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Abstract

The human brain is one of the most complex systems faced in research and

science. Different methods and theories from various categories of science and

engineering have contributed to understanding the functionality of the brain and

its underlying structure. However, development of a complete theory remains a

huge challenge. Among many different aspects of this field of research, one of the

main branches is focused on brain disorders, causes and possible improvements to

treatments and patients life quality. To tackle this challenge, experimental and

clinical measurements have been used with computational models to analyse and

contribute to treatments of brain disorders. Signal processing is playing a key

role on detecting key features out of brain electrical recordings and developing

frameworks that can give insight into underlying structure of recorded observa-

tions. As part of the scope of this thesis, previous work have been extended by

relaxing some of the assumptions in earlier work and checking the performance

of developed framework under new conditions.

The main focus of this thesis is based on application of Unscented Kalman

Filter with Amari type model for human brain electrical activities. It is assumed

that Amari type models can present the underlying dynamics of the brain ac-

tivity. The Amari type model is presented in state space form and by use of a

decomposition method, the estimation framework has been used to estimate the

states and connectivity kernel gains. Heterogeneous connectivity is considered as

long range connection in a neural network. The novelty introduced in this thesis

is the introduction of a heterogeneous connectivity kernel in Amari type model

and estimating the connectivity strength.

Applications of the developed methods on the synthetic data are applied on

epilepsy data and results are presented. By monitoring the parameters, it is
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possible to show that brain dynamics from normal to abnormal states can be

detected. Further research and future work in this area can potentially lead

to prediction of seizure and eventually improving life quality of patients with

epilepsy.
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Chapter 1

Introduction

1.1 Background

Human brain is one of the most complex structures that has been studied to

this date. Study of nervous system and its functionality has been extended to

different science fields. Many case studies and research outcomes have suggested

correlations between parts of brain actively engaged in performing specific tasks.

The importance of this field has been growing rapidly during last few decades

which has emerged to scientific study of nervous system as a branch of science

(neuroscience) with different divisions such as computational neuroscience. Com-

putational neuroscience is theoretical approach in the field of neuroscience to de-

velop scientific rules and methods that can explain the underlying structure of

the brain [Kandel et al., 2000].

Despite large area of research in the field of neuroscience, there are many

unexplored questions about the relation between different parts of the brain and

how such correlations lead to a mature system that can develop cognition, logic,

learning and exhibiting complex behaviours. Many attempts have been made to

investigate the structure of brain dynamics by multi-disciplinary research areas

between different science fields such as biology and engineering [Breakspear et al.,

2010].

The brain is built up of neural cells. The communication between neural cells

have been studied and analysed extensively which has resulted in a good level
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of understating about information flow amongst neural cells. The behaviour of

larger neural populations is questioned and different models have been developed

to describe the communication and synchronisation of large scale networks.

Following observations, clinical experiments and research, a general map of

human brain has been established that gives a general outline of different function-

alities of the brain [Johnson, 2003]. The human brain structure can be analysed in

three different levels from microscopic to mesoscopic and macroscopic levels. The

former one presents the properties and behaviours of a single neuron where as the

latter one is a model of larger neural network. In messoscopic and macroscopic

levels, effect of single neuron properties and behaviour is taken into account in

large network characteristics. Indeed, such models take into account that the

larger neural network behaviour is a result of smaller unit communications and

their synchronisations.

It is important to build a better understanding of this level of brain activity

as many of the neural disorders emerge at larger network interactions such as

epileptic seizure, schizophrenia and Parkinson’s disease.

In science, experimental data is usually presented by graphs, and mathemati-

cal functions are used to describe any pattern formations of data or to parametrise

the underlying structure. Recording brain electrical activities has important clin-

ical applications and can be also used to validate computational models and ex-

isting theories. In order to have a better understanding of brain dynamics as a

natural phenomenon, the mathematical descriptions are used for parametrising

experimental data obtained by a specific task [Spiegler et al., 2011].

The term “model” is used in many scientific fields and papers. It describes

many different types of structures. The range of models used in different fields

expands from mathematical models of a single equation to programming codes

in several pages. The more complex the system is, the more simplifications are

needed to get an insight into the dynamics of the system.

It is important to clarify the difference between the model, hypothesis and

the theory. Theories or hypotheses are developed for outlining mechanism of a

system that should be evaluated against the real measurements.

Therefore, a model is developed to evaluate a specific feature of a theory.

Application of this in the field of neuroscience yields that although the field of
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computational neuroscience is a theoretical field, developed models should give

a plausible presentation of underlying dynamics so results obtained by use of

such models can match the experimental data. As an example, the model might

assume a single neuron type as a result of which the properties of each neuron such

as its connectivity strength to another neuron and its temporal characteristics is

neglected in such an approach as such individual factors are assumed irrelevant

to the dynamics of a large scale population. As another example, special focus

is given to synchronized state of the network and heterogeneous connectivity in

the network is neglected. Hence, different models have been developed targeting

a number of specific areas of interest. In other words, the modelling has been

subject to the objectives of the research question under investigation. There has

been a good level of progress in understanding the neural functionality while

the study of dynamics in large scale populations is largely open for discussion

[Cunningham & Yu, 2014].

Despite the fact that much has been obtained about the structure and func-

tional characteristics of the brain, the brain’s behaviour for information processing

is not well understood. In other words, there is a large field of research focused

on how subcomponents of brain are communicating as a functional unit.

As a result, developing models for studying brain dynamics at a large scale

network is very important. Epilepsy, Alzheimer’s disease and other brain disor-

ders are observed at large scale neural networks. Hence, developing models that

describe large scale neural populations is very important [Aram et al., 2013].

Another challenge is the constraints of current treatments with regards to pa-

tient specific information. Current treatments are targeting particular disease or

disorders in general. However individual patient’s response to prescribed treat-

ments have been different and this is a result of various individual medical and

biological background [Alejo J.Nevado Holgado, 2010]. One of the advantages of

model based treatments is contributing to patient specific treatment. An inter-

esting outcome in analysing the EEG recordings from patients include pattern of

parameters for each individual [Jirsa & Haken, 1996]. Developed models can be

used for analysing the observations from patients and obtained parameter tra-

jectories reflect on underlying dynamics for each individual patient. This can

contribute to improvement of treatments in future.
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To have a better understanding of the methods proposed in the thesis, a brief

background on biology of the human brain will be provided in Section 2.1. In the

next section, the thesis structure is explained.

1.2 Thesis Structure

Chapter 1

Thesis structure and research novelty is explained with a brief introduction

that provides outline of this research and explains its importance.

Chapter 2

Chapter two is the literature review where previous work is discussed and a

brief introduction is given on early attempts on understanding the brain functions.

This is followed by recent research outcomes which has been used as primary work

in this research.

Chapter 3

One of the important properties of neuronal behaviours is related to its com-

munication mechanism. Synaptic kernel is a key element in mean field model of

neural populations. There are different models presenting this functionality of

neurons. One of the simplest models for this purpose is the alpha function.

A more general expansion of alpha function is illustrated by difference of two

exponential functions that can be described by a second order ODE. Although,

this type of presentation does not describe the biological details in transmitting

and receiving synaptic potentials, it explains this functionality with a close match

to the experimental excitatory and inhibitory post-synaptic potentials. This can

be explained by considering the fact that the post-synaptic response comprises a

finite rise and decay time.

The derivation of the Amari type neural field model with a second order

synaptic kernel is provided and synthetic data from model simulation is used in

the estimation framework to obtain estimated homogeneous connectivity kernel

gains, neural field and synaptic time constants.

Chapter 4

Developed estimation framework is applied to data from a patient with epilepsy

and connectivity kernel gains are computed. Parameter trajectory during differ-
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ent stages of a seizure is checked and changes in the parameter space is discussed.

Chapter 5

Long range connection is included in the Amari type neural field model by

altering the spatial connectivity kernel to take into account the heterogeneous

connectivity [Jirsa, 2002]. Such a connection topology proposes that the neural

activity not only happens along neighbourhood areas in cortical grey matter but

also in long range projections through the white matter [Jirsa, 2004a].

In general, based on the previous work, it has been observed that model with

this details reproduces cortical propagation activity better than networks with

only homogeneous connectivity kernel. Heterogeneous connectivity is introduced

in the equations of the Amari type model. A state-space presentation of the

model is given and parameters including connectivity kernel gains and synaptic

time constant in addition to states are estimated from data. Data is generated

by the neural field equations with fixed parameters. The results of the estimation

enables a comparison between the true values and the estimated outputs of the

model with estimated parameters.

For simulation purposes, the model is reduced to a finite-dimension state-space

presentation where an estimation framework is applied. The estimation process

includes a two-step iterative algorithm. First part is Unscented Raunch-Tung-

Striel Smoother for estimation of the states and the second part is a least squares

algorithm for estimation of the parameters. The performance of the developed

method is evaluated with a Monte Carlo simulation where the consistency in the

results are observed with variation of random signals at each iteration [Aram

et al., 2013].

Finally, chapter 6 gives a summary of results and possible future work.

1.3 Novelty of the Research

Chapter 3: Second order synaptic kernel

A second order synaptic kernel has been considered that leads into a second

order ordinary differential equation (ODE). It has been implemented in the model

derivation given for a homogeneous field. The resulting model and estimation

equations are original contributions of this chapter.
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Chapter 4: Application of second Order synaptic kernel to experimental data

This chapter demonstrates the application of connectivity kernel estimation

to intracranial Electroencephalography (iEEG) recordings during an epileptic

seizure and shows the potential for detecting and characterising the phases of

epileptic episodes.

Chapter 5: Heterogeneous connectivity

The main novelty of this chapter is introduced by integrating the long-range

connections in previous work to the homogeneous field. The estimation framework

and the model derivation are extended to take into account a simplified model

of long-range connections which introduces heterogeneous connectivity. Model

mismatch has been used to identify the locations of the long-range connections.
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Chapter 2

Literature Review

2.1 Brief Foundation of Brain Physiology

From early ages, there has been an ongoing interest in studying the human organ

systems. In many years of research and experimental experience, different organ

systems have been analysed and treatments to various diseases have been discov-

ered. Among all, human brain has remained one of the most mysterious complex

systems and there is a large body of research conducted on nervous system dis-

orders and different methods for their treatments. Nervous system plays a key

role in the human body. It is involved in daily activities, emotions and sensing

the surrounding environment, learning and many other functionalities. Nervous

system of a human body consists of different parts, for a detailed explanation of

each part the interested reader can refer to Bear et al. [2007].

There are different research fields with objectives to show the resemblance of

human nervous system to sophisticated artificial networks or neural systems in

other live species such as cats, mice and monkeys [Bressloff, 2003; Wright & Liley,

1996].

As part of the introduction, a brief review will be given about the structure

of the brain and different terms that will be used through out this thesis. It

is not the intention of this thesis to target the full scientific vocabulary of the

neuroscience research field. Some of the references that can provide a good cover

for this purpose can be named as Bear et al. [2007]; Kandel et al. [2000].
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There is a clear connection between different human body organs and a de-

fined list of activities. Simple examples of this in a general case of human body

can be named as the use of hands and fingers to handle objects and to hold them;

feet help an individual to walk, run or stand and eye enables observing the sur-

rounding. In a similar approach, an ancient Greek scholar made the conclusion

that human brain has the functionality of sensing its surrounding environment

[Bear et al., 2007].

A well-known Roman scholar Galen, performed different experiments on sheep

brains. Also, his work included treating patients with brain injuries. Based on

his observations, the sheep brain can be divided into two parts named as the

cerebrum and the cerebellum. It was concluded in his work that the cerebrum

is made of a more tough material in comparison with the cerebellum. In his

belief, cerebrum had the responsibility for sensing the surrounding environment

and cerebellum was in charge of muscles and movements. His early observations

was not far from reality. Later in 17th and 18th centuries, this was improved by

Galen which gave rise to allocating different body functionalities to different parts

of the brain (localisation of various activates in the human brain) [Bear et al.,

2007].

Towards the end of the 19th century, human nervous system was reviewed in

different parts such as brain, spinal cord and peripheral part. These were the

beginnings of categorising human nervous system into local sub-categories.

The next milestone in human brain research relates to findings about the

structural forms of bumps (Called gyri) and grooves (called sulci and fissures) in

each individual person. It was based on this, that cerebrum was sub-categorised

into two main lobes. This was an early step in further functional localisation of

the human brain. By this, it means that each part of the brain is expected to

be involved in a specific range of activities. Hence, such activities are related to

different localised parts of the brain. One of such methods used in assigning a

specific activity to a part of the brain is called experimental ablation. On this

method, part of a brain is injured or deactivated and the effect of this experiment

is observed on a specific activity [Bear et al., 2007].

In 1811, it was suggested that the role of cerebrum is in receiving sensory in-

formation and the cerebellum is the origin of the motor signals (motor signals are
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signals that cause a move). Later in 1823, French physiologist Marie-Jean-Pierre

Flourenes applied the ablation experiment on birds brain. The results confirmed

the Galens and Bells earlier statements about cerebrum and cerebellum. Flourens

experiments demonstrated that cerebellum was actively involved in coordination

of movements while perception and sensation is highly related to cerebrum [Bear

et al., 2007]. Based on the observations of Paul Broca, a French neurologist,

it was found that human cerebrum was directly connected to speaking abilities.

This came to his attention when treating a patient who could hear but could not

speak. After the patient’s death, a lesion was found on his left frontal lobe. Later

on, several similar cases also reported this correlation [Bear et al., 2007].

The above history is a small number of contributions in mapping the nervous

system and human brain into different activities. Following the previous work,

human nervous system is now considered to be made of four main regions namely,

spinal cord, brain stem, cerebral cortex and cerebrum.

A brief review is given for the main divisions of human brain in the following

sub-sections:

Cerebellum

Cerebellum is believed to be in charge of particular automotive movements

and motor behaviours. Recent research has revealed the relevance of this part

of human brain to cognitive functions such as learning, language and attentions.

This is also involved in rhythmic movements [Kandel et al., 2000].

Cerebral Cortex

One of the largest part of the brain is the cerebral hemisphere where the cere-

bral cortex is also located. Cerebral cortex is the thin outer layer of the cerebral

hemisphere which is responsible for functions such as planning and execution of

daily activities. Cerebral cortex has been divided into four parts namely, frontal

lobe, parietal lobe, temporal and occipital lobes.

Hippocampus

This is another part of the cerebral hemisphere which is believed to be highly

related to occurrence of seizures and epilepsy. Hippocampus is involved in long-

term memory storage and its malfunction can lead to Alzheimer’s diseases.

Thalamus

Thalamus plays an important role on crossing the information between cortex
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and brain stem. Because of this, it is involved in many different functions and

activities such as attention, timing and movements. It is associated with seizure

and epilepsy [Kandel et al., 2000].

On a smaller scale, all body organs are built of cells and human brain is not

excluded from this list. At this level, a good understanding of cell structure and

function can provide dynamics of the neural field [Bear et al., 2007]. A closer

look at brain cells has enabled sorting neural cells into different categories. Cell

function, chemistry and structure are a number of cell features that are involved

in categorising the cells. Between different cell types, neural cells are considered

as one of the most important categories as neural cells are in charge of sensing

the environment and communicating to other neurons.

The glia or lial cells are involved in insulating, nourishing and supporting

neighbourhood neurons. It is interesting to know that glia is a Greek word that

is called glue and it is believed to keep the brain in one peace. Based on the

publications of Camilo Golgi, it is observed that the neural cells shape consists

of two main parts namely cell body and neuritis. In his work, the neuron body

was turned into darker colour in comparison to other brain tissues. Neural cell

body is called Soma. Neuritis are branches separated from body cell which can

be divided into two categories namely as dendrites and axons. Axon length can

reach up to a centimetre or two in some cases where as dendrites have a shorter

and thinner branches from cell body [Bear et al., 2007].

Connected neural cells are exchanging electrical signals via chemical channels

where such signals are called action potentials. The communication system be-

tween neurons can be explained in three different stages. First presynaptic action

potentials which is basically, the action potentials received from previous layer of

neurons. This is integrated in the neural cell (based on internal properties and

characteristics of the cell) and a new action potential is sent out to the next layer

which is called postsynaptic action potential.

The receiving end of an action potential is called postsynaptic cell and the

source of the action potential is called the presynaptic cell. In the first step,

it is important to have a simple function describing a single neuron. A neuron

structure is illustrated in Figure 2.1.
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Figure 2.1: Neuron structure - adapted from Wikipedia [2009].

