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Abstract 

Proteins are biochemical molecules that are essential for life processes. Their 

function is linked to their structure and so it follows an understanding of their 

structure will assist in an understanding of their function. The predominant method 

of solving protein structures is X-ray crystallography and for this a protein crystal is 

required. The process of obtaining a crystal is amongst the phases of the structure 

determination process with the highest rates of attrition. Analyses are performed 

throughout this thesis, which are intended to help improve output for this bottleneck. 

It has been possible to develop a method to determine pH using a spectrophotometer 

and acid-base indicator in an accurate, rapid and efficient manner. A method for 

predicting the pH of buffered solutions has also been developed and these predicted 

pH values are linked to the isoelectric point of a protein sequence. The isoelectric 

point is in turn used in classification, along with many other features, to determine a 

protein's propensity to crystallise. Finally, the most prevalent and successful 

chemical species in crystallisation are explored, compared and linked. These 

chemicals are used to design a new crystallisation screen. 
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1.  Introduction  

Proteins are biochemical molecules that underpin the processes essential for life 

(Jurisica et al., 2001). They are found in all life forms from viruses to animals, from 

bacteria to plants. They have numerous roles such as hormones, enzymes, 

transporters, receptors and regulators. The function of proteins is related to their 

structure (Wright & Dyson, 1999). For example, the globular protein haemoglobin 

surrounds oxygen atoms while transporting them through blood (Eaton et al., 1999) 

and the fibrous protein collagen provides the backbone for the connective tissues in 

the heart, tendons and cornea (Bolboaca & Jantschi, 2007). For the majority of 

proteins their structure is determined by their sequence (Anfinsen et al., 1961). Their 

sequence is in turn determined by RNA, which is transcribed from genes in DNA. 

 

It is also possible that, although the gene and protein sequence is transcribed 

correctly, the protein folds in a manner such that a different structure can be obtained 

from the same sequence. Such proteins are called prions. They can fold into a 

numerous conformations, some of which can be harmful inducing conformational 

change amongst other proteins and causing the diseases Creutzfeldt-Jakob’s Disease 

(CJD), scrapie and Bovine Spongiform Encephalopathy (BSE) (Pietzsch, 2002, NHS, 

2013). Proteins can also undergo post-translational modification (PTM), meaning 

their structure is modified in one of many ways, after the protein has been formed. 

An example of a PTM is the addition of ubiquitin to proteins. This addition is 

recognised by proteasomes, which in turn begin to degrade and recycle the protein. 

PTMs of the protein tau have been linked to Alzheimer’s disease (Gong et al., 2005). 

 

Structural Genomics seeks to determine the three-dimensional structure of proteins in 

order to understand their function and assist in developing drugs (Navia & Murcko, 

1992). It has been possible to determine the structures of many proteins related to 

drug development (Tickle et al., 1984) including that of haemoglobin (Perutz et al., 

1960). The Nobel Prize was awarded to the scientists who solved the structures of 

haemoglobin and in total, 24 Nobel Prizes have been awarded for efforts focused on 

determining the structure of proteins (Jaskolski et al., 2014).  
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The Protein Data Bank (PDB) is an open access online repository where information 

pertaining to the three-dimensional structure of macromolecules is stored (Berman et 

al., 2000). Along with the coordinates describing the atomic structure, each entry in 

the PDB includes variables such as the organism from which the protein was 

obtained, the protein sequence and the experimental method used to determine the 

structure. In April 2015 there were 100,032 protein structures in the PDB (PDB, 

2015) and the predominant method used to detemine their structure was X-ray 

crystallography (X-ray), the recorded method for 89,977 (89.7%) entries, as shown in 

Figure 1. Nuclear Magnetic Resonance (NMR) was to determine 9,559 (9.5%) 

structures and other methods were used for just 785 (0.8%) structures.  

 

 

Figure 1: Number of entries in the PDB by experimental method. 

In April 2015 the predominant method of protein structure determination was by X-ray, 

accounting for 89.7% of proteins in the PDB, with NMR accounting for 9.5% and other 

methods for 0.8%. 

 

Other methods for structure determination include electron microscopy (EM), the 

most prevalent of the other methods (Elands & Hax, 2004, Morikawa et al., 2015), 

electron crystallography (Yonekura et al., 2015) and electron paramagnetic 

resonance (Fleissner et al., 2009); fibre diffraction (Tewary et al., 2011) and neutron 
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diffraction (Coates et al., 2014); solution scattering (Wu et al., 2009); powder 

diffraction (Von Dreele et al., 2000) and hybrid methods (Howard et al., 2011). The 

number of structures solved using these methods has accounted for 0.5 to 2% of the 

structures deposited each year from 2004. 

 

The number of NMR solved structures has fallen in recent years. Of all the structures 

solved and deposited in the PDB in 2004, NMR was used for 14%. In 2014 it 

accounted for just 4%. Conversely, the number of X-ray solved structures is still 

growing. In 2004, it was used to determine 86% of structures and in 2014 this had 

increased to 94%. X-ray, however, is a much older method than the others, with the 

first X-ray diffraction of a crystal being achieved in 1913 (Bragg & Bragg, 1913), 

allowing for a century of refinement. The first NMR and EM entries were in 1986 

and 1997 respectively, compared to the first X-ray entry in 1971. This means NMR 

and EM are not currently advanced enough to be able to determine the structure of all 

proteins. NMR has limitations on the size of protein that can be used (Smialowski et 

al., 2006) and EM currently lacks powerful resolution (Milne et al., 2013). The 

limitation on size and resolution, coupled with the demand for protein complexes 

(Aloy & Russell, 2006) currently ensures the continued use of X-ray crystallography. 

As many of the recently deposited structures have a sequence similar to those 

previously determined by X-ray crystallography, there has been no reason to change 

the method. However, a major advantage of non-X-ray techniques is that they do not 

require a protein crystal and can be used in structure determination for proteins that 

cannot be crystallised (Elands & Hax, 2004). NMR can also provide dynamic 

information and is less destructive to a sample (McDermott, 2004). These techniques 

can be complementary to X-ray crystallography, with NMR used to determine the 

structures of small protein-binding structures and X-ray crystallography used to 

determine the larger protein structures (Jahnke & Widmer, 2004). 

 

In order to collect X-ray diffraction data it is essential to obtain suitable crystals via 

crystallisation. Before crystallisation, a protein has to be obtained. When a protein 

target is identified for which the structure is to be determined, the gene that encodes 

for the protein is cloned and then inserted into a vector within a host cell. The protein 

is then over-expressed to provide many copies, which are then extracted from the cell 

by several steps of purification that might include sonication, centrifugation (Lesley, 
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2001) and fast protein liquid chromatography (FPLC). The significance of the purity 

of a sample was raised by Kam et al. (1978) who suggested that impurity eventually 

makes further growth energetically unfavourable and therefore could influence the 

terminal size of a crystal. It has also been reported that crystal quality is positively 

correlated to protein purity (Ducruix & Giegé, 1992). In addition to the problem of 

whether impurities are detrimental to crystallisation, protein purity is important for 

the reproducibility of experiments (Lorber et al., 1993). If further buffers or additives 

are required to stabilise the protein these are added to create a protein solution ready 

for crystallisation. 

 

 

Figure 2: Methods of crystallisation recorded in the PDB. 

The predominant method of crystallisation in the PDB is vapour diffusion accounting for 

96.6% of entries, from a sample of 68,202 obtained in March 2015. 

 

Protein crystallisation was first referred to by Hünefeld in 1840, who crystallised 

earthworm haemoglobin. Hünefeld suggested that it was possible to obtain protein 

crystals through a method of controlled evaporation. In 1851, Fünke devised a 

reproducible method that involved the use of alcohol (the first use of organic solvent 

in crystallisation). Throughout the latter part of the 19
th

 century and the early 20
th

 

century crystallisation experiments were undertaken that incorporated many of the 
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chemical species used in crystallisation today. It was in the early 1930s when X-ray 

crystallographers began to look at protein crystals as a method of obtaining structural 

information about proteins (McPherson, 1991).  

 

There are several methods of crystallisation recorded in the PDB. Grouping these 

methods together into the broad categories described by Chayen and Saridakis (2008) 

it can be seen that the predominant method of crystallisation is vapour diffusion 

(Figure 2), accounting for 96.6% (65,870/68,202) (Bolanos-Garcia & Chayen, 2009).  

 

 

Figure 3: A schematic of vapour diffusion. 

Two methods of vapour diffusion, sitting and hanging drop. The different components of the 

setup are indicated by the following numbers: 

1. The mother liquor, a mixture of crystallisation chemicals. 

2. A mixture of the mother liquor and the protein for crystallisation. 

3. The system is sealed to allow vapour diffusion. 
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There are two predominant methods of vapour diffusion, either sitting drop or 

hanging drop, both shown in  

Figure 3. In a vapour diffusion experiment, chemicals used to promote crystallisation 

are mixed and this chemical cocktail, referred to as the crystallisation solution, is 

placed in a crystallisation well (a plastic container). Throughout this thesis the terms 

well, crystallisation solution and condition are used interchangeably. It should be 

noted that there are no standard names for various components of crystallisation 

experiments and as such they vary throughout the literature. A sample of this 

crystallisation solution is taken and combined, typically in a 1:1 ratio with the protein 

solution (Chirgadze, 2001). This mixture of protein and chemical cocktail is then 

offset from the reservoir containing the majority of the crystallisation solution either 

by hanging from a cover slip above (hanging drop) or by sitting in a smaller well 

(sitting drop). The system is then sealed using a water impervious barrier such as 

transparent pressure-sensitive tape. The solutions then equilibrate and the 

concentration of the components in the droplets changes over time. For an indication 

of scale, custom crystallisation experiments described throughout this thesis are 

 
Hanging Drop 

 
Sitting Drop 
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sitting drop where crystallisation solution is 80µl and from this 100nl is taken and 

mixed with 100nl of protein solution.  

 

Some of the lesser used methods to induce crystallisation include: microbatch, in 

which both protein and crystallisation solution are dispensed together under a layer 

of low density paraffin, silicone or a mixture of both; dialysis, in which a 

semipermeable membrane separates the protein and crystallisation solutions; free 

interface diffusion, in which protein and crystallisation solutions sit side by side; and 

microfluidics, which use much fewer nanolitres of protein and chemical solutions 

than standard experiments (Chayen & Saridakis, 2008). 

 

The physics of crystallisation dictate that for a crystal to form the protein solution 

must reach supersaturation via the diffusion process. In vapour diffusion this occurs 

by the evaporation of water from the sitting/hanging drop to the crystallisation 

solution in the reservoir, increasing the concentration within the drop. Too much 

supersaturation will result in precipitation, too little and nucleation will not occur. 

Once nucleation has occurred the protein solution needs to move into a metastable 

state where the growth of crystals can occur. This transition from nucleation to 

crystal growth is where the combined crystallisation parameters such as method, pH, 

precipitants and temperature have their effect (Asherie, 2004, DeLucas et al., 2003, 

Weber, 1997). 
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Figure 4: Attrition rates of the structure determination pipeline. 

The percentages on the right of the phase marker show the proportion of proteins that have 

passed each phased of the process. Those on the left of the arrow show the percentage drop 

in proteins from the previous phase. The data was obtained from TargetDB at 

http://sbkb.org/metrics/ in March 2015. 

 

Despite some understanding of the processes that control protein crystal growth, 

obtaining crystals from which a structure can be determined has the highest rate of 

attrition for any phase of the structure determination pipeline (Chayen, 2003). Just 

24% of those proteins that could crystallise become structures deposited in the PDB, 

as shown in Figure 4. The stage before this, from purification to crystallisation, is 

also challenging with roughly 1 in 2 (55%) proteins forming crystals. This step, 

 

100% 

74% 

36% 
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crystallisation, has been the stage with the highest rate of attrition over the past 

decade (Chayen, 2004, TargetDB, 2010) and is, therefore, described as a bottleneck 

in the protein structure determination process (Chayen and Saridakis (2008), D'Arcy 

(1994), Stevens (2000)).  

 

 

 

Figure 5: Parameters affecting crystallisation. 

Two different crystallisation experiments described in terms of three major parameters: (1) 

physical parameters - experiments performed at different altitude, both gravity, temperature 

and pressure effected; (2) chemical parameters - one solution (the upper) is red indicative of 

an acidic pH, the other solution (the lower) is blue indicative of a basic pH; (3) biochemical 

parameters - two different proteins, one longer than the other and at lower concentration. 

 

The parameters affecting a protein crystallisation experiment (shown in Figure 5) can 

be categorised into one of the following groups: (1) physical parameters, such as the 

temperature and method of experiment; (2) chemical parameters, such as the pH and 

the precipitant used; and (3) biochemical parameters, such as the isoelectric point and 

chemical modifications to the protein sample (McPherson, 1999). 
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Over time, each of the groups has been explored for ways of reducing the number of 

protein crystallisation experiments that do not result in a crystal. Physical parameters 

have been studied in collaboration with the North American Space Agency (NASA) 

and experiments have been performed in microgravity (Gilliland et al., 1996, CASIS, 

2013). Some researchers have explored the use of desiccation (Yin et al., 2010, Xie 

et al., 2012) and others have used computer simulations (Yoshizaki et al., 2004). 

Samudzi et al. (1992) found that most crystallisation experiments were either 

attempted at 3ºc or 21ºc with very little exploration of the temperatures in-between. 

They suggested that temperature needed to be studied further, as 86% of proteins 

display temperature dependence (Christopher et al., 1998). Nucleation is also 

dependent on temperature. A study of four temperatures with the protein SmFru-1,6-

P2ase showed that nucleation only occurs in a narrow range of concentrations at 15 

ºC, but this range increases at 30 ºC (Zhu et al., 2006). Physical parameters are 

arguably the most difficult and expensive to change and may require long term 

planning into infrastructure. The majority of experiments are presumably undertaken 

with constant gravity, pressure and similar amount of vibration. In data pertaining to 

crystallisation trials, unless physical parameters are the focus of the study, they are 

not recorded, therefore, physical parameters are not explored further here. 

 

Usually, there are multiples of 96 combinations of chemicals trialled at any given 

time, each combination in its own well. The collective term for these 96 wells is a 

screen. Although any number of conditions tested at the same time can be called a 

screen, 96 conditions is the number in commercially available screens. An early 

logical approach to screening employed the use of incomplete factorial design 

(Fisher, 1942). A set of conditions was selected that sampled the chemical parameter 

space in a ‘statistically effective manner’ (Carter & Carter, 1979). Following on from 

this other attempts have been made to effectively sample chemical parameter space 

by: searching a small region of chemical parameter space in detail (McPherson, 

1989b); sampling regions known to be favourable for crystal growth (Jancarik & 

Kim, 1991); systematically searching distinct regions of parameter space (Stura et 

al., 1992); focusing the selection of chemicals for particular proteins (Brzozowski & 

Walton, 2001); using minimal spanning set theory to obtain the theoretically most 

efficient screen (Kimber et al., 2003, Page et al., 2003); and including the use of 
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ligands and additives into a screen (Gorrec, 2009). All screens vary the chemical 

species, concentration and pH with the most successful crystallisation species 

including polyethylene glycol (PEG) of various molecular weights, salts and buffers 

(Fazio et al., 2014). Typically each screen is trialled with one protein, which is 

encompassed by the biochemical parameters. Chemical and biochemical parameters 

are explored in this thesis. 

 

There are those who argue that the protein is the most important variable 

(Longenecker et al., 2001) and that it is often overlooked (Dale et al., 2003). 

Researchers have sought to determine the structure of a protein solely from its 

sequence using only computational methods (Chou & Fasman, 1977, Baker & Sali, 

2001, Garnier et al., 1996); used protein properties, such as its hydropathy value 

(Kyte & Doolittle, 1982), to determine its propensity to crystallise (Smialowski et 

al., 2006, Overton & Barton, 2006, Jahandideh & Mahdavi, 2012) and those who 

have used such properties to determine under which conditions a protein will 

crystallise (Samudzi et al., 1992, Hennessy et al., 2000, Kantardjieff & Rupp, 2004). 

This thesis also considers the relationship between a protein’s physical properties and 

the likelihood of its crystallisation. 

1.1. Thesis Summary 

The difficulties surrounding crystallisation are due to the complex nature of the 

interactions between proteins and parameters such as pH, precipitants and 

temperature. Varying the conditions with numerous chemicals in combination makes 

the crystallisation parameter space exceptionally large and impossible to sample 

fully. Similarly, the number of properties which can be calculated for a protein 

sequence is also large, as there are many thousands of combinations of di- and tri-

peptide pairs (Charoenkwan et al., 2013). Fortunately, high-throughput structure 

determination generates lots of data that can be mined. Throughout this thesis we 

make use of data from several repositories to analyse protein crystallisation 

parameters. In those instances where data was not available, we created our own 

through experimentation. The datasets are described in detail in Chapter 2 and the 

methods used are outlined in Chapter 3. Using this data it has been possible to 

implement a new method of determining pH rapidly and accurately as described in 
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Chapter 4. In Chapter 5 a method to predict pH for buffered solutions is used to 

investigate a fiercely contested link between a protein's isoelectric point and the pH 

at which it crystallises. The use of predictors for determining a protein’s propensity 

to crystallise is challenged in Chapter 6. The most widely used chemicals and their 

combinations, which crystallise many proteins, are explored in Chapter 7 and used to 

design a new screen as described in Chapter 8. Finally, similarities in crystallisation 

parameter space are explored in Chapter 9 with the aim of reducing the search space. 
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2. Definitions and Data 

The following chapter defines acronyms and chemicals terms used throughout this 

thesis along with a detailed description of the four datasets used for analyses. The 

datasets were obtained from AstraZeneca, the Structural Genomics Consortium, the 

Protein Data Bank and a dataset produced following customised experiments. 

2.1. Abbreviations and Definitions 

AHA Alpha hydroxy acid. 

Anion  A negatively charged ion. 

AZ AstraZeneca (Alderley Park, Cheshire). 

Bis Tris Bis-(2-hydroxyethyl)imino-tris(hydroxymethyl)methane. 

BMCD Biological Macromolecule Crystallisation Database. 

CAPS N-Cyclohexyl-3-aminopro- panesulfonic acid. 

Cation A positively charged ion. 

Centrifugation The process of separating particles by weight or settling 

solids from a solution by using a centrifuge. 

Chromatography See HPLC. 

Construct ID (SGC) Identifies the specific sequence of amino acids that form a 

(section of a) protein. The construct ID is the same whether 

or not the sequence contains a purification tag, usually 

comprising of six histidines genetically engineered to the 

end of a sequence to assist in purification. 

Counterion  The ion that maintains electric neutrality. 

Divalent A molecule with a valence of two. 

DTT Dithiothreitol. 

Dynamic Light 

Scattering 

A technique that measures fluctuations in light intensity 

from a sample of proteins, which are assumed to be 

spherical. 

GRAVY Grand Average of Hydropathy. 

HCL Hydrogen chloride. 
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HEPES 2-(4-(2-Hydroxyethyl)-1- piperazinyl)ethanesulfonic Acid. 

HPLC High-Performance Liquid Chromatography is a technique 

in which samples are forced at high pressure through a 

matrix that binds to specific particles in the solution. 

LDA Linear Discriminant Analysis. 

MDS Multidimensional Scaling. 

MES 2-(N-morpholino)ethanesulfonic acid. 

MPD 2-methyl-2,4-pentanediol. 

PCA Principal Components Analysis. 

PCTP A broad range buffer system comprising propionic acid, 

cacodylate, bis-trispropane system. 

PDB Protein Data Bank. 

PEG Polyethylene glycol. 

pI Isoelectric point. 

Plate barcode (SGC) The identifier for a specific crystallisation plate in which a 

purified protein is screened. The plate barcode can be used 

to trace: the screen type (random/filter/grid/custom); the 

screen name (the particular sparse/filter screen used); the 

concentration of the protein; the temperature of the plate; 

any added compounds; whether the protein sample was 

fresh or frozen; the name of the crystallographer and the 

date of the experiment. 

Project (AZ) The target protein for which the structure is to be 

determined. All of the protein sequences within a project 

have a fixed percentage sequence similarity. A sequence 

may undergo more than one purification protocol. 

However, in most instances it is assumed that each new 

project relates to a new protein sequence. 

Purification ID 

(SGC) 

Each construct may be purified by more than one method 

and the purification ID identifies the particular method. A 

construct ID may be associated with multiple purification 

IDs. 
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SGC Structural Genomics Consortium (Oxford). 

TCEP Tris(2-carboxyethyl)phosphine. 

Tris 2-Amino-2-(hydroxymethyl)propane- 1,3-diol. 

 

2.2. The AstraZeneca Dataset 

In March 2012, AstraZeneca (AZ) provided a dataset associated with the 

crystallisation of macromolecules at their site at Alderley Park, Cheshire. The dataset 

contained information regarding 655,806 experiments (with each experiment relating 

to a well in a screen) from 26 screens and 163 projects. For each experiment, the 

dataset has several recorded fields, described in Table 1. 

 

Field Description 

Project ID An identifier of the protein 

Trial and Session IDs Identifier of relative time of 

experiment in relation to other 

experiments 

Matrix Name Identification of screen type 

Well ID Location of well within screen 

Annotation (Crystal Size and Type) Manually annotated outcome of 

experiment 

Chemical Name and Concentration Description of chemicals in the well 

Buffer pH The pH of the buffer component of 

the crystallisation solution (where 

applicable) 

 

Table 1: Summary of fields contained within the AZ dataset. 
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The data did not have any information on: 

 temperature of the experiment; 

 inclusion of ligands; 

 purification details; 

 protein sequence; 

 the final outcome of experiment- diffraction quality/structure solved. 

 

The screens for which the largest number of projects were trialled are five evolutions 

of a filter screen (a hybrid of grid and footprint screens, which are described in 

Chapter 8) named Filter 2, Filter 3, Filter 4, Filter 5 and Filter 6 and four generations 

of sparse matrix screens (random screening) named Sparse 0, Sparse 1, Sparse 2 and 

Sparse 3. Other screens were either custom screens or follow-up screens containing 

many experiments with no successful outcome (crystals) and only specific to a single 

project. The nine main screens together provide 87% (568,957 entries) of the total 

data covering 152 projects. Throughout this thesis, reference to the AZ dataset means 

the data from these nine screens. 

 

AstraZeneca Annotation York Scale 

Null, Clear 0 

Skin 1 

Precipitate 2 

Phase 3 

Urchin 4 

Plate, Needle, Leaf 5 

Pyramid, Hexagon, Block 6 

 

Table 2: New annotation of crystallisation results. 

The AstraZeneca annotation is given by a crystallographer. On receiving the data the 

annotations were grouped and assigned a number (York Scale). 

 

The outcome of each crystallisation experiment was scored as shown in Table 2. This 

allowed the number of classes to be reduced so that each class had more examples. In 

this classification system an experiment with a score ≥ 4 is considered to be a 
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successful experiment (crystalline/crystal) and conversely those  4 are considered to 

be a fail. 

2.3. The Structural Genomics Consortium Dataset 

Data was also obtained from the Structural Genomics Consortium (SGC), Oxford in 

November 2012. In its entirety it relates to 62,605 construct IDs, for which there are 

17,591 purification IDs and 54,383 plate barcodes. In total, 608 structures have been 

solved and PDB IDs obtained. The relationships between the terms construct ID, 

purification ID and plate barcode are shown in Figure 6. Descriptive metadata 

includes information pertaining to protein families of proteins, protein sequences, 

purification methods, crystallisation conditions and whether a solved structure has 

been deposited in the PDB.  

 

 

 

Figure 6: Structure of SGC data. 

Each construct ID can be mapped to several purification IDs which in turn can be mapped to 

multiple plate barcodes. This is because a construct can undergo several different 

purification processes and the purified protein then trialled tested in various screens, 

differing in factors such as temperature or whether the protein sample is fresh or has been 

frozen. 
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Figure 7: Entity relationship diagram for SGC data. 

Table headers indicate the stage of the structure determination process; bullet points show 

examples of field names for which there is a record. 

 

Figure 7 shows examples of the data fields in the SGC dataset for each phase of the 

structural determination process. Data analysis was restricted to one screen, SGC 

JCSG +4, which is a sparse (random) matrix screen used to identify regions of 

parameter space under which a protein is likely to crystallise. Successful regions can 

then be searched more rigorously using follow up screens. Analysis was performed 

on this screen because it was the most prevalent screen in the SGC database with 

9,608 plate barcodes associated with 4,154 purification IDs and 2,553 construct IDs 

and. In total, 69 structures have been deposited in the PDB using crystals produced in 

this screen with at least a further 32 from follow-up screens. Each successful 

experiment was annotated as crystal (possibly salt), a protein crystal (as determined 

by X-ray), any crystal diffracting to more than 3.6 Å or as the highest quality- 

structure determined. 

2.4. Crystallisation Conditions from the PDB 

The final dataset used was a snapshot of the PDB. Each PDB ID in the standardised 

PDB snapshot (obtained from Fazio et al. (2014)) has an associated protein sequence 

and components of the crystallisation solution. After removing a number of 

potentially malformed entries, the number of PDB IDs was reduced to 60,999 (97% 

of the original data) to form a dataset referred to as PDB-RAW. Some proteins have 

been deposited in the PDB many times with different ligands, modifications or 

crystallisation space groups. For example, hen egg white lysozyme (Gallus gallus 

lysozyme) alone currently has an associated 460 X-ray structures. We also 

considered the data at different levels of redundancy. The similarity of protein 
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sequences was assessed using BLAST (Madden, 2012) and only one representative 

sequence from any sequence grouped as similar (using a p-value of 10
7
) was 

included in the PDB-UNIQUE dataset (Figure 8). This dataset comprises 37,249 

non-redundant PDB entries. A second dataset, referred to as PDB-BLAST, consists 

of entries from PDB-RAW grouped according the BLAST analysis. This dataset has 

8,958 groups with between one and 2115 (for kinase) similar sequences in each 

group, giving 59,734 entries in total. After removing duplicate entries with the same 

experimental conditions for the same protein (but keeping all entries for the same 

protein where experimental conditions differ), the PDB-BLAST dataset was reduced 

to 44,063 PDB entries. 

 

 

  

Figure 8: Data structure of the PDB snapshot. 

The structure of data used for different types of analysis showing the number of PDB entries 

in the various data subsets. 
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2.5. Custom Crystallisation Experiments 

Protein Source* 
Concentration 

(mg/ml
-1

)
 

Buffer 

Solution 

Protease K212A h 13 1 

Protease K234A h 13.4 1 

Protease K249A h 12.1 1 

ProteaseE171A h 13.2 1 

Concanavalin A s 15 2 

Bovine Catalase s 15 2 

Porcine Trypsin s 31 2 

Thaumatin s 50 2 

α- Chymo A s 15 2 

Galine Lysozyme s 20 2 

Glycolytic A h 30.1 3 

Glycolytic D h 21.9 3 

Glycolytic wt h 9.8 3 

Kinase 1 h 12.2 4 

(a) Proteins used for crystallisation. 

 

1 
20 mM MES, 5mM calcium chloride, 5 mM DTT, 100mM sodium chloride, 300 

mM AHA, pH 6.5 

2 10mM PCTP, 100 mM sodium chloride, 0.5mM TCEP, pH 7.6 

3 20 mM TRIS HCL , 150 sodium chloride, 2mM TCEP, pH 7.5 

4 10 mM TRIS, 50 mM sodium chloride, 1mM DTT, 50 µM zinc acetate, pH 7.5 

(b) Buffer solutions used with the proteins named in (a). 

h In-house 

s Sigma 

 

Table 3: Custom protein solution details. 

Protein solution details for the commercially available and in-house protein targets that were 

screened are shown in (a) with buffer solution details in (b). 

 

Commercial proteins were obtained from Sigma-Aldrich and were buffered at pH 7.6. In-

house proteins were also buffered at near neutral pH (either pH 6.5 or pH 7.5). For each 
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experiment, 80μl of crystallisation solution was dispensed using a Thermo Scientific Matrix 

Hydra II robot. Frozen protein samples were defrosted to room temperature before using a 

Mosquito pipetting robot (TTP Labtech) to dispense 1μl protein with 1μl of the mother 

liquor in MRC Wilden crystallisation trays. Trays were sealed manually using transparent, 

pressure-sensitive adhesive tape (Hampton) and stored in a Formulatrix Rock Imager hotel at 

20° C. All images were assessed for crystallisation after 21 days.  

2.6. Discussion 

One problem with crystallisation data is that it is the result of a high-throughput 

process and the determination of a protein structure is its goal. This means that scores 

assigned to images of crystallisation wells, manually, are likely to be targeted at the 

most promising wells. If the first well scored contains a perfect crystal with good 

diffraction it is of little interest to the crystallographer what happens in the rest of the 

wells. This then creates the illusion that protein x is one that is a poor crystalliser (in 

terms of the number of wells) or that the protein was only tested in a certain set of 

wells (range of conditions). This latter event is observable in the AZ dataset. Thus, 

for certain analyses only projects (proteins) that have a score recorded for every well 

of a screen are included. If a crystallographer scores every image, with each image 

being of a well of a crystallisation screen, they introduce their own opinion and bias 

on whether the precipitate is light or heavy or whether the well contains a crystal or 

just something that shines (such as skin (denatured protein) or cellophane). In an 

attempt to reduce this bias, we reduced the number of annotations in the AZ data to 

create the York Scale. Upon creation this was an incremental scale, with 6 suggesting 

a better crystal than 5 and so on. However, in the analysis that followed, most of the 

results are reported as if the York Scale was binary, either crystal or non-crystal. For 

SGC data and PDB data the results of diffraction provided objective evidence that 

crystals were formed in certain conditions. In our own custom dataset we used the 

binary system of crystal or non-crystal. These were scored images and the images 

were taken after 21-days from creation of the experiment. In this time it is possible 

that crystals were formed and dissolved, however, this aspect of crystallisation was 

not explored. 
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3. Methods 

Machine learning and data mining methods are used to simplify data, recognise 

patterns and provide statistical evidence in support of hypotheses. A general 

overview of the methods used within this work is given here along with an indication 

of which methods were used in the specific analyses described. 

3.1. Cluster Analysis 

Clustering is a method of grouping similar objects together based on characteristic 

properties. In Chapter 9 the objects are crystallisation conditions and their similarity 

is determined by which proteins they crystallise.  

 

 Protein 

Condition u v w x y z 

R ♦ ♦   ♦  

S  ♦ ♦ ♦   

transformation into vector form 

Vector       

R 1 1 0 0 1 0 

S 0 1 1 1 0 0 
 

♦ Crystal 

 

Figure 9: Transforming from experiments to vector form. 

The top table shows the results for six proteins (u, v, w, x, y and z) in two different 

crystallisation conditions (R and S), where the diamonds indicate successful crystallisation. 

The results are transformed to give two binary vectors, in which a 1 indicates successful 

crystallisation and 0 indicates a failed experiment. 

 

Figure 9 shows how the results of a crystallisation experiment are transcribed into 

vector form for clustering. A binary vector of length n is obtained for each 

crystallisation condition tested, where n is the number of proteins trialled. The ith 

element of the jth vector is populated with a one if the ith protein crystallised in the 

jth condition and a zero otherwise. In the example shown in Figure 9, condition R 

crystallised proteins u, v and y and is used to define the object R in the form of a 
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vector [1, 1, 0, 0, 1, 0]. Once such vectors have been generated it is then possible to 

measure their similarity. 

 

There are many different distance metrics available for quantitative data and at least 

12 specific to binary data (Cox & Cox, 2010). It is, therefore, an informed trial and 

error process to decide which measure best reflects the data. In this thesis, the 

Hamming distance, the Jaccard distance and the Euclidean distance are used. The 

first two are measures developed for binary data. 

3.1.1. Binary Distance Measures  

For objects that are defined by binary vectors, the distance between two objects is 

calculated by combining the differences between corresponding elements in the two 

vectors. Figure 10 shows how the number of matched and mismatched elements can 

be counted. Distance metrics for binary data differ in the weight given to the matches 

and mismatches, for example the number of 1 - 1 matches may be considered more 

important than the number of 0 - 0 matches. 

 

  Object S  

  1 0  

O
b

je
ct

 R
 1 a b a + b 

0 c d c + d 

  a + c a + d N = a + b + c + d 

  

Figure 10: The relationship between two objects in binary form. 

The elements of the objects, R and S, can either take the form 1 or 0, as previously shown in 

Figure 9. The value a is a count of where there is a 1 in the same position in R and S. 

