by the time trend in the cost function (see 

section 3.3.3).  

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑒𝑥𝑝 {
1

2
(

𝜕ln (𝑐𝑖,𝑡=0)

𝜕𝑡 = 0
+

𝜕ln (𝑐𝑖,𝑡=1)

𝜕𝑡 = 1
)}                                                   (3.54) 

Efficiency change: whereas technical change concerns the frontier itself, efficiency change 

concerns the movement of firms either towards or away from the frontier. Then, efficiency 

change is the average change across firms between time periods. Point c on fig 3.4 shows that 

a firm is inefficient. If the position c is unchanged from t=0 to t=1, then the firm will be 

further from the frontier than in the previous period. If this is true across all firms, efficiency 

change will be negative. Of course, it is realistic to expect that some firms will gain whereas 

others will lose between periods. For this reason, models which allow this are preferred. 

Efficiency change is measured empirically as, 
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝐶𝐸̅̅ ̅̅

𝑡=1

𝐶𝐸̅̅ ̅̅
𝑡=0

                                                                                                      (3.55) 

Where 𝐶𝐸̅̅ ̅̅  is the sample average cost efficiency, see section 3.5.2. 

Scale change: scale change pertains to how the (average) scale of production affects the 

average cost of production. On fig 3.4, rays from the origin reflect the average cost per unit of 

production (i.e. cost/output), thus the shallower the slope gradient, the lower the average cost. 

Therefore, at point b, the average cost per unit of output is lower than at point a. This is 

reflected in the shape of the frontier which shows increasing returns to scale. If, on average, 

firms increase their scale of production, scale change is positive in the sense that average 

costs are reduced. Scale change is calculated as,  

𝑆𝑐𝑎𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑒𝑥𝑝 {
1

2
(𝜀𝑐𝑦,𝑡=0 + 𝜀𝑐𝑦,𝑡=1)}                                                                            (3.56) 

Where 𝜀𝑐 is the elasticity of cost with respect to output, see section 3.3.2. 

 

3.7 Efficiency Measurement in Health Care 

In this section, we discuss the general health efficiency literature and, given that we have 

discussed the econometric approach based on econometric techniques, discuss specific 

applications of econometric techniques to NHS facilities. Whilst we adopt the stochastic 

frontier approach in our empirical work, we discuss other econometric approaches that have 

been applied to measure efficiency.  

Hollingsworth and Street (2006) note that the supply side of the efficiency analysis market is 

booming. The supply of health care efficiency studies has grown substantially in recent years: 

between 1983 and 1987, the average annual number of health care efficiency studies was 1.6; 

whereas between 2002 and 2006 the annual average was 25 (Hollingsworth, 2008). A number 

of journal articles and text books review the application of efficiency analysis techniques to 

health care (Hollingsworth et al., 1999; Hollingsworth, 2003; Worthington, 2004; Jacobs et 

al., 2006; Hollingsworth, 2008; Hollingsworth and Peacock, 2008; Mutter et al., 2011).  

Hollingsworth (2003; 2008) provides useful meta-analysis which is helpful in characterising 

the application of efficiency measurement to health care. As noted, the literature is large and 

growing. Non-parametric analysis dominates, with 80% of studies using DEA, Multiple 
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methods or Malmquist indices
24

. These are applied mainly to cross-sectional data sets, often 

with a low number of observations (<100). This may explain the low proportion of 

parametric studies, 18%, although the author notes that this proportion is growing. This 

growth may also be due to the development of methods to overcome some of the issues posed 

by users of efficiency analyses (cf. Hollingsworth, 2008; Mutter et al., 2011). This is one of 

the central themes of this thesis and we discuss these issues in detail in chapter 4. 

In terms of areas of application, hospitals dominate, claiming over 50% of applications. The 

next two areas of application, namely nursing homes and physicians, account for under 10% 

of the applications each.   

Hospital efficiency analyses are analysed by hospital type. Of these, public hospitals are the 

most efficient, with an average efficiency of 0.90. These are closely followed by Defence 

(military) hospitals, whose average efficiency is just under 0.90. For profit hospitals average 

around 0.86, whereas teaching hospitals average around 0.65 (although the sample size is 

small). Psychiatric hospitals appear to be least efficient, with an average of 0.60, but again 

numbers are low, with only two studies having been conducted. 

Hospital applications are mainly in the USA, with approximately two thirds of studies here; 

European studies account for around a third. Of these, the average measured efficiency is 

0.86 (0.84 for all hospitals), with a minimum of 0.72 (0.47). That is, European hospitals 

appear to be more efficient than their peers in the USA and around the world, according to 

the evidence presented.  

Within these European studies are, of course, those conducted on NHS hospitals, which are 

of particular interest. Perhaps a slight limitation of this literature review is that is it conducted 

on studies until mid-2006. Therefore, table 3.3 below is a literature review table containing 

these studies and those in more recent years. We concentrate on econometric studies so as to 

be in keeping with the analysis in this thesis.  

Table 3.3 shows that studies vary considerably across a number of dimensions. Methods vary 

from those based on cost/production functions using OLS to more complex analyses 

including SFA and multi-level models to policy evaluation techniques such as difference-in-

differences regression. The unit of analysis across studies also varies, from those that conduct 

analysis at the whole hospital level down to analysis at the level of the individual procedure 

(e.g. hip replacement). Perhaps the area in which the studies vary most is sample size, where 

                                            
24 A form of productivity index; see Coelli et al. (2005) for exposition 
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the range across the studies varies by a factor of close to two million – from 31 to 54 million 

observations.   

In light of this variation, a question arises as to why we adopt a SFA framework as opposed 

to other available methods. First, we note the link between the cost function methods used 

and the SFA literature. In several studies, a hospital-specific effect from a cost function is 

used as the measure of hospital efficiency (some authors use the term performance) 

(Laudicella et al., 2010; Daidone and Street, 2013; Gutacker et al., 2013; Moran and Jacobs, 

2015). In this sense, they are akin to the panel data SF models identified in chapter 3.5.4.1 

that measure time-invariant inefficiency (Schmidt and Sickles, 1984; Kumbhakar and Lovell, 

2000). Indeed, in other applications of these models in health care, the direct link has been 

expounded (Sorensen et al., 2009).  

There are three main reasons for which we adopt the SFA approach. First is the policy debate. 

We began by identifying spending pressures and the need not only to find efficiency savings, 

but to go beyond this in quantifying them. Some of the methods available in table 3.3 do not, 

in the form presented, allow explicit valuation of available monetary savings, e.g. difference-

in-differences regression. This point extends to the analysis of Moran and Jacobs (2015) who, 

although identify variation in provider performance, do not provide results in monetary terms. 

For our purposes, we prefer a method which does.  

Second, the nature of the data does not allow the application of these methods. In our data, 

we have neither changes in policy across observed units nor patient level data, meaning that 

alternative methods such as difference-in-differences or the 2 stage least squares approach are 

unavailable here.  

Third, The SFA framework allows us to develop methods for examining important aspects of 

hospital performance that we have identified in this chapter. We begin by extending the 

existing work on temporal variation of inefficiency by introducing new flexible models to 

NHS hospitals that have previously not been employed (chapter 5). This, in turn, allows us to 

develop an econometric measure of multi-factor productivity (the full form of which is total 

factor productivity, as defined in section 3.6 above). This is lacking in table 3.3. Next, we 

introduce a measure of multi-level inefficiency to NHS hospitals. Whilst previous studies 

have adopted multi-level approaches (e.g. Gutacker et al., 2013), their efficiency measures 

remain limited to a single level. We develop models for the analysis of multi-level efficiency 

(chapter 6). Lastly, whilst some studies have used controls for unobserved heterogeneity, we 
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adopt a range of methods and testing procedures to look more closely at this issue (chapters 5 

and 6).  
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Year Authors Methods Unit of Analysis Sample size Years Observations Findings 

                

1967 Feldstein Production 

function 

Whole hospital 177 1961 177 more and less efficient units identified; efficiency itself not quantified 

explicitly 

        

1987 Wagstaff SFA Maternity hospitals 193 1971/72 193 hospitals are all technically efficient; caveats issued 

        

1995 Scott and 

Parkin 

Cost Function Whole hospital 76 1992/93 76 statistical issues inhibit interpretation; no results presented 

        

2001 Harper, Hauck 

and Street 

COLS General Surgery 

Specialities 

31 1998/99

-

1999/00 

62 no efficiency predictions reported; rank correlations only which were highly 

correlated between models 

        

2002 Street and 

Jacobs 

COLS; SFA Whole hospital 217 1999 217 Average inefficiency: 0.74 COLS; 0.90-0.92 for SFA. 

        

2003 Street COLS; SFA Whole hospital 236 1999 236 Average inefficiency: 0.69 COLS; 0.87-0.90 for SFA. 

        

2006 Ferrari SFA (distance 

function 

approach) 

Whole hospital 52 1991/92

-

1996/97 

312 productivity gain average 3% p.a.; no time-varying inefficiency; no efficiency 

estimates reported 

        

2006 Jacobs, Smith 

and Street 

COLS; SFA Whole hospital 185 1994/95

-1997-

98 

740 mean efficiency across range: COLS 0.69; SFA cross section 0.87-0.90; panel 

0.61-0.92 

        

2009 Farrar, Yi, 

Sutton, 

Chalkley, 

Sussex and 

Scott 

Difference-in-

differences 

Whole hospital 297 

hospitals; 

53,954,201 

patients 

2001/02

-

2005/06 

53,954,201 hospital costs reduced following introduction of PbR; no observable effect on 

quality 
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2010 Laudicella, 

Olsen and 

Street 

2SLS cost 

function 

Obstetrics 136 

hospitals; 

952,273 

patients 

2005/06 952,273 more and less efficient units identified; efficiency itself not quantified 

explicitly 

        

2012 Cooper, 

Gibbons, 

Jones and 

McGuire 

Difference-in-

differences 

Individual procedure 161 

hospitals; 

1,882,750 

patients 

2002/03

-

2010/11 

1,882,750 competition appeared to induce efficiency improvements 

        

2013 Daidone and 

Street 

2SLS cost 

function 

Specialised Services 163 

hospitals; 

12,154,599 

patients 

2008/09 12,154,599 some variation in hospital efficiency but not reported 

        

2013 Gutacker, 

Bojke, 

Daidone, 

Devlin, Parkin 

and Street 

Multi-level 

cost function 

Individual procedure 147 

hospitals; 

194,570 

patients 

2009/10 194,570 for hip replacement, 95% of providers within range -£2740 and +£3690 

(mean = £6335) 

        

2013 Siciliani, 

Sivey and 

Street 

OLS Hip replacement 193 

hospitals; 

42,948 

patients 

2006/07 42,948 treatment centres can provide more efficient care than hospitals due to 

specialisation; private providers have lower LOS 

        

2015 Moran and 

Jacobs 

Ordered 

Probit; linear 

model 

Mental Health 58 

providers; 

185,281 

patients 

2011/12

-2012-

13 

342,288 Performance based on outcomes; variation of around 11% in ordered probit 

and around 2% in linear model attributable to providers 

                

Table 3.3: Econometric Studies of NHS Hospital Efficiency
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3.8 Summary 

In this chapter, we have established the meaning of efficiency. We have then argued that 

frontier techniques, derived from economic theory, are our favoured method for capturing 

efficiency. We have set out what we mean specifically by the term cost efficiency, and 

detailed our methodological approach to measuring it. Further, we have discussed the aspects 

of the cost function, which are of use empirically and for policy purposes. Finally, we have 

detailed a procedure to reflect overall change in the sample over time, based on production 

theory.   

With these economic tools at hand, we are now ready to proceed to our application: NHS 

hospitals. The following chapter, the first study of this thesis, is an overture to our empirical 

work. In this chapter, we set out our interest in hospitals and hospital efficiency; and the 

policy context, specifically with regard to costs and expenditure. Our starting point is that the 

duty to set hospital efficiency targets for NHS hospitals has shifted from the Department of 

Health to the economic regulator, Monitor.  

We consider the various policy regimes that have been used for performance improvement 

and review evidence on how NHS hospitals have responded to them. Next, we draw on the 

extensive experience of economic regulators in Britain in measuring the efficiency of firms in 

their respective markets. We combine this with a review of the measurement of efficiency in 

healthcare markets – in particular hospitals in the NHS. We conclude by setting our research 

agenda for measuring inefficiency in NHS hospitals, which we pursue in the following 

empirical chapters.  
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4. National Health Service Performance Management, Price Regulation and Efficiency 

Measurement 

 

 

4.1 Introduction 

 

As noted in earlier chapters, following the introduction of the Health and Social Care Act 

(2012), the task of managing hospital efficiency has passed from the Department of Health to 

Monitor
25

, which is the economic regulator of NHS hospitals that have achieved Foundation 

Status
26

. Since Monitor has assumed the role, it has begun to develop a more transparent 

approach to setting efficiency targets (known as the ‘efficiency factor’) than the Department 

of Health previously, based on benchmarking e.g. by comparing expenditure between 

services across hospitals (Monitor, 2013a). This is in keeping with the aims of central 

government who have identified benchmarking as key to making efficiency savings in the 

public sector (HM Treasury, 2015). Benchmarking is well developed, being used by other 

economic regulators in England across a range of industries (Crew and Parker, 2006). 

Monitor is interested in developing a more rigorous approach using economic techniques 

(Deloitte, 2014a; Deloitte, 2014b). With this, it aims to encourage hospitals to meet their 

efficiency targets and contribute to the top-level policy goal of plugging the oncoming 

funding gap.  

 

The aim of this chapter is threefold: to inform the setting of efficiency targets for hospitals by 

reviewing incentive schemes applied to NHS hospitals; to inform the setting of efficiency 

targets for hospitals by reviewing the regulation of prices in other sectors of the economy; 

and to inform the setting of efficiency targets for hospitals by reviewing the measurement of 

efficiency in health markets and other sectors. These together are aimed at the top level cost-

based policy goals. We do so by bringing together literature from NHS performance 

measurement, health-based efficiency measurement and regulatory economics. 

 

                                            
25 The responsibility is held jointly by Monitor and NHS England. For brevity, we use monitor throughout to denote Monitor and NHS 

England. 
26 Foundation status of a NHS trust (a trust is a hospital or small group of hospitals) means that it operates under an independent, not-for-

profit regime, allowing it financial autonomy which it does not have without having foundation status (Marini et al., 2008). Trusts apply for 

foundation status, which is granted by the regulator, Monitor, if the trust has satisfied the regulator of its financial competence. Foundation 
status has not been awarded to all NHS trusts. 
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In section 4.2 we set out the hospital reimbursement scheme, discuss hospital efficiency since 

2006, set out central issues and how we go on to answer them. In section 4.3 we discuss 

performance management schemes applied to NHS services since 1991. In section 4.4 we 

discuss the theory and practice of economic regulation and its implications for Monitor. In 

section 4.5 we consider the measurement of inefficiency, in the contexts of both economic 

regulation in other sectors and health care markets. Section 4.6 brings together the preceding 

3 to draw out lessons for Monitor and section 4.7 concludes. 

 

4.2 Hospital Price Setting and Efficiency Targets in the National Health Service 

 

For NHS hospitals in England, under the National Tariff Payment System (NTPS) (formerly 

Payment by Results (PbR) under Department of Health – we consider these as 

interchangeable for the purposes of this discussion) activity-based reimbursement scheme, a 

“national tariff” (i.e. price) is set for each service provided (known as Healthcare Resource 

Group, HRG
27

) based on the national average cost for that service. These are termed 

Reference Costs. NTPS has been in operation since April 2013; PbR previously operated 

from 2003/04 (Audit Commission, 2004). Setting prices at average cost is a form of yardstick 

competition used to mechanise productive efficiency (Shleifer, 1985).  

Under NTPS, the national tariff for each service provided is adjusted annually according to 

two factors. The first, to reflect inflation and other rises in the costs of service provision, is 

known as ‘cost uplift’, which raises the service price. The second, to encourage efficiency 

gains, an ‘efficiency factor’ which reduces the service price. The sum of these two factors 

determines the net annual adjustment applied to the price of each HRG.  

Therefore, under NTPS, there are two basic mechanisms to encourage efficiency 

improvements: HRG prices set at average costs and the efficiency factor of the national tariff. 

This is shown in equation 4.1 below, 

𝐻𝑅𝐺 𝑝𝑟𝑖𝑐𝑒𝑖,𝑡 = 𝐻𝑅𝐺 𝑐𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖,𝑡−1 + 𝑐𝑜𝑠𝑡 𝑢𝑝𝑙𝑖𝑓𝑡𝑡 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡                               (4.1) 

                                            
27 Analogous to Diagnosis Related Groups, or DRGs, used in Europe and the USA 
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That is, the reimbursement for a given HRG, i, in year, t, is the sum of the preceding year’s 

average cost (across all hospitals)
28

, the year-specific cost uplift and the year-specific 

efficiency factor. The combination of the cost uplift and the efficiency factor is termed the net 

deflator
29

. In this study, we focus on setting the efficiency factor in our methodological 

discussion, but consider broader efficiency improvement throughout.   

 

Figure 4.1: Efficiency Factor for NHS Hospitals, 2006/7 to 2014/15
30

. Sources: Department 

of Health Reference Costs Guidance and Monitor NTPS Guidance. 

 

Figure 4.1 shows the efficiency factor for English NHS hospitals (Efficiency Factor)
31

. 

During this period, the Department of Health was responsible for setting the efficiency factor 

until 2014/15, when Monitor began to set the target. Hospitals have failed to reach these 

targets in recent years (Monitor, 2013b). Average targets were 3.8% between 2010 /11 and 

2012/13, with savings, at best, 3.4% p.a. (Monitor, 2013b, pp.11). Therefore, despite the two 

mechanisms to encourage efficiency improvements, it does not appear that targets have been 

met. We seek to answer why this is the case. 

 

                                            
28 For ease of exposition; it may be the case that prior years’ (t-2, t-3, etc.) are used, or that some average is used, depending on 

circumstances. For example, the 2014/15 HRG prices were based on 2010/11 reference costs because Monitor wished to maintain stability 
in its first setting of prices (Monitor, 2014).  
29 In practice, the net deflator is calculated as (1 + 𝑐𝑜𝑠𝑡 𝑢𝑝𝑙𝑖𝑓𝑡)(1 + 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑐𝑛𝑦 𝑓𝑎𝑐𝑜𝑡𝑟) − 1, but we retain equation (4) for ease of 
exposition 
30 For ease of reading, we have used just the first year of the financial year on the graph. 2008 refers to 2008/09, 2012 to 2012/13, etc. 
31 NB – the change in cost is compared to its target from the year at the start of the period, e.g. the 2008/09 target is compared to cost 
changes between 2008/09 and 2009/10 
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Historically, the efficiency factor has been decided in a number of ways, including funding 

disparities between NHS service commissioners’ allocations and their expected expenditures 

(Deloitte, 2014a). Other targets were set as part of national government policy on efficiency 

gains in the public sector. For example, the 3% target in 2008/09 is derived from the NHS’s 

settlement from central government’s Comprehensive Spending Review (Department of 

Health, 2007). Thus the efficiency factors have been set based on central expenditure saving 

requirements by governments. This may be a reason contributing to hospitals’ failure to meet 

targets. Another reason may be that these savings are unrealistic; NHS hospital managers 

suggested that around 1% annual savings were possible (Jacobs and Dawson, 2003). (We 

note that this survey is now over fifteen years old.) To these ends, Monitor is interested in a 

more data-driven approach to measuring efficiency and then setting the efficiency factor 

(Monitor, 2013).  

Monitor’s first year of NTPS was 2014/15 (Monitor, 2013c). Prices from the preceding year’s 

tariff were kept for stability given that this was Monitor’s first regulatory review period. The 

efficiency factor was 4%, drawn from indicator measures between hospitals, reports by 

consultants and past productivity gains (Deloitte, 2014b). 

The current proposals for the 2015/16 NTPS have been referred to the competition and 

markets authority (CMA), given that 75% of providers had rejected the pricing proposal
32

. 

Although the efficiency factor has been reduced to 3.8%, the challenge remains. Monitor has 

this year adopted a more rigorous approach, making use of econometric benchmarking 

techniques and bottom-up hospital modelling (Deloitte, 2014b). This substantial opposition 

reflects objection to the methods used. We therefore look to motivate our empirical work by 

examining in detail the methods used in the determination of the efficiency factor.  

Another important element to Monitor’s role is controlling for quality, following from the 

Francis Report in which Monitor was thought to be too focussed on financial aspects of 

performance (Francis, 2013).  

Thus, the central question for Monitor is how to ensure that these targets are appropriately set 

and then met. In this paper we bring together several strands of literature to inform two 

aspects of this question. 

                                            
32 Under NTPS, all providers are consulted on each year’s pricing determination. If over 51% reject, the prices are referred to the CMA for 
arbitration. 
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(i) How to measure hospital efficiency whilst controlling for the quality of care; and 

(ii) How to incentivise efficiency amongst NHS (i.e. publicly owned) hospitals 

 

As a starting point, we review studies on the response of NHS hospitals
33

 to various policy 

mechanisms that have been applied in the NHS’s recent history. We describe the various 

policy regimes, and consider evidence on how hospitals have responded to them in order to 

inform Monitor’s role of promoting efficiency amongst hospitals. We do not try to draw 

parallels with efficiency measurement; rather we look to observe the features of applying 

performance measures that are effective and those that are not. This is section 4.3. 

 

We then turn to the theory of regulation and its implications for NTPS; see 4.4.  

 

Next, we examine the practice of efficiency measurement in the joint contexts of health 

markets and across regulated industries. To the extent that there are some similarities between 

measuring efficiency in a cross-sectorial way, there are likely lessons for regulators in health 

markets. We further assess efficiency measurement in health and focus on methodological 

issues that have hindered the uptake of efficiency analyses amongst policy makers. We 

identify solutions to espoused issues based on recent developments in the literature. This is 

section 4.5. 

 

Our main contribution is in the discussion: we seek to identify lessons for Monitor (and 

regulators in health more widely) for setting and enforcing efficiency targets for hospitals, 

both methodologically and practically, based on the recent developments in the literature. 

These lessons are drawn from the critical review of NHS performance management 

initiatives, from the regulation of other sectors that are subject to economic regulation; and 

from efficiency measurement in health markets and the wider literature. See section 4.6. 

 

 

 

                                            
33 Predominantly English hospitals, although in some cases English hospitals are compared to Scottish or Welsh hospitals; or indeed Scottish 
or Welsh hospitals in their own right. We are careful to note this throughout. 
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4.3 Performance Management in the National Health Service 

 

We are concerned in this thesis with efficiency. Whilst we have identified the background to 

NHS hospital efficiency and its regulation in the previous section and we go on to its 

measurement in subsequent sections, it is important to consider other aspects of performance. 

There have been many policy schemes applied to NHS hospitals since the early 1990s. 

Insofar as hospitals have reacted to each of these schemes, there are likely general lessons to 

be drawn in observing hospitals’ responses to them. We therefore examine literature that has 

assessed these schemes, looking for features of targets that are effective, and those that are 

less so. We then proceed to discussion of regulation, and its relevance to NTPS. We then 

consider measuring efficiency, both in the health and regulatory contexts.  

 

A reason for missed efficiency targets may be hospitals’ incentives. There have been a 

number of concurrent initiatives that successive governments have implemented to encourage 

performance improvements. These are broadly termed performance management (Smith et al. 

2009). They have had varying degrees of success, and have been assigned varying levels of 

prioritisation (cf. Bevan, 2006; Oliver, 2009). Then, the consideration of the efficiency factor 

is more complicated than the efficiency factor; efficiency targets may have risen up/fallen 

down hospital mangers’ agendas over time. In other words, given that there have been a 

number of other schemes that may have taken priority over the efficiency factor, managers’ 

focus may have shifted from improving efficiency. In light of this, for enforcing the 

efficiency factor, there may be important hospital incentives found in by observing hospitals’ 

reaction alternative policies, as well as potential pitfalls to be avoided. We therefore examine 

studies that have analysed these policy schemes. 

 

Until the early 1990s, the belief was that system agents acted altruistically and that, to 

maximise performance, all that was needed was the proliferation of information – agents for 

whom performance was sub-optimal would aspire to improve. Agents are motivated via 

identification with the ideals and values of the system (Oliver, 2012). This system is referred 

to as ‘trust and altruism’ (T&A) (Bevan and Wilson, 2013). However, concerns arose around 

hospitals’ efficiency towards the late 1980s, which undermined this belief, leading policy 

makers to reassess their approach (Maynard, 1991). Indeed, there are two major flaws with 
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T&A that act to erode incentives, namely, that rewards are maintained irrespective of 

performance and that failure is rewarded (Bevan, 2015). 

 

Bevan and Wilson (2013) describe, as departures from T&A, three basic approaches to 

performance management that have, subsequent to the reforms in the early 1990s, been 

adopted by NHS policy makers. We review evidence to shed light on the above issues with a 

view to informing regulatory practice in the NHS context and beyond. Table 4.1 below gives 

an overview of the four basic regimes.  

 

Scheme Description Economic Rationale NHS examples 

        

Trust & 
Altruism 

Publicly-spirited individuals need 
only performance information as 

incentive 

Identity (Oliver, 2012) Until the 1991 reforms 

        

Choice & 

Competition 

Choice induces improved 

performance through competition 

Invisible hand (Smith, 1776); 

contestable markets (Dranove, 

2012).  

Internal market 1991-1999; choose and book 

(2006); patients choose any provider (2008); 

gatekeeper-aided choice (2012) 

        

Transparent 

Public 
Ranking 

Publishing performance stimulates 

improvements amongst poor 
performers, "naming and shaming" 

Loss aversion/Prospect Theory 

(Oliver 2012; Maynard, 2012; 
Bevan and Wilson, 2013) 

Hospital star ratings 2000-2005; Surgeon 

league tables, 2013 

        

Hierarchy 
and Targets 

Setting targets with rewards for 
high performers and sanctions for 

missing targets, “targets and terror” 

Loss aversion/Prospect Theory 
(Oliver 2012; Maynard, 2012; 

Bevan and Wilson, 2013); 

‘humans’ and ‘econs’ (Bevan 
and Wilson, 2013)  

Cancer waiting times; ambulance response 
times; accident and emergency 4-hour waiting 

times 

        

Table 4.1: Policy Regimes for NHS Performance Management 

 

A timeline of major policies is given below in table 4.2. For some schemes, e.g. waiting times 

policies, policies are aimed at specific services, meaning that reporting all of them in a table 

would be impossible. For a review of waiting times polices, see Smith and Sutton (2013). We 

discuss each of the approaches and review evidence in what follows. 
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Regime 
 

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

                           

C & C 
 

Internal Market 
  

Choice Pilot Schemes; 

Choose & Book; Patients can choose any Provider 
CCG commissioning 

                           

             
Private Sector Hospitals Enter Market 

                           

TPR 
          

Hospital Star Ratings 
        

Surgeon 

Rankings 

                           

H & T Inpatients 
           

26 21 14 week waiting times targets 

NHS Constitution 

 
Outpatients 

           
15 12 6 3 

                           

 
All Patients 

                 
18 week waiting time RTT 

                           

Table 4.2: Overview of Policy Regimes Applied to NHS hospitals, 1991-2015. Sources: Oliver (2009); Cooper et al. (2010); Smith and Sutton (2013); Bevan 

and Wilson (2013). NB – this is meant to provide a general overview; the actual implementation of these regimes was more complex. 

Notes: the NHS constitution set out a raft of waiting times polices, including those for ambulances, cancers, access to primary care, revascularisation and 

others, see Smith and Sutton (2013). RTT – referral to treatment, meaning the time taken from an initial GP consultation to seeing a specialist. C&C – choice 

and competition, TPR – transparent public ranking, H&T – hierarchy and targets, CCG – clinical commissioning group
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4.3.1 Choice and Competition (C&C) 

Choice and competition is based on the microeconomic doctrine of allowing market forces to 

engender efficiency. However, theoretically, the effects of competition will vary depending 

on the underlying market conditions (Draonve and Satterthwaite, 2000; Siciliani, 2005; 

Dawson et al., 2007). There needs to be sufficient competition in the marketplace for it to be 

preferable to monopoly (Brekke et al., 2008). Once providers begin to compete on quality 

and not prices, there does not appear to be a preferable theoretic market structure (Brekke et 

al., 2011). Allowing patient choice introduces contestability into hospital markets with, 

effectively, no sunk costs (hospitals already exist), implying that competitive conditions arise 

(Dranove, 2012).  

C&C has been introduced in the NHS broadly in three waves (Propper, 2012). The first, 

during the 1990s, is referred to as the internal market. This introduced price competition 

through allocating funds to local providers
34

 who, in turn, prospectively purchased annual 

bundles of services from hospital providers on behalf of the patients they served (Propper, 

1996). The second was through a set of policy changes between 2002 and 2008. The thrust 

was to fix prices for reimbursement and allow patients both choice and information on 

providers. Thus, hospitals were to compete on quality rather than price. The third was 

implemented by the coalition government under the Health and Social Care Act (2012), 

which gave purchasing responsibility to GP consortia to procure hospital services on behalf 

of the patients they served. Between these periods, patient choice remained, but after 1997 

when labour came to power, competition was actively discouraged by the government and 

fundholding was itself abolished in 1999 (Dusheiko et al., 2004; Propper et al., 2008).  

A number of studies have reviewed these policy changes. Overall, there seem to be two 

emerging themes. First, under the internal market’s price competition, whilst waiting times 

and prices seemed to be reduced, outcomes (in terms of mortality rates) declined (Dowling, 

1997; Soderlund et al., 1997; Propper and Soderlund, 1998; Hamilton and Bramley-Harker, 

1999; Propper et al., 2002; Dushieko et al., 2004; Propper et al., 2004; Ferrari, 2006; Propper 

et al., 2008). Second, under quality competition, outcomes, efficiency and waiting times seem 

to have improved (Dawson et al., 2007; Siciliani and Martin, 2007; Cooper et al., 2010; 

Bloom et al., 2010; Cooper et al., 2011; Cooper et al., 2012; Gaynor et al., 2013).  