A single neuron comprises of a soma, an axon and dendrites. The central part

of a neuron is called the soma with a typical diameter of 20 micrometres [Bear

et al., 2007; Fratini et al., 2015]. Another important part of a neuron is the axon,

specialised in transferring the information between neurons [Dityatev & Rusakov,

2011; Sejnowski & Poggio, 2007].
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Neurons in the Brain

Figure 2.2: Neuron structure illustrating the synapse - extracted from US Na-
tional Institutes of Health [2008].
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The process of transferring the information from one neuron to another one

is called synaptic transmission. As illustrated in Figure 2.2, the gap between the

presynaptic and postsynaptic membranes are named as synaptic cleft. Transmis-

sion of the information between the neurons happens as electrical signals along

the axons change to chemical signals at the synaptic cleft. The chemical signal

is called the neurotransmitter. The electrical-chemical-electrical transformation

enables communication between neurons [Gibson et al., 2005].

The presynaptic potentials are integrated in the membrane of the neuron and

a postsynaptic action potential is fired if the integral of presynaptic potentials

reaches a specific threshold potential.

Figure 2.3: Spatial and temporal presynaptic potentials - adapted from Bear
et al. [2007].

The integration of presynaptic potentials received from the dendrite can be

separated in two groups as spatial and temporal summation [Magee, 2000]. Spa-

tial summations happen at the same time but at different spatial locations. The

temporal summation happens when presynaptic potentials arrive at the same lo-

cation but with a different time delay. This is demonstrated in Figure 2.3 where

as an example, three presynaptic potentials arrive at different locations on the

dendrite simultaneously (spatial summation) and the result of summation is dis-

played on a separate curve. The same is plotted for temporal summation when

three presynaptic potentials arrive at dendrite with different time delays. Result
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of integration shows an increase in the amplitude over time.

Figure 2.4: Different neural scales, from a single neuron cell to human brain -
adapted from Wikipedia [2009]

Communication of neurons results in synchronised local electrical activity.

Figure 2.4 demonstrates a general outline of neural communication in different

scales [Hormuzdi et al., 2004; Moratal, 2012]. It is not the purpose of this thesis to

discuss biological details. Interested readers are referred to the book of Principles

of Neuroscience Kandel et al. [2000].

2.2 Synaptic Response

Different physiological processes are involved in a synaptic transmission that

makes the modelling of the synaptic transmission a difficult task. There are

many synapses in a small size network with stochastic nature since synapses

change their properties over time. In some of the models, presynaptic signals

and neural communication from a close neural neighbourhood are considered by

a sigmoid firing rate function [Abbott, 1991]. In such a structure, the postsy-

naptic currents are described by a first order ODE in which a term is related

to the presynaptic potential by a sigmoid function [Destexhe et al., 2002]. As
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an example of such a model, Wilson & Cowan, characterise the neural field as

a fraction of the neural activity in a small spatial neighbourhood (instead of a

single neuron activity) in each time unit.

As a result of such complexities, many abstractions and simplifications are

considered when modelling synaptic response. As part of such simplifications,

synapses are assumed to be excitatory or inhibitory connections which ignores

the diversity of synapses. A model that represents the full details of the ion

channels and synapses will be computationally and mathematically very com-

plex. In this work, more computationally efficient models are considered that can

present various synaptic currents. A simple model for postsynaptic conductance

can be named as alpha function given in equation (2.1).

h(t) =
−t
ts
e
−t
ts (2.1)

Alpha function introduced by Rall [1967], is a popular model for presenting

different forms of postsynaptic currents. In equation (2.1), t denotes time, e(.)

is an exponential function and the term ts presents the time constant for post-

synaptic potential and it can be used to distinguish between the fast and slow

synaptic kernel responses [Bhattacharya, 2013; Whittaker, 1963]. In other words,

the alpha function has a single time constant. As a result, rise and decay time

constants are correlated and they can not be set individually [Roth, 2009].
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Figure 2.5: Postsynaptic Conductance generated by alpha function with two
different time constants (3 ms and 20 ms).

Plots of synaptic conductance with two different synaptic time constants for

the alpha function is plotted in Figure 2.5. The synaptic conductance with smaller

time constant of 3 milliseconds shows a faster response in comparison to the

slower time constant of 20 milliseconds. It is important that the duration of the

simulations should last long enough to accommodate the full synaptic response.

This is considered for setting the simulation run times in the next chapters.

A generalisation of the alpha function leads to difference of two exponential

functions. This type of model with low number of parameters can be used to

present various synaptic currents. It is computationally simple and it is imple-

mented in different studies and previous work Gabbiani et al. [1994]. A main

disadvantage of models with low number of parameters that present the vast va-

riety of synaptic currents specially in this case, the alpha function is lack of

direct biological interpretation [Destexhe et al., 2002].

In the following equation, the two time constants ζ1 and ζ2 present the time

constant for inhibitory and excitatory synapses respectively. This form of the
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synaptic kernel, h(t), is inspired by Marten et al. [2009a].

h(t) =
ζ1ζ2

ζ2 − ζ1

[exp(−t/τ1)− exp(−t/τ2)] (2.2)

Where τ1 and τ2 are inhibitory and excitatory time constants, respectively. In-

verse of time constants are given by ζ2 and ζ1. Equation (2.2) can be described as

the solution to a second order differential equation as (∂2+(τ1+τ2)∂+τ1τ2)h(t) = 0

where ∂ presents a differential operator.

Having provided a brief introduction on history of human brain and theoret-

ical approaches in understanding its function and dynamics, it should be also

mentioned that human brain as one of the most complex systems has shown a

number of disorders which have been studied for several years. Next section will

focus on brain disorders and more specifically on epileptic seizures.

2.3 Brain Disorders

For many brain disorders, temporary treatments have been developed whereas

long term effective treatment is an open area of research. Examples are epilepsy

and Alzheimer’s disease. Amongst such disorders, epileptic seizure is affecting

the life quality of many people in UK and worldwide [Institute of Medicine (US)

Committee on the Public Health Dimensions et al., 2012; McLaughlin et al.,

2008]. Seizure is a state of brain when a neural population starts to show abnor-

mal electrical activity which causes unproductive movements and imbalances in

a person [Kandel et al., 2000]. The main cause of epilepsy and seizure are still

unknown. It is only in very rare cases that death is caused by a seizure. However,

the disorder can adversely affect the life quality of patients.

More than 40 different types of seizures have been identified. A small list of

seizure types is given in Table 2.1.
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Category Sub-Category Description

Partial (Focal) Simple Conciousness is not effected.

Complex Conciousness is impaired.

Secondary General Partial Seizure evolves to gener-

alised seizure

Generalised Absence Conciousness is interrupted for a

short while and slight involuntary

muscle movements might be ob-

served.

Myoclonic Jerky Muscle Movements for a

short while.

Colonic a set of repeated myoclonic type

seizure

Tonic Severe Muscle contraction

Tonic-clonic Tonic case followed by a clonic

jerky muscle

Atonic Loss of motor control which

causes the effected person to col-

lapse.

Unclassified Any other type of seizure not clas-

sified above.

Table 2.1: A number of different seizure types and their symptoms [Gastaut,
1970].

As mentioned earlier, abnormal electrical activity is observed during a seizure.

This is continuation of earlier work of Bois-Reynmond (1818-1896) and Carlo

Matteucci (1811 1868) where electrical activity of an injured tissue was recorded.

Brain electrical activity was first recorded by Richard Caton (Liverpool, England)

by placement of electrodes of a galvanometer on the scalp. This is known as the

term EEG or in its longer format as Electroencephalogram since then [Gensini

et al., 2004; Pearce, 2001] (Electro is referring to the electrical activity, Encephlo

is referring to signal diffusion).
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Intracranial EEG is another form of brain electrical recording by use of elec-

trodes placed on exposed surface of cerebral cortex [Lehnertz, 1999]. This is

called iEEG in short. In this method, the artefacts included in EEG coming from

the scalp are eliminated. Such artefacts can be caused by different reasons such

as blinking or hand movements. There are other recoding types such as fMRI

where a patient is required to be steady (Which is not the case for a seizure). For

such constraints during the recording time, EEG has become one of the suitable

recoding choices during the past years [Saeid Sanei, 2007].

Development of computational models is highly demanding for analysis of

seizure dynamics. This is more obvious when complexity of brain structure and

communication between neural population is taken into account. Commonly

accepted models for presenting the electrical activities during seizure can give

insight to the inner dynamics of the brain structure while a patient is going

through a transition from a normal state into a seizure.

The epilepsy models can be divided into two main categories: Macroscopic

models and detailed networks [Kramer & Cash, 2012]. One of the important

aspects of a model is purpose of the model and its capability of presenting the

targeted activity. Following early work of Wilson & Cowan [1972] macroscopic

models are developed based on the concept of a mean field model. Mean field

models take into account two main types of neural cells. Inhibitory cells and

excitatory principal cells regardless of biophysiological characteristic of individual

cells. Dynamics of a seizure in a large scale neural population can be better

understood by use of a mean field model. On the other hand, in comparison to

application of other multivariate auto-regressive (MVAR) models in estimation

of functional connectivity such as previous work of Hesse et al. [2003]; Kaminski

& Blinowska [1991]; Sameshima & Baccalá [1999], mean field models can present

the seizure dynamics with lower computational complexity [Aram, 2011].

The downside of mean-field models is the missing characteristics of each bio-

physiological and individual neural cell characteristics. A good history on epilepsy

modelling and comparison of previous work is given at Ullah & Schiff [2009]. Fol-

lowing the early work of Lopes da Silva et al. [1974], models have been developed

for resting state EEG such as alpha rhythm. Further work have been carried out

based on the bifurcation theory and use of nonlinear differential equations such
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as Kramer & Cash [2012]; Marten et al. [2009a]; Wendling et al. [2001].

The model of Wendling et al. [2002] is capable of producing different types of

EEG signals. Previous work of Marten et al. [2009b]; Suffczynski et al. [2004];

Wendling et al. [2001] are more focused on analysing the parameter changes based

on the model and finally the Kramer et al. [2007] has used 14 differential equations

to mimic the inhibitory and excitatory dynamics in cortex [Ullah & Schiff, 2009].

Considering that EEG recordings are obtained from the scalp, macroscopic

model is the most appropriate model type to describe the underlying neural pop-

ulation activity. However, a realistic model would be impossible considering the

complexity of underlying structure of neural field.

2.4 EEG Generation

The discovery of electrical activities in the brain goes back to 1875 by Richard

Caton where electrical activity was observed on open brain in monkeys and rab-

bits [Bear et al., 2007].

Later on, it was shown that the brain’s electrical activity can be measured

from human scalp.

The EEG signal is a result of addition of the EPSPs (Excitatory Postsynaptic

Potential) and IPSPs (Inhibitory Postsynaptic Potential) of pyramidal neurons.

Most inhibitory synapses happen at soma (neural cell core) while both excitatory

and inhibitory synapses happen in dendrites [Harris & Weinberg, 2012]. Pyra-

midal neurons are oriented perpendicular to the surface of the cortex and the

excitatory synapses are spatially separated from inhibitory synapses. These two

features enable the EEG recordings [Mirowski et al., 2008].

Pioneering work in analysing EEG data goes back to work of Lopes da Silva

et al. [1974] and Freeman [2007] whose work led to proposal of models at resting

state such as α− rhythm.

Analysing EEG recordings during an epileptic seizure can reflect on underlying

physiological dynamics [Malagarriga et al., 2015]. This is expected to be obtained

in the parameter space of a neural model. By parameter space, it is refereed to

a trajectory of values that model parameters go through during the period of an

pre-seizure to seizure and seizure to post-seizure [Nevado-Holgado et al., 2012a].
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2.5 Computational Neural Models

Mathematical models can provide a functional description of the underlying dy-

namics of the electrical activity recorded in electro-physiological data. Consider-

ing the accumulation of the neuron cells, the neural electrical activity recorded

via EEG measurement presents a large scale neural population [Panzeri et al.,

2015]. Hence, neural mass and neural field modelling can be used to describe the

measurements.

Rest and sleep states can be named as good examples of self-organised large

scale neural activities [Buzsáki, 2006]. Properties of the brain neural activity

suggest a natural connectivity between local areas as well as connections between

cortical and subcortical components. The grey matter of the brain is the home for

cortical neurons whose connections do not leave the grey matter. Such connec-

tions are considered to be unmyelinated in most of the cases and they can extend

up to 1cm (homogeneous) [Ben-Tal & Smith, 2008]. This type of connections are

myelinated and it is spatially variant [Sanz-Leon et al., 2015; Spiegler et al., 2011]

(heterogeneous).

It should be noted that local and non-local sources are involved in forming the

neural field dynamics. Heterogeneous connections have been found beneficial in

different cases such as calcium wave propagation, synchronised coupled excitable

units to an external input and Respiratory rhythm generation.

Macroscopic models describe large neural population behaviours and they

can be used to clarify brain functionalities locally. At mesoscopic models, neural

activity is studied at the level of micro columns and cortical columns [Malagarriga

et al., 2015]. At this level, the model will describe electrical activity of a neural

population considering the characteristics of a single neuron. It should be noted

that in this case, computational neural units have been considered rather than

single neural units. Hence, the spatial extension of each unit is about a few

hundred micrometres [Aram, 2011; Markounikau et al., 2010].

Such mathematical models can be presented by a set of ODEs such as Nevado-

Holgado et al. [2012b], Integro-Differential Equations (IDE) or Partial Differential

Equations (PDE). Typically, ODEs are used where a macroscopic computational

model is used to describe the neural behaviours. One of the well-known partial
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systems is given by Hodgkin and Huxley Hodgkin & Huxley [1952].

The main difference between ODEs and PDEs is that the latter one prescribes

rate of change of a function with respect to two or more independent variables

such as time and space where as ODEs are used in case of a function derivative

to time [Mascagni & Sherman, 1989]

Each type of mathematical model is used to present specific features of the

brain dynamics but in general, all these models have a common point in de-

scribing underlying dynamics by parametrising its functionalities. Fundamental

mechanism of neural activities at different spatial scales can be presented by a

mathematical model. Hence, EEG recordings during a specific activity can be

analysed and parametrised. Some of the premier work in neural modelling can be

mentioned as Lopes da Silva et al. [1974]; Nunez [1974]; Wright & Liley [1996].

Two important types of mean neural field models can be named as Wilson &

Cowan and Amari type models [Coombes et al., 2007].

An interesting research area is developing frameworks that can obtain repeat-

ing features or pattern of model parameters when brain electrical activities are

analysed [Van Veen et al., 1997]. In order to apply a systematic approach on

analysing the signals such as estimation framework, it is important to develop

neural field models that can produce the main features of interest similar to

features observed in brain electrical activity observations [Pinotsis et al., 2012].

Fitting models to data can reflect changes in the model parameters for a specific

type of functional behaviour. A change in pattern of model parameters that cor-

responds to a neural population behaviour in response to a specific task can lead

to suggestions on developing better treatments or identification and prediction of

brain disorders [Falk et al., 2012; Fürtinger et al., 2014].

A brief introduction is given on neural modelling in the next section.

2.5.1 Neural Field Model

In case of neural field modelling, the synapses between individual neurons are

described by effective averages called as mean fields. This is achieved by use of

firing rate that encapsulates the properties of individual neurons. the firing rate

function is chosen as a sigmoid function [Coombes, 2010]. The spatial domain
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(Ω) over which this process happens results in neural field model. Formulation of

dynamics at macroscopic level cannot give insight to characteristics of individual

neurons. One mathematical approach to formulating the mesoscopic cortical

neural dynamics is given by Wilson & Cowan and Amari [Liley et al., 2011].

2.5.2 Wilson & Cowan Model

Wilson & Cowan model describes the neural dynamics in a population of neurons

based on inhibitory and excitatory neurons. Mean field models such as Wilson

& Cowan [1972] produce similar signals to those observed from brain electrical

activities in EEGs or MEGs. Wilson & Cowan [1972] used a nonlinear model

to describe the dynamics of the spatially localised excitatory and inhibitory sub-

populations [Moran et al., 2013].

Wilson & Cowan developed a nonlinear model to describe the dynamics of

spatially localised excitatory and inhibitory sub-populations in 1970s. His ear-

lier model is altered to include the homogeneously distributed neural population

[Wilson & Cowan, 1973].

Figure 2.6: The characteristic connectivity of 2D layer Wilson & Cowan model, E:
Excitatory and I: Inhibitory, excitatory and inhibitory connections are highlighted
by coloured arrows.