Similarly, b is are a count of where there is 1 in R and 0 is S, c is a count of 0 in R and 1 in 

S, and d is a count of where there is a 0 in the same position in both objects (Cox & Cox, 

2010). N is the sum of all the terms, which is the same as the number of elements in the 

objects. This requires both objects to be defined by a vector of the same number of elements. 
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With a, b, c and d defined as in Figure 11, the Hamming distance, H, between R and 

S is defined as: 

 

 

The Hamming distance counts the number of mismatches, i.e. the elements that are 1 

in object R and 0 in the same position in object S, or 0 for R and 1 for S. If all 

elements for both objects are identical then the Hamming distance will be 0, whereas 

if all elements of S are different in R then the distance will be 1. Figure 11 shows the 

terms that each element pair contributes to for an example in which a = 1, b = 2, c = 

2 and d = 1 so that N = a + b + c + d = 6 and the Hamming distance is 0.66. 

 

Object       

R 1 1 0 0 1 0 

S 0 1 1 1 0 0 

Hamming 

Term 
b a c c b d 

 

 (   )   
   

       
      ̇ 

 

Figure 11: Example Hamming distance calculation. 

The Hamming distance between objects R and S is 0.66. This is based on a count of 2 for 

term b plus a count of 2 for term c, divided by the total number of elements in the objects, 6. 

 

As protein crystallisation experiments are much more likely to fail than to result in 

crystals, the data is negatively biased and therefore comparison of conditions using 

the Hamming distance shows two conditions to be highly similar if both fail to 

crystallise the same proteins, which will often happen. Although this provides 

information, it obscures the desired identification of conditions that crystallise the 

same proteins. Use of the Jaccard distance compensates for the effect of negative 

bias.   
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The Jaccard distance, J, between objects R and S is defined as: 

 

 

Equation 2 shows that the Jaccard distance, in which two failed experiments (zero 

outcomes) d are not considered and avoids problems caused by negative bias (Cox & 

Cox, 2010, Teknomo, 2006). An example of the Jaccard distance is shown in Figure 

12 using the crystallisation results from Figure 9. 

 

Object       

R 1 1 0 0 1 0 

S 0 1 1 1 0 0 

Jaccard 

Term 
b a c c b d 

 

 (   )   
   

     
      

 

Figure 12: Example Jaccard distance calculation. 

The Jaccard distance between objects R and S is 0.8. This is based on a count of 2 for 

term b plus a count of 2 for term c, divided by the total number of pairs which 

contain a 1.  

3.1.2. The Euclidean Distance 

The Euclidean distance is perhaps the most widely used distance metric and 

measures the distance between two objects as a straight line 'as the crow flies'. The 

Euclidean distance, E, between objects R and S is defined as: 

 

 

where Ri, Si are the ith elements of the n-dimensional feature vectors R and S, which 

may be real numbers but can also binary variables. In Chapter 5 quantifiable features 

   (   )  
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are calculated from protein sequences and the use of clustering to predict crystal 

quality is investigated. An example of the Euclidean distance is shown in Figure 13 

using the crystallisation results from Figure 9. 

 

Object       

R 1 1 0 0 1 0 

S 0 1 1 1 0 0 

|     |
  1 0 1 1 1 0 

 

 (   )   √     

 

Figure 13: Example Euclidean distance calculation. 

The Euclidean distance between objects R and S is 2. This is based on the square root 

of the sum of distances between each element of the objects 

3.1.3. K-means Clustering 

The aforementioned metrics allow the distance between objects to be quantified. K-

means clustering provides a method to group n objects into k clusters based on their 

similarity, where k is a number to be specified by the user. The process for this 

grouping is as follows (MacQueen, 1967): 

 

1. Randomly place k points throughout parameter space, to represent cluster centres. 

2. Assign each object to its nearest cluster centre. 

3. Redefine the cluster centre as the average of all the objects in that cluster. 

4. Repeat steps 2 and 3 until convergence. 

 

In Chapter 5 k-means clustering, implemented in the R programming environment (R 

Core Team, 2012), is used to determine whether four groups of proteins cluster, 

based on 13 properties calculated from their sequence. Here, the Euclidean distance 

metric is used with k = 4.  
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3.1.4. Hierarchical Clustering 

Hierarchical clustering is another method of grouping n objects based on their 

distance from each other. Hierarchical clustering can be agglomerative or divisive. In 

agglomerative clustering every object is initially considered as an individual cluster 

and clusters are gradually combined according to their similarity until all objects 

belong to a single cluster. Divisive clustering on the other hand begins with all 

objects in a single cluster and continues to divide clusters until all objects are 

considered as separate clusters. The process of agglomerative clustering is as follows 

(Johnson, 1967): 

 

1. Assign each object to an individual cluster, giving n clusters. 

2. Calculate the distance matrix between all pairs of clusters. 

3. Group the two clusters with the smallest distance, giving one less cluster. 

4. Calculate the distance between the new cluster (step 3) and all other clusters. 

5. Repeat steps 2 to 4 until all objects belong to the same cluster. 

 

 

Figure 14: An example dendrogram. 

The dendrogram shows the hierarchical clustering of six objects. Here, objects 4 and 6 were 

the first two to be clustered; object 5 then joined this cluster, followed by object 3. Objects 1 

and 2 formed a new cluster that finally joined the cluster with the other four objects. 
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Hierarchical clustering can be viewed graphically by means of a dendrogram, in 

which the heights at which clusters are joined are proportional to the distances 

between the clusters, as shown in Figure 14. Hierarchical clustering and dendrograms 

are used Chapter 9, to compare the representation of differences between 

crystallisation conditions given by C6 distance metric against experimental data. 

 

Both k-means and hierarchical clustering can be varied by choosing different 

distance metrics and which point in a cluster is considered to be representative of that 

cluster to define the distance between clusters (the linkage criteria). The average 

linkage method used in this thesis calculates the distance between two clusters as the 

average distance between each object in one cluster to every object in the other 

cluster. 

3.2. Eigenpairs 

A number of multivariate methods, including Principal Components Analysis and 

Linear Discriminant Analysis, described in the next sections, rely on the use of 

eigenvectors and eigenvalues. Eigenvectors are the vectors that undergo no 

transformation, other than scaling, when multiplied by a matrix. They are defined in 

the following way: let M be an n x n square matrix, and let e be a column vector of 

length n. Then the constant   is an eigenvalue of M, with corresponding eigenvector, 

e, if Me =  e. The eigenvector and corresponding eigenvalue together are referred to 

as an eigenpair. Eigenpairs are obtained from square matrices and are typically found 

using iterative computational methods. A matrix of orthonormal vectors (unit vectors 

that are perpendicular to one another) is representative of a rotation in Euclidean 

space and therefore can be used as a data transformation matrix  

3.2.1. Principal Components Analysis 

Principal Components Analysis (PCA) is a technique that uses eigenpairs for data 

reduction and visualisation of a feature matrix, X. A new coordinate system, P, is 

obtained by a rotation that maximises that variance in the first few dimensions and is 

achieved by finding the eigenvectors, A, of the data covariance matrix. The 

eigenvector with the largest eigenvalue is referred to as the first principal component 
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and gives the direction in the data with the largest variation. The second principal 

component is orthogonal to the first and is the eigenvector with the second highest 

eigenvalue, giving the direction in which there is most variation not already 

accounted for by the first eigenvector and so on (Rajaraman & Ullman, 2012). For 

dimensionality reduction only those eigenvectors with eigenvalues of ‘significant’ 

size are used. The number of eigenvectors may be chosen according the proportion 

of the total variance accounted for, but the choice is subjective and a number of 

different rules of thumb exist (Valle et al., 1999). While removing eigenvalues and 

their respective eigenvectors results in a loss of some information,  , this is 

minimised by ensuring that most of the variance in the data is in the first few 

components.  

 

A data matrix X with n observations with m features, transformed by k principal 

components can be written as 

 

 

where, P is a n × k matrix of the transformed data, or scores, A is a k × m matrix of 

the eigenvectors, or loadings and   is the n × m matrix of residuals when k < n. In 

Chapter 5, the PCA scores are used for visualisation to determine any grouping of 

proteins according to 13 calculated protein features, m = 13 and k = 2. Protein 

properties are also used in Chapter 6 in the classification of proteins that can and 

cannot be crystallised. PCA was employed in order to reduce the set of properties, m 

= 87, before use in for machine learning algorithms. A review of dimensionality 

reduction techniques in 2009, found that PCA could not be outperformed by non-

linear techniques (Van der Maaten et al., 2009). PCA was implemented in the R 

programming environment using the prcomp function (Zurich, 2012, R Core Team, 

2012).  

3.2.2. Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a linear classification method that attempts to 

maximise the separation between classes. Good separation is found when the 

         4 
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difference between the class mean and the grand mean (mean over all classes) is 

large compared to the standard deviation of a class.  

 

For a two-class system, the Fisher linear discriminant function achieves this by 

maximising the function 

 

 

where   ̃ and  ̃ 
  denote the projected mean and variation of class i and   is the 

vector of coefficients, or loadings, in the linear discriminant function. The function 

J( ) is maximised by maximising the difference between the projected group means 

whilst minimising the projected within group variance. The vector of coefficients   

determines the first linear discriminant function and is one-dimensional projection 

that gives maximal separation between groups. A second discriminant function can 

be obtained that separate the groups in a way that has not already been exploited by 

the first discriminant function. In general, the kth discriminant function Dk 
is chosen 

so that the within-groups covariance between this and each of D1,..., Dk-1 
is zero. Test 

data is transformed using the loadings derived from the training data and the 

transformed points are assigned to the class with the mean closest to them 

(Balakrishnama & Ganapathiraju, 1998).  

 

LDA was employed in Chapter 6 to separate crystallisable and non-crystallisable 

proteins, based on calculated properties. The LDA loadings allow the features that 

are important for class separation to be identified. LDA was implemented in R using 

the lda (Zurich). 

3.3. Feed Forward Neural Network 

An artificial neural network (ANN), such as that indicated by the schematic in Figure 

15, is a machine learning technique inspired by the neurons of the brain. They work 

by being trained to associate particular outputs with particular inputs. Weighted input 

features are combined and the output determined by a transfer function in a threshold 

unit (layer 1). The output values from one layer are then input to the next layer (layer 

  ( )  
( ̃   ̃ )

 

 ̃ 
   ̃ 
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2 or 3) or output for the user (layer 3). During training if the output is incorrect the 

weights on the network are amended to improve the output. For example, the new 

weight, wnew for a single neuron is defined as: 

           (   )  6 

 

where wold is the weight prior to output, t is the target output, a is the actual output 

and x is the feature associated with that neuron. 

 

There are many types of neural network, with different numbers of layers, training 

functions and transfer functions. The type of network employed in this thesis is a 

feed-forward perceptron network, an example of which is as shown in Figure 15, in 

which each layer passes information to the next. The threshold units in the hidden 

layers are tangent sigmoid functions, where the weighted input is converted by a 

tangent function limited between      and in the final layer is a linear output, 

which, for classification, determines the class. The training method used is the 

Levenberg-Marquardt backpropagation method. This method is designed to train a 

network in a time efficient manner (MathWorks, 2011) by reducing the weights on 

the nodes in proportion to the size of the error (Beale & Jackson, 1990, Hagan & 

Menhaj, 1994).  

 

 

 

Figure 15: A schematic of an artificial neural network. 

An example of a multi-layered perceptron for classification with three layers: two layers 

each with two tangent-sigmoid threshold units and a third layer with a single node giving the 

output. 
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In Chapter 6 a three-layered perceptron is used to classify proteins into crystallisable 

and non-crystallisable, whereas in Chapter 5 a simpler network is used with just one 

layer consisting of 5 nodes. This network is used to predict the pH of crystallisation 

conditions. Neural networks have been shown to be as good as other machine 

learning techniques for classification (Nookala et al., 2013). Neural networks were 

implemented using the Matlab neural network toolbox (MathWorks, 2011). 

3.4. Measuring the Performance of Classifiers 

Determining the success of a classifier requires a metric to measure its performance. 

For Chapter 6 the accuracy is based on the true positives (TP) and the true negatives 

(TN), which here are the number of proteins correctly predicted as crystallisable and 

non-crystallisable respectively, and the false positives (FP) and false negatives (FN), 

here the number of proteins incorrectly predicted as crystallisable and non-

crystallisable respectively. These terms are combined, as follows, to give a measure 

of accuracy as the percentage of correct classifications: 

 

          ( )  
     

           
     7 

3.5. Pearson's Product-Moment Correlation 

The correlation coefficient measures the linear relationship between pairs of 

observations (coordinates) within two variables (x and y). It is obtained by using a 

measure of the deviation of all the points away from the straight line       . 

The coefficient gives a value between 1 and -1, where 1 indicates perfect positive 

correlation; as variable x increases, so does variable y; and -1 indicates perfect 

negative correlation, as variable x increases, variable y decreases. A value of zero 

indicates no linear link between variable x and y. Pearson's Product-Moment 

Correlation, used in this thesis, can be computed using the following equation: 

 

    
∑(   ̅)(   ̅)

√∑(   ̅) (   ̅) 
 8 

 

where  ̅,  ̅ are the means of the populations x and y.  
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The significance of the correlation coefficient can be determined to show whether the 

coefficient is different enough from zero to suggest a relationship. The T statistic  

 

    √
   

    
 9 

 

where r is the correlation coefficient (Equation 8) and n is the number of pairs of 

observations. T is then compared to critical values for a t- distribution (with n-2 

degrees of freedom) in order to determine whether the null hypothesis (there is no 

relationship) should be rejected. In Chapter 4 the correlation coefficient is used to 

indicate the relationship between pH measured with a meter and that obtained by 

spectrophotometry.  

3.6. Regression Analysis 

A regression model shows the relationship of a dependent variable with one or more 

predictor variables. The simplest regression model is a linear relationship between 

one input (predictor variable) and one output (the dependent variable) and is of the 

general form: 

 

  ̂           10 

 

where  ̂ is the modelled dependent variable, β0 is a regression coefficient with no 

predictor variable, β1 is the regression coefficient effecting the predictor variable, X1. 

The model can be extended to include numerous predictor variables, with the general 

form: 

 

  ̂                       11 

 

where the values for βn are obtained so that sum of the squared error between the y 

(observed) and  ̂ (modelled) is minimised. Analysis of the residuals  y-y    can show 

whether the relationship between the predictor variables and the dependent variables 

is nonlinear. The model should have residuals that are independent and form a 
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normal distribution, suggesting that the model is not biased towards particular points. 

If this is not the case, it may be possible to transform the data, by algebraic 

manipulation, so that it is in a linear form.  

3.7. Normality and Significance 

3.7.1. Determining Normality 

Probability plots are used to compare the distributions of two samples. Observed data 

is compared to a theoretical normal distribution that has been generated using the 

observed mean and standard deviation. The quantiles of these two distributions are 

plotted against each other and the closer to the line y = x the distribution is, the more 

similar the distributions. The assessment of this plot is performed manually. 

Probability plotting is performed in R using the functions qqnorm and qqplot from 

the statistics package (R Core Team, 2012). 

 

An extension of this is the Kolmogorov-Smirnov (KS) test, which compares the 

observed distribution to a theoretical distribution with the same mean and standard 

deviation. The largest vertical distance (y-axis) between the two distributions 

(supremum) for any given input (x-axis) provides the statistic, Dmax. This can be 

compared to Dcrit , given by  

 

       
    

√ 
 12 

 

where n is the average sample size of the two distributions, to test the null hypothesis 

that the two distributions are the same. In this thesis n is the same size for both the 

observed and the theoretical normal distribution. KS tests are performed in R, using 

ks.test to compare observed data to a normal distribution (R Core Team, 2012). 

3.7.2. Mann-Whitney-Wilcoxon Test 

The Mann-Whitney-Wilcoxon (MWW) test is a non-parametric test for the 

comparison of two samples, an analogue of the parametric unpaired t-test in which 
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no assumptions about the distribution of the data are required. The MWW ranks the 

observations in the two samples and then calculates the statistic 

 

        
  (    )

 
    13 

 

where n1, n2 are the sample sizes and R1 is the sum of the ranks for the sample with 

the greatest rank sum. U is compared to a critical value to determine whether the null 

hypothesis, that there is no difference between the samples, should be rejected. 

MWW tests are performed in R using the command wilcox.test (R Core Team, 2012) 

3.7.3. Binomial Distribution 

To determine the significance of a binary system, a binomial distribution is required. 

In Chapter 6 a neural network is used to classify protein sequences into crystallisable 

or non-crystallisable. As there are only two options, randomly classifying them 

would result an accuracy of ~50%. A binomial distribution provides a guide to what 

percentage accuracy could have occurred by random chance, depending on the 

sample size, n.  

 

The mean of the binomial distribution can be defined as: 

      14 

and the standard deviation as 

 
  √(  (   ) 15 

 

where p is the probability of an event being successful. 

 

A sample of 100 sequences with each having probability of 0.5 of being classified 

correctly, would create a distribution (near normal) with a mean accuracy of 50%, 

with a standard deviation of 5%. Assuming that 95% of the data is within 2 standard 

deviations either side of the mean, it is possible to say that any classification with 

40% - 60% could have occurred by chance alone. 
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3.8. Proportional Error 

Proportional error is a measure of the deviation from the true value of a proportional 

success rate, as defined in Equation 16 .  

 

 

The error is dependent on the probability of success, p divided by the number of 

observations, n, therefore, the greater the number of observations the smaller the 

error. It is used in Chapter 7 to provide a margin of error on the success of chemical 

species relative to the number of times they had been trialled. 

3.9. Cross Validation  

Cross validation is a method used in the training and testing of datasets to ensure that 

by chance the random selection originally made does not, in some way, bias the 

results. Here, one quarter of the data was used for training, with the remaining three-

quarters reserved for testing. The training set was then replaced and the process 

repeated four times, as shown in Figure 16. 

 

1 Training Testing Training Testing 

2 Testing Training Training Testing 

3 Testing Testing Training Testing 

4 Testing Testing Testing Training 

 

Figure 16: Venetian blinds cross validation. 

Over 4 iterations 25% of the data is removed for training, the remaining 75% is used for 

testing. The data is then replaced and the next 25% removed and the process is repeated. 
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4. Determination of pH Using 

Spectrophotometry 

In protein crystallisation, important parameters include the chemical type and 

concentration along with its ionic strength, the inclusion of heavy metals, the purity 

of the reagents and the pH. The pH of the experiment is often a critical parameter. 

Proteins are solubilised, stabilised and crystallised in a specific range of pH 

(McPherson, 1989a, Newman, Sayle, et al., 2012). Crystallisation screens are 

designed to sample pH as well as other parameters such as salts, precipitants and 

other additives in order to find conditions giving initial crystallisation hits. 

Optimisation of the conditions is achieved by finer sampling of the parameter space 

around these initial hits (Jancarik & Kim, 1991, Luft et al., 2003, Luft et al., 2011). 

For successful optimisation it is essential that the properties of the original conditions 

are accurately known and reproduced. The pH of a particular solution is often quoted 

as the pH of the buffer used but this can be highly inaccurate due to the effect of 

other components in the mixture. This is particularly true for high concentrations of 

the salts of weak acids and to a lesser extent any molecule which affects the 

hydrogen ion activity (Kohlmann, 2003). Furthermore, the pH of stock chemicals is 

known to change over time due to chemical decomposition (Bukrinsky & Poulsen, 

2001). As a consequence simply knowing the components of a solution does not 

mean that the resultant pH will always be the same.It has been shown that the actual 

pH of crystallisation conditions can be as much as four pH units away from that of 

the buffer (Newman, Sayle, et al., 2012, Wooh et al., 2003). Figure 17 shows pH 

measurements from 84 crystallisation solutions (conditions) of a custom sparse 

matrix screen, NPCF_4, used at the Collaborative Crystallisation Centre (C3), 

Australia (Newman, Sayle, et al., 2012). The pH of each set of conditions was 

recorded both as the pH of the buffer and as determined using a pH meter. It can be 

seen that most solutions, 73% (61/84), have an actual pH within 0.5 pH units of the 

buffer pH, although 18% (15/84) are between 0.5 and 1 pH units away from the 

buffer pH and 10% (8/84) are over one unit away. 
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Accurate measurement of the properties of conditions is particularly important for 

crystallographers making up their own crystallisation screens. Stock chemicals that 

are prepared or labelled incorrectly or simply placed in an incorrect location in the 

robotic system will be incorporated into screens unnoticed. This can be particularly 

damaging if the chemical is a buffer stock that is included in multiple conditions. 

Although a well-calibrated and well-maintained pH meter can be used to measure 

acidity accurately, it is time consuming and impractical as the solution may also 

require reformatting to accommodate the probe.  

 

 

Figure 17: Measured pH in relation to recorded pH of buffer. 

The buffer pH in comparison to pH measured with a meter for 84 conditions from the 

NPCF_4 sparse matrix crystallisation screen. The data was obtained from supplementary 

information in Newman et al. (2012). Differences between buffer pH and meter pH of <0.5, 

between 0.5 and 1; and >1 are indicated by circles, triangles and squares respectively. 

 

Newman, Sayle, et al. (2012) describe a method for high-throughput measurement of 

pH using the indicator dye Yamada Universal Indicator together with automated 

imaging. The colour information of a dyed crystallisation solution was recorded as a 

single hue obtained from an image of a region of the well. This hue value is 

compared to those obtained for standards prepared from broad-range buffer systems 
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to provide an estimate for the true pH of the solution. For structural genomics centres 

and other laboratories with automated imaging systems in place, the method provides 

a fast, low-cost pH assay with a strong correlation to measurements obtained with a 

pH meter over the pH range 4.0 to 10.5. The need for a suitable imaging system that 

will provide consistent reproducible results, however, makes the method unfeasible 

for many laboratories. Furthermore, Newman, Sayle, et al. (2012) found little 

variation in colour within pH 5.5 to 7.0, a range common in crystallisation trials. 

Although recognising the limitation of UI, they point out the difficulty in producing 

dyes with good discriminatory power over a wide pH range. 

 

In this chapter a method to estimate the final pH of a crystallisation solution is 

described that does not require an imaging system, but instead measures the 

absorbance of solutions using spectrophotometry. We show that the indicator dye 

bromothymol blue gives greater discrimination than UI and other dye systems over 

the pH range 5.5 to 7.5.  

4.1. Material and Methods 

4.1.1. Preparation of pH Gradients 

A 96-point pH gradient (referred to as the 96-point screen) was produced using the 

two part broad range buffer system PCTP (Newman, 2004) supplied by Molecular 

Dimensions. The buffer is made from three chemicals: propionate, cacodylate and 

bis-tris propane in the proportions 2:1:2. One part of the system is created by adding 

hydrochloric acid, to the aforementioned 2:1:2 solution, until a pH of 4 is reached. 

Similarly, the second part is made by adding sodium hydroxide until a pH of 9.5 is 

reached. Ideally the pH would be linearly proportional to the two components of the 

buffer system. It is in fact sigmoidal as shown in Figure 18. This distribution, also 

found by the team who developed the buffer (Newman, 2004), shows that a solution 

containing 70% of the pH 9.5 component (and 30% pH 4 component) should have 

pH of 7.7, whereas it is actually pH 7.5. 
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Figure 18: Measured pH of PCTP. 

The pH of the broad range buffer PCTP measured with a pH meter in relation to an ideal 

linear pH for the proportion of chemicals used. 

 

The 96-point screen of PCTP was dispensed into a 96 deep well block using an 

Emerald Bioscience Matrix Maker at final concentration of 100mM. A second 96 

deep well block (referred to as the short screen) was produced where each row (A1-

A12, B1-B12 etc.) was composed of a 12 point linear pH gradient 4.0-9.5 (PCTP, 

100mM). In order to assess the performance of the spectrophotometric method 

against common crystallisation buffers a third screen was dispensed (referred to as 

the “buffer screen”  containing buffers in a 12 point range spanning ± 1 of their 

respective pKa values with a final concentration of 100mM. The contents of the 

buffer screen were as follows (rows A-H): sodium acetate (pKa 4.75), sodium citrate 

(pKa3 5.40), MES (pKa 6. 10), sodium cacodylate (pKa 6.27), sodium HEPES (pKa 

7.50) and Tris-HCl (pKa 8.30), PCTP pH 4.0-9.5. Row H contained only water which 

was included as a control. The pH of all three screens was measured using a well 

maintained and calibrated Jenway 4330 pH meter (with Jenway probe Catalogue 

Number 924005) calibrated using standards: Fisher phthalate, pH 4.00; phosphate, 

pH 7.00; and borate, pH 10.00. 
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4.1.2. Measuring Absorbance 

Into a 96-well flat-bottomed Costar 3635 UV/vis assay plate, 20μl of stock solution 

(Sigma) was dispensed using a Robbins Hydra 96 robot. To this was added 150μl of 

the 96-point screen using a Thermo Scientific Matrix Hydra II robot and the plate 

mixed briefly using an orbital plate mixer. The plate was then read using a Bio-Tek 

powerwave XS UV/visible plate reader programmed to scan across the visible light 

range from 400nm to 700nm in 5nm increments generating a 61-point absorption 

spectrum for each well, which was exported to Excel (Microsoft) for data processing. 

4.1.3. Curve Normalisation 

It has been observed that different chemicals absorb different amounts of light 

(Silverstein & Webster, 2006, Reusch, 2013). The structure of acid-base indicators is 

modified by excess hydrogen or hydroxyl ions so that they absorb different 

wavelengths of the electromagnetic spectrum. This occurs because of the conjugated 

bonds present in the benzene rings of acid-base indicators. These bonds allow for 

electrons in π orbitals to be moved by photons from the light wave into anti-bonding 

orbitals, therefore, removing energy from light wave - essentially it has been 

absorbed. For example, phenolphthalein when exposed to basic pH has its structure 

modified such that the energy required to move an electron is reduced and this in turn 

means that longer wavelengths are absorbed, allowing only those wavelengths, 

associated with the colour violet (around 400nm) to be seen. In Figure 23, row E 

shows the colour change of phenolphthalein when dissolved in a basic solution. 

Conversely, when the structure is in a neutral or acid solution the energy required to 

move electrons is much greater and so wavelengths associated with ultraviolet are 

absorbed. Variation in volume and concentration can also affect absorbance- as 

defined by the Beer-Lambert Law in Equation 17 (Crouch & Ingle, 1988).  

 

         17 

 

The Beer-Lambert Law states that the absorbance of light, A, is equal to the molar 

absorptivity of the solution,    multiplied by the concentration, c and the length of the 

solution, l, which the light travels through. In short, the further the light has to travel 
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or the higher the concentration of the sample the more light is absorbed, as 

represented in Figure 19. 

 

 

 

Figure 19: Effect of length on the absorbance of light. 

Light is represented as an arrow, where the length of the arrow indicates the amount of 

energy. The further that light has to travel through a solution; the more of it is absorbed. 

 

In order to compensate for variation in measured absorbance due to pipetting and 

mixing errors, Min-Max data normalisation was used. The normalised absorbance at 

wavelength x is given by 

  

  ̂  
       ( )

   ( )      ( )
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where min(a) and max(a), are the minimum and maximum absorbance over the 

range 400nm to 700nm. Figure 20 shows three spectra obtained for PCTP buffer at 

pH 4.5 and pH 7.5 using different volumes of indicator dye before and after 

normalisation. It can be seen that normalisation preserves the overall curve shape. In 

Figure 20(d) the slight translation of the maximum with the addition of 15μl of 

indicator dye corresponds to a difference of just 0.03 pH units. 
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(a) The absorption spectra obtained for PCTP buffer at pH 4.5 with three different 

volumes of indicator dye. 

 

(b) The three spectra from (a) after Min-Max normalisation. 
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(c) The absorption spectra obtained for PCTP buffer at pH 7.5 with three different 

volumes of indicator dye. 

 
(d) The same three spectra shown in (c) but after Min-Max normalisation. 

 

Figure 20: Normalisation of absorbance spectra. 

The effects of Min-Max normalisation on absorbance values for light passing through an 

acid-base indicator solution of pH 4.5 (a) and pH 7.5 (c). 
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4.1.4. Curve Matching 

In order to assign a pH value to a solution using the spectrophotometric method, the 

normalised spectrum obtained for the unknown solution is compared with 

normalized spectra obtained for standard curve solutions of known pH. The best 

match is determined using the smallest Mean Absolute Deviation (MAD) as a 

distance metric. The MAD between two vectors, x and y, of length n is defined by  
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The pH corresponding to the best match is assigned to the solution of unknown pH. 

However, when the MAD value to the best match is above a certain threshold, the pH 

value is still assigned but a warning is given. This threshold was determined as 

follows. 

 

For each column in the 96-well plate, an artificial absorption curve was produced by 

randomly generating 61 numbers to represent values from 400nm to 700nm in 5nm 

increments. This was repeated 100,000 times to represent 960,000 wells in total. 

 

The random absorption values were compared to those obtained for ten 96-point 

screens (used in the results shown in Figure 25). The lowest MAD for each of the 

960,000 in silica wells was recorded and a histogram was produced (Figure 21). The 

distribution for random MAD values was of a normal distribution (confirmed by QQ 

plot and KS test) around a mean of 0.31 with a standard deviation of 0.03. A 

threshold was imposed at 3 standard deviations from the calculated mean of 0.31 

(theoretically covering 99.7% of all data values that could be derived randomly). 

This meant the threshold was imposed at the lower limit of 0.23 and therefore any 

value above this could potentially be obtained from a random distribution of 

absorbance values. 
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Figure 21: Binned MAD for random absorbance curves. 

The distribution of MAD in 0.1 bins for 960,000 artificially generated absorbance curves.  

 

MAD was also used to assess the usefulness of other dyes. A good indicator dye 

system should have a MAD value representative of the pH change between spectra. 

The heat plot in Figure 22a shows the absorbance spectrum obtained for the standard 

solutions using 20 µl of UI. The pH increases from pH 4.5 in well 1 to pH 9.5 in well 

96. The span between pH 5.5 and pH 7.0, shows very little difference between the 

spectral curves, echoing the work of Newman, Sayle, et al. (2012) who found the 

response for UI determined from RGB values to be poor for this range of pH, which 

is important for protein crystallisation (Kantardjieff & Rupp, 2004). Conversely, 

Figure 22b shows that bromothymol blue has large MAD values in the range pH 5.5 

to pH 7.0 and is able to discriminate between similar pH values. However, Figure 

22b also shows that the discrimination between pH values is poorer for the most 

basic (> pH 7.5) and acidic values (<pH 5.5). 
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(a) Universal Indicator. 

 

(b) Bromothymol blue. 

 

Figure 22: Heat plots of absorbance for different indicators. 

Heat plots giving a bird's eye view of the normalised absorbance spectra obtained for the 96 

standard curve solutions using (a) Universal Indicator and (b) bromothymol blue. 
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4.1.5. Testing Other Dyes 

 
(a) Photograph of different indicator dyes in flat-bottomed Costar 3635 UV/vis assay 

plate. 

 

(b) Heat plots showing the difference in MAD values for different indicator dyes as 

pH is incremented. 

 

Figure 23: Discrimination between pH values for 8 indicators. 

(a) A photograph of the short screen buffer gradient plate with various indicator dyes. The 

dyes shown are: A- thymol blue; B- methyl red; C-bromothymol blue; D- nitrazine yellow; 

E- phenolphthalein; F- bromocresol green, G- Universal Indicator minus phenolphthalein; H- 

Universal Indicator. (b) Heat plots of the MAD between the absorbance spectra obtained the 

screen shown in (a). Red indicates the highest MAD values (good discrimination) through to 

blue indicating low MAD values.  
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Owing to the poor performance of UI it was decided to test other indicator dyes using 

MAD analysis. The component dyes of UI along with nitrazine yellow and 

bromocresol green were tested. The component dyes of UI were made up in 100% 

dimethyl sulfoxide (DMSO) at the concentration ratios they are generally used at in 

the indicator solution (thymol blue, 1.1mM; methyl red, 4.6mM; bromothymol blue, 

8.0mM; phenolphthalein, 31.4mM). Nitrazine yellow and bromocresol green were 

made up at 2mM in 100% DMSO. A mixture of the UI dyes excluding 

phenolphthalein was also made by combining the stocks at a 1:1:1 ratio (equivalent 

to UI without phenolphthalein and referred to as UI-p). It was hypothesised that UI-p 

may have a better response over the pH 4 to 9.5 range under investigation as 

phenolphthalein has a sharp colour transition (colourless to fuschia red) above pH 8 

and the colour differs from the other components which are of a blue hue. Using a 

multichannel pipette, 10μl of each dye  20 μl for UI  was dispensed into a separate 

row of a Costar 3635 UV/vis assay plate, after which 150μl of the short screen was 

added.  