                                            
34 either District Health Authorities (DHAs), who served larger patient populations (circa 315,000); or GP fund holder schemes (GPFH) who 
served smaller patient populations (circa 9000) and could select patients (usually by registers), i.e. could cream-skim. 
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Bevan and Skellern (2011) compare and contrast evidence on the two periods of provider 

competition. They attach a number of important caveats to the positive findings from studies 

of competition on quality. They note that metrics are focussed on single departments and 

therefore findings are difficult to generalise. In addition, they note that the potential for 

gaming
35

 and for the diversion of resources from less visible areas of hospital activity may 

weaken the findings. This is reflected in the findings of Propper et al. (2006), who note that, 

although there is some evidence of improvement in outcomes due to competition, there is 

insufficient theoretical and empirical support to make its case conclusively. Thus the overall 

effect of competition and choice remains ambiguous. 

 

4.3.2 Transparent Public Ranking (TPR) 

TPR is a system under which entities’ (which could be hospitals, departments or, as recently 

introduced, individual surgeons) performance is judged in some way and the entities are 

ranked. These ranks are then publicly disseminated. The intuition follows from the human 

condition of loss aversion, that is, humans naturally respond to loss more than gain. Being 

close to or bottom in rank carries a sense of shame and disappointment. Thus there is 

motivation in avoiding being ranked last. That said, there is also clear motivation derived 

from the prestige associated with being ranked highly. Thus, the system can be characterised 

as one in which victors are rewarded and failures are penalised: ‘knights and knaves’ (Bevan, 

2010). Proponents of TPR argue its justification on this idea, but also that it is in the public 

interest to be transparent and that we are, collectively, better able to identify substandard or 

harmful practice when results are in the public domain (Iacobucci, 2012). Critics argue that 

TPR is inaccurate and may apportion blame incorrectly, that it instils anxiety amongst the 

workforce and necessarily casts entities as ‘poor’, which may be undue (Adab et al., 2002; 

Westaby, 2014).  

Under New Labour, TPR was introduced in the form of hospital ‘star ratings’ in 2000 

(Bevan, 2010). Hospitals were judged in three domains of performance, and awarded a star if 

each were met. An overall score along a scale of 0-3 stars was then awarded. Those for which 

0 stars were awarded came under fire, the 12 hospitals with 0 rating in year one were labelled 

the ‘dirty dozen’ (Bevan and Wilson, 2013).  

                                            
35 An example of gaming is given in Bevan and Hood (2006). After the implementation of 8-minute ambulance response times targets for 

critical calls was implemented, data show a significant spike 8 minutes, implying that many 8 and 9 minute responses had been recoded as 
just under 8 minutes in order to meet the target. 
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The evidence suggests that the ‘naming and shaming’ of hospitals has been effective in 

stimulating performance improvement. The star ratings system was reported by NHS trusts 

themselves as helpful in transmitting priorities from central government, to help modernise 

practice amongst trusts and to expose substandard management (Mannion et al., 2005). 

However, the same study reported evidence of substantial gaming, unintended consequences 

(such as disincentives to invisible services, myopia, tunnel vision, bullying) and erosion of 

public trust; although these issues seemed to arise due to the measures used for analysis 

(mainly waiting lists and performance indicators, i.e. incomplete measures) rather than the 

TPR system itself. Besley et al. (2009) find that TPR successfully lowered waiting times for 

English hospitals relative to Welsh hospitals which maintained a T&A-type policy regime. 

Bevan (2010) reached a similar conclusion, but emphasised a number of conditions that were 

satisfied to enable success. These were that the ratings were given clear priority, were 

communicated clearly and applied with consistency (pp. 48). Crucially, relative to the Welsh 

system, there were sanctions applied for failure. Bevan and Wilson (2013) conclude that TPR 

is more effective than T&A. However, they note that there was evidence of gaming and that 

there were a number of policy models simultaneously in place.  

 

4.3.3 Hierarchy and Targets (H&T) 

Under H&T, a target is set for hospitals (e.g. four hour accident and emergency maximum 

waiting times). High performers are rewarded; those that fail to reach the targets face 

sanction. As with TPR, there is a loss aversion rationale here. Further, Bevan and Wilson 

(2013) propose a ‘humans’ and ‘econs’ argument
36

 in that providers, characterised as ‘econs’ 

as opposed to ‘humans’, respond equally to potential gains as to potential losses. This implies 

hospitals should be motivated in seeking to avoid the sanctions and equally be motivated to 

reach the targets. In the NHS, the implementation of H&T in the 2000s was referred to as 

‘targets and terror’. Waiting times have been the primary focus of the application of H&T. As 

an example of current policy, missing the 18 week referral to treatment (RTT, see table 4.2) 

target results in a reduction of up to 5% of revenue, depending on the speciality, for the 

month of the breach (Smith and Sutton, 2013).  

There are a number of studies which report the basic finding that, subsequent to the 

implementation of targets, performance against these targets improved (Alvarez-Rosete et al., 

                                            
36 Thaler and Sunstein (2008) 
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2005; Bevan and Hood, 2006; Hauck and Street, 2007; Dimakou et al., 2009; Harrison and 

Appleby, 2009; Bevan and Hamblin, 2009; Propper et al., 2010; Marques et al., 2014). 

Further, evidence suggests that the removal of sanctions for failing to reach targets weakens 

performance (Smith and Sutton, 2013).  

There have, however, been a number of criticisms aimed at these measures. Bevan and Hood 

(2006) and Bevan (2006) describe three assumptions that underpin H&T which have been 

breached in application to NHS performance management. These are that the target-setting 

authority is able to determine a system which prioritises what matters; that failure to meet 

features not built into performance measures are irrelevant (i.e. unintended consequences); 

and that the advantages of any outcomes offset any gaming activities. Indeed, Bevan and 

Hood (2006) find significant evidence of gaming. Bevan and Hamblin (2009) outline further 

issues with performance targets: There is an issue of selecting the correct or appropriate 

measures; the issue that indicators give an incomplete picture of the production process; there 

is information loss when aggregating; and that public targets risk workforce morale. Harrison 

and Appleby (2009) also note that targets were set against a backdrop of substantial funding 

increases, thus the attribution of success to targets in not entirely straightforward. Marquez et 

al. (2014) found substantial gaming. Further, they found no evidence of H&T-induced 

efficiency gains.  

Contrary to much criticism, there have been some positive aspects of these policies. Harrison 

and Appleby (2009) suggest that the sustained pressure on hospitals to improve performance 

has led to the avoidance of ‘quick-fix’ solutions and the development of longer term 

management strategies to meet the required gains. Oliver (2009) takes a longer term view, 

showing that the maximum inpatient waiting time target has reduced from 15 months 

(2002/03) to 3 months (2008/09) and is projected to be cut to 2 weeks (2022/23). Propper et 

al. (2010) take the general view that the targets have achieved their objectives. Crucially, they 

did not find substantive evidence of gaming, nor did they find any decrease in the quality of 

care
37

.  

 

In this section, we have reviewed evidence on hospitals’ responses to several performance 

management regimes. There is, to our knowledge, no literature that assesses how NHS 

hospitals have responded to specific efficiency targets that have been set in recent years. 

However, given the links between the measures we have reviewed in this chapter and hospital 

                                            
37 They did find evidence of waiting list manipulation, but did not class this as gaming. 
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efficiency, there are likely generalizable features of applying targets that can be used in the 

context of setting the efficiency factor. There are some key themes that emerge from the 

literature. Firstly, hospitals have responded well under the following conditions, as shown in 

box 4.1 below. 

 

(i) Performance analysis that is widely disseminated; 

(ii) Targets that are easily understood; 

(iii) Targets that are prioritised; 

(iv) Targets that are clearly communicated; 

(v) Targets applied consistently between providers; 

(vi) Sanctions are applied for failure; 

(vii) Underlying increases in funding; 

(viii) The sustained application of measures (avoiding “quick-fixes”); 

(ix) Specific (disaggregate) targets; and 

(x) Measures that have staff engagement. 

 

Box 4.1: Features of Targets Associated with Favourable Responses 

 

There have also been a number of issues identified with certain performance improvement 

schemes. These are summarised in box 4.2 below.  
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(i) Gaming, e.g. misreporting; 

(ii) Flaws in the target itself
38

; 

(iii) The potential for information loss when aggregating measures; 

(iv) Diversion of resources from less ‘visible’ services (for indicator measures); 

(v) Disincentives to fund/promote quality amongst less ‘visible’ services (for 

indicator measures); 

(vi) Potentially damaging to morale; 

(vii) Tunnel vision – focusing on an indicator only; 

(viii) Myopia – short-term responses instead of measured, long term strategies; 

(ix) Bullying; 

(x) Erosion of public trust; and 

(xi) Multiple concurrent polices mean ascribing improvement to a single policy may 

be challenging. 

 

Box 4.2: Issues Encountered with Performance Management Schemes. 

 

We return to discuss the implications for Monitor in section 4.6.  

 

4.4 Price-Cap Regulation and the National Tariff Payment System 

 

4.4.1 Idiosyncrasies in Health Care Markets 

It is often suggested that health care markets differ from other markets. The underlying 

differences stem from uncertainty (Arrow, 1963). This uncertainty lies on both the demand 

and supply side, and surrounds the incidence of disease and the efficacy of treatment.  

In respect of regulating, our focus is on the implications for firm behaviour. The thrust of 

Arrow’s argument is that doctors do not behave as firms do in other markets. There is far less 

by way of competition; recommended courses of treatment should be based on need rather 

than profitability; and providers’ goals are more diverse than pure profit maximisation 

(Morris et al., 2007). At a more macro level, Mooney (1992) identifies a range of goals of 

health care systems: technological innovation, equity (both horizontal and vertical), 

effectiveness, efficiency, professional status, patients’ rights, clinicians’ rights, communities’ 

                                            
38 an 8 minute ambulance response time means that, in terms of the target, to reach a patient in 7 minutes who dies is better than to get to a 
patient in 9 minutes that lives.  
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preferences and medical ethics. For these reasons, it is argued some distinction should be 

made in the analysis of health care markets. 

Morris et al. (2007) make the point that whilst these issues hold for health care markets, they 

may also hold true for others. In fact, many of the aforementioned list may be argued as 

pursuits for regulators in other sectors, technological advance being an obvious example. To 

this extent, there may be some parallels between health care markets and other regulated 

industries. However, the authors also observe that across many of these features, health is an 

extreme case, which is not necessarily true for all other industries.  

We make this link in the following section when discussing the mechanics of pricing 

structures in regulated industries. Later in this chapter, we highlight these differences when 

discussing measuring efficiency.  

When budgets are limited, the concept of scarcity implies that it is necessary to assess cost 

effectiveness of health care interventions as a means of allocating resources optimally (Olsen, 

2009). Whilst this is not an issue specific to health care, an immediate issue arises at this 

juncture in health: for optimal allocation, there must be a measure of value. Individuals’ 

concept of value is distorted by many features in health care, e.g. monopolistic powers of 

firms, poor information, agents’ conflicts of interest, inter alia (McCabe et al., 2014). A 

consequence of this is that, in many analysis of cost effectiveness, value is quantified as 

‘health gains’, typically assessed via use of the Quality-Adjusted Life-Year (QALY) or 

Disability-Adjusted Life-Year (DALY). These measures comprise both measures of (changes 

in) health status, assessed using instruments such as the EQ-5D
39

, and the changes in length 

of life. Here, both the value (private or social) and the opportunity cost (gains of patients who 

do not receive treatment when another patient does) are expressed through the provider’s 

willingness to pay (McCabe et al., 2014).  

With these at hand, judgements can be made as to which treatments yield highest gains, can 

be used for health technology assessment, i.e. whether new treatments are preferable to 

existing technologies. Using QALYs and DALYs, a new technology’s value can be assessed, 

or, as McCabe et al. (2014), pp.4, note, 

“the value of the health displaced as the use of other technologies has to fall.”  

The concept of value in health care extends further to the measurement of output, which is 

directly relevant for the purposes of this thesis. Whilst in many regulated industries, 

                                            
39 The EuroQol 5-Dimension measure, which is a self-reported measure of health status across 5 dimensions 
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measuring output can be readily recorded, kilowatts of electricity, for example, this is not the 

case in health care. Whilst the volume of patients can be used as a health metric, there are 

aspects of the service that are neglected in so doing: health care is more than treating patients, 

the efficacy – or quality - of treatment (and thus its value) is critical. Many measures have 

been developed to embed service quality into output, or to measure it directly. We return to 

discuss this issue explicitly in following sections of this chapter. 

Before doing so, we turn to the pricing mechanism employed under NTPS, and its relation to 

comparable systems in other sectors.  

 

4.4.2 PCR and NTPS 

Regulatory need derives from market failure in the form of natural monopoly (as in, for 

example, the electricity transmission, overseen by Ofgem) or oligopolistic competition, 

where large firms are in a position to (potentially) exploit market power (as in airports, 

regulated by the CAA). Market failures of this nature have been observed in health markets 

(Dranove, 2012). In utilities markets, these failures have led regulators to develop strategies 

to mitigate their negative effects (Viscusi et al., 2005). One of these strategies is the control 

of prices, termed price-cap regulation (PCR; see Train (1991) for an exposition). We consider 

some fundamental differences between health economics and other industries below, before 

turning to PCR and its application to health care markets. 

Under NTPS (and PbR before it), there are two basic mechanisms to encourage efficiency 

improvements, namely average cost based HRG prices (enabling yardstick competition) and 

the efficiency factor of the national tariff (see equation 4.1). These are both considered “high-

powered” efficiency-inducing mechanisms (Shleifer, 1985; Viscusi et al., 2005). However, in 

practice, PbR looks to have moved costs toward their average rather than to have applied 

downward pressure (Maynard, 2012).  

Insofar as there are fixed prices and efficiency targets to incentivise efficiency improvements, 

PCR, as used by non-health regulators in Britain and internationally, has clear parallels with 

NTPS. PCR has been effective in reducing costs in regulated industries (Baldwin and Cave, 

1999; Viscusi et al., 2005; Hauge and Sappington, 2010; Sappington and Weisman, 2010). 

Distinguishing features of PCR include the length of control period, termed regulatory lag, 

and the review date being set and non-negotiable. When these conditions are breached, 

regulatory lag is endogenous (either party can request a review), and, importantly, efficiency 
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incentives are significantly weakened; the system becomes comparable to Rate-of-Return 

(ROR) regulation (cf. Armstrong et al., 1994; Viscusi et al., 2005).  

In general, setting the length of regulatory lag can be problematic for regulators, and there 

does not appear to be an optimal length (Liston, 1993). Regulators in non-health industries in 

Britain have commonly opted for a five year lag. In Monitor’s case, the lag is a single year, 

meaning, theoretically, efficiency incentives are eroded. Therefore, lengthening the lag is 

likely to induce efficiency improvements.  

Further advantages of longer control periods include that the regulator has ample time to 

consult with firms and the public to deliver comprehensive performance reviews over the 

price control periods
40

. It would also be possible to build specific policy objectives into the 

regulatory structure, such as the NHS’s five year forward view (NHS England, 2014a). 

Indeed, efficiency targets could be aligned to any policy target with a simple calculation, by 

deriving the savings requirement in secondary care from the total (based on the proportion of 

total expenditure on secondary care, for example), and setting the efficiency factor over the 

period to align with the requirement. 

One further consideration is that NHS England or the Department of Health may have 

minimum (or specific) service requirements for its budget. Here, Monitor may draw on the 

experience of the Office of Rail Regulation (ORR), which has developed a tripartite price-cap 

based model of regulation that incorporates policy directly, as follows.  

In this setting there are three bodies: the ORR (regulator), Department for Transport (DfT; 

the government) and Network Rail (owner/operator of rail infrastructure; public body). Here, 

the DfT sets out its requirements (e.g. improvement in trains running on time) and the amount 

of money it is willing to pay (has at its disposal). Then, Network Rail responds with a counter 

offer. Lastly, ORR defines a specification at an agreed cost by reconciling the two sides’ 

submissions – this is termed the ‘final determination’. At this point, prices are effectively 

fixed and Network Rail can increase profits through cost reductions over the period. This has 

been effective in both reducing costs and improving standards, e.g. operating costs have 

fallen 40% since 2004 (ORR, 2013). This system would be implementable in the health 

setting, with Department of Health specifications answered by trust estimations and central 

arbitration by Monitor. This system is important in the context of the NHS as follows. 

                                            
40 see Parker et al., 2006, pp. 124-133, for a history of benchmarking for price control across gas, electricity, water and telecommunications 
industries in Britain. 
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Historically, under public ownership, firms often lack adequate funding for capital 

investment. Privatisation coupled with independent economic regulation is a means to rectify 

this issue. In the case of rail, the issue is further complicated by the need for additional 

subsidy. This mechanism, in turn, ensures Network Rail has enough by way of funding for 

necessary levels of service and quality – assuming it is efficient. The key here is the 

regulator, as arbiter, prevents the political tussle between parties with competing interests. 

This has potential in health, particularly at present when trusts’ budgets are highly pressured 

whilst Monitor’s NTPS has been rejected and referred to the CMA. So, if trusts are struggling 

for funding, Monitor can call on the government to increase levels of funding. Equally, if 

Monitor’s decree is that hospitals are inefficient, it is difficult for them to seek additional 

funding.  

Economic theory predicts disincentives to quality under fixed prices (Spence, 1975)
41

. To 

counter this effect, quality standards must be upheld (Laffont and Tirole, 2000). This may be 

difficult due to measurement, ascribing costs/benefits or ascribing responsibility for quality 

(Sappington and Wiseman, 2010)
42

.   

In the context of the NHS, the Care Quality Commission (CQC) is responsible for controlling 

service quality. However, this was the case in the period 2005-2008 during which failures in 

service quality occurred (Francis, 2013). Therefore, Monitor need to ensure quality is 

maintained. Quality can be incorporated directly into efficiency analysis (see following 

section for details) as one solution. Another solution would be to have off-model quality 

control, perhaps with targets and sanctions for target failure. Quality requirements can readily 

be embedded into the tripartite approach (or derivative system) the ORR has implemented, 

where quality specifications are built in to HRG price determinations.  

Overall, an adjustment to the current pricing mechanism under NTPS which draws on PCR 

theory and practice is likely to have significant benefits to the status quo, both in terms of 

incentives and the pursuit of policy goals.  

 

4.5 Efficiency Measurement for National Health Service Price-Capping 

 

                                            
41 For balance, we note that this is also true of ROR. This is because the firm bears all costs of quality improvement, but has to share the 

rewards of the improvements (Sappington and Weisman, 2010) 
42 See section 5 for a discussion of quality in health 
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The final objective of this chapter is to examine the measurement of efficiency in health 

markets and regulated industries. We elaborate on the basic tools described in chapter 3 by 

identifying health-based issues that have arisen in the academic literature. These have been 

raised in the NHS context and beyond. We further complement this discussion with reference 

to wider regulatory and methodological literature, where appropriate.  

Efficiency measures are commonly, but not always, frontier-based, following Farrell (1957). 

The use of frontier-type techniques seems to have gained primacy amongst academics in 

health markets (Hollingsworth et al., 1999; Hollingsworth, 2003, 2008; Hollingsworth and 

Peacock, 2009; Rosko and Mutter, 2011; Mutter et al., 2011). There is significant potential 

for frontier-type efficiency measures in health (Lovell, 2006; Mutter et al., 2011). However, 

for a number of reasons, policy makers have, hitherto, found the results of these studies of 

limited use (Hollingsworth and Street, 2006; Hollingsworth, 2008; 2012). There have been 

developments in the literature – notably in econometrics - to these issues which may mean 

these techniques are of use to managers and policy makers, and specifically to Monitor.  

We further justify this framework by making reference to the ‘best practice’ criteria for 

judging regulators’ approaches to benchmarking developed in electricity distribution (Haney 

and Pollitt, 2009; 2011). We extend these criteria for health by including the health-based 

issues (and/or nuanced issues from regulated industries) that have been raised specifically in 

health markets. Table 4.3 shows the issues that have been encountered by analysts in health 

and non-health settings. We use this as the basis for the following discussion.  

For 2015/16 tariff, the efficiency factor was initially set at 3.8% which is based partly on 

benchmarking of hospitals (Deloitte, 2014b). Following a rejection from 75% of providers, 

there has been a referral to the CMA. Therefore, a question arises as to the methods used to 

calculate the efficiency factor. These are presented in Deloitte (2014b). In our discussion, we 

set out the methods used for benchmarking and contrast them with our review in this section. 

From this, we suggest how benchmarking could be improved. We then proceed to 

demonstrate a number of these improvements in our empirical chapters that follow.  

 

4.5.1 Large Data 

A low number of observations in data sets has been prohibitive for some regulators wishing 

to make use of a full set of analytical methods. In the case of NHS hospitals, sample size 

issues are unlikely to pose problems given that there are vast data collections available to the 
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regulator, namely Hospital Episode Statistics (HES) and Reference Costs (RC). In regulation, 

sample sizes are typically very small; see Appendix B in which all have fewer than 100 

observations save for an international comparison of 560. In contrast, Monitor used a sample 

of 750 observations (Deloitte, 2014b). If patient level data were used, there are 18.2 million 

admitted patient records in HES in 2013/14 alone (HSCIC, 2015). Moreover, these data can 

be mapped to national datasets such collections held by the Office for National Statistics 

(ONS). Thus in terms of size and potential information, Monitor are well equipped.   

 

4.5.2 Data Quality 

The quality of data may present a number of issues. Data may be collected in an inconsistent 

manner in both cross-sectional and time-series dimensions. This issue can stem from a 

number of factors, including, inter alia, firms’ interpretation of data guidance, changing 

definitions over time, gaming, allocation of capital costs, firms’ ability to learn how to record 

data (and regulators’ engagement with them), major shocks to the firm (e.g. board changes), 

the value placed in the data by the firm and the level of aggregation. These are germane 

issues in the health context: Updates to RC mean that comparisons over time are difficult – 

accounting regulation is set to fundamentally change costing from procedure-based to patient 

level costing (Mason et al., 2011); gaming is well known in health (Bevan and Hamblin, 

2009); and there is evidence to suggest variation in clinical coding
43

 (Joy et al., 2008; Pett & 

Clark, 2012). 

There have been initiatives to encourage higher quality data recording such as Ofgem’s 

Information Quality Incentive (IQI) which rewards firms for high-quality data reporting 

(Ofgem, 2011). In addition, Ofgem use a ‘fast-track‘ scheme whereby firms that produce 

business plans that are deemed of sufficient quality are agreed without further scrutiny 

(Ofgem, 2011).  

A major issue for regulators is the consistency of data over time. For example, OFWAT, 

although had access to panel data in the late 1990s, used only cross-sectional analyses (Parker 

et al., 2006). A solution to time series data inconsistency is to use a hierarchical approach 

(e.g., Smith and Wheat, 2012; Gutacker et al., 2013; Smith et al., 2015), which is based on 

panel data methods, but does not require data collected over time. If the data is hierarchical in 

structure, then observations of units in the lower tier can be used as repeat observations of the 

                                            
43 The general problem of up-coding, i.e. artificially recording a higher severity of a patient’s condition, is well known in health (Newhouse, 
1996) 
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unit at the upper tier, thus a panel structure is contained in the data. Here, the benefits of 

panel data can be realised without the need to collect data over a period of years. Therefore, 

concerns about data consistency over time evaporate. This approach has also been referred to 

as the dual-level efficiency model (Smith and Wheat, 2012; Smith et al., 2015).   
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Issue Health Non-health Solutions available 

        

Large Data Jacobs et al., 2006 ORR, 2008; Ofgem, 2011;Haney & 

Pollitt, 2009, 2011 

Collect large data; dual-level efficiency; International 

comparison 

        

Data Quality Scott & Parkin, 1995; Joy et al., 2008; 

Pett & Clark, 2012 

Ofgem, 2011; Haney & Pollitt, 2009, 

2011 

Dual-level efficiency; Data quality incentives 

        

Allocating capital 

costs 

Drummond et al., 2005; Dranove, 2012; 

Buckell et al., 2015 

Parker et al., 2006; CEPA, 2014 OPEX/CAPEX modelling; Smoothing; Estimation of capital 

costs 

        

Engagement with 

industry 

Hollingsworth, 2008; Smith, 2015 CEPA, 2014 Consultation with end users 

        

Range of methods Jacobs et al., 2006 Haney & Pollitt, 2009, 2011 Triangulation; Model selection; Cross-checking 

        

Panel data and 

temporal efficiency 

Jacobs et al., 2006; Hollingsworth, 2008 Weyman-Jones et al., 2006; Haney & 

Pollitt, 2009, 2011 

Dual-level efficiency; Cross-sectional analysis; Model 

temporal change 

        

Heterogeneity: 

Organisational 

Dormont & Milcent, 2004; 

Hollingsworth, 2008 

Arocena et al. (2012); Haney & 

Pollitt, 2009, 2011 

Disaggregate level of analysis; Hierarchical modelling; Data to 

capture heterogeneity 

        

Heterogeneity: Patient 

level 

Dormont & Milcent, 2004; Iezzoni, 

2009 

  Data on patient characteristics: age, gender, ethnicity, 

deprivation, etc. 

        

Heterogeneity: 

Quality/Outcomes 

Hollingsworth, 2008; Smith & Street, 

2013 

Parker et al., 2006; Haney & Pollitt, 

2009, 2011 

Data on outcomes, waiting times, readmissions, cleanliness, 

etc. 

        

Unobservable 

Heterogeneity 

Greene, 2004; Farsi et al, 2005a   Statistical approaches for unobservable heterogeneity 

        

Uncertainty and 

sensitivity 

Newhouse, 1994; Street, 2003; 

Hollingsworth, 2008 

Weyman-Jones et al., 2006; Haney & 

Pollitt, 2009, 2011 

Statistical testing/specification; Efficiency prediction by 

interval; Distribution-free approaches 

        

Table 4.3: Issues for Measuring Efficiency in Health and for Economic Regulators 
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4.5.3 Allocating Capital Costs 

The allocation of capital costs is problematic for regulators. Ideally, capital costs are 

contained in firm cost data and regressions run on total expenditure, i.e. TOTEX modelling. 

This has been carried out by several regulators (Parker et al., 2006; NERA, 2008; CEPA, 

2014). In many cases, however, TOTEX modelling is inappropriate. Firstly, capital 

expenditure is often significant and sporadic: ‘lumpy’. This implies that there may be undue 

cost variation that is cast as inefficiency in TOTEX models for firms that invest heavily 

(Rossi and Ruzzier, 2000). An additional issue is how shared capital costs are allocated 

between services, which occurs in health markets (Drummond et al., 2005; Dranove, 2012). 

One solution is to smooth capital costs over time, although how to do this exactly poses 

issues (CEPA, 2014). Another is to model operating costs and capital costs separately, OPEX 

and CAPEX modelling. This, however, requires data to be available for both costs. As with 

TOTEX modelling, this has been carried out by several regulators (Parker et al., 2006; 

NERA, 2008; CEPA, 2014). OPEX-type patient level costing is being introduced amongst 

NHS hospitals, and may serve as a solution to the issue of CAPEX allocation (Monitor, 

2015). It is, of course, important to model both of these features to prevent gaming – 

focussing solely on OPEX modelling may encourage firms to ‘dump’ costs in CAPEX. It is 

for this reason that Ofwat used a TOTEX approach (CEPA, 2014). The final drawback with 

the separate approach is that modelling OPEX restricts conclusions on the scale properties of 

production and on Total Factor Productivity, which has been identified in the NHS context 

(Buckell et al., 2015).  

 

4.5.4 Engagement with Industry 

A key feature of the benchmarking process for regulators is engaging with the industry. For 

example, Ofwat’s approach involved consultations with its own engineers, company board 

directors and the industry research body, UK water industry research (UKWIR) on models 

(CEPA, 2013). In doing so, regulators seek guidance on features of the model to ascertain 

whether the model is a good reflection of reality. Features may include, amongst other things, 

the signs and magnitudes of model coefficients, the implied economies of scale properties 

and the rankings of firms. Not only does this process help to guide the process of modelling, 

it is a mechanism to both engage stakeholders in the regulatory process and to increase 

transparency. Engaging end users has been recognised as key in encouraging the uptake of 
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efficiency studies in health markets (Hollingsworth, 2008; Smith, 2015). Promisingly, 

engagement with providers is now mandated in Monitor’s NTPS process (Monitor, 2014). 

Indeed, the approach must be approved by at least half of the providers to be imposed; 

otherwise the proposal is referred to the CMA, as is currently the case.  

 

4.5.5 Range of Methods 

It is considered good practice for regulators to use a range of efficiency measures in making 

assessments of firms’ efficiency. Ofcom used both SFA and DEA in predicting British 

Telecom’s performance. In using a range of methods, the regulator presents themselves with 

a choice: either to choose a preferred model, as in Smith (2012), based on some predefined 

criteria (statistical tests, expected signs/magnitudes of coefficient values, the underlying 

assumptions, or other); or to use an approach based on averaging across the models, known 

as triangulation
44

. As suggested by Bauer et al. (1998), consistency between models’ 

predictions of efficiency, rankings of firms and common outliers denotes reliability. Studies 

in health markets have shown mixed results; in some studies using mixed methods efficiency 

estimates coalesce, elsewhere they do not (Hollingsworth and Peacock, 2009). In the case that 

different methods yield inconsistencies, the regulator may be faced with a difficult choice 

between models, particularly when they are subject to challenge by the regulated firms and/or 

the public.  

Haney and Pollitt (2013) take the view that the choice of technique should be made on the 

grounds of it being the most appropriate for the task at hand and the prevailing conditions 

(e.g. analytical problem, data availability, etc.). Other reasons are posited for choosing 

between techniques, such as the influence of peers’ (i.e. other regulators) methodological 

choices, that techniques were in the process of being implemented or human resource 

constraints (Haney & Pollitt, 2009).  