A two dimensional functionality was assumed for cortex and subcortical struc-

tures which are illustrated in Figure 2.6. Derivation for Wilson & Cowan equa-

tions is given here.
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Derivation starts by assuming E(r, t) as excitatory and I(r, t) as inhibitory

proportion of active neurons at time sample t and spatial location r. Mean rate of

activation potentials received by excitatory neurons is given by spatial integration

as
+∞∫
−∞

%eE(r′, t− |r − r
′|

ϑe
)ωee(r − r′)dr′ (2.3)

−∞∫
+∞

%iI(r′, t− |r − r
′|

ϑi
)ωie(r − r′)dr′ (2.4)

where ϑj presents the propagation velocity, %j is the tissue surface density, ωjk

is the connectivity between neurons in class k and class j. In other words, wjk

describes how two classes of neurons j and k are connected to each other. By

subtracting expression (2.3) from (2.4) and taking into account the linear time-

invariant of temporal summation in neurons, mean integrated excitation for ex-

citatory neurons at spatial location r will be obtained as

v̂e(r, t) =

t∫
−∞

[ +∞∫
−∞

%eE(r′, t− |r − r
′|

ϑe
)ωee(r − r′)dr′− (2.5)

+∞∫
−∞

%iI(r′, t− |r − r
′|

ϑ i
)ωie(r − r′)dr′

]
h(t− t′)dt′

Number of excitatory neurons over an element of space (∆r) that have not been

activated in the time period of t− tr till t seconds can be described by

Ne(r, t) =

[
1−

t∫
t−tr

E(r, t′)dt′%e∆r

]
(2.6)

Hence, expected number of activated neurons for a time period of ∆t at t + td

where td denotes the synaptic delay is given by

E(r, t+ td)%e∆r∆t = Ne(r, t)fe(v̄e(r, t))∆t (2.7)
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where fe(.) is a sigmoid activation function. Substituting equation (2.5) and

equation (2.6) into equation (2.7) will result in

E(r, t)%e∆r∆t =

[
1−

t∫
t−τe

E(r, t′)dt′

]
%e∆rfe

( t∫
−∞

[ +∞∫
−∞

%eE(r′, t)ωee(r − r′)dr′

(2.8)

−
+∞∫
−∞

%iI(r′, t)ωie(r − r′)dr′
]
h(t− t′)dt′)∆t

Synaptic delay td and the propagation delay are very small and they can be

neglected by assuming a sufficient fast conduction velocity. Following equations

describe the convolution of E and I with postsynaptic response kernel by

Ẽ(r, t) =

+∞∫
−∞

E(r, t′)h(t− t′)dt′ ⇒ E(r, t) = τ
∂Ẽ(r, t)

∂t
+ Ẽ(r, t) (2.9)

Ĩ(r, t) =

+∞∫
−∞

I(r, t′)h(t− t′)dt′ (2.10)

For cortical excitatory neurons, the refractory time tr is a very small value in

comparison to the time constant τ , hence, it can be concluded that

t∫
t−tr

E(r, t)dt′ =

t∫
t−tr

[
τ
∂Ẽ(r, t′)

∂t′
+ Ẽ(r, t′)

]
dt′ ≈ trẼ(r, t) (2.11)

By substituting equation (2.9) and approximation given in equation (2.11) in

equation (2.8) and after rearranging and simplification, the final form of Wilson

& Cowan neural field mode can be obtained as

τ
∂Ẽ(r, t)

∂t
= −Ẽ(r, t) +

[
1− trẼ(r, t)

]
fe

( +∞∫
−∞

%eωee(r − r′)Ẽ(r, t)dr′
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−
+∞∫
−∞

%iωie(r − r′)Ĩ(r, t)dr′

)
(2.12)

Similar derivation will yield the inhibitory layer as

τ
∂Ĩ(r, t)

∂t
= −Ĩ(r, t) +

[
1− trĨ(r, t)

]
fi

( +∞∫
−∞

%eωei(r − r′)Ẽ(r, t)dr′

−
+∞∫
−∞

%iωii(r − r′)Ĩ(r, t)dr′

)
(2.13)

Above equations are valid based on the time wise condition that activities of

E(r, t) and I(r, t) would be longer than the synaptic time constant [Wilson &

Cowan, 1973].

2.5.3 Amari Type Model

Similar to model of Wilson & Cowan, Amari [1977] analysed the pattern formation

of neural field by assuming the pattern formation to be in one dimensional space

with a single layer of inhibitory and excitatory neurons. The neural field equations

is given by:

τ
dυ(r, t)

∂t
= −υ(r, t) +

∫
φ

ω(r, r′)f(υ(r′, t))dr′ + u(r, t) + c (2.14)

In equation (2.14), τ is the synaptic time constant and v(r, t) is a spatiotem-

poral mean neural field. Firing rate function is given by f(v(r′, t)). Firing rate

function in this type of models (macroscopic) is used to encapsulate the neural

characteristics in a small local neighbourhood, in this case, a Heaviside function.

f(v(r′, t)) =

1 v(r′t) > 0

0 v(r′, t) < 0
(2.15)

Spatial connectivity kernel denoted by ω(r, r′) presents excitatory and in-

hibitory behaviour for proximate connections and distant connections respec-
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tively. In other words, it describes connectivity between neurons at two spatial

locations r and r′. The spatial connectivity kernel can be parametrised as the

sum of three Gaussian basis functions [Zhou et al., 2009]. The kernel shape is

considered (but not limited to) a Mexican hat function and an example of a

Mexican hat function is presented in Figure 2.7.
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Figure 2.7: Two dimensional Mexican hat function.

For example the connectivity kernel can be parametrised as the sum of three

Gaussian basis functions with different widths and gains. This will be applied and

presented in next chapters. Finally, external input and constant resting potential

are considered by u(r, t) and c.

Each parameter at equation (2.14) is presented in more details on Table 5.1

in Chapter 3. It should be noted that neuron connections are always within a

finite length and as a result the integration of the connectivity kernel should exist.

Heterogeneous connectivity in neural networks is discussed in Jirsa & McIn-

tosh [2007]. It is indicated that the connections are ubiquitous in neural networks.

Work of Jirsa et al. [2008] is more focused on the stability of homogeneous neural

field in the presence of heterogeneous connections and its model of a heteroge-
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neous connectivity is used in this thesis.

ψhet(r, r
′) =

[
µ1δ(r − r1) µ2δ(r − r2)

]
(2.16)

where µ1 and µ2 are connectivity gains for long-range connections with connec-

tions at locations r1 and r2 and δ is the impulse function. Heterogeneous con-

nectivity is established as a two point connection in addition to a homogeneous

field. Jirsa [2009] introduces the heterogeneous connectivity in one dimension

whereas this is extended to two dimensions in the current thesis. This is achieved

by modifying the heterogeneous connectivity equation which is explained in more

details in Chapter 5.

Obviously in this case, the global dynamics of the neural field will depend on

the local connectivity as well as long-range connections [Jirsa, 2009]. Considering

that the connection is two-way, the gains are assumed to be equal on both paths.

There are only a few recent studies that study the effect of spatially invariant

field as a result of heterogeneous connections. Qubbaj & Jirsa [2007] is one of

the other studies that looks into effects of global connections on local dynamics

of coupled brain areas. The studies of Jirsa [2009] suggests that space-time struc-

ture of brain coupling namely, coupling strength and time delay caused by the

transition speed has specific contributions to spontaneous coherent fluctuations

in the resting brain. Such correlations are reflected in Electroencephalography

(EEG) recordings. The presence of heterogeneous connectivity and its effect on

current estimation framework and neural field have been one of the novelties of

the thesis. Neural connections are not limited to intracortical fibers with short

ranges, but also long distance corticocortical connections through white matter

has been reported [Leuze et al., 2014]. The latter type of connection introduces

spatially variant connectivity as the range of connection does not correspond to

local homogeneous case [Pinotsis et al., 2013]. In Jradeh [2010], the modelling of

heterogeneous case has been studied in one dimension but it has been mentioned

that the best geometry would be bi-dimensional. A bi-dimensional approach is

considered in this thesis. This thesis is a follow up to previous work of Aram

[2011] where homogeneous field is simulated by use of Amari type model and the

homogeneous connectivity kernel gains have been estimated by the use of Un-
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scented Kalman Filter. Hence, the earlier work have been developed in Matlab

which have been used in the next chapters to introduce the novelties in this thesis

[Aram, 2011]. Based on this, a modified Amari type model with homogeneous

connectivity kernel will be given here.

2.6 Related Work

2.6.1 Homogeneous Connectivity

In different models, assumptions have been made to manage a programmatic

approach to start with. Following the earlier work of Amari, the standard math-

ematical presentation of the mean field model is given by Aram [2011]

∂v(r, t)

∂t
+ ζv(r, t) =

∫
Ω

ω(r, r′)f(v(r′, t))dr′ + u(r, t) (2.17)

f(v(r′, t)) =
1

1 + exp(ς(v0 − v(r′, t)))
(2.18)

Synaptic kernel is assumed to a first order in Aram [2011]. This is extended

to second order in this thesis. The second novelty is contributed by considering a

spatially variant connectivity kernel and introducing heterogeneous connectivity.

This is achieved by modifications to connectivity kernel which is presented by

ω(r, r′) in equation (2.17). Imaging of membrane voltage to EEG recordings can

be described by an observation function that takes into account the spatial extent

of sensor.

yt(r) =

∫
Ω

m(r − r′)vt(r′)dr′ + εt(r) (2.19)

Equation (2.19) is used to generate observations from simulated mean field model

where m(r − r′) is the observation kernel and εt(r) denotes measurement noise

and it has a multivariate normal distribution with zero mean and covariance ma-

trix of Σε = σ2
εI (I is the Identity matrix).

Five channels of observation is given in Figure 2.8. This is followed by Figure
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2.9 that shows the dynamics in simulated neural field on 9 different time frames.
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Figure 2.8: Five observation channels.
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Figure 2.9: Simulated field at different time frames.
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Standard form of model is given by equation (2.17) is discretised by use of

Euler’s method and then it is decomposed to a finite dimensional state-space

model [Aram, 2011; Seeger, 2004]. The field decomposition is achieved by

v(r, t) ≈ φTr xt (2.20)

The decomposed model is given by

xt+1 =

∫
Ω

Ψ(r′)f(φT (r′)xt)dr
′ + ξxt + Γ−1

∫
Ω

φ(r)et(r)dr (2.21)

State-space presentation of the first order neural field model can be given by

xt+1 = Q(xt) + et (2.22)

yt = Cxt + εt (2.23)

State-space representation of the model promotes the use of Unscented Kalman

Filter. A detailed step by step work out of the decomposition including the pa-

rameters’ description, implementation of second order synaptic kernel and state-

space presentation of Amari type model are given in Chapter 3 and Chapter 5.

One can refer to relevant chapters for more information about the parameters in

equations (2.20) to (2.23).

2.6.2 Heterogeneous Connectivity

During previous work of Aram [2011], neural field is assumed to be isotropic

and homogeneous in a small neural network. For a larger neural population,

possibility of long-range corticocortical connections with a patchy structure in-

creases [Braitenberg & Schüz, 1991; Jirsa, 2004b]. It is intended to extend the

earlier work to take into account the long-range connections for small network.

Hence, propagation time delay can be neglected. However, time delay should be

considered in larger networks.

In previous work such as Brackley & Turner [2009] has considered a one di-

mensional heterogeneous connectivity and a numerical approach is applied to
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analyse the effect of heterogeneous connectivity in fluctuation of the neural field.

In this thesis, the Amari type model will be expanded to include long-range con-

nections in neuron populations [Pinotsis & Friston, 2011]. This will introduce the

heterogeneous connectivity kernel in the model equations [Jirsa, 2002]. Following

the earlier work of Jirsa et al. [2002]; Qubbaj & Jirsa [2007], the heterogeneous

connectivity kernel can be decomposed into two individual parts as:

Ψ = Ψhom + Ψhet (2.24)

which presents the connectivity kernel as sum of the homogeneous connectivity

kernel with the additional term that causes the spatial variant connectivity.

Focuses of the current work is the identification of heterogeneous connection

and estimating the heterogeneous connectivity strength based on a systematic

approach. In order to achieve this, the latter case will be approached first, results

of which has been used in identifying the locations of possible heterogeneous

connection.

Figure 2.10: Heterogeneous forward and backward connection.

In a homogeneous field, connectivity kernel is assumed to be spatially in-

variant where as addition of long-range neural connections can lead to spatial

variant connectivity kernel. Figure 2.10 shows an example of two-way long-range

connection on a single dimension where the connection gain in forward and back-

ward paths are equal. In this case, the heterogeneous connection is a two-way

symmetric connection.
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Figure 2.11: Shape of kernel with homogeneous and heterogeneous connectivity.

Figure 2.11 shows a heterogeneous connectivity kernel structure with two

randomly selected long-range connections. It shows the structure of the 1D (one

dimensional) long-range connection where connectivity of each point to its sur-

rounding neighbourhood is plotted.

It is demonstrated that the addition of the incoming long-range connection, al-

ters the homogeneous connectivity kernel shape. This is a graphical presentation

of equation (2.24) [Jirsa et al., 2008].

2.7 Introduction to Kalman Filtering

The standard Kalman filter is a recursive way of solving optimal filtering problem

that can be applied to state-space presentation of a linear dynamical system. In

Kalman filter each updated state at time t is obtained by taking into account the

previous estimates at t− 1 and the new inputs and measurements. This feature

makes Kalman filter more efficient computationally as there is no need to include

all of the past observed data.

Mathematical algorithm of Kalman filter is given by Haykin [2004]; Kalman

[1960], one can also study the derivation of the Kalman filter in Julier & Uhlmann

[1996, 1997]; Julier et al. [1995]. The state-space presentation plays an important

role in this regard. Indeed, a state xt presentation of a system gives the minimal

set of variables to describe the dynamics of the system. In other words, the state

values on each time step is the smallest set of data that is required to predict its
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behaviour on the next time frame. It is assumed that the state xt is unknown and

a set of observations at time frame t is used for its estimation. The observations

is denoted by yt.

The state-space presentation of the process is given by:

xt+1 = Ft+1,txt + wt (2.25)

Matrix Ft+1,t is called the transition matrix. wt denotes the process transition

noise. Subscript t denotes discrete time frame (Used for indexing, such that t+ 1

is the next time frame).

The observation yt is given by

yt = Htxt + vt (2.26)

where Ht is the measurement matrix. Measurement noise is given by vt and

wt is the process noise.

The Kalman filter solution can be described as use of all observations [y1, .., yN ]

to find the minimum mean-square error estimate of the state xi where N is an

index for time.

Depending on the value of i in xi as i = N, i > N, 1 ≤ i < N , it is a filtering,

prediction and smoothing problem respectively.

Summary of the Kalman filter is given in Haykin [2004]. A smoother is used

in this thesis. Consider a case where observations are given in a data set of

N samples (observations are recorded at N points during the time). The time

between each recording is considered as sampling time and it is assumed that

sampling period is fixed throughout the thesis (non-variant temporal sampling

length). Hence, the final time is given by index N . Smoothing is an offline process

that means observations are available for the full period of time length. In other

words, if 0 < j < N , then at a given time step j, past and future data is available.

The estimation of states for past observations can be achieved by a filtering

step whereas for estimation of future points, the estimation is initialised at time

index N and it is computed backward. Hence, the problem is divided into for-

ward and backward parts. Assume that x̂fj denotes the estimated states from

forward run and x̂bj gives the estimated states in backward run. The next issue
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to be explained is combining these two states to obtain a smoothed estimation

of the state x over the full period of data. This will be part of the mathematical

derivation of the Kalman filter. A good explanation of this is available in Haykin

[2004].

The above mentioned estimation framework is based on linear state-space

models. In previous work of Aram [2011] linear framework is modified for its ap-

plications on nonlinear neural field equations. For a nonlinear model, Extended

Kalman filter (EKF) can be used [Jazwinski, 2007]. It is an extension of Kalman

filtering using a linearisation process. The EKF method operates based on the

first-order linearisation of the given nonlinear system which provides an approxi-

mate optimal solution for the nonlinear case. This may end up with large errors in

estimation due to errors in weight estimation and covariance matrix. To overcome

these issues, Unscented Kalman Filter can be used. Unscented Kalman filter is

expected to have a superior performance to EKF. Significant contributions on

Unscented Kalman filter was first given by Julier & Uhlmann [1996, 1997]; Julier

et al. [1995] and further developed by Wan & Van Der Merwe [2000]; Wan et al.

[1999]. One pioneer work on application of the UKF on neural models can be

named as Schiff & Sauer [2008].

The UKF uses minimal set of sigma points that fully encapsulate the mean

and covariance of the Gaussian random variables. After propagating through the

nonlinear system equations, posterior mean and covariance are obtained accu-

rately to the second order approximation [Van Der Merwe, 2004]. In comparison,

the EKF only obtains the accuracy to the first order (Taylor series expansion).

Hence, with a similar computational complexity, the UKF has a better perfor-

mance with no need for explicit Jacobian calculations.
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Chapter 3

Estimation of Second Order

Amari Type Neural Field Model

3.1 Introduction

Synapses play an important role in communication of the neurons and in send-

ing signals to non-neural cells (Ex.: Muscle fibres). Synapses offer a very fast

transmission ranging from values smaller than 0.5 ms.

For simplicity, it is assumed that synapses have just excitatory or inhibitory

nature. As an accepted approach in the community of the neuroscience, such an

assumption reduces the complexities of synapses. A simple function to describe

a synapse is the alpha function.