 

Figure 23a shows the results for the comparison of indicator dyes with the short 

screen buffer gradient. It can be seen from the photograph of the plate that different 

indicator dyes change colour at different pH values according to the protonation state 

of the dye molecule governed by the pKa of the dye. No single dye covers the entire 

pH range tested (pH 4.0-9.5) and some dyes have a very narrow transition range. UI 

(row H) is a combination of thymol blue, methyl red, bromothymol blue and 

phenolphthalein which capitalises on the complementarity of the dye pKas and colour 

transitions (Foster & Gruntfest, 1937).  

 

Calculation of the MAD values for the eight indicator dyes correlates with the 

observed pattern of colour changes and is shown as heat plots in Figure 23b. The 

ideal indicator dye would discriminate between pH values across the full range from 

pH 4 to pH 9.5. Thymol blue (row A), phenolphthalein (row E) and bromocresol 

green (row F) have narrow response ranges, only changing colour over a small pH 

range with negligible MAD values between the standard curve spectra for most pH 

values. Both thymol blue and phenolphthalein only show a response at our most 

basic pH, giving insignificant MAD values between wells at lower pH. Similarly, 
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methyl red (row B) and bromocresol green only respond to the most acidic pH and 

cannot discriminate between wells of higher pH.  

 

Both bromothymol blue (row C) and nitrazine yellow (row D) show a response 

across a range of pH values with significant differences between the absorbance 

curves indicated by large MAD values. Figure 23a shows that both indicator dyes are 

able to discriminate between wells representing the range pH 5.5 to pH 7.5. Notably 

though, both dyes have very small MAD values at the extremes although 

bromothymol blue changes more across the basic pH range whereas nitrazine yellow 

changes more with acidic pH. UI-p only marginally improved the sensitivity of the 

dye system over the mid-range of pH. Based on these findings it was decided to 

continue experimentation with the simple bromothymol blue dye system. 

 

Phenolphthalein has a colour transition from colourless to fuchsia at a basic pH and 

therefore has a very limited range relevant to crystallisation solutions. Figure 23 

shows that the indicator phenolphthalein is colourless from pH 4.5 to pH 8.5. If 

phenolphthalein is used as an indicator that is only assessed by the human eye the 

only differences detectable would be for crystallisation experiments with pH > 8.5, 

of which there are very few (Kantardjieff & Rupp, 2004). As the spectrophotometer 

used to perform absorbance readings is able to provide ultraviolet (UV) light 

readings too, we are not constrained to those waves of the electromagnetic spectrum 

that we are able to see (400 − 700nm) and can record absorbance for UV 

wavelengths from 100 − 400nm. In a study to determine pka values using 

spectrophotometric methods, Tarn and Takács-Novák (1999) show that nicotinic acid 

and p-aminosalicylic acid have good discrimination between UV light absorbance 

curves for some of the pH range suitable for protein crystallisation. Although we 

have not performed any tests with indicators based on UV light, there is the potential 

to improve upon accuracy and discrimination for certain pH values. 

4.1.6.  Effects of Protein Buffering 

In order to test the effect of protein buffer and protein on the final pH of a standard 

crystallisation experiment, 10ml of lysozyme solution (Sigma) was prepared at 

50mg/ml  in 10mM PCTP, 100mM sodium chloride at pHs 5.0, 7.0 and 9.0. Here, 



 

 

72 

 

the concentration of the buffer is low so that the buffering capacity of the protein (if 

any) is not seriously compromised. The pH of each protein solution was adjusted 

using 10mM sodium hydroxide after the addition of the lysozyme before making up 

the final volume.  

4.1.7.  Efficient pH Determination 

To improve the applicability of the method, we also investigated miniaturisation of 

the pH assay using a 384 well Greiner UV plate. For each of the 96-point standard 

screen solutions, 25μl was pipetted in quadruplicate with 2ul of bromothymol blue 

indicator dye. The plate was read using the scan function on the plate reader which 

improved the overall turnaround time from 40 minutes for a 96-well plate to less than 

20 minutes for the 384-well plate. 

4.2.  Results 

In order to test the spectrophotometric pH assay with a wider range of crystallisation 

buffers, bromothymol blue was used in conjunction with the buffer screen as 

described previously. It was clear from initial results that the row containing only 

water consistently gave acidic values (Figure 24), possibly due to carbon dioxide 

from air being dissolved into the water. We therefore only consider our method 

suitable for determining the pH of buffered solutions. 
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Figure 24: Testing bromothymol blue. 

Scatter plot showing the spectrophotometric pH in relation to meter pH for eight chemical 

species. The correlation between both methods is 0.99. 

 

Figure 24 shows the spectrophotometric pH values for the 96-point buffer screen 

plotted against the measurements obtained using a pH meter. Only 91 points are 

shown as five points were measured with pH meter to be outside the pH range of our 

system. For the buffers there is a very strong correlation of 0.998 between the 

spectrophotometric and measured pH values. The distribution of deviation is 

positively skewed, with a mean value of 0.16 for the buffered observations.  

 

In order to test the reproducibility, which is more important than accuracy in 

crystallisation trials, 7 trays of the buffer screen were dispensed, measured 

spectrophotometrically and compared with the absorbance values from 10 separate 

96-point buffer screens. Figure 25 shows the reproducibility of the system. 

Correlations of between 0.987 and 0.989 were obtained, with regression slopes 

between 0.90 (intercept 0.43) and 0.94 (intercept 0.26). As five observations were 
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removed due to being outside the range (pH 4.5 – 9.5) of the 96-point screen, the 

graph represents 5,530 observations from 79 buffers and 840 from water. For the best 

and worst models, the distribution of error was positively skewed, with mean values 

of 0.17 and 0.27 respectively. 

 

Figure 25: Repetition of experiments with bromothymol blue. 

Bubble plot showing the pH values obtained for a set of 79 in-house buffer solutions and 12 

containing only water. Bubble size is positively correlated to the number of times a value is 

repeated. 

 

Bukrinsky and Poulsen (2001) tested the pH of the solutions in the Crystal Screen 

(Jancarik & Kim, 1991) and found several differed by more than one unit from the 

pH of the buffer system, with two conditions differing by more than three units. We 

used our method to test three common crystallisation screens: Hampton IndexHT, 

Rigaku Wizard and Molecular Dimensions JCSG-Plus. A total of 247 conditions 

remained after the removal of data points corresponding to wells without buffer and 

those with a spectrophotometric pH of 4.5 or pH 9.5. Data associated with this latter 

group was removed due to being assigned a pH at the edges of the 96-point screen, 
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therefore, there is an increased chance that the true pH could potentially lie outside 

this range.  

 

 

a) Distribution of buffer pH in relation to distance from spectrophotometric pH. 

 

  pH Change 

  − = + 
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 <7 32 27 41 

7 36 45 19 

>7 69 19 12 

 

b) Percentage summary of the pH change shown in (a). 

 

Figure 26: Spectrophotometric and buffer pH of commercial screens. 

Differences between the buffer pH values and the values obtained by spectrophotometry for 

the 247 conditions in three commercial screens. b) shows whether the pH increased, 

decreased or stayed the same for acidic (<7), neutral (7) and basic (>7) buffered solutions. 
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Figure 26 shows the differences between the buffer pH values and the values 

obtained by spectrophotometry for the 247 conditions in the three screens. For buffer 

pH values less than pH 7.0, 27% differ by less than 0.2 pH units (the estimated error 

in our method) the determined values are higher for 41% and lower for 32%. The 

greatest differences are for the more acidic buffers, some of which differ by more 

than two pH units, being more neutral than the buffer pH would suggest. For buffer 

pH values greater than 7.0, 69% are determined to be more neutral than the buffer pH 

with even more extreme differences. Only 12% had calculated values more basic 

than the buffer pH and 19% differed by less than 0.2 pH units. For solutions with a 

buffer pH of 7.0, 36% were calculated to be more neutral, 19% less neutral and 45% 

differed by less than 0.2 pH units. Overall, we found that the spectrophotometrically 

determined values are often more neutral than buffer values. This is particularly true 

for the most extreme buffer pH values.  

 

Figure 27 shows a histogram for various pH differences with the number of wells in 

each bin. We found 18 conditions with pH values measured by spectrophotometry 

were more than two units away from the pH of the buffer (2 for Index, 10 for Wizard 

and 5 for JCSG-Plus). In the Wizard screen, we determined the pH of a well 

containing 1.2M of sodium phosphate and 0.2M of potassium phosphate to be 6.23, 

4.27 pH units away from the buffer pH of 10.5. In total, 74% of conditions were 

found to differ from the pH of the buffer by more than 0.2 pH units. Other conditions 

with a large disparity between our measured pH and the buffer pH included those 

containing PEGS and ammonium. It is known that PEGs undergo degradation 

overtime (Jurnak, 1986, Ray Jr & Puvathingal, 1985) and that ammonium 

compounds slowly release ammonia (Newman, Sayle, et al., 2012, Mikol et al., 

1989) and could therefore create problems with reproducibility. Our analysis shows 

that screens may not search pH parameter space as systematically or specifically as 

the design intended.  
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Figure 27: Errors in recorded pH for commercial screens. 

Histogram of pH differences between buffer pH and spectrophotometric pH for 247 

solutions used in commercial crystallisation screens. The percentage of the 247 solutions for 

each bin are shown above the bars. 

 

The results described so far relate to the pH of the crystallisation solution, or mother 

liquor, rather than mother liquor mixed with a buffered protein solution. 

Crystallisation occurs at the pH of this mixture, which could differ from that of the 

crystallisation solution due to the effects of any salts in the protein solution, the pH 

of the buffer or the protein itself. The effect of protein buffer and protein on the final 

pH of a standard crystallisation experiment was investigated using lysozyme 

buffered at pH 5.0, 7.0 and 9.0. It was noted that the addition of the lysozyme shifted 

the pH considerably; giving values of 3.8, 4.34 and 4.87 before final adjustment for 

PCTP buffers 5, 7, and 9 respectively. In addition the three buffers were prepared 

without lysozyme to test the effect of the buffer without protein. A selection of 

standard crystallisation conditions was dispensed and the pH was determined by the 

spectrophotometric method. The procedure was then repeated substituting 75μl of the 

screen for 75μl of water, buffer only and buffer with lysozyme at the pH stated. 

Figure 28 shows that there is little change in the pH of a solution after the inclusion 
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of a buffered protein. All three pH levels of buffered lysozyme have a strong 

correlation between the pH before and after the inclusion of the lysozyme. The 

correlation coefficients are 0.98, 0.97 and 0.97, with mean absolute deviations of 

0.23, 0.20 and 0.18 for pH 5, 7 and 9 respectively. As these deviations are within the 

expected error of the method, it is assumed that these differences are caused 

predominantly by the spectrophotometric system and not the buffered lysozyme. 

 

 

(a) Protein buffered at pH 5. 

 

(b) Protein buffered at pH 7. 
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(c) Protein buffered at pH 9. 

 

Figure 28: The effects of protein on buffer pH. 

Scatter plots showing the pH of the crystallisation solution plotted against the pH of a 50:50 

mixture of crystallisation solution and protein in buffer for lysozyme buffered at three 

different pH levels: (a) pH 5, (b) pH 7 and (c) pH 9. 

 

Analysis of the data obtained from the miniaturised assay, using a 384 well Greiner 

UV plate, showed it to be of comparable accuracy to that of the normal volume 

assay, with a correlation of 0.94 and a MAD of 0.35. The unusual value (6.6, 8.9) 

corresponds to the buffer MES, for which 11 other measurements fit the expected 

pattern. When this outlier is removed the correlation increases to 0.97, with a MAD 

of 0.35, the results are shown below in Figure 29.  
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Figure 29: Reduced volume spectrophotometric pH analysis. 

Results for the 384-well buffer screen using reduced volumes. The scatter plot shows pH 

values calculated spectrophotometrically plotted against pH meter measurements, for which 

the correlation is 0.94.  

4.3. Discussion and Conclusions 

While the colour based pH assay of Newman, Sayle, et al. (2012) is suitable for use 

in a high-throughput crystallisation facility where automated imaging is already in 

place, the authors recognised the need for a colour imager as a drawback of their 

method. They suggested that spectrophotometry could provide a more accessible 

assay; however, they found using a UV–Vis spectrophotometer to measure 

absorbance curves unreliable and concluded that the method was not viable. We have 

demonstrated that the use of spectrophotometry via the visible light plate reader 

together with the indicator dye bromothymol blue can be used to determine pH with 

an average absolute deviation of ~0.2 pH units from the pH measured using a pH 

meter. The comparison makes the pH meter the "benchmark" for a pH reading, 

although is well known that pH meters can be inaccurate (Illingworth, 1981). We 

tested the variation between pH meters using three different meters Table 4 and 
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found the overall average error to be 0.09 pH units. Sodium ion interference at high 

pH, acid errors at very low pH and temperature can cause measured values to differ 

from the theoretical pH (Kohlmann, 2003, Beynon & Easterby, 1996). These factors 

are likely to affect pH in crystallisation trials too as many conditions contain very 

high concentrations of salts contributing to changes in the activity co-efficient of 

hydrogen ions and crowding effects. These complex phenomena make relying on the 

buffer pH in crystallisation experiments inaccurate. 

 

 

Table 4: Variance of pH measurement from different meters. 

Variation between pH meters was tested using a Corning 240 pH meter and two different 

Jenway 4330 pH meters. All three meters were equipped with a Jenway pH probe (catalogue 

number 924005). The solutions tested were phthalate, pH 4.00; phosphate, pH 7.00; and 

borate, pH 10.00 bought from Fisher Scientific. The readings for the three meters are shown 

together with the average (absolute) errors for each standard solution.  

 

The indicator dye bromothymol blue gives good discrimination between absorbance 

spectra in the pH range 5.5 to 7.5, where UI shows a flat response. Bromothymol 

blue is less reliable, however, at lower pH and above pH 8.0. The vast majority of 

proteins crystallise within the mid pH range, where bromothymol blue can be used 

reliably and the use of a single dye avoids the potential impact on reproducibility that 

would result from a mixture of components. For other uses, for example the quality 

control of stock solutions where pH falls outside the pH 5.5 to 7.0 range, 

combinations of dyes are likely to be convenient and effective. Rather than mixing 

the components in an attempt to provide an indicator dye that covers the full pH 

range required for protein crystallisation, multiple standard curves could be used. For 

 
pH meter 

Jenway 4330 (1) Jenway 4330 (2) Corning 240 Average error 

pH 4 4.10 4.02 3.96 0.05 

pH 6 6.07 6.02 6.03 0.04 

pH 7 7.07 7.05 7.00 0.04 

pH 9 9.29 9.13 9.20 0.21 

Overall average error 0.09 
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example, separate standard curves could be produced for different dyes and the 

conditions within a screen checked using the appropriate dye and standard curve.  

 

Currently we are only able to provide accurate readings for those solutions with a 

buffer, as the unbuffered solution have their colour modified due the by the solution 

becoming more acidic after absorbing carbon dioxide from the air. However, the 

solution will become saturated with carbon dioxide at a certain point and, therefore, 

cannot become any more acidic. As we know the pH of water and the 

spectrophotometric pH of water it should be possible to compensate for this carbon 

dioxide effect on unbuffered solutions. Even in instances where the compensation is 

too great, the estimate of the pH should still be more reliable than that of the buffer. 

 

We have developed a fast method that is easy to implement and can provide pH 

values with a high correlation (0.98) to the measurement made with a pH meter. The 

pH of crystallisation solutions has been shown to change over time (Jurnak, 1986) 

and the spectrophotometric method can be used provide a simple check on screens 

used repeatedly. The method compares favourably with the RGB method to 

determine pH (Newman, Sayle, et al., 2012) and could be more accessible in that it 

requires a UV–Vis plate-reader to measure absorbance curves rather than an 

integrated imaging system. The time required to dispense and read a 96-well plate 

and calculate the pH values in Excel is approximately 40 minutes, but this was 

reduced to less than 20 minutes for the 384-well plate using the scan function on the 

plate reader. Tailoring the wavelength to specific dyes could increase the speed of 

data acquisition further. For example, it is not necessary to read methyl red at lower 

wavelengths as the dye absorbs in the higher wavelength region. It may also be 

possible to make use of different universal indicators provided they contain methoxy 

reds and phthalein, as these have been shown to be integral to providing good colour 

discrimination in both acidic and basic solutions(Woods & Mellon, 1941). While this 

method is fast and accurate it can only be used at the onset of a crystallisation trial 

and can improve the accuracy of recorded pH going forward. The majority of 

crystallisation data to date is likely to have the pH recorded as that of the buffer, 

however, as we know this is likely to be inaccurate, this data is misleading and 

should be made redundant.   
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5. The Prediction and Use of pH in 

Crystallisation 

We have shown in the previous chapter that accurate measurements of pH can be 

obtained quickly for crystallisation solutions using spectrophotometry. This coupled 

with the knowledge that the buffer pH is sometimes over several pH units away from 

the measured pH suggests that new crystallisation trials could and should have a 

closer estimate of their true pH determined. A more accurate pH would assist in 

accurate reproduction of experimental conditions and provide more meaningful 

results from the data mining that occurs on structural genomics data (Rupp & Wang, 

2004, Hennessy et al., 2000). Conclusions made using data with potentially 

inaccurate pH values could be misleading. In order to make use of previously 

generated data, a better estimate of pH than that of the buffer is required. Here, we 

use the spectrophotometric pH values obtained from numerous experiments to train a 

neural network to assign pH values to crystallisation conditions. These values are 

shown to provide accurate estimates of the pH that can be used, for example, when 

mining databases such as the Protein Data Bank (PDB). Using data obtained from a 

custom experiment, the SGC and the PDB we investigate predicted pH distributions 

and attempt to provide evidence for a link between the isoelectric point of a protein 

and the pH at which it crystallises.  

5.1. Prediction of pH for Buffered Solutions 

An estimate of pH, for a single chemical species solution, can be determined using 

its acid dissociation constant (pKa). These constants are obtained from published 

tables or collected experimentally by chemical titration. The constant is then 

transformed into a pH using the Henderson-Hasslebalch equation, which defines the 

number of hydrogens in an equilibrium, from which a pH can be obtained. However, 

published values are limited to certain chemicals and chemical titration of all 

chemicals used in crystallisation experiments would be extremely time consuming. 

Furthermore, there are limitations to the accuracy of the Henderson-Hasslebalch 

equation (Po & Senozan, 2001) and the constants vary significantly between authors. 
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It is possible that an accurate estimate of pH can be obtained through the use of 

regression modelling. The method described in Chapter 4 to determine pH using 

spectrophotometry was used to determine pH values for buffered conditions in a 

variety of crystallisation screens, including the JCSG-Plus, the Rigaku Wizard, the 

Hampton Index and the JCSG +6. Following the removal of those pHs for solutions 

without a buffer and those at the limit of our system (pH 4.5 and pH 9.5) a total of 

5,161 spectrophotometric pH values were obtained. 

 

The concentrations of the chemical species involved were divided into a training set 

consisting of those conditions with only one chemical species in addition to the 

buffer and a test set of the conditions with multiple chemical species.  

 

 

Figure 30: Organisation of data used for regression modelling. 

The table shows the division of spectrophotometric pH values between training and testing 

sets used in regression modelling. 

 

It was found that a linear regression model of the form: 

 

    ̂                            20 

 

where    ̂ is the predicted pH, B is the buffer pH, C is the concentration and the β 

terms are the regression coefficients, was suitable for each chemical species. 

Inspection of the regression coefficients for individual chemical species revealed 

patterns, such as modifying the buffer pH. Chemicals which we assumed to be 

behaviourally similar (in terms of crystallisation) also had similar regression 

coefficients and the same predictor variables shown to be insignificant. 

 

All conditions: 5,161 

Training set: 1,585 Test set: 3,576 

Buffer plus one chemical: 

1,585 

Buffer plus one 

chemical: 1,189 

Buffer plus two or more chemicals: 

2,387 
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Dihydrogen Salts Ammonias Hydroxide Salts Organics 

 

ammonium 

dihydrogen 

phosphate 

ammonium acetate 

potassium 

phosphate 

dibasic 

1,2-

propanediol 

 

potassium 

dihydrogen 

phosphate 

ammonium citrate 

tribasic 

sodium citrate 

tribasic 
glycerol 

β0 1.74 0.74 -6.55 1.67 

β1 0.80 0.92 1.83 0.71 

β2 0.71 1.06 4.03 0.00 

β3 -0.21 -0.16 -0.48 0.00 

 

 
PEGs Salts 

Salts of Weak 

Acids 

 
jeffamine ed-2001 

cadmium 

chloride 

calcium 

acetate 

 pegs of various 

molecular weights 

lithium 

sulfate 

sodium 

formate 

β0 1.91 1.18 0.20 

β1 0.72 0.87 1.01 

β2 0.00 0.00 1.00 

β3 -0.03 0.00 -0.13 

 

Table 5: Regression models for different types of chemicals. 

Each of the seven groups of chemicals is shown with two example chemical species that 

have been assigned to this group. The lower part of each table shows the coefficients for the 

linear regression models. 

 

Table 5 shows the final regression models for the seven groups of chemicals: salts, 

salts of weak acids, organics, polyethylene glycols (PEGs) of different molecular 

weights and different functional groups, compounds containing ammonia, hydroxide 

and di-hydrogen salts. Regression models were calculated for each group, after 

removing 10% of the data from each group for validation. This grouping of 

chemicals not only provides a more reliable predictive model due to the increased 

sample size but it also allows new chemicals that are not present in the training set to 

be assigned to a group and an estimate of pH obtained. 
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For solutions containing multiple chemical species, pH values were obtained by 

combining the predicted pH values for each individual chemical at the appropriate 

concentration using the formula: 

 

    ̂        (
∑      ̂   
   

 
) 21 

  

where    ̂ is the predicted pH for the solution containing all elements, n is the 

number of chemical species in the solution and     
̂ is the predicted pH the 

individual species, Si. The formula effectively determines the pH value by averaging 

the number of hydrogen atoms for each chemical in the solution. The ten-fold 

increase in hydrogen ions per pH unit decrease shows that the pH of the solution is 

dominated by the most acidic species, which is modified slightly by more basic 

species. The model requires no weighting of the parameters as the concentration of 

individual chemicals has already been accounted for. 

 

The mean squared error (MSE) between the spectrophotometric and predicted pH 

values is 0.28 in comparison to 0.8 between the values measured by 

spectrophotometry and the buffer pH values. The correlation with the measured 

values is 0.89 for the predicted pH in comparison to 0.77 for the buffer pH. 

 

Linear regression showed that four chemical groups- ammonia, dihydrogen salts, 

hydroxide salts and salts of acids, require the full model including the interaction 

term relating both the buffer pH and the additional chemical concentration to the pH 

of the experiment. The model for PEGs does not include the chemical concentration 

as a separate term, but does include the interaction between chemical concentration 

and buffer pH. Organics and salts have the simplest models, only involving the 

buffer pH as a variable.  
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5.1.1. Modelling pH Using Machine Learning 

An artificial neural network (ANN) implemented in Matlab (MathWorks, 2011) was 

trained to assign a pH value to crystallisation solutions. An ANN was employed as 

they are able quickly to create a richer, non-linear model than that of regression. 

Approximately two thirds of the data for the 5,161 conditions for which pH values 

could be determined by spectrophotometry were used to train a single hidden layer 

network using the Levenberg-Marquardt back-propagation method (Beale & 

Jackson, 1990, MathWorks, 2013). The other third was reserved as an independent 

test set. Chemicals were broadly grouped as suggested by the linear regression 

analysis (Table 5) and stratified sampling used to divide the chemical groups evenly 

between the training and test sets (3524: 1637). The concentration of chemicals in 

each group was calculated for each condition and these values, together with the 

buffer pH, used as inputs to the neural network. We chose a network with a single 

hidden layer of 5 nodes as this was the simplest network that gave a low mean 

squared error between the output pH and the spectrophotometric pH during training 

without over fitting (as assessed by the independent test set).  

 

Figure 31a shows the pH values measured by spectrophotometry plotted against 

those predicted by the neural network for the independent test set. The linear 

relationship between measured and predicted pH can be shown to have an intercept 

close to zero and a gradient close to one suggesting a strong relationship between the 

two methods of obtaining pH. For the same test data the spread of values obtained by 

spectrophotometry for any particular buffer pH is much greater than for the 

corresponding predicted pH, as can be seen in Figure 31b. The correlation of the 

spectrophotometric pH with the predicted pH is 0.92 (MSE 0.25) in comparison to 

0.75 with the buffer pH (MSE 0.97). 
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(a) Measured v predicted pH values.  

 

(b) Measured v assumed buffer pH. 

 

Figure 31: Accuracy of different pH values.  

(a) shows pH predicted using a neural network in relation to the spectrophotometric pH and 

(b) shows the buffer pH in relation to the spectrophotometric pH. 
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Figure 30 shows the distribution of differences between the pH values obtained by 

spectrophotometry and those assigned by the neural network as well as those 

provided by the buffer pH. The histograms show the absolute deviations in 0.1 pH 

unit bins. Whilst 75% of predicted pH values are within 0.5 units of the measured pH 

(i.e. ±0.5 pH units) and 95% are within one unit, only 53% of the buffer pH values 

are within 0.5 units and just 80% are within one unit. 

 

Figure 32: Histogram of errors for different methods of estimating pH. 

Histogram showing errors in predicted (dotted bar) and buffer pH (solid bar) values in 

relation to the spectrophotometric pH.  

 

Closer inspection of the predicted values reveals that six of the 66 individual 

chemicals were involved in the conditions where the deviation from the 

spectrophotometric pH values was unusually high. One of these chemicals, PEG 

2000 DME, should be neutral but spectrophotometry suggested a pH of just over 4.5, 

at the limit of the method’s reliability. It is known, however, that PEGs degrade 

becoming more acidic over time (Hampton, 2012, Jurnak, 1986, Ray Jr & 

Puvathingal, 1985). Indeed, when checked with a Jenway 4330 pH meter, the 
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solution was found to have a pH of just 2.6. The other five chemicals that were 

associated with large errors (jeffamine ed-2003, ammonium phosphate dibasic, dl-

malic acid, sodium malonate, magnesium chloride) were not well-represented in the 

training data. Re-training the network with a larger dataset could therefore improve 

the results further. 

  Protein 

 
 

pH 5 pH 7 pH 9 

B
u

ff
er

 

pH 5 
 

6.3 7.1 

6.3 7.1 

6.2 7.1 

pH 7 

5.8 

 

8.0 

5.8 8.0 

5.9 8.0 

pH 9 

6.5 7.8 

 
6.4 7.8 

6.4 7.8 
 

  Protein 

 
 

pH 5 pH 7 pH 9 

B
u

ff
er

 

pH 5 
 

6.5 7.6 

6.53 7.6 

6.53 7.6 

pH 7 

5.4 

 

8.4 

5.5 8.4 

5.5 8.4 

pH 9 

5.8 7.5 

 5.9 7.5 

5.9 7.5 
 

(a) Ratio of buffer to protein 1: 1. (b) Ratio of buffer to protein 1: 2. 

 

Table 6: The pH within the crystallisation drop. 

The table shows the measured pH of the components of the crystallisation drop for two 

different ratios of crystallisation cocktail: protein solution. The buffer used was 50mM 

PCTP, the protein solution consisted of 40mg/ml lysozyme, 100mM sodium chloride and 

50mM PCTP. The experiments were repeated three times and the pH values measured are 

given in the tables. 

 

Here we have used models to predict the pH of the crystallisation solution although 

only a proportion of this is contained within the drop containing the protein. Using a 

typical lysozyme solution at 40 mg/ml with 100mM sodium chloride and the buffer 

PCTP at 50mM, we have shown that, when mixed with 50mM PCTP at pH 5, 7 and 

9, the final pH could be predicted from the two buffering components with neither 

the salt nor the lysozyme having a noticeable effect. For example, protein solution at 

pH 5 to crystallisation solution pH 7 in the ratio 2:1 gives a predicted pH of 5.66, 

which compares to an average measured pH of 5.46 (Table 6). Only when the ratio of 
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protein solution to: crystallisation solution was increased to 3:1 did we find that the 

lysozyme affected the pH. 

5.2. Isoelectric Point 

It is possible that the use of protein sequence information could assist in 

crystallisation. In 1992, Samudzi and co-workers attempted to answer the question 

'Under which conditions will my protein crystallise?' They studied the BMCD for 

crystallisation trends, which at the time contained 820 macromolecules. Their motive 

was to move from an experimenter’s own experience, which could be based on 

anecdotal evidence to a more scientific approach. Cluster analysis using several 

properties relating to each experiment (such as temperature, precipitant concentration 

and crystallisation method) allowed eight clusters to be determined, each with its 

own features. Using the characteristics of these clusters Samudzi et al. were able to 

provide a recommended strategy for crystallising new proteins. For example, they 

recommend that a protein of relatively high molecular weight should be tried in a 

screen with properties of a typical of cluster 2, 3 or 5. Cluster 2 is dominated by 

entries containing alcohols and high concentration of protein solution, cluster 3 

contains entries that include the use of PEGs and low concentration of protein 

solution and cluster 5 contains entries where the precipitant is ammonium sulfate. 

They also recommend that proteins of low molecular weight should be crystallised in 

conditions similar to those of cluster 2 and 5, suggesting that molecular weight might 

not be useful in determining how to crystallise a new protein. A similar analysis by 

Farr Jr et al. (1998) on 1,500 macromolecules showed less of an overlap in the 

clusters and recommended strategies, but with both low and high weights 

crystallising broadly in the same temperature and pH conditions and with several 

shared chemical species. Despite the fuzzy clustering, the conclusion that protein 

properties can be helpful in determining the conditions under which proteins 

crystallise has since been supported by further studies. Using data from the BMCD, 

Hennessy et al. (2000) were able to provide software that would design a chemical 

screen for use on a specific class of macromolecule. Entering the class of 

macromolecule (enzyme, virus etc.) along with a choice of buffer, temperature, 

precipitating agent and other additives the program uses a Bayesian approach to 

calculate the combinations of parameters that have been most successful for 
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crystallising similar macromolecules. The most successful combinations of 

parameters are output as a design for a crystallisation screen. Hennessy and co-

workers concluded that there are correlations between families of proteins and their 

crystallisation conditions. For example, ligand-binding proteins and enzymes have a 

significantly different distribution of pH values under which they crystallise, whilst 

immunoglobulin-like proteins and enzymes have a significantly different distribution 

of temperatures. It should be noted that these classes are not based on any structural 

classification system such as the Structural Classification of Proteins (SCOP) 

(Hadley & Jones, 1999) and as such, they may have unknowingly introduced their 

own bias. In the most recent study of the BMCD, using 12,765 proteins, Lu et al. 

(2012) were also concluded that different families of proteins have their own 

particular crystallisation conditions. 

 

It has been postulated for some time that the best pH at which to initialise 

crystallisation experiments is one that matches the isoelectric point (pI) of the protein 

(McPherson, 1982). The pI of a protein is the pH at which its overall net charge is 0 

and it determines a protein’s minimum solubility level due to protein-protein 

interactions being favoured over protein-water interactions (Gilliland, 1988, Luft et 

al., 2011). It should therefore follow that a solution with a pH matching the 

isoelectric point would be ideal for crystallisation, although this has never been 

confirmed. One possible reason for this is that the recorded pH is that of the buffer in 

the crystallisation solution rather than the final pH of the crystallisation cocktail 

(Zhang et al., 2013). 

 

An analysis of 9,596 structures obtained from the PDB suggested a link between a 

protein’s pI and the pH at which it would crystallise. It was found that acidic proteins 

tended to crystallise 0 to 2.5 pH units above their pI, whereas basic proteins 

crystallised 0.5 to 3 pH units below their pI (Kantardjieff & Rupp, 2004). The 

authors reported a correlation between pI and pH-pI, that was challenged with claims 

that the predictive statements had been made using a misinterpretation of the data 

(Huber & Kobe, 2004). As a form of data normalisation, there will always be a link 

between pI and pH-pI, but it was also highlighted that no correlation between pI and 

pH had been found previously (Page et al., 2003, Wooh et al., 2003). In defence of 

their work the authors of the original study showed a correlation between the pI of 
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acidic proteins and the pH of successful crystallisation and that a linear model could 

be used to predict the optimal pH for such proteins. They concluded, however, that a 

similar model could not be created for basic proteins because no significant 

correlation was found (Kantardjieff et al., 2004). Since the original study, similar 

relationships between the pI of proteins and the buffer pH of successful 

crystallisation experiments have been noted for both acidic and basic proteins 

(Charles et al., 2006).  