Non-frontier econometric methods have also been used in academic studies in the NHS 

context. These include multi-level modelling and seemingly unrelated regression (SUR) 

approaches (Jacobs et al., 2006) as well as multi-stage approaches (Laudicella et al., 2010) 

and difference-in-differences regression (Cooper et al., 2012). The SUR framework may be 

particularly useful in the context of NHS hospitals since there are often multiple departments 

within hospitals for which joint modelling is likely appropriate. The SUR framework has 

                                            
44 For example, Coelli and Perelman (1999) used the geometric mean of model predictions 



96 
 

been incorporated into frontier efficiency methods directly, although not in health (Lai and 

Huang, 2012). The multi-level method has been applied to decompose cost variation at 

various organisational levels to isolate the effect of the hospital on its costs (Dormont and 

Milcent, 2004; Gutacker et al., 2013a). Here, a hospital-specific effect is taken as the measure 

of hospital performance meaning there is parallel that can be drawn between this approach 

and panel data frontier approaches (e.g. Schmidt and Sickles, 1984). Of course, there is an 

issue around the composition of the hospital-specific effect – this effect comprises any 

unobserved, firm-specific, time-invariant factors, one of which could well be inefficiency, but 

could also be a number of other factors.   

The application of policy evaluation tools, e.g. difference-in-differences regression, to judge 

efficiency rests on the measure under analyses. In Cooper et al. (2012), the authors use the 

pre surgery length of stay for a single procedure. This approach has been criticised as 

performance may vary across various departments within a hospital, casting doubt over the 

reliability of measures of this kind as representative of the entire hospital (Bevan and 

Skellern, 2011). However, these methods do allow specific policy questions to be answered, 

as is important to policy makers (Hollingsworth, 2008). That is not to say, of course, that 

other efficiency techniques are unable to answer policy questions – Ferrari (2006) examines 

the effect of price competition on efficiency in Scottish NHS hospitals, for example.   

 

4.5.6 Panel Data and Temporal Efficiency 

The availability of panel data will, of course, be largely determined by the nature of the 

sector. Those sectors that have a limited number of firms, but perhaps have observed firms 

over a number of years, often look to international comparison to assemble a panel of data for 

analysis (NERA, 2008; Smith et al. 2010). Panel data is particularly useful in a regulatory 

environment, where advanced panel data techniques allow the decomposition of inefficiency 

and unobservable firm-specific heterogeneity (Kumbhakar et al., 2014). In addition, advanced 

methods are available to analyse firms’ efficiency over time (Coelli et al., 2005). These 

features of models can be statistically tested, making regulators’ efficiency predictions (and 

corresponding pricing determinations) defensible. Using more sophisticated modelling 

approaches requires large data. In some cases, sample sizes dictate that only the most basic 

panel data techniques can be used (Ofgem, 2011). In the literature, more sophisticated models 

have been found to be difficult to estimate on small datasets (Farsi et al., 2007, pp. 68).  
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As noted above, another approach to making use of panel data techniques is to exploit the 

hierarchical structure in organisations (Smith and Wheat, 2012; Smith et al., 2015). In doing 

so, it is possible to decompose efficiency into company and sub-company components (or 

equivalents in the NHS hospital context). This approach has a number of advantages for 

regulators. First, it allows the regulator to precisely locate the source of inefficiency within 

organisations. Second, efficiency estimates may be biased if the structure is not taken into 

account. Third, it allows the regulator to expand the size of the data set. Fourth, data need 

only be collected once. This also obviates issues with data consistency over time. See Smith 

and Wheat (2012) for an application to European rail network managers.  

 

4.5.7 Heterogeneity 

The incorporation of environmental, quality and input price variables into cost function 

analyses follows from production theory (Coelli et al., 2005; section 3.3.3). The extent to 

which regulators have managed to incorporate these into their respective analyses varies. The 

more comprehensive inclusion of these variables is Ofwat’s data, which has a number of 

variables for all three of these features. Indeed, Ofwat’s analysis includes these variables 

jointly in its modelling, whereas other regulators’ analyses have not, e.g. CAA for air traffic 

control, where each are considered in isolation as indicators. Of course, failure to include 

these variables brings into question the validity of analyses. Weyman-Jones (2012) is critical 

of Ofgem’s RIIO
45

 approach, in part, on the grounds of the omission of these variables.  

Heterogeneity has been identified as a major issue in the analysis of costs in health (Dormont 

and Milcent, 2004). Heterogeneity arises in several forms, we examine these in the health 

context according to three categories: organisational, patient level and quality/outcomes. We 

consider each in turn below. 

 

4.5.8 Heterogeneity: Organisational 

A common approach in academic studies to hospital efficiency analysis is at an aggregated 

level, such as whole hospitals. This is also the approach employed currently by Monitor 

(Deloitte, 2014b). There are a number of issues with analysis here which restrict the 

usefulness of the results. The first issue is that aggregate measures are of limited use to both 

                                            
45 Acronym that denotes the approach to regulation: Revenue = Incentives + Innovation + Outputs 
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managers and policy makers, who are interested in making gains at the level of individual 

services within hospitals (Hollingsworth and Street, 2006; Hollingsworth, 2008; Mutter et al., 

2011). Knowing whether a particular hospital is itself efficient is doubtless useful, but targets 

are more likely to be enforced if applied at disaggregate levels of activity, since managers can 

more ably respond at this level. Scott and Parkin (1995) used hospital-aggregate data to 

estimate cost functions. They did not draw conclusions on their results, partly due to 

aggregation issues. Indeed, aggregating outputs may cause downward bias for scale 

economies and likely overlook scope properties of production (Gaynor et al., 2015); a 

production index approach to estimating the hospital cost function is proposed as a solution. 

Alternatively, recent studies have been conducted at lower levels of aggregation, for example 

in specialised services (Diadone and Street, 2013), maternity services (Laudicella et al., 

2010), mental health (Moran and Jacobs, 2015) and pathology (Buckell et al., 2013; Buckell 

et al., 2015).  

To the extent that hospitals offer a range of services and specialisations, it is unlikely that two 

are the same. Indeed, hospitals are commonly in various stages of investment cycles, under 

differing ownership regimes, providing varying levels/types of teaching, and to varying 

extents are part of service networks, inter alia (Mutter et al., 2011). Unless these features are 

controlled for, assigning common cost or production functions is questionable. Thus 

capturing these differences is critical in making credible assessments of performance. Some 

features can be readily incorporated into efficiency analysis, ownership status for example 

(Tiemann et al., 2012) or teaching (Buckell et al., 2015).  

For other sources of heterogeneity, data are continually refined and developed for various 

aspects of service heterogeneity in health. For instance, the ways in which healthcare 

diagnoses and procedures are coded - by ICD
46

 or OPCS
47

 coding – are subject to regular 

updates to reflect developments in practice (WHO, 2004; HSCIC, 2013a). However, even in 

the case that highly granular data are to hand, there are likely many differences that remain 

unobserved, the age of hospital buildings or their physical layout, for example. This implies 

controlling for unobservable heterogeneity is critical. 

 

 

                                            
46 International Classification of Diseases 
47 Office of Population Censuses and Surveys (the body from which the coding system is granted its name; its full name is “OPCS 
Classification of Interventions and Procedures) 
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4.5.9 Heterogeneity: Patient Level 

 

Patient level heterogeneity has long been an issue in comparative analysis of health care 

metrics. Going back, the following is aimed at Florence Nightingale’s comparison of hospital 

mortality rates in 1863,  

 

“Any comparison which ignores the difference between the apple-cheeked farm-labourers 

who seek relief at Stoke Pogis, and the wizzened, red-herring-like mechanics of Soho or 

Southwark, who came into a London Hospital, is fallacious.” (Anonymous, 1864) 

 

Patient-level heterogeneity is a clear issue when making cost comparisons between units in 

health (Iezzoni, 2010). Monitor is equipped with large, granular data on patient 

characteristics in HES. Diadone and Street (2013) used patient-level data in analysing costs 

of specialised care in the NHS, in part to make judgements on performance. Of course, there 

are many differences between patients for which data are unavailable. This implies 

controlling for unobservable heterogeneity is critical.  

 

4.5.10 Heterogeneity: Quality and Outcomes 

Capturing service quality in health efficiency analyses remains a vexing problem (Mutter et 

al., 2011). The fundamental issue is that service quality itself is both (a) multi-dimensional 

and (b) unobservable directly. Portrait et al., (2015) note that ‘it is surprising that a large 

proportion of literature on measuring healthcare quality neglects the multidimensional nature 

of quality’.  Indeed, the notion of quality may represent a range of aspects including waiting 

for services (access), the quality of the medical services, the quality of the environment in 

which the care is provided, any complimentary treatment, follow up treatment, etc. This issue 

is of particular focus in the context of the NHS, where, under policy pressure, Monitor had 

appeared to overlook aspects of service quality when granting foundation status to the Mid 

Staffordshire Trust (Francis, 2013). Within an econometric framework, service quality can be 

accommodated, either by direct incorporation of data or by appropriate treatment of 

unobserved heterogeneity.  

Proxy measures for hospital quality (e.g. mortality rates) have been incorporated into 

efficiency analyses, see Romano and Mutter (2004) and Carey and Stefos (2011). 
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Additionally, there are stated preference measures, such as the ‘Friends and Family Test’ 

(Appleby, 2013). Another attempt to measure quality is through patient outcomes
48

. Smith 

and Street (2013) argue that the NHS’s Patient Reported Outcome Measure (PROM) is a 

promising tool for capturing quality, albeit imperfect (there is no counterfactual, for 

example). Promisingly, this measure has been incorporated into efficiency analysis to distil 

out the effect of quality on costs for making efficiency comparisons between providers 

(Gutacker et al., 2013a). However, compressing quality into a single metric may cause a loss 

of information. Indeed, Gutacker et al. (2013b) found variation across different dimensions of 

outcomes. Further, recent research has begun to base analysis of performance on outcomes 

(Moran and Jacobs, 2015).  

 

To reiterate, this complex issue underlines the importance of making allowances for 

unobservable heterogeneity between providers. We turn to this issue below. 

 

4.5.11 Unobserved Heterogeneity 

The conceptual appeal of making an allowance for unobservable heterogeneity is to allay 

concerns about differences in production environments between providers, across a number 

of dimensions, which are not captured by a set of explanatory regressors. This point is of 

particular importance in health (Mutter et al., 2011). Significant developments in the recent 

literature have been made regarding methods to control for unobservable heterogeneity.  

In the frontier literature, much attention has been given to this topic, and a number of 

methods have been developed to accommodate unobservable heterogeneity. Approaches 

based on restrictions to the cost or production function have been applied in health. Simply 

adding dummy variables to account for unobserved characteristics is perhaps the simplest 

approach - Buckell et al. (2015) use regional dummies as one (of a range) control for 

unobserved heterogeneity. Next is to follow the approach of Mundlak (1978) and decompose 

a firm-specific (fixed or random) effect using group mean variables. This method has been 

applied in health markets to nursing homes (Farsi et al., 2005a).  

Specific models that can account for unobservable heterogeneity include the “true” models 

(Greene, 2005), four-component, or “generalised true” models (Columbi et al., 2014; 

                                            
48 We differentiate outcomes from output as follows. Output denotes the level of service provision, whereas outcomes refers to patients’ 
response to their treatment. Outcomes are considered a proxy for service quality where higher outcomes reflect higher service quality. 
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Kumbhakar et al., 2014; Tsionas and Kumbhakar, 2014; Filippini and Greene, 2015). Other 

approaches include those that take advantage of parameter heterogeneity – latent class or 

random parameters models (Besstremyannaya, 2011; Greene, 2012) and those that allow for 

correlation between joint production processes – SUR models (Jacobs et al., 2006; Lai and 

Huang, 2012). Finally, methodological approaches have been developed that can account for 

different  forms of unobserved heterogeneity (Mundlak, 1978; Kumbhakar et al., 2014) – we 

have developed a framework for examining these forms of unobserved heterogeneity in 

multi-level models in the empirical work in this thesis (Smith et al., 2015; chapter 6).  

 

4.5.12 Uncertainty and Sensitivity 

Dealing with uncertainty is an important facet of efficiency benchmarking. In regulated 

industries, the ORR were interested in capturing uncertainty around efficiency predictions in 

stochastic frontier models, leading academics to reconsider this issue (Wheat et al., 2014).  

In stochastic frontier models, to the extent that there is uncertainty surrounding the 

decomposition of inefficiency and noise, interval estimation is appropriate for inefficiency 

prediction (Wheat et al., 2014). A known property of cross-sectional models is that the 

variance of the conditional distribution of inefficiency does not tend to zero as the sample 

size increases. Here, the central intervals remain wide
4950

 (Street, 2003). This is a key aspect 

of efficiency analysis for policy makers, being one reason for which efficiency studies have 

not been widely used (Hollingsworth and Street, 2006; Hollingsworth, 2008). This is not the 

case, however, in the panel data setting, where the variance does tend to zero (Murillo-

Zamorano, 2004). However, this does not provide a perfect solution; there is always 

uncertainty in separating of inefficiency from noise. Moreover, the ultimate quantity of 

interest to the researcher is the interval itself, rather than the point estimate (Wheat et al., 

2014).  

In panel data Schmidt and Sickles (1984)-type approaches, firm-effects can be more precisely 

predicted as T increases. In the NHS setting, recently multi-level approaches have made use 

of patient level data, enabling precise estimates (Gutacker et al., 2013a).  

                                            
49 In addition, conventional intervals do not incorporate parameter uncertainty and are likely to be too narrow (Wheat et al., 2014). 
50 Conventional stochastic frontier prediction intervals (e.g. Horrace and Schmidt) are central, two sided intervals. Accordingly, they do not 

capture the asymmetry of the conditional distribution of the inefficiency, meaning they are not the minimum width intervals (Wheat et al., 
2014) 
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Regulators have also been interested in sensitivity analysis. For example, Ofwat considered a 

large range of model specifications, functional forms and efficiency specifications (CEPA, 

2014). Sensitivity analysis is also endorsed for efficiency measurement in health (Jacobs et 

al., 2006). Monitor made use of a number of specifications and variable definitions (Deloitte, 

2014b). To accompany sensitivity diagnostics, a range of statistical testing procedures can 

guide model selection (Greene, 2012).   

 

4.6 Discussion 

 

4.6.1 Efficiency analysis for the regulation of NHS hospitals 

As the existing economic regulator of foundation status hospitals – and therefore as financial 

arbiter –Monitor is well disposed to setting efficiency targets for NHS hospitals. Monitor has 

demonstrated its desire to take an approach to setting the efficiency factor which is in line 

with other regulators in Britain (based on econometric techniques), given that there is limited 

precedent in other health markets (Deloitte, 2014a).  

Following this, Monitor has conducted analysis to set its efficiency factor for 2015/16 using 

two approaches: an econometric benchmarking exercise and a bottom-up modelling exercise 

(Deloitte, 2014b). The efficiency factor proposed on this analysis was 3.8%. As noted above, 

this was rejected by 75% of providers, and is thus being referred to the CMA. Given this, we 

discuss Monitor’s modelling approach and how it accords with health-based efficiency 

measurement issues, given the issues raised in section 4.5. We derive an index of Monitor’s 

approach to benchmarking which is in keeping with that of Haney and Pollitt (2009). In turn, 

we use this as a basis for setting some empirical goals for subsequent chapters. In doing so, 

we return to the question we set out in section 4.2, 

(i) How to measure hospital efficiency whilst controlling for quality of care 

We have augmented the regulatory best practice criteria of Haney and Pollitt (2009; 2011) to 

capture health-specific issues raised in academic studies, see table 4.3. We now reconcile 

Monitor’s benchmarking against these issues to observe any potential areas for improving 

their methodology. In doing so, we draw from our own methodological discussion in chapter 

3.  
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Monitor has made use of large data – their sample contains 832 observations. This is much 

larger than any other recent regulatory study, see Appendix B. Moreover, this was possible 

without making use of international comparison. The benefit of this is that assigning a 

common cost function across the sample is more defensible than would be the case in 

international comparison. Further, this could be expanded by making use of patient level data 

from HES. In this sense, Monitor can be seen as leading in regulatory terms. 

Data quality was accounted for in Monitor’s analysis by making use of a number of variables 

and through sensitivity analysis. Of course, there remain issues around data quality over time. 

For example, clinical codes are updated annually, casting doubt over the consistency of data 

over time (HSCIC, 2013b). However, there have been no major overhauls to the coding 

system in the period under analysis (e.g. from HRG-4 to HRG-5). As noted, hierarchical 

modelling is one possible solution to avoid data inconsistency over time. We examine this 

issue in detail in chapter 6 of this thesis. A further answer to this issue is to make allowances 

for unobserved heterogeneity to account for these inconsistencies. We examine this issue in 

both chapters 5 and 6 of this thesis. 

Allocating capital costs is not an issue for Monitor’s approach to modelling since the 

reference costs include capital costs. The disadvantage is that the allocation of capital costs is 

unknown from the data – Reference Costs – meaning that separate OPEX and TOTEX 

modelling would not be possible as it is for other regulators.  

As noted, Monitor has, by mandate, to engage with the industry, as set out in the Health and 

Social Care Act (2012). It does this via a series of workshops, consultations and through the 

final response of providers for its efficiency factor determination. In this sense, Monitor is in 

keeping with this criterion of best practice.  

Monitor has also adopted a range of methods to its analysis. It has considered the full 

spectrum of economic tools (Deloitte, 2014a), and from recommendations of the report, opted 

for a combination of econometric benchmarking and bottom-up modelling. Within its 

econometric benchmarking, it has further used a range of methods, namely a random effects 

model as per Kumbhakar and Lovell (2000), a Pitt and Lee (1981) time-invariant stochastic 

frontier model and a Battesse and Coelli (1992) time-varying stochastic frontier model
51

. In 

this sense, it can be said that Monitor has fulfilled this aspect of best practice. However, 

given its large sample size, it has the potential to use a more sophisticated range of models. 

                                            
51 For specification see chapter 3 
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We see this as a useful extension to Monitor’s analysis. We pursue this issue in chapters 5 

and 6 of this thesis by using a wider set of inefficiency models in our analysis. 

As noted above, Monitor has used panel data and has estimated a model which allows 

temporal variation in efficiency. However, it is possible for Monitor to make greater use of 

both of these aspects of its data to enhance its analysis. Panel data techniques can be used to 

account for unobserved heterogeneity, to which we turn below. Next, the issue of time-

varying efficiency is very important in this setting, and in regulatory settings more widely 

(see for example Smith (2012)). The assumption of time-invariant efficiency over a 5 year 

period – especially in light of policy pushes for efficiency and productivity gains over the 

period (see chapter 2; fig 4.1) – is unpalatable in the context of NHS hospitals. Monitor’s 

approach makes use of one model, that of Battesse and Coelli (1992), which does allow for 

temporal change. However, the treatment of temporal change is fairly limited, for example it 

applies the same direction of change to all hospitals in the sample, which is unrealistic.  

There are a number of models available that allow a more sophisticated approach to 

modelling temporal efficiency change. Given the large sample size, it would be possible to 

estimate more advanced models. Moreover, change in efficiency over time is an aspect of 

efficiency analysis that NHS staff have indicated as being useful (Hollingsworth and 

Peacock, 2008). For these reasons, we have paid close attention to this topic both in our 

methodological discussion (chapter 3) and our empirical work (chapter 5).  

Organisational heterogeneity is again a key issue in health efficiency measurement and has 

featured in the analysis of Monitor. Monitor’s approach is to maintain a whole hospital level 

approach and use case-mix variables to account for organisational heterogeneity. This 

introduces a number of issues.  

First, that having to index outputs requires that data are available for all outputs in order to 

capture them in the index. It is not clear that this is the case (Deloitte, 2014b, pp.7). The 

construction of the index itself may have bearing on the index value, the corresponding 

parameter estimates and therefore the estimates of efficiency. It is not clear that Monitor have 

checked for sensitivity to their method of case-mix adjustment. As noted in the academic 

literature, aggregate measures at the hospital level are of limited use to local management 

seeking to identify service-specific inefficiency. Lastly, there may well be unobserved 

heterogeneity that may influence estimates of efficiency.  



105 
 

The other major drawback of this approach to efficiency analysis is that it does not provide 

insights into the way in which services drive costs, which is useful information to managers 

and to policy makers.  

We propose two major rectifications. First, to model at a disaggregate level of service. We 

take this approach in both chapters 5 and 6. Further, a multi-level approach could be used to 

disentangle the effect of upper tier hospital management on service-level efficiency. 

Moreover, this has been identified as a key way in which to extend efficiency analysis in 

health (Hollingsworth and Peacock, 2008). We adopt this approach in chapter 6. Secondly, 

we reiterate the importance of making allowances for unobserved heterogeneity. This is a 

central theme in chapters 5 and 6.  

Other aspects of organisational heterogeneity have been included into Monitor’s analysis. A 

set of dummy variables are included into the cost function to control for the size of the 

hospital, whether it provides specialist services, whether teaching services are provided and 

whether the hospital is a multiservice
52

 provider. These help to account for heterogeneity, but 

may still be somewhat lacking. For example, in Buckell et al. (2015), foundation status was 

important. There may be other sources of provider heterogeneity, competition for example, 

that are important for the analysis of costs. Again, this motivates making allowances for 

unobserved heterogeneity is key when data are limited. We address these issues in chapters 5 

and 6 with appropriate modelling approaches. 

In terms of patient level heterogeneity, the story is similar. Monitor have partially captured 

this heterogeneity in their analysis via the use of variables age, gender, ethnicity and 

deprivation. However, there are arguably patient characteristics omitted; multimorbidity, for 

example. There are approaches which can make use of patient data, which allow the full 

information available to be used for analysis (Olsen and Street, 2008; Gutacker et al., 2013a). 

Equally, using controls for unobserved heterogeneity can mitigate concerns over bias in 

efficiency prediction.  

For quality and outcomes, a specific quality variable was constructed by Monitor based on 

the NHS staff survey, entailing 15 questions of staff perceptions of their own level of quality. 

Therefore it can be considered that this aspect of benchmarking has been addressed. Of 

course, there are several other dimensions of quality, namely outcomes, access, etc. that are 

overlooked here. This approach is similar to that we have taken in our empirical chapters, 

                                            
52 Provide a wider range of service than secondary care, e.g. community services 
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except that, in recognising we have incompletely captured this feature, we have gone on to 

model unobserved heterogeneity. We discuss this issue in chapter 5. 

We have already considered unobserved heterogeneity as it has emerged when considering 

other aspects of regulatory best practice. We have noted that we have sought to control for 

this in our empirical chapters, particularly in our latter chapter, 6.  

For uncertainty and sensitivity, Monitor use a range of sensitivity analyses including testing 

the coefficients to different specifications of the dependent variable (using different deflators 

for costs over time); using random effects and stochastic frontier models; using samples that 

have extreme observations removed; and models with and without insignificant variables. 

Coefficient values appeared to be robust to these specifications. Thus, Monitor has captured 

some of the features identified for sensitivity in their analysis. However, we propose several 

extensions.  

First, to test whether the imposed Cobb-Douglas functional form is the most appropriate in 

statistical terms (the best fit of the data). Using more sophisticated functional forms helps to 

capture unobserved heterogeneity and may have appealing economic properties – for 

example the translog allows economies of scale to vary across the output range (see chapter 

3; chapter 5; Buckell et al., 2015). Second, although some statistical testing of individual 

variables was conducted, this process can be improved by testing inefficiency models against 

each other. This helps to justify model selection. We adopt this approach in chapters 5 and 6.  

A summary of Monitor’s approach is given below in table 4.4 as a Haney and Pollitt (2009)-

esque benchmarking index.  
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Issue Score Reasoning 

      

Large Data 1 data set large 

      

Data Quality 0.5 issues around consistency of collection 

      

Allocating capital costs 1 capital costs allocated in reference costs 

      

Engagement with 

industry 1 in a number of ways 

      

Range of methods 1 econometric benchmarking and bottom-up modelling 

      

Panel methods and 

temporal efficiency 0.5 panel data used; time dynamics could be explored further 

      

Heterogeneity: 

Organisational 0.5 

aggregate measure of output used; could disaggregate, could adopt 

multi-level approach 

      

Heterogeneity: Patient 

level 0.5 some controls but not comprehensive coverage 

      

Heterogeneity: 

Quality/Outcomes 0.5 some controls but not comprehensive coverage 

      

Unobservable 

Heterogeneity 0 no controls for unobserved heterogeneity 

      

Uncertainty and 

sensitivity 0.5 some sensitivity; little by way of uncertainty 

      

Total 7 of 11   

      

Table 4.4: Benchmarking Index for Monitor’s 2015/16 NTPS Analysis. 0 indicates that the issue is not 

addressed in the analysis; 0.5 means that some control for the issue has been made; 1 denotes the issue is 

captured in the analysis. The scores are the author’s judgements, based on the preceding section.  

 

An index value of 7 from a possible 11 (table 4.4) indicates that there are many satisfactory 

elements of the approach, but also that there are some areas in which improvements could be 

made.  

In Haney and Pollitt (2009), international regulators’ benchmarking index values ranged from 

0 to 7 on a scale of 8; there was a mass of regulators with 0 score. Regulators in the UK 

obtained scores in the range of 3 to 6, with an average of 4.5. If Monitor’s benchmarking was 

subject to this index, it would receive a full score of 8, indicating that it has fulfilled all of the 

criteria. 
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However, given that (a) its current analysis has been soundly rejected by providers; (b) there 

are health-specific issues that require specific attention (e.g. patient level heterogeneity), 

there is a clear need to tailor the index for health care markets
53

. In so doing, this index may 

be of use to health regulators around the world who are engaged in benchmarking in health. 

These form the basis of our empirical analysis, as indicated below.  

 

(i) Analysis at a disaggregate level of service (Ch 5 & 6); 

(ii) Dual-level efficiency analysis (Ch 6); 

(iii) Accounting for unobserved heterogeneity (Ch 5 & 6); 

(iv) Extending the analysis of temporal efficiency change (Ch 5); 

(v) Functional form (Ch 5 & 6); and 

(vi) Statistical testing (Ch 5 & 6). 

 

4.6.2 Encouraging Efficiency in NHS Hospitals 

Efficiency measurement is an important first step for Monitor. On this, to a greater or lesser 

extent (depending on regulatory judgement), Monitor will set the efficiency factor. The next 

stage is to ensure that corresponding savings are achieved. NHS hospitals appear to have, in 

general, responded well to various targets that they have been set. This is in contrast to the 

savings set out by the efficiency factor during the same period, which have not been met. We 

have reviewed evidence to draw out lessons for Monitor, to which we now turn.  

We have identified from the literature features of hospital targets which appear to effective 

(box 4.1); and symptoms of regime failure (box 4.2).  

As regards box 4.1, many features of the revised system are conducive to Monitor 

successfully implementing efficiency savings amongst NHS hospitals. Monitor, the existing 

economic regulator, will have good knowledge of hospitals’ data and financial performance, 

given that this is already within its remit. Moreover, Monitor has a much narrower agenda 

than that the Department of Health; they do not have to provide and maintain health services 

as well as to regulate them. This means that they are able to assign greater priority and focus 

to the efficiency factor. In order for targets to be met effectively, it appears important features 

include ensuring targets are effectively communicated, prioritised and applied consistently; 

                                            
53 Equally, regulators in other sectors may also benefit from reviewing their sector-specific issues and developing their own indices 
accordingly 
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that the results are widely disseminated; and that comprehensibility is key (Mannion et al., 

2005; Bevan, 2006). Further, Monitor has the authority to impose sanctions for failure to 

meet targets; having sanctions for failure is effective for improving performance (Smith and 

Sutton, 2013). 

As regards box 4.2, using an econometric approach has key advantages with regard to some 

of the issues encountered in applying other targets such as ambulance response times. They 

are easily interpreted (bounded by zero and one); they allow ranking of providers; and can be 

used in a time series dimension. Modelling based on cost functions can help to obviate 

gaming, unintended consequences, partial measures of performance and diversion of 

resources from elsewhere, since the entire production process is modelled (Buckell et al., 

2015). However, the extent to which this is possible in reality is unclear; cost (and other 

forms of) data can be gamed (e.g. Moran and Jacobs, 2015). They do not require aggregation 

of several indicators and multiple measures can be included in the analysis as variables. Some 

performance indicators, for example readmission rates, may themselves give misleading 

accounts of provider performance (Laudicella et al., 2013). Persistence can assuage concerns 

over myopia and tunnel vision (Mannion et al., 2005).  

From our review of regulatory pricing mechanisms (section 4.4), an important step is to 

lengthen the current regulatory lag in line with regulatory theory. Regulatory theory suggests 

that when regulatory lag is short, the incentives to improve efficiency via reducing costs are 

reversed from being high powered to low powered. Whilst it is not clear what an optimal lag 

would be, the current lag of a single year appears too short based on current performance
54

. 

To follow the regulatory norm would be to set the lag at 5 years; alternatively, Monitor may 

wish to align the regulatory lag to specific policies such as the five year forward view (NHS 

England, 2014a). Moreover, the price-cap mechanism can be incorporated into a more 

complicated system which embeds service level requirements from the Department of Health. 

We gave an example of the ORR’s tripartite approach. This may be particularly useful given 

the current stand-off between Monitor and NHS providers.  

 

4.7 Conclusions 

The responsibility for setting the efficiency target has recently changed from the Department 

of Health to the economic regulator, Monitor. Monitor has sought a more evidence-based 

                                            
54 Whilst it would be surprising if this was the only reason for missed targets, we submit that it is a contributory factor 
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approach to setting the efficiency target (Deloitte, 2014a). Monitor has used econometric 

benchmarking as part of a series of methods to estimate the efficiency factor for NHS 

hospitals. This determination has been rejected by hospitals and is currently being reviewed 

by the CMA.  