Considering the huge number of synapses in a decent-sized network, efficient

simulation of the synaptic kernel is an important part of a model.

A generalised format of Alpha function leads to another synaptic model where

Synaptic conductance is presented by sum of two exponentials. One for rising

and one for decay phase. Assuming that the time constants of rise time and decay

time are not equal, this model can be presented as two ODEs or as a second order

system.

This model represents synaptic conductance effectively although it presents

many of the underlying biological processes. More exponentials can be used to

have a better fit of the synaptic dynamics but this will increase the computational
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complexity and extraction of the time constants for each exponential out of noisy

data will be a very challenging task.

In the following chapter. A second order synaptic kernel is adopted in the

model and synthetic data is generated. Assuming that the time constants are

known, the homogeneous connectivity kernel gains for the field is obtained by use

of Unscented Rauch-Tung-Stiebel Smoother (URTSS).

It is expected that the use of second order synaptic kernel will enable the

model to present wider range of neural activities.

3.2 Model Derivation with Second Order Synap-

tic Kernel

Following earlier discussions in the literature review, it is concluded that mean

field models will be used for describing the neural network dynamics. As a start-

ing point in this thesis, a small network is considered and this can be extended to

larger networks. Use of a macroscopic model means that the properties of indi-

vidual neurons is summed into a lumped gain in model (in this case, connectivity

kernel gain) and this in turn will lead to estimation of less number of parameters.

It is a challenging task to make a model that captures the required features in

trade-off to its complexity.

As discussed earlier, the mean of presynaptic potentials leads to firing postsy-

naptic membrane potentials. This is described by firing rate function and mean

of firing rates in this process can be described by a neural field model. Hence,

neural field model will not capture the full properties and characteristics of in-

dividual neurons and it will give a mean of firing rate for the underlying neural

population. This is of physiological importance as it gives a link to underlying

dynamics such as complex spatial patterns; alpha rhythm [Lopes da Silva, 1991;

Lopes da Silva et al., 1974] and visual hallucinations and epileptic behaviour as

part of neurodynamics, [David & Friston, 2003]. This will be seen in more details

in developing the model in the following.

Assuming that r presents a two dimensional space by (x, y) coordinates and
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that variable t denotes time in seconds, non-local interactions between cortical

populations can be described by a weighted firing rate function as

g(r, t) =

∫
Ω

ω(r, r′)f(v(r′, t))∂r′ (3.1)

where f(v(r′, t)) is the firing rate function for incoming interactions at spatial

locations r′ and time t. The term Ω refers to a spatial domain over which the neu-

ral field is defined where in this case it is a two dimensional space with coordinates

x, y. Please note that for computational purposes, r′ and r are from matrices of

spatial locations. The firing rate function is considered as a nonlinear sigmoid

function as given by equation (3.2) where ς is the slope of the firing rate function

and it is given a value of 0.56 [Goodfellow et al., 2011]. It should be noted that

ω(r, r′) is spatial connectivity kernel. It is assumed that the spatial connectivity

kernel has Mexican hat shape. The Mexican hat function can be formed as a sum

of three weighted Gaussian functions. The gains of the Gaussian functions will

be assumed to be varying over time and the term spatial connectivity kernel will

be called as connectivity kernel hereafter. The same assumption holds true in

case of a two dimensional connectivity kernel which will be applied in this thesis.

The firing rate function is the sigmoid,

f(v(r′, t)) =
1

1 + exp(ς(v0 − v(r′, t)))
(3.2)

Postsynaptic membrane voltage (v(r, t) ) at location r and time t can be

described by

v(r, t) =

t∫
−∞

h(t− t′)g(r, t′)∂t′ (3.3)

where function h(t) denotes the postsynaptic kernel response. As part of the

novelty in this chapter, a second order postsynaptic kernel is considered. A

second order postsynaptic kernel will enable the possibility of considering a sharp

rise time and a slower decaying time in presentation of a synaptic response. It is

referred to the difference between two exponentials in literature as an extension
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to the alpha function (discussed earlier in literature review). Hence, the following

gives the synaptic kernel equation.

h(t) = k1u(t)e−ζ1t + k2u(t)e−ζ2t, ζ1 6= ζ2 (3.4)

where ζ1 and ζ2 denote rise and decay synaptic time constants, k1 and k2 are

constants to be tuned in the next steps of the model derivation. The function

u(t) is a Heaviside step function.

Replacing equation (3.1) into equation (3.3) gives,

v(r, t) =

t∫
−∞

h(t− t′)
∫
Ω

ω(r, r′)f(v(r′, t))∂r′∂t′ (3.5)

3.2.1 Simplification by Use of Green’s Function

To obtain a standard integro-differential format of the model from equation (3.5),

application of Green’s function will be used to simplify equation (3.5). One of

the main properties of a Green’s function is given by equation (3.6)

Dh(t) = δ(t) (3.6)

where δ(t) is the Dirac-delta function. Hence, it should be mentioned that

function h(t) is considered as a Green’s function of a linear differential equation

given by differential operator D [Bayin, 2006].

D = (
∂

∂t
+ ζ1)(

∂

∂t
+ ζ2) =

∂2

∂t2
+ (ζ1 + ζ2)

∂

∂t
+ ζ1ζ2 (3.7)

Parameters ζ1 and ζ2 are chosen as the rise and decaying synaptic time constants

as given in the function h(t) of equation (3.4). The property of the Green’s func-

tion given in equation (3.6) is utilised to tune the weights k1 and k2 in equation

(3.4).

Replacing function h(t) into equation (3.6) will yield the following equations.
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∂h(t)
∂t

= k1δ(t)e
−ζ1t + k2δ(t)e

−ζ2t − ζ1k1e
−ζ1tu(t)− k2ζ2e

−ζ2tu(t)

∂2h(t)
∂t2

= k1δ
′(t)e−ζ1t − k1δ(t)ζ1e

−ζ1t + k2δ
′(t)e−ζ2t − k2ζ2δ(t)e

−ζ2t

−ζ1k1δ(t)e
−ζ1t + ζ2

1k1e
−ζ1tu(t)− k2ζ2e

−ζ2tδ(t)

(ζ1 + ζ2)∂h(t)
∂t

= k1ζ1δ(t)e
−ζ1t + k2δ(t)ζ1e

−ζ2t − k1ζ
2
1e
−ζ1tu(t)− k2ζ2ζ1e

−ζ2tu(t)

+k1ζ2δ(t)e
−ζ1t + k2ζ2δ(t)e

−ζ2t − ζ1ζ2k1e
−ζ1tu(t)− k2ζ

2
2e
−ζ2tu(t)

( ∂
2

∂t2
+ (ζ1 + ζ2) ∂

∂t
+ ζ1ζ2)h(t) = k1δ

′(t)e−ζ1t + k2δ
′(t)e−ζ2t − k1ζ1δ(t)e

−ζ1t

−k2ζ2e
−ζ2tδ(t) + k2ζ1e

−ζ2tδ(t) + k1ζ2e
−ζ1tδ(t)

Considering that the Dirac-delta function is only non-zero at t = 0, it can

be concluded that synaptic kernel response h(t) exhibits the Green’s function

property with the following assumptions

k1 = −k2 (3.8)

k1 =
1

2(ζ2 − ζ1)
(3.9)

h(t) =
1

2(ζ2 − ζ1)
(e−ζ1t − e−ζ2t)u(t) (3.10)

Also, considering that

∞∫
0

h(t)∂t = 1 (3.11)
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⇒
∞∫
0

1
2(ζ2−ζ1)

(e−ζ1t − e−ζ2t)∂t = 1
2(ζ2−ζ1)

∞∫
0

e−ζ1t∂t− 1
2(ζ2−ζ1)

∞∫
0

e−ζ2t∂t

= 1
2(ζ2−ζ1)

( 1
ζ1
− 1

ζ2
)

= 1
2ζ1ζ2

Hence, a weight of η = ζ1ζ2 should be multiplied to the synaptic response

kernel to compensate for the mismatch at integration of h(t). This is considered

in equation (3.13). The final equation for synaptic response is also inspired by

previous work of Marten et al. [2009a]; Roth [2009]. Multiplying both sides of

equation (3.3) by the linear differential operator D will give;

Dv(r, t) = D(h ∗ g)(r, t) (3.12)

where the sign ∗ denotes convolution operator. This can be simplified based on

the property of the Green’s function given by equation (3.6).

Dv(r, t) = ηg(r, t) (3.13)

The linear operator D is replaced in equation (3.13). Expanding the brackets

gives the standard form of the model in equation (3.14).

(
∂2

∂t2
+ (ζ1 + ζ2)

∂

∂t
+ ζ1ζ2)v(r, t) = ηg(r, t) (3.14)

∂2v(r, t)

∂t2
+ (ζ1 + ζ2)

∂v(r, t)

∂t
+ ζ1ζ2v(r, t) = ηg(r, t) (3.15)

g(r, t) =

∫
Ω

ω(r, r′)f(v(r′, t))∂r′

3.2.2 Discretisation

The second order model derived in equation (3.15) can be converted to an equiv-

alent system of two first order ODE [Strogatz, 1994].
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v̈(r, t) + (ζ1 + ζ2)v̇(r, t) + ζ1ζ2v(r, t) = ζ2ζ1g(r, t) (3.16)

v1(r, t) = v(r, t) (3.17)

By assumption that v1(r, t) is the same as the neural field denoted by v(r, t), a

second variable can be defined as the derivative of neural field by v2(r, t) as

v2(r, t) =
∂v1(r, t)

∂t
(3.18)

∂v2(r, t)

∂t
+ (ζ1 + ζ2)v2(r, t) + (ζ1ζ2)v1(r, t) = ζ2ζ1g(r, t) (3.19)

Equation (3.18) and equation (3.19) can be approximated by first order Euler’s

method that will give the standard form of integro-difference neural field model

by the following set of equations (3.23).

∂v1(r)

∂t
=
vt+1

1 (r)− vt1(r)

Ts
(3.20)

vt+1
2 (r)− vt2(r)

Ts
+ (ζ1 + ζ2)vt2(r) + (ζ1ζ2)vt1(r) = ζ2ζ1g

t(r) (3.21)

vt2(r) =
vt+1

1 (r)− vt1(r)

Ts
⇒ vt+1

1 (r) = vt1(r) + Tsv
t
2(r) (3.22)

where Ts is sampling time period. Hence, the parameter t presents an index in

time and the next time step is given by t+1. Sampling time is assumed to be ten

times smaller than the faster time constant (rising time). This will assure that

the effects of the smaller synaptic time constant are captured in the approximated

model equation given here

vt+1
1 (r) = Tsv

t
2(r) + vt1(r) (3.23)

vt+1
2 (r)− vt2(r) + (ζ1 + ζ2)Tsv

t
2(r) + ζ1ζ2Tsv

t
1(r) = Tsζ2ζ1g

t(r)

gt(r) =

∫
Ω

ω(r, r′)f(vt1(r′))∂r′
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3.2.3 Addition of Noise and Disturbance

An independent and identically distributed disturbance signal is introduced by

addition of term et(r) (et(r) ∼ GP (0, γ(r− r′))) to take into account unmodeled

neighbourhood inputs and uncertainties in the model.

vt+1
1 (r) = Tsv

t
2(r) + vt1(r) (3.24)

vt+1
2 (r) = ξ2v

t
2(r)− ξ1v

t
1(r) + ξ1g(r, t) + et(r) (3.25)

where ξ1 = Tsζ1ζ2 and ξ2 = 1− (ζ1 + ζ2)Ts.

A simple replacement of equation (3.25) into equation (3.24) shows that the

disturbance will be multiplied by the sampling time Ts. Hence, the disturbance

gain is set to a large enough value to compensate for the product of the sam-

pling time with the disturbance. This will assure the effective addition of the

disturbance to the model. It can be concluded that

vt+1
2 (r) = Tsξ1

∫
Ω

ω(r, r′)f(vt1(r′))∂r′ + ξ2v
t
2(r)− ξ1v

t
1(r) + et(r) (3.26)

vt+1
1 (r) = Tsv

t
2(r) + vt1(r) (3.27)

The addition of the measurement noise will result in the observation equation

to be defined as

yt(rn) =

∫
Ω

m(rn − r′)vt1(r′)∂r′ + εt(rn) (3.28)

wherem(r−r′) is an observation kernel of a sensor at the location rn, n = 1, ..., ny

to be sensor index with ny as total number of sensors. The term for noise,

εt(rn) ∼ N(0,Σε), denotes a multivariate normal distribution with mean zero

and the covariance matrix Σε = σ2
εI where I is the identity matrix.
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3.2.4 Model Reduction

Neural field is decomposed in order to cooperate standard estimation techniques.

Field decomposition is achieved by use of Gaussian basis functions. This will allow

a finite-dimension state vector representation and this facilitates the application

of estimation methods such as UKF [Aram et al., 2013; Dewar et al., 2009]. The

field decomposition is described by

vt1(r) ≈ φ>(r)xt1 (3.29)

vt2(r) ≈ φ>(r)xt2 (3.30)

where xt1, x
t
2 are state vectors that scale the field basis functions φ>(r). The field

basis as a function of space is given by equation (3.31).

φ(r − r′) = e
(− (r−r′)>(r−r′)

σ2
φ

)

(3.31)

where σφ is the basis function width parameter. Field basis vector, φ>(r), is

defined as a functions of space and it is a vector with dimension of nx × 1 where

nx is the number of field basis functions. Following this, a new term will be

defined as Γ as

Γ =

∫
Ω

φ(r)φ>(r)∂r (3.32)

Equation (3.32) will be used for simplifying equations. Considering the definition

of Γ, it is an invertible matrix with size of nx × nx where nx is the number of

basis functions. The connectivity kernel can also be decomposed as

ω(r, r′) = ψ>(r, r′)θ (3.33)

where in this work ψ(r, r′) is a vector of three of Gaussian basis functions and θ

is a vector of scaling parameters. In other words, the Mexican hat connectivity

kernel is assumed to be sum of three Gaussian basis functions and each basis

function is an element of ψ, i.e., ψ1(r − r′), ψ2(r − r′), ψ3(r − r′) while θ holds

the gains for each basis function. Later, two other parameters related to time

constants will be incremented to vector of parameters θ.
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Replacing the neural field decomposition and the connectivity kernel decomposi-

tion, given in equations (3.30) and 3.33, into set of equations (3.23) gives

φ>xt+1
1 = φ>xt1 + Tsφ

>xt2

φ>xt+1
2 = −ξ1φ

>(r)xt1 + ξ2φ
>(r′)xt2 + ξ1

∫
Ω

ψ>f(φ>(r′)xt1)∂r′θ + et(r)

Multiplying both sides by φ(r) and applying integration, it can be concluded

that

∫
Ω

φ(r)φ>(r)∂rxt+1
1 =

∫
Ω

φ(r)φ(r)>(r)∂rxt1 + Ts
∫
Ω

φ(r)φ(r)>(r)∂rxt2

∫
Ω

φ(r)φ(r)>(r)∂rxt+1
2 = −ξ1

∫
Ω

φ(r)φ>∂rxt1 + ξ2

∫
Ω

φ(r)φ(r)>(r)∂rxt2

+ξ1

∫
Ω

φ(r)
∫
Ω

ψ>(r − r′)f(φ>(r′)xt1)∂r′∂rθ

+
∫
Ω

φ(r)et(r)∂r

Now by multiplying both sides by Γ−1

xt+1
1 = xt1 + Tsx

t
2 (3.34)

xt+1
2 = −ξ1x

t
1 + ξ2x

t
2 + ξ1Γ−1

∫
Ω

φ(r)

∫
Ω

ψ>(r − r′)f(φ>(r′)xt1)∂r′∂rθ

+Γ−1

∫
Ω

φ(r)et(r)∂r (3.35)

It should be mentioned that Γ is a positive-definite matrix. This is true due to

the definition of the Γ given by equation (3.32) [Golub & Van Loan, 2012].