 

Proteins can become more positively or negatively charged by gaining or losing 

protons due to the pH of their environment. The isoelectric point (pI), the pH at 

which a protein has a net charge of zero can be calculated using the charges for the 

specific amino acids in the protein sequence. Estimated values for the charges are 

called acid dissociation constants or pKa values. In the following analysis the pKa 

values used are those used in the EMBOSS software suite (Rice et al., 2000) as 

shown in Table 7.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: EMBOSS acid dissociation constants. 

 

For a protein with n− negatively charged amino acids and n+ positively charged 

amino acids, the pI can be determined as the pH for which the net charge given by 

equation 22 is zero. 

 

Amino Acid pKa Charge 

Amine Group 8.6 Positive 

Carboxyl Group 3.6 Negative 

Cysteine (C) 8.5 Negative 

Aspartic Acid (D) 3.9 Negative 

Glutamic Acid (E) 4.1 Negative 

Histidine (H) 6.5 Positive 

Lysine (K) 10.8 Positive 

Arginine (R) 12.5 Positive 

Tyrosine (Y) 10.1 Negative 
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where pKn and pKp are the pK values for negatively charged and positively charged 

amino acids respectively. As an example, consider the small amino acid sequence, 

CRV, with one cysteine (pKn = 8.5), one arginine (pKp = 12.5) and one valine (no 

charge). Including the N-terminal amine group (pKp = 8.6) and C-terminal carboxyl 

group (pKn = 3.6) the net charge for an initial pH of 0 is given by equation 23: 

 

 
            

  

         
 

  

         
 

 

          

 
 

         
 

           

23 

The charge for the sequence CRV, therefore, is approximately 23 at pH 0. By 

gradually increasing the theoretical pH, to make the net charge in equation 22 equal 

to zero, it is found that the isoelectric point of CRV is 8.555, as shown in Figure 33. 

 

Figure 33: Net charge of the sequence CRV with varying pH. 

 

In the calculation of a protein's pI from sequence, an assumption is made that all 

residues have the potential to affect its overall charge. This assumption does not 

account for partially buried residues that may not have their pKa modified by the 
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environment. Fortunately, the approximation of pI accounting for buried residues 

(referred to as 3D isoelectric point) is strongly correlated to that of the linear pI. 

Using the PROPKA server (Rostkowski et al., 2011) it has been possible to calculate 

both forms of pI 21,045 different proteins obtained from the PDB in December 2013. 

Figure 34 shows a scatter plot of the isoelectric points calculated using the two 

methods. The correlation between the two groups is 0.9 with 85% of proteins being 

within one pH unit of each other and 94% being within two units. 

 

 

Figure 34: Primary v tertiary isoelectric point. 

The isoelectric point for 21,045 proteins obtained from the PDB is calculated using linear 

sequence (y) and from assumed 3D structure (x). 

 

The PROPKA server calculates the linear and 3D isoelectric point of protein 

sequences using a custom set of pKa values. There is no global agreement on such 

values and several sets exist. However, we found a very strong correlation (~0.99) 

between six sets tested, suggesting they can be used interchangeably.  
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5.3. Relationship between pI and pH  

The investigation into the link between a protein’s isoelectric point at the point at 

which it crystallises was explored using three datasets; the first was a custom 

experiment performed at AstraZeneca, the second used data from crystallisation 

experiments at the SGC and the third utilised data from the PDB. 

 

For the custom dataset, the pI was either obtained from Zhang et al. (2013) or 

calculated as above and was confirmed using isoelectric focusing. The isoelectric 

point for each sequence in the SGC and the PDB datasets was determined in the 

same manner using an Excel spreadsheet with visual basic for applications 

(Microsoft VBA).  

5.3.1. Custom Crystallisation Experiment 

In order to determine the conditions for crystallisation, fourteen proteins (described 

in Chapter 2) were initially screened using sitting-drop vapour diffusion with a 96-

condition sparse matrix screen buffered at 6 different pHs using the multi-component 

buffer PCTP (Newman, 2004, Zhang et al., 2013). This gave a total of 576 

conditions with the buffer pH fixed between pH 4.5 and pH 9.5. The best 

crystallisation conditions were selected for each protein and a finer sampling of pH 

was then performed with these conditions in a 96-well plate buffered between pH 4.5 

and pH 9.5 with PCTP as shown in Figure 35. 
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Figure 35: Optimisation of conditions in the custom experiment. 

Fourteen proteins were each screened in 6 sparse matrix screens, each screen with a different 

buffer pH. The condition that consistently crystallised each protein across the range of pH 

was then used as the single condition for another screen. This screen had an incremental 

increase of pH from 4.5 to 9.5, which was then measured using a spectrophotometer together 

with the acid-base indicator bromothymol blue. 

 



 
 

  
pH Bin 

 
pI 4.75 5 5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75 8 8.25 8.5 8.75 9 9.25 9.5 

Glycolytic A 7.52 
    

◊ ◊ ◊ ◊ ♦ ♦ ♦ ♦ ◊ ◊ 
      

Glycolytic D 6.75 
     

♦ 
 

♦ 
            

Glycolytic wt 6.75 
    

♦ 
               

α- Chymo A 8.52 
     

◊ ◊ ◊ ◊ ◊ ◊ ◊ ♦ ♦ ♦ 
     

Bovine Catalase 6.79 
      

◊ ◊ ◊ ♦ ♦ ♦ ♦ 
 

♦ ♦ ♦ 
 

◊ 
 

Protease K212A 4.93 
     

♦ ◊ ◊ ◊ ◊ ◊ ◊ ◊ 
       

Protease K234A 5.03 
  

♦ ♦ ♦ ♦ ◊ ◊ ◊ ◊ ◊ ◊ ◊ 
       

Protease K249A 5.03 ♦ ♦ ♦ ♦ ♦ ♦ ◊ ◊ ◊ 
           

Protease E171A 5 
     

♦ ◊ ◊ ◊ ◊ ◊ 
         

Concanavalin A 5.47 
 

♦ ♦ ♦ ♦ ♦ ♦ ♦ ◊ ◊ ◊ ◊ ◊ ◊ 
      

Lysozyme 9.36 
  

◊ ◊ ◊ 
   

◊ 
        

♦ 
  

Kinase 1 5.18 
         

◊ ◊ ◊ ◊ 
      

◊ 

Porcine Trypsin 7 
     

◊ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ◊ ◊ ◊ 
   

Thaumatin 8.46 
    

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 

 

♦ Crystallised within one unit of its pI towards a neutral pH 

♦ Crystallised within one unit of its pI away from a neutral pH 

◊ Crystallised elsewhere 

 

Figure 36: Distribution of crystals in the custom experiment.  

The 0.25 pH bin in which each of the fourteen proteins crystallised is indicated by a diamond. Crystals obtained within one unit of the pI towards a 

neutral pH are shown in green. Similarly, crystals within one unit of the pI but away from a neutral pH are shown in red.  



 
 

The fourteen proteins in the custom dataset were used to further test the relationship 

between pI and the pH of successful crystallisation. Once the best crystallisation 

components had been determined for a particular protein, a fine sampling of pH was 

performed in a 96-well plate with the chosen components buffered between pH 4.5 

and pH 9.5. Figure 36 shows crystals were obtained within one pH unit towards 

neutral from their pI for 11 of the 14 proteins and 13 out of 14 crystallise within one 

pH unit either side of their pI. The glycolytic enzymes D and wt crystallised within 

one unit of their pI but away from a neutral pH. Only one protein, Kinase 1, with a pI 

of 5.18, did not crystallise within two pH units of its pI. The stochastic nature of 

protein crystallisation compounds the difficulties of pattern recognition. Figure 36 

shows that, whilst several proteins crystallise across a wide range of pH values, 

crystals are not seen in every 0.25 bin within that range. Reproducibility in screening 

has been investigated and the results suggest that replication could improve success 

rates in crystallisation experiments (Newman, et al., 2007). 

5.3.2. Structural Genomics Data 

The second dataset, obtained from the SGC (described in Chapter 2), comprised of 

the experimental conditions for 1,039 different protein sequences. Experimental 

results were assessed using the score given by a crystallographer, together with the 

resolution of the diffraction data and whether or not the structure was solved. For 

crystals that were not of diffraction-quality no estimated resolution is given and it 

was assumed that the structure was not determined. In instances where crystals were 

identified as salt, the associated data were removed.  

 

The remaining data were grouped according to the final stage reached in the structure 

determination pipeline as follows: 

Group 1 58 sequences that resulted in structure determination; 

Group 2 48 sequences that resulted in a crystal that diffracted to at least 3.6Å; 

Group 3 210 sequences that result in a least one protein crystal; 

Group 4 723 sequences that were annotated as ‘crystal - to be followed up’. 
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It should be noted that sequences in the final group may not relate to diffraction 

quality crystals or could be salt crystals that had not yet been identified as such. 

Conversely, it is possible that perfectly good crystals may have been overlooked. 

 

These data, all screened using the SGC JCSG +4 sparse matrix screen, were selected 

from the full SGC database and assigned to chemical groups in order to predict pH. 

Although a spectrophotometric pH value was available for some of the conditions in 

the SGC JCSG +4 screen (used either for training the neural network or reserved to 

test the accuracy of the assignments), the pH used here for all conditions was that 

assigned using the trained neural network. In addition to the chemical concentrations, 

the pH of the crystallisation buffer is also input to the network. For those wells 

without a buffer solution (21/96), the pH of the purification buffer was used instead. 

Data for any wells where neither buffer pH nor purification pH were available were 

removed. In Chapter 4 we showed that the buffering capacity of the protein itself is 

negligible in vitro and this has also be demonstrated in vivo (Poznanski et al., 2013). 

 

For each well in which a crystal was observed, the calculated pI was then compared 

to the assigned pH. The protein sequences were considered in groups, as defined in 

section previously, reflecting the maximum stage in the structure determination 

pipeline that was attained. The protein structure was determined and deposited in the 

PDB for the 58 protein sequences in Group 1. In addition to the conditions that led to 

the final structure, we also have information about other conditions that produced 

crystals. Analysis shows that crystals are only obtained in conditions with a pH 

within one unit of the pI for 9 of the 58 sequences. A total of 28 sequences only 

result in crystals within two pH units of the pI, 45 sequences only result in crystals 

within three pH units, 57 sequences only result in crystals within four pH units and 

the final 4 proteins crystallise up to five pH units away from the pI. Thus, for over 

70% of these protein sequences, crystals are only obtained in experiments buffered 

within 3 pH units of the pI. 

 

Particularly in cases when available protein is limited, it is important to identify 

suitable conditions in as few trials as possible and restricting screening to a particular 

pH range would reduce the number required. Promising initial conditions (including 

the pH), could then be optimised to obtain crystals suitable for crystallographic 
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studies (Jancarik & Kim, 1991). For the 58 proteins in the SGC dataset that resulted 

in a structure deposited in the PDB, we found a correlation of 0.8 between the pH of 

any crystalline result and the pH at which the final structure was obtained. We 

therefore investigated the differences between a protein’s isoelectric point and the 

closest pH value for any conditions producing crystals. Again the proteins were 

considered in the four groups according to the stage reached in the crystallisation 

pipeline. For those proteins in group 1, 84% crystallised within one pH unit of their 

pI and 95% crystallised within two pH units of their pI. Crystals were found within 

one pH unit of their pI for 78% of proteins in group 2 and within two pH units for 

88%. In group 3, 74% of proteins crystallised within one pH unit of their pI and 90% 

within two pH units and for group 4 proteins, 55% produced crystals within one pH 

unit of their pI and 82% within two pH units. Overall, 85% of proteins produced 

crystals within two pH units of their pI. Histograms showing the distribution of the 

absolute difference between the pI and the closest pH at which crystals were obtained 

for each group are given in Figure 37. It is worth noting that those proteins for which 

no crystals were found within three pH units of their pI (6% of all protein sequences 

here) tended to have more extreme isoelectric points. Of the 64 such proteins, 46 had 

a pI outside the range 5 to 9 and of the 18 protein sequences with a pI in this range, 

only one with a pI of 7.9 is within the range 6 to 8. 

 

(a) Group 1- structure determined. 
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(b) Group 2- diffraction to at least 3.6Å. 

(c) Group 3- at least one protein crystal.  
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(d) Group 4- crystal to be followed up. 

 

Figure 37: Distribution of differences between pI and pH. 

Histograms showing the absolute difference between the pI and the closest pH at which 

crystals were obtained for proteins in the SGC dataset.  

5.3.3. Protein Data Bank Snapshot 

Using a snapshot of the PDB with standardised crystallisation conditions courtesy of 

Fazio et al. (2014) we were able to calculate for 23,949 proteins their pI and the pH 

of the crystallisation solution in which is crystallised. A full overview of the structure 

of the data obtained from the PDB is described in Chapter 2.  

 

Figure 38 shows a pattern in the relationship between the pI of proteins and the pH at 

which they have been crystallised. Acidic proteins, i.e. those with a pI below 7, tend 

to crystallise about one pH unit above their pI, whereas basic proteins tend to 

crystallise below their pI by around 1.5-3 pH. These results support those found in 

our custom experiment and those derived from the SGC data along with those of 

other studies (Kantardjieff et al., 2004, Kantardjieff & Rupp, 2004, Charles et al., 

2006). 
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Figure 38: The relationship between pH and pI for PDB proteins. 

The distribution of the difference between the pH from which a structure was obtained and 

the isoelectric point for 23,949 proteins in the PDB-UNIQUE dataset. The distributions are 

shown separately for proteins with a pI less than 7 (acidic) and those with a pI greater than 7 

(basic). Those with a pI of precisely 7 (of which there were 4) were grouped with the basic 

proteins. 

5.4. Discussion and Conclusions 

Linear regression modelling revealed groups of chemicals with similar effects on the 

pH of a crystallisation experiments. The simplest models were obtained for salts with 

no hydrogen ions and neutral organic compounds. Although a simple linear 

regression model can be used to relate the pH of the experiment to the buffer pH for 

both of these chemical groups, the model is different for each group, with the 

constant offset larger for organics than that for salts. For other groups the effect of 

the additional chemical on the buffer pH depends on the concentration of that 

chemical. In the case of PEGs, the chemical concentration does not appear as a 

separate variable, but the interaction term between buffer pH and the chemical 

concentration is significant. It is known and we have shown (Appendix C) that PEGs 

degrade over time (Hampton, 2012, Jurnak, 1986, Ray Jr & Puvathingal, 1985), 
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increasing the acidity of the solution. Similarly, ammonia-containing compounds 

slowly release the ammonia and affect the pH of a condition (Mikol et al., 1989, 

Newman, Sayle, et al., 2012). Ammonia containing compounds are more acidic than 

PEGs, which when fresh and correctly stored are close to neutral pH, and like the 

final two groups (acids and basic) require the full linear regression model including 

the interaction term to represent the pH of the experiment. The last two groups either 

contain hydrogen ions that have a large impact on pH or contain a hydroxide group, 

with a large but opposite effect on pH. The largest errors in prediction are due to 

chemicals that undergo degradation. The deterioration of chemicals, such as PEGs, 

cannot be predicted but should be considered and storage conditions such as light 

exposure and temperature could perhaps be controlled. 

 

The grouping of chemicals according to their effect on the pH of a solution means 

that individual models are not required for each chemical and the effect of chemicals 

for which there are no examples in the training set can be predicted from the model 

for the appropriate group. Moreover, the increase in the number of examples 

available for each model reduces the possibility of over-fitting of the training data 

and provides more robust models for prediction.  

 

Using the chemical grouping suggested by linear regression modelling, the most 

accurate results were obtained using a single-layer neural network with five nodes 

but the method is less intuitive, and similar results were obtained using the regression 

equations. 

 

The ability to predict the effect of different combinations of chemicals on the pH of 

an experiment allows information in databases such as the PDB to be used in data 

mining studies that aim to reduce the number of crystallisation trials required. Over 

the last decade a number of investigations have considered a possible link between 

the pI of a protein and the pH at which it will crystallise (Charles et al., 2006). Such 

a link has also been disputed, with Zhang et al. (2013) suggesting that "the pI value 

of a protein should be avoided when choosing the pH for a protein solution". Zhang 

and co-workers also discuss the issue of the recorded pH not necessarily being the 

pH of the experimental conditions. Previous findings have been based on the pH of 

the buffer solution, which can differ from the actual pH by more than 3 pH units 
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(Bukrinsky & Poulsen, 2001, Newman, Sayle, et al., 2012). Using more accurate pH 

values that take into account how the concentrations of the various chemicals in the 

crystallisation cocktail affect the pH of the buffer solution, we have shown that a 

relationship between a protein’s pI and the pH under which it will crystallise does 

exist. In addition to data for the conditions leading to protein structure solution we 

have considered the pH of experiments producing crystals that may not have been 

confirmed as diffraction quality. We found that proteins frequently crystallise within 

one pH unit of their pI and that 85% of the proteins produced crystals within two pH 

units of their pI. In most cases, proteins tended to crystallise at a more neutral pH 

with acidic proteins crystallising above their pI and basic proteins below their pI, 

confirming those results found previously (Charles et al., 2006, Kantardjieff & Rupp, 

2004). As the majority of proteins that crystallise are of an acidic pI (Figure 39), we 

therefore suggest that a useful initial pH for crystallisation trials can be obtained 

from the pI of the protein in question, but this pH should not simply be taken as that 

of the buffer solution but, if not measured, should be adjusted to take into account the 

effect of any additional chemicals. 

 

It may also be possible to distinguish between whether the pH of the solution is 

imperative for crystal nucleation, crystal growth or both. This could be performed 

with two experiments, one where a crystal/seed is added to a solution of a desired pH 

and the growth, maintenance or degradation of the crystal is monitored and compared 

to the same set of conditions but without the seed. This strategy could then be used to 

improve microcrystals or use artificial seeds to grow protein crystals around. 

Distribution of Isoelectric Points 

Figure 39 shows a trimodal distribution for isoelectric points with modes of 

approximately 4.8, 6.6 and 9 and the majority of crystallisable proteins having an 

acidic isoelectric point. This distribution contradicts the findings of others who show, 

for smaller sample sizes, that the isoelectric points of proteins are bimodally 

distributed with one peak representing acidic pIs and another basic pIs (Canaves et 

al., 2004, Kantardjieff & Rupp, 2004). Analysis of the BMCD shows that the most 

successful buffer pH is normally distributed around pH 7 (Samudzi et al., 1992) 

which is supported by a later study of the PDB (Fazio et al., 2014). These are reports 

of the buffer pH and not of predicted or measured pH and therefore it is difficult to 
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untangle which of these pH values are accurate and which proteins (and isoelectric 

point) they are associated with. 

 

 

 

Figure 39: Histogram of isoelectric point for PDB proteins. 

The distribution of pI for 23,949 significantly different proteins obtained from the PDB. 

5.4.1. Prediction of Crystallisation Group 

As some proteins do not crystallise close to their pI, we investigated protein 

properties to determine whether or not such proteins could be predicted. In addition 

to pI, the GRAVY (Kyte & Doolittle, 1982) and the number of D, C, G, H, M, F, P, 

S, T, W, Y residues (Overton et al., 2008) were calculated for each sequence in the 

SGC dataset. A Euclidean distance matrix was created between each sequence based 

on the difference in their scaled features. This distance matrix was then used for 

multidimensional scaling k-means clustering, which is described in Chapter 3. PCA 

was also performed, a plot of which is shown in Figure 40, it can be seen that there is 

no discrimination between the groups. 
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Group 

 1  2  3  4 

 

Figure 40: PCA of 1,039 sequences represented by 13 features. 

The plot shows the four groups (1- structure determined, 2- diffracted to at least 3.6 Å, 3- 

protein crystal, 4- annotated by eye as crystal) of the SGC data plotted with respect to their 

first and second principal components. 

 

MacQueen k-means clustering was implemented, with k=4 (MacQueen, 1967) and 

Figure 41 shows the confusion matrix obtained. Each group had around 25% of its 

targets classified correctly overall due to the differences in group's sizes the accuracy 

is 25%. Without clustering the overall accuracy increases to 30%. These results 

suggest that experimentation may be the only way of determining whether a 

sequence will result in a determined structure. A possible explanation for this is that 

the properties used do not give any indication of the complex intra- and 

intermolecular interactions. Differences in physical crystallisation conditions such as 

temperature, use of ligands and whether the protein sample was frozen were not 

taken into account. 
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 Predicted 
 

1 2 3 4  
A

ct
u
a
l 

1 3 
0.3% 

19 
1.8% 

23 
2.2% 

13 
1.3% 

 

2 3 
0.3% 

14 
1.3% 

17 
1.6% 

14 
1.3% 

 

3 10 
1.0% 

51 
4.9% 

99 
9.5% 

50 
4.8% 

 

4 69 
6.6% 

181 
17.4% 

319 
30.7% 

154 
14.8% 

 

      26.0% 
74.0% 

 

Figure 41: Confusion matrix for k-means clustering. 

These are the results of k-means clustering for the SGC data. The overall accuracy of the 

clustering was just 19%. 
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6. Predicting a Protein's Propensity 

to Crystallise 

Using parameters derived from the amino acid sequence, a number of researchers 

have tried to predict whether a protein is suitable for structure determination by X-

ray crystallography. In 2006, a SEquence-based CRystallisability EvaluaTor 

(SECRET) created by Smialowski et al. (2006) was developed using two classes of 

protein sequences from the PDB. The first class, proteins solved by X-ray 

crystallography and the second, proteins solved by NMR. As proteins solved by 

NMR are small, the classifier is limited to sequences 40 to 200 amino acids in length. 

This ensures that the separation of the classes is not dependent on length. They 

calculated properties such as single amino acid frequency, dipeptide frequency and 

hydrophobicity of the amino acids (using 3 hydropathy scales (Rose et al., 1985, 

Kyte & Doolittle, 1982, Engelman et al., 1986)). After reducing the number of 

properties using wrapper feature selection (Kohavi & John, 1997), Smialowski et al. 

(2006) were able to accurately classify 62.7% of proteins in their sample with 

support vector machines. When Overton et al. (2008) assessed a new dataset with 

this classifier, they reported an accuracy level of 58.1%. 

 

The work of the team who developed SECRET was challenged by Chen et al. (2007) 

who claimed that SECRET used many features and yet has relatively low prediction 

rates, as 50% accuracy should be achieved by the flip of a coin. They proposed a new 

classifier, named CRYSTALP, which uses features such as a count of all the 

individual amino acids in a sequence divided by the length of the sequence as well as 

the collocation of amino acid pairs. Their final predictor with 46 features is also 

limited by the size of the proteins that can be classified as to make it directly 

comparable to SECRET. When tested with the same dataset as SECRET an accuracy 

rate of 77.51% was reported (Chen et al., 2007), although Overton et al. (2008) 

report that, on one of their restricted length datasets, CRYSTALP only achieved an 

accuracy level of 46.5%, a percentage that would be expected by a random guess. 

Jahandideh and Mahdavi (2012) reported the accuracy of CRYSTALP to be 68.40% 

and 75.69% in two separate trials. An improvement on the classifiers came with 
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CRYSTALP2, which had no upper length restriction (Kurgan et al., 2009). New 

features include the use of collocated tripeptides, pI and Grand Average of 

Hydropathy (GRAVY). In total 1,103 features were used. Results show a 

classification accuracy of between 69.3% and 77.5% depending on the dataset 

(Kurgan et al., 2009).  

 

In 2006, the same year as the publication of SECRET, the OB-Score was published. 

The OB-Score “ranks potential targets by their predicted propensity to produce 

diffraction-quality crystals”. A high OB-Score suggests that a protein is likely to be 

successfully crystallised; a low one suggests it is unlikely (Overton & Barton, 2006). 

The OB-Score was trained using the predicted isoelectric point and the GRAVY of 

the 5,545 amino acid sequences from the PDB with a diffraction quality of <3.0Å. 

The accuracy of the OB-score predictor has been reported as 69% by Kurgan et al. 

(2009) and 73% by Jahandideh and Mahdavi (2012). In a similar manner to the OB-

Score, XtalPred provides a guide on how likely a protein is to crystallise, using 

protein properties derived from the sequence such as molecular weight and GRAVY. 

XtalPred was developed on the back of comments from as early as 1984 suggesting a 

“crystallisation feasibility score”. From the 2007 publication it is unclear how the 

score is derived. Like SECRET, OB-Score and CRYSTALP2, XtalPred is freely 

available online and has accuracy levels of 76% and 72.40% that have been 

published by Kurgan et al. (2009) and Jahandideh and Mahdavi (2012) respectively.  

 

There have since been several other classifiers and predictors all using properties 

derived from the protein sequence with statistical pattern recognition methods. 

ParCrys uses Parzen Window probability density estimators with a measure of 

randomness of the sequence (Wan & Wootton, 2000), pI and hydropathy values; an 

accuracy of 79.1% was reported (Overton et al., 2008). RFCRYS uses the machine 

learning method of random forests to predict crystallisability. In their own tests they 

report 80.4% accuracy (Jahandideh & Mahdavi, 2012). The CRYSpred predictor, 

uses a set of sequence derived properties that are described in the Amino Acid Index 

Database (Kawashima et al., 2008). They include several methods for calculating 

disorder, hydrophobicity, disorder and charge. In total they use 15 features, achieving 

an accuracy of 73.4% on a test set of 2,000 proteins (Mizianty & Kurgan, 2012).  
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Name Year Prediction Method 

TEST 

Accuracy 

(%) 

TEST-RL 

Accuracy 

(%) 

 

SECRET RL 2006 
Support Vector 

Machine 
- 58.1 1 

The OB-Score 2006 Z-score Matrix 64.6 69.8 1 

CRYSTALP RL 2007 Naïve Bayes - 46.5 3 

Xtalpred 2007 
Logarithmic Opinion 

Poll Method 
79.2 76.7 1 

ParCrys 2008 Parzen Window 71.5 79.1 1 

CRYSTALP2 2009 
Radial Basis Function 

Network 
75.7 69.8 1 

Metappcp 2009 Logistic Model Tree 81.0 - 2 

MCSG 2010 
Support Vector 

Machine 
- - 4 

Hyxg-1 2010 
Regression 

Partitioning 
- - 4 

Xannpred 2010 Neural Network - - 4 

SVMCRYS 2010 
Support Vector 

Machine 
86.8 89.53 3 

RFCRYS 2012 Random Forest 81.25 - 2 

CRYSpred 2012 
Support Vector 

Machine 
79.9 80.2 1 

 

- 

 

RL 

test set was not tried with the named predictor  

 

the predictor was trained on sequences of restricted length 

 

Table 8: The accuracy of different predictors. 

Accuracy rates are shown for the two independent test data sets, TEST and TEST-RL. 

1
 Figures for accuracy were obtained from the CRYSPred paper (Mizianty & Kurgan, 2012).  

2 
Figures obtained from the RFCYRS paper (Jahandideh & Mahdavi, 2012).  

3 
Figures obtained from the SVMCRYS paper (Kandaswamy et al., 2010).  

4 
These predictors were not evaluated on the named test sets. 
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This accuracy rate was surpassed by Kandaswamy et al. (2010) using a support 

vector machine, but this classifier had a large discrepancy between the accuracy rates 

on training and test data sets, which suggests that their results might be unreliable 

due to over fitting (Mizianty & Kurgan, 2012).  

6.1. Datasets 

Two particular datasets, TEST and TEST-RL, originally introduced by the 

developers of the ParCrys predictor (Overton et al., 2008) have since been used by a 

number of authors to allow comparisons to be made. The TEST dataset contains 144 

sequences obtained from TargetDB, 72 of which had been given the annotation 

‘diffraction quality crystal’ and the other 72 had been given the annotation ‘work 

stopped’. TEST-RL contains 86 sequences of proteins that are less than 200 amino 

acids in length. The 43 crystallisable sequences in TEST-RL are a subset of those in 

TEST that have been filtered by length. The 43 non-crystallisable sequences were 

selected at random from a larger dataset, which again had a length restriction, and 

had the TargetDB status of ‘work stopped’. TEST-RL was introduced to compare the 

performance of those predictors with a length restriction to those without. A 

summary of the prediction accuracies for the various classifiers is shown in Table 8. 

 

Other researchers used the FEAT or TEST-NEW dataset. The FEAT dataset, again 

introduced by the developers of the ParCrys predictor, contains entries from the 

TargetDB: 728 entries with status ‘diffraction quality crystal’ and 728 entries with 

status ‘work stopped’ (Overton & Barton, 2006, Overton et al., 2008). The TEST-

NEW dataset, introduced by (Kurgan et al., 2009), was also obtained from TargetDB 

and contained 1000 entries with status ‘diffraction quality crystals’ and 1000 entries 

with status ‘work stopped’ (TargetDB, 2010, Kurgan et al., 2009).  

 

Using data obtained from the Structural Genomics Consortium (SGC) Oxford we 

derived our own list of sequences with a crystallisable or non-crystallisable outcome. 

A positive data set was obtained from the 69 protein structures that had been 

determined from a single sparse matrix screen, the SGC JSCG +4. Some of these 

structures were obtained from the same sequence, for example, the structures with 

PDB IDs 2IZR, 2IZS and 2IZU are all from the same sequence. After removing the 
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repeated sequences, the positive data set, SGC61POS, comprised 61 entries. To 

ensure that proteins that were not successfully crystallised in the SGC JCSG+4 

screen were unsuccessful due to properties intrinsic to the sequence and not the 

screening conditions, it was necessary to determine whether they had been 

crystallised in any other screen. If they had been crystallised in other screens at the 

SGC they were not included in the negative data set, SGC382NEG, which finally 

comprised 382 sequence entries. Table 9 shows the number of entries in the 

commonly used data sets together with the custom data set introduced here. As our 

datasets are different sizes they are reported separately.  

 

Dataset Name 
Number of Successful 

Sequences 

Number of Unsuccessful 

Sequences 

TEST 72 72 

TEST-RL 43 43 

FEAT 728 728 

TEST-NEW 1000 1000 

SGC61POS 61 - 

SGC382NEG - 382 

 

Table 9: Datasets used for predicting a protein's crystallisability. 

The number of successful and unsuccessful sequences in various datasets used for predicting 

the crystallisability of proteins. 

6.2. Protein Sequence Properties 

During the development of the various predictors described above, at least 34,500 

features have been calculated from protein sequences in order to determine whether a 

protein would indeed crystallise. These features include counts of di- and tripeptides, 

separated by up to four other amino acids (Chen et al., 2007, Kurgan et al., 2009), 

features given in the AAIndex (Kawashima et al., 2008) and many others. It is 

difficult to determine which features harness the most predictive power as every 

predictor uses a different set. We investigated this using features previously used by 

others as well as new features. 
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The core features calculated for our data matrix are defined on ExPASy’s ProtParam 

web tool. This online Bioinformatics Resource Portal from the Swiss Institute of 

Bioinformatics provides access to scientific databases and software tools (Artimo et 

al., 2012). One tool available on the ExPASy server is ProtParam created by 

Gasteiger et al. (2005). This tool computes physical and chemical parameters of a 

protein from its amino acid sequence.  

 

Proteins are compositions of 20 amino acids in various frequencies with an amino 

group at one end (the N-terminal) and a carboxyl group (the C-terminal) at the other, 

as shown in Figure 42. Each amino acid has different properties that can be 

combined to provide a feature for the whole sequence. The following section 

describes the various features used in our analysis. The number in parentheses 

following the feature type indicates the number of parameters calculated for this 

feature.  

 

 

 

 

 

 

Figure 42: Standard protein sequence structure. 

A standard amino acid sequence has an N-terminal and a C-terminal (shown in red). 

Between these two terminals are the amino acid residues (orange) connected by peptide 

bonds (blue).  

 

The Molecular Weight (1), M, is the sum of the molecular mass of each atom making 

up the protein. This can be calculated by summing the molecular masses of the 

amino acids (aa) in the sequence after adjusting for the dehydration reaction, as 

shown in Equation 24. For each peptide bond formed between amino acids one water 

molecule (~18Da) is lost. The water is lost as a combination of a hydroxide (OH) 

from the carboxyl group of one amino acid and hydrogen (H) from the amine group 

of another amino acid. If the mass of one water molecule is subtracted for each 

amino acid in the sequence, then the mass of one water molecule should be added to 

N 

Terminal 

 

Residue 
 

Residue 
 

Residue 
 C 

Terminal 
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account for the remaining hydroxide on the C-terminal and the remaining hydrogen 

on the N-terminal.  