We have reviewed recent methodological advances in efficiency measurement in health and 

beyond. We recommended the extension of econometric techniques to assess NHS hospitals’ 

efficiency. We have identified particular features of the analysis that may be used to enhance 

Monitor’s approach, based on practical and statistical issues.  

In addition, we have reviewed the application of alternative policies for performance 

management, and observed features of these policies that were effective; and those that 

proved problematic. This should be useful information for Monitor in seeking to reduce 

leakage. We have further reviewed regulatory pricing and suggested alterations to the current 

pricing mechanism to foster efficiency. 

Having paid attention to features of and issues with efficiency analysis in the NHS setting 

(and in health more generally), we move to our empirical analysis. Here, we seek to estimate 

efficiency within NHS hospitals. Specific focus is given to pathology laboratories within 

NHS hospitals. Therefore, we move to the next two chapters which present empirical work in 

NHS pathology.  
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5. Efficiency over time, economies of scale, multi-factor productivity and mergers in 

National Health Service Pathology 

In our introductory chapters, we noted that on account of the scale of savings required, there 

is a need to examine new areas of hospital services to identify areas in which efficiency 

savings can be derived. This chapter, based on Buckell et al. (2015), represents such work. 

In the previous chapter, we reviewed the regulation of efficiency amongst NHS hospitals. A 

central aspect of this process is the measurement of efficiency itself, as a guide to setting 

efficiency targets. We described how the measurement of inefficiency had been problematic 

in health markets, for a variety of reasons, both technical and practical. Therefore, our 

methodological approach has been designed to factor in these issues.  

This chapter is one of two empirical studies of hospital efficiency in this thesis. There is 

evolution in our analysis, across the two studies, as follows. The focus of this study is on 

describing pathology services and on primal economic issues regarding the level of 

inefficiency in pathology services, the drivers of laboratory costs, scale and so on. In the next 

study, we move to more sophisticated methodological questions by considering multi-level 

organisational structures and the nature of unobserved heterogeneity.  

The main features of this analysis are in keeping with issues raised for health-based 

efficiency analyses in prior chapters. First, the study picks up on several technical themes 

identified: using an econometric approach based on the cost function, the use of panel data, 

analysis at an appropriate level of disaggregation, sensitivity analysis and statistical testing, 

allowing for unobserved heterogeneity and allowing for service quality. Further, we answer 

several pathology-based policy questions pertaining to: the extent of potential efficiency 

savings, economies of scale, the cost implications of mergers, change in efficiency over time, 

reconciling technological progress and efficiency change.  

This study demonstrates the challenging trade-off that regulators face as regards disaggregate 

analysis. On the one hand, as has been argued in the literature, concerns around heterogeneity 

are abated with disaggregate studies, and, data permitting, a more granular approach to 

characterising heterogeneity can be taken (see chapter 4). The downside, on the contrary, is 

that estimates of inefficiency are limited to the service themselves, in this case pathology 
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services (this again has been noted in the literature, see chapter 4). Whilst the goal of this 

study is not to reconcile this issue, it is important to make note of it. Of course, the regulator, 

having access to a wealth of data, is able to conduct similar studies across a range of hospital 

services.  

We begin in section 5.1 by describing pathology services and their impact on wider NHS 

services. We then consider how pathology services have been measured and detail the 

advantages of taking an econometric approach (section 5.2). In the following section, 5.3, we 

discuss the methods and data used in detail. We then present and discuss various aspects of 

our results, in sections 5.4 and 5.5, respectively. Finally, in section 5.6, we conclude.  

 

5.1 Introduction 

Pathology services account for an estimated 3-5% of the overall NHS budget, costing an 

estimated £2.5bn in 2005 (Department of Health, 2006). Although relatively small as a 

proportion of total health care spend, potential efficiency gains in these services are not 

confined to pathology itself. Pathology activity supports many front-line services and so 

savings in pathology services promote further gains elsewhere in the healthcare system 

(Veronesi et al., 1997; Buckell et al., 2013). The Carter Review (Department of Health, 2006) 

estimates 70-80% of all clinical decisions are affected by pathology analyses; thus good 

pathology practice can lead to cost savings along a patient’s treatment pathway (Department 

of Health, 2006). There is evidence of unnecessary repeat testing (Department of Health, 

2006), suggesting that inefficient practice is present in these services. Lastly, there is 

variation in the uptake of lean practice initiatives
55

 meaning that there is likely variation in 

the magnitudes of efficiency in these services. Therefore, there are likely significant gains to 

be made by encouraging best practice in pathology services to contribute to the policy 

objective of achieving efficiency savings. This study aims specifically to identify the level of 

inefficiency in pathology services in order to measure the extent of savings possible in this 

area.  

The current approach to measuring inefficiency in pathology in the NHS is performance 

indicator analysis (such as cost per test carried out); (Healthcare Commission, 2007; 

                                            
55 NHS Institute for Innovation and Improvement: Pathology lean practice case studies, 
http://www.institute.nhs.uk/quality_and_value/lean_thinking/leean_case_studies.html 

http://www.institute.nhs.uk/quality_and_value/lean_thinking/leean_case_studies.html
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Department of Health, 2008; Liebmann, 2011; Holland et al., 2012). These are partial 

measures which do not fully reflect all the factors affecting the costs of provision under 

different circumstances (for example, scale properties or sources of operational heterogeneity 

between providers). This point has been established in the wider health context (Goddard and 

Jacobs, 2009; Street et al., 2011). We use the data collected and analysed by the Keele 

University Benchmarking Unit (Holland et al., 2012), but extend the analysis by utilising an 

econometric framework to give a single measure that captures the overall efficiency of 

pathology services. Our model takes account of a range of factors influencing costs, whilst 

controlling for unobservable heterogeneity. 

We use stochastic frontiers which have been applied widely in health at the micro level 

(Street, 2003; Farsi et al., 2005a, 2008; Herr, 2008; Hollingsworth, 2008; Olsen and Street, 

2008; Rosko & Mutter, 2008; Sorensen et al., 2009; Herr et al., 2011). We adopt a particular 

stochastic frontier method with attractive properties in respect of analysing efficiency change 

over time; this method has been applied by economic regulators outside health for that reason 

(Smith, 2012). To our knowledge, no stochastic frontier (or other efficiency measurement 

tool such as DEA) work has been conducted on pathology laboratories, meaning that our 

application is the first of its kind
56

.  

 

5.2 Performance Measurement in Pathology 

Pathology services are increasingly recognised as key support for a range of services across 

the NHS. As demand for NHS services increases in general, demand for pathology services 

increases (as derived demand). Faced with increasing demand and falling income 

(Department of Health, 2006), the performance of pathology services is coming under ever-

increasing scrutiny. Therefore, rigorously measuring the performance of laboratories is 

critical. Typically, pathology laboratories are situated within NHS trusts (see below).  

                                            
56 If pathology is classed as diagnostic medicine, then there exists some stochastic frontier work in this area (Dismuke & Sena, 1999). 

However, this study concerns patient-based, in-hospital activity such as computerised axial tomography (CAT) scans, whereas our study 

involves pathology laboratories – which are independent of their host hospitals and do not have direct patient contact – conducting blood 
and tissue tests. We therefore view pathology services as distinct from this kind of diagnostic medicine. 
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Figure 5.1: Schematic of Pathology Services 

As can be seen from Fig. 5.1, as patients move around the healthcare system, diagnostic 

services are requested and performed. As activity occurs, information is recorded and used 

for analysis of these services.  

Major reviews of NHS pathology services include the Carter Report (Department of Health, 

2006), and the associated follow up report which included pilot studies of services 

(Department of Health, 2008); the Healthcare Commission’s study (2007); the NHS 

confederation (2010); and the Keele University Benchmarking project (Holland et al., 2010; 

2011; 2012)
57

. There is a growing body of evidence on these services, and good quality data 

available; a summary of these studies’ analyses is provided in Table 5.1. 

                                            
57 Some key performance indicators are being introduced, but have not yet been employed (Liebmann, 2011). 
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Study Year 
Number of 

Sites 
Type of study Summary of Key Points 

     

Department of 

Health 
2006 163 Qualitative 

Full qualitative analysis of pathology services. Identified key areas for performance improvement - 

workforce balance, economies of scale, information systems adoption, out of hours working, network 

activity. Recommended pilot studies conducted. Noted that geographical location may be a source of cost 

heterogeneity. 

     

Healthcare 

Commission 
2007 163 Quantitative 

Breakdown by pathology discipline comparative cost per test analysis; requests:staff and tests:staff ratios 

used; descriptive statistics for out of hours operation, information systems adoption, use of automated 

services, network activity; recognised that tests for primary care may be cheaper than for secondary care; 

noted the issue of tests:requests as a potential source of performance variation. Foundation trusts may take 

a commercial approach to service provision. 

     

Department of 

Health 
2008 12 Quantitative 

Breakdown by pathology discipline (e.g. biochemistry) comparative cost analysis; some economies of 

scale observation; little control for heterogeneity; savings estimate £250m (extrapolated results nationally 

from 12 pilot studies). 

     

     
NHS 

Confederation 

 

2010 163 Qualitative 
Identifies variation in practice; difficulty in monitoring staff leads to variation in practice; workforce 

balance, IT systems adoption, leadership and network activity as key areas for performance improvement. 

     

Keele 

Benchmarking 
2012 84 Quantitative 

Breakdown by pathology discipline (e.g. biochemistry, hystocytology); test volumes descriptive statistics; 

productivity indicators; 5 year trend analysis of outputs and productivity indicators; expenditure of 

laboratories; quality indicators (e.g. turnaround times) 

     

Table 5.1: Pathology Studies 
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Table 5.1 describes the outcomes of each of the studies. The quantitative analyses above use 

performance indicators to judge the performance of NHS pathology laboratories (e.g. cost per 

test ratios, staff per test, turnaround times, test to request ratios). The use of these indicators is 

widespread in NHS pathology and across the world (Valenstein et al., 2001; Kiechle and 

Main, 2002; Price, 2005; France and Francis, 2005), but there are limits to their ability to 

reflect the entire operation of a laboratory. Moreover, in health markets, indicators can be 

targeted for gaming (Propper and Wilson, 2003; Propper et al., 2008; Mutter et al., 2008; 

Palangkaraya and Yong, 2013), or relying solely on indicators can lead to unintended 

consequences (Bird et al., 2004; Cots et al., 2011). Lastly, judging a single unit’s 

performance across several indicators may be difficult if the values conflict. 

An econometric framework is proposed to overcome these issues. Our measure of cost 

efficiency yields a single efficiency score capturing overall performance which is easily 

interpreted (bounded by zero and one). Gaming is no longer an issue since the entire 

production process is modelled
58

 .  

A further key advantage of the econometric approach is that it is underpinned by economic 

theory and stochastic frontier analysis is used widely across many sectors, including health 

(Kumbhakar and Lovell, 2000; Hollingsworth, 2008). In addition, we can analyse the 

temporal pattern of laboratory inefficiency, which NHS staff have indicated as a desirable 

feature of performance analysis (Hollingsworth and Peacock, 2008). Finally, econometric 

analysis allows us to value the impact of some of the issues noted in the qualitative studies 

(Table 5.1), such as the ratio of primary care tests on costs – as raised in the Healthcare 

Commission study (2007), which is useful information in the policy context. 

 

5.3 Methods 

Stochastic frontiers (Aigner et al., 1977; Meeusen and van Den Broeck, 1977) are 

econometric tools used to estimate the level of inefficiency of firms or decision making units 

(DMU) in a sample. Laboratory costs are our metric of interest. Our economic stochastic 

                                            
58 We use operating costs rather than total costs (including charges), meaning the production process is not strictly entirely modelled. Capital 

costs are budgeted centrally at trust (hospital) level, rather than laboratory level, meaning assigning specific capital charges to laboratories 

can only be estimated. We note that this has been found in pathology elsewhere, e.g. New Zealand (France and Francis, 2005). Moreover, 
this is not particular to pathology (Drummond et al., 2005, pp. 64). 
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frontier model for pathology, derived from a basic cost function (see chapter 3), takes the 

form,  

𝑐 = 𝑓(𝑦, 𝑤, 𝑡, 𝑧, 𝑞) + 𝑢 + 𝑣                                                                                                              (5.1) 

Where c are costs, y represents output, w represents input prices, z represents the observable 

heterogeneity, q represents quality and t represents time. As standard for stochastic frontiers, 

u represents the inefficiency and v represents random statistical noise.  

As standard in the literature, output and input prices are considered exogenous, which is 

obvious for input prices and reasonable for output levels given that the laboratories do not 

choose their level of output. In the case of pathology, using the work of previous studies (see 

table 5.1), the operational characteristics of the pathology operating environment can be 

identified and variables are used to capture these where data are available (the z vector). 

Otherwise, methods for capturing unobservable heterogeneity are employed.  

For service quality, although measures of quality in pathology services are not as complex as 

in the treatment of patients (Smith and Street (2013) note the multi-dimensional nature of 

patient treatment quality), this remains an issue for our study. Each of the laboratories in our 

sample has acquired quality accreditation
59

. Our understanding of accreditation is that it 

represents a baseline level of quality. Therefore, we recognise that there may well be 

laboratory-specific variation in quality over and above this baseline level. This is one reason 

for which we apply empirical controls for unobserved heterogeneity; that is, quality that is 

not captured in the accreditation is absorbed into the control for unobserved heterogeneity 

rather than absorbed by the inefficiency component of the model.  

A set of five models stochastic frontier is used to model inefficiency. These include a 

generalised least squares random effects model
60

, see Kumbhakar and Lovell (2000). We 

refer to this as REM. We use a Pitt and Lee (1981) stochastic frontier with time invariant 

inefficiency, which we refer to as P&L. Next, we use a Battesse and Coelli (1992) stochastic 

frontier with time varying inefficiency. We refer to this as BC92. Our penultimate model is 

that of Cuesta (2000), which is a stochastic frontier with firm-specific (or in our case, lab-

specific) time-varying inefficiency. We refer to this as Cuesta. Finally, we use a true random 

                                            
59 Clinical Pathology Accreditation: http://www.cpa-uk.co.uk/ 
60 Hausman tests (1978) consistently favoured RE over FE estimation; we are also interest in examining time-invariant variables which we 
are unable to do in a FE framework. 

http://www.cpa-uk.co.uk/
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effects model (Greene, 2005). We refer to this as TRE. See table 5.2 for econometric 

specification; see section 3.5.4 for discussion of the models. 

The REM is used to give ‘baseline’ values for both parameter estimates and for inefficiency 

(using the GLS procedure outlined in Kumbhakar and Lovell (2000)). Parameter estimates 

from these models do not rely on the distributional assumptions of the stochastic frontiers
61

 

and so parameter estimates are used to validate those derived from the frontiers.  

The P&L model assumes time-invariant inefficiency. The BC92 fits a time trend to the 

inefficiency - the η parameter (table 5.2) - which subjects all firms’ efficiency scores to a 

common direction of change over time. The Cuesta model is a generalisation of this, allowing 

estimation of independent firm efficiency time trends: individual ηs for each laboratory
62

. 

This means firms can ‘catch up’ relative to others over time and the efficiency rankings of the 

laboratories can change over time, which are realistic features. This point is particularly 

relevant in a policy context, and this model has been used by regulators in other sectors, e.g. 

rail (Smith, 2012). Alvarez et al. (2006) further note that a key advantage of this model is that 

it enables the unrealistic assumption of independence in inefficiency over time (a problem 

that plagues many comparator models) to be relaxed.  

The TRE model claims to delineate efficiency from unobservable heterogeneity by including 

a time-invariant, firm-specific term in the model to capture unobserved factors, in addition to 

the inefficiency term (Greene, 2005). A potential drawback of this model is that efficiency 

scores are independent over time, meaning that time trends of firms cannot be tested 

statistically. Additionally, this model assumes that all the time-invariant variation in the cost 

function that is not explained by the regressors is unit-specific heterogeneity and not 

inefficiency; this is not necessarily the case as some time invariant persistent inefficiency 

may also be present.  

To these models, we test three alternative specifications to examine heterogeneity. First, a 

basic cost function with output, input prices and time is estimated. By including a time trend 

in the cost function, we separate exogenous change in costs over time from cost inefficiency 

(Kumbhakar and Lovell, 2000).  

                                            
61 Due to an unbalanced panel, a Baltagi & Li (1990) adaptation of the Breusch-Pagan (1980) test has been used and confirms the use of 

panel methods. 
62 Within this framework, the temporal pattern of inefficiency can be tested statistically, which is a key advantage over alternative 
approaches such as Cornwell et al. (1990). 
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In the second, we add the vector, z, of observable heterogeneity variables. These include the 

number of primary care tests (which are thought to be less costly than other tests), and the test 

to request ratio which captures the variation in the number of tests per request, which varies 

between laboratories, and is therefore a source of heterogeneity. Another source is the 

geographical setting of the laboratory: metropolitan, urban or rural (following Department of 

Health, 2006, see table 5.1). This will be referred to as the TYPE of laboratory. It has been 

suggested that pathology demands of inner city laboratories are much different to those in 

rural areas. Further, the foundation status
63

 of a trust is seen to motivate it to act more 

commercially (Healthcare Commission, 2007, see table 5.1; Marini et al., 2008), which is 

expected to be extended to their pathology services. Lastly, data are available on whether the 

laboratories provide teaching services.  

The third specification finally adds dummy variables to capture unobservable heterogeneity 

(e.g. IT infrastructure/maturity, network activity) (Arocena et al., 2012). We use the strategic 

health authority dummy variables and then group them by region for parsimony.  

We refer to the specifications as s(i), s(ii) and s(iii).  

Finally, after having used this testing process to select a model, we exploit the fact that the 

stochastic frontier framework is based on a cost function to examine the cost elasticity 

properties across the output range and derive average and marginal costs in pathology 

production (AC and MC hereafter). We note that this is a key advantage of this method over 

DEA as an alternative. Focus is given to this aspect of production because this is a popular 

theme of interest throughout the literature (table 5.1), because there is little empirical 

evidence on this issue, and because of the growing membership of laboratories to local 

networks, which is encouraging the pooling of output); see Department of Health (2011). 

5.3.1 Empirical Specification 

First, for functional form, we test between a Cobb-Douglas and a translog specification to 

approximate our economic model in eqn. (5.1). A translog nests a Cobb-Douglas and we can 

readily test down. A translog has some appealing empirical and economic features: its 

flexible nature means it provides a second-order differential approximation to any unknown 

                                            
63 Foundation status of a NHS trust (a trust is a hospital or small group of hospitals) means that it operates under an independent, not-for-

profit regime, allowing it financial autonomy which it does not have without having foundation status (Marini et al., 2008). Trusts apply for 

foundation status, which is granted by the regulator, monitor, if the trust has satisfied the regulator of its financial competence. Foundation 
status has not been awarded to all NHS trusts.  
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function 𝑓(. ) (as in Equation (5.1)) (Kumbhakar and Hjalmarsson, 1995); it does not impose 

restrictions on substitution possibilities; and allows economies of scale to vary with output 

levels (Christensen and Greene, 1976).  

Logarithms are taken to give Farrell (1957)-type radial measures of inefficiency
64

. The 

translog representation is estimated for each model, 

𝑙𝑛 𝑐𝑖𝑡

= 𝛼0 + 𝛽1 𝑙𝑛 𝑦𝑖𝑡 +
1

2
𝛽11 (𝑙𝑛 𝑦𝑖𝑡)2 + 𝛽2 𝑙𝑛 𝑤𝑙𝑖𝑡   +

1

2
𝛽22 (𝑙𝑛 𝑤𝑙𝑖𝑡)2

+ ∑ 𝛽3𝑙𝑛𝑧𝑖𝑡

2

𝑎=1

+
1

2
∑ 𝛽33 (𝑙𝑛 𝑧𝑖𝑡)2

2

𝑎=1

+ 𝛽12𝑙𝑛𝑦𝑖𝑡. 𝑙𝑛𝑤𝑙𝑖𝑡 + ∑ ∑ 𝛽13

2

𝑎=1

𝑙𝑛𝑦𝑖𝑡. 𝑙𝑛

1

𝑛=1

𝑧𝑖𝑡

+ ∑ ∑ 𝛽23𝑙𝑛

2

𝑎=1

𝑤𝑙𝑖𝑡. 𝑙𝑛 𝑧𝑖𝑡

1

𝑏=1

+ 𝛽34𝑙𝑛𝑧1𝑡. 𝑙𝑛𝑧2𝑡 + ∑ 𝛽5𝑧𝑖

4

𝑐=1

+ ∑ 𝛽6𝜔𝑟

3

𝑑=1

+ 𝛽7𝑡

+ 𝜀𝑖𝑡                                                                                                                                                        (5.2) 

Where cit are operating costs; yit is output; wlit are labour input prices; zit are exogenous 

variables including tests for primary care and the test to request ratio; zi are laboratory-

specific, time-invariant dummy variables for the following: foundation status, teaching status 

and laboratory type
65

; ωr are regional dummy variables to capture unobservable 

heterogeneity; and t is a time trend capturing real cost changes over time (in this sample). 

Then, εit is decomposed into uit and vit which are inefficiency and statistical noise, 

respectively (see table 5.2 below for detailed specifications of each model).  

To decide on a preferred model, a number of statistical tests are applied
66

. We test functional 

form using a Wald test
67

.  

Next, we test between the three specifications from above, by which we mean either no 

heterogeneity variables s(i); observable heterogeneity variables only s(ii); and observable and 

unobservable heterogeneity variables
68

 s(iii).  We use LR tests for this. We refer to this as 

TEST 1.  

                                            
64 Variables are mean-scaled to allow direct interpretation of the first order terms; see Appendix A for derivation. 
65 Types of laboratory include rural, urban and metropolitan; rural is the reference case for modelling. 
66 Lai and Huang (2010), pp. 3, lament that “there are only limited systematic treatments of tests or model selection criteria in the existing 

stochastic frontier literatures.” 
67 H0: additional translog terms (squared and cross terms) are jointly equal to zero.  
68 H0: observable or unobservable heterogeneity variables are jointly equal to zero. 
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We then test between each efficiency model, by which we mean one of the 5 different 

efficiency models (REM, P&L, BC92, Cuesta, TRE), using a LR test
69

 for nested models 

(which we refer to as TEST 2)  and a Vuong test (1989) for non-nested models
70

 (which we 

refer to as TEST 3).  

In total, there are 30 models to be estimated
71

. 15 models are reported for comparison which 

represents our full set of models once the test for functional form has been applied. LIMDEP 

software (Greene, 2012a) is used for estimation. 

5.3.2 Inefficiency Models 

Table 5.2 below shows the econometric specifications of our range of models estimated.  

 
REM P&L BC92 CUESTA TRE 

      
Firm-specific 

component, αi 
𝑖𝑖𝑑(0, 𝜎𝛼

2) 𝑖𝑖𝑑(0, 𝜎𝛼
2) 𝑖𝑖𝑑(0, 𝜎𝛼

2) 𝑖𝑖𝑑(0, 𝜎𝛼
2) 𝑁(0, 𝜎𝛼

2) 

      

Random Error, εi 𝑖𝑖𝑑(0, 𝜎𝜀
2) 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 𝜀𝑖𝑡 = 𝑢𝑖𝑡 + 𝑣𝑖𝑡 

  
𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢

2)| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢
2)| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢

2)| 𝑢𝑖𝑡~|𝑁(0, 𝜎𝑢
2)| 

  
𝑣𝑖𝑡~𝑁(0, 𝜎𝑣

2) 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2) 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣

2) 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2) 

      

Inefficiency �̂�𝑖 − 𝑚𝑖𝑛{�̂�𝑖} 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡] 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡] 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡] 𝐸[𝑢𝑖𝑡|𝛼𝑖 + 𝜀𝑖𝑡] 

      

Time Trend 
  

𝑢𝑖𝑡 = exp [𝜂(𝑡 − 𝑇)]. 𝑢𝑖 𝑢𝑖𝑡 = exp [𝜂𝑖(𝑡 − 𝑇)]. 𝑢𝑖 
 

      

Table 5.2: Econometric Specifications of Models 

 

5.3.3 Merging Laboratories 

A feature of recent pathology services is that, following recommendations from the Carter 

Review, laboratories in close proximity are increasingly beginning to pool their production 

(Department of Health, 2006; 2009). A natural question arises as to what happens to the costs 

of production when laboratories merge. This is, of course, tied closely to the issue of 

                                            
69 H0: log likelihood model (a) is equal to log likelihood model (b) 
70 H0: model (a) is equal to model (b) 
71 2 (functional forms) x 3 (heterogeneity variable specifications) x 5 (types of efficiency model) 
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economies of scale, which is of great interest to NHS policy makers and policy makers more 

widely.  

In our data, there are no examples of laboratory mergers. However, it is possible to use the 

model to simulate the effects of laboratories merging to shed some light on this issue: we can 

simply compare the sum of the predicted merged laboratory costs and the sum of the 

predicted unmerged laboratory costs. We do this for laboratories in the final year of the 

dataset. 

To operationalise the merged scenario, we merge the smaller laboratories with each other. 

We define a “small laboratory” as one whose output (number of requests) is lower than the 

sample median. We then merge the largest “small laboratory” with the smallest “small 

laboratory”, the second largest with the second smallest, and so on. We assume the larger 

laboratory absorbs the smaller; we thus assume the characteristics (i.e. foundation status, 

teaching status, region, etc.) of the larger laboratory for computing merged cost estimates. 

We are interested in the proportional change in total costs that would occur if small 

laboratories were to merge, thus we compute the following ratio, 

∑ 𝐸(𝑐𝑖,𝑇|𝑥𝑖𝑡′𝛽)𝐼
𝑖=1 − ∑ 𝐸(𝑐𝑗,𝑇|𝑥𝑖𝑡

′ 𝛽, 𝑦 > �̃�)𝐽
𝑗=1

∑ 𝐸(𝑐𝑖,𝑇|𝑥𝑖𝑡′𝛽)𝐼
𝑖=1

                                                                                (5.3) 

where 𝐸(𝑐𝑖,𝑇|𝑥𝑖𝑡′𝛽) is the conditional expectation of costs for laboratory i in its final year, T. 

The 𝑥𝑖𝑡′𝛽 is the estimated cost function, 𝑦 is output and 𝑦 > �̃� denotes all output is greater 

than the (original) sample median, that is, laboratories with output lower than the median 

have merged. ∑ 𝐸(𝑐𝑖,𝑇|𝑥𝑖𝑡′𝛽)𝐼
𝑖=1  is the sum of the predicted costs across all unmerged 

laboratories and ∑ 𝐸(𝑐𝑗,𝑇|𝑥𝑖𝑡
′ 𝛽, 𝑦 > �̃�)𝐽

𝑗=1  is the sum of predicted costs across all merged 

laboratories. As a result of simulation, of the full sample of 57 laboratories, 28 “small” 

laboratories are merged into 14, thus reducing the number of laboratories from 57 to 43. 

Therefore, I, the number of unmerged laboratories, is 57 and J, the number of merged 

laboratories, is 43. 

Given the specification of our model (see equation (5.2)), there is an issue around 

retransformation of logged (predicted) costs (Manning, 1998). When the disturbance of the 

error term is normal, 𝜀̂~𝑁(0, 𝜎2(𝑥)), then  a straightforward correction can be made, 
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𝐸(𝑐𝑖,𝑇|𝑥𝑖𝑡′𝛽) =  𝑒𝑥𝑖𝑡
′𝛽+0.5𝜎2(𝑥)                                                                                                        (5.4) 

where the uncorrected estimate is an underestimate since, 

𝑒𝑥𝑖𝑡
′𝛽+0.5𝜎2(𝑥) > 𝑒𝑥𝑖𝑡

′𝛽                                                                                                                      (5.5) 

However, normality is an invalid assumption in our case as the stochastic frontier model does 

not, by definition, assume a normally distributed disturbance. Thus, an approach is required 

that can account for non-normally distributed errors. Therefore, as suggested by Greene 

(2012c, pp. 123), we use the smearing estimator proposed by Duan (1983). Thus our 

predictions of laboratory costs are, 

𝐸(𝑐𝑖,𝑇|𝑥𝑖𝑡′𝛽) =  ℎ0𝑒𝑥𝑖𝑡
′𝛽                                                                                                                  (5.6) 

where, 

ℎ0 =  
1

𝑛
∑ 𝑒 �̂�𝑖

𝐼

𝑖=1
                                                                                                                                (5.7) 

where n denotes the number of observations and 𝜀�̂� are the fitted residuals.  

5.3.4 Data 

Annual pathology benchmarking data (Keele Benchmarking) is used to compile an 

unbalanced panel of 57 English NHS pathology laboratories during a 5 year period from 

2006/7 to 2010/11
72

 (187 observations); accordingly we use maximum likelihood estimation 

(Baltagi, 2008) (except the REM which uses GLS and the TRE which uses simulated 

maximum likelihood). The sample represents approximately one third of the 163 NHS 

pathology laboratories in England. From table 5.3, there is considerable variation in the range 

and standard deviation of the costs, tests and requests variables, giving us confidence that we 

have a broad sample of laboratories. There is an almost even spread of laboratories amongst 

strategic health authorities (and therefore across England).  

Our data is for biochemistry services only. Biochemistry is one of five disciplines of 

pathology (the other four being haematology, hystocytology, immunology and microbiology). 

                                            
72 In our sample, 27 laboratories are observed twice, 7 are observed 3 times, 2 are observed 4 times and 21 are observed in every year – 5 
times.   
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Biochemistry is chosen because it is highly mechanised thus diminishing the issue of 

heterogeneity for modelling. It is the largest area of pathology (around 70% total activity 

(Holland et al., 2011)) and all laboratories run biochemistry services. A three stage process of 

data validation between the laboratories and Keele Benchmarking Unit is applied to ensure 

the data is accurate.  

Variables include total operating costs (net of capital charges), output (for which two 

measures are available: the number of tests and the number of requests), input prices of 

labour (from the UK labour force survey) and exogenous variables including the number of 

tests for general practice (primary care) and dummy variables for the foundation status of the 

host trust, for the pathology service providing teaching, for the laboratory type (metropolitan, 

urban, rural) and for the strategic health authority in which the pathology service is located. 