Equation 3.35 can be simplified considering the isotropy of connectivity kernel
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basis functions ψ1(r − r′), ψ2(r − r′) and ψ3(r − r′) where

ψi(r − r′) = ψi(2ci + r′ − r) (3.36)

and ci is the centre of ith connectivity kernel basis function. In this case,

there are three basis functions i.e. i = [123] in equation (3.36). As a result,

simplification can be applied by use of the following expression

[Ψ(r′)]:i ≡ Γ−1

∫
Ω

φ(r)ψ(2ci + r′ − r)∂r (3.37)

where [Ψ(r′)]:i gives the ith column of Ψ(r′). Dimension of [Ψ(r′)]:i is nx×n2
sp

where nx and nsp are number of basis functions and total number of sampled

spatial locations on each direction of spatial grid, respectively. Hence, parameter

of Ψ(r′) is a three dimensional matrix. One last simplification can be applied

to equation (3.35) before presenting the state-space form of the model. State

disturbance can be defined as a linear function of et(r) by

et ≡ Γ−1

∫
Ω

φ(r)et(r)∂r (3.38)

As mentioned earlier, based on the definition of the matrix Γ in equation(3.32),

it is an invertible matrix. Replacing this in equation (3.35) after above steps, the

compact form of the model can be obtained as

X t+1 = Q(X t) + Et (3.39)

where

Q(X t) =

[
1 Ts

−ξ1 ξ2

][
xt1

xt2

]
+

 0∫
Ω

ξ1Ψ(r′)f(φ>xt1)∂r′θ

 (3.40)

X t =

[
xt1

xt2

]
, Et =

[
0

et

]
(3.41)
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In equation (3.40) and (3.41), 0 is a zero vector with dimension of nx × 1. This

gives a state-space presentation of the model that facilitates the application of

the estimation framework. Considering the nonlinear properties of Q(.), an esti-

mation framework suitable for the nonlinear case can be applied.

State space representation of the observation equation can be obtained by

substituting equation (3.30) into equation (3.28). This will result in

yt =
∫
Ω

m(rn − r′)φ>(r′)xt1∂r
′ + εt

In compact form

yt = C̆X t + Ĕt (3.42)

C̆ =
[
C 0

]
, Ĕt =

[
εt

0

]
, Cij =

∫
Ω

m(ri − r′)φj(r′)∂r′ (3.43)

where C is a matrix with dimension of ny×ny and ny is number of sensors as

given in table 3.1. Matrix C̆ is combination of observation matrix C and matrix

of zeros, 0 with dimension of ny × nx. Hence, matrix C̆ will have a dimension of

ny × 2nx.

A state-space presentation of the standard IDE form of the model is given by

equations (3.43) and (3.39). In case of a linear Q(.) function, standard Kalman

filter could be used. However, the sigmoid activation function will cause nonlin-

earity in Q(.) and this requires the application of UKF for obtaining the estimate

of the states along with the use of a least squares method for estimation of the

parameters [Aram, 2011].

Expected value of Et will be required in the estimation process and it is given

by

〈Et〉 =

 0

Γ−1
∫
Ω

φ〈et(r)〉∂r

 = 0 (3.44)

The covariance of Et is given by ΣE
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ΣE = 〈EtEt>〉

=


0 0

0 Γ−1
∫
Ω

∫
Ω

φ(r)γ(r − r′)φ>(r′)∂r′∂rΓ−>


where 0 is a matrix of zeros with a dimension of n2

x×n2
x. As a result, dimension

of matrix ΣE will be given by 2n2
x× 2n2

x. The estimation framework is presented

in the next section.

3.3 Estimation

Estimation of states xt, connectivity kernel gains θ and synaptic constants is ex-

plained. The estimation process consist of two iterative parts. An additive form

of the Unscented Rauch-Tung-Striebel Smoother (URTSS) is applied for estima-

tion of state vector followed by least squares algorithm for parameter estimation

[Särkkä, 2006, 2010; Särkkä & Hartikainen, 2010].

In the following sections, parameter estimation and state estimation steps are

modified to take into account the effects of a second order synaptic kernel.

3.3.1 Parameter Estimation

Although the model equation is nonlinear, the model is linear in parameters.

Hence, least squares method can be applied as an optimal solution to find the

connectivity kernel gains and the synaptic constants.

As a first step in forming the least squares parameter estimation, q(.) is defined

as

q(xt1) =

∫
Ω

Ψ(r′)f(φ>(r′)xt1)∂r′ (3.45)

Matrix q(.) has a dimension of nx×nT by nθ where nx is number of field basis

functions and nT is total number of time steps (i.e. for a simulation duration
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of 0.5 seconds and a sampling frequency of 3KHz; nT will be equal to 1500).

Number of parameters to be estimated is given by nθ. In this case, there are five

parameters to be estimated so the value of nθ can be set to five.

At each iteration of the estimation framework (URTSS) or for the purpose of

initialising the estimation framework, following set of equations can be used

x1,f
2 = q(x̂0,f

1 )Θ− ξ1x̂
0,f
1 + ξ2x̂

0,f
2 + e0 (3.46)

x2,f
2 = q(x̂1,f

1 )Θ− ξ1x̂
1,f
1 + ξ2x̂

1,f
2 + e1 (3.47)

. (3.48)

. (3.49)

. (3.50)

xT,f2 = q(x̂T−1,f
1 )Θ− ξ1x̂

T−1,f
1 + ξ2x̂

T−1,f
2 + eT−1 (3.51)

In compact form

Z = X̆$ + e (3.52)
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where

Z =



x̂1,f
2

x̂2,f
2

.

.

.

x̂T,f2


, X̆ =



q1(x̂0,f
1 ) q2(x̂0,f

1 ) q3(x̂0,f
1 ) −x̂0,f

1 x̂0,f
2

q1(x̂1,f
1 ) q2(x̂1,f

1 ) q3(x̂1,f
1 ) −x̂1,f

1 x̂1,f
2

. . . .

. . . .

. . . .

q1(x̂T−1,f
1 ) q2(x̂T−1,f

1 ) q3(x̂T−1,f
1 ) −x̂T−1,f

1 x̂T−1,f
2


(3.53)

$ =


Θ1

Θ2

Θ3

ξ1

ξ2

 , e =



e0

e1

.

.

.

eT−1


(3.54)

The least squares parameter estimator is then given by equation [Ljung, 1998]

$̂ = (X̆>X̆)−1X̆>Z (3.55)

3.3.2 State Estimation

URTSS is used to estimate the states. The URTSS is inclusive of two steps; an

Unscented Kalman Filter (UKF) in a forward step (computing filtered estimates)

followed by a backward step (computing smoothed states). These two steps (for-

ward and backward steps) define the URTSS. The estimation is initialised by

a bounded random initial state vector which is then propagated through least

squares algorithm to obtain the initial parameter set. The estimation stops once

the estimation has converged. Alternatively, algorithm can be run till a set num-

ber of iterations achieved [Haykin, 2004; Kalman, 1960; Sarkka, 2008].
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3.3.2.1 Forward Iteration

Forward initialisation

x̂0, P0 (3.56)

Propagating the sigma points through state equations

χf−i,t+1 = Q(χfi,t) (3.57)

For calculation of the Sigma points (χi) by use of unscented transform follows

χ0 = x̄ (3.58)

χi = x̄+ (
√

(nx + λ)Px)i−nx , i = 1, ..., nx (3.59)

χi = x̄− (
√

(nx + λ)Px)i−nx , i = nx + 1, ..., 2nx (3.60)

where x̄ is the estimated states in the forward iteration or from the backward

pass. Superscript i in
√

(nx + λ)Pxi−nx presents the ith column of the scaled

square root of the covariance matrix Px and nx is total number of field basis

functions. Hence, there are 2nx + 1 sigma points.

The scaling parameter λ is given by

λ = α2(nx + κ)− nx (3.61)

κ = 3− nx (3.62)

The value of α is set to 10−3 considering the previous work of Aram et al.

[2013]. Calculation of the predicted state and predicted covariance matrix is given

by

x̂f−t+1 =
2nx∑
i=0

Wm
i χ

f−
i,t+1 (3.63)

P f−
t+1 =

i=0∑
2nx

W
(c)
i (χf−i,t+1 − x̂

f−
t+1)(χf−i,t+1 − x̂

f−
t+1)> + Σe (3.64)
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where weights W can be obtained by

W
(m)
0 =

λ

nx + λ
(3.65)

W c
0 =

λ

nx + λ
+ (1− α2 + β) (3.66)

W
(m)
i = W

(c)
i =

1

2(nx + λ)
, i = 1, ..., 2nx (3.67)

Superscripts m and c denote the mean and covariance and β incorporates prior

knowledge of the distribution of the state. β is set equal to two in this work. The

value of β is chosen from Haykin [2001].

The Kalman filter gain, filtered states and the covariance matrix is obtained

by

Kt+1 = P f−
t+1C

>(CP f−
t+1C

> + Σε)
−1 (3.68)

x̂ft+1 =
ˆ
xf−t+1 +Kt+1(yt+1 − Cx̂f−t+1) (3.69)

P f
t+1 = (I −Kt+1C)P f−

t+1 (3.70)

M f
t+1 =

2nx∑
i=0

W c
i (χfi,t −

ˆ
xft )(χ

f−
i,t+1 − x̂

f−
t+1)> (3.71)

Matrix M f is the cross-covariance matrix of the states and it is required for

computing the smoother gain in backward pass.

3.3.2.2 Backward Pass

Here, a separate recursive backward smoothing pass is given for computing the

corrections to the forward filtered results. The difference is that smoothed solu-

tion requires the whole measurement data while the filtered solution relies on the

measurements obtained up to the time step k. Backward pass is initialised by

P b
T = P f

T , x̂
b
T = x̂fT

So, the backward iterations start from time step T − 1 towards the first time

step. Smoother gain, the smoothed states and smoothed covariance matrix can
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be updated by the following equations

St = M f
t+1[P f−

t+1]−1 (3.72)

x̂bt = x̂ft + St[
ˆxbt+1 − x̂

f−
t+1] (3.73)

P b
t = P f

t + St[P
b
t+1 − P

f−
t+1]S>t (3.74)

3.4 Results and Discussion

In this section, parameter and state estimation results are given for different sce-

narios. The first experiment is based on the Monte Carlo simulation for a set of

parameters given in Table 3.1 where the variant parameters are fixed with the

values in Table 3.2. Results of this experiment includes the simulated field at

different time frames and distribution of estimated parameters. Another experi-

ment is carried out by changing the parameters for sigmoid firing rate functions

and effects of this on simulation result and estimation of parameters is given in

next section. Finally, the connectivity kernel gains have been changed and the

results of estimated kernel gains are provided.

In Table 3.1 parameter values marked as variant have been set in each Monte

Carlo simulation. It does not mean that the parameter values change during a

simulation but this is to indicate that the variable value is changed in different

Monte Carlo simulation sets. Parameters are assumed to hold a fixed value dur-

ing each individual Monte Carlo simulation. Considering the short run time of

simulations, such an assumption is plausible biologically under a controlled envi-

ronment for a patient. Simulation time is fixed at 0.5 second in the simulations

presented here. Longer runs have been executed to check the outcome of the

simulations. Neural field was not saturated and active dynamics such as variant

peak locations and peak amplitudes are observed as expected.

Scaling parameter κ for the URTSS is set by 3 − nx where nx is number of

basis functions [Julier et al., 1995]. Parameter α is a small constant number set

as 10−3 that indicates the spread of the sigma points [Haykin, 2004]. Our choice

of number of sensors, ns, and number of field bass functions,nx, are motivated by

Aram [2011]. Other parameters have been assumed as fixed values. For values of
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Symbol Parameter Value Unit
Model

simulation duration (time) 0.5 sec
∆ spatial discretisation step 0.5 mm
Fs sampling frequency 3K Hz
τ synaptic time constant [166−1, 56−1] sec−1

ς slope of firing rate function 0.56 mV −1 spike sec−1

fmax maximum firing frequency 1 Hz
θhom homogeneous connectivity kernel gains variant mV −1 spike−1

σψhom homogeneous connectivity kernel width variant mm
ny number of sensors 14×14=196 Not Applicable
∆y distance between adjacent sensors 1.5 mm
σm observation Kernel width 0.9 mm
Σε observation noise variance 0.1Iny mm2

σy disturbance spatial covariance width 1.3 mm
σ2
d disturbance variance 0.1 mV 2

Reduced Model
nx number of basis functions 9×9=81 Not applicable
∆φ distance between field basis functions 2.5 mm
σφ width of field basis functions 1.58 mm2

Estimation
α range of variation for sigma points 0.001 Not Applicable
β prior knowledge of sigma points 2 Not Applicable
κ scaling parameter 3− nx Not Applicable
λ scaling parameter 80.99 Not Applicable

Table 3.1: Table of Parameters

variant parameters, one can refer to their specified table of parameter values in

Table 3.1.
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3.4.1 Experiment 1: Monte Carlo Simulation with Fixed

Parameters

Having simulated the neural field electrical activity using the model equations

(3.35), the parameters have been estimated. The results of estimation and neural

field simulation have been demonstrated in this section. An example of simulated

field with parameters set in Table 3.2 is given in Figure 3.1 where its changing

dynamics is displayed on nine different time frames.

Model

Symbol Parameter Value Unit

θhom homogeneous connectivity kernel gain [4,−3.2, 0.2] mV spike−1

v0 firing threshold 3.2 mV

ζ inverse synaptic time constant [55.3, 18.3] sec−1

Table 3.2: Table of Parameters

Figure 3.1 also gives details about the amplitude of the neural field activities.

It should be noted that neural field electrical activity is presented in millivolts

(mv).
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Figure 3.1: Simulated neural field at nine time frames.

Figure 3.1 demonstrates samples of simulated field at nine different time

frames 329, 450, 530, 670, 720, 890, 958, 1256, 1364. This is to demonstrate

the changing dynamics in the simulated field. It is demonstrated that simulated

field is not saturated and changing dynamics can be observed in the field as the

peaks’ location and amplitude is varying in time.
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Figure 3.2: Plot of five observation channels.

Observations from five randomly selected channels are displayed in Figure 3.2.

These observations are generated based on equation (3.28). It is demonstrated

that observations are not saturated and there is no dead-zone in the observations.

The histogram plot of the estimated parameters for 150 Monte Carlo sim-

ulations is given in Figure 3.3 and Figure 3.4. The green line shows the true

value of the parameters. Parameters θ1, θ2 and θ3 are the gains used for forming

the homogeneous Mexican hat connectivity kernel. Parameter ζ is the inverse of

synaptic time constant.
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Figure 3.3: Histograms of estimated connectivity kernel gains from Monte Carlo
simulation for θ1, θ2, θ3.
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Figure 3.4: Histogram of estimated parameters from Monte Carlo simulation for
ξ1, ξ2.
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Figure 3.5: Convergence of estimation for connectivity kernel gains.

Figure 3.5 demonstrates the convergence of connectivity kernel gains θ1, θ2, θ3

over a single iteration of Monte Carlo simulation.
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Figure 3.6: Confidence interval of estimated kernel over 150 Monte Carlo simu-
lations.

Figure 3.6 exhibits the 95% confidence level for reconstructed kernels from
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estimated connectivity kernel gains. Considering the random disturbance input

to the model, a wide range of estimated gains is expected. The green kernel is the

lower confidence interval and red coloured kernel is the upper limit of confidence

interval. The black curve is the mean of estimated connectivity kernel over 150

Monte Carlo simulations. Real kernel is presented in blue which is covered with

the estimated kernel due to a close fit.
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Figure 3.7: Plots “a,b,c” are simulated neural fields, plots “d,e,f” are recon-
structed neural fields and plots “g,h,i” are the error in reconstructing the original
neural fields.

Figure 3.7 illustrates true field at three different time frames (329, 958, 1265)

at sub-plots “a”, “b”, “c”. Estimated states and parameters are used to recon-

struct the field based on equation (3.30). Reconstructed field for above time steps

60



are given in sub-plots “d”, “e”, “f”. It can be concluded that the general pattern

of the true neural field is captured in estimated field (reconstructed field) which

gives an insight to underlying neural field dynamics from sensor observations. It

should be mentioned that at this stage, true field is synthetic and it is assumed

that true field is available for comparison purposes. However, access to neural

field dynamics is not possible and only patient recordings will be available in real

applications. Therefore, the importance of this method is highlighted as it gives

insight and possibility of having potential access to the underlying neural field

dynamics. Sub-plots “g”, “h”, “i” show the difference between the estimated field

and true field.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time (sec)

M
R
M
S
E

Figure 3.8: Mean Root Mean Squared Error.

Figure 3.8 shows MRMSE (Mean Root Mean Squared Error) for 150 Monte

Carlo Simulations. At each time step, mean of squared error between estimated

field and true field is obtained over space. Once this is done for each Monte Carlo

simulation, MRMSE is obtained by applying mean root to the MSE over 150

Monte Carlo iterations. Hence, x-axis is time and y-axis is the MRMSE. The

initial high value is due to the random initial states. This reduces significantly
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after transition period.

3.4.2 Experiment 2: Different Firing Rate Parameters

Firing rate function is one of the important elements in the model as simulation

and estimation results can be affected by changes to the activation function pa-

rameters. Hence, different case scenarios have been explored to check the effect

of variation in activation function on estimated kernel gains. In the following

section, it is demonstrated that for different firing rate thresholds [Laing et al.,

2012], the estimation results are stable and general connectivity kernel shape is

obtained.

Model

Symbol Parameter Value Unit

θhom homogeneous connectivity kernel gain [4,-3.2,2] mV spike−1

ζ inverse synaptic time constant [166, 56] sec−1

Table 3.3: Model parameter values applied in different firing threshold experi-
ments.