 

    ( ∑ (      )

      

)      24 

 

The Net Charge (15) is a summation of the individual charges of certain amino acids 

in the sequence. The amino acids arginine, histidine and lysine are known to have a 

positively charged side chain and the amino acids aspartic acid and glutamic acid are 

known to have a negatively charged side chain. The other 15 amino acids have a side 

chain with neutral charge. In calculations for net charge the charge of the N-terminal 

and the C-terminal is also included. The N-terminal is affected by pH in the same 

way as positively charged side chains and the C-terminal acts in the same way as 

negatively charged side chains. Charged side chains are affected by pH. Amino acids 

with a positively charged side chain remain positively charged while their pKa value 

is above the pH of the solution. If the pH is greater than the pKa value, then the side 

chain becomes neutral. Similarly, negatively charged side chains remain negatively 

charged while the pH of the solution is of greater value than their associated pKa 

value. If the pKa value is greater than the pH they become neutral. 

 

The Isoelectric Point (pI) (1) is the pH at which the net charge of the protein is zero 

and its calculation from seven key amino acids (Kozlowski, 2012) is described in 

detail in Chapter 5. We implemented the computational algorithm of Sillero and 

Maldonado (2006) in VBA (Microsoft Excel) to calculate pI. 

 

The Sequence Length (1) is simply the total number of each of amino acids in a 

sequence. 

 

The Amino Acid Composition (20) is given by the number of each of the 20 different 

amino acids contained within a sequence. 

 

The Amino Acid Frequency (20) is the number of the 20 different amino acids within 

a sequence divided by the sequence length. 
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The Atomic Composition (6) is the number of each atom type within the sequence. 

This can be calculated from the number of carbon, oxygen, nitrogen, hydrogen and 

sulphur atoms in each amino acid multiplied by the number of each amino acid, 

accounting for the loss of water through the dehydration reaction. The total number 

of atoms in a sequence is also used. 

 

 

Figure 43: A Venn diagram of amino acid types. 

The 20 amino acids, indicated by their single letter code, are divided into groups with other 

amino acids that share the same properties.  

 

Amino Acid Types (8) are different properties of amino acids due to by the particular 

side chain. There are eight different types, as shown in Figure 43. The eight types are 

small, aliphatic, hydrophobic, aromatic, negative, polar, positive and proline. For 

each sequence, a count of the number of amino acids with this property provides a 

feature. 

 

The Extinction Coefficient (4) can be used to determine protein concentration. Using 

the method provided by Pace et al. (1995), the extinction coefficient for proteins in 

water is calculated as 5,500 times the number of tryptophan residues plus 1,490 times 

the number of tyrosines plus 125 times the number of cysteine pairs.  
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The Half-Life (3) of a protein is the length of time it takes for half of the protein to 

disappear within a cell. The method to determine the half-life is referred to as the 'N-

end rule', which refers to which amino acid is on the N-terminal of the protein 

sequence (Varshavsky, 1997). The ProtParam documentation provides a list of half-

lives for mammalian, yeast and e.coli cells for each amino acid (Gasteiger et al., 

2005). For example, for a protein with an alanine as N-terminal amino acid, the half-

life would be 4.4 hours, >20 hours and >10 hours for mammalian, yeast and E.coli 

cells respectively.  

 

The Instability Index (1) is a value assigned to a protein sequence based on dipeptide 

combinations. It has been reported that proteins containing certain proportions of 

some dipeptides undergo rapid degradation and that proteins containing high 

frequencies of proline, glutamic acid and serine can be unstable (Guruprasad et al. 

(1990). The latter was also found by Rogers et al. (1986), who reported a similar 

affect for methionine and glutamine. On the other hand, asparagine, lysine and 

glycine are reported to occur in high frequencies in stable proteins (Guruprasad et al. 

(1990). Guruprasad and coworkers have provided a table of instability values for 

each dipeptide within a sequence. These can be summed to provide the instability 

index for a protein sequence, where an instability index > 40 suggests the protein is 

unstable.  

 

The Aliphatic Index (1), suggested by Atsushi (1980), is a metric for a given protein 

sequence based on the quantity of four specific amino acids: alanine, valine, 

isoleucine and leucine. Atsushi reported that proteins derived from thermophilic 

bacteria are known to have significantly higher frequencies of these aliphatic amino 

acids. A protein with a high index may be regarded as having high thermostability.  

 

The Grand Average of Hydropathy (GRAVY) (1) is the average hydropathy value for 

an amino acid sequence. The sum of the hydropathy values for each individual amino 

acid, provided by Kyte and Doolittle (1982) is divided by the number of amino acids 

in the sequence to give the average hydropathy value. A positive GRAVY value 

suggests a hydrophobic sequence, whereas a negative GRAVY value indicates a 

hydrophilic sequence. Rose et al. (1985) and Engelman et al. (1986) have also 

defined a set of amino acids that they consider to be hydrophobic or hydrophilic 
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although they do not provide a method to calculate a score. Note that hydropathy and 

hydrophobicity are used interchangeably. 

 

The Mean Side-Chain Entropy (3) is the average amount of entropy for each protein 

sequence, based on estimations of entropy provided by Creamer (2000). In general, 

entropy is a measure of the amount of energy in a system that is unavailable in a 

particular state. In folded proteins this energy is unavailable due to protein folding.  

 

 

Class 

 Non- crystallisable ○ Crystallisable 

 

Figure 44: Scores plot for first two principal components. 

The fsOur87 features were calculated for the FEAT dataset and then scaled. Principal 

components analysis was performed and the scores obtained within respect to the first two 

principal components are shown here.  

 

Here we refer to the set of 87 features described above as fsOur87. This set of 

properties was calculated for the sequences in the FEAT dataset, which we use as 

training data. Principal components analysis (PCA) was implemented for data 

reduction in R on the FEAT dataset (Zurich, 2012). The data were scaled to prevent 
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large variables dominating the analysis. The top 5 principal components only account 

for 67% of the variance, with 40% of this in the first principal component. The scores 

plot in Figure 44 that this variance is not due to a difference between groups. Each 

subsequent component adds little to the cumulative variance with 22 principal 

components being required for 95% of the variance. As PCA showed that most of the 

variance in the data was not related to any difference between the two groups and the 

method did not offer effective data reduction, it was not pursued further. Instead a 

feature selection method, which does not require any transformation of the variables 

was used. 

 

It has been shown that the removal of highly correlated features (correlation >0.9) 

can improve the performance of neural networks (Wendemuth et al., 1993, Hall & 

Smith, 1997) and therefore we produced a second feature set, referred to as 

fsUncorrelated, consisting of 54 features. We also used the feature sets used to test 

previous predictors, which we refer to by the name of the original predictor preceded 

by fs for feature set. For example, fsCRYSTALP is the set of features used in the 

CRYSTALP predictor. A summary of the size of the feature sets and their source is 

shown in Table 10. A full list of the features in each of the named sets is listed in 

Appendix A. 

 

Feature Set Source Feature Count 

fsOur87 Original Features 87 

fsUncorrelated Original without correlated features 54 

fsOB The OB-Score 2 

fsCRYSTALP CRYSTALP 46 

fsParCrys ParCrys 13 

fsCRYSTALP2 CRYSTALP2 88 

 

Table 10: The number of features in the various datasets. 

The feature sets fsOur87 and fsUncorrelated were compiled specifically for this 

study, whereas the other features sets correspond to those used by other researchers 

to develop prediction tools for determining the propensity of a protein to crystallise. 
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6.3. Classification 

Various machine-learning algorithms have been used to predict a protein’s 

propensity to crystallise, but as Table 8 shows, no particular method stands out as the 

most successful. Using data on gene expression in cancers, it has also been shown 

that many of the machine learning methods can be equally successful in 

classification (Nookala et al., 2013, Caruana & Niculescu-Mizil, 2006). Here we 

chose an artificial neural network (ANN).  

 

The ANN model is inspired by the neurons in the brain and is trained to associate a 

particular output with certain input features. A weighted combination of the input 

features is passed through transfer function in a threshold unit to determine the 

output of a neuron, as described in detail in Chapter 3. This output is then sent to the 

next layer or output to provide the class. Here the input features are protein 

properties and the final output is given as 01 representing uncrystallisable (failure) 

and 10 for crystallisable (success). 

6.3.1. Validation 

Figure 45 shows a binomial distribution for a sample of 382 experiments, with each 

experiment having a 0.5 probability of being classified correctly. Only the range 

from 40% to 60% accuracy is shown, as this is the range of accuracies most likely to 

occur if each sequence had a 0.5 probability of being classified accurately. The 

probability of accurately classifying precisely half (191/382) of the sequences by 

random chance would be 0.04. The probability of classifying more than 207/382 

sequences (54.2%) by random assignment is less than 5%. For most purposes, this 

would be the accuracy at which the null hypothesis (the distributions are the same) 

would be rejected in favour of the alternative hypothesis (the distributions are 

different). Similarly, the probability of classifying fewer than 162/382 (42.4%) of 

sequences by random assignment is less than 5%. The value of 5% is the probability 

of making a type 1 error, rejecting the null hypothesis when it is true. Similar random 

distributions were created for different numbers of experiments. In each instance the 

distribution was normally distribution around a mean of 50% accuracy with a 

varying standard deviation (increasing for smaller samples and vice versa). 
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Figure 45: Accuracy for random probabilities. 

The binomial distribution for 382 experiments with the probability of success of 0.5 gives a 

mean accuracy of 50% with a standard deviation of 2.5%. There is 99.9% probability that the 

accuracy rate for 382 random experiments, with a 50% chance of success for each 

experiment, lies between 40% and 60%. 

6.3.2. Training 

 

 

 

 

 

 

 

 

Table 11: The accuracy during training for different feature sets. 

The features from the named feature sets were determined for each sequence in the FEAT 

dataset and used to train a neural network. During training, 15% was used as an internal test 

set and the results for each feature set are shown. 
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Feature Set  15% Testing Set Accuracy (%) 

fsOur87 75.7 

fsUncorrelated 79.4 

fsOB 69.7 

fsCRYSTALP 74.3 

fsParCrys 75.2 

fsCRYSTALP2 74.3 
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In order to compare the results of the neural network with reported results using 

other machine learning algorithms, we trained the network with different feature sets. 

In each case, the FEAT dataset was used and was split into training, validation and 

test data sets in the ratio 70:15:15. Using a feed-forward network with the 

Levenberg-Marquardt training method, various architectures were trialled for each 

feature set using the Neural Network Toolbox in Matlab (MathWorks, 2011).The 

optimal architecture was used in each case, where the simplest model with greatest 

accuracy on the test set was considered as optimal. The difference between training 

and testing accuracies was used to check for over-fitting. For all feature sets the 

optimal architecture was found to have two nodes on each of two hidden layers. The 

accuracy of the training test set is shown in Table 11. 

6.3.3. Testing 

In order to compare the results from our neural network with those of others, we used 

our trained network with the previously used independent test data sets, TEST-RL, 

TEST and TEST-NEW. The results for each set of features from each test data set 

are shown in Table 12. The results for each test set, using for our own feature sets are 

also shown Table 13. 

 

Feature Set 
TEST-

RL 
TEST TEST-NEW SGC61POS SGC382NEG 

fsOur87 77.9 78.5 68.8 29.5 85.8 

fsUncorrelated 74.4 77.1 71.0 57.3 68.3 

fsOB 70.9 67.4 68.3 62.3 39.5 

fsCRYSTALP 60.5 55.6 60.9 57.4 56.8 

fsParCrys 75.6 76.4 73.9 49.2 68.8 

fsCRYSTALP2 59.3 60.4 63.2 39.3 60.5 

 

Table 12: Accuracy of testing sets. 

A comparison of the accuracy achieved using different feature sets on five different test data 

sets. Overall the most successful feature sets are fsParCrys (bold) and our own 

fsUncorrelated. 
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Table 12 shows the accuracy for different feature sets ranges from 29.5 to 85.8%. 

Using publicly available datasets, the features used in the ParCrys predictor provide 

the best results with our own uncorrelated feature set giving comparable results. The 

46 features from CRYSTALP perform worse with the neural network than the OB-

Score features, of which there are only two. This shows that the success of the 

predictor does not depend on the number of features used.  

 

Table 13: Comparison of results. 

The results are shown for the standard test data sets obtained using a neural network trained 

the fsParCrys feature set in comparison with the results for other predictors (obtained from 

Mizianty and Kurgan (2012)). 

 

Table 13 shows the results for the neural network trained with the fsParCrys feature 

set in comparison to other published predictors. Although CRYSPred performs best 

for two datasets, TEST-RL and TEST, both contain duplicate entries and are smaller 

than the TEST-NEW dataset. In fact our network trained with the fsParCrys feature 

set outperforms CRYSPred on the larger TEST-NEW dataset and uses fewer and 

simpler features. Again, there appears to be no connection between the number of 

features and the accuracy of the predictor. 

  

We also used the trained networks to predict the crystallisability of the SGC data and 

obtained mixed results. For most feature sets the results seem to be biased towards 

either positive or negative outcomes and are generally lower than those obtained for 

the publicly available data. In some instances, fsOur87 for example, the result is 

Predictor Number of Features TEST-RL TEST TEST-NEW 

fsParCrys 13 75.6 76.4 73.9 

CRYSpred 15 80.2 79.9 73.4 

XTALPred 9 76.7 79.2 70.0 

CRYSTALP2 88 69.8 75.7 69.3 

ParCrys 13 79.1 71.5 70.6 

OB-Score 2 69.8 64.6 Unreported 
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worse than randomly choosing between success and fail. This suggests that the data 

used for training is not representative of the data being tested.  

6.4. Biochemical parameters 

In the previous analysis it has been demonstrated that a selection of features derived 

from a protein sequence can, to some extent, be used to predict whether a protein can 

be crystallised. The nature of the neural network with two hidden layers, each with 

two nodes, makes it difficult to determine which features are most important for the 

separation of the two groups. The features (pI; GRAVY; counts of the amino acids: 

D, C, G, H, M, F, P, S, T, W and Y) from the most successful feature set, ParCrys, 

were used to further explore the properties than can be used to determine 

crystallisability. 

6.4.1. Individual Parameters 

The thirteen features in the ParCrys feature set were used separately in linear 

discriminant analysis (LDA) to determine the discriminatory power of individual 

features. The LDA was created in R using the entire FEAT dataset for training. 

 

LDA results show the features pI and GRAVY to be the most powerful when it 

comes to predicting the outcome of a crystallisation experiment. This might be 

expected as these features have been used with several predictors (Overton & Barton, 

2006, Overton et al., 2008, Kurgan et al., 2009), Isoelectric point shows notably 

different rates of accuracy across the different datasets (Table 14), showing a bias 

towards positives on the SGC data. It might be expected that features involving the 

amino acids used in pI calculation (D, C, H and Y) would have better discriminatory 

power than the other amino acids. Similarly, it might be expected that the 

hydrophobic phenylalanine (F) and hydrophilic aspartic acid (D) would have greater 

discriminatory power than demonstrated because of their close link to average 

hydrophobicity. However, this is not the case. The use of the different amino acid 

counts as a feature varies across the different test sets and no single amino acid count 

stands out as particularly useful for classification. For the SGC datasets some of the 

amino acid features give results that are worse than random guessing.  
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Feature TEST-RL TEST TEST-NEW SGC61POS SGC382NEG 

pI 66.3 66.0 69.9 57.3 32.9 

GRAVY 53.5 52.1 57.7 52.4 66.8 

D 53.5 47.9 64.6 50.8 57.6 

C 53.5 62.5 56.2 44.3 72.0 

G 53.5 43.1 58.8 42.6 67.5 

H 50 43.1 55.1 59.0 30.1 

M 50 45.1 57.3 50.8 56.0 

F 50 38.9 57.5 45.9 59.7 

P 51.2 35.4 53.0 41.0 65.2 

S 54.7 64.6 46.5 59.0 41.6 

T 53.5 38.2 59.5 44.2 61.3 

W 53.5 47.2 52.7 39.3 66.5 

Y 47.7 46.5 60.7 47.5 48.4 

 

Table 14: Accuracy of individual features for prediction. 

The percentage accuracy is shown for the different test sets when using each feature 

individually in LDA to classify as either crystallisable or non-crystallisable. The FEAT 

dataset was used for training and TEST-RL, TEST and TEST-NEW for testing.  

6.4.2. Combinations of Parameters 

The thirteen features from ParCrys were also used together in LDA. Discriminant 

functions were identified using the FEAT dataset and four fold venetian blind cross-

validation. In each fold 25% of the data was used as the training set and the 

remaining 75% was used as the test set. The results from each of the four (non-

overlapping) subsets are shown in Figure 46. On average the LDA achieved 70% 

accuracy across the four test sets, with only marginal differences between them. 



 

 

129 

 

 

 

Figure 46: Summary of cross-validation results. 

LDA was performed using the ParCrys features on the FEAT dataset with four fold cross-

validation. The figure shows the percentages of correct (dark) and incorrect (light) 

classifications on the test data. 

 

 

Figure 47: LDA loadings for the FEAT dataset with ParCrys features. 

The loadings of the four linear discriminant functions obtained for the FEAT dataset show 

that GRAVY, pI and the number of cysteines are the dominant features in determining 

whether a protein will crystallise for each of the four testing sets. 
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Not only were the results similar for each of the four test sets, but in each model the 

linear discriminant created from 25% of the data was dominated by GRAVY, 

followed by pI and the number of cysteines as indicated by the loadings in Figure 45. 

The other ten features had loadings of 0.1 or less showing that they contribute little 

to the discriminant functions. In the analysis of individual features, C (the cysteine 

count) did not appear to be useful for discrimination, but when combined with 

GRAVY and pI, it does seem to have some discriminatory power. This is also true to 

some extent of Y (the tyrosine count), it has the fourth highest loading when used in 

combination with other variables. Although GRAVY, the sum of hydropathy values 

scaled by residue count, has the greatest discriminatory power, the features F 

(phenylalanine count) and D (aspartic acid count), which are closely associated with 

hydrophobicity, do not appear to be useful. It may be that these features cannot add 

to the discrimination due to their high correlation with GRAVY.  

 

When the three parameters, GRAVY, pI and the number of cysteines, are plotted 

against each other, some separate areas corresponding to crystallisable and non-

crystallisable sequences can be seen (Figure 48). It can be seen that the crystallisable 

proteins are clustered in an acid to neutral pI, with a slightly negative GRAVY value 

and a low cysteine count. The number of crystallisable proteins outside of this zone 

decreases to a handful, although the opposite is not true. The non-crystallisable 

proteins are spread across a large area in all three parameters.  

 

The model was used to categorise the sequences in the TEST-NEW set and achieved 

a correct classification rate of 73%. However, none of the neural network models, 

trained using the fsParCrys or other feature sets, were able to classify both the 

positive and negative sequences in the SGC data well. 

 

Figure 49 shows the three parameters, GRAVY, pI and the number of cysteines, 

plotted against each other, for the SCG data. As with the TEST-NEW data, the 

uncrystallisable proteins are spread across a large area of this parameter space. 

Although many sequences corresponding to proteins that crystallise are in the zone 

identified for the TEST-NEW data (acid to neutral pI, with a slightly negative 

GRAVY value and a low cysteine count), they are also spread across a larger area, 

making the overlap greater for the SGC data than for the TEST-NEW data. 
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◊ Crystallisable ○ Non- Crystallisable 

 

Figure 48: TEST-NEW data based on the most discriminatory variables. 

The TEST-NEW data is plotted for the variables GRAVY, pI and the number of cysteines. 

Crystallisable proteins are represented by blue diamonds and non-crystallisable proteins by 

red circles.  
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◊ 
Crystallisable 

SGC61POS ○ 
Non- Crystallisable 

SGC382NEG 
 

Figure 49: SGC data based on the most discriminatory variables. 

The two SGC datasets plotted for the variables GRAVY, pI and the number of cysteines. 

Crystallisable proteins (SGC61POS) are represented by blue diamonds and non-

crystallisable proteins (SGC382NEG) by red circles.  

 

As the data for each of the three properties pI, GRAVY and cysteine count was not 

normally distributed for the FEAT dataset, the non-parametric Mann-Whitney-

Wilcoxon test (MWW) was performed and revealed differences in the populations 

between the positive and negative sequences of the FEAT data for all three 

properties. However, the difference between positive and negative populations for 

SGC data was not so well defined. For the isoelectric point and cysteine count the 

null hypothesis (there is no difference between positive and negative populations), 

could not be rejected with p-values of 0.23 and 0.95 respectively. A p-value of 0.001 

provided evidence against the null hypothesis for the variable GRAVY, suggesting a 

difference between the distributions of the hydrophobicities of the positive sequences 
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and the negative sequences. The problem in classification occurs because, although 

the negative SGC dataset has a similar distribution to the negative FEAT dataset used 

for training, the positive SGC data has a different distribution to the positive FEAT 

dataset. Furthermore the positive SGC data has a similar distribution the negative 

FEAT dataset. The distributions are shown in Figure 50. 

 

 
Figure 50: Boxplots of GRAVY values for the FEAT and SGC datasets. 

The four boxplots show the distribution of the GRAVY values for the positive and negative 

sequences in the FEAT and SGC datasets datasets. The line in the centre of the box 

represents the median, the lower and upper bounds to the box represent the first (25%) and 

third (75%) quartiles. Each whisker is drawn to the most extreme value within 1.5 box 

lengths of its respective box boundary. Circles are representative of data points more than 

1.5 box lengths away from the closest box quartile and stars are 3 box lengths away. It can 

be seen that the SGC61POS and SGC382NEG populations both have median values closer 

to that of FEAT negative than that of FEAT positive. 

 

The overall homology of the sequences was also inspected, as strong homology 

would compound the number of incorrect classifications. The correlation between the 
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properties of each pair of sequences was found to be non-significant (at 5%). The 

sequences were also separated into their families (determined by the SGC) and the 

standard deviation calculated for each feature, this again revealed that there was no 

similarity between sequences, as suggested by standard deviations that were large 

with respect to the mean. To further test the classification, a much larger set from the 

PDB was used. The ParCrys features were calculated for 25,316 sequences from the 

PDB. The neural network using these features, that had previously achieved an 

average of 75% accuracy on three test datasets, was used to classify this PDB data 

and only achieved 55% accuracy. Restricting the PDB data to sequences submitted 

between July 2006 and December 2008 to reflect the dates of the TEST-NEW data 

did little to improve the accuracy with just 58% (3180/5453) correctly predicted as 

crystallisable. As shorter sequences are not well represented in the FEAT dataset, we 

also tried restricting the PDB data to sequences more than 99 amino acids in length. 

Again an accuracy of just 58% (13,233/22,829) was achieved. To ensure our 

methodology was not the cause of the low prediction rate we used another predictor. 

Taking a random sample of 1,000 sequences from the PDB with length between 100 

and 1,000 residues we were able to use the CRYSTALP2 online predictor (Kurgan et 

al., 2009). Again the accuracy was low, with only 60% of sequences correctly 

classified as crystallisable'  
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Figure 51: Confusion matrix for the prediction of PDB sequences. 

The classification results are shown for 25,316 sequences from the PDB, of which the neural 

network correctly predicted just 55%. 

 

The original training and test datasets were both obtained from TargetDB and no 

PBD data was included in either (FEAT or TEST-NEW). Kurgan et al. (2009) 
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specifically state that crystallisable proteins in the TEST-NEW dataset were chosen 

if they were annotated as having "Diffraction-quality Crystals", but not annotated 

with In PDB in the Status field. No motivation for excluding sequences resulting in 

PBD structures is given. The reason for sequence differences between proteins 

designated as producing diffraction-quality crystals in TargetDB and those that result 

in a structure deposited in the PDB is not clear. One possible explanation is the fact 

that only structural genomics targets are included in TargetDB and may be restricted, 

for example by particular medical interests, whereas structures deposited in the PDB 

are from a wider, and potentially more difficult to crystallise, range of proteins. On 

the other hand, proteins for which diffraction data is collected, but the structure is not 

solved are presumably the most different from known protein structures. Diffraction 

data is collected for about a third of the structural genomics targets for which crystals 

are obtained and only two-thirds of these result in a protein structure in the PDB 

(Westbrook et al., 2003). Sequences from these proteins with diffraction-quality 

crystals, but no PDB entry are precisely those included in the training and test 

datasets producing models that do not generalise to PDB data.  

6.5. Discussion and Conclusions 

It has been stated that the use of several predictors together could allow accurate 

classification of 90% of sequences (Mizianty & Kurgan, 2009). The datasets used are 

sufficiently large to overcome any difficulties with accuracy caused by data size 

(Cunningham, 2000) and the number of features searched is large, 34,618 (including 

34,000 from n collocated amino acids). However, the number of features that could 

possibly be calculated from a protein sequence is unknown. For example, the user 

could potentially determine that the oligomeric state (determined through PDB 

search for protein similarity) or the amount of n collocated amino acids could 

determine the difference between the positive and negative datasets.  

 

Several values of n, for n collocated amino acids have been used in previous 

predictors to determine a protein's crystallisability (Chen et al., 2007, Kurgan et al., 

2009, Charoenkwan et al., 2013). In our search, however, we find like others that 

isoelectric point and grand average of hydrophobicity are the properties that hold the 

most predictive power (Goh et al., 2004, Overton & Barton, 2006, Mizianty & 
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Kurgan, 2009). A search for further features is likely to involve complex properties 

and be based on predictions such as secondary structure or molecular interactions, 

which are currently limited to 80% accuracy (Dor & Zhou, 2007), but are already 

included in some predictors (Mizianty & Kurgan, 2012, Smialowski et al., 2006).  

 

We aimed to find out, not only 'will my protein crystallise?', but 'why will my protein 

crystallise?' and the information provided from the black box method of a neural 

network cannot answer this. We therefore also used linear discriminant analysis 

(LDA), which is easier to interpret, but was unable to classify as accurately. From 

this, we were able to show that just three features, pI, GRAVY and cysteine count, 

were providing the majority of the discrimination between classes. 

 

The use of pI and GRAVY has been shown before to have predictive power when it 

comes to determining the crystallisability of a sequence. In a study of 500 proteins 

from the Thermotoga maritima proteome, Canaves et al. (2004) were able to show 

that that crystallisable proteins are located in a cluster, similar to ours, in the 

GRAVY-pI parameter space. The results of other predictors also demonstrate the 

usefulness of GRAVY and pI (Overton & Barton, 2006, Kurgan et al., 2009). 

 

Artificial neural networks have been shown to be as good as any other classifier 

(Nookala et al., 2013) and indeed we were able to produce a classifier that is 

comparable to the best of those already available when applied to the same datasets. 

Our results show that neural networks can be used to predict whether a sequence will 

crystallise, at least as successfully as any other machine learning method. Over three 

publically available test sets our neural network successfully classified more 

sequences than any other predictor. Although the percentage accuracy is a marginal 

improvement over the previous best classifier, CRYSpred (Mizianty & Kurgan, 

2012), the model is simpler. Our classifier uses two calculated values: isoelectric 

point and grand average of hydrophobicity along with 11 counts of amino acid 

frequency. In comparison, the features used in CRYSpred include the sum of 

predicted disorder scores and the distribution of amino acids in alpha helices in 

thermophilic and mesophilic proteins. As CRYSpred requires features obtained from 

a predicted secondary structure, it follows that if this prediction is wrong any 

classification using this information is also likely to be wrong. Occam's razor 
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suggests that a simpler model should be selected over a more complicated model 

without strong evidence to support its use. In classification, a simpler model also 

helps to prevent over-fitting.  

 

The use of sequence-derived variables as useful indicators of a proteins propensity to 

crystallise must be questioned, given that these are optimised to identify the most 

promising crystallisation targets from particular protein families. The problems in 

classification of the SGC and PDB data must be caused by properties intrinsic to the 

proteins in these datasets. Difficulties in predicting whether a protein will crystallise 

may arise due to the purification process, or to chemical and physical parameters 

which are not considered in sequence-based predictors (Smialowski et al., 2006). In 

order to re-train classification algorithms, data on unsuccessful experiments would be 

needed as well as data on successful experiments, such as can be obtained from the 

PDB. Information on failed experiments is also necessary to investigate the 

relationship between protein properties and the conditions that result in crystals 

(Hennessy et al., 2000). This could potentially allow properties that can be measured 

or calculated before crystallisation trials begin to be used to predict the best initial 

conditions to try. 

 

PPCpred (Mizianty & Kurgan, 2011) and PredPPCrys (Wang et al., 2014), both 

available online, have not only determined protein crystallisability but also whether it 

will pass certain stages of the structure determination pipeline. Once the decision has 

been made to progress with crystallisation it is then necessary to determine under 

which conditions a protein will crystallise. 
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7. The Propensity of Chemicals to 

Promote Crystallisation 

Once a crystallographer has decided to attempt to crystallise a protein, whether or not 

persuaded by the outcome of a predictor, it is necessary to determine suitable 

conditions. In 1962 Max Perutz and John Kendrew were awarded the Nobel Prize for 

Chemistry for being the first people to solve the structure of a complex protein, 

specifically equine haemoglobin (MFPL, 2012). Perutz once said "crystallisation is a 

little like hunting, requiring knowledge of your prey and a certain low cunning" 

(Fink et al., 2009), which caused Hennessy et al. (2000) to pose the question "are 

there good hunting grounds?", or less poetically, are there favourable regions of 

crystallisation parameter space? The search for successful regions of parameter space 

using complete factorial sampling is not possible. This problem is further 

compounded by physical properties such as pressure, gravity and biochemical 

properties such as the protein itself and any ligands. 

 

One method for optimal searching of crystallisation parameter space uses regions of 

known success. For example, Jancarik and Kim (1991) describe the design of a 

sparse matrix screen which used the most popular conditions found in the literature. 

However, determining the success of individual chemicals from frequency counts in 

the literature and online repositories can be problematic. Repositories such as the 

PDB (Berman et al., 2000) and the BMCD (Tung & Gallagher, 2008) provide no 

negative examples and therefore give no indication of relative success rates, i.e. how 

many times a chemical is used before successful crystallisation (Newman, Bolton, et 

al., 2012). Consideration of the properties of the proteins to be crystallised, together 

with the success rates of the chemicals for particular types, would allow greater 

optimisation in crystallisation. This may be achieved using anecdotal evidence 

(Samudzi et al., 1992) or the use of statistical analysis. 

 

In 2004 Rupp and Wang provided a broad overview of some of the issues in 

crystallisation and suggested generic techniques that could be used to improve the 

attrition rates of protein crystallisation. They suggest a method of normalised 
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frequency analysis known as crystallisation propensity to provide relative success 

rates. This takes into account both positive (crystalline) and negative (non-

crystalline) outcomes and may provide support for the reduced use, or even removal 

from screens, of less successful chemicals and allow focus on those with higher 

success rates.  

 

Propensity is an intra-property comparison, for example, pH 6.5 can be compared 

with pH 7.5, and provides a statistic that ranges from 0 upwards. It provides an 

indication of how a specific property of parameter space (chemical, pH or protein) 

relates to the average property. For example, a propensity value of 2 suggests that 

protein x is twice as likely to crystallise as the average protein, whereas a value of 

0.5 suggests that protein y is only half as likely to crystallise as the average. 

Throughout this chapter a trial refers to the data associated with one particular well 

from one specific screen. 

 

The crystallisation propensity for a parameter is defined as follows: 
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Figure 52: Visualisation of propensity. 

As a whole, the circle (A + B + C + D) represents all trials. The section beneath the 

horizontal chord (C + D) represents those trials that resulted in crystalline material and the 

section to the right of the vertical chord (B + D) represents trials with the property for which 

the propensity is being calculated. A represents those trials without the property or result in 

crystalline material; B represents trials with the property but do not give crystalline material; 

C represents trials without the property but do result in crystalline material; and D represents 

those trials with the property resulting in crystalline material. 

 

Re-writing equations 26 and 27 to correspond with Figure 52 gives:  
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In demonstrating the usefulness of propensity, Rupp and Wang analysed data from 

the TB structural genomics consortium on 230,000 crystallisation trials, sampling 55 

chemical species across 5 unit intervals of pH from pH 4.5. They found that the 

propensity of all chemical species in their data was normally distributed which 

allowed them to define 'supercrystallisers' - the chemical species in the top 5% of the 
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distribution. At the other end of the spectrum, although not discussed by Rupp and 

Wang, this allows 'awfulcrystallisers' to be defined- the chemical species with a 

propensity in the bottom 5% of chemicals. 

 

The results of Rupp and Wang show that just under half (45%) of their chemicals 

have a propensity greater than one, with the top ten chemicals, the supercrystallisers, 

including PEG 2000 MME, PEG 5000 MME, PEG 2000, PEG 6000, PEG 4000 PEG 

400, calcium chloride, sodium formate, potassium sodium tartrate and MES. The 

eight awfulcrystallisers are 2-butanol, isopropanol, MPD, EDTA, ammonium 

phosphate and acetate, ethanol and DMSO. 