Service quality is assumed given that laboratories have been accredited as noted earlier.   

Costs and wage data are in real terms (2007 prices) using the consumer prices index. Labour 

force survey data is chosen over other sources (NHS staff census data, for example). This is 

firstly to ensure the exogeneity of the data: because the labour force survey data is collected 

and constructed independently from our study data, which would not be the case using the 

NHS-based data
73

. In addition, this data is a reflection of the true labour market conditions, 

which is not necessarily the case with the NHS data. Lastly, the NHS equivalent data is 

constructed using staff numbers which implies the measure may be correlated with output, 

which may lead to undesirable statistical issues such as collinearity. Secondly we aim to 

better reflect the regional variation in labour input prices than would be possible using 

alternative data. The ratio of tests to requests is calculated from the data
74

. Strategic health 

authorities are, following initial modelling, combined to form regional dummy variables for 

London, the South, the Midlands and the North using a Wald test procedure (Greene, 2012b).  

One available measure of clinical quality was available for analysis: turnaround times of 

tests. We did not use this for three major reasons. First, as an indicator, this is an incomplete 

measure of clinical quality (i.e. there are other dimensions of quality which may vary). This 

may induce measurement error if used to capture quality in our cost function. Second, some 

laboratories, although recording turnaround times, do not make efforts to reach targets as they 

                                            
73 Mutter et al. (2013) demonstrate using healthcare data that endogeneity can bias efficiency scores. 
74 As this variable is constructed using a variable that is also in the models, we check the correlation of the two variables for collinearity 

concerns. The correlation between the two variables is -0.34. We therefore do not see this as an issue. In any case, we note that collinearity 
is less an issue in panel data models than in cross-sectional or time series alternatives (Baltagi, 2008).  
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are not enforced. This means that this measure is likely to give a skewed reflection of this 

(partial) measure of quality. Third, the data completeness and validity is much lower than for 

the remainder of collected data (partly as some labs do not pay a great deal of attention to 

turnaround times).   

We note that we could have also used Reference Costs data for this analysis. For two major 

reasons we have not. First, we do not have the allocation of capital costs in Reference Costs 

data. We therefore do not know if inefficiency derives from inconsistencies in the allocation 

of capital costs or inefficiency itself. Secondly, the only output variable available is the 

number of tests; this, as explained, means that inefficiency estimates are vulnerable to 

gaming. 

Variable Mean S.D. Min Max 

     Operating costs (adjusted) 3617320 2058358 963875 11741895 

Number of tests 5037362 2990846 1380384 30199502 

Number of requests 714125 465535 191078 4423531 

Input prices (Labour) (adjusted) 24551 4160 15834 49955 

Number of primary care tests 2059689 932794 380790 5480395 

TYPE: Metropolitan 0.27  

TYPE: Urban 0.36  

TYPE: Rural 0.37  

Foundation Trusts 0.32    

Teaching Laboratories 0.46    

REGION: London 0.17  

REGION: South 0.25  

REGION: Midlands 0.29  

REGION: North 0.29  

Table 5.3: Descriptive Statistics 
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5.4 Results 

5.4.1 Cost Function Parameters 

Across the range of models estimated (table 5.4), a number of general observations can be 

made. Cost elasticity with respect to output implies economies of scale (which we refer to as 

size – see later section) in pathology production (the first order parameters are elasticities at 

the sample mean; we go on to explore how these vary with output later in this section). Real 

operating costs appear to be decreasing over time as indicated by the negative coefficient on 

the time trend variable. Operating costs in pathology laboratories are higher for those which 

have high test to request ratios, are located in metropolitan and urban locations (relative to 

rural laboratories), provide teaching services and are in the Midlands (relative to the Northern 

laboratories). Operating costs are lower for foundation trust laboratories and for those located 

in London or the South (relative to the North). There was no clear finding as to the effect of 

GP tests on laboratory operating costs, where the effect appears negative in two models, 

positive in another and not statistically significant in any other.  

 

5.4.2 Statistical Testing and Inefficiency Model Selection 

Wald tests strongly and consistently favoured the translog functional form (the null being the 

Cobb-Douglas). Test 1 finds the s(ii) and s(iii) heterogeneity variables jointly significant 

additions to the models in all cases (table 5.5). Test 2 strongly favours the Cuesta model over 

the BC92 and P&L. Test 3 favours the Cuesta model over the TRE model
75

. Therefore our 

preferred inefficiency model is Cuesta s(iii) based on statistical criteria. Indeed, this model is 

preferred a priori because of how it deals with efficiency change over time (see section III for 

details). A significant lambda value (table 5.4) confirms the presence of inefficiency
76

. 

                                            
75 We are aware that the Vuong test has no degrees of freedom restriction, meaning that it imposes no penalty for additional parameters 

estimated and so is likely to, in this case, favour the Cuesta model which has more parameters than the TRE model. Therefore, as a 
robustness check, we have also tested the P&L (which has fewer parameters than the TRE) against the TRE, and the test favours the P&L. 

Because our LR test preferred the Cuesta to the P&L, and the Vuong preferred the P&L to the TRE, we prefer the Cuesta to the TRE.  
76 In addition, we have tested the presence of inefficiency using the LR test procedure outlined in Coelli et al. (2005) pp.258, which also 
confirms our result, but we do not report the test results here. 
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Dependent Variable: OPEX Specification                   

  s(i) c = y, w, t         s(ii) c = y, w, t,  z – observable     s(iii) c = y, w, t, z - observable, z - unobservable   

  Model                             

  REM P+L BC92 CUESTA TRE REM P+L BC92 CUESTA TRE REM P+L BC92 CUESTA TRE 

                                

PARAMETER VALUES                               

CONSTANT 6.55*** 6.32*** 6.31*** 6.31*** 6.60*** 6.55*** 6.40*** 6.39*** 6.39*** 6.61 6.53*** 6.42*** 6.42*** 6.35*** 6.54*** 

  (0.02) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.06) (9.11) (0.04) (0.03) (0.03) (0.07) (0.00) 

OUTPUT 0.43*** 0.29*** 0.31*** 0.30*** 0.74*** 0.67*** 0.55*** 0.62*** 0.35*** 0.99*** 0.67*** 0.58*** 0.64*** 0.44*** 0.93*** 

  (0.05) (0.06) (0.06) (0.04) (0.05) (0.07) (0.10) (0.09) (0.07) (0.04) (0.07) (0.09) (0.08) (0.07) (0.00) 

INPUT PRICES 0.61*** 0.52** 0.54** 0.68*** 0.64*** 0.64*** 0.53*** 0.49** 0.59*** 0.84*** 0.83*** 0.80*** 0.89*** 1.30*** 1.04*** 

  (0.21) (0.21) (0.22) (0.14) (0.14) (0.21) (0.20) (0.22) (0.13) (0.09) (0.22) (0.23) (0.24) (0.21) (0.01) 

YEAR -0.01** -0.01 -0.01 -0.01** -0.02*** -0.01** -0.01* 0.01 -0.01 -0.01 -0.01** -0.01* 0.01 -0.01*** -0.01*** 

  (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

GP_TESTS           0.01 0.03 0.02 0.07* -0.14*** 0.01 0.02 0.03 0.06 -0.08*** 

            (0.05) (0.06) (0.06) (0.04) (0.03) (0.05) (0.06) (0.05) (0.06) (0.00) 

TES:REQ           0.23*** 0.19** 0.21*** 0.02 0.47*** 0.24*** 0.21*** 0.21*** 0.12** 0.48*** 

            (0.07) (0.09) (0.08) (0.05) (0.06) (0.07) (0.08) (0.07) (0.05) (0.00) 

TYPE: METROPOLITAN           0.13*** 0.14*** 0.14*** 0.15*** 0.09*** 0.14*** 0.15*** 0.15*** 0.16*** 0.10*** 

            (0.04) (0.03) (0.03) (0.05) (0.01) (0.03) (0.03) (0.03) (0.03) (0.00) 

TYPE: URBAN           0.03 0.04* 0.04 0.05* 0.01 0.02 0.02 0.01 0.02 0.01*** 

            (0.03) (0.02) (0.02) (0.02) (0.01) (0.03) (0.02) (0.02) (0.03) (0.00) 

FOUNDATION           -0.06** -0.07*** -0.07*** -0.11*** -0.06*** -0.04 -0.06** -0.06*** -0.07*** -0.04*** 

            (0.03) (0.03) (0.02) (0.03) (0.01) (0.03) (0.03) (0.02) (0.03) (0.00) 

TEACHING           0.03 0.04* 0.03 0.01 0.01 0.04 0.05** 0.03 0.02 0.03*** 

            (0.03) (0.02) (0.03) (0.03) (0.01) (0.03) (0.02) (0.02) (0.02) (0.00) 

REGION: LONDON                     -0.02 -0.05 -0.07** -0.16*** -0.02*** 

                      (0.04) (0.03) (0.02) (0.05) (0.00) 

REGION: SOUTH                     -0.03 -0.04 -0.05* -0.01 -0.01*** 

                      (0.03) (0.03) (0.03) (0.03) (0.00) 

REGION: MIDLANDS                     0.08** 0.10*** 0.09*** 0.10*** 0.08*** 

                      (0.03) (0.03) (0.03) (0.04) (0.00) 

Table 5.4: Estimation Outputs. Standard errors in parentheses. Notes: *,** and *** denote significance at the 10%, 5% and 1% level, 

respectively. OPEX - operating expenditure. 
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  REM P+L BC92 CUESTA TRE REM P+L BC92 CUESTA TRE REM P+L BC92 CUESTA TRE 

EFFICEINCY FIGURES                               

mean 0.71 0.81 0.81 0.79 0.99 0.76 0.87 0.88 0.82 1 0.77 0.9 0.9 0.87 1 

s.d. 0.1 0.11 0.11 0.12 0 0.08 0.08 0.08 0.11 0 0.07 0.07 0.07 0.1 0 

lambda   5.11*** 5.17*** 13.01*** 3974.52   3.15*** 3.33*** 11.97*** 0   2.67*** 3.04*** 8.38*** 552028 

    (1.64) (0.03) (0.01) (5.71*10^7)   (0.94) (0.05) (0.01) (205.77)   (0.71) (0.05) (0.02) (5.69*10^7) 

eta     -0.01         -0.07*         -0.11**     

      (0.02)         (0.04)         (0.05)     

                                

Table 5.4 (cont.): Estimation Outputs. Standard errors in parentheses. Notes: *,** and *** denote significance at the 10%, 5% and 1% level, 

respectively. OPEX - operating expenditure. 
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LR Statistic Tests for Heterogeneity Variables: TEST 1  
     

 
 

     

Model   P&L BC92 CUESTA TRE 

       

Restriction of S(ii) to S(i): Observable heterogeneity variables (d.f.: 13,13,13,12)  44.6*** 48.00*** 44.82*** 91.04*** 

Restriction of S(iii) to S(ii): Unobservable heterogeneity variables (d.f.:  3,3,3,4)  14.86*** 17.70*** 8.38*** 38.60*** 

       

       

LR Statistic Tests for Model Selection (nested models only): TEST 2       

     
CUESTA v. 

P&L 

CUESTA v. 

BC92 

       

Specification (i): Basic Cost function    (d.f.: 57, 56) 166.84*** 166.70*** 

Specification (ii): Observable Heterogeneity    (d.f.: 57, 56) 167.00*** 163.32*** 

Specification (iii): Regional Dummies for Unobserved Heterogeneity    (d.f.: 57, 56) 160.52*** 154.00*** 

 
 

     

Vuong Test Statistic: TEST 3       

 
 

     

TRE specification (iii) vs. Cuesta model specification (iii)     V = -9.066***  

       

Model Log Likelihood Function Values and degrees of freedom (K)  
     

 
 

     

Model   P&L BC92 CUESTA TRE 

 
  

    

Specification (i): Basic Cost function   198.80 198.97 282.22 135.81 

K   9 10 66 10 

Specification (ii): Observable Heterogeneity   221.13 222.97 304.63 181.33 

K   22 23 79 23 

Specification (iii): Regional Dummies for Unobserved Heterogeneity   228.56 231.82 308.82 200.63 

K   25 26 82 26 

 
 

     

 

 
     

Table 5.5: LR Specification and Model Selection 

Notes: *,** and *** denote significance at the 10%, 5% and 1% level, respectively. 
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5.4.3 Inefficiency Predictions 

From table 5.4, the mean efficiency estimate from our preferred model is 0.87. On average, 

efficiency is computed as decreasing slightly amongst pathology laboratories over time 

(which is in agreement with the BC92 s(iii) model
77

 in table 5.4, given their eta coefficients) 

from 0.87 in 2007 to 0.86 in 2011. Fig 5.2 shows the cost efficiency estimates of laboratories 

over time. The bar in Fig. 5.2 is at efficiency = 1, i.e. full efficiency. Groups of points 

correspond to each individual laboratory, e.g. observations 1-5 are the efficiency estimates 

for laboratory 1 in years 1 to 5, observations 6 to 10 are laboratory 2 in years 1-5, and so on. 

We do not find the problem of efficiency scores dropping off the frontier in the final year of 

the sample, which has been a concern for other applications of this model (Wheat and Smith, 

2012). In addition, we find that many of the laboratory-specific etas are statistically 

significant. Those that were not tended to be the firms that are on the frontier (and thus have 

little or no inefficiency change over time), which can be seen in figure 5.2.   

Figure 5.2: Laboratory Cost Efficiency Estimates Over Time 

 

 

 

                                            
77 Which is preferred of the three candidate BC92 models, see table 5.5 
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5.4.4 Elasticity of cost, Average and Marginal Costs 

Our set of models give estimates of the elasticity of cost with respect to output at the sample 

mean in the range of 0.29-1.04 (table 5.4) and is 0.44 in the preferred model. However, a 

more informative approach is to examine how this elasticity changes with the scale of the 

operation, proxied by output (Fig. 5.3), using our preferred model. Using this elasticity, we 

are able to further estimate AC and MC per request using fitted values from the model (see 

Wheat and Smith, 2008, for details) (Figs 5.4 and 5.5).  

Figure 5.3: Elasticity of Cost with respect to Output for Cuesta s(iii) Model 

Note to Figure 5.3: LCB – lower confidence bound, UCB – upper confidence bound. Requests are varied, all 

other variables are held at the sample mean. 
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Figure 5.4: Marginal cost (MC) for Cuesta s(iii) Model 

Figure 5.5: Average cost (AC) for Cuesta s(iii) Model 
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5.5 Discussion 

5.5.1 Cost Function Parameters 

This section draws on all models to examine the parameters of the cost function. The 

parameter estimates in the frontier models show reasonable concordance with each other and 

with the REM model, giving us confidence in our models. 

The coefficient on input prices appears to be highly significant and in the range of 0.52-0.89, 

aside from two models, the Cuesta s(iii) and the TRE s(iii), which have values of 1.30 and 

1.04, respectively. These estimates appear to be out of line with the remaining estimates. If 

the value of this coefficient was truly greater than 1, it would imply that operating costs were 

rising more quickly than input prices. However, we note that the 95% confidence intervals for 

both of these estimates include 1, meaning that we are unable to confirm that estimate of the 

coefficient, based on either of these models, exceeds 1. Of course, we only have data for 

labour input prices, and are thus unable to impose linear homogeneity of degree one on input 

prices, which gives rise to the possibility of beta estimates in excess of 1. We emphasise that 

the remaining models, including our benchmark REMs (which do not impose the 

distributional assumptions of the stochastic frontier models), all appear to have estimates of 

the coefficient on labour input prices within a plausible range. Lastly, we note that other 

studies have shown large labour cost shares for biochemistry operating costs - approximately 

80-90% (Department of Health, 2008 pp.44). This may explain the reported coefficients.  

The time trend coefficients suggest a reduction in real laboratory operating costs of 0-2% per 

year. The 0-2% figure can then be seen as the shifting of the frontier over time. The frontier 

may exhibit downward shift if, for example, productivity in pathology production is 

increasing, which would support the findings of Holland et al., (2012). 

Moving to the observable heterogeneity parameter coefficients (s(ii) variables), there was no 

clear finding of the impact of GP tests (the parameter was not statistically significant). From 

the healthcare commission (2007), a negative coefficient value was expected because primary 

care tests are thought to be cheaper than other tests.  

The tests to requests ratio coefficients are in line with a priori expectations (positive and less 

than 1) from the literature (table 5.1). The estimated elasticity from this sample is in the range 



134 
 

0.12-0.48. The implications depend on the interpretation of this practice – it may be 

considered gaming by laboratories to inflate their performance figures; on the other hand it 

may be a reflection of a better quality of service since more patient information is being 

supplied per request. 

The type of laboratory is found to be a source of cost heterogeneity, which matches previous 

literature (table 5.1). In our analysis, we were able to investigate this issue further. 

Laboratories situated in metropolitan areas are on average 9-17%
78

 more costly than 

laboratories in rural areas. The findings for urban-based laboratories are that on average they 

are 0-5% more costly than rural laboratories. We caveat this finding by noting that the 

coefficient was significant in only three of fifteen models. 

The foundation status of the host trust appears to be associated with a 4-10% reduction in 

operating costs for pathology laboratories. From the literature, profit incentives motivate 

hospitals to reduce costs to a greater extent than non-profit hospitals (Sloan, 2000), which is 

the aim of granting foundation status to a trust and should mean pathology services act 

commercially (Healthcare Commission, 2007).  

Lastly, laboratories which provide teaching activities are found to have higher operating 

costs, in the range 0-5%, to those which do not; coefficients in only three of ten models were 

statistically significant. This is in line with expectations, firstly because of the activity itself, 

but also because pathology services which are more specialised (and generally more 

expensive) tend to be associated with teaching activities, which may also be driving costs up 

(Department of Health, 2006). Moreover, this finding is in line with other health care studies 

(Gutacker et al., 2013). 

The unobservable heterogeneity variable parameters (s(iii)) suggest that laboratories in 

London and the South are in the range 0-15% (statistically significant in 3 of 5 models) and 

0-5% (statistically significant in 2 of 5 models), respectively, less expensive than laboratories 

from the North (the omitted dummy); and that operating costs of laboratories in the Midlands 

are on average 8-11% higher than those of laboratories in the North. From the literature, 

unobservable heterogeneity amongst these laboratories likely derives from information 

                                            
78 Because our model is estimated in logarithms, we have applied an exponential retransformation to recover our estimate of the effect on 

costs. To illustrate, for the Cuesta s(iii) model, exp(0.16) = 1.17, meaning that the beta on TYPE: Metropolitan from this model implies that 

costs are 17% higher than for TYPE: Rural laboratories.  
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systems adoption, network activity and peer contact (Department of Health, 2006; Healthcare 

Commission, 2007; Eijkenaar, 2013)
79

.  

5.5.2 Inefficiency Predictions 

Our efficiency estimates are based on results from our preferred efficiency model: Cuesta 

s(iii). 

To calculate our estimates of the potential savings we use laboratories’ efficiency estimates in 

their final observed year. We calculate the potential cost of production if each laboratory 

adopted best practice (of that observed in the sample, denoted by each laboratory’s efficiency 

estimate). Then, we subtract this estimate from the observed costs of laboratories to yield the 

potential available savings. We find potential savings of £32.8m in our sample (average cost 

efficiency in final year = 0.86).  

We extrapolate to NHS pathology services (that is, all laboratories outside this sample and all 

other remaining pathology disciplines), giving an estimate of £390m per year of potential 

savings available to contribute to the Nicholson Challenge. This is around double the savings 

estimate that was proposed in the grey literature based on a much smaller sample – 

extrapolated comparably - of around £250m (Department of Health, 2008).  Recalling that 

this data is for biochemistry services - the most mechanised of the five major pathology 

disciplines - we envisage that our estimates may well underestimate the true level of 

inefficiency, since mechanised pathology services are more homogenous than other 

disciplines (Kiechle and Main, 2002). We thus conclude that this is more likely a minimum 

efficiency saving than a maximum, which underlines the importance of pathology services 

for policy makers if expenditure reduction is high on their agenda.  

However, driving out inefficiency may be more of a challenge amongst the more 

heterogeneous disciplines, such as hystocytology. First, not all laboratories conduct these 

services, meaning that there are fewer opportunities to compare practice and share 

knowledge. Second, that there is a paucity of available data in these disciplines means that 

measuring inefficiency may be more challenging (Buckell et al., 2013).  

                                            
79 According to anecdotal evidence from pathologists, these features are more prevalent in London and the South and thus are likely driving 
this variation in costs. 
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The average efficiency score over time is decreasing slightly. However, we find that 

individual etas imply that some laboratories are becoming more efficient over time, some are 

constant over time, and some are becoming less efficient over time (Fig. 5.2); many of the 

laboratory-specific etas were found to be statistically significant. Information on the 

efficiency profiles of the individual laboratories is a powerful output of this type of top-down 

benchmarking as it indicates where further attention needs to be focused to drive out 

efficiency improvements. As noted earlier, the approach used to model efficiency change 

over time has been applied in economic regulation in other sectors. We do not identify 

individual laboratories for confidentiality reasons. 

5.5.3 Multi-Factor Productivity 

Given that we have reduced efficiency over time and technical change (falling costs) as per 

the time trend coefficient in our preferred model (i.e. frontier shift), it is informative to 

compute the Total Factor Productivity (TFP) Index (Coelli et al., 2005) to give an overall 

account of pathology performance (chapter 3.6). However, we do not observe costs which 

include capital, nor an output mix effect, meaning that it would be inappropriate to describe 

our measure as a TFP index. We therefore define a Multi-factor Productivity (MFP) Index as 

our measure of overall pathology performance. 

Year Average cost 

efficiency 

Cost efficiency 

index 

Frontier 

Shift 

Overall MFP 

Index 

change 

MFP 

      

2007 0.868 1 1 1 0 

2008 0.839 0.967 1.014 0.981 -1.9% 

2009 0.857 0.987 1.029 1.016 3.5% 

2010 0.847 0.976 1.044 1.020 0.3% 

2011 0.858 0.989 1.059 1.048 2.8% 

      

Table 5.6: Multi-Factor Productivity Pathology Laboratories 

As can be seen in table 5.6, the overall MFP for pathology is increasing over time, from 

1.000 in 2007 to 1.048 in 2011. The annual change is positive for three of the years and 

negative for one year. Overall, MFP increases by 4.8% over the period of study. Thus, the 

small reduction in the efficiencies of laboratories away from the frontier is more than offset 
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by the gains in costs by the efficient firms (the frontier shift), yielding the overall MFP 

increase.   

5.5.4 Economies of Size in Pathology 

Due to our measure of costs not incorporating capital charges, we are, strictly speaking, 

unable to interpret changes in the relationship between output and costs as economies of 

scale. Accordingly, we refer to ‘economies of size’, and interpret this as the way in which 

operating costs change across the output range.  

The cost elasticity estimates with respect to output indicate economies of size properties in 

pathology production (Fig. 5.3). Further, MC is falling faster than AC (Figs 5.4 and 5.5), 

meaning that the elasticity is falling (Fig 5.3), so the extent of economies of size is increasing 

as the scale of production increases; this will continue as long as MC falls faster than AC. 

This suggests that the growing formation of local pathology networks may help to lower costs 

for laboratories where production is pooled, which corresponds to pathology analysis 

elsewhere (Kiechle and Main, 2002). Encouragingly, this is being recognised by policy 

makers at the top level (Department of Health, 2011). It is of course possible that the 

economies of size be exhausted at some point, though we cannot conclude that based on our 

sample
80

. 

With regard to comparisons with previous studies, a direct comparison with the economies of 

scale finding in the Department of Health study (Department of Health, 2008) is difficult 

given that our measure does not incorporate capital costs. However, it is not clear that their 

measure did either, given that no empirical results on this issue are presented. Although 

capital cost information is collected (Department of Health, 2008, pp. 37) their only analysis 

(of unit costs) presented does not include these costs (Department of Health, 2008, pp. 44, 46, 

48, 49). Therefore, on this issue, our study appears to be the first to present empirical 

evidence.  

 

 

                                            
80 We note that the AC curve appears to be flattening towards the extreme of the sample (Figure 5.5). However, given that MC remains 

lower than AC at this point, this must be being driven by factors other than size which are associated with higher costs when size increases. 
However, further research with different data would be needed to draw any conclusion on the point at which size economies are exhausted. 
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5.5.5Merged Laboratories 

Using our preferred model, Cuesta specification (iii), and equation (5.3), we were able to 

simulate the effects of mergers between small laboratories. We find that, if the smaller 

laboratories in the sample merged, the sum of the implied predicted costs would be 

approximately 17% lower than those previously incurred by these laboratories separately. 

This suggests that there are potential considerable cost savings available via laboratories 

pooling production. Indeed, this estimate suggests that these potential savings are greater than 

those available through efficiency improvements.  

While we consider this to be a useful indicative valuation of the effect of potential pooling, 

we attach a number of caveats to this estimate; this exercise is ultimately a stylised scenario. 

Firstly, we note that there is no consideration to the additional costs incurred through merging 

(e.g. the costs to transport samples, the costs of service delays, etc.). Second, we do not take 

into account any effect on the quality of the service, the effect of specialisation or the 

interaction with other hospital services. Thirdly, we do not consider whether these 

laboratories are contiguous, which could potentially be limiting to mergers. On the other 

hand, this estimate is based on a small number of laboratories merging, in practice there is no 

limit to the number that can merge. In addition, we have assumed pairwise mergers; it is, of 

course, possible that multiple laboratories will merge. Thus, based on the last two caveats, the 

potential savings could be even larger than estimated here (as long as the subadditivity of 

costs continues).  

 

5.6 Conclusions 

We have applied econometric efficiency estimation techniques to an under-researched area in 

health care literature: pathology. In doing so, we have developed performance measurement 

in this field beyond existing indicators benchmarking techniques. We have found, having 

controlled for cross-unit heterogeneity, 13% inefficiency in pathology services in the NHS in 

England. If this is indicative of NHS pathology as a whole, there could be £390m per year of 

available savings from pathology to contribute to the Nicholson Challenge of NHS efficiency 

savings. In addition, we found that the pooling of production looks to induce substantial gains 
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in pathology cost savings. If smaller laboratories merged their production, they could save 

around 17% in their operating costs. 

We have found that overall efficiency in pathology has decreased over time. The particular 

method that we have adopted also allows the time paths of efficiency for individual 

laboratories to be studied. We have also found frontier shift which decreases costs over time. 

Overall, MFP for the laboratories in our sample has increased by around 5% between 2007 

and 2011.   

We have estimated the magnitudes of various drivers of laboratory costs which were 

identified from previous pathology studies. Some of these drivers have not previously been 

quantified (e.g. the costs of teaching or the effect of the host trust having foundation status). 

We have paid particular attention to the elasticity of cost with respect to output. We have 

found economies of size, which is encouraging from a policy perspective because local 

networks are being formed in pathology services which increase the scale of production. We 

note, however, that our measure of costs does not include a component of capital, and thus 

are findings are limited to this extent. We also note that, although discussed in previous 

studies, no empirical evidence has been presented in previous literature on this issue 

(Department of Health, 2006; 2008). Therefore, on this issue, our study appears to be the first 

to present empirical evidence. 

We believe these findings are important to policy makers because it provides them with the 

evidence needed to make informed decisions on the allocation of resources and on the 

management of pathology services. The method that we have adopted highlights performance 

variation both between decision making units (in our case, pathology laboratories) and over 

time. It has been applied by economic regulators outside health as a means of driving out 

efficiency improvements and we consider that it also has the potential to be applied much 

more widely in the health sector. 

We now turn to our second empirical study in which we proceed to examine some further 

issues raised in our review of efficiency analysis in health.  

 

 



140 
 

6. Dual-level inefficiency and unobserved heterogeneity in NHS pathology 

This chapter is based on Smith et al. (2015). In keeping with chapter 4, we focus on 

pathology for a number of practical reasons: first, focussing on a speciality within health 

services (as opposed to broader entities such as whole hospitals or regions as the unit(s) of 

analysis) is more likely to be useful to policy makers and thus likely to encourage the use of 

efficiency predictions; and second, efficiency studies in health should target specific policy 

objectives: this study feeds into the policy of promoting pathology efficiency (Department of 

Health, 2006: and more generally, as discussed at length in opening chapters of this thesis, 

the NHS’s ‘a call to action’ for efficiency improvements (NHS England, 2013).  

This is the second empirical study of this thesis, and the second that is focussed on pathology 

services. In the first application (chapter 5), we examined several features of pathology 

production, including efficiency and how it changed over time; the drivers of pathology costs, 

including a particular focus on economies of scale in pathology; and we took an overall 

account of pathology performance by estimating MFP change in pathology.  

This study builds on the prior chapter by examining two further aspects of pathology 

production, and the estimation of efficiency. These are the location of inefficiency in 

hierarchical organisational structures; and the incorporation of unobservable heterogeneity of 

varying forms into models. These issues are not confined to pathology, findings and 

methodological advances here are relevant more widely in health and to other sectors beyond 

that; indeed, the model on which our study is based was developed in transport markets 

(Smith and Wheat, 2012). Further, the identification of efficiency within organisational 

hierarchies has been identified as a key area for advancing health-based efficiency analysis 

(Hollingsworth and Peacock, 2008).  

The remainder of this chapter is as follows. 6.1 establishes the policy context, the structure of 

pathology services and our economic rationale. In 6.2, our models, model features, statistical 

testing and estimation strategy are discussed. 6.3 details the data set used to estimate the 

models. 6.4 presents our results in terms of the estimated model parameters, model selection, 

predictions of inefficiency, implications for health policy and the implications for modelling 

with multi-level data sets. Section 6.5 concludes. 
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6.1 Introduction 

An important aspect of measuring performance is being able to locate the source of 

inefficiency. This allows initiatives to adopt best practice to be targeted effectively. In health 

markets, organisations – particularly the NHS - are typified by hierarchical managerial 

structures where inefficiency may arise at different points within the (vertical) hierarchy as 

well as horizontally between organisational units at the same organisational level.  