Firing rate function is varied based on the values in Table 3.4.
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Case # firing threshold mean estimated values unit

Case I υ0 = 1.8mV θ1 = 3.51 mV spike−1

θ2 = −2.84 mV spike−1

θ3 = 0.18 mV spike−1

ξ1 = 0.9217 sec−1

ξ2 = 2.75 sec−1

Case II υ0 = 2.4mV θ1 = 3.69 mV spike−1

θ2 = −2.97 mV spike−1

θ3 = 0.18 mV spike−1

ξ1 = 0.9215 sec−1

ξ2 = 2.89 sec−1

Case III υ0 = 2.8mV θ1 = 3.84 mV spike−1

θ2 = −3.06 mV spike−1

θ3 = 0.18 mV spike−1

ξ1 = 0.9218 sec−1

ξ2 = 2.99 sec−1

Case IV υ0 = 3.8mV θ1 = 4.27 mV spike−1

θ2 = −3.36 mV spike−1

θ3 = 0.199 mV spike−1

ξ1 = 0.9216 sec−1

ξ2 = 3.143 sec−1

Table 3.4: Firing threshold and mean of estimated parameters for each experi-
ment.

Table 3.3 shows different firing thresholds for each case. The values are chosen

for a range of firing thresholds given in similar work such as v0 = 1.8 mV used in

Aram [2011] to v0 = 6 mv used in Wendling et al. [2001]. Hence, four different

values of 1.8, 2.4, 2.8, 3.8 mv are selected and confidence interval of the estimation

from 150 Monte Carlo Simulations are given in the following four figures (Figure

3.9 to Figure 3.12).
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Figure 3.9: Estimated kernel with 95% confidence interval, firing threshold of
υ0 = 1.8 mv.

In Figure 3.9, firing threshold is set to 1.8 mv and the red kernel is recon-

structed from the upper confidence level parameters and similarly green kernel

is reconstructed based on parameters obtained from lower confidence level. Real

kernel is given by blue kernel. and it is clear that the real inhibition curve falls

inside of the 95% confidence interval. Black kernel shows the true kernel used in

the simulations.
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Figure 3.10: Estimated kernel with 95% confidence interval, firing threshold of
υ0 = 2.4 mv.

For v0 = 2.4 mv the general shape of the connectivity kernel is estimated

and mean of the estimated kernels from 150 Monte Carlo simulations are within

the confidence interval. By this, it is meant that the mean of the estimated

parameters are within 95% confidence interval. In comparison to Figure 3.9,

increasing the threshold value has improved the estimation performance and this

can be due the fact that firing rate function will operate in linear region for wider

range of inputs and it will not saturate due to a small firing rate threshold.
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Figure 3.11: Estimated kernel with 95% confidence interval, firing threshold of
υ0 = 2.8 mv.
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Figure 3.12: Estimated kernel with 95% confidence interval, firing threshold of
υ0 = 3.8 mv.
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Figure 3.11 demonstrates a good performance in estimation of the true kernel

with a firing threshold of 2.8 mv. In Figure 3.12, firing threshold is set to 3.8 mv

and it is shown that increasing the firing rate threshold results in underestimating

the parameters where the reconstructed kernel is below the true connectivity

kernel. As mentioned in the earlier figures, mean of the estimated kernel from

150 Monte Carlo simulations is plotted in blue and true kernel is given in black.

Green and red kernels are lower and upper confidence intervals, respectively.

In summary, sensitivity of the estimation framework to changes in the ac-

tivation function is checked under four case scenarios and general shape of the

connectivity kernel is obtained despite the changes in the firing threshold. It

should be mentioned that the estimation will be invalid if the field is saturated,

however, a saturated field is not plausible biologically and simulations shown on

Figure 3.1 demonstrates that the dynamics in the simulated neural field are not

saturated.
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Chapter 4

Connectivity Estimation Using

Intracranial EEG Data

4.1 Introduction

As mentioned earlier in the literature review, epilepsy is one of the brain disorders

that affects the life quality of 600, 000 people each year in UK. This number gets

bigger when it comes to a world wide scale. Traditional and current treatments

are not focused on patient specific data and a patient specific treatment has

become the interest of many researchers and scientists in the field of neuroscience

[Kramer & Cash, 2012].

Despite advances in epilepsy treatments, cause of epilepsy in 6 out of 10 pa-

tients remains unknown [Action, 2015]. Based on reports from Epilepsy Action

- epilepsy leading organisation in UK - one in 103 people is affected by epilepsy.

EEG tests help the clinicians to diagnose and treat patients. Patient specific

treatment is an open area of research and monitoring of the connectivity ker-

nel gains can potentially provide insight to underlying neural field dynamics at

different seizure stages [Aram et al., 2013; Freestone et al., 2011, 2013, 2014].

In this chapter, estimation framework and modified version of Amari type

model developed in Chapter 3 will be used as a mechanism to understand the

underlying dynamics observed during an epileptic seizure. It should be noted

that, in this chapter, the term “data” is used to refer to epilepsy data.
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This data set was obtained with informed consent from patients with ethics ap-

proval from St. Vincent’s Hospital Melbourne Human Research Ethics Commit-

tee. Pre-processed data has been provided. The pre-processing usually involves

filtering and re-referencing. Here data was re-referenced to a common-average

reference (CAR) montage. The common average re-referencing acts as a spatial

filter to determine changes from average activity at any location.

4.2 Epilepsy Data

It is a standard step prior to the surgery to implement intracranial electrodes to

record iEEG to identify the epileptic tissue. The electrode placed on the temporal

lobe and comprises a grid of 120 (8× 15). The spacing along x and y directions

is 0.5 and 1 centimetres respectively. The original sampling frequency during the

recordings is 5KHz. Data is down sampled from 5KHz to 1KHz. This has the

advantage of reducing the size of the data while not affecting the connectivity

estimation. The data characteristics are also summarised in Table 4.1. The full

length of data is divided to three different seizure stages, namely, pre-seizure,

seizure and post-seizure.

Epilepsy Data

recording time 669 seconds

number of sensors 8×15=120 N.A

sensor spacing [1, 0.5] cm

pre-seizure duration 300 seconds

seizure duration 69 seconds

post-seizure duration 300 seconds

Table 4.1: Characteristics of the iEEG recordings.
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Figure 4.1: Plots of recordings from five different channels, Black: pre-seizure,
red: seizure, green: post-seizure.

Figure 4.1 shows five channels of EEG recordings. The plots are colour coded

to show the different stages of neural activities. Black, red and green lines show

pre-seizure, seizure and post-seizure stages respectively.
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Model
Symbol Parameter Value Unit
[∆x,∆y] spatial discretisation step [1,0.5] mm
Fs sampling frequency 1K Hz
τ1, τ2 synaptic time constant [166−1, 56−1] sec−1

ς activation function slope 0.56 mV −1 spike sec−1

fmax maximum firing frequency 1 Hz
ns number of sensors 8×15=120 Not Applicable
[∆sx∆sy] distance between adjacent sensors [1,0.5] mm
σm observation Kernel width 0.9 mm
Σε observation noise variance 0.1Iny mm2

σy disturbance spatial covariance width 1.3 mm
σ2
d disturbance variance 0.1 mV 2

nb number of basis functions 9×9=81 Not applicable
∆φ distance between field basis functions 1.5 mm
σφ width of field basis functions 1.58 mm2

Estimation
α range of variation for sigma points 0.001 Not Applicable
β prior knowledge of sigma points 2 Not Applicable
κ scaling parameter 3− nx Not Applicable
λ scaling parameter 80.99 Not Applicable

Table 4.2: List of parameters of model and Unscented Kalman Smoother in
estimation of connectivity kernel gains.
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4.3 Model & Estimation

The estimation framework developed in Chapter 3 will be used in this section to

estimate the connectivity kernel weights. It is assumed that the synaptic time

constants are known and hence, some minor alterations have been applied to least

squares estimator for the parameter estimation. A summary of model equations

and estimation procedure will be also provided. Derivation of the model, its state-

space representation and a detailed description of the estimation framework can

be found in Chapter 3.

4 Seconds

1

Second

Window1

Window2

Window3

Window4

Window5

Window6

Window7

Window8 Time

Figure 4.2: Windowing of the data prior to applying the estimation algorithm.

Figure 4.2 displays the windowing of the data. Data is split into smaller

windows with fixed durations. Estimation is applied on observations at each

window. Except the first window, the start and the end indices of each window

can be found using (indexing)

Window = n ∗ (WindowLength)− (n− 1) ∗ (OverlapWindowLength) (4.1)

where n > 0 is the window number. Estimated kernel gains for each window are

then plotted for each case.
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Model equations

xt+1
1 = xt1 + Tsx

t
2

xt+1
2 = −ξ1x

t
1 + ξ2x

t
2 + ξ1Γ−1

∫
Ω

φ(r)
∫
Ω

ψ>(r − r′)f(φ>(r′)xt1)∂r′′∂r′θ +
∫
Ω

φ(r)et(r)∂r′

ξ1 = Tsζ1ζ2 ξ2 = 1− (ζ1 + ζ2)Ts

Parameter Estimation

q(xt1) =
∫
Ω

Ψ(r′)f(φ>(r′)xt1)∂r′′
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q1(x̂0,f
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. . .
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[
1 Ts

−ξ1 ξ2

][
xt1

xt2

]
+

 0∫
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4.4 Results and Discussion

It should be noted that Figures 4.5 to 4.11 are generated based on a window

length of 4000 data points (equal to 4 seconds) with an overlap of 1000 data

points (equal to 1 second) which has resulted in 220 windows. Values for model

parameters and estimation constants are given in Table 4.2.
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Figure 4.3: Estimated connectivity kernels during pre-seizure period.
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(a) Seizure period.
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(b) Pre-seizure period.

Figure 4.4: (a) Reconstructed kernel in red during seizure for 28 windows. (b)
Reconstructed connectivity kernel during pre-seizure for 28 windows before the
seizure (shown by black lines).

It can be seen in Figure 4.4 that during the seizure period, there is a noticeable

increase on the connectivity kernel gains. The results in Figure 4.4a show that
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the inhibition and excitation has increased in amplitude during the seizure state.

Changes in the connectivity kernel magnitudes starts towards the end of pre-

seizure as displayed in Figure 4.3.
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Figure 4.5: Estimated connectivity kernels during seizure period.
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Figure 4.6: Estimated connectivity kernels during the post-seizure period.

Figures 4.5 and 4.6 show the estimated kernels over given number of the

windows in the graphs during seizure and post-seizure stages, respectively.
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Figure 4.7: Estimated kernels during post-seizure period.

The estimated connectivity kernel follows a Mexican-hat connectivity struc-

ture with different excitatory and inhibitory amplitudes.

4.4.1 Transition States

Here the changes in connectivity kernel gains while the patient is going through

an epileptic seizure are investigated. As the previous sections, a consistency in

colours is held in this section has well (green for post-seizure, red for seizure and

black for pre-seizure).
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Figure 4.8: Change of excitation and inhibition in the connectivity kernel during
different stages of the neural activity.

Changes in amplitude of excitation in the connectivity kernel versus amplitude

of inhibition in the connectivity kernel during the full length of recorded seizure is

given in Figure 4.8. The results suggest a patient specific trajectory for variations

of connectivity kernel gains. This required further investigation and it is denoted

as future work as discussed in the next chapter.
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Figure 4.9: Change of connectivity kernel gains during pre-seizure, seizure and
post-seizure periods (window size: 4000 data points, window overlapping: 1000
data points).

Figure 4.9 shows connectivity kernel gains estimated over each window of the

data set. It is clear that the changes in the kernel gains can be easily detected

where a threshold can be set to detect the changes in the neural activity.
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Figure 4.10: Estimated kernels during pre-seizure, seizure and post-seizure peri-
ods.

Similar to the previous results, it can be observed that the connectivity ker-

nel gains increase during the seizure stage. Increase in inhibition is also better

visualised in Figure 4.10.
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Figure 4.11: Estimated changes during the epileptic seizure versus recorded tran-
sition in the measurements.

An integration of a connectivity kernel gain (θ3) over full length of epilepsy

data and detecting the sharp change in the connectivity kernel gains have been

applied and demonstrated in Figure 4.11. The blue dashed lines are edges where

a sharp changes in connectivity kernel gains occur. The corresponding points in

the recorded data also show changes in the state of the data.

4.5 Different Window Sizes

Two different windowing lengths are used in addition to the given settings in

the previous section (Window length: 1.5, 2.5 and 4 seconds). Following figures

demonstrate the results obtained with different windowing lengths. It can be

concluded that the change in the window size does not affect the observed pattern

in the results significantly.

4.5.1 Case 1: Window Size of 1500 Samples

Model and estimation parameters are the same as previous section as shown in

Table 4.2. In this case, the window length is set to 1.5 seconds with an overlap
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of 0.75 seconds. The alterations are checked to learn about the effect of different

window length in the result.
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Figure 4.12: Estimated kernels at the transition from pre-seizure to seizure state
(window length: 1500 ms, overlap length: 750 ms).

Estimated kernel gains of epilepsy data during the transition from pre-seizure

stage to seizure stage is given in Figure 4.12. Estimated kernels plotted in red

colour correspond to the pre-seizure stage and estimated kernels plotted in blue

are related to the seizure stage. A sudden change in connectivity kernel gains -

especially with excitatory gains - are evident from the figures.
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Figure 4.13: Estimated kernels in transition from seizure to post-seizure state
(window length: 1500 ms, overlap length: 750 ms).

The kernels plotted in red are obtained from seizure duration and kernels in

green are reconstructed based on kernel gain estimations during the post-seizure

period.
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Figure 4.14: Change of connectivity kernel gains during different seizure stages
(window length:1500 ms, overlap length: 750 ms).
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Figure 4.15: Estimated changes during the epileptic seizure versus recorded tran-
sition in the measurements (window length: 1500 ms, overlap length: 750 ms).
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4.5.2 Case 2: Window Size of 2500 Samples

Following figures demonstrate the changes in the connectivity kernel gains and

reconstructed kernel. A window length of 2500 data points with an overlap of

500 data points are considered in this case. It should be mentioned that the

statements about the variations of gains also hold true in this case.
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Figure 4.16: Estimated kernel during pre-seizure, seizure and post-seizure periods
(window length: 2500 ms, overlap length: 500 ms).

Figure 4.16 shows the increase in inhibitory activity and excitatory activity

during the seizure.
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Figure 4.17: Change of connectivity kernel gains during different seizure stages
(window length: 2500 ms, overlap length: 500 ms).

Three different window sizes have been applied and corresponding results

are consistent with an increase of excitation and inhibition in the reconstructed

kernels during seizure period. Hence, it can be concluded that in this particular

case seizure state will result in increase of the excitatory and inhibitory activities

as exhibited in reconstructed connectivity kernel. As it will be discussed in the

future work in the next chapter, the algorithm requires further testing using data

from more patients with epilepsy. The proposed method can be potentially used

to infer patient specific connectivity kernel parameters from electro-physiological

data.
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Chapter 5

Heterogeneous Amari Type

Neural Field Model

5.1 Introduction

During the past decades significant area of the brain research is devoted to under-

standing the underlying dynamics of the brain’s function. A general discussion of

heterogeneous connectivity in large neural networks can be found in Stefanescu

& Jirsa [2008]. Although each model is designed to describe the dynamics of the

brain certain assumptions are made in each model to overcome the overwhelm-

ing complexity of the problem. A basic assumption in many of the neural field

models is the symmetrical connection in a small local neural population [Chavez

et al., 2011]. In other words, the connectivity matrix between the neural nodes

has a spatial translation symmetry. However, in patchy areas of the brain long-

range connections have been observed that effect the spatial translation of the

connectivity matrix. Visual cortex can be named as a region where heteroge-

neous connectivity is commonly reported [Brackley & Turner, 2009; Bressloff,

2003]. Spatio-temporal patterns can be formed in a sheet of neurons. Unlike

usual physical or chemical pattern formations, the patterns formed by neural

activities originate from both short and long-range connections. Such patterns

contribute to neural activities in a macroscopic level in addition to local syn-

chronised rhythms [Jirsa & Kelso, 2000]. Cortical structure consists of short
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range intracortical connectivity which are local homogeneous connections and

also long-range corticocortical connection which can be presented by non-local

heterogeneous connections. In such a configuration, the heterogeneous connec-

tivity is considered as long-range connections. Previous work of Jirsa et al. [2002];

Roth et al. [2014] show the examples of heterogeneous connections existence in

areas with widely distributed networks such as parieto-frontal cortex which is also

correlated with sensorimotor actions. It is demonstrated that mean field models

with heterogeneous connections produce complex spatial patterns.

The model of the heterogeneous connectivity kernel and its contribution to

global neural dynamics are extended version of work in Jirsa et al. [2002] where

a two point heterogeneous connectivity is considered in one dimensional space.

This is extended to two dimensions in this work.