7.1. Results 

We have investigated crystallisation propensity with new data and compared our 

results with those in the literature. The AstraZeneca dataset has information on 

573,786 crystallisation trials. This includes 13,550 (2.4%) successful trials, where a 

trial with any crystalline result is deemed a success. In this analysis we only consider 

the chemicals in the crystallisation screens as variables and do not consider 

temperature, purification method, or the use of ligands due to the extent of missing 

data in these fields. The proteins include human, bacterial, virus and other 

mammalian targets. Although propensity cannot be calculated for data in the PDB, 

due to the lack of negative results, it is still possible to perform frequency analysis to 

determine the chemicals that are used most often. We show that the chemicals 

contained within a well are interdependent and that the propensity of one chemical is 

affected by another, but that propensity does provide more information than simple 

frequency counts. 

 

Propensity analysis for the 37 chemicals in nine screens at AstraZeneca (Figure 53) 

suggests that slightly more than half (55%) of the chemicals perform better than 

average. The propensities were not normally distributed (as verified with a QQ plot 

and a KS test) so it was not possible to define supercrystallisers. The top 10 includes 

four salts (lithium sulfate, magnesium chloride, calcium acetate and ammonium 

sulfate), two buffers (TRIS and PCTP) and one organic (ethanol).  
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Figure 53: The propensity of chemicals in AstraZeneca screens. 

The propensity of 37 chemicals used in the nine screens of the AZ dataset. Propensities were 

calculated using 13,550 crystalline results from 573,786 trials. Error bars are not shown, as 

they are negligible after normalisation due to the large sample size. 
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The top ten chemicals with the highest propensity also includes three PEGs of 

varying weights (3350, 2000 MME, 8000). To the best of our knowledge, PEG 

(6000) was first used to crystallise alcohol oxidase in 1968 (Janssen & Ruelius). It 

was not until ten years later that PEGs became the reagent of choice, following an 

endorsement from McPherson Jr (1976) who concluded that 

 

'[PEG] may be the best initial trial reagent for crystallisation'. 

 

A summary of 44,063 crystallisation conditions from the PDB dataset also suggests 

PEG to be a successful crystallisation reagent, appearing three times in a list of the 

top ten chemical species (Table 15). Like Figure 53, this also includes the buffer 

TRIS and the salts magnesium chloride and ammonium sulfate along with five other 

chemicals. 

 

Rank Chemical Count 

1 PEG 3350 9,264 

2 TRIS 8,375 

3 Ammonium sulfate 8,225 

4 HEPES 5,795 

5 PEG 4000 5,637 

6 Sodium chloride 5,248 

7 Sodium acetate 5,194 

8 PEG 8000 4,095 

9 Magnesium chloride 3,845 

10 MES 3,664 

 

Table 15: The ten most prevalent chemicals reported in the PDB. 

The ten most prevalent chemical species are shown together with the number of entries in the 

PDB-BLAST-reduced dataset, consisting of 44,063 PDB entries. 

 

Subsequent studies of crystallisation data have provided evidence to support 

McPherson’s claim (Hui & Edwards, 2003, McPherson, 1999). In 1984 PEG was 

ranked second in a list of species used to induce crystallisation (Gilliland & Davies, 

1984) and in 1991 PEGs were included in half (25/50) of the wells of Jancarik and 
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Kim's popular sparse matrix screen. PEGs have also been previously reported to be 

amongst the most prevalent chemicals in the PDB (Fazio et al., 2014, Peat et al., 

2005) and have shown to be more successful in crystallising protein-protein 

complexes than ammonium sulfate (Radaev & Sun, 2002). Although the mechanism 

that allows PEGs to be successful crystallization reagents is not well understood, it 

appears that they compete with water molecules to interact with the protein, forcing 

it out of solution (McPherson, 1989a, Lee & Lee, 1981). The varying weights and 

lengths enable a steric exclusion mechanism to occur that excludes protein from 

zones of the solution and increases local activity and solubility (Laurent, 1963, Ward 

et al., 1975). A further advantage is that since they are of neutral pH they do not 

require large concentrations of buffer, however, we have shown previously that they 

become acidic over time (Ray Jr & Puvathingal, 1985) and as a result it might not be 

possible to reproduce certain crystallisation experiments. 

 

A study of one protein, Aspergillus flavus urate, showed that modification of the 

concentration and the weight of PEG included in a crystallisation solution can 

modify chemical parameter space in such a way that the thermodynamic parameter 

A2 is changed and moved into the 'crystallisation slot', where crystallisation is more 

favourable. A2, the second virial coefficient, is used to provide corrections to the 

ideal gas law. In practice A2 is a number obtained by interpreting Static Light 

Scattering (SLS) output (Kratochvíl, 1987) or through self-association 

chromatography (Tessier & Lenhoff, 2003). It has been shown by George and 

Wilson (1994) that proteins which successfully crystallise have an A2 value between 

-1 x 10
-4 

and -8 x 10
-4

. With this knowledge, Vivares and Bonneté (2002) were able 

to show that different crystallisation parameters such as pH, temperature and the 

volume and weight of PEG in the crystallisation solution could affect the experiment 

such that A2 was in the range in which crystallisation had been shown to occur. 

 

Other successful chemicals are either salts or buffers used to control pH and assumed 

to be otherwise chemically inert with respect to crystallisation (although this is 

contestable (McPherson, 1995). The salts have a similar effect to PEGs in 

crystallisation solutions, by competing with the protein for water molecules 

(McPherson, 1989a). In some instances metal cations (and anions) from salts, such as 

those of calcium and magnesium, bind to proteins and can stabilise the crystal lattice 
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(Kretsinger, 1976, Jayachandran et al., 2007). Whilst sodium chloride and 

ammonium sulfate increase solubility, magnesium chloride has been suggested to 

decrease solubility by binding to the protein and freeing up water (Arakawa & 

Timasheff, 1985, Kretsinger, 1976, Jayachandran et al., 2007). Many of these salts 

have been identified in successful crystallisation conditions before, using data from 

the PDB (Peat et al., 2005) and the BMCD (Lu et al., 2012), but the literature is 

inconclusive as to whether they do encourage crystallisation. Two studies reported 

sodium chloride to be a poor crystallisation reagent, but suggested ammonium sulfate 

to be successful (McPherson, 2001, Rupp & Wang, 2004). In their analysis of 

crystallisation propensity, Rupp & Wang also found that magnesium chloride was 

less likely to produce crystals than the average chemical.  

 

Surprisingly, analysis of the AZ data shows ethanol and lithium sulfate to be 

successful crystallisation reagents. The success rate of lithium sulfate was previously 

shown to be average (Rupp & Wang, 2004, McPherson, 2001) and ethanol has been 

reported amongst the least successful groups of chemicals in crystallisation (Hosfield 

et al., 2003, Page & Stevens, 2004, Rupp & Wang, 2004). Ethanol is included as a 

cryoprotectant and has been shown to have to no ill effect (Tran et al., 2004, Farley 

& Juers, 2014). As it occurs in many successful solutions in the AZ data, it does 

appear that ethanol does not adversely affect crystallisation. Organic chemicals tend 

to evaporate from the crystallisation solution to the sitting drop, causing the 

concentration in the drop to fall rather than to increase to a supersaturated state 

(Kimber et al., 2003). To compound this, certain concentrations of some organic 

chemicals denature the protein by acting like a detergent (where part of the molecule 

binds with the protein and the other part binds with water) (McPherson, 1989a). 

 

In contrast to the highly successful chemicals, some additives appear in very few 

successful crystallisation solutions. In analysis of the PDB data, 268 chemicals have 

been used fewer than five times, with 108 leading to a single protein structure. For 83 

of these 108 chemicals (76%), a protein structure was obtained for the same BLAST 

group using alternative conditions. The other 25, of which 8 are ligands, are 

chemicals that did lead to a unique protein structure and might be considered a last 

resort list. The chemicals with the lowest propensities in our data contained the set of 

custom chemicals, referred to as AZ crowns, which were designed to contribute 
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similar effects to crystallisation as PEGS. As these chemicals were not used for many 

projects and do not appear in the literature, it is not possible to give a reason for their 

low propensity. Another group of chemicals with low propensity are pH amending 

chemicals, including potassium and sodium dihydrogen phosphates and some PEGs 

(possibly degraded). It is possible that, due to their structure, these chemicals have an 

effect on pH in addition to their effect on crystallisation as a salt. 

 

 

Figure 54: The effect of pH on propensity. 

The propensity of 25% v/v PEG 3350 with 0.2 M magnesium chloride is shown for different 

pH values (as determined using spectrophotometry). Data was obtained from one filter 

screen with 809 crystalline results in 33,828 trials. Errors shown are normalised proportional 

errors. 

 

Figure 54 shows that the propensity of PEG 3350 varies with pH, with values 

between 0 and ~2.75 and potentially up to 3.3 when allowing for error. Thus 15% v/v 

PEG 3350 could be considered more than twice as effective in crystallisation as the 

average chemical, but the variation in propensity means that it could also be viewed 

as a chemical that does not result in crystalline material. Propensity can therefore 

only be useful if pH is taken into account in the calculation. Furthermore, the results 

shown here are for magnesium chloride and PEG 3350 together, so these trials count 
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positively towards the propensity of both chemicals, even though one may have had 

no effect on crystallisation.  

 

 

Figure 55: The propensity of PEG 3350 with different chemicals. 

The propensity for 15% v/v PEG 3350 with 0.1 M ammonium sulfate is compared to 15% 

v/v PEG 3350 with 0.1 M magnesium chloride. Data was obtained from the Filter 2 screen 

with 497 crystalline results out of 22,712 trials.  

 

Figure 55 shows how varying the chemical combination within a screen can affect 

the propensity. The two graphs show that propensity changes when PEG 3350 is 

combined with different chemicals. Near pH 5.5 the propensity of PEG 3350 with 

either chemical is roughly similar, but near pH 7, PEG 3350 with ammonium sulfate 

has a propensity of ~0.75 (less than average) whereas PEG 3350 with magnesium 

chloride has a propensity of ~2.75 (almost 3 times the average). Thus, we must 

consider combinations of chemicals rather than individual components within a 

crystallisation solution.  

 

The C6 distance metric (Newman et al., 2010) provides a similarity measure between 

crystallisation conditions and gives the distance between PEG 3350 with ammonium 

sulfate and PEG 3350 with magnesium chloride as 0.66, provided the pH is the same 
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for both solutions. However, the observed difference between these two solutions 

does not show the same result. 

 

 

 

Figure 56: The effect of proteins on propensity. 

Propensity was calculated for 15% v/v PEG 3350 with 0.1 M ammonium sulfate across a 

range of pH for two screens. The propensity for the Filter 2 screen was calculated based on 

497 crystalline results out of 22,712 trials and the propensity for the Filter 4 screen was 

calculated from 701 crystalline results out of 33,048 trials.  

 

We must also consider the proteins involved in the propensity calculations. Figure 56 

shows data for the same experimental condition, 15% v/v PEG 3350 with 0.1 M 

ammonium sulfate, calculated from two different screens, Filter 2 and Filter 4. As the 

projects being screened are different, the two sets of proteins are mutually exclusive. 

The variation shown in Figure 56 is predictable; if all proteins crystallised in the 

same conditions, then parameter space could be reduced to a set of core conditions 

and resource-consuming exploration would no longer be required. It also shows that 

all proteins that crystallised in the Filter 2 screen have a better than average 

propensity to crystallise in these conditions whereas proteins that crystallised in the 

Filter 4 screen only ever perform below or close to average. For example, at pH 6.5 it 
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is possible to see a propensity of ~2.5 for Filter 2 and ~0.7 for Filter 4. As the 

conditions are the same, the difference must be due to the proteins being screened. 

This shows that quite different results can be obtained, depending on the proteins 

involved. In fact the results here contradict those displayed in Figure 51 which shows 

pH 4.5 to have a propensity well below average, whereas here it can be seen that for 

some proteins pH 4.5 has twice the average propensity. 

 

 

Figure 57: Success rates for AZ screens. 

The rate of success for five evolutions of a filter screen and four evolutions of a sparse 

matrix screen used in initial screening at AstraZeneca are shown. The figures shown are as 

follows: (1) the number of projects crystallised; (2) the number of projects attempted; (3) the 

number of wells containing crystalline material; and (4) the number of wells in total. 

Proportional error bars are shown. 

 

The screens at AstraZeneca have evolved over time as poor chemical combinations 

have been identified and removed. This should mean that the more recent the screen 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Filter 2 Filter 3 Filter 4 Filter 5 Filter 6 Sparse 0 Sparse 1 Sparse 2 Sparse 3

12 3 11 5 39 78 2 17 56

17 3 17 7 65 94 3 20 68

497 41 809 542 2,147 4,888 14 329 4,149

22,712 3,581 33,828 4,473 79,616 315,255 431 10,232 98,829

R
a
te

 o
f 

Su
cc

es
s 

Screen 

1 - 

2 - 

3 - 

4 - 



 

 

150 

 

is, the more successful it should be. Screen evolution is indicated by the number 

following the screen type, so that, for example, Filter 3 has evolved from Filter 2. 

The success rates for evolutions of the filter screen are shown in Figure 57. It can be 

seen that, in most cases, later screens are indeed more successful and the slight 

modifications to the screening conditions in the filter screen have been beneficial 

overall. The rate of success for Filter 2 is ~2% which falls to 1% for Filter 3. 

However, Filter 3 was only used with three projects so the sample size is too small to 

determine whether the modification to the screen was really detrimental or whether 

the result is just due to the proteins involved. Conversely, it is known that Filter 5 has 

an artificially high success rate of ~12% due to a particular project involving proteins 

that tended to crystallise easily. A similar pattern can be seen for the sparse screen, 

with the initial Sparse 0 having a success rate of 1.5% and this being gradually 

improved to 4% for the latest version, Sparse 3. 

7.2. Discussion and Conclusions 

7.2.1.  Average Success Rate  

One issue with the use of the propensity formula is how to calculate the average 

success rate (AS) and from what data. The problem is that AS is described as the 

number of successful trials divided by the total number of trials. The total number of 

trials could include screens that have had no success and failed projects or just 

include those that have been successful on at least one protein. If a specific screen is 

being considered, then the total number of trials may mean the number of trials for 

that particular screen.  

 

The AstraZeneca screens selected for analysis were those that were commonly used. 

The removal of screens that were only used once or had no positive (successful) 

results means that we have, therefore, modified our AS. 

7.2.2. Hypersensitivity 

As most crystallisations trials are unsuccessful, the number of successful trials for 

each set of conditions is very small. This affects the reliability of the calculated 
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propensity, which is sensitive to small changes. For example, 2 successful trials out 

of 15 would give a RS of 0.133 (3 sig. fig.), divided by the average success rate of 

0.02 giving a propensity of 6.67 (3 sig. fig.). Having 3 successful trials out of 15 

gives a RS of 0.2, divided by the average success rate (0.02) gives a propensity of 10. 

By our definition of propensity this means that something that was 6 times more 

likely to crystallise than average is now rated 10 times as likely due to one crystalline 

result. It is also important to note that the rate of success is calculated from an 

observed rate and therefore changes from screen to screen.  

7.2.3. Protein Dependent Success Rate 

The average rate of success calculated depends on the number of trials with specific 

proteins and can be artificially raised by repeated experiments with those that 

crystallise easily in many different conditions. For example, one screen involved 7 

projects in a total of 4,473 trials, 5 of the projects were successful in 542 of the trials. 

The rate of success for this screen is therefore ~0.12 (542/4473), which is 

significantly higher than the ~0.02 obtained for all other screens. Further 

investigation revealed that one of the 5 successful projects crystallised in 432 of 646 

trials. This project has such a high success rate (~0.66) that the overall rate of success 

for the screen is artificially high. If data related to this project is left out of the 

calculations, the screen has an average ~0.02 success rate. 

 

A higher rate of success for a particular screen, therefore, does not necessarily mean 

that it has a significantly higher chance of crystallising a new protein, but can simply 

mean that a particular project was crystallised numerous times in it. 

7.2.4. Conclusion 

A comparison of the results obtained for the propensity of pH and chemical species 

in our study shows some differences with those obtained by Rupp and Wang. For 

example, PEG 2000 MME is their most successful chemical with a propensity of ~ 

2.4, but our results show a propensity of ~ 1.5. Of the 10 chemicals with the lowest 

propensities in our dataset, only one, MPD, is in the 10 lowest propensities of Rupp 

and Wang. The top 10 are broadly similar groups, highlighting the fact that PEGs are 
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highly successful chemicals. However, their presence in a solution can artificially 

boost the propensity other chemicals in the crystallisation solution. 

 

The complex nature of crystallisation means that changes in one parameter affect the 

results of another in a nonlinear way. As our data is limited to only specific 

combinations of chemicals/pH/protein it is difficult, using the propensity metric, to 

make any solid conclusions about revising the AstraZeneca screens to make them 

more successful. In order to provide a reliable measure, propensity calculations 

would need to involve combinations of chemicals, requiring much more data. As 

well as understanding the properties of the parameter space, it is clear that the 

properties of the protein also require analysis. As this data was not available to us it 

was not possible to link specific protein properties with patterns in crystallisation 

parameter space. 

 

The use of a statistic such as propensity provides an insight into success rates of pH 

and chemicals within a screen. It can provide statistical evidence that certain 

chemicals with anecdotal evidence of success, do not actually work. Conversely, it 

can provide support for chemicals with known success. The AZ crowns were 

removed from screen because they were observed as poor crystallisation reagents. 

However, due to the interdependence between chemicals and pH, the poor 

performance of chemical x might simply be because more buffer is required.  
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8. Minimal Set of Conditions 

Crystallisation screens cover a large range of crystallisation parameter space using 

different methods of sampling, many of which are described in the section below. 

Some are a systematic sampling of the space and some are designed with a target in 

mind. Here, we describe our method for a multi-target initial screen, which samples 

space in a non-systematic manner. We are able apply our algorithm to data from 

AstraZeneca and the PDB to design screens that, if used from outset, would have 

crystallised the maximum number of proteins while using the minimal number of 

conditions. In 1937, Laufberger crystallised ferritin by adding cadmium salts directly 

onto slices of the horse spleen (Laufberger, 1937, McPherson, 1991). Unfortunately, 

not all proteins crystallise so readily and are usually screened against various 

combinations of chemical species at different concentrations and pH in order to 

identify suitable crystallisation conditions. Carter and Carter (1979) used a factorial 

approach (Fisher, 1942) to rationalise the process of protein crystallisation screening. 

A complete factorial design is the systematic sampling of every combination of 

parameters. For protein crystallisation the number of possible salts, polymers, 

organic and non-organic solvents, detergents and other additives, at different 

concentrations, pH and temperatures, makes such a search impossible. Therefore, a 

method of incomplete factorial design was devised to sample a subset of parameter 

combinations. Carter and Carter explored 6 parameters: precipitating chemical, pH, 

temperature, divalent cation, counter anion and counter cation, further broken down 

into specific chemicals or units. For example, pH was investigated at just 4 levels: 

pH 4.5, 5.5, 6.5 and 7.5. In total, 35 combinations were used whereas a complete 

factorial design would have required 4,032. The volume of ethanol is the only 

difference between the two combinations in the example below and, therefore, only 

one of them would be included in the incomplete factorial screen: 

 

Combination 1 

pH 5, 289K, 15% PEG 3350, 200mM sodium chloride, 

100mM ammonium sulfate, 5% ethanol. 

Combination 2  
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pH 5, 289K, 15% PEG 3350, 200mM sodium chloride, 

100mM ammonium sulfate, 10% ethanol. 

Carter and Carter found polyethylene glycol (PEG) to be favourable for crystal 

growth, whereas they found sodium and ammonium salts detrimental. This latter 

conclusion was reached based on one protein, for which the best results were 

reported as ‘single, three-dimensional crystal showing little or no diffraction’. A 

later, more comprehensive study showed that the best crystals were actually obtained 

in ammonium sulfate with the previous apparent negative effect on crystallisation 

explained as misidentification of crystalline precipitate (Carter et al., 1988). 

 

 

 

 
Footprint 

 
Grid 

 
Random 

 

Figure 58: Crystallisation parameter space sampling. 

Representations of crystallisation screens that use different sampling methods are shown. 

The footprint screen is represented by blocks of three rows of three blue cubes spread across 

parameter space, the grid screen is shown as a block of nine red cubes on the centre left and 

the random screen is represented by nine yellow cubes spread randomly across parameter 

space. 

 

The sparse matrix screen was designed to sample those conditions known to be 

favourable for crystallisation rather than provide a systematic sampling of 
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crystallisation parameter space. Jancarik and Kim (1991) compiled a list of 50 

favourable crystallisation conditions, as determined from their own and others’ 

experience. This sampling of crystallisation parameter space is similar to random 

(non-systematic) sampling as shown in Figure 58. The rationale for the screen design 

is that, provided approximate crystallisation conditions are found for a particular 

protein  i.e. result in some form of crystalline material , it is then ‘relatively easy to 

optimise the conditions’ to obtain a diffraction quality crystal (Jancarik & Kim, 

1991). As more crystallisation experiments are performed, more information 

becomes available about conditions that can then be used to update the screen. The 

original screen of Jancarik and Kim included the use of ammonium and sodium salts 

and half of the conditions contained PEG of various weights. A total of 46 proteins 

were trialled in this initial screen and all 15 proteins that had previously been 

crystallised with other screens produced crystals. Of the 31 proteins that had not been 

crystallised before, 26 produced crystals, giving a success rate of 84%. However, no 

crystal quality is reported and it is not known whether structures could have been 

determined from the crystals obtained.  

 

The grid screen is described by McPherson (1989b) as a 24-well screen in which the 

concentration of precipitant is varied across six columns, with the pH varied down 

four rows (centre left grid, Figure 58). A pH range between 3.5 and 9.0 is suggested, 

to be reduced or extended as appropriate, with ammonium sulfate or PEG 4000 as the 

initial precipitant. If sufficient protein is available it is recommended that an organic 

solvent, specifically ethanol or MPD, also be tested. They also recommend that all 

conditions be tested at both 4
º
C and 25

º
C for comparison. Should a protein still not 

crystallise the use of complexes, ligands or alternative forms of the same protein 

could be tried. The screen can be used to determine how precipitant concentration 

together with pH affects the growth of protein crystals. In contrast to the incomplete 

factorial screen, which aims to sample crystallisation space as widely as possible, the 

grid screen involves a very detailed and systematic search of particular regions. A 

combination of the two methods, i.e. the identification of a region followed by an in-

depth search, is thought to be the best approach (Jancarik & Kim, 1991, McPherson, 

1992). To achieve this the PACT screen was developed (Newman et al., 2005) as 

part of a two-screen strategy. The first screen, a sparse matrix, was followed by the 

PACT screen - a systematic sampling of pH, anions, cations and PEG. Such 
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sampling allows for insights into regions of parameter space which are favourable to 

crystal growth, for specific proteins, without obtaining a crystal. The results serve to 

prove this strategy is successful, crystallising 20/34 (58%) proteins that had never 

been crystallised before. 

 

Another type of screen, the footprint screen (Stura et al., 1992), is a 24-well screen 

utilising six different precipitants across the columns with pH varied over the four 

rows (represented by three separate blocks of three blue cubes in Figure 58). 

Although the choice of precipitants includes PEG 4000 and ammonium sulfate, the 

authors note that ammonium sulfate is usually avoided at high pH as the release of 

ammonia can change the pH. The precipitants chosen are those used ‘successfully in 

the crystallisation of many proteins’ (Stura et al., 1992). 

 

In the years following the publication of the sparse matrix screen several 

complementary screens were designed to sample the parameter space not covered by 

the sparse matrix screen. The screen of Cudney et al. (1994) is one such screen 

designed to use novel chemicals, suggested by their own experience, to ‘uncover new 

additional leads for further optimisation’. In trials with the novel chemicals, crystals 

were obtained for previously uncrystallised proteins as well as those that had been 

crystallised before.  

 

The MORPHEUS screen developed by Gorrec (2009) is intended to be used as an 

alternative initial screen. Gorrec reports that even with 40 commercial screening kits 

covering over 1,500 conditions many proteins still do not produce diffraction-quality 

crystals. Even so, many of the conditions are repeated across commercial screening 

kits (Wooh et al., 2003). The MORPHEUS screen contains ligands and additives 

such as amino acids in the crystallisation solution, although Gorrec also notes that 

the inclusion of ligands and additives can sometimes have a detrimental effect. With 

successful crystallisation trials reported for previously uncrystallised proteins, the 

MORPHEUS screen shows that there is still potential for alternative initial screens. 

 

Others have tried to improve the efficiency of crystallisation screens particularly for 

situations where limited protein is available. Brzozowski and Walton (2001) created 

a pair of screens both containing just 24 wells, a reduction of 75% of the standard 96-
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well plate. Their first screen was designed to improve crystallisation success for 

enzymes, the main protein group studied in their laboratory. Using this screen, they 

crystallised proteins that had not previously crystallised in commercially available 

screens. In their second screen they developed a complementary set of conditions 

with different sections of the screen containing a specific chemical species. The 

screens are designed to allow the user to incorporate any available information about 

the protein or to include particular preferred conditions. 

8.1. The Most Efficient Screening Method 

The rate of success, that is the number of proteins crystallised divided by the number 

trialled, varies from screen to screen. A comparison of the three different major 

screening methods was undertaken by Segelke (2001) who tested the random, 

footprint and grid screens with five proteins. The results of five proteins (four of 

which are commercially available) suggest that the most successful screen type is the 

random screen. Results from the TB SGC show that random screening can also be 

used to obtain diffraction quality crystals without optimisation (Rupp, 2003).  

 

Here a similar analysis of the AstraZeneca dataset was performed to investigate the 

efficiency of their different screen types. Using data from two screen types - filter (a 

mix of footprint and grid screens) and sparse (a sparse matrix screen) we show that 

sparse matrix sampling is also the most efficient method for the proteins studied at 

AstraZeneca (Table 16). 

 

 Screen  
Projects 

Trialled 

Projects 

Resulted in 

a Score of 

4, 5 or 6 

Projects 

Resulted in 

a Score of 

6 

RS  

Score of 

4, 5 or 6 

(%) 

RS  

Score of 6 

(%) 

C1 
Sparse 151 131 80 86.75 52.98 

Filter 88 60 37 68.18 42.05 

C2 
Sparse 87 77 53 88.51 60.92 

Filter 87 58 37 66.67 42.53 

 

Table 16: Comparison of screens' success. 
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Here, we show the rates of success (RS) for each screen type, filter and sparse. Comparison 

one (C1) accounts for the projects used in the named screening type; comparison two (C2) 

only takes into account projects used within both screen types. The rates of success are 

calculated by the number of projects with a particular crystalline annotation (4, 5, 6) divided 

by the number of projects trialled in that screen type.  

The first comparison (C1) involved any project that had been trialled in the named 

screen type, whereas in the second comparison (C2), only projects tried in both 

screen types was included in the analysis. Both comparisons show that the sparse 

screens produce crystalline results for about 20% more proteins than the filter 

screens. Furthermore, high quality crystals are obtained for between 10% and 20% 

(for C1 and C2 respectively) more proteins with the sparse screens. 

 

3 3 3 3 3 3 3 4 4 3 3 3 

2 3 2 1 0 2 0 1 3 0 1 0 

2 5 6 13 9 5 1 2 5 7 4 4 

2 4 10 10 6 7 2 3 6 6 2 2 

1 3 3 2 2 2 3 3 3 2 0 2 

4 8 11 16 13 9 4 8 9 9 7 4 

6 9 9 9 7 6 5 5 10 9 7 5 

1 7 12 14 12 8 2 7 11 10 11 8 

 

Figure 59: Heat plot of proteins crystallised in Filter 6 (59). 

The figure shows the number of projects crystallised by each condition in the Filter 6 screen, 

for which the mean number of projects crystallised is 5.28. The most successful (shown in 

yellow) crystallised 16 projects and the least successful conditions (shown in white) did not 

crystallise any projects.  

 

As sampling in a non-systematic manner is the most efficient method for initial 

protein screens, the question becomes how to select such conditions. Jancarik and 

Kim (1991) observed that many proteins would crystallise in several conditions and 

so it follows that many conditions could be used to crystallise several proteins. 

Analysis of a set of 59 projects that were trialled in every condition of the Filter 6 
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screen also shows this (Figure 59). The mean, median and mode number of projects 

crystallised in each condition are 5.28, 4.5 and 2 respectively. A total of 16 projects 

were crystallised in the most successful conditions whereas some conditions did not 

produce crystals for any projects. It comes as no surprise, following propensity 

analysis, that the most successful condition contains PEG 3350 and ethanol buffered 

at pH 8.5. Generally the most successful rows of the screen (shown in red) are rows 6 

to 8, all of which contain PEG. Conversely, the least successful conditions contain 

either MPD buffered at pH 9.5 or tetramethylene sulfone at varying pH. Rows 2 and 

5 containing these chemicals are shown in the palest colours in Figure 59. 
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Figure 60: Flowchart for implementation of the minimal set algorithm.  

 

As some conditions crystallise numerous proteins, the minimal number of conditions 

in which all the successful projects have crystallised can be calculated. This NP-hard 

problem can be solved using mathematical minimal set theory (Karp, 1972). A 

problem is NP-hard if the algorithm for solving it can be translated into one that 

could solve an NP-problem. NP refers to nondeterministic polynomial, which means 

is can be solved by a nondeterministic Turing machine in polynomial time (the time 

taken to provide a solution is a polynomial function of the number of inputs). 

 

 Project ID  

Well  A B C D E F G H Sum 

1 ♦ ♦ ♦ ♦     4 

2 ♦     ♦   2 

3  ♦   ♦   ♦ 3 

4    ♦     1 

5   ♦ ♦   ♦  3 

 

♦ Crystal 

 

Figure 61: Example of a minimal set algorithm. 

The figure shows which of the five conditions (wells 1-5) the eight projects (A-H) produced 

crystals. The algorithm to find the minimal set of conditions is as follows: 

1. Identify the well in which most projects crystallise: this is well 1 for projects A, B, C 

and D. 

2. Find the well in which most projects not already crystallised in well 1 crystallise: 

this is well 3 for projects E and H. 

Six of the eight projects are now accounted for (A, B, C, D, E and H). Conditions only need to be 

found for project F and G. 

3. Add well 2 in which project F crystallises and well 5 in which project G crystallises 

and the set is complete. 

4. Remove any members of the set that do not contribute something unique: remove 

well 1 as projects A, B, C and D also crystallise in wells 2, 3 and 5.  

The minimal set required for crystallisation of the 8 projects consists of wells 2, 3 and 5. 
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A greedy algorithm, for which the flowchart is shown Figure 60, was employed to 

ensure a solution in a reasonable amount of time. A greedy optimisation algorithm 

chooses the optimal solution at each step but may not result in the overall optimal 

solution, as this may not be the sum of the optimal parts. The example in Figure 61 

shows the implementation of a minimum spanning set across conditions in which 

proteins crystallise. The first step in the algorithm is to identify the condition that 

crystallises the most proteins and save this to a set MSET. The next step identifies 

the condition that crystallises the most proteins not already accounted for by MSET 

and is repeated until (a) either there are enough conditions to fill a crystallisation 

screen or (b) all possible proteins are accounted for. At this stage, each condition in 

MSET is checked to ensure it crystallises at least one protein that another condition 

in the set does not.  

8.2. AstraZeneca Minimal Sets 

For each screen (96 conditions/wells) used to produce the AstraZeneca data, a 

minimal number of conditions that gave crystals for all projects that could be 

crystallised was found. 

 

Table 17(a) shows that the minimal set that gave crystals for the most projects per 

condition, is that of Sparse 0 with an average of 4.33 projects crystallising in each 

condition and one condition (containing PEG 8000 and calcium acetate) giving 

crystals for 33 different projects. Conversely, just one project crystallised in each 

condition in the Sparse 1 screen. Table 17(b) shows the results for minimal sets 

calculated over those projects that were trialled in every condition. This also shows 

that, on average, the Sparse 0 screen minimal spanning set gives crystals for the most 

projects per condition (4.8) and again Sparse 1 is shown to be the least efficient with 

one condition per project in the minimal set. This result could be expected as there 

are fewer projects and therefore a smaller minimal set with higher redundancy. For 

each screen, at least one condition produced crystals for ~40% of the projects 

trialled. In the most extreme case of Filter 4, one condition gave crystals for 7 out of 

the 11 proteins (~64%). Kimber et al (2003) also showed that a single condition 

could give crystals for a high percentage of proteins, with 99 successes out of 338 

(~29%). The redundancy rate is the percentage of wells not included in the minimal 
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and ranged from 81% for Sparse 0 up to 98% for Filter 3. Page et al. (2003) also 

reported high redundancy rates of up to 77%, with 23% of conditions giving crystals 

for all proteins trialled (Page et al., 2003). 