Recent health literature has begun to recognise that organisational structure should be 

incorporated into performance analysis (Adams et al., 2003; Olsen and Street, 2008; Sorensen 

et al., 2009; Castelli et al., 2013; Zhang et al., 2013). However, the previous health efficiency 

literature focuses its attention on horizontal comparisons, albeit at different levels of 

aggregation depending on the study (see Murillo-Zamorano et al., 2011; D’Amico et al., 

2012; Felder et al., 2013).  

In this chapter, we carry out a multi-level efficiency analysis that seeks to identify where 

inefficiency resides within a vertical organisational hierarchy in NHS pathology services. 

Pathology services are conducted in laboratories providing diagnostic medicine to primary 

care (local GPs) and secondary care (hospitals) within the NHS.  

Pathology services are organised hierarchically, where groups of laboratories are under the 

direction of Strategic Health Authorities
81

 (SHAs hereafter). SHAs dictate central policy, 

corporate culture and have some degree of control over pathology services (e.g. the 

configuration of services) (Department of Health, 2006); leaving some managerial autonomy 

at laboratory level. Thus, there is a component of overall inefficiency attributable to each 

SHA (which is persistent across laboratories within the SHA). Lower down in the 

organisation, inefficiency is likely to vary according to the relative ability of laboratory-level 

management. From a policy and management perspective, it is important to understand both 

sources of inefficiency so that appropriate incentives can be offered to drive improvements in 

efficiency. By combining the inefficiency estimates from the two hierarchical levels 

(persistent and lab-varying), an overall measure of inefficiency for the higher level (SHA) 

can be computed.  

                                            
81 The NHS has recently undergone a substantial reorganisation under which the SHAs have been abolished. However, they were in place 
during the period under study. 
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Measuring multi-level performance may be of greater practical use than single level 

measures, which should encourage their uptake amongst policy makers, which has hitherto 

been limited in health markets (Hollingsworth, 2012). Moreover, multi-level performance has 

been identified as a key future direction for health care-based efficiency analysis 

(Hollingsworth and Peacock, 2008).  

To obtain inefficiency measures at these different organisational levels, and an overall 

inefficiency measure, we adopt the dual-level stochastic frontier model (DLSF; see Smith and 

Wheat (2012)), which has been applied in other sectors to measure multi-level firm 

inefficiency. The advantage of this model is firstly that it enables inefficiency at different 

organisational levels to be identified. Smith and Wheat (2012) use the terminology sub-

company, or internal inefficiency, which in our case corresponds to inefficiency at the 

laboratory level; and persistent or external inefficiency, which in our case refers to persistent 

inefficiency at the SHA level. A further key finding of their paper is that, when the 

organisational structure is not accounted for, inefficiency predictions can exhibit a downward 

bias. Thus there is motivation in adopting a DLSF model both to yield insight into the level of 

inefficiency variation at different levels and to eliminate bias in the overall prediction. 

Another form of bias, which is particularly problematic in health, results from the failure to 

appropriately model unobservable heterogeneity (Greene, 2004; Smith et al., 2012). In the 

case of pathology services, there are significant differences in laboratories’ production 

processes. These may include factors typically studied by economists such as outputs and 

input prices; but also specificities such as patient mix or service quality, inter alia 

(Department of Health, 2006; Buckell et al., 2013; NHS England, 2014b; Buckell et al., 

2015). Some of these features are difficult or even impossible to measure directly, and so 

accounting for unobservable heterogeneity is of paramount importance.  

Smith and Wheat (2012) recognise that persistent inefficiency at the higher level of 

aggregation (which corresponds, in our case, to SHA level inefficiency) could also reflect 

time and laboratory invariant unobserved heterogeneity. However, they leave that issue for 

future research. At the same there has been considerable interest in the wider panel data 

stochastic frontier literature (Farsi et al., 2005a; Kumbhakar et al., 2014) on how to separate 

inefficiency from unobserved, time invariant heterogeneity. We therefore augment the Smith 

and Wheat (2012) DLSF approach to reflect developments in the wider panel data efficiency 

literature with regard to the vexing problem of disentangling inefficiency from unobserved 
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heterogeneity. We compare our findings to a model without any attempt to separate 

inefficiency and unobservable heterogeneity, to demonstrate the importance of accounting for 

the latter case of multi-level data structures.  

This chapter therefore contributes to the literature in two ways. It is the first application of the 

Smith and Wheat (2012) DLSF inefficiency model in a health context. It is also the first time 

the approaches set out in Farsi et al. (2005a) and Kumbhakar et al. (2014) have been applied 

to a multi-level data structure. We thus apply and develop state-of-the-art models to draw 

policy conclusions on pathology services within the NHS in England, and also offer insights 

on the relative merits of different approaches to separating inefficiency and unobserved 

heterogeneity when applied to multi-level data structures. 

 

6.2 Methods 

We begin our methodological discussion with the general form of the dual-level stochastic 

frontier proposed by Smith and Wheat (2012). We next discuss the issue of unobservable 

heterogeneity and its relevance to efficiency estimation in our application. We then outline 

two further models, each of which adds a component to the model to distil out the 

unobservable heterogeneity from the efficiency prediction, though with differing 

assumptions. We finally consider a fully generalised model comprising the features of the 

preceding models. In total, four models are considered. Estimation, econometric specification 

and statistical testing are described. 

Our starting point is the dual-level stochastic frontier (DLSF) model proposed by Smith and 

Wheat (2012). This model is derived from panel data stochastic frontier models, with the 

exception that the structure of the panel is amended from firm and time to firm and sub-

company, where the sub-company units are repeat observations of their respective firms. In 

this way, the structure of the organisation is embodied in the model. This allows the 

decomposition of inefficiency at the two organisational levels in the hierarchy. In this 

application, SHAs are equivalent to firms, and laboratories are equivalent to the sub-company 

units.  
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Smith and Wheat (2012) outline the advantages of this model and its application to multi-

level data structures. First, multi-level data structures increase the number of observations for 

analysis, which can be a major benefit for economic regulators who often have to work with 

small cross-sections and limited time periods. Second, it permits a clearer understanding of 

where inefficiency resides in the vertical hierarchy, allowing regulators to target the 

elimination of persistent differences between SHAs (external inefficiency) and differences in 

performance of laboratories within the same SHA (internal inefficiency). Finally, it is 

beneficial to conduct performance analysis at the level of disaggregation that relates to how 

SHAs/laboratories actually organise themselves, in particular allowing the true scale 

properties of the cost function to be established.  

The imposed form of inefficiency is well suited to the multi-level model. Smith and Wheat 

(2012) note that, in traditional panels, having an overall inefficiency comprising a component 

of SHA inefficiency that is time-invariant and a component that varies randomly over time 

may not accurately capture the natural temporal evolution of inefficiency. In contrast, 

imposing a SHA-invariant component and a laboratory-varying component to the structure of 

inefficiency befits the aim of vertically decomposing inefficiency.  

The DLSF model takes the general form, 

𝐶𝑖,𝑠 =  𝑋𝑖,𝑠′𝛽 + 𝛿𝑖 + 𝜀𝑖,𝑠                                                                                                                   (6.1) 

𝜀𝑖,𝑠 = 𝜏𝑖,𝑠 + 𝑣𝑖,𝑠                                                                                                                                   (6.2)  

𝜏𝑖,𝑠~𝑁+(0, 𝜎𝜏
2)                                                                                                                                    (6.3)  

𝑣𝑖,𝑠~𝑁(0, 𝜎𝑣
2)                                                                                                                                      (6.4)  

Where Ci,s is the cost of laboratory s in SHA i. 𝑋𝑖,𝑠is a vector of outputs, input prices and 

environmental variables; 𝛽  is a vector of parameters to be estimated. 𝛿𝑖 is the SHA-specific 

effect. 𝜏𝑖𝑠 is laboratory-specific inefficiency and 𝑣𝑖𝑠 is random statistical noise. The notation 

in (6.1) highlights the tiered structure of the data only; in the empirical work presented below, 

there is also a time dimension to the data.  

Estimation proceeds via estimation of a SHA-stratified random effects model (REM) by 

Generalised Least Squares (GLS) (as in equation (6.1)), yielding estimates of 𝛽 (�̂�), predicted 
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values of SHA effects (to which we turn our attention in the following sections), and 

residuals, 𝜀�̂�,𝑠.  

The prediction of laboratory-specific inefficiency is conducted in a second stage. It is 

common for all four models. We take the model residuals from the first stage (which have 

had the SHA effect removed), stratify by laboratory and apply the Jondrow et al. (1982) 

procedure to retrieve laboratory-specific predictions of inefficiency, 

�̂�𝑖,𝑠 = 𝐸[𝜏𝑖,𝑠|𝜏𝑖,𝑠 + 𝑣𝑖,𝑠]                                                                                                                      (6.5) 

We assume time-invariance for the predicted efficiency at laboratory level, given that our 

panel is both short in its time dimension and unbalanced.  The competing models are then 

distinguished according to the treatment of the SHA-specific effect, 𝛿𝑖.  

 

6.2.1 The Dual-Level Stochastic Frontier (Model 1) 

The DLSF treats the SHA-specific effect as inefficiency, which in the case of GLS estimation 

yields, 

𝛿𝑖 = 𝛼0 + 𝜇𝑖                                                                                                                                         (6.6) 

𝜇𝑖~𝑁(0, 𝜎𝜇
2)                                                                                                                                         (6.7) 

Where the prediction of SHA inefficiency is a Schmidt and Sickles (1984)-type correction, 

�̂�𝑖 = �̂�𝑖 − min (�̂�𝑖). 

 

6.2.2 Accounting for Unobservable Heterogeneity 

A simplifying assumption of the DLSF proposed by Smith and Wheat (2012) was that the 

SHA effect is interpreted as the SHA inefficiency. This is consistent with the received 

literature such as Kumbhakar and Heshmati (1996). However, Smith and Wheat (2012) 

acknowledged that this interpretation may not be appropriate in all cases. In particular, any 

heterogeneity that is not captured by the regressors is incorporated into this effect, which 
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biases inefficiency estimates (Kumbhakar and Lovell, 2000). Ultimately, the SHA effect is a 

mixture of unobservable effects, one of which being SHA invariant inefficiency. 

In the case of pathology production, there are features of laboratories’ production 

environments for which no data are available, e.g. the service quality (which is known to vary 

between laboratories and SHAs), implying the DLSF may be an inappropriate specification. 

As such, the DLSF model is extended to examine two approaches to incorporate the influence 

of unobservable heterogeneity, namely the use of the Mundlak (1978) transformation and the 

residual decomposition approach of Kumbhakar et al. (2014). In addition, we estimate a 

model which incorporates both of these approaches. We utilise statistical testing to determine 

an appropriate approach. Results are compared between models to demonstrate differences.  

6.2.3 The Mundlak-Transformed DLSF (Model 2) 

One way to introduce a control for unobservable heterogeneity into the DLSF model follows 

Farsi et al. (2005a), which was first extended to the DLSF by Wheat (2014) and subsequently 

implemented on a railways dataset in Smith and Wheat (2014). The approach makes use of 

Mundlak’s (1978) recognition of the link between random and fixed effects in panel data 

models. This approach is operationalised via a direct insertion of group means of the 

regressors into the random effects model
82

. In this way, this model nests model 1. 

This model assumes that inefficiency is uncorrelated with the regressors whilst unobserved 

heterogeneity is assumed to be correlated with the regressors. Correlation between the SHA 

effects and the regressors is modelled explicitly by using the variable group means. Under the 

assumption that this correlation represents unobservable heterogeneity, it is removed from the 

SHA effects. Then the SHA effects that remain are treated as before and efficiency 

predictions are derived. 

𝛿𝑖 =  𝛼0 + �̅�𝑖
′𝜌 + 𝜇𝑖                                                                                                                            (6.8) 

𝜇𝑖~𝑁(0, 𝜎𝜇
2)                                                                                                                                         (6.9) 

 

                                            
82 There is an alternative approach using a fixed effects model and an auxiliary regression on the SHA effects (Farsi et al., 2005a). In linear 

models, this method returns identical parameter estimates, but underestimates standard errors in the auxiliary stage, so the random effects 
approach is preferred (see Baltagi, 2006, pp.1192, for the variance of the group means in the REM). 



147 
 

Here, �̅�𝑖
′𝜌 captures unobservable heterogeneity that is correlated with the regressors. SHA 

inefficiency predictions, �̂�𝑖,  are: �̂�𝑖 = �̂�𝑖 − min (�̂�𝑖). 

Model 2 has a number of appealing features. First, the separation of inefficiency from 

unobservable heterogeneity (that is correlated with the regressors) is achieved. Second, 

consistent, unbiased within estimators for the frontier parameters are recovered through 

application of GLS to this model
83

. Third, it is possible to examine the relationship between 

the unobservable heterogeneity and the variables via the group mean coefficients (�̂�𝐺𝐿𝑆) 

(Farsi et al., 2005a; Farsi et al., 2005b). Fourth, this model does not require any additional 

stages; the model is estimated exactly as the DLSF with the addition of the group mean 

variables. Fifth, the restriction (no correlation between the regressors and unobserved 

heterogeneity) can be readily tested using a Wald test on the joint hypothesis: 𝜌 = 0 ∀ �̅�𝑖 

(which is referred to as the Wu test (Greene, 2008)).   

There are some drawbacks to using this method. First, the model relies on the assumption that 

the unobservable heterogeneity is correlated with the regressors while inefficiency is assumed 

to be completely uncorrelated with regressors. Thus any unobservable heterogeneity that is 

uncorrelated with regressors is interpreted as inefficiency and, conversely, any inefficiency 

correlated with regressors (but firm invariant) is interpreted as unobserved heterogeneity. 

Finally, relative to the simpler DLSF, the Mundlak transformation proliferates parameters, 

which will reduce the precision of parameter estimates.  

6.2.4 The Four-Component DLSF (Model 3) 

A second approach to amend the DLSF to account for unobservable heterogeneity is to 

follow the approach of Kumbhakar et al. (2014) based on their four-component model. The 

application to our hierarchical data is similar to model 1, except for an additional stage to 

separate the firm inefficiency from the unobservable heterogeneity (the latter now assumed 

uncorrelated with the regressors). In this way, model 3 nests model 1.  

In this additional stage, the SHA effects are decomposed by imposing distributional 

assumptions and applying a stochastic frontier to them. Thus, unobservable heterogeneity is 

assumed to embody the features of statistical noise in traditional stochastic frontiers (SFs) 

(equations (10)-(13) below). Unobservable heterogeneity is assumed to be uncorrelated with 

                                            
83 We note that within estimators are in some cases imprecise, which to some extent diminishes their appeal  
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the regressors. This is in direct contrast to the Mundlak approach (Wheat, 2014). Here, SHA 

inefficiency is computed using the Jondrow et al. (1982) method, rather than the Schmidt and 

Sickles (1984) approach used in models 1 and 2. 

𝛿𝑖 = 𝛼0 + 𝜇𝑖                                                                                                                                       (6.10) 

𝜇𝑖 = 𝛼𝑖 + 𝑤𝑖                                                                                                                                      (6.11) 

𝛼𝑖~𝑁+(0, 𝜎𝛼
2)                                                                                                                                   (6.12) 

𝑤𝑖~𝑁(0, 𝜎𝑤
2 )                                                                                                                                     (6.13) 

Where 𝑤𝑖 represents unobserved heterogeneity that is uncorrelated with the regressors and 

inefficiency is calculated as: �̂�𝑖 = 𝐸[𝛼𝑖|𝛼𝑖 + 𝑤𝑖]. 

The benefits of this model are that, firstly, it is possible to control for unobservable 

heterogeneity. Second, it is possible to test the decomposition of the inefficiency and the 

unobserved heterogeneity by applying routine tests in the SF literature. Third, although full 

distributional assumptions are made to predict inefficiency, the parameter estimates of the 

frontier are estimated using much weaker (and thus robust) assumptions in the first stage, 

which is a noteworthy advantage over a single stage alternative (Smith and Wheat (2012)).  

There are disadvantages to implementing this model. First, relative to the simple DLSF, there 

are additional assumptions on the error components necessary to enable separation of 

inefficiency from unobserved heterogeneity, and these are arbitrary. Second, the SF 

procedure to obtain SHA persistent inefficiency predictions is conducted on the number of 

SHAs, which may be small in empirical applications (in our case 10); and, in turn, may yield 

imprecise parameter estimates, particularly with respect to the variances of the SHA invariant 

error components. In traditional panels it is also the case that this part of the procedure faces 

limitations if the cross-section is small. In addition, the multi-stage approach yields standard 

errors of second stage parameter estimates smaller than their true magnitude owing to the use 

of first stage residuals in the second stage (Kumbhakar et al. (2014) note that this issue is 

routinely disregarded). However the fundamental limitation of this approach is the 

assumption that unobserved heterogeneity is uncorrelated with the regressors, which in turn 

requires reliance on distributional assumptions to separate inefficiency from the unobserved 

heterogeneity. 
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6.2.5 The Mundlak-Transformed Four-Component DLSF (Model 4) 

Our final model is a DLSF that is augmented for unobservable heterogeneity by combining 

the three approaches above. In this model, inefficiency is purged of both types of unobserved 

heterogeneity, that is, unobserved heterogeneity that is correlated with the regressors, and that 

which is not. Thus the appeal of this specification is that the somewhat restrictive 

assumptions about the correlation between unobservable heterogeneity and the regressors in 

the two prior approaches can be (a) relaxed and (b) tested. We therefore specify the 

following, 

𝛿𝑖 = 𝛼0 + �̅�𝑖
′𝜌 + 𝜇𝑖                                                                                                                           (6.14) 

𝜇𝑖 = 𝛼𝑖 + 𝑤𝑖                                                                                                                                      (6.15) 

𝛼𝑖~𝑁+(0, 𝜎𝛼
2)                                                                                                                                    (6.16) 

𝑤𝑖~𝑁(0, 𝜎𝑤
2 )                                                                                                                                      (6.17) 

Where �̅�𝑖
′𝜌 captures unobservable heterogeneity that is correlated with the regressors and 

𝑤𝑖represents unobserved heterogeneity that is uncorrelated with the regressors. Inefficiency is 

calculated as: �̂�𝑖 = 𝐸[𝛼𝑖|𝛼𝑖 + 𝑤𝑖]. 

Model 4 nests its component models - it is possible to test down to arrive at a preferred 

model. In particular, it is possible to test each of the components individually, and examine 

the presence and/or form of unobservable heterogeneity, and to remove it from the estimates 

of inefficiency.  

Overall, four models are estimated and tested: the dual-level stochastic frontier (DLSF) of 

Smith and Wheat (2012) (Model 1); the DLSF with the Mundlak adjustment applied (Model 

2); the four-component DLSF model based on Kumbhakar et al. (2014) (Model 3); and the 

Kumbhakar-DLSF model with the Mundlak adjustment applied (Model 4). Table 6.1 below 

shows the econometric specifications of these models. 
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Model Stage 1: RE GLS SHA inefficiency 
Laboratory (sub-company) 

Inefficiency 

    

(1) 𝐶𝑖,𝑠 =  𝛼0 + 𝑋𝑖,𝑠′𝛽 + 𝜀𝑖,𝑠 

�̂�𝑖 = �̂�𝑖 − min(�̂�𝑖) 

 

�̂�𝑖,𝑠 = 𝐸[𝜏𝑖,𝑠|𝜏𝑖,𝑠 + 𝑣𝑖,𝑠] 

 

(2) 𝐶𝑖,𝑠 = 𝛼0 + �̅�𝑖
′𝜌 + 𝑋𝑖,𝑠′𝛽 + 𝜀𝑖,𝑠 

�̂�𝑖 = �̂�𝑖 − min(�̂�𝑖) 

 

�̂�𝑖,𝑠 = 𝐸[𝜏𝑖,𝑠|𝜏𝑖,𝑠 + 𝑣𝑖,𝑠] 

 

(3) 𝐶𝑖,𝑠 =  𝛼0 + 𝑋𝑖,𝑠′𝛽 + 𝜀𝑖,𝑠 

�̂�𝑖 = 𝐸[𝛼𝑖|𝛼𝑖 + 𝜔𝑖] 

 

�̂�𝑖,𝑠 = 𝐸[𝜏𝑖,𝑠|𝜏𝑖,𝑠 + 𝑣𝑖,𝑠] 

 

(4) 𝐶𝑖,𝑠 = 𝛼0 + �̅�𝑖
′𝜌 + 𝑋𝑖,𝑠′𝛽 + 𝜀𝑖,𝑠 

�̂�𝑖 = 𝐸[𝛼𝑖|𝛼𝑖 + 𝜔𝑖] 

 

�̂�𝑖,𝑠 = 𝐸[𝜏𝑖,𝑠|𝜏𝑖,𝑠 + 𝑣𝑖,𝑠] 

 

    

Table 6.1: Econometric Specifications of Models 1-4 

From table 6.1, we note that stage 1 is identical for models 1 and 3; and for models 2 and 4. 

In model 1 and model 2, the predicted SHA inefficiencies are derived from �̂�𝑖. In models 3 

and 4, the SHA effects are decomposed  to yield inefficiency predictions according to the 

distributional assumptions specified.  

Laboratory inefficiency predictions for models 1 and 3 are identical as a corollary of the 

common first stage. Similarly, models 2 and 4 have identical predicted laboratory 

inefficiencies.  

We now turn the choice between models 1-4. We are able to use statistical tests to guide 

model selection. Table 6.2 summarises our model testing. We first test the SHA effects using 

a Moulton-Randolph test (a Standardised Lagrange Multiplier test (SLM)), which is better 

suited to unbalanced panels (as in our panel) than the standard LM test (Moulton and 

Randolph, 1989). We then move to testing the decomposition of inefficiency and 

unobservable heterogeneity. The unobservable heterogeneity that is correlated with the 

regressors is testing using a Wald test on the group mean variables jointly. This test is applied 

to models 2 and 4. To test unobservable heterogeneity that is uncorrelated with the regressors, 

we use a LR test on the SHA SF. These tests apply to models 3 and 4. Finally, the test of the 
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presence of inefficiency at the laboratory level is tested using a LR test on the laboratory 

level SF. 

  Model 1 Model 2 Model 3 Model 4 

          

Test of firm effects     

     

Firm effects (vs. pooled model) 

Moulton-

Randolph 

H0: no firm 

effects 

Moulton-

Randolph 

H0: no firm 

effects 

Moulton-

Randolph 

H0: no firm 

effects 

Moulton-

Randolph 

H0: no firm 

effects 

          

Decomposition     

     

Inefficiency and UOH correlated 

with regressors   

Wald test on �̅�𝑖 

H0: 𝜌 = 0 ∀ �̅�𝑖    

Wald test on �̅�𝑖 

H0: 𝜌 = 0 ∀ �̅�𝑖   

     

Inefficiency and UOH uncorrelated 

with regressors     

LR of firm 

effect SF 

H0:no 

inefficiency 

LR of firm 

effect SF 

H0:no 

inefficiency 

          

Test of laboratory inefficiency     

     

Test of sub-company inefficiency 

LR on sub-

company SF 

H0:no 

inefficiency 

LR on sub-

company SF 

H0:no 

inefficiency 

LR on sub-

company SF 

H0:no 

inefficiency 

LR on sub-

company SF 

H0:no 

inefficiency 

     

 Table 6.2: Statistical Tests on Models 1-4. UOH – Unobserved heterogeneity, LR - likelihood ratio, SF – 

stochastic frontier 
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6.2.6 Overall Inefficiency 

Finally, having retrieved the two efficiency predictions at the separate hierarchical levels, it is 

necessary to compute an overall efficiency for the SHA – our persistent, top-level 

inefficiency measure - which is the sum of its SHA-specific inefficiency and the (cost) 

weighted average of its constituent laboratories’ inefficiencies. We use this measure to 

compute our overall savings estimates. Taking model 1 as an example, 

�̅�𝑖 = �̂̂�𝑖 +
∑ 𝐶𝑖,𝑠 ∙ �̂�𝑖,𝑠∀𝑠

∑ 𝐶𝑖,𝑠∀𝑠
                                                                                                                   (6.18) 

 

6.3 Data 

Annual pathology benchmarking data is used to compile an unbalanced panel of 57 English 

NHS pathology laboratories amongst 10 Strategic Authorities during the 5 year period from 

2006/7 to 2010/11. The sample represents approximately one third of the 163 NHS pathology 

laboratories in England. 

Our dependent variable is the laboratory’s total operating costs (net of capital charges).  

Output is measured by the number of requests for tests. We could, of course, use the number 

of tests actually carried out as our output measure. However, laboratories are known to 

conduct varying numbers of tests per request, which may distort the measure of output if it is 

based on tests. We further capture this variation by including a variable defined as the ratio of 

tests to requests (variable name Tests:Requests), in addition to our output measure. Input 

prices for labour are based on data from the UK labour force survey. Labour force survey 

data is chosen over other sources (NHS staff census data, for example) to ensure the 

exogeneity of the data
84

. In the absence of other input prices data, this variable is considered a 

proxy for labour and materials.  

Variables capturing exogenous characteristics include: a binary variable for the foundation 

status of the host trust
85

, meaning that it has financial autonomy (variable name Foundation). 

                                            
84 Mutter et al. (2013) demonstrate using healthcare data that endogeneity can bias efficiency scores. 
85 The term ‘trust’ in the NHS refers to a single hospital or a small group of hospitals in close proximity (e.g. in an urban area) which operate 
as a single entity. 
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It is expected that foundation status trusts will have lower operating costs than their non-

foundation counterparts owing to a more commercial outlook towards service provision 

(Healthcare commission, 2007).  We also include a binary variable (variable name 

Metropolitan) denoting within an urban area or city; the null case is rural. This is to capture 

the differences in service provision between rural and urban patient populations and their 

differing pathology demands, e.g. a broader range of diseases in larger cities (Department of 

Health, 2006). 

As in chapter 5, we neglect the use of Reference Costs data for reasons of capital cost 

allocation and lack of key variables.  

Descriptive statistics are presented in table 6.3. Costs and wage data are in real terms (2007 

prices), adjusted using the consumer prices index (CPI). The ratio of tests to requests is 

calculated from the data, as are variable group means for the Mundlak transformation. For 

estimation, natural logarithms of variables are taken. We use a Cobb-Douglas functional 

form
86

. LIMDEP software is used for estimation (Greene, 2012).  

Variable Mean S.D. Min Max 

     
Operating costs (adjusted) 3617320 2058358 963875 11741895 

Number of tests 5037362 2990846 1380384 30199502 

Number of requests 714125 465535 191078 4423531 

Input prices (Labour) (adjusted) 24551 4160 15834 49955 

Table 6.3: Descriptive Statistics 

 

 

 

 

 

                                            
86 We tested a Translog specification, however, the coefficients on some key variables were not significant. Therefore, we prefer a Cobb-

Douglas specification which gives a credible set of parameter estimates, and a more credible model from which our efficiency predictions 
are derived. 
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6.4 Results 

In this section our results are summarised and discussed. We begin with our parameter 

estimates from the first stage of models 1-4. Next, we discuss model selection and select our 

preferred model. We then move to the efficiency predictions and our savings estimates. 

Finally, we comment on the health policy and wider modelling implications of our empirical 

results. 

6.4.1 Cost Function Parameters 

Models 1-4 use a random effects model as the first stage in estimation. Models 2 and 4 extend 

the model with the Mundlak group mean variables. Therefore, two model outputs are 

reported: one with a Mundlak adjustment (models 2 and 4), and one without a Mundlak 

adjustment (models 1 and 3).  Table 6.4 reports the model outputs. 

 

REM with Mundlak REM without Mundlak 

Model 2 || Model 4 Model 1 || Model 3 

Beta s.e. Sig Beta s.e. Sig 

              

Constant  1.285 5.497    -5.833 1.712 *** 

Output (requests) 0.897 0.043 *** 0.897 0.043 *** 

Input prices 0.892 0.161 *** 0.774 0.153 *** 

Tests:Requests 0.549 0.066 *** 0.547 0.069 *** 

Metropolitan 0.196 0.046 *** 0.198 0.047 *** 

Foundation -0.065 0.041   -0.081 0.041 ** 

Time -0.021 0.012 * -0.019 0.013   

              

REQBAR -0.334 0.194 *       

INPBAR -0.287 0.451         

TESBAR -1.070 0.552 *       

METBAR 0.097 0.203         

FOUBAR 0.222 0.169         

TIMBAR 0.234 0.130 *        

              

Table 6.4: Model Outputs for Mundlak Adjusted and non-Mundlak Adjusted Random Effects Models. *, **, 

*** denote statistical significance at the 10%, 5% and 1% level, respectively. s.e. – standard errors. The 

Mundlak group mean variables are denoted “XXXBAR” and correspond to their respective variables above.  
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Table 6.4 shows the parameter estimates from both of the first stage models. The �̂� are 

similar between models and similar to findings in other studies of pathology services 

(Buckell et al., 2013; Buckell et al., 2015)
87

. The within estimators do not appear to exhibit 

imprecision (which was a concern of adopting this approach, see section 6.2). 

In both models the output coefficients are positive and significant, suggesting, at the sample 

mean, increasing returns to scale (RTS) properties in pathology production (since RTS = 

1/�̂�𝑜𝑢𝑡𝑝𝑢𝑡 = 1/0.897 = 1.115). This corresponds to results and/or predictions from other 

pathology studies (Department of Health, 2006; 2008; Healthcare Commission, 2007; 

Holland et al., 2011; Buckell et al., 2013).  

We find that laboratories facing higher input prices have higher costs; that laboratories with 

higher tests-to-requests ratios have higher operating costs; and that laboratories in urban 

settings have higher operating costs (coefficient on the Metropolitan variable), which is in 

agreement with other pathology studies (Department of Health, 2006). The within estimator 

suggests that the foundation variable is not significant, whilst this variable is found to be 

statistically significant at the 5% level in the REM without Mundlak. The study of the 

Healthcare Commission (2007) suggested that the foundation of the host trust may lead to 

lower operating costs, although no empirical results were presented. 