By assuming the long-range connections as heterogeneous connectivity, the

developed model is a closer biological description of the neural dynamics and

promotes an efficient information transmission in the neural system. Heteroge-

neous connectivity is considered in relation to formation of self-organised fluctu-

ations and that global response properties are effected by this structure [Chavez

et al., 2011; Jirsa et al., 2002]. Such models are used in describing a number

of activities related to cortex and phenomena affecting the neural field such as

evoke potentials, epileptic behaviour and visual hallucinations [Coombes, 2005;

Hendrey et al., 1999].

Introducing a heterogeneous connectivity in model equations adds additional

complexity to the model and hence increases the computational complexity of

the estimation algorithm. In the following sections, a number of assumptions will

be introduced in order to simplify the problem. Clearly, a simplified model of a

small network can act as a single node on a large network where it presents the

dynamics of its underlying network.

The simulated field for a single time frame is displayed in the left panel of

Figure 5.1. In the right panel, the centre of the long-range connection points are

given. Two peaks on the simulated field emerge on the centres of the correspond-

ing long-range connection points.
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Figure 5.1: Heterogeneous connection points.

As mentioned earlier, heterogeneous connectivity structure increases the com-

putational complexity where additional parameters need to be estimated. In or-

der to simplify the problem, it is assumed that the long-range connections in

this work are two-way and symmetric in connectivity gains. From this point on,

the term “Heterogeneous connectivity” is referred to the long-range connections

that cause the connectivity kernel to be spatially variant. Number of heteroge-

neous connection points are limited to a single pair on a two dimensional space.

Additionally, a symmetric heterogeneous connection is assumed.

Next section is focused on deriving the model equations for simulations and

decomposing the model and in order to obtain a state-space representation which

facilitates the estimation process.

5.2 Model Derivation with Heterogeneous Spa-

tial Connectivity Kernel

The model presented in this section is based on relation of average action po-

tentials. Assuming that function g(r, t) presents the average number of action

potentials arriving at time t and location r, the postsynaptic potential v(r, t)

generated at location r by all other arriving surrounding populations can be
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written in the form of

v(r, t) =

∫ t

−∞
h(t− t′)g(r, t′)∂t′ (5.1)

g(r, t) =

∫
Ω

W (r, r′)f(v(r′, t))∂r′ (5.2)

where h(t) is the postsynaptic response kernel, given by

h(t) = u(t)e−ζt (5.3)

In equation (5.3), parameter ζ is the inverse of synaptic time constant τ and

u(t) is the Heaviside step function.

The connectivity kernel is W (r, r′) and f(v(r′, t)) denotes the firing rate which

is a sigmoid function given by equation (5.4) [Aram, 2011; Jirsa & Haken, 1997].

f(v(r′, t)) =
1

1 + eς(ϑ0−v(r′,t))
(5.4)

In equation (5.4), v0 is the firing rate threshold which should be satisfied

before a new postsynaptic potential is fired. Parameter ς is the slope of the linear

section of the sigmoid function. The connectivity kernel is a Mexican hat function

or a Wizard hat which can be decomposed into a sum of Gaussian basis functions

with different gains and widths (same centres).

Substituting equation (5.2) into (5.1), the spatio-temporal model can be ob-

tained as

v(r, t) =

t∫
−∞

h(t− t′)
∫
Ω

W (r, r′)f(v(r′, t))∂r′∂t′ (5.5)

It can be shown that the synaptic kernel response is a Green’s function. As-

suming a first order differential operator as D = ∂/∂t+ζ, Green function satisfies

the following relation

Dh(t) = δ(t) (5.6)
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where δ(t) is a Dirac delta function [Bayin, 2006]. Considering this, multiply-

ing both sides of the equation (5.1) by the differential operator D, the following

can be obtained

Dv(r, t) = D(h ∗ g)(r, t) (5.7)

Dv(r, t) = Dh ∗ g(r, t) (5.8)

Dv(r, t) = δ(t) ∗ g(r, t) = g(r, t) (5.9)

The sign * denotes the convolution operator. This will result in the standard

mean field model given by

∂v

∂t
+ ξv(r, t) =

∫
Ω

W (r′, r)f(v(r′, t))∂r′ (5.10)

First order Eurler’s method is applied on standard mean field model given

by equation (5.10) to obtain the integro-difference equation (IDE) form of the

model.

v(r, t+ Ts)− v(r, t)

TS
= −ζv(r, t) +

∫
Ω

W (r, r′)f(v(r′, t))∂r′ (5.11)

Where ξ = 1− Tsζ and Ts is the sampling time. It is assumed that after this

point, the index t is used for denoting the current time and t + 1 is used to

indicate the next time frame. After simplifying equation (5.11), the following

discrete form of the model can be obtained

vt+1(r) = ξvt(r) + Ts

∫
Ω

W (r, r′)f(v(r′, t))∂r′ (5.12)

It should be noted that the use of first order Euler’s method can affect the

system’s behaviour and also cause a noticeable difference between the continuous

and discrete time systems. In the simulations of the neural field, the sampling pe-

riod is chosen to be ten times bigger than the synaptic time constant to minimise

this effect. This yields a stable system and a good estimation performance.
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In this chapter the connectivity kernel is assumed to be the sum of hetero-

geneous connectivity kernel and the homogeneous connectivity kernel which is

given by Jirsa et al. [2008].

W (r, r′) = Ψhom(r, r′) + Ψhet(r, r
′) (5.13)

Replacing equation (5.13) into (5.12), the following equation will be obtained

vt+1(r) = ξvt(r) + Ts

∫
Ω

(Ψhom(r, r′) + Ψhet(r, r
′)) f(v(r′, t))∂r′ (5.14)

This equation can be expanded to give

vt+1(r) = ξvt(r) + Ts

∫
Ω

Ψhom(r, r′)f(v(r′, t))∂r′ + Ts

∫
Ω

Ψhet(r, r
′)f(v(r′, t))∂r′

(5.15)

Considering the isotropy of the homogeneous connectivity kernel, it can be as-

sumed that

Ψhom(r, r′) = Ψhom(r − r′) (5.16)

Finally, the discretized form of IDE model with homogeneous and heterogeneous

connectivity can be written as

vt+1(r) = ξvt(r)+Ts

∫
Ω

Ψhom(r−r′)f(v(r′, t))∂r′+Ts

∫
Ω

Ψhet(r, r
′)f(v(r′, t))∂r′+et(r)

(5.17)

where et(r) includes the effect of model uncertainty and unmodeled inputs. It

is a zero mean Gaussian process with spatial covariance function of γ(r − r′)

[Petersen & Middleton, 1962; Rasmussen & Williams, 2005].

The observation equation which models the data recorded from intracranial

sensors is given by

yt(rn) =

∫
Ω

m(r − r′)vt(r′)∂r′ + εt(rn) (5.18)

where m(r − r′) is the observation kernel, rn is the location of electrodes on
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the cortex and n is the sensor number. εt(rn) denotes a multivariate normal

distribution with zero mean and the covariance matrix Σε = σ2
εI where I is the

identity matrix.

5.2.1 Decomposition of the Model

Neural field can be decomposed by use of Gaussian basis functions to allow ap-

plication of standard estimation framework such as Unscented Kalman Filter.

Decomposition will result in finite dimensional vector states.

vt(r) ≈ φ(r)>xt (5.19)

Ψhom(r, r′) = ψhom(r, r′)>θhom (5.20)

Ψhet(r, r
′) = ψhet(r, r

′)>θhet (5.21)

Following the previous work Jirsa [2009]; Qubbaj & Jirsa [2007], in case of two

point heterogeneous connection, the following equation can be used to describe

long-range connections as the heterogeneous connectivity.

ψhet(r, r
′) =

[
δ(r − r1)δ(r′ − r2) δ(r − r2)δ(r′ − r1)

]
(5.22)

xt in equation (5.19) is a vector of states (time dependant) and φ is spatial

field basis functions which is defined as

φ(r − r′) = e
−(r−r′)>(r−r′)

σ2
φ (5.23)

As mentioned earlier, the connectivity kernel can also be described as sum

of Gaussian basis functions as demonstrated in Figure 5.2. In this case three

Gaussian basis functions are used for the decomposition.

It should be noted that the parametric form of the connectivity kernel is as-

sumed to be known whereas the connectivity kernel gain θ is to be estimated.

A quick reminder that in case of heterogeneous connectivity kernel, a two di-

mensional connectivity matrix is considered where two long-range connections

are considered. The heterogeneous connections are assumed to be symmetric.
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Figure 5.2: Homogeneous connectivity kernel as sum of three Gaussian basis
functions.

Additionally, connections have been assumed to be active over simulation period

where its spatial coordinates are fixed.

5.2.2 State-Space Representation

In this section the state-space representation of the model is derived. Multiplying

both sides of equation (5.12) by φ(r) and integrating over the space will result in∫
Ω

φ(r)vt+1(r)∂r (5.24)

≈ ξ

∫
Ω

φ(r)vt(r)∂r +

∫
Ω

φ(r)et(r)∂r + Ts

∫
Ω

φ(r)

∫
Ω

Ψhet(r, r
′)f(v(r′, t))∂r′∂r

+ Ts

∫
Ω

φ(r)

∫
Ω

Ψhom(r − r′)f(v(r′, t))∂r′∂r
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We define the following term which will simplify the derivation of the model in a

later step

Γ ∼=
∫
Ω

φ(r)φ(r)>∂r (5.25)

The new term Γ is a matrix of size nx × nx and based on its definition, it is

a positive definite matrix and hence is invertible. Replacing equation (5.19) in

equation (5.24) and simplifying by use of equation (5.25), it can be obtained that

xt+1 = TsΓ
−1

∫
Ω

φ(r)

∫
Ω

ψhom(r − r′)>f(φ(r′)>xt)∂r
′∂rθhom (5.26)

+ TsΓ
−1

∫
Ω

φ(r)

∫
Ω

ψhet(r, r
′)>f(φ(r′)>xt)∂r

′∂rθhet + ξxt

+ Γ−1

∫
Ω

φ(r)et(r)∂r

Following the above equations, disturbance vector for states becomes

et = Γ−1

∫
Ω

φ(r)et(r)∂r (5.27)

Hence, disturbance vector is a linear function of et(r). Expected value of et(r) is

equal to

E[et] = Γ−1

∫
Ω

φ(r)E[et(r)]∂r = 0 (5.28)

The disturbance covariance matrix can be obtained by

Σe = E[ete
>
t ]

= Γ−1e[

∫
Ω

φ(r)et(r)∂r

∫
Ω

φ>(r′)et(r
′)∂r′]Γ−>

= Γ−1

∫
Ω

∫
Ω

φ(r)E[et(r)et(r
′)]φ>(r′)∂r′∂rΩ−>
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Therefore we have

Σe = Γ−1

∫
Ω

∫
Ω

φ(r)γ(r − r′)φ>(r′)∂r′∂rΓ−> (5.29)

Hence, equation (5.26) can be written as

xt+1 = (5.30)

TsΓ
−1

∫
Ω

φ(r)

∫
Ω

ψhom(r − r′)>f(φ(r′)>xt)∂r
′∂rθhom

+ TsΓ
−1

∫
Ω

φ(r)

∫
Ω

ψhet(r, r
′)>f(φ(r′)>xt)∂r

′∂rθhet + ξxt

+ et

where et(r) is a zero mean normally distributed white noise process with its

covariance given by equation (5.29).

A state-space presentation can be given in a compact form as

xt+1 = Q(xt) + et (5.31)

where

Q(xt) = ξxt + TsΓ
−1

∫
Ω

φ(r)

∫
Ω

ψhom(r − r′)>f(φ(r′)>xt)∂r
′∂rθhom

+ TsΓ
−1

∫
Ω

φ(r)

∫
Ω

ψhet(r, r
′)>f(φ(r′)>xt)∂r

′∂rθhet
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The observation equation is described by

yt =

∫
Ω

m(rn − r′)φ>(r′)xt∂r
′ + εt(r) (5.32)

The compact form of the observation equation is given by

yt = Cxt + et (5.33)

where the elements of the observation matrix, C, are given by

Cij =

∫
Ω

m(ri − r′)φj(r′)∂r′ (5.34)

5.3 Parameter and State Estimation

It is intended to estimate the connectivity kernel gains Θ = [θ1, θ2, θ3, θhet] for ho-

mogeneous and heterogeneous connection in addition to inverse of time constant

ξ = 1− Tsζ and state vector, x.

It is assumed that the above parameters are fixed during a given set of data

recorded over a short duration of time.

The estimation process is based on two iterative parts. The first part is to

use the estimated states to update the parameter estimation. The updated set

of parameters are then applied in the next iteration of the state estimation. This

process continues till the estimated parameters are converged. The estimation

is initialised by a bounded random state vector which ensures that the initial

estimation of parameters will result in a stable kernel.

Following the earlier work of Aram [2011], additive Unscented Raunch-Tung-

Striebel Smoother (URTSS) is used for the state estimation. In this method,

Unscented Kalman Filter is applied in forward iterations to obtain filtered state

estimates, x̂ft , using a carefully selected minimal set of sigma points, followed by a

backward pass to capture smoothed states estimates, xbt . This method can handle

the nonlinearity and it is reported to show a better performance in dealing with

nonlinearity in comparison to other methods such as EKF. This procedure is also
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superior to other more computationally expensive methods such as Sequential

Monte Carlo (SMC) filtering.

The sigma points are obtained by the following unscented transforms. Once

calculated, sigma points go through the state equations. For calculation of the

sigma points, χ, the following steps should be implemented.

χ0 = x̄ (5.35)

χi = x̄+ (
√

(nx + λ)Px)i−nx , i = 1, ..., nx (5.36)

χi = x̄− (
√

(nx + λ)Px)i−nx , i = nx + 1, ..., 2nx (5.37)

λ = α2(nx + κ)− nx (5.38)

κ = 3− nx (5.39)

where x̄ is the estimated states in the forward/backward iteration. Px is covari-

ance matrix for filtering. (
√

(nx + λ)Px)i is the ith column of scaled covariance

matrix. α is used to specify the variation range of sigma points from states. It can

take an arbitrary set value which is set as a small positive constant to minimise

the higher order effects. The value of α is set to 10−3 [Haykin, 2004].

Mean and covariance prediction is obtained by applying weighted state equa-

tions to sigma points. Weights are calculated by

W
(m)
0 =

λ

nx + λ
(5.40)

W c
0 =

λ

nx + λ
+ (1− α2 + β) (5.41)

W
(m)
i = W

(c)
i =

1

2(nx + λ)
, i = 1, ..., 2nx (5.42)

Where superscripts m and c stand for mean and covariance. Parameter β de-

scribes the prior knowledge of the distribution of the states (β is given a value of

two with regards to a Gaussian disturbance) [Haykin, 2004]. Standard Kalman

filter equations are used to update the states as the observation equation is linear.

Despite the fact that the system is nonlinear, the parameters of the system

are linear with respect to states. Hence, a least squares method is used to update

the parameter values in each iteration. The following sub-section will explain the
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least squares method on updating the parameters [Stigler, 1981].

5.3.1 Least Squares Estimator

Considering that the heterogeneous connectivity is assumed to be symmetric,

a single gain is considered during the estimation process (µ12 = µ21). This is

reflected in the state equation by θhet.

Q(xt) = ξxt + q(xt)θhom + Υ (xt)θhet (5.43)

where

q(xt) =

∫
Ω

Ψhom(r − r′)f(φ>(r′)xt)∂r
′

Υ (xt) = TsΓ
−1
[
φ(r1)f(φ(r2)xt) φ(r2)f(φ(r1)xt)

]
θhet

θhet =

[
µ12

µ21

]
, µ12 = µ21

For an estimated state sequence from the initialisation or an iteration of the

URTSS, equations below are given

xf1 = ξx̂f0 + q(x̂f0)θhom + Υ (x̂f0)θhet + e0

xf2 = ξx̂f1 + q(x̂f1)θhom + Υ (x̂f1)θhet + e1

.

.

.

xfT = ξx̂fT−1 + q(x̂fT−1)θhom + Υ (x̂fT−1)θhet + eT−1
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The above set of equations can be written in a compact form as

Z = X̆W + e (5.44)

Where

X̆ =



q1(x̂0,f ) q2(x̂0,f ) q3(x̂0,f ) Υ (x̂0,f ) x̂0,f

q1(x̂1,f ) q2(x̂1,f ) q3(x̂1,f ) Υ (x̂1,f ) x̂1,f

. . . .

. . . .

. . . .

q1(x̂T−1,f ) q2(x̂T−1,f ) q3(x̂T−1,f ) Υ (x̂T−1,f ) x̂T−1,f


(5.45)

Z =



x̂1,f

x̂2,f

.

.

.

x̂T,f


,W =


θ1hom

θ2hom

θ3hom

θhet

ξ

 , and e =



e0

e1

.