 

Screen Minimal Set Size Maximum* Redundancy (%) 

Filter 2 4 8 96 

Filter 3 2 2 98 

Filter 4 3 7 97 

Filter 5 3 3 97 

Filter 6 10 16 90 

Sparse 0 18 33 81 

Sparse 1 2 1 98 

Sparse 2 6 6 94 

Sparse 3 16 20 83 

(a) The minimum number of conditions required for crystallisation of all projects. 

 

Screen Minimal Set Size Maximum* Redundancy (%) 

Filter 2 3 7 97 

Filter 3 2 3 98 

Filter 4 3 8 97 

Filter 5 2 4 98 

Filter 6 8 36 92 

Sparse 0 15 73 84 

Sparse 1 2 2 98 

Sparse 2 6 16 94 

Sparse 3 16 56 83 

(b) The minimum number of conditions required for crystallisation of all projects 

that were trialled in every condition of the named screen. 

 

Table 17: Minimal sets for AstraZeneca projects. 

Tables (a) and (b) show the size of the minimal sets and redundancy rates for AZ screens. 

The results for Table (a) included any project that had been trialled in that screen, whereas 
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the results for Table (b) were calculated using projects that had been trialled in all 96 wells 

of the screen. 

* This is the maximum number of projects that could be crystallised in one condition.  

To improve efficiency, the number of conditions trialled within the screen could be 

reduced by only including a minimal set of conditions. Replacing the other 

conditions with new ones could improve the chances of crystallising more proteins. 

The number of projects crystallised has a strong correlation with the size of the 

minimal set. As the number of projects trialled with a screen increases, the number of 

conditions included within the minimal set also increases (redundancy decreases). To 

investigate how successful the conditions within the minimal spanning might be with 

a new project, it is necessary to test the stability of the size of the minimal spanning 

set. Stability is defined as the percentage of projects required for the minimal set size 

to stop changing i.e. the fewer proteins required for the size of the minimal set to 

stabilise, the greater its reliability. It is likely that project n and project n+1 are 

proteins which are chemically similar, as typically each protein modification is 

assigned a new project number and this may bias the stability of the set. To reduce 

any such bias, the order in which the projects were included was randomised.  

 

For the first project on the project list we randomly select the condition in which it 

crystallised and form the list of conditions, MSET. The remaining projects for the 

same screen are checked to see if they crystallise in this condition. If they do, they 

are removed from the project list. Another project is then randomly selected from the 

project list and the conditions in which this project crystallised are added to MSET 

and checked to see if projects already removed from the project list crystallise in 

these conditions. If this is not the case then the project is simply removed from the 

project list. Otherwise, the minimal set algorithm is run on MSET, to determine the 

smallest subset of MSET that will crystallise all projects removed from project list. 

This process is repeated until all projects are removed from the project list. The size 

of MSET might stop increasing before all projects are removed from the project list. 

The percentage of projects that have been removed at this point is indicative of 

MSET stability. 

 

Table 18 shows that a high percentage of projects is required for the size of the 

minimal set to stabilise. The percentage of projects required ranges from 75% for 
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Filter 5 up to 100% for Filters 2 and 3 and Sparse 1. It is highly probable that the 

order of testing affected the percentage of projects required for the size of the 

minimal set to stabilise. This can be demonstrated by the following example: 

consider ten projects of which nine crystallise in one condition and one project 

requires a separate condition. Starting the minimal set derivation with the project that 

requires a unique condition gives an initial of one condition. The other nine projects 

do not crystallise in this condition and so a project from the remaining nine is added 

and the size of the minimal set is increased to two. It would then be found that the 

remaining eight projects crystallise in these two conditions so that the percentage of 

projects required for the size of the minimal set to stabilise is two out of ten (20%). 

However, if the order was changed so that each one of the nine projects that 

crystallise in the same conditions, were added before the project that requires unique 

conditions, all ten projects would need to be tested before the minimal stabilised and 

produced crystals all projects. 

 

Screen Projects Required Projects Crystallised Projects Required (%) 

Filter 2 7 7 100 

Filter 3 3 3 100 

Filter 4 7 8 88 

Filter 5 3 4 75 

Filter 6 35 36 97 

Sparse 0 60 73 82 

Sparse 1 2 2 100 

Sparse 2 15 16 94 

Sparse 3 54 56 96 

 

Table 18: Number of projects required for minimal set size to stabilise. 

The minimal set of conditions changes depending on which projects are sampled. It is 

possible that a minimal set to crystallise all projects is found before all projects have been 

trialled. Here, the number of projects required for the minimal spanning set to stop changing 

size is shown in Projects Required. 

  

Further analysis was undertaken to determine the number of projects that could not 

be crystallised with a minimal set of conditions derived from the other projects 
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within the same screen. For every screen, each project was removed in turn and a 

minimal set of conditions found for the remaining projects. It was then determined 

whether or not the removed project could be crystallised in this minimal set. Table 19 

shows the number of projects, S, for each screen that when removed could be 

crystallised in the minimal set of conditions derived from the remaining projects. 

 

To establish whether it would be more efficient to adopt a minimal set for all 

projects, then use an extra screen to crystallise those that will not crystallise in the 

minimal set, requires calculation of how many conditions would be needed to use 

this method in comparison to screening everything with the standard 96 conditions 

(the standard screening protocol). 

 

For the minimal set to be the most efficient method, the following condition has to be 

met: 

 

 

where P is the number of projects, S is the number of projects that can be crystallises 

in a minimal set derived from other projects and M is the number of conditions 

within the minimal set. Rearranging equation 30 gives: 

 

 

which shows that it is more efficient to use the minimal set provided its size, when 

divided by 96, is less than the number of successes divided by the number of 

projects. 

 

Table 19 shows that, for eight out of nine screens, it is more efficient to use a 

minimal set of conditions as the crystallisation screening protocol. Sparse 1, with 

only two projects trialled, is the only screen where this is not the case, no single 

condition gave crystals for both projects. 
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Screen Successes (S) Projects (P) P-S  (%) Minimal Set Size Apt* 

Filter 2 3 7 4 57 3 Yes 

Filter 3 1 3 2 67 2 Yes 

Filter 4 4 8 4 50 3 Yes 

Filter 5 2 4 2 50 2 Yes 

Filter 6 30 36 6 17 8 Yes 

Sparse 0 58 73 15 21 15 Yes 

Sparse 1 0 2 2 100 2 No 

Sparse 2 11 16 5 31 6 Yes 

Sparse 3 43 56 13 23 16 Yes 

 

Table 19: Minimal set of conditions efficiency. 

The number of projects that can be crystallised in a minimal set derived from the other 

projects trialled with the same screen. If a project would not crystallise in a minimal set 

derived from other projects, then standard screening protocol is resumed. *Apt means is it 

more appropriate to use the minimal set?  

8.2.1. Minimal Set for Combined Screens 

At AstraZeneca, nine crystallisation screens, covering 281 conditions were used with 

152 projects. Of these 152 projects, 134 were successfully crystallised. Using a 

greedy algorithm, as described previously, we were able to obtain a set of 27 

conditions in which the 134 projects could be crystallised. Where two or more 

conditions contribute the same number of projects, the algorithm chooses the one it 

finds first. To examine the effect this might have the algorithm was run 1,000 times. 

For 583 runs the minimal set was of size 27, for 382 runs the size was 28 and for 35 

runs the size was 29. 

 

The minimal set with conditions in which the most projects could be crystallised was 

taken as the optimal minimal set. As Figure 62 shows, two different minimal sets 

(Set One and Set Two) can be used to crystallise all six projects with three wells. The 

sum of the parts for Set One is 2+4+3=9 and the sum of the parts for Set Two is 

2+2+3=7. In this instance Set One would be chosen as the sum of the parts is greater. 
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Figure 62: Comparison of two minimal sets. 

An example of two minimal sets, both consisting of 3 wells where one set (Set One) gives 

more crystals overall than the other. 

 

For the all projects minimal set, the sum of parts was 640 projects, with two very 

successful conditions each giving crystals for 48 projects and the least successful 

condition producing crystals for eight projects. Over 50% of projects can be 

crystallised using just two conditions (one containing PEG 8000 and calcium acetate 

and the other PEG 3350 and ethanol), 75% in six conditions, 85% in ten conditions 

and 95% in 21 conditions. Of the 27 conditions, 15 only contributed one project. Of 

the 134 projects, 14 crystallised in only one condition, and 10 of these 14 are the 

only project associated with this condition in the minimal set. Similarly Kimber et al. 

(2003) found that 27% of their proteins would crystallise in 6 conditions, 36% in 12 

and 42% in 24.  

 

Some conditions are found to have components that are over-represented in the 

minimal set or under-represented in the original 281 conditions from which the 

minimal spanning set is derived. For example: PEG 10000 is used in 16 of the 281 

conditions and therefore, in a minimal set of 16 conditions, one might expect PEG 

10000 in two (16/(281/27)), but it is only observed once. Conversely, sodium 

chloride is found in 21 of the 281 conditions and might be expected to be in 2 
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conditions of the minimal set. It is, however, found in 4 conditions of the minimal 

set.  

 

Chemicals included more frequently in the minimal set than might be expected are 

PEGs-400,500 MME, 2000MME and 8000, ethanol and isopropanol and calcium 

acetate among others. In Chapter 7 the properties of such chemicals was discussed. 

Their inclusion in successful conditions is due, for example, to the precipitating 

effects of PEGs, the bonding of calcium-based compounds and the inclusion of 

additives such as ethanol as a cryoprotectant. Some of the chemicals found to be 

under-represented are: MPD, PEGs 10000, 6000 and 1500, magnesium acetate, 

ethylene glycol and tetramethylene sulfone. 

 

A new screening protocol at AZ might allow crystallisation space to be sampled in a 

manner that maintains the same ratios of chemicals in the minimal set. For example, 

it is known that sodium chloride is associated with conditions that crystallise 

numerous projects or ones that do not crystallise elsewhere, therefore, the inclusion 

of more conditions containing sodium chloride might prove beneficial. 

8.2.2. Filling Up the Screen 

As crystallisation plates are typically made up of 96 wells, the use of a 27-condition 

screen leaves 69 wells empty. These wells could be used to repeat the 27 conditions 

twice more as it is known that repetition is beneficial in crystallisation as nucleation 

is a stochastic process (Newman et al., 2007) or used to further explore chemical 

parameter space. Previously we showed that the more sparsely spread across 

parameter space the chemical conditions are, the more successful the screen is. To 

fill the remaining 69 positions of the screen it would be ideal to use conditions that 

are as chemically different as possible, in terms of their influence on crystallisation.  
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Figure 63: Identifying new crystallisation conditions. 

The flowchart shows the process to identify new conditions to improve the sampling of 

crystallisation space. 
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The C6 metric (Newman et al., 2010) and CDcoeff (Bruno et al., 2014) are two 

measures that provide a similarity metric between the contents of a crystallisation 

solution. We can use such a metric to determine the most diverse conditions in the 

281 conditions used at AstraZeneca. However, this might identify two solutions that 

are chemically different, but they may not be useful as crystallisation reagents, used 

only where the outcome was unsuccessful. Our best measure of how similar 

conditions were in terms of their propensity to crystallise is given by which projects 

crystallise in which conditions. 

 

A data matrix X was formed in which xij = 1 if project i crystallised in condition j, 

and xij = 0 otherwise. This allowed the Hamming distance between conditions to be 

calculated, giving the most similar conditions a score closer to zero and the most 

different a score closer to one. With a core screen made up of 27 conditions obtained 

through the minimal set algorithm, the other 69 conditions could be chosen as 

follows. The next condition would be the one that (a) crystallised a project and (b) 

was most different, according to the sum of Hamming distances, to the 27 conditions 

already identified. The process of identifying the new conditions for the screen is, 

again a greedy process, shown in Figure 63. After obtaining 96 conditions, the C6 

metric can be used to analyse the diversity of the new screen in comparison to 

previous screens. The 'internal diversity score’ on the C6 web tool can be used to 

determine the spread of conditions (Newman et al., 2010). This score is obtained 

from the average of the pairwise C6 distance scores for conditions within a screen 

and ranges from 0 (identical) to 1 (completely different). The new screen scored 

0.75. To put this in perspective, the internal diversity scores for commercially 

available sparse matrix screens are around 0.9. It is, therefore, possible that drawing 

from a limited sample of conditions and with one quarter (27/96) of the screen being 

fixed, contains bias towards highly similar conditions. 

8.3. Minimal Set for the Protein Data Bank 

Analysis of the PDB data shows that one crystallisation solution (30% PEG 4000, 

0.1M tris pH 8.5, 0.2M magnesium chloride,) occurs 90 times, with the successful 

crystallisation of 69 different proteins (i.e. from different groups in the PDB-BLAST 

dataset). Minimal set analysis of the PDB dataset shows that only 5,683 unique 
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conditions are required to crystallise all proteins, whereas 35,389 different conditions 

were actually used, giving a redundancy rate of 84%.  

 

 

 

Figure 64: The number of proteins required for minimal set. 

The number of proteins in the PDB is plotted against the numbers of conditions used to 

crystallise them. The growth of the minimal set becomes linear after 768 conditions have 

been included. 

 

Figure 64 shows the number of proteins that can be crystallised by different numbers 

of conditions. After 768 conditions are included, each protein not already accounted 

for requires its own conditions (according to the data in the PDB) so that the minimal 

set grows linearly with the number of proteins. The solutions in the minimal 

spanning set of 96 conditions (one screen) determined from the PDB data are listed 

in Appendix B. These conditions have been used to crystallise 1,905 of the 8,937 

proteins in the PDB (~21%). The similarity of sets of conditions can be assessed 

using the C6 metric (Newman et al., 2010). The C6 score has been used to show that 

1,795 entries in the PDB have similar conditions to those in the MCSG_1 screen, 

making this the most successful commercial screen. The 96 conditions in the 

minimal set derived here together match 2,929 entries in the PDB. The minimal set 

screen obtained from the PDB data has an internal diversity score of 0.93, suggesting 
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a very good sampling of crystallisation parameter space. This compares with the 

Hampton Index, MCSG_1 and Rigaku Wizard screens with diversity scores of 0.91, 

0.91 and 0.94 respectively. Currently (Spring 2015), the screen designed using data 

from the PDB is in trials in the York Structural Biology Laboratory at and AZ. 

8.3.1. Minimal Sets for Acidic and Basic Proteins 

Separate minimal sets were developed for proteins with acidic and basic isoelectric 

points. Proteins associated with BLAST groups that contained both acidic and basic 

proteins were removed, leaving 4,695 acidic and 2,125 basic proteins. Of these, the 

96 condition minimal set for the acidic proteins could crystallise 19% (915/4,695) 

and the basic, 16% (350/2,125). The average predicted pH for the minimal sets were 

6.73 and 6.67 for acidic and basic respectively. The most productive solution for 

acidic proteins contained magnesium chloride, PEG 3350 and bis-tris with a 

predicted pH of 5.5, whereas for basic proteins, ammonium sulfate, PEG 400 and 

HEPES with a predicted pH of 7.35 was the most productive. The most productive 

condition in the acidic minimal set is the eleventh in the basic minimal set; the most 

productive condition in the basic minimal set is the seventeenth in the acidic minimal 

set. 

 

Figure 65 shows the composition of the minimal sets when divided into the chemical 

groups described in Chapter 5. The type most sampled group for both sets is PEGs 

(27.6% for acidic and 20.9% for basic) and the least sampled group is the dihydrogen 

salts (0.4% for acidic and 2% for basic). The largest difference between the groups 

sampled in the two minimal sets is for the organics, with 14.2% of chemicals 

sampled in the basic minimal set being organic but only 2.9% in the acidic minimal 

set. Conversely, salts account for 17.6% of the species used in the acidic minimal set 

but only 10.1% in the basic. The acidic minimal set samples 56 different chemical 

species and the basic, 49. For the chemical species that the two sets have in common, 

54 are sampled at the same concentration, the acidic set samples 40 concentrations 

that the basic does not and the basic set samples 54 concentrations that are not in the 

acidic set. 
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(a) Types of chemicals for acidic minimal spanning set. 

 

 

 

(b) Types of chemicals for basic minimal spanning set. 

Figure 65: Types of chemicals occurring in different minimal sets. 

The chemical species found in two minimal sets (a) acidic and (b) basic are shown 

grouped as described in Chapter 5. 
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8.4. Discussion and Conclusions 

We have been able to confirm that non-systematic sampling of protein crystallisation 

chemicals is the most efficient method of initial screening. With this information, 

new initial screens were designed using minimal set theory, one for data at 

AstraZeneca and three for the PDB. 

 

There are, however, alternative methods of obtaining a minimal spanning set. Some 

of these provide exact solutions. One such solution for was obtained using SCIP 

(Achterberg, 2009) for the AstraZeneca data. This solution was 26 conditions, 

whereas the custom algorithm suggested 27 conditions. Of 26 conditions, 20 were 

identical to those in the custom solution and another 3 contained the same species but 

a different buffer pH. For larger datasets, if the problem cannot be solved exactly 

there exist other approaches that approximate the solution (Paschos, 1997). 

 

Minimal set screens could be particularly useful when the amount of protein purified 

is limited. The use of conditions that crystallise most proteins first should maximise 

the chances of crystallisation success. Using a minimal screen followed by a more 

specific screen for any proteins that do not produce crystals, could provide an 

efficient method of screening. Since the number of conditions required never stops 

growing, minimal sets can only be developed post-crystallisation with the hope they 

will work for a new protein.  

 

It has been observed that conditions are sometimes missed due to dispensation errors 

and those on the edge of a plate are vulnerable to desiccation if they are not sealed 

properly before being stored in a temperature controlled unit. Using repeated 

experiments it may be possible to determine any long term effects of these physical 

parameters. Minimal sets should also be updated perhaps every couple of years to 

account for changing tastes in crystallisation reagents (Jancarik & Kim, 1991) due to 

the requirement for more and more complex proteins (Aloy & Russell, 2006). It is 

possible to determine bespoke minimal sets for particular subsets of proteins, for 

example, minimal sets for acidic and basic proteins. There is the potential to create 

different minimal sets for specific protein families as it has been reported previously 
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that certain families prefer certain conditions (Samudzi et al., 1992, Hennessy et al., 

2000). 
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9. Shrinking Crystallisation 

Parameter Space 

The “instant physician” is a neural network that was trained using data from patient 

records, including their symptoms, diagnosis and treatment. When new patient 

symptoms are entered, the network returns the diagnosis and recommended treatment 

(Maithili et al., 2011). The symptoms are analogous to protein features and the 

diagnosis represents the conditions in which a protein will crystallise. Many of the 

protein features are redundant through being highly correlated with others or having 

little-to-no discriminatory power. It has been shown that a set of 13 features can 

provide good discrimination between crystallisable and non-crystallisable proteins. 

The assumption that the protein features and the list of conditions are all inputs and 

that the output is either successful or unsuccessful crystallisation creates a problem. 

As most crystallisation data (98% of the AstraZeneca data) is associated with 

experiments where the outcome is unsuccessful, a large bias is introduced. A 

classifier could perform well in terms of accuracy simply by predicting that every 

combination of protein and crystallisation features would fail crystallisation but this 

would not be very useful. Ideally, a classifier would be trained using equal class 

sizes.  

 

By defining which chemical combinations we consider to be chemically similar, 

meaning that they give similar experimental outcomes, it is possible to cluster 

conditions. Provided one condition in the cluster crystallises a protein we can assume 

the other ones would if the experiment was repeated. Using custom crystallisation 

experiments we are able to investigate the theoretical distance, C6 metric, for 

defining similarity in crystallisation chemical parameter space. Using data from AZ 

and the SGC we test the C6 against a modification, C8. 
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9.1. The C6 Metric 

The C6 web tool (Newman et al., 2010) includes a distance metric, referred to as C6, 

to compare the contents of crystallisation conditions i and j, providing a theoretical 

distance, Dij, between the two in chemical parameter space. Where Dij = 0 if 

conditions are identical and Dij = 1 if the two conditions have no chemical species in 

common. In all other cases it is defined by: 
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In every applicable term, max[x], is the maximum concentration of x obtained from a 

collection of commercial crystallisation screens. In the normalising factor, (1/T+3), 

in Equation 32, T is the number of distinct chemical species in conditions i and j. The 

first term, α (Equation 33), compares the concentrations of matching species, where 

[sti] is the concentration of chemical t in condition i. The molecular weights of any 

PEGs in both conditions are taken into account in the second term, β  Equation 34). 

If the molecular weights are within a factor of two, they are considered similar. For 

example, PEG 400 and PEG 600 are considered similar, but PEG 400 and PEG 4000 
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are not. Here, [PEGi] is the PEG concentration of PEG in condition i. The penalty, 

0.2 is added to compensate for the fact the distant metric is qualitative. If this term is 

greater than one then, then β is set to one. If the two conditions contain an anion or 

cation in common, they are considered to be more similar. This is accounted for by 

the third term, γ (Equation 35). For example, sodium chloride and lithium chloride 

are considered similar as they both contain chloride. Similarly, ammonium sulfate 

and ammonium acetate both contain ammonium. In this term, [ioni] is the 

concentration of the ion in condition i and 0.3 is the added penalty. Again, if γ > 1 

the term is set to one. The final term, ∂  Equation 36) is the absolute difference 

between the pH of both solutions (taken from the buffer pH or that of the 

predominant component) divided by the pH range for crystallisation.  

 

Manually entering every pair within 96 conditions into the C6 online web tool was 

impractical. Moreover, some of the distances obtained were not as expected given 

the equation. After obtaining the code from the authors, it was possible to see that the 

implemented distance measure differed somewhat from the published equation 

(Newman et al., 2010). Along with the four terms discussed above, the measure 

implements further penalties for differences between conditions. 

9.1.1. Investigation of the C6 Terms 

To investigate any similarities between PEG weights and various ions used in 

crystallisation, custom crystallisation screens were created. Each screen was trialled 

with 11 of the proteins described in Chapter 2 (excluding the glycolytic proteins). All 

of the proteins were obtained from the same batch, which had been frozen and were 

defrosted to room temperature immediately before use. The conditions were buffered 

using PCTP at a pH close to that of the protein's isoelectric point. The crystallisation 

method was vapour diffusion, sitting drop, stored at room temperature. The screens 

were manually assessed after 21 days. 

 

To investigate similarities between PEGs, a custom screen was produced with PEGs 

of various molecular weights, various functional groups (mono-, di- methyl ethers), 

ethylene glycol and tetramethylene sulfone, each in various concentrations. Ignoring 

pH and molecular weight, the most successful concentrations were found to be 14%, 
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20% and 26%, each crystallising 9 of the 11 proteins. The same nine proteins 

crystallised at both 20% and 26%, and eight of these also crystallised at 14%. 

Conversely, the most extreme concentrations were the least successful, with just one 

protein being crystallised in any condition with PEG concentrations of 1%, 52%, 

77% or 90%. Grouping PEGs according to the maximum concentration at which they 

are soluble, shows that PEGs with a weight of 10,000Da or 20,000Da, soluble to a 

concentration of 27% (w/v) are more successful at concentrations of 8%, 12% and 

15%. Those PEGs that have a molecular weight less than 10,000Da, soluble up to 

45% (w/v), are more successful at 20% and those that can be used up to 

concentrations of 90% are more successful at 26%. In all instances no single 

concentration could be used to crystallise all proteins but a selection of 14%, 20% 

and 39% would ensure that all proteins were crystallised.  

 

 

Figure 66: Success of PEG conditions in relation to their pH and concentration. 

Crystallisation results for 11 proteins across 552 conditions containing buffered PEG 

solutions. Successful crystallisation is indicated by blue diamonds and unsuccessful 

experiments by red circles. 
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Hierarchical clustering of the PEG results suggests that concentration and pH are the 

dominant parameters defining the difference between success and failure. Linear 

discriminant analysis and a one-layered ANN gave similar results. 

 

Figure 66 shows the distribution of the conditions from custom screening using their 

spectrophotometric pH, PEG concentration and whether they crystallised. Most 

crystals are obtained between pH 5.5 and pH 9, and at concentrations between 5% 

and 35%. This zone contains PEGs of different molecular weights and functional 

groups. Of the 24 PEG-like chemicals trialled, 19 are found at least once within this 

zone. The other five chemicals are two non-PEG chemicals, tetramethyl sulfone and 

ethylene glycol, the highly acidic PEG 2000 dimethyl ether (pH ~2), and the low 

molecular weighted PEG 200 and PEG 400. These latter two have been found 

previously to crystallise a different set of proteins to other PEGs, (Kimber et al., 

2003). We have also observed that the pH of PEG 400 is not stable under any storage 

conditions. 

 

This distribution suggests that the different weights of PEGs does not affect their 

similarity in terms of which proteins they crystallisation. These findings are also 

supported by those of Zhu et al. (2006) who describe the phase diagram for PEG 

3350 at 21
o
C (the temperature at which we crystallised our proteins). They state that 

the concentration range in which nucleation would occur being from 18%w/v to 

30%w/v. 

 

A potential modification to C6 would take the concentration of PEGs into account 

rather than molecular weight. In this modification, the β term is only included where 

PEGs are within 5% to 40% concentration. For any concentration outside this range, 

the β term is not used. So for example: 15% PEG 400 and 39% PEG 600 are 

considered similar and the β term would be used, but for 4% PEG 400 and 39% PEG 

600 or 12% PEG 400 and 41% PEG 600, the β term would not be used. 

  

A set of similar experiments to that of the PEGs was performed for salts. A total of 

30 salts with anion sand cations of different valences, were trialled at different 

concentrations with 11 proteins. 
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Unlike the results of the PEGs, however, there was no obvious pattern in 

crystallisation results. Even ignoring variables such as pH and concentration did not 

suggest that salts with shared ions were the same in terms of what they crystallised. 

The results of the three buffer levels 5, 7 and 9 were combined as there were few 

successful crystallisation results. The most successful chemical was potassium 

bromide, crystallising 9 out the 11 proteins. The least successful were potassium 

phosphate, ammonium fluoride and sodium bromide all crystallising just one protein, 

thaumatin. The fact that thaumatin crystallised in 25 of the 30 salts, means that it is a 

property of the protein rather than the salt that allows crystallisation in these three 

salts. The average salt crystallised four proteins and the average protein crystallised 

in 11 salts. All proteins crystallised in three salts, potassium bromide, calcium 

chloride and sodium phosphate. Interestingly, these three salts all have a different 

cation and anion group which might suggest that different protein properties have 

different interactions with different chemicals in the crystallisation solution. Using 

the results of McPherson (2001) study of salts, we performed cluster analysis and 

found that few chemical species giving similar crystallisation results had matching 

ions. As a consequence, the ion term, γ, of the formula can be removed. 

 

The final term in the C6 metric is related to pH. We modified this term by limiting 

the normalisation range to two pH units so that solutions that are not within two pH 

units of each other are considered to be significantly different. We showed earlier 

that when pH is carefully controlled and measured, most crystals for a particular 

protein are found within a narrow pH range.  

 

In the modified metric we used the more accurate pH predicted by a regression 

model from the concentrations of the chemicals and the buffer pH to obtain a more 

accurate value for the true pH, rather than simply using the buffer pH. In instances 

where the buffer pH is not stated the pH term is not used, as in the original C6. 

 

We refer to the modified C6 metric as C8. 
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9.2. Comparison of the C6 and C8 Metrics 

In order to compare the results of experimental data to the theoretical C6 and C8 

distances, we initially used the Hamming distance to provide experimental distances. 

A 39 × 96 matrix of 1’s and 0’s was created from 39 projects that had been trialled in 

all 96 conditions of the Filter 6 screen. The element on the ith of the jth column was 

set to 1 if the project i crystallised for in condition j and 0 otherwise. The Hamming 

distance was then calculated from this matrix for each pair of conditions. It became 

apparent that the clustering (not shown) was predominantly grouping together 

conditions that were similar due to being highly unsuccessful. To overcome this, the 

use of a different distance metric was employed, the Jaccard distance. However, a 

dendrogram of the results showed very little structure in the clusters, with many 

clusters consisting of just one pair of conditions.  

 

 

 

 

Figure 67: Two example dendrograms for comparison. 
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To determine objectively how well the C6 and C8 metrics reflect the observed data 

we used the Bk measure of dendrogram similarity (Fowlkes & Mallows, 1983). This 

allows two dendrograms to be compared at each cluster level. The dendrograms are 

cut to give k = 2, 3…, n-1clusters, where n is the total number of items. A matrix, m 

is defined in which the element mij is the number of objects that occur in the same 

cluster in both dendrograms for any given k.  

 

Therefore, 
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Bk is calculated for every value of k to create a plot of Bk versus k. A Bk value of 1 

indicates the two dendrograms are identical, whereas a value of 0 indicates they 

share no common element. 
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For dendrogram D1 with objects 1 and 3 in cluster one (C1) and objects 2, 4 and 5 in 

cluster two (C2) and dendrogram D2 with objects 1 and 4 in C1 and objects 2, 3 and 

5 in C2. The matrix, m is: 

 

  
 D2 

 

  C 1 2  

[mij] = D1 

1 1 1 2 

2 1 2 3 

   2 3 5 

 

From Equations 38 to 40, we have 
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therefore, 
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For small dendrograms it is possible to interpret the Bk by visual inspection. 

Simulations were performed in order to interpret Bk values for large numbers of 

objects. For our data with 96 different conditions (objects), k ≤ 95.  

 

For each k, simulations of the matrix m were produced to model varying similarity, 

where between 0 and 100% of the objects were in the same cluster (the leading 

diagonal) and the rest evenly spread across the off diagonal terms. For example, 

when Bk = 1, 100% of the data lies on the leading diagonal.  
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A2 

 

   1 2 3  

[mij] = A1 

1 24 4 4 32 

2 4 24 4 32 

3 4 4 24 32 

   32 32 32 96 

 

Figure 68: Example of Bk modelling. 

A matrix obtained from three clusters is shown where 75% of the 96 objects are in the same 

cluster. 

 

Figure 66 shows a matrix corresponding to k = 3, with 75% of the data on the leading 

diagonal, for 96 objects. This means 72 objects occur in the same clusters in each 

dendrogram, with 24 in each. The remaining 24 objects are found in other clusters 

and are evenly spread over the other 6 elements of the matrix. For this example B3 

would be calculated from: 

 

   (  
         )           

   (  
         )           

   (    
      )                      

 

Therefore, 
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A score of 0.58 for 3 clusters, therefore, corresponds to 75% of the data being in the 

same cluster in both dendrograms. Repeated simulations produce the surface shown 

in Figure 69. 
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Figure 69: Surface of Bk values for 96 data points. 

The surface shown is obtained from the Bk values for 96 objects with varying numbers of 

objects in the same cluster. Cardinal directions are given for ease of description. 

 

Figure 69 shows how the Bk values change with different numbers of clusters and 

distribution of objects within these clusters. For two clusters (running from north to 

west) the value falls steeply from 1, where 100% of the objects are in the same 

cluster, to a minimum of 0.49 when the objects are evenly distributed. This value 

then increases until 100% of the objects are once again in the same cluster. For all k, 

when 100% of the objects are in the same cluster (from north to east) the Bk value is 

1. The value of Bk decreases from north to south as the number of clusters increases 

and the number of objects are found in different clusters. Provided that at least 90% 

of the objects are away from the leading diagonal, from k = 11 onwards, the value of 

Bk is 0. This percentage drops by 1%, per increase of 1 in the value of k until at k = 

95, when 99% of the objects are in different clusters giving a Bk value of 0. This can 

be seen by a plateau of value 0 running from west to east for the majority of the 

southern part of the surface, where south is defined in relation to a bisection of the 

South 

West 

East 

North 
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objects running from west to east. It is possible to obtain Bk values between two 

clusters and find their corresponding value on this surface to determine how many 

objects are in the same cluster. 

 

 
Jaccard C6 C8 

Jaccard 1.00 
  

C6 0.40 1.00 
 

C8 0.46 0.63 1.00 

 

Figure 70: Correlations between methods assessing the similarity of conditions.  

The correlation matrix is shown for three methods of determining similarity between 

conditions in the Filter 6 screen. The Jaccard distance is obtained from observed 

experimental results, while C6 and C8 are theoretical distances. 