The coefficient on the time variable, representing technical change (frontier shift), is 

significant only in the REM with Mundlak (the within estimator). The coefficient suggests 

that pathology costs are, on average across the market, decreasing annually by around 2% 

owing to technical change. This finding is in keeping with the empirical findings of Holland 

et al. (2011). Moreover, this result is intuitively sound, as a heavily mechanised industry such 

as pathology is likely to be characterised by technological change over time, leading to cost 

reductions, even in the short run (as in this data).  

We now discuss the Mundlak group mean coefficients. There appears to be divided opinion 

in the literature as to their interpretation individually, although most authors do not comment 

on them in isolation. Of those that do, Farsi et al. (2005a) and Farsi et al. (2005b) take the 

view that the group means indicate correlation between the variable and unobservable 

heterogeneity. Conversely, Filippini and Hunt (2012) state that the interpretation of these 

variables is not straightforward, and do not assign any interpretation to these coefficients. In 

                                            
87 We note that similar data is used for these studies so this result is not surprising 
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our application, we are interested in the decomposition of efficiency and unobservable 

heterogeneity, thus the interpretation of these variables is of no specific interest to us.  

Overall, the Mundlak-transformed model is considered a better reflection of the economic 

reality than its non-transformed counterpart on a priori grounds as it permits inefficiency 

estimates to be purged of unobserved heterogeneity that is correlated with the regressors. We 

discuss model selection based on appropriate statistical testing below. 

6.4.2 Model Selection 

We now move to our discussion on model selection. To begin, we consider the testing 

procedure outlined in table 6.2. We discuss the results from these tests, which are reported in 

table 6.7. We also draw on the model efficiency predictions, which are presented in table 6.5. 

The first issue is whether the multi-level structure is appropriate. From the significant 

Moulton-Randloph statistic, the panel specification of the first stage formulation is preferred 

to the pooled model, supporting the presence of SHA effects. Of course, as noted above, we 

then need to consider the interpretation and decomposition of these SHA effects. 

For all models, the LR statistic on the laboratory level SF is significant, supporting the 

presence of inefficiency at laboratory level.  

We now turn to the unobservable heterogeneity test statistics. The Wald test of 6 linear 

restrictions – the Wu test - indicates that the variable group means are jointly statistically 

significant additions to the model
88

.  There is thus evidence to support the correlation 

between the SHA effects and the regressors, which we interpret as unobservable 

heterogeneity. On this basis, we prefer model 2 to model 1 and model 4 to model 3.  

As expected, model 1 appears to confound unobservable heterogeneity with inefficiency. 

This issue is well known in the health context (Greene, 2004; Farsi et al., 2005a).When the 

Mundlak adjustment is applied, the average predicted efficiency increases significantly from 

0.625 to 0.715 (table 6.5). This finding, combined with the results of the Wu test, suggests 

that there is a substantial amount of unobservable heterogeneity that is correlated with the 

regressors.  

                                            
88 We have also used the more familiar Hausman test. In this case, however, the test statistic could not be computed because the variance-

covariance matrix is not positive definite. We thus revert to the Wu test (Greene, 2012b) and note that, in any case, reliance on the Hausman 
statistic alone is discouraged (Baltagi, 2008). 
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Model 3 is unable to detect any inefficiency at the SHA level (table 6.5) – the SHA effects 

exhibited wrong skew. As noted, the Wu test result suggests that there is a high amount of 

unobservable heterogeneity that is correlated with the regressors, which model 3 does not 

allow for. Therefore, the finding of zero inefficiency is likely more a matter of model 

misspecification than of economic reality. This finding suggests that controlling for 

unobservable heterogeneity that is correlated with the regressors is vital: had we estimated 

only models 1 and 3, we might have concluded that there is no inefficiency at the SHA level 

and that SHA effects were driven by heterogeneity. We therefore prefer model 2 to models 1 

and 3.   

The final model selection decision is then a choice between model 2 and model 4. This 

choice hinges on the result of the attempt to decompose the SHA effect into inefficiency and 

unobserved heterogeneity that is correlated with the regressors (stage 2 in model 4). Although 

inefficiency was detected at the SHA level in model 4 (which was not the case in model 3), 

the result was not statistically significant (table 6.7). The conclusion, at face value then, is 

that once purged of unobserved heterogeneity (correlated and uncorrelated with the 

regressors) there is no statistically significant SHA-level inefficiency.   

However, we note that stage 2 of the multi-stage approach is based on only 10 observations 

(as we have only 10 SHAs). As a result, the failure to find inefficiency in this model is 

unsurprising (this is likely to be an issue for this model on any dataset, like ours, where the 

number of firm observations is low).  

We further note a striking concordance between the predicted SHA efficiencies of models 2 

and 4 with respect to rank (Kendall’s tau = 0.600**, see table 6.5 for ranks), absolute 

correlation (=0.92
89

) and mean predicted efficiency (model 2 = 0.921; model 4 = 0.944, see 

table 6.5). So, although the inefficiency effects are not statistically significant when making 

the final decomposition of inefficiency and unobserved heterogeneity (uncorrelated with the 

regressors), the inefficiency predictions and ranks are scarcely affected. It appears that much 

of the unobservable heterogeneity is correlated with the regressors and it is then difficult to 

disentangle the remaining effect.  

Overall, we conclude that there is some remaining inefficiency at the SHA level and in the 

discussion that follows, we use model 4 as our preferred model. This is on the grounds that it 

                                            
89 Farsi et al (2005a) suggest, as a rule of thumb, any score greater than 0.9 can be considered as similar; our result is well in excess of this. 
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takes account of unobserved heterogeneity that is uncorrelated with the regressors, noting that 

results are very similar if we were to revert to model 2. 

6.4.3 SHA, Laboratory level and Overall Efficiency Predictions 

Table 6.5 shows the efficiency predictions from the four models. For each model there are 

four columns corresponding to the SHA-specific efficiency, the laboratory-specific 

efficiency, the overall efficiency and the rank of the SHA in terms of its overall efficiency. 

For the first three columns, the means of the predicted efficiencies and corresponding 

standards deviations are provided.  

Table 6.6 shows the rank correlations between the predicted overall efficiencies for models 1-

4
90

. As can be seen, there is very little concordance between almost all of the models’ 

predicted ranks. This is not entirely surprising given that model 1 makes significantly 

different assumptions to the remaining models and that model 3 failed to recognise any 

inefficiency at the SHA level. The exception to the trend is that the predicted ranks of model 

2 and model 4 are statistically significantly correlated.  

Model 1 exhibits the lowest predicted efficiency with a mean overall efficiency of 0.625. This 

is as expected given that, by construction, this model makes no allowance for the effect of 

unobservable heterogeneity on efficiency prediction. Thus, the unobservable heterogeneity is 

encompassed in the inefficiency component of the model. This issue is well known in the 

health context (Greene, 2004; Farsi et al., 2005a). 

In model 2, it is assumed that unobservable heterogeneity is correlated with the regressors. As 

such, we are able to use the procedure outlined in section 2 to remove it from the SHA 

effects. Here, the mean overall efficiency increases significantly to 0.715.  

In model 3, the unobservable heterogeneity is assumed to be uncorrelated with the regressors 

and assumed to embody a set of assumptions (section 6.2). In this application, the SHA 

effects that had a SF applied to them (stage 2 of the multi-stage approach) exhibited wrong 

skew. Thus, no inefficiency was detected at the SHA level; that is, the firm effect is entirely 

composed of unobservable heterogeneity. In this sense, model 3 predicts the highest SHA 

efficiency. As noted, we believe this model to be misspecified.  

                                            
90 We use Kendall’s tau to measure rank correlation, which is well suited to small samples (Kendall & Gibbons, 1990). 
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Model 4 combines both the assumptions and procedures of the preceding three models: 

unobservable heterogeneity is assumed to be, in part, correlated with regressors and, in part, 

uncorrelated with the regressors.  

As can be seen, as expected, the predicted mean overall efficiency in model 4, 0.732, is 

higher than that of model 2, 0.715. The difference is slight in contrast to the predictions of 

model 1 versus the predictions of model 2, suggesting that there is less unobservable 

heterogeneity that is uncorrelated with the regressors than that which is correlated with the 

regressors. This indicates that the Mundlak adjustment appears to capture almost the full 

extent of the unobservable heterogeneity. However, there was a small difference between the 

predicted efficiency ranks and SHA efficiencies, suggesting that the additional control is 

worth retaining.  

There is a more fundamental point when comparing model 3 with models 2 and 4, which is 

that there is potential for model misspecification, which may have serious implications for 

findings. In our case, this could lead to what we believe to be an incorrect conclusion about 

the performance of the SHAs: zero inefficiency. This underlines the importance of 

accounting for both forms of unobservable heterogeneity discussed here.  

As discussed in section 2, the predicted laboratory efficiencies are identical in pairs: the 

laboratory efficiency predictions of models 1 and 3 are one pair; and of models 2 and 4 are 

the other pair. That is, there are two ‘sets’ of laboratory efficiency predictions. These two sets 

of efficiency predictions are very similar with regard to their averages, 0.771 and 0.776 (table 

6.5), their absolute correlation (=0.98) and their rank correlation (Kendall’s tau = 0.956***). 

This suggests that efficiency predictions at the laboratory level are robust to the specification 

of unobservable heterogeneity (or indeed whether it is assumed away, as in model 1). This 

result likely arises from the similarity between the estimated model parameters in the first 

stage(s).   

We note in passing that there may be a residual amount of unobservable heterogeneity 

between laboratories within SHAs; we did not investigate this issue and are not aware of 

models that would permit this. We therefore leave this for future research. 
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6.4.4 Implications for Health Policy 

To begin, the overall inefficiency predicted by our model for pathology services in the NHS 

is around 27% (see table 6.5). Therefore, through appropriate target setting, it should be 

possible to make substantial efficiency gains in services as a whole (that is, even the best 

performing SHAs can improve). By overall region, the most efficient SHA is B
91

 with an 

overall inefficiency of around 20% (see equation (18) for derivation); and the least efficient 

region in SHA H with an overall inefficiency of 30%. It should be noted that even the most 

efficient SHAs have room to improve because of variations in the laboratory performance 

within them (discussed below). The efficiency gap between the best and worst performing 

regions is around 10%. SHAs I and J are also close to the SHA H level of inefficiency. Thus, 

pathology policy makers should look to these SHAs for maximum gains. 

To calculate potential monetary savings, we take the efficiency prediction of each laboratory 

in its final year, apply its cost weight and compute the potential saving per laboratory. When 

this is aggregated across all of the laboratories, we find £54m of potential annual savings in 

the sample. If this is applied to all NHS pathology services, this would suggest potential 

savings of around £675m per annum
92

. This is significantly more than found in other 

empirical studies (£250-500m in Department of Health, 2008; £390m in Buckell et al., 2015).  

Next, our model enables policy makers to look within SHAs to locate the source of overall 

inefficiency. As envisaged at the outset, we find inefficiency at both levels, but laboratory 

inefficiency dominates. The mean inefficiency at the SHA level is relatively low at 6%, 

where the least well performing SHA has 12% inefficiency. In contrast, the mean inefficiency 

at the laboratory level is much greater at 22%, and the least well performing group of 

laboratories appears to be 27% inefficient. Thus targets and policy mechanisms would appear 

to be better aimed at reducing or exploring differences in performance between laboratories 

within SHAs, rather than looking at persistent efficiency differences between different SHAs. 

A further advantage of this model is that it allows policy makers to observe inefficiency 

differences between individual laboratories; variation that is concealed when considering 

average laboratory inefficiency for each of the SHAs (which can be seen from table 6.5 do 

                                            
91 Due to data confidentiality we are unable to reveal the identity of SHAs. 
92 In our sample, we have only one third of English laboratories, none of the laboratories in Wales, Scotland or Northern Ireland and one of 

five pathology disciplines. We thus follow other pathology studies and apply our overall savings to total pathology expenditure to arrive at 
our estimate. 
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not vary enormously). In figure 6.1, we see that two laboratories have inefficiency that >40%: 

laboratories 12 and 38. Laboratory 38 in particular should be singled out by policy makers to 

improve its performance given an inefficiency of 56%. We note that these predictions do not 

encompass the effects of the SHAs, which have been removed. Of course, as noted earlier, 

further examination of those laboratories would be needed as it may be that part of the 

efficiency gap is explained by other factors not taken account of in our model.  
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  Model 1 
 

Model 2 
 

Model 3 
 

Model 4 

                                        

SHA SHA  Lab  Overall  Rank   SHA Lab  Overall  Rank   SHA Lab  Overall Rank   SHA Lab Overall Rank 

                                        

A 0.902 0.726 0.655 2 
 

0.907 0.734 0.666 9 
 

1.000 0.726 0.726 9 
 

0.983 0.734 0.721 5 

B 1.000 0.827 0.827 1 
 

1.000 0.814 0.814 1 
 

1.000 0.827 0.827 1 
 

0.987 0.814 0.803 1 

C 0.800 0.785 0.628 3 
 

0.888 0.791 0.703 5 
 

1.000 0.785 0.785 5 
 

0.905 0.791 0.716 6 

D 0.797 0.772 0.615 6 
 

0.974 0.782 0.762 2 
 

1.000 0.772 0.772 6 
 

0.978 0.782 0.765 2 

E 0.669 0.805 0.538 10 
 

0.813 0.808 0.657 10 
 

1.000 0.805 0.805 2 
 

0.882 0.808 0.712 7 

F 0.755 0.767 0.579 8 
 

0.952 0.772 0.735 4 
 

1.000 0.767 0.767 7 
 

0.964 0.772 0.744 4 

G 0.727 0.786 0.571 9 
 

0.920 0.799 0.735 3 
 

1.000 0.786 0.786 4 
 

0.935 0.799 0.748 3 

H 0.841 0.736 0.619 5 
 

0.936 0.739 0.691 7 
 

1.000 0.736 0.736 8 
 

0.951 0.739 0.702 10 

I 0.792 0.786 0.622 4 
 

0.871 0.793 0.691 8 
 

1.000 0.786 0.786 3 
 

0.889 0.793 0.705 8 

J 0.825 0.719 0.593 7 
 

0.952 0.730 0.695 6 
 

1.000 0.719 0.719 10 
 

0.964 0.730 0.704 9 

  
                   

Mean 0.811 0.771 0.625 
  

0.921 0.776 0.715 
  

1.000 0.771 0.771 
  

0.944 0.776 0.732 
 

s.d. 0.092 0.035 0.078 
  

0.054 0.031 0.047 
  

0.000 0.035 0.035 
  

0.039 0.031 0.033 
 

                                        

Table 6.5: Efficiency Predictions at SHA Level, Laboratory Level and Overall Efficiency with Overall Ranks. Models 1-4. 

  Model 1 Model 2  Model 3 Model 4 

Model 1         

Model 2  0.022 
  

  

Model 3 -0.022 0.156 
 

  

Model 4 0.156 0.600** 0.289   

Table 6.6: Rank Correlation (Kendall’s tau) between Overall Inefficiency Predictions, models 1-4. *, **, *** denote statistical significance at the 10%, 5% and 1% level, 

respectively. 
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Table 6.7: Test Statistics, models 1-4. *, **, *** denote statistical significance at the 10%, 5% and 1% level, 

respectively. 

For several reasons, the use of efficiency studies by health policy makers, despite their 

prevalence, has been limited (cf. Hollingsworth 2008; Hollingsworth, 2012). We have 

addressed three of these issues in this study. First, as is clear from our analysis, this 

modelling framework gives a complete top-to-bottom view of pathology services. In doing 

so, we are able to indicate the precise location of the inefficiency in these services, which is 

not possible with single level approaches, making our results of greater use in a practical 

sense. Second, we have purposefully focussed on a speciality of health services (as opposed 

to more aggregated entities such as whole hospitals or health regions) – pathology - again to 

make our findings of use to policy makers. Third, we have targeted a specific policy: the 

NHS’s “A Call To Action” to make efficiency gains (NHS England, 2013).  

6.4.5 Implications for Modelling multi-Level Data Structures 

We now turn to the wider modelling implications of our work. We have already noted the 

advantages of adopting the multi-level model as it is possible for policy makers to observe 

inefficiency at different levels (Smith and Wheat, 2012). The alternatives, namely pooling 

laboratory level data, or modelling at the SHA level of aggregation do not (by construction) 

allow this decomposition (Smith and Wheat, 2012). In preliminary analysis we estimated 

  Model 1 Model 2 Model 3 Model 4 

          

Firm effects (vs. pooled model)         

          

Moulton-Randolph 2.696*** 4.168*** 2.969*** 4.168*** 

          

Decomposition of inefficiency and unobserved 

heterogeneity         

          

Wald test of 6 linear restrictions,  𝜌 = 0 ∀�̅�𝑖   12.89**   12.89** 

LR of firm effect SF (vs OLS)     0 1.147 

          

Test of sub-company inefficiency         

          

LR of laboratory SF (vs OLS) 64.689*** 58.170*** 64.689*** 58.170*** 
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both of these alternatives and found that overall inefficiency was underestimated, which is in 

keeping with Smith and Wheat (2012). This is likely contributing to the differences in 

efficiency savings between our findings and other pathology studies (section 6.4.4).  

However, the contribution of this analysis – apart from being the first health application of 

the Smith and Wheat (2012) DLSF – is to augment that model to control for unobserved 

heterogeneity in a multi-level context. We have shown the importance of accounting for 

unobserved heterogeneity in our study. This has clear implications for policy. Of course, we 

found that inefficiency is overestimated when unobservable heterogeneity is disregarded 

(which is well known in the health literature). We also found that unobservable heterogeneity 

arises in various forms; specifically, we find that it is important to take account of unobserved 

heterogeneity that is correlated with the regressors as well as that which is not. Indeed,  we 

find that models that do not take account of the former, such as the recently developed 

approach by Kumbhakar et al. (2014) (model 3 in this chapter), may lead to unrealistic 

predictions and erroneous conclusions.  

Further, in the context of multi-level structures, we noted that it may be hard to distinguish 

inefficiency from unobserved heterogeneity that is uncorrelated with regressors. This is 

because this part of the decomposition is based on the number of observations at the SHA 

level, which in our case is only 10. Thus there may be limits to the degree to which 

unobserved heterogeneity can be separated from inefficiency in data structures of this nature. 

As a caveat to this statement, a finding of no inefficiency when applying the Kumbhakar et 

al. (2014) model could be a reflection of underlying economic reality, and not necessarily 

because of misspecification or lack of data points (though we believe the latter to be the case 

in our example). Of course, the same problem, namely lack of observations to decompose 

inefficiency and unobserved heterogeneity that is uncorrelated with the regressors, also arises 

in traditional panels with a small cross-section.  
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Figure 6.1: Laboratory Efficiency Predictions from Model 4. NB – to preserve the anonymity 

of the SHAs and laboratories, we do not assign the laboratories to their SHAs in this graph. 

 

6.5 Conclusions 

The study in this chapter is the first application of the Smith and Wheat DLSF (2012) in a 

health context and the first time vertically distinct measures of inefficiency have been 

simultaneously estimated in health markets. It is also the first time the approaches set out in 

Farsi et al. (2005a) and Kumbhakar et al. (2014), to control for unobserved heterogeneity, 

have been applied to a multi-level data structure.  

Our results suggest overall inefficiency in pathology services in England of around 27%. This 

would correspond to annual savings of approximately £675m if applied to all NHS pathology 

services. This estimate exceeds previous studies’ savings estimates, thus suggesting the scope 

for further improvements than have previously been envisaged (which is a conclusion in 

keeping with that of other application of this model; see Smith and Wheat (2012)).  

The source of the inefficiency is visible in our study, which was not the case in previous 

studies. The results show that the dominant source of inefficiency is variation at the 

laboratory level inefficiency within SHAs, though the SHA-level persistent inefficiency 

effects are also important. This illumination of the location of inefficiency should provide a 
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useful guide for policy makers. Our results further show that some individual laboratories 

have particularly high inefficiency, which is worthy of further investigation.  

With respect to the method, we find that it is important to consider both sources of 

unobservable heterogeneity (correlated and uncorrelated with the regressors). In our case, 

unobserved heterogeneity that is correlated with the regressors dominates. We note that the 

Kumbhakar et al. (2014) model (model 3 in this study) did not detect SHA-level inefficiency 

(wrong skew), which we attribute to model misspecification given that it neglects an 

important source of unobserved heterogeneity. Model 4, which takes account of both sources 

of unobserved heterogeneity, struggled to disentangle inefficiency from unobserved 

heterogeneity that is uncorrelated with the regressors. We attribute this problem to the fact 

that this stage of the decomposition relied on only 10 observations (as we have 10 SHAs). 

This could be a limitation to the degree to which unobserved heterogeneity can be separated 

from inefficiency in data structures of this nature, where there may be a small number of 

observations for the top-level of the hierarchy. Of course, the same problem would occur in 

traditional panel models with a small cross-section. We do note, however, that failure to 

separate inefficiency from unobserved heterogeneity that is uncorrelated with the regressors 

could simply reflect economic reality rather than caused by model misspecification and/or 

lack of data points (though we believe the latter to be true in our example). 

Whilst the different approaches produced different results for SHA-level inefficiency, the 

inefficiency predictions at the laboratory level were largely the same across all models. It 

appears, then, that the inefficiency estimates at this lower level are robust to the treatment of 

unobserved heterogeneity. This is likely due to the estimated parameters being similar 

between models. However, we consider that further research might incorporate how 

unobserved heterogeneity at the lower level might be incorporated into the modelling 

framework.  

With this, we conclude our empirical work in this thesis. We therefore turn, in the following 

and final chapter, to the discussion and overall conclusion of this thesis.  
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7. Conclusions 

 

In this chapter we draw together the findings from our introductory and empirical chapters. In 

7.1 we summarise the NHS policy context in which this thesis resides. In 7.2 we review the 

objectives that were set out in the introduction, and consider the extent to which our chapters 

have answered these issues. In 7.3 we take a synoptic view of our contribution. In section 7.4 

we evaluate our empirical work. Finally, in section 7.5, we set a research agenda for future 

work.  

 

7.1 Policy Context 

 

We have argued that there is long- and short-run pressure on the health care budget in 

England. We identified efficiency as one possible way to relieve budgetary pressure. Noting 

that the majority of expenditure is on secondary care in England, we have paid particular 

attention to this area. Under a revised governance structure, NHS hospitals are now subject to 

efficiency targets set by the sector regulator, Monitor, as opposed to the Department of 

Health before it; Monitor are thus tasked with promoting efficiency amongst NHS hospitals.  

 

We have reviewed the process of setting efficiency targets from an economic perspective: we 

have examined how to measure efficiency; and how to incentivise hospitals to reach those 

targets set. This is likely to be key information going forward, not least due to the current 

contention surrounding the proposed efficiency target. In this sense, we feel we have made a 

valuable contribution to current policy issues. 

 

Of course, we are also interested in the academic contribution of our endeavours. We 

therefore turn to look in detail at the findings from our empirical chapters, and reconcile these 

against our research objectives to demonstrate the contribution to the literature of this thesis. 

 

7.2 Revisiting the Research Objectives 

 

In chapter 1 (section 1.3), the objectives of this thesis were set out. In this section, we revisit 

these objectives and comment on how this thesis has answered each.  
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(i) To inform the process of setting efficiency targets for NHS hospitals, by 

reviewing germane literature and conducting efficiency analysis; and to set out 

some empirical issues to which we are able to provide solutions. 

 

In chapter 4, this objective was achieved in several ways.  

 

First, we reviewed a number of policies that have been applied to NHS hospitals 

across its recent history. These policies were applied with the intention of 

improving hospitals’ performance. They had varying degrees of success. We used 

the available evidence to identify features of performance management regimes 

that were effective, and those that were not. In doing so, we provided some 

lessons on what appears to be effective when looking to induce improved 

performance. This is likely useful for Monitor who is responsible for enforcing 

hospital efficiency targets.  

 

Second, we reviewed the pricing mechanism for hospital reimbursement. We 

established the link between the National Tariff Payment System (NTPS) and 

Price-Cap regulation. We focussed our discussion on the incentives around price-

control periods. We observed that price-cap regulation had been effective in a 

number of industries, but required a longer regulatory lag than is in place under 

NTPS. We therefore concluded that by lengthening regulator lag for the NTPS, 

Monitor could encourage efficiency amongst hospitals. Further, we considered the 

regulatory mechanism that is employed in the rail industry as an example of 

alternative pricing models when there are multiple parties involved in financing 

and delivering services. We drew the parallel to health services.  

 

Finally, we reviewed efficiency studies in the health sector and in other regulated 

industries. We identified health-based issues with efficiency analysis. There were 

both methodological issues and practical issues that have hindered the use of these 

studies at the policy level. We therefore set out some ways in which these might 

be resolved to encourage uptake. This review was used to frame the empirical 

work. 
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In chapters 5 and 6, we conducted econometric efficiency analysis in NHS 

hospitals. In particular, we studied pathology laboratories. In doing so, we 

identified the level of inefficiency within pathology services. Although useful, 

efficiency analysis at this level provides information in a limited sense in that it 

would be difficult to justify setting targets based on efficiency analysis at the 

individual service level. However, it is perfectly possible – and data are available 

– to conduct several such studies across a number of services, to enable a more 

detailed picture of how efficiency varies across areas of services within hospitals. 

This approach, although more involved, has two major advantages. First, a more 

detailed level of analysis, compared to a whole hospitals approach, means that 

targeting managerial effort to for capturing the gains identified is a 

straightforward process. Secondly, analysis at a more detailed level of service 

enables the researcher to better control for service and patient level heterogeneity. 

This is in keeping with contemporary thought in the academic literature. 

 

 

(ii) To provide new economic evidence for an area of NHS hospital activity for which 

empirical evidence is scant: pathology laboratories. This is, in turn, to feed into 

the top-level policy goal of making efficiency savings across the NHS. 

 

In chapters 5 and 6 this objective was achieved. In a first analysis, we analysed 

fundamental economic issues pertaining to costs and efficiency in pathology 

laboratories. We estimated the level of inefficiency in pathology services, and 

estimated that around £390m savings annually would be possible if all 

laboratories improved performance in line with best practice. We used a flexible 

model which allowed us to estimate how individual laboratories’ efficiency 

changed over time. We found that this was important, as some laboratories were 

making efficiency gains over time, some losses and others were unchanged over 

the observed period. On average, laboratories became less efficient over time.  

 

Next, we conducted a simulation exercise to estimate the cost implications of 

merged laboratories. We found potential savings of a similar magnitude to 

potential gains from inefficiency reduction. We also examined a number of factors 
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that drive costs which have been raised in policy discourse. We paid particular 

attention to economies of scale, which is of significant interest to policy makers.   

 

Lastly, we took an overall account of pathology production by combing the 

various aspects of the cost function into an estimate of multi-factor productivity 

and its change in over time. We found an improvement of around 5% over the 

period studied, driven largely by technical change.  

 

In chapter 6, we developed our analysis to consider the way in which pathology 

services are organised hierarchically. Indeed, we found that were components of 

inefficiency at vertically separate organisational levels in pathology services. We 

found the majority of inefficiency resided at the lower tier of the organisation and 

a smaller amount at the upper tier. Further, we found that accounting for this 

structure was important for overall estimates of inefficiency. We therefore revised 

our potential savings estimate for pathology services to £675m, which is 

considerably more than was found in previous studies, including those of this 

thesis.  

 

 

(iii) To advance the measurement of efficiency in health markets and beyond 

 

This objective has been achieved across chapters 4, 5 and 6.  

 

In terms of efficiency analysis in health markets, we have made several steps. 

Firstly, the literature review of methods in chapter 4 provides a review of the 

literature based on current issues in the estimation of efficiency in health markets. 

In addition, focus is given to policy-based issues that have been raised. We also 

contrasted the methodological issues in health with those of other regulated 

industries, providing richer insights into efficiency measurement for regulatory 

practice in health care. We extended the regulatory best practice criteria for 

benchmarking to health markets. In these regards, we conclude that we have made 

a useful contribution to the literature.  
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We then, based on our review, conducted empirical work on NHS hospitals. In 

doing so, we introduced a number of new empirical efficiency models in the 

health context. In chapter 5, we, for the first time, adopted the model of Cuesta 

(2000) to examine efficiency change over time of individual laboratories. This is 

of particular use as NHS staff have indicated that knowing how performance 

changes over time is of use to them (Hollingsworth and Peacock, 2008).  

 

In chapter 6, we, for the first time, employed the dual-level stochastic frontier 

(DLSF) of Smith and Wheat (2012) to make a vertical decomposition of 

inefficiency. We note that modelling hierarchical efficiency has been identified as 

a key area for empirical development in health care (Hollingsworth and Peacock, 

2008).  

 

These models are of use in the wider health context, and allow both researchers 

and policy makers/regulators important insights into inefficiency variation. 

 

In chapter 6, we were able to go beyond the health context in our methodology. 

We have extended the DLSF model of Smith and Wheat (2012) to allow for the 

presence of unobserved heterogeneity. In particular, we have presented a 

modelling approach that can account for unobserved heterogeneity that can 

manifest in several forms. In doing so, we have derived a model that is of general 

use. This is approach is particularly of use in the health context, where unobserved 

heterogeneity – as argued - is a significant concern.  

 

 

7.3 Synopsis of Empirical Research 

 

We have commented on how each of the individual chapters contributes in both policy and 

academic senses, we now discuss potential holistic benefits of the thesis combined. 

 

Our central theme is NHS hospital efficiency. We have conducted analysis in an intense 

fashion, applying due academic rigour to our analysis. Whilst this is, naturally, of high 

importance in the academic setting, there is a question as to the application of our findings in 
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the practical setting: we ran complex econometric methods, does it matter? Our view is, 

broadly, yes. 