.

.

eT−1


(5.46)

Following this, the least square parameters estimate can be obtained by

Ŵ = (X̆>X̆)−1X̆>Z (5.47)

5.3.2 State Estimation

URTSS is applied for estimation of states. Here, a summary of the standard steps

for UKF and smoother algorithm, explained earlier in Chapter 3, is provided.

1. Forward initialisation

As discussed earlier, forward step is initialised by set of bounded randomly

generated initial states and covariance matrix.

x̂0, P0 (5.48)
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Forward Iteration

Propagation of the sigma points through state equation given by equation

(5.43)

χf−i,t+1 = Q(χfi,t) (5.49)

Calculation of the predicted state and predicted covariance matrix can be

obtained as

x̂f−t+1 =
2nx∑
i=0

Wm
i χ

f−
i,t+1 (5.50)

P f−
t+1 =

i=0∑
2nx

W
(c)
i (χf−i,t+1 − x̂

f−
t+1)(χf−i,t+1 − x̂

f−
t+1)> + Σe (5.51)

where weights W can be obtained by equations (5.40) to (5.42). Filtered states

and covariance matrix can be achieved by

Kt+1 = P f−
t+1C

>(CP f−
t+1C

> + Σε)
−1 (5.52)

x̂ft+1 =
ˆ
xf−t+1 +Kt+1(yt+1 − Cx̂f−t+1) (5.53)

P f
t+1 = (I −Kt+1C)P f−

t+1 (5.54)

M f
t+1 =

2nx∑
i=0

W c
i (χfi,t −

ˆ
xft )(χ

f−
i,t+1 − x̂

f−
t+1)> (5.55)

where M f
t+1 is the cross-covariance of the states that will be used in backward

iterations.

Backward Initialisation Backward pass is initialised by the updated covariance

matrix and filtered states from forward iterations. This is presented by

P b
T = P f

T , x̂
b
T = x̂fT

Once the above steps are completed, the backward iterations start from time step

(index) T − 1 towards the first time step. Smoother gain, the smoothed states
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and smoothed covariance matrix are calculated at backward step using

St = M f
t+1[P f−

t+1]−1 (5.56)

x̂bt = x̂ft + St[
ˆxbt+1 − x̂

f−
t+1] (5.57)

P b
t = P f

t + St[P
b
t+1 − P

f−
t+1]S>t (5.58)

5.4 Results and Discussion

5.4.1 Neural field Simulation and Estimation Results

In this section, the field simulation results and connectivity kernel gain estima-

tion are discussed. Considering the existence of the heterogeneous connection in

addition to a homogeneous connectivity, two different cases will be discussed. It

can be shown that for a large heterogeneous connectivity kernel gain, the mean

neural field will be dominated by the heterogeneous connection. In a second case

scenario, a heterogeneous connection with a lower gain is introduced. In both

cases, heterogeneous and homogeneous connectivity gains are estimated. Model

given in equation (5.26) is used in these two case scenarios to provide a better un-

derstanding of introducing the heterogeneous connectivity on the synthetic field

and estimation of kernel gains. Table 5.1 can be used as a reference point for

parameter values for simulations and estimations unless stated otherwise.
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Symbol Parameter Value Unit
Model

∆ spatial discretisation step 0.5 mm
Ts sampling time 0.001 sec
τ synaptic time constant 0.01 sec−1

ς Slope of the firing rate function 0.56 mV −1 spike sec−1

υ0 firing threshold 1.8 mV
θhom homogeneous connectivity kernel gains [100,-80,5] mV −1 spike−1

θhet heterogeneous connectivity kernel gains variant mV −1 spike−1

σψhom homogeneous connectivity kernel width [1.8,2.4,6] mm
σψhet heterogeneous connectivity kernel width [0.01] mm
ny number of sensors 14×14=196 Not Applicable
∆y distance between adjacent sensors 1.5 mm
σm observation kernel width 0.9 mm
Σε observation noise variance 0.1× Iny mm2

σy disturbance spatial covariance width 1.3 mm
σ2
d disturbance variance 0.1 mV 2

Reduced Model
nx number of basis functions 9×9=81 Not applicable
∆φ distance between field basis functions 2.5 mm
σφ width of field basis functions 1.58 mm2

Estimation
α range of variation for sigma points 0.001 Not Applicable
β prior knowledge of sigma points 2 Not Applicable
κ scaling parameter 3− nx Not Applicable
λ scaling parameter 80.99 Not Applicable

Table 5.1: Parameter values marked as variant is set in each Monte Carlo simu-
lation. It does not mean that the value changes during the simulation but this is
to indicate that the variable value is changed in different Monte Carlo simulation
runs. Values for each specific simulation are fixed. Other parameters have been
assumed to be fixed. For values of variant parameters, one can refer to their
specified table of parameter values.

Considering the above mentioned assumptions, it is intended to estimate the

heterogeneous connectivity kernel gains. As it can be seen in Figure 5.3, sharp

edges appear on simulated field as a result of long-range connections.
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Figure 5.3: Sharp edges on neural field as a result of long-range connections.

The sharp incoming activity is a result of Dirac delta function modelled as a

sharp Gaussian contributing to the neural field activity. A large residual existed

when comparing the estimated gains with true values. Hence, a second approach

is adapted where the structure of the long-range connection is considered as “one

to many” connection points. In other words, a single point on neural field has a

long-range connections to neighbourhood of a small area which can be defined by

a wider Gaussian [Jirsa, 2004a].
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Figure 5.4: “One to many” long-range connection topology.
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In the following subsections, two different cases will be explained where long-

range connection gain is changed. In the first case, a large heterogeneous connec-

tivity gain is assumed where as in the second case, a smaller long-range connection

gain is assumed. Result of estimation is given in both cases. One of the important

features is the mean neural activity shown for each case in Figures 5.6 and 5.7.

More details will be given in the next subsection.

5.4.1.1 Case 1: High Heterogeneous Connectivity Gain

R
e
d
:
M
e
a
n
E
st
im

a
te
d
V
a
lu
e
—

G
re
e
n
:
T
ru
e
V
a
lu
e

800 1000 1200 1400 1600
0

10

20

30

40

X: 967.8
Y: 18.79

Histogram of Heterogeneous Connectivity

X: 1000
Y: 25.15

0 2 4 6 8
0

5

10

15

20

25

30

X: 5
Y: 12.12

Histogram of Theta3

X: 3.672
Y: 16.36

−150 −100 −50 0
0

5

10

15

20

25

30

X: −68.06
Y: 10

Histogram of Theta2

X: −80
Y: 14.55

−100 −50 0 50 100 150 200 250
0

5

10

15

20

25

30

X: 100
Y: 27.27

Histogram of Theta1

X: 91.83
Y: 12.42

Figure 5.5: Heterogeneous connectivity gain estimation where the heterogeneous
gain is chosen 40 times larger than the homogeneous peak strength.
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Figure 5.5 demonstrates the gains of homogeneous connectivity kernel and esti-

mated heterogeneous connectivity kernel gain for relative heterogeneous connec-

tivity kernel gain of 40 where as homogeneous kernel gains gives a peak of 25.

It can be seen in the plots, the mean of the estimated values for heterogeneous

connectivity kernel is 967.8.
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Figure 5.6: Neural field simulation where the heterogeneous connectivity with a
high gain affecting the homogeneous field.

It should be noted that for such a high gain, the field will be dominated

by heterogeneous connections which does not have a biological interpretation.

Figure 5.6 is showing an example of this case where heterogeneous connectivity

dominates the synthetic neural field.

In this case, the heterogeneous connectivity relative gain is assumed to be

about forty which has dominated the simulated field over time. The main in-

terest on running a heterogeneous connection with a high gain is to analyse the

possibility of detecting the location of the heterogeneous connection based on the

model mismatch which will be discussed in the next section.
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5.4.1.2 Case 2: Smaller Heterogeneous Connectivity Gain

In this case, the heterogeneous connectivity is assumed to have a relative gain

of four. Figure 5.7 demonstrates the changes in the simulated neural field from

equation (5.31). As it can be seen for a small range of heterogeneous connection,

the field is not dominated by the heterogeneous connection. This scenario is

employed in longer time period and field dynamics are observed over the longer

running time confirming the earlier statement.
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Figure 5.7: Simulated field at different time points with heterogeneous connec-
tivity contributing to the mean field (Heterogeneous Gain: 100).

Figure 5.8 demonstrates the gains of homogeneous connectivity kernel and

estimated heterogeneous connectivity kernel gain for relative heterogeneous con-

nectivity kernel gain of 4 whereas the homogeneous kernel gains gives a peak of

25. Mean of the estimated values for heterogeneous connectivity kernel is 184. In

estimation of weaker heterogeneous connectivity with smaller connectivity gain,

big residuals is obtained. This can be due to the fact that heterogeneous contri-

bution to the mean field model will be very negligible for small gains.
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Figure 5.8: Histogram of heterogeneous connectivity gain estimation over 90
Monte Carlo simulations with true heterogeneous connectivity gain of 100.
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Figure 5.9: Histogram for estimation of parameter ξ.

Figures 5.8 and 5.9 show the histogram of estimated parameters for 100 Monte

Carlo simulations. It is observed that the estimation result has improved in

comparison to the case where a large heterogeneous connectivity gain was used

in the simulation of the neural field. For a smaller heterogeneous connectivity

kernel gain, the estimation will preform better under the assumption that the

location of heterogeneous connectivity is known.
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Figure 5.10: Convergence of the estimation algorithm.

Figure 5.10 demonstrates mean of 150 Monte Carlo simulations for 8 epochs

of estimation iterations. It can be observed that the estimation has stopped due

to convergence of the homogeneous connectivity kernel gains, θhom.
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Figure 5.11: Observations from 5 different channels.
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Observations from 5 randomly selected channels are displayed for a simulated

neural field with relative heterogeneous connectivity gain of 100 in Figure 5.11.

5.4.2 Model Mismatch

In previous sections, it is demonstrated that by use of estimation framework

explained in section 3.5, it is possible to estimate the homogeneous gains in

addition to heterogeneous connectivity kernel gains. This is achieved with the

assumption that heterogeneous connections are located randomly in the centre of

field basis functions. In this section, the earlier assumption will be altered to a

pair of long-range connection in the field in form of two random spatial locations.

The assumption of symmetric connection is set, hence, the forward and backward

connection gains are equal.

Model mismatch is based on the estimation of the connectivity kernel gains

with initial assumption of a homogeneous field. Figure 5.12 shows the estimation

result for a simulated field with a symmetric heterogeneous connectivity but the

estimation is applied under the assumption of a homogeneous field. Estimated

kernel gains are used to reconstruct the field and the calculated residuals will be

the basis for checking the possible long-range connections as a result of a model

mismatch. This approach becomes feasible when heterogeneous connectivity has

a high gain in comparison to the homogeneous connectivity.

On the other hand, it should be noted that in a practical situation, direct ac-

cess to underlying dynamics of neural field activity is not possible and recorded

electrophysiological data is only noisy observations of the underlying neural ac-

tivity.
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Figure 5.12: Histograms of estimated homogeneous connectivity kernel gain for
50 Monte Carlo simulations.

Model mismatch is used to identify the location of the heterogeneous con-

nection and outcome is demonstrated in Figure 5.13. This can be obtained by

subtracting the reconstructed homogeneous neural field from the original field.

However, it should be noted that in real applications such an assumption can

not be used for identification of the heterogeneous connection points as the real

neural field is not available. This can be utilised if the effect of the heteroge-

neous connection becomes detectable from observations. On the other hand, the

heterogeneous connection gain is assumed to be much bigger than the homoge-

neous gain. Heterogeneous connectivity kernel can have a wide range of gains but

this should be a biologically plausible value. At the time of writing this thesis,

there is no agreement on specific ranges of heterogeneous connection gains (to

the author’s best knowledge).
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Figure 5.13: Identification of heterogeneous connection points.

The graph on the right panel shows the location of the long-range connections

and the plot on the left panel indicates two peaks in error which are related to

the heterogeneous connectivity connection. This is a good indication that for a

strong heterogeneous connectivity gain, model mismatch can be used to obtain the

location of the heterogeneous connections and estimation framework explained

earlier in the section 5.3 can be used to obtain the heterogeneous connectivity

gains. However, for smaller heterogeneous connectivity gains, current method is

not adequate and further developments in modelling and identification framework

is required.
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Chapter 6

Conclusions

6.1 Summary

Considering the major developments in neural modelling, neural functions and

their behaviours at different levels are explained in general. An opportunity

appears to exist in targeting patient specific data analysis based on recorded

data.

It is intended in the thesis to develop patient-focused models based on clinical

iEEG recordings. Proposed methods can potentially contribute towards patient

specific treatments, clinical decision making and where needed can be combined

with other control design methods to improve the estimation results or to extend

the analysis for a new purpose.

This thesis started with a general background on neuroscience, so a reader

can understand the foundations of neuroscience where a very brief history of

previous work is given. Previous work of Wilson & Cowan, Amari and Aram

have been briefly explained. Amari type models and Wilson & Cowan models

are well-known models in the computational neuroscience community considering

their capabilities in explaining the underlying physiology.

Chapter 3 focused on the integration of the second order synaptic kernel to

homogeneous model equations. Estimation of the parameters was provided under

different case scenarios. It was demonstrated that the connectivity kernel shape

can be obtained with a good accuracy. Considering that second order synaptic

kernel is a general description of synaptic conductance profile and followed by re-
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sults from this chapter, the proposed method was applied to the iEEG recordings

from a patient with epilepsy.

Followed by the objectives achieved in Chapter 3, connectivity kernel gains

were obtained during pre-seizure, seizure and post-seizure periods. It is observed

that the connectivity kernel gains go through a transition as the underlying neural

activity changes its state from pre-seizure to seizure and from seizure to post-

seizure. The outline of the connectivity kernel pattern over full data length

revealed an increase in inhibition and excitation activities during the seizure

period. However, this analysis does not show that the seizure in this patient is

predictable using this approach. This can be extended and evaluated on more

date sets where the consistency in the performance of the algorithm can be tested.

Chapter 5 focused on introducing the heterogeneous connectivity as an exten-

sion to the previous work. It is intended to identify the long-range connections and

estimate the heterogeneous connectivity kernel gains based on current estimation

framework. It was demonstrated that under given conditions and mathematical

description of long-range connections, detection of connection centres were not

possible unless a structure with large connectivity gain was assumed. Addition-

ally, it was demonstrated that the estimated of connectivity kernel gains (hetero-

geneous and homogeneous) is achievable by use of current estimation framework

under certain assumptions such as fixed parameters during the simulations and

one pair of symmetrical heterogeneous spatial connectivity. Details of all these

assumption were discussed in Chapter 5.

6.2 Future Work

In this work different assumptions were made in order to develop efficient algo-

rithms for neural field estimation. Removal or relaxing these assumptions will

result in more biologically realistic models.

It is assumed that the model has fixed parameter values during the simula-

tions. Such an assumption can be made for short periods of time but in a longer

time period, more sophisticated methods should be adopted for estimation of

the parameters where parameters are considered time variant and therefore the
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estimation framework should be altered accordingly.

Part of the future work should focus on introducing time delay in the hetero-

geneous model caused by long-range connections. Previous work of Jirsa & Ding

[2004] introduced time delays in the model where the stability of the model was

also analytically studied. Other studies such as Marten et al. [2009b]; Walker

et al. [2010] have also considered time delay and have discussed the modifications

in the model derivation or the use of Delayed Differential Equations (DDE) with

a number of assumptions to simplify the problem. Estimation of the model in

the presence of time delays is a very challenging task. One can read more about

time delay introduced by heterogeneity in neural modelling in the work of Jirsa

& McIntosh [2007]. Utilising methods from system identification theory devel-

oped for estimation of models with time delays can provide a possible solution to

deal with the effect of time delays arising from long-range connections at large

networks. Future work can include the effect of time delay in the estimation

framework.

Additionally, there exists a high sensitivity to the heterogeneous connectivity

kernel gain in the proposed framework. More sophisticated detection methods

can be combined with the proposed estimation framework to facilitate the iden-

tification of long-range connections.

Regarding the heterogeneous connectivity, a different model can be used where

the heterogeneous function is considered as a function of distance between two

heterogeneous connection points. It will be an interesting problem to check the

correlation of neural field activity at different points considering such heteroge-

neous models. This might facilitate the identification of long-range connection

points.

Another part of the future work can contribute towards parametrisation of

the spatial connectivity kernel with more than three Gaussian kernels. This will

provide more flexibility in extending the connectivity kernel to other sophisticated

shapes.

Following the accomplished objectives on applications of developed model

with second order synaptic kernel and Unscented Kalman Filter (UKF) to esti-

mate the connectivity kernel gains, this can be extended to large cohort of data

sets. An interesting result could be a trend of connectivity kernel gain trajectory

114



for each individual patient.
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