 

Figure 70 shows the correlation for the two methods, C6 and C8, of measuring 

distance in crystallisation chemical parameter space, in comparison to the Jaccard 

distances calculated from the crystallisation results for 39 projects in the Filter 6 

screen. C6 and C8 have a similar structure, as might be expected, which is reflected 

in the 0.63 correlation coefficient between them. Neither C6 nor C8 have a strong 

correlation with the observed Jaccard distance as neither model can reflect the 

stochastic nature of crystallisation experiments (Newman et al., 2007). It should be 

noted that the Filter 6 screen (a grid footprint hybrid) provides a systemic sampling 

of pH, chemical species and concentration.  

 

Data from the SGC was introduced to provide further test data. This data was 

obtained from 1,039 proteins crystallised in the JCSG +4, a sparse matrix screen. 

Figure 71 shows the correlation between Jaccard and C6 is 0.63 for this data and 

between Jaccard and C8 is 0.71. Although both metrics have higher correlation with 

the observed data than seen for the Filter 6 screen, they are not as highly correlated 

with each other. Figure 71 also shows the Bk metric used to determine the similarity 

of the clustering. The Bk values can be interpreted by comparison with the surface 

shown in Figure 69. For both metrics, when two clusters are used, 99% of the objects 
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are in the same cluster as obtained using the Jaccard distance. The C8 metric gives 

more similar clusters to the observed data until k = 28. With 24 clusters, 68% of the 

conditions are in the same cluster for C8 and the Jaccard metrics whereas Jaccard 

and C6 had 53% of conditions within the same clusters. 

 

 

 
Jaccard C6 C8 

Jaccard 1.00 
  

C6 0.63 1.00 
 

C8 0.71 0.46 1.00 

 

(a) Correlation matrix between C6, C8 and Jaccard distances. 

 

 

(b) Bk value between C6 and Jaccard clusters and C8 and Jaccard clusters. 
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(c) Summary of Bk values derived from the graph shown in (b). 

 

Figure 71: Comparison of C6 to C8 for the JCSG +4 screen. 

The similarity of the C6 and C8 clustering is compared to patterns observed (Jaccard) for 

1,039 proteins trialled in the JCSG+4 sparse matrix screen. (a) shows the correlation between 

Jaccard, C6 and C8. (b) shows the Bk measure for comparing dendrograms, between the 

clustering of the distances C6 (red dots) and C8 (blue line), with the observed distance 

(Jaccard). (c) shows the percentage of conditions that have been clustered together for each 

metric using different numbers of clusters. 

9.3. Conclusions 

Crystallisation chemical parameter space is large and often populated with regions 

that are chemically similar to other regions but do not always crystallise the same 

proteins. The C6 distance metric (Newman et al., 2010) provides a method of 

grouping regions by assuming that certain chemical species and pH are similar, 

however, this may not be correlated to the patterns obtained by experimental data 

due the stochastic nature of crystallisation. The C6 metric was deliberately designed 

without the use of empirical data due to difficulties in obtaining a globally 

representative sample of proteins. Here, we have investigated the accuracy of this 

metric with real datasets obtained from different screen types (custom, filter one and 

sparse matrix). After comparing the clustering of conditions obtained from 

experimental data with the theoretical clusters obtained from C6 and the new C8 

metric, we show that the new metric provides a more accurate reflection of the 

observed patterns. This new metric, obtained via modifications to the terms in C6 

involving PEGs, ions and pH, allows efficient design and assessment of 

C8 0.97 0.81 0.63 0.36 

Percentage in same cluster 

C6 99 74 55 53 

C8 99 91 76 68 
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crystallisation screens and conditions. The repeated analysis of crystallisation data 

should allow this metric to be updated to more accurately reflect crystallisation 

parameter space. 
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10. Conclusions and the Future 

Crystallisation is essential for the determination of protein structures by X-ray 

crystallisography. In this thesis some of the problems associated with protein 

crystallisation are discussed along with methods to potentially reduce the high 

attrition rates for this process.  

 

Protein crystallisation solutions are typically recorded in terms of severable 

variables, the chemicals species, the chemical concentration and the pH of the buffer 

or a component that has had its pH modified. The pH is known to be an important 

variable but it is well known that the recorded buffer pH can be inaccurate 

(Bukrinsky & Poulsen, 2001, Newman, Sayle, et al., 2012). Using spectrophotometry 

and the acid-base indicator bromothymol blue, we have shown that the pH of 

crystallisation solutions can be determined accurately, efficiently and quickly. This 

allows conditions to be replicated without the requirement for a pH meter. 

 

The inaccurate recording of pH in databases has meant that any analysis of such data 

is also likely to be erroneous. Inaccurate entries were recorded in data at 

AstraZeneca, the Structural Genomics Consortium, Oxford and the world's largest 

repository of successful crystallisation data - the Protein Data Bank. Many studies 

have reported the distribution of buffer pH (Samudzi et al., 1992, Rupp & Wang, 

2004, Bonneté, 2007), however, drawing conclusions from these distributions could 

be misleading. Kantardjieff and Rupp (2004) also reported a link between the pH at 

which a protein would crystallise and its isoelectric point (pI). We were able to 

develop a method to predict a pH as accurate as that of the spectrophotometric pH 

from the buffer pH using linear regression and machine learning. Using neural 

networks to associate input combinations of chemical with output pH values, it has 

been possible to achieve a more accurate prediction of the true pH than that of the 

buffer. We were then able to reinvestigate some of the results that have been 

previously reported. 

 

Using the newly modelled pH, with custom experiments, data from the SGC and the 

PDB it has been possible to examine the fiercely contested link between a protein's 
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pI and the pH of crystallisation. A lack of correlation between pI and pH was 

confirmed, however, some patterns were observed. Such information could aid the 

identification of suitable initial conditions and, therefore, could help reduce attrition 

rates. 

 

Proteins can be grouped into distinct categories according to the stage of 

crystallisation they reached. Some protein crystals were of sufficient quality to be 

used for structure determination while others crystallised and were never followed 

up. Although attempts to classify proteins into these categories were not successful, 

it was possible to classify proteins as crystallisable or non-crystallisable based on 

properties intrinsic to their sequence. Three properties were deemed to have the most 

predictive power: pI, GRAVY and the number of cysteines. This analysis involved 

the use of data from TargetDB (TargetDB, 2010), which provided both positive and 

negative data. Using a neural network we achieved a correct classification rate of 

around 70%, comparable to other published results. However, when the trained 

classifier was using data from the PDB we found that the classification algorithm 

only returned the correct result for 55%, a percentage that could have been achieved 

through guessing. We suggest that this is because the data used to train the network 

included proteins that were annotated as having "Diffraction-quality Crystals", but 

not annotated with "In PDB" in the "Status" field. The structural genomics targets in 

TargetDB may be restricted, for example due to interest in particular medical 

interests (human proteins, for example, which do not over-express in bacteria), 

whereas structures deposited in the PDB are from a wider, and potentially more 

difficult to crystallise, range of proteins. 

 

Chemical parameters were also explored and, using data from AstraZeneca and the 

PDB, it was possible to confirm that PEGs, especially PEG 3350, were the 

crystallisation reagents that were the most successful. Other successful crystallisation 

reagents include ammonium sulfate and buffers (assumed to be chemically inert). We 

obtained these results through the use of a previously proposed metric, propensity 

analysis (Rupp & Wang, 2004) and minimal set analysis. The minimal set of 

conditions, obtained by mining the Protein Data Bank, builds on the work of Jancarik 

and Kim and could help increase the number of proteins crystallised. 
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Using minimal spanning analysis of a set of approximately 9,000 proteins and their 

crystallisation conditions in the PDB it was possible to create a screen that if used 

from the onset of time would have crystallised over 2,000 of these proteins. The 

conditions for this screen were analysed using the C6 metric, giving an internal 

diversity score of 0.9, which is comparable to other commercially available screens. 

Initial trials have proven successful at AstraZeneca and YSBL, where crystalline 

material has been obtained for 23/31 (74%) of the proteins trialled. There is the 

potential for it to become an integral part of their initial screening protocol. The 

conditions of the screen are hosted on the C6 web tool (Newman et al., 2010). 

 

We also explored the possibility to reduce the number of variables in crystallisation 

parameter space by determining which chemical species are similar when 

crystallising biomolecules. This would help in the development of screens. It was 

possible to develop further the C6 metric, which compares crystallisation conditions 

and provides a distance between 0 and 1 (Newman et al., 2010). Using custom 

experiments and data from AstraZeneca, analysis was performed on the similarity of 

PEGs and ions. It was possible to develop the C6 metric, using this analysis, to fit the 

patterns observed in crystallisation screens more accurately. 

 

The development of a high-throughput method of measuring pH highlighted 

problems with a common acid-base indicator, Universal Indicator. This indicator 

covers a large pH range, but has very little colour change over neutral pHs- those 

most used in crystallisation. We found that the indicator Bromothymol Blue does 

show differences over this range, but has no observable colour change for pH values 

below 5 or above 8. Further experiments with combinations of indicators or the use 

of a multi-well tray to test several indicators simultaneously would allow an even 

more accurate method of determining pH. 

 

Using models to predict the effect of various additives within a solution provides a 

more useful estimate of the measured pH than that of the buffer. This work could be 

extended to further groups of chemicals to build more models and allow subtler 

effects to be taken into account. With regards to buffers, it might also be possible to 

determine which buffers maintain pH when placed in solution with an increasing 
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concentration of strong acid or base. It may also be possible to determine the 

different effects that buffers have on crystallisation other than controlling pH. 

 

The difference between the proteins and their properties at Structural Genomics (SG) 

centres and the Protein Data Bank needs to be explored further in order to explain 

why some proteins can be classified as crystallisable or non-crystallisable whereas 

some cannot. There have been several studies using SG data (Page & Stevens, 2004, 

Chen et al., 2004, Kimber et al., 2003) and it seems that machine learning algorithms 

trained on data from these centres does not generalise to other more varied proteins 

being explored elsewhere. Although the use of such properties has been shown to 

provide information on a proteins propensity to crystallise, it is known that even 

slight modifications to a protein sequence can affect crystallisability. 

 

The standardised PDB facilitates data mining studies and could be used to investigate 

further indicators of a proteins ability to crystallise including, for example, molecular 

weight and domain structure. Is low molecular weight better than high molecular 

weight, are single domain proteins more likely to crystallise than multi-domain 

proteins and is an oligomeric state multimer better than a monomer? We have seen 

that the most widely used crystallisation agents include both ‘salting-in’ and ‘salting-

out’ chemicals and further investigations could explore any links between protein 

properties and salt types. Where similar proteins have been crystallised in multiple 

conditions, potentially in different crystal forms, any link between the resolution of 

diffraction and the crystallisation conditions could be investigated.  
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Appendix A 

Features for Predicting a Protein’s Propensity to Crystallise 

 

Feature Set  Features 

fsOur87 Length, molecular weight, isoelectric point, instability index, 

aliphatic index, Grand Average of Hydropathy (GRAVY), 

count of 20 standard amino acids, count of 20 standard amino 

acids normalised by sequence length, mean entropy (3 

features), total number of charged residues (2 features), number 

of different types of amino acids (8 features), number of atom 

counts (6 features), extinction coefficient (4 features), half-life 

(3 features), net charge (15 features). 

fsUncorrelated Isoelectric point, instability index, aliphatic index, GRAVY, the 

amino acids A, R, N, D, C, Q, G, H, I, K, M, F, S, T, Y, the 

number of sulfurs each sequence had, the number of small, 

aromatic, aliphatic and proline amino acids, extinction 

coefficient (1 feature), half-life (3 features), count of 20 

standard amino acids normalised by sequence length, mean 

entropy (1 feature), the net charge at pH, 4,6,10,12 and 14. 

fsOB Isoelectric point, GRAVY. 

fsParCrys Isoelectric point, GRAVY, count of amino acids S, C, G, F, Y, 

M, T, H, D, W, P. 
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fsCRYSTALP The following amino acids, where - is indicative of another 

unnamed amino acid. 

Y, DL, EH, LR, PD, RI, RT, SS, WC, YT, H-H, I-C, L-E, Q-L, 

T-E, T-T, Y-F, E--C, F--Q, I--P, L--E, Q--S, S--L, T--G, W--V, 

Y--N, A---G, C---L, E---L, E---Q, H---S, L---D, M---A, N---I, 

N---Q, C----S, D----N, F----T, G----R, I----G, M----A, M----Y, 

N----H, T----G, T----Y, V----T. 

fsCRYSTALP2 The following amino acids, where - is indicative of another 

unnamed amino acid. 

Isoelectric point, GRAVY, L, Y, RI, DL, QG, QM, ES, GL, 

HH, IR, LF, LS, PP, SS, SV, WC, WM, WW, WV, YI, YT, R-

S, D-L, C-A, Q-L, H-R, H-G, H-H, I-R, L-E, F-S, T-K, T-S, T-

T, D--M, H--C, H--H, L--N, K--W, S--L, T--G, W--W, Y--N, 

R---D, Q---C, E---Q, E---S, G---H, L---D, L---L, F---T, Y---I, 

V---Y, C----E, C----H, C----S, E----Q, E----F, G----R, I----E, L-

---L, M----Y, M----V, S----H, W----H, W----M, V----T, EFV, 

IVV, TKV, R-PS, Q-QQ, K-TV, M-DS, F-TK, P-PE, DP-V, 

LR-F, MG-S, SA-D, YV-E, VT-G, N-P-G, K-I-R, F-E-F,S-T-S. 
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Appendix B 

List of conditions for PDB Minimal Spanning Screen 

 

A Number of proteins contributed 

B Predicted pH 

C Buffer pH 

  

A B C Conditions 

69 8.0 8.5 30% (w/v) polyethylene glycol 4000; 0.1 M tris chloride; 0.2 

M magnesium chloride 

56 7.9 8.5 0.1 M tris chloride; 0.2 M sodium acetate; 30% (w/v) 

polyethylene glycol 4000 

52 6.7 7.5 20% (w/v) polyethylene glycol 4000; 10% (v/v) 2-propanol; 

0.1 M hepes 

45 5.5 5.5 25% (w/v) polyethylene glycol 3350; 0.1 M bis-tris 

43 5.5 5.5 0.2 M magnesium chloride; 0.1 M bis-tris; 25% (w/v) 

polyethylene glycol 3350 

43 7.7 8.5 2 M ammonium sulfate; 0.1 M tris chloride 

42 6.5 6.5 20% (w/v) polyethylene glycol 8000; 0.1 M sodium 

cacodylate; 0.2 M magnesium acetate 

39 5.2 4.6 30% (w/v) polyethylene glycol 4000; 0.1 M sodium acetate; 

0.2 M ammonium acetate 

38 6.5 6.5 1.6 M ammonium sulfate; 0.1 M mes; 10% (v/v) dioxane 

37 5.7 5.5 0.2 M ammonium acetate; 0.1 M bis-tris; 25% (w/v) 

polyethylene glycol 3350 

35 5.5 5.5 25% (w/v) polyethylene glycol 3350; 0.2 M sodium chloride; 

0.1 M bis-tris 

34 5.5 4.6 0.1 M sodium acetate; 2 M ammonium sulfate 

32 5.5 5.5 0.1 M bis-tris; 0.2 M lithium sulfate; 25% (w/v) polyethylene 

glycol 3350 

29 6.5 6.5 12% (w/v) polyethylene glycol 20000; 0.1 M mes 

28 6.3 6.5 0.2 M magnesium chloride; 0.1 M bis-tris; 25% (w/v) 

polyethylene glycol 3350 
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28 7.4 7.5 2 M ammonium sulfate; 2% (v/v) polyethylene glycol 400; 0.1 

M hepes 

27   2 M ammonium sulfate 

27 5.2 5.6 20% (w/v) polyethylene glycol 4000; 20% (v/v) 2-propanol; 

0.1 M sodium citrate 

27 5.2 4.6 0.2 M ammonium sulfate; 0.1 M sodium acetate; 25% (w/v) 

polyethylene glycol 4000 

27 6.4 6.5 30% (w/v) polyethylene glycol 8000; 0.1 M sodium 

cacodylate; 0.2 M ammonium sulfate 

27 5.7 5.5 0.2 M ammonium sulfate; 0.1 M bis-tris; 25% (w/v) 

polyethylene glycol 3350 

26 6.3 6.5 0.1 M bis-tris; 0.2 M ammonium sulfate; 25% (w/v) 

polyethylene glycol 3350 

26 8.0 8.5 30% (w/v) polyethylene glycol 4000; 0.2 M magnesium 

chloride; 0.1 M tris 

25 5.7 5.6 0.2 M ammonium acetate; 0.1 M sodium citrate; 30% (w/v) 

polyethylene glycol 4000 

24 7.2 7.5 0.2 M magnesium chloride; 0.1 M hepes; 25% (w/v) 

polyethylene glycol 3350 

24 6.6 6.5 30% (w/v) polyethylene glycol monomethyl ether 5000; 0.2 M 

ammonium sulfate; 0.1 M mes 

23 6.3 4.6 0.1 M sodium acetate; 2 M sodium formate 

22 7.1 7.5 8% (v/v) ethylene glycol; 10% (w/v) polyethylene glycol 

8000; 0.1 M hepes 

22 7.3 7.5 20% (w/v) polyethylene glycol 10000; 0.1 M hepes 

21 6.6 6.5 20% (w/v) polyethylene glycol monomethyl ether 5000; 0.1 M 

bis-tris 

20 6.1 6 20% (w/v) polyethylene glycol 8000; 0.1 M mes; 0.2 M 

calcium acetate 

20 5.2 4.6 30% (v/v) 2-methyl-2,4-pentanediol; 0.1 M sodium acetate; 

0.02 M calcium chloride 

20 8.0 8.5 0.2 M magnesium chloride; 0.1 M tris chloride; 25% (w/v) 

polyethylene glycol 3350 

20 7.9 7.5 0.1 M hepes; 1.4 M trisodium citrate 

20 5.1 4.6 0.1 M sodium acetate; 30% (w/v) polyethylene glycol 

monomethyl ether 2000; 0.2 M ammonium sulfate 

20 8.0 8.5 0.2 M lithium sulfate; 0.1 M tris chloride; 30% (w/v) 

polyethylene glycol 4000 
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19 7.1 7.5 0.1 M hepes; 25% (w/v) polyethylene glycol 3350 

18 7.2 7.5 28% (v/v) polyethylene glycol 400; 0.2 M calcium chloride; 

0.1 M hepes 

18 7.0 7 2.4 M sodium malonate 

18 7.9 7.5 0.1 M hepes; 1.4 M sodium citrate 

17 5.9 5.6 2 M ammonium sulfate; 0.1 M sodium citrate; 0.2 M 

potassium sodium tartrate 

17 6.9 7.5 0.2 M ammonium sulfate; 25% (w/v) polyethylene glycol 

3350; 0.1 M hepes 

16 7.0 6.5 1 M sodium citrate; 0.1 M sodium cacodylate 

16   0.1 M sodium chloride; 0.005 M dithiothreitol; 0.02% (v/v) 

sodium azide; 0.01 M tris chloride 

16 8.2 8.5 20% (w/v) polyethylene glycol 8000; 0.2 M magnesium 

chloride; 0.1 M tris 

16 5.9 5.5 0.1 M sodium citrate; 20% (w/v) polyethylene glycol 3000 

16 5.3 4.6 0.1 M sodium acetate; 8% (w/v) polyethylene glycol 4000 

16 7.2 7.5 10% (w/v) polyethylene glycol 6000; 5% (v/v) 2-methyl-2,4-

pentanediol; 0.1 M hepes 

16 5.7 5.5 0.1 M bis-tris; 2 M ammonium sulfate 

15 6.2 5.5 1 M ammonium sulfate; 0.1 M bis-tris; 1% (w/v) polyethylene 

glycol 3350 

15 7.7 7.5 1.5 M lithium sulfate; 0.1 M hepes 

15 6.9 7.5 25% (w/v) polyethylene glycol 3350; 0.1 M hepes; 0.2 M 

ammonium acetate 

15 7.3 7.5 20% (w/v) polyethylene glycol 8000; 0.1 M hepes 

15 6.3 6.5 25% (w/v) polyethylene glycol 3350; 0.2 M lithium sulfate; 

0.1 M bis-tris 

15 7.2 7.5 0.2 M lithium sulfate; 0.1 M hepes; 25% (w/v) polyethylene 

glycol 3350 

14 7.6 9 2.4 M ammonium sulfate; 0.1 M bicine 

14 6.2 6.5 0.1 M bis-tris; 0.05 M calcium chloride; 30% (v/v) 

polyethylene glycol monomethyl ether 550 
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14 7.2 7.5 30% (v/v) polyethylene glycol 400; 0.2 M magnesium 

chloride; 0.1 M hepes 

14 8.0 8.5 30% (w/v) polyethylene glycol 4000; 0.2 M lithium sulfate; 

0.1 M tris 

14 6.7 6.5 1.6 M magnesium sulfate; 0.1 M mes 

14 6.5 6.5 18% (w/v) polyethylene glycol 8000; 0.1 M sodium 

cacodylate; 0.2 M calcium acetate 

14 6.8 6.5 2 M ammonium sulfate; 0.1 M bis-tris 

14 6.4 6.5 30% (w/v) polyethylene glycol 8000; 0.1 M sodium 

cacodylate; 0.2 M sodium acetate 

13 6.1 6.5 0.1 M bis-tris; 28% (w/v) polyethylene glycol monomethyl 

ether 2000 

13 7.8 8 10% (w/v) polyethylene glycol 8000; 0.1 M imidazole; 0.2 M 

calcium acetate 

13   60% (v/v) tacsimate 

12   2.1 M dl-malic acid 

12   0.15 M dl-malic acid; 20% (w/v) polyethylene glycol 3350 

12 6.8 6.5 2 M ammonium sulfate; 0.2 M sodium chloride; 0.1 M sodium 

cacodylate 

12   4 M sodium formate 

11 7.1 6.5 1.4 M sodium acetate; 0.1 M sodium cacodylate 

11 7.2 7.5 0.2 M sodium chloride; 0.1 M hepes; 25% (w/v) polyethylene 

glycol 3350 

11 7.4 7.5 4.3 M sodium chloride; 0.1 M hepes 

11   20% (w/v) polyethylene glycol 3350; 0.2 M ammonium 

chloride 

11   20% (w/v) polyethylene glycol 3350; 0.2 M sodium formate 

10 6.4 6.6 0.2 M ammonium formate; 20% (w/v) polyethylene glycol 

3350 

10 7.0 7.3 0.2 M calcium acetate; 20% (w/v) polyethylene glycol 3350 

10 5.9 5.6 0.2 M potassium sodium tartrate; 0.1 M trisodium citrate; 2 M 

ammonium sulfate 
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10 6.4 6.5 1.8 M ammonium sulfate; 0.01 M cobalt chloride; 0.1 M mes 

10 6.7 10.5 1.2 M sodium dihydrogen phosphate; 0.8 M dipotassium 

hydrogen phosphate; 0.1 M caps; 0.2 M lithium sulfate 

10 6.3 6.5 40% (v/v) polyethylene glycol 300; 0.1 M sodium cacodylate; 

0.2 M calcium acetate 

10 5.5 4.5 0.1 M sodium acetate; 2 M ammonium sulfate 

10 6.5 7.5 0.1 M hepes; 70% (v/v) 2-methyl-2,4-pentanediol 

10 6.7 7.5 20% (w/v) polyethylene glycol 4000; 10% (v/v) 2-propanol; 

0.1 M sodium hepes 

10 8.0 8.5 25% (w/v) polyethylene glycol 3350; 0.2 M magnesium 

chloride; 0.1 M tris 

10 7.4 7.5 0.1 M sodium hepes; 2% (v/v) polyethylene glycol 400; 2 M 

ammonium sulfate 

10 6.3 6.5 0.1 M bis-tris; 0.2 M sodium chloride; 25% (w/v) polyethylene 

glycol 3350 

10 7.7 8.5 2 M ammonium sulfate; 0.1 M tris 

9 5.1 4.5 30% (w/v) polyethylene glycol 8000; 0.1 M sodium acetate; 

0.2 M lithium sulfate 

9 6.1 6 20% (w/v) polyethylene glycol 6000; 1 M lithium chloride; 0.1 

M mes 

9 6.9 4.6 3.5 M sodium formate; 0.1 M sodium acetate 

9 8.6 9.5 0.1 M ches; 20% (w/v) polyethylene glycol 8000 

9 9.0 9.5 1 M sodium citrate; 0.1 M ches 

9 4.8 4.2 20% (w/v) polyethylene glycol 1000; 0.2 M lithium sulfate; 

0.1 M phosphate-citrate 

9 8.0 7 2.8 M sodium acetate 

9 7.2 6.5 1.6 M sodium citrate 
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Appendix C 

The Changing pH of PEGs Overtime  

It is known that the pH of a crystallisation solution can be imperative to the success 

of trial. Many crystallisation solutions are unbuffered or contain a buffer at a 

concentration that is not capable of stabilising the pH with some chemicals. 

Chemicals such as dihydrogen-, hydroxide-, and weak acid salts modify the pH most, 

but ammonia-containing compounds and PEGs undergo degradation overtime and 

therefore modify the pH in an unpredictable manner. PEGs are the most successful 

crystallisation reagents, their inclusion in screens is common and so their potential to 

modify pH is of particular interest. Here, we assess the effects of storage conditions 

on PEGs of various molecular weights that were purchased from four different 

suppliers as shown in Table 20. 

 

Aldrich (A) Fluka (F) Hampton Research (HR) Molecular Dimensions (MD) 

2000 (S) - - 2000 

2000 MME (S) - 2000 MME 2000 MME 

- 4000 (S) 4000 (S) 4000  

10000 (S) 10000 (S) 10000 10000 

 

- Unavailable  

(S) Solid form 

 

Table 20: The different weight PEGs purchased from various suppliers. 

 

Those PEGs that were purchased in a solid form (waxy granules) were made up to a 

50% weight per volume solution by dissolving the granules in warmed ultrapure 

water and allowing cooling to room temperature. PEGs purchased as solutions were 

also 50% (w/v). For each available molecular weight from each manufacturer, 

solutions were dispensed into twelve 5ml polystyrene containers with a plastic screw 

cap and the pH measured immediately from two aliquots using a pH meter. The 

remaining ten containers (for each molecular weight and manufacturer) were stored 

in pairs in the following conditions: 
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 FD: -18°C and dark (freezer) 

 DC: 6°C and dark (cold room cupboard) 

 LC: 6°C and light (cold room shelf) 

 DR: 20°C and dark (laboratory cupboard) 

 LR: 20°C and light (laboratory shelf) 

 

After 115 days, two containers (for each molecular weight and manufacturer) were 

removed from storage and the pH measured. This was repeated after a further 78 

days (193 days from dispensation).  

 

Results 

 

t 0 115 193 

 

1 2 1 2 1 2 

A-2000-DC 7.7 7.8 7.9 7.9 8.2 8.3 

A-2000 MME-

DC 
8.3 8.3 6.8 6.9 8.3 8.4 

A-10000-DC 6.2 6.3 6.0 5.9 6.0 6.0 

 

(a) The pH measurements for PEGs purchased from Aldrich stored in the cold and 

dark. 

t 0 115 193 

 A-2000-DC 7.8 7.9 8.2 0.4 

A-2000 MME-

DC 
8.3 6.8 8.4 0 

A-10000-DC 6.2 5.9 6 0.2 

 

(b) The pH measurements for each initial and last time interval averaged, with the 

maximum absolute difference in measurements shown in red. 

Table 21: pH measurements for PEGs purchased from Aldrich. 

The pH measurements for PEG 2000 purchased from Aldrich and stored in the fridge in a 

cupboard (dark cold). Table (a) shows the raw data and table (b) shows how it was averaged. 
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In addition to the PEGs shown in Table 21, PEG 400 was also purchased from each 

supplier. However, we found that it was not possible to obtain a stable pH 

measurement at this molecular weight and therefore, the pH of PEG 400 is not 

included here.  

 

Table 21 shows an example set of recordings and how they were averaged and 

analysed. Whilst the pH for PEG 2000 gradually increased over the 193 days from an 

average of pH 7.8 to 8.2, increasing 0.4 pH units overtime, whereas PEG 2000 MME 

only changed by 0.04 pH units, well within the error expected for a pH meter.  

 

Figure 72a shows the pH measurement for each time point averaged over all storage 

conditions and all manufacturers supplying the different molecular weights. The 

results suggest that, on average, the pH of PEG 4000 changes most from a basic pH 

of 7.3 to an acidic one of 6.3. The smallest change in pH is for PEG 10000 which 

remains constant around the already acidic pH of 5.5.  

 

 

(a) Each molecular weight averaged over manufacturer and storage conditions. 
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(b) Each manufacturer averaged over molecular weight and storage conditions. 

 

(c) Each storage condition averaged over molecular weight and manufacturer. 

 

Figure 72: The change in pH over time associated with different parameters. 
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The pH measurements were averaged over combinations of the three major parameters: 

molecular weight, manufacturer and storage conditions. (a) shows the results for each 

molecular weight averaged over manufacturer and storage conditions. (b) shows the results 

for each manufacturer averaged over molecular weight and storage conditions. (c) shows the 

results for each storage condition averaged over molecular weight and manufacturer. The 

error bars shown are standard error, defined as the standard deviation over the square root of 

the number of observations. 

 

The measurements were also averaged over all molecular weights and storage 

conditions to determine any patterns due to manufacturer (Figure 1b) and over all 

molecular weights and manufacturers to examine differences between storage 

conditions. Figure 72b shows that the chemicals obtained from Fluka (F) and 

Hampton Research (HR) become more acidic, whereas those from Molecular 

Dimensions (MD) and Aldrich (A) seem to remain constant. For the storage 

conditions, the largest change in pH is seen for PEGs stored at room temperature, 

with averages for both light and dark falling from around pH 6.7 to 5.3. On the other 

hand the chemicals stored in the cold became slightly more basic from an average 

around 6.7 increasing to a more neutral pH. 

 

Taking the mean absolute difference (MAD) between the time of dispensation and 

the final measurement provides summary statistics for the PEGs by molecular 

weight, manufacturer and storage method. The PEG weights which changed the least 

across all storage methods and all manufacturers were PEG 2000 and 10000, with a 

MAD of 0.73 for both. The largest MAD of 1.3 was for PEG 4000, as shown in 

Figure 72. However, the largest MADs for the manufacturers were Molecular 

Dimensions (1.3) and the smallest Aldrich (0.45). On closer inspection we found that 

the MD solutions change in both an acidic and a basic direction creating an illusion 

of little change. For example, MD 2000 which was frozen or in the fridge became 

more basic by at least half a unit and MD 2000 which was at room temperature 

became more acidic by over 1.5 units. The storage method with the lowest MAD was 

dark and cold with a value of 0.5, similarly low was frozen (0.6) and light cold (0.5) 

and the largest MAD was for light room of 1.6 and dark room 1.4 as suggest by the 

graph in Figure 72. Those PEGs that were made up from solid had a MAD of 0.7 and 

those already in solution of 1.1. On an individual basic, MD-4000-DR changed 3.2 



 

 

209 

 

units from pH 7.3 to 4.1, whereas HR-2000 MME-DC only changed in the 

hundredths of the measurement. 

 

Conclusions 

 

Manufacturers (MolecularDimensions, 2015) suggest that light can affect PEG 

solutions: 

 

“PEG solutions are light sensitive and can degrade over time if kept in 

the light. Therefore, we recommend keeping them in the dark.” 

 

Our results suggest that it is temperature rather than light that causes the largest 

change in the pH of PEGs. Storage in both light and dark gave similar results for a 

given temperature. Certain molecular weights, PEG 4000 and PEG 2000 MME have 

a pH that is susceptible to change, whereas PEG 10000 appears to be more stable 

and, therefore, requires less monitoring. It might be possible to conclude that the 

purchasing of chemicals in their dry form from Aldrich and Fluka (where available) 

and making them up might results in a more consistent PEG pH. It is possible, as 

shown in Figure 73, that PEGs in solution are already undergoing change, as 

suggested supported by the average initial pH for liquid (on purchased) PEGs being 

6.2, whereas those solid PEGs (we made into solutions) having an initial average pH 

of 7.1, which is closer to the expected neutral. Through continued monitoring it will 

be possible to determine any longer term effects due to differences in molecular 

weight, manufacturer and storage method.  
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Figure 73: The pH of PEGs for the two different forms purchased. 

PEGs were purchased in either granular (solid) form or liquid form (premade solution). The 

solid PEGS that we made into solution have a more neutral pH than those premade. Initially, 

the standard deviation of both types is 0.87. Standard error bars are shown. 
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