 

There are some distinct advantages to the approach that we adopted, relative to Monitor’s, 

which we have already noted – disaggregate analysis, efficiency of individual units over time, 

multi-level efficiency analysis and unobserved heterogeneity. The multi-level analysis was of 

particular significance: when the structure was taken into consideration, there appeared to be 

substantially more available savings than in the single-level setting (see section 6.4). 

 

Further, our multi-factor productivity index allowed us valuable insights into how other 

aspects of productivity changed. In our prediction of merging laboratories, we demonstrated 

significant potential in scale benefits – comparable in magnitude to potential efficiency gains. 

These analyses enrich the information available on hospital performance. As such, they are 

worth pursuing in the regulatory setting. Incorporating these features into future efficiency 

analyses may help resistance from providers, at least in methodological terms. For these 

reasons, our view is that a more involved methodological approach by Monitor is likely to 

yield significant benefits.  

 

These benefits, however, come at the cost of resource: more complex models are difficult to 

construct and run, require expertise, require testing/sensitivity diagnostics, etc. In a single 

year when resources are constrained, these more complicated approaches become 

increasingly difficult to adopt. To take an approach which incorporates these features would 

be more realistic in a longer period. Lengthening the control period would enable deeper 

engagement with providers, in particular with regard to methods. Moreover, these changes 

could be cost effective if the estimated additional cost savings in our empirical work are in 

excess of the likely cost of employing extra resources to enable a more sophisticated 

approach. (Whether or not this is true in reality is unknown without data to support it.) 

  

In terms of the pricing mechanism, we suggested lengthening the regulatory lag as theory and 

empirical evidence suggest that doing so enhances efficiency incentives. Suppose this was 

brought in line with other regulators in England to five years. It might reasonably be expected 

that, due to the strengthened incentives mentioned, efficiency gains are realised. This would 

fit neatly with adopting a more sophisticated approach to econometric benchmarking. Of 
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course this may be complicated by policy change, which has been common throughout the 

lifetime of the NHS.  

 

In addition, if the lag is lengthened, it would be easier to introduce adjustments to the 

mechanism to allow arbitration by a central body. This would help with the matter of 

disputes, as are ongoing at the time of writing. We suggested adopting the tripartite system as 

in the rail industry. A useful piece of academic research in this regard would be an economic 

model to predict the potential effects of making changes. We discuss this in the following 

section. 

 

With regard to other incentives, lengthening regulatory lag would allow Monitor to take 

advantage of the beneficial features of target setting as set out in box 4.1. For example, it 

would allow targets to be clearly set and communicated; to be applied over longer periods 

avoiding short-term quick-fixes; targets would be prioritised; and sanctions for failure could 

readily be imposed. Importantly, it would allow the regulator to engage with providers on a 

long-term basis and have greater interaction with the process of efficiency factor setting; the 

current rejection of the 2015/16 NTPS determination suggests discontent amongst providers 

with the current approach.  

 

Whilst helpful for promoting positive aspects of performance management schemes, 

lengthening lag would, equally, be conducive to avoiding some of the potential pitfalls in 

setting targets, as presented in box 4.2. In chapter 5, we discussed that an econometric 

approach based on a cost function avoids a number of potential issues such as gaming. A five 

year lag relative to a single year’s lag has two clear advantages in relation to box 4.2. First, 

the issue of myopia is mitigated by lengthening the lag.  

 

Second, given that multiple policies are still imposed (such as waiting times targets), it is 

difficult to delineate the specific effect of each. Lengthening the lag would give a clearer idea 

as to what drives performance change - the pricing system or the other targets in place. That 

is, if there was a significant change to the pricing system and changes to performance, it is 

likely that these were driven through the change. On the other hand, if no discernible 

difference in performance was observed, it could be argued that performance was scarcely 

affected by the pricing mechanism. This information would be of use whatever the outcome. 
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Whilst we have proposed a number of advances for Monitor, we have also identified some 

areas for useful future research. We therefore move to evaluate our approach before 

discussing directions for research in the future. 

 

7.4 Reconciliation of Empirical Results 

7.4.1 Reconciliation Against NHS Hospital Efficiency Studies 

In chapter 3, we reviewed efficiency studies in health and focussed on applications of 

econometric efficiency analysis techniques to NHS hospitals. We reported results in table 3.3. 

We noted that not all studies explicitly measured levels of inefficiency or indeed reported 

results. However, for those that did, it is a useful exercise to compare and contrast the results 

of prior studies to the results of the empirical work in this thesis.  

Of the studies which explicitly report efficiency estimates for NHS hospitals, of which there 

are 4, there is a range of efficiency reported. SFA studies report inefficiency in the range of 

8% to 39%; in our empirical work, we report average inefficiency of 13% and 27%. This 

appears, then, to be in keeping with the findings of prior studies. In terms of technical change, 

one study (Ferrari, 2006) reports that hospitals experienced technical progress of around 3% a 

year. In our analysis, we found comparable progress of around 2%.  

In terms of efficiency change over time, the results are mixed. In one study (Ferrari, 2006), 

whilst some analysis of efficiency over time was conducted, there was no temporal change 

found, which is in direct contrast to our findings. However, we note that the model employed 

is rather restrictive – that of Battesse and Coelli (1992) - which may be an explanation as to 

why. Elsewhere, results indicate that, across a number of specifications, efficiency appears to 

be decreasing over time (Jacobs et al., 2006). This is consistent with our results, however the 

authors note some issues with sensitivity (pp. 86-9). We did not find such issues. 

Overall, our results appear to be in line with the received literature in terms of efficiency 

predictions, technological change and temporal change.  

7.4.2 Reconciliation of Efficiency Predictions in Chapters 5 and 6 

In chapter 5, the average prediction of inefficiency was 13% which implied cost savings of 

£390m p.a. in pathology services. Using the same data, the average of predicted inefficiency 
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was 27%, which, in turn, implies potential cost savings of £675m in NHS pathology. There is 

thus fairly sizeable discrepancy between the two chapters’ estimates of efficiency (and 

therefore the corresponding policy implications) which bears comment. 

 First is to highlight the differences in approach - and therefore the models - applied to the 

data. In chapter 5, our preferred model allowed inefficiency to vary between laboratories over 

time; in chapter 6 time-invariant efficiency was assumed. Second is the stratification. In 

chapter 5, the data was stratified by laboratory and time. In chapter 6, the first stratification 

was by SHA and laboratory; and in the second stage by laboratory. Further, the two studies’ 

specifications varied in terms of both variables and functional form. In chapter 5 there were 

additional variables in the cost function and a translog functional form was adopted. In 

chapter 6, some of these variables were not significant (and so dropped) and the stratification 

did not support a translog form, and we thus reverted to a Cobb-Douglas form. For these 

reasons, efficiency predictions are likely to vary which may explain the observed 

discrepancy. 

However, the most likely driver of the difference stems from the organisational structure and 

the differing economic interpretations between the two analyses. Considering this issue 

highlights the link between the two approaches. In chapter 5, we used a set of regional 

dummies to control for unobserved differences between laboratories. These are SHA 

dummies that have been collapsed for parsimony. Our economic interpretation of these 

variables was that they represented regional differences that are unobserved between 

pathology laboratories. In chapter 6, we used this structure in the data, but adopted both a 

different approach and structure. First, we stratified by SHA and laboratory to identify the 

effect of SHA. Here, our interpretation of these effects was that they were partly, as per 

chapter 5, comprising unobserved heterogeneity but also that there was SHA-specific 

inefficiency present in these effects. We duly applied a number of specifications and tests to 

determine if this was the case, concluding that it was. Therefore, this effect is likely 

contributing to the observed difference. 

In passing, we note that and alternative, indeed simpler, strategy for the analysis in chapter 6 

would be to estimate a model that is stratified by laboratory and time and use SHA dummies 

to estimate the SHA effects. In this sense, the framework is akin to a true fixed effects 

formulation (Greene, 2005). We did not adopt this approach for two reasons. First, TFE are 

known to suffer from the incidental parameters problem, particularly when the panel length, t, 
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is small, as is the case in our application. The second follows from the findings of chapter 5. 

Whilst we could estimate this model, we are unable to identify the SHA effects (i.e. not all of 

them are statistically significantly different from zero). This is not the case in our approach. 

For this reason, we retained the methodology detailed in chapter 6.  

7.4.3 Reconciliation Against NHS Policy 

In the opening chapters of this thesis, we identified that, under current policy, an efficiency 

savings target of £30bn p.a. by 2020 has been established, following from the NHS’s “A Call 

to Action” (NHS England, 2013). Of this, central government has made a commitment of 

£8bn. The remaining £22bn is to be found across NHS services. The “Five Year Forward 

View”, or is as known elsewhere as the “Stevens Plan” after the NHS chief executive Simon 

Stevens, has identified that 2-3% annual productivity improvements across the NHS will 

ensure that the gap is met.  

As regards the findings of this thesis, we have estimated that productivity in pathology 

services has increased by, on average, 1.18% per year over the period studied. This is, in 

crude terms, rather behind the required savings. However, we note that our MFP measure did 

not encompass scale change, which was estimated to be a powerful element of cost reduction 

and so, by extension, productivity change. In light of this, it may well be possible that the 

required productivity gains are delivered. We further note that the disaggregate approach we 

have adopted allows us to identify where these gains can be, or at least have been, made – in 

this case technological and scale change – and so where additional gains can be made. That 

is, given our estimates of efficiency, the productivity gains can be boosted if managerial 

focus is given to capturing the efficiency gains identified.   

Of course, looking at crude figures, whilst useful, is only part of the issue. There is, of course, 

the issue of what is possible in reality. Whilst we have identified the potential for efficiency 

gains, a question arises as to how much of these can be realised. This may limit the potential 

gains available. There may be an acceptable level of inefficiency that is achievable, beyond 

which seeking further gains may be extremely difficult. It is, of course virtually impossible to 

make such a judgement on empirical evidence; this is an issue for the regulator to resolve 

itself. This may be guided by prevailing policy – the global NHS and/or specific hospital 

efficiency targets are clear candidates for ‘satisfactory’ levels of performance.  
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The other issue is the interactive element of pathology service provision. This is important in 

terms of both the formation of pathology networks and pathology’s interaction with other 

NHS services. There may be a joint effect here – does the formation of laboratory networks – 

whilst helping to make gains in scale – jeopardise the service provided to primary or 

secondary care? This is a clear issue for future research. 

Overall, given that technological progress has improved productivity substantially, that 

efficiency gains are possible to drive further gains and that the formation of local networks 

appears to be inducing scale gains, our view is that the 2-3% productivity challenge for NHS 

pathology laboratories is perfectly possible. Whether it is achieved, which it has not been in 

recent years, depends on managerial performance.  

7.5 Evaluation of Empirical Research 

 

We have argued that this thesis has made a number of advances for measuring efficiency in 

health care and applied techniques to hospitals in the NHS. Of course, there are outstanding 

issues that remain. By way of evaluation, we highlight areas in which our analysis was not 

able to provide answers. In addition, we offer some general remarks around how we 

conducted the research. We go on to discuss future directions for research in the following 

section. 

 

One issue is sample size. The data set used here, as noted, contains 187 observations. In 

health terms, where HES data contains 18.2 million patient records annually, this data would 

not be considered as large. In regulatory terms, this number, although not as large as some, 

will be much larger than others. Appendix B shows a table of regulators’ efficiency analyses 

and sample sizes used, which range from 5 to 560 observations. Here, 187 would be the 

second largest of the data sets, and at the higher end of the scale. So whether this is 

considered large appears to be a largely contextual matter.  

 

One important aspect of sample size is the ability or otherwise to estimate models. In our 

empirical work, with the exception of the true random effects model in section 5.4.2, which 

although did estimate, gave questionable efficiency predictions, 187 observations was 

sufficiently large to allow estimation. Moreover, there were difficulties in using the 

Kumbhakar et al. (2014) approach to making the decomposition of SHA-level inefficiency 
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and unobserved heterogeneity (section 6.4). We ascribed this to sample size issues where the 

small cross-section of SHAs appeared to cause difficulties in estimating the model. A larger 

sample size (in terms of the cross section of firms, or as in our case, SHAs) may have helped 

to estimate the models.  

 

In chapter 4, we identified patient-level cost heterogeneity as a key aspect of health care 

efficiency analysis. By analysing pathology services which do not deal directly with patients, 

there is less concern around patient-level heterogeneity. We were therefore unable to deal 

directly with this issue.  

 

In addition, in chapter 4, we identified quality and outcomes as a key aspect of health care 

efficiency analysis. We addressed the issue of pathology quality in chapter 5.3. Laboratories 

in our sample have obtained a base level of quality by virtue of having been accredited; 

excess variation in quality is absorbed in our controls for unobserved heterogeneity. 

However, we were not satisfied that the quality of available data to include this feature 

directly into our analysis. Therefore, again, we were unable to deal directly with this issue. 

 

On account of both of these features, and the organisation of pathology laboratories, there is a 

question around whether pathology can be considered as a department of a hospital, or 

whether the practice of pathology in laboratories is a separate area of health care services 

entirely. This has implications for the generalizability of the results from our empirical 

analysis. Certainty, that there is in no direct patient contact brings in to question that 

pathology laboratories are indeed a hospital department. On the other hand, that they are 

situated in hospital trusts, that they provide direct secondary care services and are integrated 

with other hospital services makes the case for their inclusion. It would be useful to survey 

trust managers to seek their opinion on this matter.  

 

Lastly, we feel that this work was conducted in a manner that engaged the pathology 

industry. First, the data collection is based on long running relationships with laboratories. As 

noted in section 5.2, our work is an extension of existing indicator benchmarking; that 

benchmarking occurs at all suggests that laboratories are interested in their efficiency. Next, 

we have presented the work at a number of pathology conferences, for example the National 

Pathology Benchmarking Conference in Birmingham, 30
th

 November 2012. Lastly, we have 
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published preliminary analyses of this work in pathology journals, with pathologists as co-

authors (see Buckell et al., 2013).  

 

We now turn to discuss some potential areas for future research.  

 

7.6 Directions for future research 

 

Following from the discussion in the empirical chapters, the following directions for future 

research are set forth.  

 

7.6.1 Single Stage Estimation Dual-Level Stochastic Frontier for Unobserved Heterogeneity 

 

In chapter 3, we described the recently developed four component models. These models 

have the capacity to separate out time-invariant unobserved heterogeneity, time-invariant 

efficiency, time-varying inefficiency and random statistical noise. We noted several 

approaches to estimating these models, including single- and multi-stage approaches.  

 

In chapter 6, we adapted the four component model for use in a dual-level efficiency 

capacity. In this setting, we employed only the multi-stage approach to estimation. There may 

be advantages to estimating a single stage equivalent.  

 

Firstly, using the approach of Filippini and Greene (2015), there is the benefit of 

computational ease (although, we note that, in small samples, this model may be difficult to 

estimate). It would further serve as a robustness check for estimates of inefficiency and/or 

bias in the estimates of parameters, given differing estimation procedures.  

 

Additionally, it has the advantage that it is easier to test against other models. That is, 

although we demonstrated that each of the components can be individually tested in the 

multi-stage approach, we would not be able to test the multi-stage model against non-nested 

alternatives, such as a latent class stochastic frontier model. This would be possible with a 

single stage approach. Indeed, in chapter 5 we made use of such a test, the Vuong test, for 

non-nested models. There are of course, other approaches to testing non-nested models, for 

example Pollak and Wales’s (1991) likelihood dominance criterion. 
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Another advantage is around prediction intervals of lower tier inefficiency.  In a multi-stage 

approach, one could naively estimate prediction intervals in the lower tier SF stage (e.g. 

standard Horrace and Schmidt (1996) central intervals that are built into most modern 

software packages). However, doing so would be to neglect that the dependent variable – the 

adjusted residual from the first stage – is itself uncertain. Then, these intervals underestimate 

the true uncertainty around the inefficiency predictions. Therefore, a correction would need to 

be made to introduce the additional uncertainty. In doing so, it would be likely that the 

intervals would be rather wider than the naïve intervals. This is not the case in the single 

stage approach, where intervals around single stage lower tier estimates capture this 

uncertainty. 

 

For these reasons, in our view the application of the single-stage generalised true random 

effects model to the dual-level stochastic frontier is of significant empirical relevance.  

 

7.6.2 Lower Tier Unobserved Heterogeneity in the Dual-Level Stochastic Frontier  

 

In chapter 6, we extended the dual-level stochastic frontier model in a number of ways to 

account for, and test, different forms of unobserved heterogeneity. The controls we used were 

implemented in either the first stage (i.e. Mundlak), or the second stage at upper tier level 

(i.e. Kumbhakar et al.). We noted in passing that we were not able to capture unobserved 

heterogeneity at the lower tier level in our approach.  

 

Before we address this, we note that this is perhaps not entirely true. Of course, we applied 

controls exclusively at the upper tier level in estimation but, in the case of the Mundlak 

adjustment, these controls were applied to lower tier data, albeit stratified according to the 

upper tier. Therefore, the argument could be made for having controlled for unobserved 

heterogeneity at the lower tier that is correlated with the regressors. Of course, even if this is 

accepted, there remains unobserved heterogeneity at the lower tier that is uncorrelated with 

the regressors.  

 

If the data are permitting, it would be possible to address this issue. That is, in our data, we 

have a time series dimension. By making use of this, it would be possible to examine any 

remaining unobserved heterogeneity at the lower tier level. In some preliminary work, we 

have attempted this via the Wang and Ho (2010) approach to the true fixed effects model. 
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The initial results appear promising, and suggest there is some residual unobserved 

heterogeneity at this level, although we will conduct further testing before reporting any 

empirical results. There may be other approaches to this issue, the latent class model, for 

example.  

 

We see this as a very useful area of future research, so that lower tier unobserved 

heterogeneity is not misinterpreted as inefficiency.  

 

7.6.3 Larger NHS Data Set for the Application of the Mundlak-Transformed Four-

Component DLSF 

 

Whilst we have defined and tested a model for varying forms of unobserved heterogeneity, 

we found difficulty in estimation. We attributed this difficulty to the small cross section of 

SHAs in our data. Therefore, a clear extension would be to deploy this approach using a data 

set with a larger cross section which we believe would rectify this issue. Further, if a dataset 

could be found for some disaggregate NHS hospital activity (e.g. proton beam therapy), then 

the findings could be expanded not only in methodological terms, but in terms of the policy 

goals identified in this thesis. This model is of particular relevance for application in this 

setting, since hierarchical managerial structures exist in the provision of hospital services. 

This would further allow us to investigate some of the issues that we were unable to do with 

the data here, e.g. patient level cost variation. This objective can be coupled with other 

proposed directions for future research, in particular single stage estimation given that 

comparably complex models in chapter 5 were found to be difficult to estimate on the data at 

hand. 
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Appendix A: Mean-Scaled Translog 

The cost elasticities derived from the translog functional form are, given the squared and 

cross terms, functions of the variables. This is the feature which allows the elasticities to vary 

across the range of values in the sample. The drawback of this is that the elasticities are not 

immediately obvious from the model’s coefficients. One solution to this issue, which is 

commonly employed by researchers, is to mean-scale the variables. This allows the 

coefficients on the first order terms to be interpreted directly as elasticities at the sample 

mean. We derive this result below.  

Suppose a cross-sectional cost function with two outputs, y1 and y2, 

𝑐𝑖 = 𝛼0 + 𝛽1𝑦1,𝑖 + 𝛽2𝑦2,𝑖 + 𝜀𝑖                                                                                                          (𝐴1) 

The translog specification of which is, 

ln(𝑐𝑖) = 𝛼0 + 𝛽1 ln(𝑦1,𝑖) +
1

2
𝛽11[ln (𝑦1,𝑖)]

2
+ 𝛽2 ln(𝑦2,𝑖) +

1

2
𝛽22[ln (𝑦2,𝑖)]

2

+ 𝛽12 ln(𝑦1,𝑖) . ln(𝑦2,𝑖) + 𝜀𝑖                                                                                   (𝐴2) 

Then, the cost elasticity with respect to output y1 is, 

𝜕 ln(𝑐)

𝜕 ln(𝑦1)
= 𝛽1 + 𝛽11. ln(𝑦1,𝑖) +  𝛽12. ln(𝑦2,𝑖)                                                                               (𝐴3) 

Which reflects that the cost elasticity changes over values of y1 and y2. If the variables are 

mean-scaled, as (𝑦1,𝑖̅̅ ̅̅  are sample means of variables), 

ln(𝑐𝑖) = 𝛼0 + 𝛽1 ln (
𝑦1,𝑖

𝑦1,𝑖̅̅ ̅̅
) +

1

2
𝛽11 [𝑙𝑛 (

𝑦1,𝑖

𝑦1,𝑖̅̅ ̅̅
)]

2

+ 𝛽2 ln (
𝑦2,𝑖

𝑦2,𝑖̅̅ ̅̅
) +

1

2
𝛽22 [𝑙𝑛 (

𝑦2,𝑖

𝑦2,𝑖̅̅ ̅̅
)]

2

+ 𝛽12 ln (
𝑦1,𝑖

𝑦1,𝑖̅̅ ̅̅
) . ln (

𝑦2,𝑖

𝑦2,𝑖̅̅ ̅̅
) + 𝜀𝑖                                                                               (𝐴4) 

Then the cost elasticity with respect to y1 becomes, 

𝜕 ln(𝑐)

𝜕 ln(𝑦1)
= 𝛽1 + 𝛽11. ln (

𝑦1,𝑖

𝑦1,𝑖̅̅ ̅̅
) + 𝛽12. ln (

𝑦2,𝑖

𝑦2,𝑖̅̅ ̅̅
)                                                                           (𝐴5) 
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At the sample mean, the numerator and denominator are equal and the expressions in 

brackets in equation (A5) reduce to 1. Then, because ln(1) = 0,  

𝜕 ln(𝑐)

𝜕 ln(𝑦1)
= 𝛽1                                                                                                                                        (𝐴6) 

This result holds for any number of additional regressors. 
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Sector Market Regulat

or 

Regulatory 

Regime 

Regulatory 

Period 

Regulato

ry 

approach 

Efficiency/perfor

mance modelling 

Firms Years Observati

ons 

Data 

Years 

Variables Quality Performa

nce 

Efficiency target 

set 

Comment

s 

Transport Airports CAA RPI-X 2014-2019; 

Q6 

Price-

capping 

TFP indices; 

RUOE; LEMS; 

output indices 

3 11 33 1997-

2006 

weighted output; labour, capital and 

materials data 

considere

d in other 

measures 

TFP 

change 

0.8-0.9 

over 

period 

after being 

adjusted 

and 

assuming 

constant 

capital 

 sensitivity 

conducted 

for 

different 

weights 

attached 

to 

elements 

of output 

Transport Air 

Traffic 

Control 

CAA Performance 

Targets 

2015-2019; 

RP2 

Four 

areas of 

regulation

: safety, 

environm

ent, 

capacity 

and cost 

efficiency 

internal 

benchmarking 

2 5 10 2009-

2013 

total costs (inflation adjusted); 

service units (output) 

considere

d in other 

measures 

Ireland - 

unit cost 

change 

between -

7.6% and 

7%, 

negative 

for 3/5 

years; UK 

- unit cost 

change 

between -

7.1% and 

5.6%, 

positive 

for 3/5 

years 

For Ireland, unit 

cost reductions of 

between -2.4% and 

0.4%, negative for 

4/5 years; UK - unit 

cost change 

between -10.3% 

and -2.9%, negative 

for 5/5 years 

 

Transport Rail 

infrastruct

ure 

ORR REEM 2009/10-

2013/14 

Overall 

goal 

comprisin

g targets 

set by 

cost 

category 

and asset 

type 

internal 

benchmarking 

1 5 5 2009/10-

2013/14 

OPEX, CAPEX, revenue, financial 

information, 

reflected 

in asset 

enhancem

ent 

close to 

efficiency 

goal for 

first 3 

years, 

failed to 

make 

required 

savings 

for last 2 - 

8% below 

target in 

2013/14 

23.5% REEM by 

2013/14  

Energy Electricity 

Distributi

on 

Ofgem RPI-X 2009/10-

2014/15 

Price 

capping 

based on 

three 

compone

nts: 

OPEX, 

CAPEX 

and real 

price 

effects 

(inflation 

and 

industry 

technical 

change) 

Fixed effects panel 

(LSDV with year 

effects) 

14 4 56 2004/05-

2008/09 

costs: OPEX, OPEX by group; 

independent variables (limited to two 

per model): Load, MEAV, CAPEX, 

no. faults, cables replaced, asset 

man-hours, spans cut/affected 

no OPEX 

efficiency 

70-128%; 

Indirect 

cost 

efficiency 

83-119% 

indirect and non-

operational CPAEX 

- upper quartile; 

network OPEX - 

upper third of 

efficiency scores 

cost 

models at 

disaggreg

ated 

service 

levels as 

well as 

total 

OPEX; 

firm-

effects 

adjusted 

for 

through 

normalisin

g 
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variables; 

gave 

weights to 

models to 

reflect 

merits of 

each 

Energy Gas 

distributio

n 

Ofgem RIIO 2013-2021; 

RIIO-GD1 

Revenue 

allowance 

based on 

Incentives

, 

Innovatio

n and 

Outputs 

OLS with year 

dummies; 

efficiency relative 

to bottom quartile, 

C-D specification 

8 4 36 2008/09-

2011/12 

costs: TOTEX = controllable OPEX 

+ shrinkage + smoothed CAPEX + 

REPEX; outputs: composite scale 

variables combining network scale 

(MEAV) and workload drivers (work 

management, emergency, repairs, 

maintenance, mains reinforcement, 

connections, repex) 

not in 

models 

efficiency 

estimates 

range 

from 0.89-

1.06 

cost allowances 

range from 4-11% 

top-down, 

bottom-up 

using 

historical 

and 

forecast 

data. 

Range of 

modelling 

techniques 

and tests 

applied; 

used 

informatio

n quality 

incentives 

(IQI) 

which 

examines 

firms' 

submitted 

costs vs 

assessed 

costs by 

OFGEM 

Energy Electricity 

and Gas 

transmissi

on 

Ofgem RIIO 2013-2021; 

RIIO-T1 

Revenue 

allowance 

based on 

Incentives

, 

Innovatio

n and 

Outputs 

unit cost 

comparison 

not 

provided 

not 

provided 

not 

provided 

not 

provided 

not provided not 

provided 

not 

provided 

firms are able to 

earn up to £170m in 

additional revenues 

if perform well; 

will lose up to 

£220m in revenues 

if perform less well 

insufficien

t 

informatio

n provided 

in reports; 

claim to 

have used 

an 

internally 

held 

database, 

but do not 

provide 

access; 

some 

figures in 

consultant 

reports are 

redacted 
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Utilities Water Ofwat Menu 

regulation, 

including RPI-

X and RCV 

(regulatory 

capital value) 

apsects; 

TOTEX cost 

performance 

incentives 

2010-2015 Control 

of 

allowed 

revenue 

COLS, SFA; C-D 

and Translog 

specifications 

14 

(WoCs); 

10 

(WaSCs) 

5 Water; 

7 

Sewerage 

90 Water; 

70 

Sewerage 

2005-

2011 

costs: OPEX, CAPEX, TOTEX; 

outputs: length mains, usage; input 

prices: LFS, BCIS data; Network: 

density, metered properties 

(households and non-household); 

environmental: sources, pumping 

head, river sources, reservoir 

sources, new meters, new mains; 

quality variables 

properties 

below 

reference 

pressure 

level; 

leakage; 

unplanned 

interrupti

ons; 

planned 

interrupti

ons 

depends 

on model; 

triangulati

on 

approach 

taken; 

typical 

mean 

around 

80% for 

firms 

(+-)2% return of 

regulatory equity 

(RoRE) for cap and 

collar; unique target 

per firm 

 

Communicat

ions 

Postal 

services 

Ofcom Menu 

regulation 

2011-2014 Regulator

y goal is 

to 

preserve 

universal 

postal 

service. 

Four 

major 

areas to 

monitor: 

financial 

performa

nce, 

efficiency

, quality 

for 

consumer

s, 

competiti

on 

PVEO (price, 

volume, 

efficiencies and 

other (one-offs); 

Unit cost analysis; 

cost per staff; 

productivity 

1 5 5 2009/10-

2013/14 

unit costs; cost per worker; revenue 

per worker; for productivity - input - 

hours, output - workload (volume & 

mix)  

not 

included 

in 

efficiency 

but is part 

of wider 

review - 

on prices 

and 

service 

quality 

PVEO 

suggests 

0.2% 

improvem

ent; cost 

per 

workload 

(adjusted) 

declined 

by 0.2%; 

productivi

ty 

improved 

by 1.7% 

none as yet; Royal 

Mail's own 

productivity target 

is 2-3% 

working 

on 

developin

g more 

sophisticat

ed 

measures; 

consultati

on has 

occurred 

Communicat

ions 

Wholesal

e 

broadban

d access 

(WBA) 

Ofcom RPI-X 2000-2006  SFA (C-D); DEA 70 8 560 1999-

2006 

TOTEX; outputs - switched lines, 

leased lines, total sheath; env - popn 

density, business residential ratio, 

fibre proportion, geographical 

dummies; time 

used in 

later 

models, 

included 

orders 

completed 

in 

specified 

time (%), 

faults per 

1000 

switched 

lines, 

hours 

required 

to fix 

faults 

one 

pseudo-

firm 7.2% 

more 

efficient 

than upper 

decile 

(rank 

2nd); 

other 

pseudo-

firm 6.8% 

less 

efficient 

than upper 

decile 

(rank 

19th) 

 no input 

prices 

variables; 

BT 

openreach 

added to 

data set of 

US firms 

for 

analysis; 

BT split 

into two 

'pseudo-

firms'; 

specificati

on tests 

for model 

specificati

on; 

difficult to 

make 

compariso

n because 

of how 

costs are 

recorded 

Appendix B: Summary of Regulators’ Efficiency Analyses 
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